xref: /openbmc/linux/kernel/sched/fair.c (revision 11930010)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 
51 #include <asm/switch_to.h>
52 
53 #include <linux/sched/cond_resched.h>
54 
55 #include "sched.h"
56 #include "stats.h"
57 #include "autogroup.h"
58 
59 /*
60  * Targeted preemption latency for CPU-bound tasks:
61  *
62  * NOTE: this latency value is not the same as the concept of
63  * 'timeslice length' - timeslices in CFS are of variable length
64  * and have no persistent notion like in traditional, time-slice
65  * based scheduling concepts.
66  *
67  * (to see the precise effective timeslice length of your workload,
68  *  run vmstat and monitor the context-switches (cs) field)
69  *
70  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
71  */
72 unsigned int sysctl_sched_latency			= 6000000ULL;
73 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
74 
75 /*
76  * The initial- and re-scaling of tunables is configurable
77  *
78  * Options are:
79  *
80  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
81  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
82  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
83  *
84  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
85  */
86 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
87 
88 /*
89  * Minimal preemption granularity for CPU-bound tasks:
90  *
91  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
92  */
93 unsigned int sysctl_sched_min_granularity			= 750000ULL;
94 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
95 
96 /*
97  * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
98  * Applies only when SCHED_IDLE tasks compete with normal tasks.
99  *
100  * (default: 0.75 msec)
101  */
102 unsigned int sysctl_sched_idle_min_granularity			= 750000ULL;
103 
104 /*
105  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
106  */
107 static unsigned int sched_nr_latency = 8;
108 
109 /*
110  * After fork, child runs first. If set to 0 (default) then
111  * parent will (try to) run first.
112  */
113 unsigned int sysctl_sched_child_runs_first __read_mostly;
114 
115 /*
116  * SCHED_OTHER wake-up granularity.
117  *
118  * This option delays the preemption effects of decoupled workloads
119  * and reduces their over-scheduling. Synchronous workloads will still
120  * have immediate wakeup/sleep latencies.
121  *
122  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
123  */
124 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
125 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
126 
127 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
128 
129 int sched_thermal_decay_shift;
130 static int __init setup_sched_thermal_decay_shift(char *str)
131 {
132 	int _shift = 0;
133 
134 	if (kstrtoint(str, 0, &_shift))
135 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
136 
137 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
138 	return 1;
139 }
140 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
141 
142 #ifdef CONFIG_SMP
143 /*
144  * For asym packing, by default the lower numbered CPU has higher priority.
145  */
146 int __weak arch_asym_cpu_priority(int cpu)
147 {
148 	return -cpu;
149 }
150 
151 /*
152  * The margin used when comparing utilization with CPU capacity.
153  *
154  * (default: ~20%)
155  */
156 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
157 
158 /*
159  * The margin used when comparing CPU capacities.
160  * is 'cap1' noticeably greater than 'cap2'
161  *
162  * (default: ~5%)
163  */
164 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
165 #endif
166 
167 #ifdef CONFIG_CFS_BANDWIDTH
168 /*
169  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
170  * each time a cfs_rq requests quota.
171  *
172  * Note: in the case that the slice exceeds the runtime remaining (either due
173  * to consumption or the quota being specified to be smaller than the slice)
174  * we will always only issue the remaining available time.
175  *
176  * (default: 5 msec, units: microseconds)
177  */
178 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
179 #endif
180 
181 #ifdef CONFIG_NUMA_BALANCING
182 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
183 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
184 #endif
185 
186 #ifdef CONFIG_SYSCTL
187 static struct ctl_table sched_fair_sysctls[] = {
188 	{
189 		.procname       = "sched_child_runs_first",
190 		.data           = &sysctl_sched_child_runs_first,
191 		.maxlen         = sizeof(unsigned int),
192 		.mode           = 0644,
193 		.proc_handler   = proc_dointvec,
194 	},
195 #ifdef CONFIG_CFS_BANDWIDTH
196 	{
197 		.procname       = "sched_cfs_bandwidth_slice_us",
198 		.data           = &sysctl_sched_cfs_bandwidth_slice,
199 		.maxlen         = sizeof(unsigned int),
200 		.mode           = 0644,
201 		.proc_handler   = proc_dointvec_minmax,
202 		.extra1         = SYSCTL_ONE,
203 	},
204 #endif
205 #ifdef CONFIG_NUMA_BALANCING
206 	{
207 		.procname	= "numa_balancing_promote_rate_limit_MBps",
208 		.data		= &sysctl_numa_balancing_promote_rate_limit,
209 		.maxlen		= sizeof(unsigned int),
210 		.mode		= 0644,
211 		.proc_handler	= proc_dointvec_minmax,
212 		.extra1		= SYSCTL_ZERO,
213 	},
214 #endif /* CONFIG_NUMA_BALANCING */
215 	{}
216 };
217 
218 static int __init sched_fair_sysctl_init(void)
219 {
220 	register_sysctl_init("kernel", sched_fair_sysctls);
221 	return 0;
222 }
223 late_initcall(sched_fair_sysctl_init);
224 #endif
225 
226 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
227 {
228 	lw->weight += inc;
229 	lw->inv_weight = 0;
230 }
231 
232 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
233 {
234 	lw->weight -= dec;
235 	lw->inv_weight = 0;
236 }
237 
238 static inline void update_load_set(struct load_weight *lw, unsigned long w)
239 {
240 	lw->weight = w;
241 	lw->inv_weight = 0;
242 }
243 
244 /*
245  * Increase the granularity value when there are more CPUs,
246  * because with more CPUs the 'effective latency' as visible
247  * to users decreases. But the relationship is not linear,
248  * so pick a second-best guess by going with the log2 of the
249  * number of CPUs.
250  *
251  * This idea comes from the SD scheduler of Con Kolivas:
252  */
253 static unsigned int get_update_sysctl_factor(void)
254 {
255 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
256 	unsigned int factor;
257 
258 	switch (sysctl_sched_tunable_scaling) {
259 	case SCHED_TUNABLESCALING_NONE:
260 		factor = 1;
261 		break;
262 	case SCHED_TUNABLESCALING_LINEAR:
263 		factor = cpus;
264 		break;
265 	case SCHED_TUNABLESCALING_LOG:
266 	default:
267 		factor = 1 + ilog2(cpus);
268 		break;
269 	}
270 
271 	return factor;
272 }
273 
274 static void update_sysctl(void)
275 {
276 	unsigned int factor = get_update_sysctl_factor();
277 
278 #define SET_SYSCTL(name) \
279 	(sysctl_##name = (factor) * normalized_sysctl_##name)
280 	SET_SYSCTL(sched_min_granularity);
281 	SET_SYSCTL(sched_latency);
282 	SET_SYSCTL(sched_wakeup_granularity);
283 #undef SET_SYSCTL
284 }
285 
286 void __init sched_init_granularity(void)
287 {
288 	update_sysctl();
289 }
290 
291 #define WMULT_CONST	(~0U)
292 #define WMULT_SHIFT	32
293 
294 static void __update_inv_weight(struct load_weight *lw)
295 {
296 	unsigned long w;
297 
298 	if (likely(lw->inv_weight))
299 		return;
300 
301 	w = scale_load_down(lw->weight);
302 
303 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
304 		lw->inv_weight = 1;
305 	else if (unlikely(!w))
306 		lw->inv_weight = WMULT_CONST;
307 	else
308 		lw->inv_weight = WMULT_CONST / w;
309 }
310 
311 /*
312  * delta_exec * weight / lw.weight
313  *   OR
314  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
315  *
316  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
317  * we're guaranteed shift stays positive because inv_weight is guaranteed to
318  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
319  *
320  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
321  * weight/lw.weight <= 1, and therefore our shift will also be positive.
322  */
323 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
324 {
325 	u64 fact = scale_load_down(weight);
326 	u32 fact_hi = (u32)(fact >> 32);
327 	int shift = WMULT_SHIFT;
328 	int fs;
329 
330 	__update_inv_weight(lw);
331 
332 	if (unlikely(fact_hi)) {
333 		fs = fls(fact_hi);
334 		shift -= fs;
335 		fact >>= fs;
336 	}
337 
338 	fact = mul_u32_u32(fact, lw->inv_weight);
339 
340 	fact_hi = (u32)(fact >> 32);
341 	if (fact_hi) {
342 		fs = fls(fact_hi);
343 		shift -= fs;
344 		fact >>= fs;
345 	}
346 
347 	return mul_u64_u32_shr(delta_exec, fact, shift);
348 }
349 
350 
351 const struct sched_class fair_sched_class;
352 
353 /**************************************************************
354  * CFS operations on generic schedulable entities:
355  */
356 
357 #ifdef CONFIG_FAIR_GROUP_SCHED
358 
359 /* Walk up scheduling entities hierarchy */
360 #define for_each_sched_entity(se) \
361 		for (; se; se = se->parent)
362 
363 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
364 {
365 	struct rq *rq = rq_of(cfs_rq);
366 	int cpu = cpu_of(rq);
367 
368 	if (cfs_rq->on_list)
369 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
370 
371 	cfs_rq->on_list = 1;
372 
373 	/*
374 	 * Ensure we either appear before our parent (if already
375 	 * enqueued) or force our parent to appear after us when it is
376 	 * enqueued. The fact that we always enqueue bottom-up
377 	 * reduces this to two cases and a special case for the root
378 	 * cfs_rq. Furthermore, it also means that we will always reset
379 	 * tmp_alone_branch either when the branch is connected
380 	 * to a tree or when we reach the top of the tree
381 	 */
382 	if (cfs_rq->tg->parent &&
383 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
384 		/*
385 		 * If parent is already on the list, we add the child
386 		 * just before. Thanks to circular linked property of
387 		 * the list, this means to put the child at the tail
388 		 * of the list that starts by parent.
389 		 */
390 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
391 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
392 		/*
393 		 * The branch is now connected to its tree so we can
394 		 * reset tmp_alone_branch to the beginning of the
395 		 * list.
396 		 */
397 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
398 		return true;
399 	}
400 
401 	if (!cfs_rq->tg->parent) {
402 		/*
403 		 * cfs rq without parent should be put
404 		 * at the tail of the list.
405 		 */
406 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
407 			&rq->leaf_cfs_rq_list);
408 		/*
409 		 * We have reach the top of a tree so we can reset
410 		 * tmp_alone_branch to the beginning of the list.
411 		 */
412 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
413 		return true;
414 	}
415 
416 	/*
417 	 * The parent has not already been added so we want to
418 	 * make sure that it will be put after us.
419 	 * tmp_alone_branch points to the begin of the branch
420 	 * where we will add parent.
421 	 */
422 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
423 	/*
424 	 * update tmp_alone_branch to points to the new begin
425 	 * of the branch
426 	 */
427 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
428 	return false;
429 }
430 
431 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
432 {
433 	if (cfs_rq->on_list) {
434 		struct rq *rq = rq_of(cfs_rq);
435 
436 		/*
437 		 * With cfs_rq being unthrottled/throttled during an enqueue,
438 		 * it can happen the tmp_alone_branch points the a leaf that
439 		 * we finally want to del. In this case, tmp_alone_branch moves
440 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
441 		 * at the end of the enqueue.
442 		 */
443 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
444 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
445 
446 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
447 		cfs_rq->on_list = 0;
448 	}
449 }
450 
451 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
452 {
453 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
454 }
455 
456 /* Iterate thr' all leaf cfs_rq's on a runqueue */
457 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
458 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
459 				 leaf_cfs_rq_list)
460 
461 /* Do the two (enqueued) entities belong to the same group ? */
462 static inline struct cfs_rq *
463 is_same_group(struct sched_entity *se, struct sched_entity *pse)
464 {
465 	if (se->cfs_rq == pse->cfs_rq)
466 		return se->cfs_rq;
467 
468 	return NULL;
469 }
470 
471 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
472 {
473 	return se->parent;
474 }
475 
476 static void
477 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
478 {
479 	int se_depth, pse_depth;
480 
481 	/*
482 	 * preemption test can be made between sibling entities who are in the
483 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
484 	 * both tasks until we find their ancestors who are siblings of common
485 	 * parent.
486 	 */
487 
488 	/* First walk up until both entities are at same depth */
489 	se_depth = (*se)->depth;
490 	pse_depth = (*pse)->depth;
491 
492 	while (se_depth > pse_depth) {
493 		se_depth--;
494 		*se = parent_entity(*se);
495 	}
496 
497 	while (pse_depth > se_depth) {
498 		pse_depth--;
499 		*pse = parent_entity(*pse);
500 	}
501 
502 	while (!is_same_group(*se, *pse)) {
503 		*se = parent_entity(*se);
504 		*pse = parent_entity(*pse);
505 	}
506 }
507 
508 static int tg_is_idle(struct task_group *tg)
509 {
510 	return tg->idle > 0;
511 }
512 
513 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
514 {
515 	return cfs_rq->idle > 0;
516 }
517 
518 static int se_is_idle(struct sched_entity *se)
519 {
520 	if (entity_is_task(se))
521 		return task_has_idle_policy(task_of(se));
522 	return cfs_rq_is_idle(group_cfs_rq(se));
523 }
524 
525 #else	/* !CONFIG_FAIR_GROUP_SCHED */
526 
527 #define for_each_sched_entity(se) \
528 		for (; se; se = NULL)
529 
530 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
531 {
532 	return true;
533 }
534 
535 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
536 {
537 }
538 
539 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
540 {
541 }
542 
543 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
544 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
545 
546 static inline struct sched_entity *parent_entity(struct sched_entity *se)
547 {
548 	return NULL;
549 }
550 
551 static inline void
552 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
553 {
554 }
555 
556 static inline int tg_is_idle(struct task_group *tg)
557 {
558 	return 0;
559 }
560 
561 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
562 {
563 	return 0;
564 }
565 
566 static int se_is_idle(struct sched_entity *se)
567 {
568 	return 0;
569 }
570 
571 #endif	/* CONFIG_FAIR_GROUP_SCHED */
572 
573 static __always_inline
574 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
575 
576 /**************************************************************
577  * Scheduling class tree data structure manipulation methods:
578  */
579 
580 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
581 {
582 	s64 delta = (s64)(vruntime - max_vruntime);
583 	if (delta > 0)
584 		max_vruntime = vruntime;
585 
586 	return max_vruntime;
587 }
588 
589 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
590 {
591 	s64 delta = (s64)(vruntime - min_vruntime);
592 	if (delta < 0)
593 		min_vruntime = vruntime;
594 
595 	return min_vruntime;
596 }
597 
598 static inline bool entity_before(const struct sched_entity *a,
599 				 const struct sched_entity *b)
600 {
601 	return (s64)(a->vruntime - b->vruntime) < 0;
602 }
603 
604 #define __node_2_se(node) \
605 	rb_entry((node), struct sched_entity, run_node)
606 
607 static void update_min_vruntime(struct cfs_rq *cfs_rq)
608 {
609 	struct sched_entity *curr = cfs_rq->curr;
610 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
611 
612 	u64 vruntime = cfs_rq->min_vruntime;
613 
614 	if (curr) {
615 		if (curr->on_rq)
616 			vruntime = curr->vruntime;
617 		else
618 			curr = NULL;
619 	}
620 
621 	if (leftmost) { /* non-empty tree */
622 		struct sched_entity *se = __node_2_se(leftmost);
623 
624 		if (!curr)
625 			vruntime = se->vruntime;
626 		else
627 			vruntime = min_vruntime(vruntime, se->vruntime);
628 	}
629 
630 	/* ensure we never gain time by being placed backwards. */
631 	u64_u32_store(cfs_rq->min_vruntime,
632 		      max_vruntime(cfs_rq->min_vruntime, vruntime));
633 }
634 
635 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
636 {
637 	return entity_before(__node_2_se(a), __node_2_se(b));
638 }
639 
640 /*
641  * Enqueue an entity into the rb-tree:
642  */
643 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
644 {
645 	rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
646 }
647 
648 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
649 {
650 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
651 }
652 
653 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
654 {
655 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
656 
657 	if (!left)
658 		return NULL;
659 
660 	return __node_2_se(left);
661 }
662 
663 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
664 {
665 	struct rb_node *next = rb_next(&se->run_node);
666 
667 	if (!next)
668 		return NULL;
669 
670 	return __node_2_se(next);
671 }
672 
673 #ifdef CONFIG_SCHED_DEBUG
674 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
675 {
676 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
677 
678 	if (!last)
679 		return NULL;
680 
681 	return __node_2_se(last);
682 }
683 
684 /**************************************************************
685  * Scheduling class statistics methods:
686  */
687 
688 int sched_update_scaling(void)
689 {
690 	unsigned int factor = get_update_sysctl_factor();
691 
692 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
693 					sysctl_sched_min_granularity);
694 
695 #define WRT_SYSCTL(name) \
696 	(normalized_sysctl_##name = sysctl_##name / (factor))
697 	WRT_SYSCTL(sched_min_granularity);
698 	WRT_SYSCTL(sched_latency);
699 	WRT_SYSCTL(sched_wakeup_granularity);
700 #undef WRT_SYSCTL
701 
702 	return 0;
703 }
704 #endif
705 
706 /*
707  * delta /= w
708  */
709 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
710 {
711 	if (unlikely(se->load.weight != NICE_0_LOAD))
712 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
713 
714 	return delta;
715 }
716 
717 /*
718  * The idea is to set a period in which each task runs once.
719  *
720  * When there are too many tasks (sched_nr_latency) we have to stretch
721  * this period because otherwise the slices get too small.
722  *
723  * p = (nr <= nl) ? l : l*nr/nl
724  */
725 static u64 __sched_period(unsigned long nr_running)
726 {
727 	if (unlikely(nr_running > sched_nr_latency))
728 		return nr_running * sysctl_sched_min_granularity;
729 	else
730 		return sysctl_sched_latency;
731 }
732 
733 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
734 
735 /*
736  * We calculate the wall-time slice from the period by taking a part
737  * proportional to the weight.
738  *
739  * s = p*P[w/rw]
740  */
741 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
742 {
743 	unsigned int nr_running = cfs_rq->nr_running;
744 	struct sched_entity *init_se = se;
745 	unsigned int min_gran;
746 	u64 slice;
747 
748 	if (sched_feat(ALT_PERIOD))
749 		nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
750 
751 	slice = __sched_period(nr_running + !se->on_rq);
752 
753 	for_each_sched_entity(se) {
754 		struct load_weight *load;
755 		struct load_weight lw;
756 		struct cfs_rq *qcfs_rq;
757 
758 		qcfs_rq = cfs_rq_of(se);
759 		load = &qcfs_rq->load;
760 
761 		if (unlikely(!se->on_rq)) {
762 			lw = qcfs_rq->load;
763 
764 			update_load_add(&lw, se->load.weight);
765 			load = &lw;
766 		}
767 		slice = __calc_delta(slice, se->load.weight, load);
768 	}
769 
770 	if (sched_feat(BASE_SLICE)) {
771 		if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
772 			min_gran = sysctl_sched_idle_min_granularity;
773 		else
774 			min_gran = sysctl_sched_min_granularity;
775 
776 		slice = max_t(u64, slice, min_gran);
777 	}
778 
779 	return slice;
780 }
781 
782 /*
783  * We calculate the vruntime slice of a to-be-inserted task.
784  *
785  * vs = s/w
786  */
787 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
788 {
789 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
790 }
791 
792 #include "pelt.h"
793 #ifdef CONFIG_SMP
794 
795 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
796 static unsigned long task_h_load(struct task_struct *p);
797 static unsigned long capacity_of(int cpu);
798 
799 /* Give new sched_entity start runnable values to heavy its load in infant time */
800 void init_entity_runnable_average(struct sched_entity *se)
801 {
802 	struct sched_avg *sa = &se->avg;
803 
804 	memset(sa, 0, sizeof(*sa));
805 
806 	/*
807 	 * Tasks are initialized with full load to be seen as heavy tasks until
808 	 * they get a chance to stabilize to their real load level.
809 	 * Group entities are initialized with zero load to reflect the fact that
810 	 * nothing has been attached to the task group yet.
811 	 */
812 	if (entity_is_task(se))
813 		sa->load_avg = scale_load_down(se->load.weight);
814 
815 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
816 }
817 
818 /*
819  * With new tasks being created, their initial util_avgs are extrapolated
820  * based on the cfs_rq's current util_avg:
821  *
822  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
823  *
824  * However, in many cases, the above util_avg does not give a desired
825  * value. Moreover, the sum of the util_avgs may be divergent, such
826  * as when the series is a harmonic series.
827  *
828  * To solve this problem, we also cap the util_avg of successive tasks to
829  * only 1/2 of the left utilization budget:
830  *
831  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
832  *
833  * where n denotes the nth task and cpu_scale the CPU capacity.
834  *
835  * For example, for a CPU with 1024 of capacity, a simplest series from
836  * the beginning would be like:
837  *
838  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
839  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
840  *
841  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
842  * if util_avg > util_avg_cap.
843  */
844 void post_init_entity_util_avg(struct task_struct *p)
845 {
846 	struct sched_entity *se = &p->se;
847 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
848 	struct sched_avg *sa = &se->avg;
849 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
850 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
851 
852 	if (p->sched_class != &fair_sched_class) {
853 		/*
854 		 * For !fair tasks do:
855 		 *
856 		update_cfs_rq_load_avg(now, cfs_rq);
857 		attach_entity_load_avg(cfs_rq, se);
858 		switched_from_fair(rq, p);
859 		 *
860 		 * such that the next switched_to_fair() has the
861 		 * expected state.
862 		 */
863 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
864 		return;
865 	}
866 
867 	if (cap > 0) {
868 		if (cfs_rq->avg.util_avg != 0) {
869 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
870 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
871 
872 			if (sa->util_avg > cap)
873 				sa->util_avg = cap;
874 		} else {
875 			sa->util_avg = cap;
876 		}
877 	}
878 
879 	sa->runnable_avg = sa->util_avg;
880 }
881 
882 #else /* !CONFIG_SMP */
883 void init_entity_runnable_average(struct sched_entity *se)
884 {
885 }
886 void post_init_entity_util_avg(struct task_struct *p)
887 {
888 }
889 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
890 {
891 }
892 #endif /* CONFIG_SMP */
893 
894 /*
895  * Update the current task's runtime statistics.
896  */
897 static void update_curr(struct cfs_rq *cfs_rq)
898 {
899 	struct sched_entity *curr = cfs_rq->curr;
900 	u64 now = rq_clock_task(rq_of(cfs_rq));
901 	u64 delta_exec;
902 
903 	if (unlikely(!curr))
904 		return;
905 
906 	delta_exec = now - curr->exec_start;
907 	if (unlikely((s64)delta_exec <= 0))
908 		return;
909 
910 	curr->exec_start = now;
911 
912 	if (schedstat_enabled()) {
913 		struct sched_statistics *stats;
914 
915 		stats = __schedstats_from_se(curr);
916 		__schedstat_set(stats->exec_max,
917 				max(delta_exec, stats->exec_max));
918 	}
919 
920 	curr->sum_exec_runtime += delta_exec;
921 	schedstat_add(cfs_rq->exec_clock, delta_exec);
922 
923 	curr->vruntime += calc_delta_fair(delta_exec, curr);
924 	update_min_vruntime(cfs_rq);
925 
926 	if (entity_is_task(curr)) {
927 		struct task_struct *curtask = task_of(curr);
928 
929 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
930 		cgroup_account_cputime(curtask, delta_exec);
931 		account_group_exec_runtime(curtask, delta_exec);
932 	}
933 
934 	account_cfs_rq_runtime(cfs_rq, delta_exec);
935 }
936 
937 static void update_curr_fair(struct rq *rq)
938 {
939 	update_curr(cfs_rq_of(&rq->curr->se));
940 }
941 
942 static inline void
943 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
944 {
945 	struct sched_statistics *stats;
946 	struct task_struct *p = NULL;
947 
948 	if (!schedstat_enabled())
949 		return;
950 
951 	stats = __schedstats_from_se(se);
952 
953 	if (entity_is_task(se))
954 		p = task_of(se);
955 
956 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
957 }
958 
959 static inline void
960 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
961 {
962 	struct sched_statistics *stats;
963 	struct task_struct *p = NULL;
964 
965 	if (!schedstat_enabled())
966 		return;
967 
968 	stats = __schedstats_from_se(se);
969 
970 	/*
971 	 * When the sched_schedstat changes from 0 to 1, some sched se
972 	 * maybe already in the runqueue, the se->statistics.wait_start
973 	 * will be 0.So it will let the delta wrong. We need to avoid this
974 	 * scenario.
975 	 */
976 	if (unlikely(!schedstat_val(stats->wait_start)))
977 		return;
978 
979 	if (entity_is_task(se))
980 		p = task_of(se);
981 
982 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
983 }
984 
985 static inline void
986 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
987 {
988 	struct sched_statistics *stats;
989 	struct task_struct *tsk = NULL;
990 
991 	if (!schedstat_enabled())
992 		return;
993 
994 	stats = __schedstats_from_se(se);
995 
996 	if (entity_is_task(se))
997 		tsk = task_of(se);
998 
999 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1000 }
1001 
1002 /*
1003  * Task is being enqueued - update stats:
1004  */
1005 static inline void
1006 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1007 {
1008 	if (!schedstat_enabled())
1009 		return;
1010 
1011 	/*
1012 	 * Are we enqueueing a waiting task? (for current tasks
1013 	 * a dequeue/enqueue event is a NOP)
1014 	 */
1015 	if (se != cfs_rq->curr)
1016 		update_stats_wait_start_fair(cfs_rq, se);
1017 
1018 	if (flags & ENQUEUE_WAKEUP)
1019 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1020 }
1021 
1022 static inline void
1023 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1024 {
1025 
1026 	if (!schedstat_enabled())
1027 		return;
1028 
1029 	/*
1030 	 * Mark the end of the wait period if dequeueing a
1031 	 * waiting task:
1032 	 */
1033 	if (se != cfs_rq->curr)
1034 		update_stats_wait_end_fair(cfs_rq, se);
1035 
1036 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1037 		struct task_struct *tsk = task_of(se);
1038 		unsigned int state;
1039 
1040 		/* XXX racy against TTWU */
1041 		state = READ_ONCE(tsk->__state);
1042 		if (state & TASK_INTERRUPTIBLE)
1043 			__schedstat_set(tsk->stats.sleep_start,
1044 				      rq_clock(rq_of(cfs_rq)));
1045 		if (state & TASK_UNINTERRUPTIBLE)
1046 			__schedstat_set(tsk->stats.block_start,
1047 				      rq_clock(rq_of(cfs_rq)));
1048 	}
1049 }
1050 
1051 /*
1052  * We are picking a new current task - update its stats:
1053  */
1054 static inline void
1055 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1056 {
1057 	/*
1058 	 * We are starting a new run period:
1059 	 */
1060 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1061 }
1062 
1063 /**************************************************
1064  * Scheduling class queueing methods:
1065  */
1066 
1067 static inline bool is_core_idle(int cpu)
1068 {
1069 #ifdef CONFIG_SCHED_SMT
1070 	int sibling;
1071 
1072 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1073 		if (cpu == sibling)
1074 			continue;
1075 
1076 		if (!idle_cpu(sibling))
1077 			return false;
1078 	}
1079 #endif
1080 
1081 	return true;
1082 }
1083 
1084 #ifdef CONFIG_NUMA
1085 #define NUMA_IMBALANCE_MIN 2
1086 
1087 static inline long
1088 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1089 {
1090 	/*
1091 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1092 	 * threshold. Above this threshold, individual tasks may be contending
1093 	 * for both memory bandwidth and any shared HT resources.  This is an
1094 	 * approximation as the number of running tasks may not be related to
1095 	 * the number of busy CPUs due to sched_setaffinity.
1096 	 */
1097 	if (dst_running > imb_numa_nr)
1098 		return imbalance;
1099 
1100 	/*
1101 	 * Allow a small imbalance based on a simple pair of communicating
1102 	 * tasks that remain local when the destination is lightly loaded.
1103 	 */
1104 	if (imbalance <= NUMA_IMBALANCE_MIN)
1105 		return 0;
1106 
1107 	return imbalance;
1108 }
1109 #endif /* CONFIG_NUMA */
1110 
1111 #ifdef CONFIG_NUMA_BALANCING
1112 /*
1113  * Approximate time to scan a full NUMA task in ms. The task scan period is
1114  * calculated based on the tasks virtual memory size and
1115  * numa_balancing_scan_size.
1116  */
1117 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1118 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1119 
1120 /* Portion of address space to scan in MB */
1121 unsigned int sysctl_numa_balancing_scan_size = 256;
1122 
1123 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1124 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1125 
1126 /* The page with hint page fault latency < threshold in ms is considered hot */
1127 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1128 
1129 struct numa_group {
1130 	refcount_t refcount;
1131 
1132 	spinlock_t lock; /* nr_tasks, tasks */
1133 	int nr_tasks;
1134 	pid_t gid;
1135 	int active_nodes;
1136 
1137 	struct rcu_head rcu;
1138 	unsigned long total_faults;
1139 	unsigned long max_faults_cpu;
1140 	/*
1141 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1142 	 *
1143 	 * Faults_cpu is used to decide whether memory should move
1144 	 * towards the CPU. As a consequence, these stats are weighted
1145 	 * more by CPU use than by memory faults.
1146 	 */
1147 	unsigned long faults[];
1148 };
1149 
1150 /*
1151  * For functions that can be called in multiple contexts that permit reading
1152  * ->numa_group (see struct task_struct for locking rules).
1153  */
1154 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1155 {
1156 	return rcu_dereference_check(p->numa_group, p == current ||
1157 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1158 }
1159 
1160 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1161 {
1162 	return rcu_dereference_protected(p->numa_group, p == current);
1163 }
1164 
1165 static inline unsigned long group_faults_priv(struct numa_group *ng);
1166 static inline unsigned long group_faults_shared(struct numa_group *ng);
1167 
1168 static unsigned int task_nr_scan_windows(struct task_struct *p)
1169 {
1170 	unsigned long rss = 0;
1171 	unsigned long nr_scan_pages;
1172 
1173 	/*
1174 	 * Calculations based on RSS as non-present and empty pages are skipped
1175 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1176 	 * on resident pages
1177 	 */
1178 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1179 	rss = get_mm_rss(p->mm);
1180 	if (!rss)
1181 		rss = nr_scan_pages;
1182 
1183 	rss = round_up(rss, nr_scan_pages);
1184 	return rss / nr_scan_pages;
1185 }
1186 
1187 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1188 #define MAX_SCAN_WINDOW 2560
1189 
1190 static unsigned int task_scan_min(struct task_struct *p)
1191 {
1192 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1193 	unsigned int scan, floor;
1194 	unsigned int windows = 1;
1195 
1196 	if (scan_size < MAX_SCAN_WINDOW)
1197 		windows = MAX_SCAN_WINDOW / scan_size;
1198 	floor = 1000 / windows;
1199 
1200 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1201 	return max_t(unsigned int, floor, scan);
1202 }
1203 
1204 static unsigned int task_scan_start(struct task_struct *p)
1205 {
1206 	unsigned long smin = task_scan_min(p);
1207 	unsigned long period = smin;
1208 	struct numa_group *ng;
1209 
1210 	/* Scale the maximum scan period with the amount of shared memory. */
1211 	rcu_read_lock();
1212 	ng = rcu_dereference(p->numa_group);
1213 	if (ng) {
1214 		unsigned long shared = group_faults_shared(ng);
1215 		unsigned long private = group_faults_priv(ng);
1216 
1217 		period *= refcount_read(&ng->refcount);
1218 		period *= shared + 1;
1219 		period /= private + shared + 1;
1220 	}
1221 	rcu_read_unlock();
1222 
1223 	return max(smin, period);
1224 }
1225 
1226 static unsigned int task_scan_max(struct task_struct *p)
1227 {
1228 	unsigned long smin = task_scan_min(p);
1229 	unsigned long smax;
1230 	struct numa_group *ng;
1231 
1232 	/* Watch for min being lower than max due to floor calculations */
1233 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1234 
1235 	/* Scale the maximum scan period with the amount of shared memory. */
1236 	ng = deref_curr_numa_group(p);
1237 	if (ng) {
1238 		unsigned long shared = group_faults_shared(ng);
1239 		unsigned long private = group_faults_priv(ng);
1240 		unsigned long period = smax;
1241 
1242 		period *= refcount_read(&ng->refcount);
1243 		period *= shared + 1;
1244 		period /= private + shared + 1;
1245 
1246 		smax = max(smax, period);
1247 	}
1248 
1249 	return max(smin, smax);
1250 }
1251 
1252 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1253 {
1254 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1255 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1256 }
1257 
1258 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1259 {
1260 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1261 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1262 }
1263 
1264 /* Shared or private faults. */
1265 #define NR_NUMA_HINT_FAULT_TYPES 2
1266 
1267 /* Memory and CPU locality */
1268 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1269 
1270 /* Averaged statistics, and temporary buffers. */
1271 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1272 
1273 pid_t task_numa_group_id(struct task_struct *p)
1274 {
1275 	struct numa_group *ng;
1276 	pid_t gid = 0;
1277 
1278 	rcu_read_lock();
1279 	ng = rcu_dereference(p->numa_group);
1280 	if (ng)
1281 		gid = ng->gid;
1282 	rcu_read_unlock();
1283 
1284 	return gid;
1285 }
1286 
1287 /*
1288  * The averaged statistics, shared & private, memory & CPU,
1289  * occupy the first half of the array. The second half of the
1290  * array is for current counters, which are averaged into the
1291  * first set by task_numa_placement.
1292  */
1293 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1294 {
1295 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1296 }
1297 
1298 static inline unsigned long task_faults(struct task_struct *p, int nid)
1299 {
1300 	if (!p->numa_faults)
1301 		return 0;
1302 
1303 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1304 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1305 }
1306 
1307 static inline unsigned long group_faults(struct task_struct *p, int nid)
1308 {
1309 	struct numa_group *ng = deref_task_numa_group(p);
1310 
1311 	if (!ng)
1312 		return 0;
1313 
1314 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1315 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1316 }
1317 
1318 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1319 {
1320 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1321 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1322 }
1323 
1324 static inline unsigned long group_faults_priv(struct numa_group *ng)
1325 {
1326 	unsigned long faults = 0;
1327 	int node;
1328 
1329 	for_each_online_node(node) {
1330 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1331 	}
1332 
1333 	return faults;
1334 }
1335 
1336 static inline unsigned long group_faults_shared(struct numa_group *ng)
1337 {
1338 	unsigned long faults = 0;
1339 	int node;
1340 
1341 	for_each_online_node(node) {
1342 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1343 	}
1344 
1345 	return faults;
1346 }
1347 
1348 /*
1349  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1350  * considered part of a numa group's pseudo-interleaving set. Migrations
1351  * between these nodes are slowed down, to allow things to settle down.
1352  */
1353 #define ACTIVE_NODE_FRACTION 3
1354 
1355 static bool numa_is_active_node(int nid, struct numa_group *ng)
1356 {
1357 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1358 }
1359 
1360 /* Handle placement on systems where not all nodes are directly connected. */
1361 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1362 					int lim_dist, bool task)
1363 {
1364 	unsigned long score = 0;
1365 	int node, max_dist;
1366 
1367 	/*
1368 	 * All nodes are directly connected, and the same distance
1369 	 * from each other. No need for fancy placement algorithms.
1370 	 */
1371 	if (sched_numa_topology_type == NUMA_DIRECT)
1372 		return 0;
1373 
1374 	/* sched_max_numa_distance may be changed in parallel. */
1375 	max_dist = READ_ONCE(sched_max_numa_distance);
1376 	/*
1377 	 * This code is called for each node, introducing N^2 complexity,
1378 	 * which should be ok given the number of nodes rarely exceeds 8.
1379 	 */
1380 	for_each_online_node(node) {
1381 		unsigned long faults;
1382 		int dist = node_distance(nid, node);
1383 
1384 		/*
1385 		 * The furthest away nodes in the system are not interesting
1386 		 * for placement; nid was already counted.
1387 		 */
1388 		if (dist >= max_dist || node == nid)
1389 			continue;
1390 
1391 		/*
1392 		 * On systems with a backplane NUMA topology, compare groups
1393 		 * of nodes, and move tasks towards the group with the most
1394 		 * memory accesses. When comparing two nodes at distance
1395 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1396 		 * of each group. Skip other nodes.
1397 		 */
1398 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1399 			continue;
1400 
1401 		/* Add up the faults from nearby nodes. */
1402 		if (task)
1403 			faults = task_faults(p, node);
1404 		else
1405 			faults = group_faults(p, node);
1406 
1407 		/*
1408 		 * On systems with a glueless mesh NUMA topology, there are
1409 		 * no fixed "groups of nodes". Instead, nodes that are not
1410 		 * directly connected bounce traffic through intermediate
1411 		 * nodes; a numa_group can occupy any set of nodes.
1412 		 * The further away a node is, the less the faults count.
1413 		 * This seems to result in good task placement.
1414 		 */
1415 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1416 			faults *= (max_dist - dist);
1417 			faults /= (max_dist - LOCAL_DISTANCE);
1418 		}
1419 
1420 		score += faults;
1421 	}
1422 
1423 	return score;
1424 }
1425 
1426 /*
1427  * These return the fraction of accesses done by a particular task, or
1428  * task group, on a particular numa node.  The group weight is given a
1429  * larger multiplier, in order to group tasks together that are almost
1430  * evenly spread out between numa nodes.
1431  */
1432 static inline unsigned long task_weight(struct task_struct *p, int nid,
1433 					int dist)
1434 {
1435 	unsigned long faults, total_faults;
1436 
1437 	if (!p->numa_faults)
1438 		return 0;
1439 
1440 	total_faults = p->total_numa_faults;
1441 
1442 	if (!total_faults)
1443 		return 0;
1444 
1445 	faults = task_faults(p, nid);
1446 	faults += score_nearby_nodes(p, nid, dist, true);
1447 
1448 	return 1000 * faults / total_faults;
1449 }
1450 
1451 static inline unsigned long group_weight(struct task_struct *p, int nid,
1452 					 int dist)
1453 {
1454 	struct numa_group *ng = deref_task_numa_group(p);
1455 	unsigned long faults, total_faults;
1456 
1457 	if (!ng)
1458 		return 0;
1459 
1460 	total_faults = ng->total_faults;
1461 
1462 	if (!total_faults)
1463 		return 0;
1464 
1465 	faults = group_faults(p, nid);
1466 	faults += score_nearby_nodes(p, nid, dist, false);
1467 
1468 	return 1000 * faults / total_faults;
1469 }
1470 
1471 /*
1472  * If memory tiering mode is enabled, cpupid of slow memory page is
1473  * used to record scan time instead of CPU and PID.  When tiering mode
1474  * is disabled at run time, the scan time (in cpupid) will be
1475  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1476  * access out of array bound.
1477  */
1478 static inline bool cpupid_valid(int cpupid)
1479 {
1480 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1481 }
1482 
1483 /*
1484  * For memory tiering mode, if there are enough free pages (more than
1485  * enough watermark defined here) in fast memory node, to take full
1486  * advantage of fast memory capacity, all recently accessed slow
1487  * memory pages will be migrated to fast memory node without
1488  * considering hot threshold.
1489  */
1490 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1491 {
1492 	int z;
1493 	unsigned long enough_wmark;
1494 
1495 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1496 			   pgdat->node_present_pages >> 4);
1497 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1498 		struct zone *zone = pgdat->node_zones + z;
1499 
1500 		if (!populated_zone(zone))
1501 			continue;
1502 
1503 		if (zone_watermark_ok(zone, 0,
1504 				      wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1505 				      ZONE_MOVABLE, 0))
1506 			return true;
1507 	}
1508 	return false;
1509 }
1510 
1511 /*
1512  * For memory tiering mode, when page tables are scanned, the scan
1513  * time will be recorded in struct page in addition to make page
1514  * PROT_NONE for slow memory page.  So when the page is accessed, in
1515  * hint page fault handler, the hint page fault latency is calculated
1516  * via,
1517  *
1518  *	hint page fault latency = hint page fault time - scan time
1519  *
1520  * The smaller the hint page fault latency, the higher the possibility
1521  * for the page to be hot.
1522  */
1523 static int numa_hint_fault_latency(struct page *page)
1524 {
1525 	int last_time, time;
1526 
1527 	time = jiffies_to_msecs(jiffies);
1528 	last_time = xchg_page_access_time(page, time);
1529 
1530 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1531 }
1532 
1533 /*
1534  * For memory tiering mode, too high promotion/demotion throughput may
1535  * hurt application latency.  So we provide a mechanism to rate limit
1536  * the number of pages that are tried to be promoted.
1537  */
1538 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1539 				      unsigned long rate_limit, int nr)
1540 {
1541 	unsigned long nr_cand;
1542 	unsigned int now, start;
1543 
1544 	now = jiffies_to_msecs(jiffies);
1545 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1546 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1547 	start = pgdat->nbp_rl_start;
1548 	if (now - start > MSEC_PER_SEC &&
1549 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1550 		pgdat->nbp_rl_nr_cand = nr_cand;
1551 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1552 		return true;
1553 	return false;
1554 }
1555 
1556 #define NUMA_MIGRATION_ADJUST_STEPS	16
1557 
1558 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1559 					    unsigned long rate_limit,
1560 					    unsigned int ref_th)
1561 {
1562 	unsigned int now, start, th_period, unit_th, th;
1563 	unsigned long nr_cand, ref_cand, diff_cand;
1564 
1565 	now = jiffies_to_msecs(jiffies);
1566 	th_period = sysctl_numa_balancing_scan_period_max;
1567 	start = pgdat->nbp_th_start;
1568 	if (now - start > th_period &&
1569 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1570 		ref_cand = rate_limit *
1571 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1572 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1573 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1574 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1575 		th = pgdat->nbp_threshold ? : ref_th;
1576 		if (diff_cand > ref_cand * 11 / 10)
1577 			th = max(th - unit_th, unit_th);
1578 		else if (diff_cand < ref_cand * 9 / 10)
1579 			th = min(th + unit_th, ref_th * 2);
1580 		pgdat->nbp_th_nr_cand = nr_cand;
1581 		pgdat->nbp_threshold = th;
1582 	}
1583 }
1584 
1585 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1586 				int src_nid, int dst_cpu)
1587 {
1588 	struct numa_group *ng = deref_curr_numa_group(p);
1589 	int dst_nid = cpu_to_node(dst_cpu);
1590 	int last_cpupid, this_cpupid;
1591 
1592 	/*
1593 	 * The pages in slow memory node should be migrated according
1594 	 * to hot/cold instead of private/shared.
1595 	 */
1596 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1597 	    !node_is_toptier(src_nid)) {
1598 		struct pglist_data *pgdat;
1599 		unsigned long rate_limit;
1600 		unsigned int latency, th, def_th;
1601 
1602 		pgdat = NODE_DATA(dst_nid);
1603 		if (pgdat_free_space_enough(pgdat)) {
1604 			/* workload changed, reset hot threshold */
1605 			pgdat->nbp_threshold = 0;
1606 			return true;
1607 		}
1608 
1609 		def_th = sysctl_numa_balancing_hot_threshold;
1610 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1611 			(20 - PAGE_SHIFT);
1612 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1613 
1614 		th = pgdat->nbp_threshold ? : def_th;
1615 		latency = numa_hint_fault_latency(page);
1616 		if (latency >= th)
1617 			return false;
1618 
1619 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1620 						  thp_nr_pages(page));
1621 	}
1622 
1623 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1624 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1625 
1626 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1627 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1628 		return false;
1629 
1630 	/*
1631 	 * Allow first faults or private faults to migrate immediately early in
1632 	 * the lifetime of a task. The magic number 4 is based on waiting for
1633 	 * two full passes of the "multi-stage node selection" test that is
1634 	 * executed below.
1635 	 */
1636 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1637 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1638 		return true;
1639 
1640 	/*
1641 	 * Multi-stage node selection is used in conjunction with a periodic
1642 	 * migration fault to build a temporal task<->page relation. By using
1643 	 * a two-stage filter we remove short/unlikely relations.
1644 	 *
1645 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1646 	 * a task's usage of a particular page (n_p) per total usage of this
1647 	 * page (n_t) (in a given time-span) to a probability.
1648 	 *
1649 	 * Our periodic faults will sample this probability and getting the
1650 	 * same result twice in a row, given these samples are fully
1651 	 * independent, is then given by P(n)^2, provided our sample period
1652 	 * is sufficiently short compared to the usage pattern.
1653 	 *
1654 	 * This quadric squishes small probabilities, making it less likely we
1655 	 * act on an unlikely task<->page relation.
1656 	 */
1657 	if (!cpupid_pid_unset(last_cpupid) &&
1658 				cpupid_to_nid(last_cpupid) != dst_nid)
1659 		return false;
1660 
1661 	/* Always allow migrate on private faults */
1662 	if (cpupid_match_pid(p, last_cpupid))
1663 		return true;
1664 
1665 	/* A shared fault, but p->numa_group has not been set up yet. */
1666 	if (!ng)
1667 		return true;
1668 
1669 	/*
1670 	 * Destination node is much more heavily used than the source
1671 	 * node? Allow migration.
1672 	 */
1673 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1674 					ACTIVE_NODE_FRACTION)
1675 		return true;
1676 
1677 	/*
1678 	 * Distribute memory according to CPU & memory use on each node,
1679 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1680 	 *
1681 	 * faults_cpu(dst)   3   faults_cpu(src)
1682 	 * --------------- * - > ---------------
1683 	 * faults_mem(dst)   4   faults_mem(src)
1684 	 */
1685 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1686 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1687 }
1688 
1689 /*
1690  * 'numa_type' describes the node at the moment of load balancing.
1691  */
1692 enum numa_type {
1693 	/* The node has spare capacity that can be used to run more tasks.  */
1694 	node_has_spare = 0,
1695 	/*
1696 	 * The node is fully used and the tasks don't compete for more CPU
1697 	 * cycles. Nevertheless, some tasks might wait before running.
1698 	 */
1699 	node_fully_busy,
1700 	/*
1701 	 * The node is overloaded and can't provide expected CPU cycles to all
1702 	 * tasks.
1703 	 */
1704 	node_overloaded
1705 };
1706 
1707 /* Cached statistics for all CPUs within a node */
1708 struct numa_stats {
1709 	unsigned long load;
1710 	unsigned long runnable;
1711 	unsigned long util;
1712 	/* Total compute capacity of CPUs on a node */
1713 	unsigned long compute_capacity;
1714 	unsigned int nr_running;
1715 	unsigned int weight;
1716 	enum numa_type node_type;
1717 	int idle_cpu;
1718 };
1719 
1720 struct task_numa_env {
1721 	struct task_struct *p;
1722 
1723 	int src_cpu, src_nid;
1724 	int dst_cpu, dst_nid;
1725 	int imb_numa_nr;
1726 
1727 	struct numa_stats src_stats, dst_stats;
1728 
1729 	int imbalance_pct;
1730 	int dist;
1731 
1732 	struct task_struct *best_task;
1733 	long best_imp;
1734 	int best_cpu;
1735 };
1736 
1737 static unsigned long cpu_load(struct rq *rq);
1738 static unsigned long cpu_runnable(struct rq *rq);
1739 
1740 static inline enum
1741 numa_type numa_classify(unsigned int imbalance_pct,
1742 			 struct numa_stats *ns)
1743 {
1744 	if ((ns->nr_running > ns->weight) &&
1745 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1746 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1747 		return node_overloaded;
1748 
1749 	if ((ns->nr_running < ns->weight) ||
1750 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1751 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1752 		return node_has_spare;
1753 
1754 	return node_fully_busy;
1755 }
1756 
1757 #ifdef CONFIG_SCHED_SMT
1758 /* Forward declarations of select_idle_sibling helpers */
1759 static inline bool test_idle_cores(int cpu);
1760 static inline int numa_idle_core(int idle_core, int cpu)
1761 {
1762 	if (!static_branch_likely(&sched_smt_present) ||
1763 	    idle_core >= 0 || !test_idle_cores(cpu))
1764 		return idle_core;
1765 
1766 	/*
1767 	 * Prefer cores instead of packing HT siblings
1768 	 * and triggering future load balancing.
1769 	 */
1770 	if (is_core_idle(cpu))
1771 		idle_core = cpu;
1772 
1773 	return idle_core;
1774 }
1775 #else
1776 static inline int numa_idle_core(int idle_core, int cpu)
1777 {
1778 	return idle_core;
1779 }
1780 #endif
1781 
1782 /*
1783  * Gather all necessary information to make NUMA balancing placement
1784  * decisions that are compatible with standard load balancer. This
1785  * borrows code and logic from update_sg_lb_stats but sharing a
1786  * common implementation is impractical.
1787  */
1788 static void update_numa_stats(struct task_numa_env *env,
1789 			      struct numa_stats *ns, int nid,
1790 			      bool find_idle)
1791 {
1792 	int cpu, idle_core = -1;
1793 
1794 	memset(ns, 0, sizeof(*ns));
1795 	ns->idle_cpu = -1;
1796 
1797 	rcu_read_lock();
1798 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1799 		struct rq *rq = cpu_rq(cpu);
1800 
1801 		ns->load += cpu_load(rq);
1802 		ns->runnable += cpu_runnable(rq);
1803 		ns->util += cpu_util_cfs(cpu);
1804 		ns->nr_running += rq->cfs.h_nr_running;
1805 		ns->compute_capacity += capacity_of(cpu);
1806 
1807 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
1808 			if (READ_ONCE(rq->numa_migrate_on) ||
1809 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1810 				continue;
1811 
1812 			if (ns->idle_cpu == -1)
1813 				ns->idle_cpu = cpu;
1814 
1815 			idle_core = numa_idle_core(idle_core, cpu);
1816 		}
1817 	}
1818 	rcu_read_unlock();
1819 
1820 	ns->weight = cpumask_weight(cpumask_of_node(nid));
1821 
1822 	ns->node_type = numa_classify(env->imbalance_pct, ns);
1823 
1824 	if (idle_core >= 0)
1825 		ns->idle_cpu = idle_core;
1826 }
1827 
1828 static void task_numa_assign(struct task_numa_env *env,
1829 			     struct task_struct *p, long imp)
1830 {
1831 	struct rq *rq = cpu_rq(env->dst_cpu);
1832 
1833 	/* Check if run-queue part of active NUMA balance. */
1834 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1835 		int cpu;
1836 		int start = env->dst_cpu;
1837 
1838 		/* Find alternative idle CPU. */
1839 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
1840 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1841 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1842 				continue;
1843 			}
1844 
1845 			env->dst_cpu = cpu;
1846 			rq = cpu_rq(env->dst_cpu);
1847 			if (!xchg(&rq->numa_migrate_on, 1))
1848 				goto assign;
1849 		}
1850 
1851 		/* Failed to find an alternative idle CPU */
1852 		return;
1853 	}
1854 
1855 assign:
1856 	/*
1857 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1858 	 * found a better CPU to move/swap.
1859 	 */
1860 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1861 		rq = cpu_rq(env->best_cpu);
1862 		WRITE_ONCE(rq->numa_migrate_on, 0);
1863 	}
1864 
1865 	if (env->best_task)
1866 		put_task_struct(env->best_task);
1867 	if (p)
1868 		get_task_struct(p);
1869 
1870 	env->best_task = p;
1871 	env->best_imp = imp;
1872 	env->best_cpu = env->dst_cpu;
1873 }
1874 
1875 static bool load_too_imbalanced(long src_load, long dst_load,
1876 				struct task_numa_env *env)
1877 {
1878 	long imb, old_imb;
1879 	long orig_src_load, orig_dst_load;
1880 	long src_capacity, dst_capacity;
1881 
1882 	/*
1883 	 * The load is corrected for the CPU capacity available on each node.
1884 	 *
1885 	 * src_load        dst_load
1886 	 * ------------ vs ---------
1887 	 * src_capacity    dst_capacity
1888 	 */
1889 	src_capacity = env->src_stats.compute_capacity;
1890 	dst_capacity = env->dst_stats.compute_capacity;
1891 
1892 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1893 
1894 	orig_src_load = env->src_stats.load;
1895 	orig_dst_load = env->dst_stats.load;
1896 
1897 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1898 
1899 	/* Would this change make things worse? */
1900 	return (imb > old_imb);
1901 }
1902 
1903 /*
1904  * Maximum NUMA importance can be 1998 (2*999);
1905  * SMALLIMP @ 30 would be close to 1998/64.
1906  * Used to deter task migration.
1907  */
1908 #define SMALLIMP	30
1909 
1910 /*
1911  * This checks if the overall compute and NUMA accesses of the system would
1912  * be improved if the source tasks was migrated to the target dst_cpu taking
1913  * into account that it might be best if task running on the dst_cpu should
1914  * be exchanged with the source task
1915  */
1916 static bool task_numa_compare(struct task_numa_env *env,
1917 			      long taskimp, long groupimp, bool maymove)
1918 {
1919 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1920 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1921 	long imp = p_ng ? groupimp : taskimp;
1922 	struct task_struct *cur;
1923 	long src_load, dst_load;
1924 	int dist = env->dist;
1925 	long moveimp = imp;
1926 	long load;
1927 	bool stopsearch = false;
1928 
1929 	if (READ_ONCE(dst_rq->numa_migrate_on))
1930 		return false;
1931 
1932 	rcu_read_lock();
1933 	cur = rcu_dereference(dst_rq->curr);
1934 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1935 		cur = NULL;
1936 
1937 	/*
1938 	 * Because we have preemption enabled we can get migrated around and
1939 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1940 	 */
1941 	if (cur == env->p) {
1942 		stopsearch = true;
1943 		goto unlock;
1944 	}
1945 
1946 	if (!cur) {
1947 		if (maymove && moveimp >= env->best_imp)
1948 			goto assign;
1949 		else
1950 			goto unlock;
1951 	}
1952 
1953 	/* Skip this swap candidate if cannot move to the source cpu. */
1954 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1955 		goto unlock;
1956 
1957 	/*
1958 	 * Skip this swap candidate if it is not moving to its preferred
1959 	 * node and the best task is.
1960 	 */
1961 	if (env->best_task &&
1962 	    env->best_task->numa_preferred_nid == env->src_nid &&
1963 	    cur->numa_preferred_nid != env->src_nid) {
1964 		goto unlock;
1965 	}
1966 
1967 	/*
1968 	 * "imp" is the fault differential for the source task between the
1969 	 * source and destination node. Calculate the total differential for
1970 	 * the source task and potential destination task. The more negative
1971 	 * the value is, the more remote accesses that would be expected to
1972 	 * be incurred if the tasks were swapped.
1973 	 *
1974 	 * If dst and source tasks are in the same NUMA group, or not
1975 	 * in any group then look only at task weights.
1976 	 */
1977 	cur_ng = rcu_dereference(cur->numa_group);
1978 	if (cur_ng == p_ng) {
1979 		/*
1980 		 * Do not swap within a group or between tasks that have
1981 		 * no group if there is spare capacity. Swapping does
1982 		 * not address the load imbalance and helps one task at
1983 		 * the cost of punishing another.
1984 		 */
1985 		if (env->dst_stats.node_type == node_has_spare)
1986 			goto unlock;
1987 
1988 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1989 		      task_weight(cur, env->dst_nid, dist);
1990 		/*
1991 		 * Add some hysteresis to prevent swapping the
1992 		 * tasks within a group over tiny differences.
1993 		 */
1994 		if (cur_ng)
1995 			imp -= imp / 16;
1996 	} else {
1997 		/*
1998 		 * Compare the group weights. If a task is all by itself
1999 		 * (not part of a group), use the task weight instead.
2000 		 */
2001 		if (cur_ng && p_ng)
2002 			imp += group_weight(cur, env->src_nid, dist) -
2003 			       group_weight(cur, env->dst_nid, dist);
2004 		else
2005 			imp += task_weight(cur, env->src_nid, dist) -
2006 			       task_weight(cur, env->dst_nid, dist);
2007 	}
2008 
2009 	/* Discourage picking a task already on its preferred node */
2010 	if (cur->numa_preferred_nid == env->dst_nid)
2011 		imp -= imp / 16;
2012 
2013 	/*
2014 	 * Encourage picking a task that moves to its preferred node.
2015 	 * This potentially makes imp larger than it's maximum of
2016 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2017 	 * case, it does not matter.
2018 	 */
2019 	if (cur->numa_preferred_nid == env->src_nid)
2020 		imp += imp / 8;
2021 
2022 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2023 		imp = moveimp;
2024 		cur = NULL;
2025 		goto assign;
2026 	}
2027 
2028 	/*
2029 	 * Prefer swapping with a task moving to its preferred node over a
2030 	 * task that is not.
2031 	 */
2032 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2033 	    env->best_task->numa_preferred_nid != env->src_nid) {
2034 		goto assign;
2035 	}
2036 
2037 	/*
2038 	 * If the NUMA importance is less than SMALLIMP,
2039 	 * task migration might only result in ping pong
2040 	 * of tasks and also hurt performance due to cache
2041 	 * misses.
2042 	 */
2043 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2044 		goto unlock;
2045 
2046 	/*
2047 	 * In the overloaded case, try and keep the load balanced.
2048 	 */
2049 	load = task_h_load(env->p) - task_h_load(cur);
2050 	if (!load)
2051 		goto assign;
2052 
2053 	dst_load = env->dst_stats.load + load;
2054 	src_load = env->src_stats.load - load;
2055 
2056 	if (load_too_imbalanced(src_load, dst_load, env))
2057 		goto unlock;
2058 
2059 assign:
2060 	/* Evaluate an idle CPU for a task numa move. */
2061 	if (!cur) {
2062 		int cpu = env->dst_stats.idle_cpu;
2063 
2064 		/* Nothing cached so current CPU went idle since the search. */
2065 		if (cpu < 0)
2066 			cpu = env->dst_cpu;
2067 
2068 		/*
2069 		 * If the CPU is no longer truly idle and the previous best CPU
2070 		 * is, keep using it.
2071 		 */
2072 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2073 		    idle_cpu(env->best_cpu)) {
2074 			cpu = env->best_cpu;
2075 		}
2076 
2077 		env->dst_cpu = cpu;
2078 	}
2079 
2080 	task_numa_assign(env, cur, imp);
2081 
2082 	/*
2083 	 * If a move to idle is allowed because there is capacity or load
2084 	 * balance improves then stop the search. While a better swap
2085 	 * candidate may exist, a search is not free.
2086 	 */
2087 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2088 		stopsearch = true;
2089 
2090 	/*
2091 	 * If a swap candidate must be identified and the current best task
2092 	 * moves its preferred node then stop the search.
2093 	 */
2094 	if (!maymove && env->best_task &&
2095 	    env->best_task->numa_preferred_nid == env->src_nid) {
2096 		stopsearch = true;
2097 	}
2098 unlock:
2099 	rcu_read_unlock();
2100 
2101 	return stopsearch;
2102 }
2103 
2104 static void task_numa_find_cpu(struct task_numa_env *env,
2105 				long taskimp, long groupimp)
2106 {
2107 	bool maymove = false;
2108 	int cpu;
2109 
2110 	/*
2111 	 * If dst node has spare capacity, then check if there is an
2112 	 * imbalance that would be overruled by the load balancer.
2113 	 */
2114 	if (env->dst_stats.node_type == node_has_spare) {
2115 		unsigned int imbalance;
2116 		int src_running, dst_running;
2117 
2118 		/*
2119 		 * Would movement cause an imbalance? Note that if src has
2120 		 * more running tasks that the imbalance is ignored as the
2121 		 * move improves the imbalance from the perspective of the
2122 		 * CPU load balancer.
2123 		 * */
2124 		src_running = env->src_stats.nr_running - 1;
2125 		dst_running = env->dst_stats.nr_running + 1;
2126 		imbalance = max(0, dst_running - src_running);
2127 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2128 						  env->imb_numa_nr);
2129 
2130 		/* Use idle CPU if there is no imbalance */
2131 		if (!imbalance) {
2132 			maymove = true;
2133 			if (env->dst_stats.idle_cpu >= 0) {
2134 				env->dst_cpu = env->dst_stats.idle_cpu;
2135 				task_numa_assign(env, NULL, 0);
2136 				return;
2137 			}
2138 		}
2139 	} else {
2140 		long src_load, dst_load, load;
2141 		/*
2142 		 * If the improvement from just moving env->p direction is better
2143 		 * than swapping tasks around, check if a move is possible.
2144 		 */
2145 		load = task_h_load(env->p);
2146 		dst_load = env->dst_stats.load + load;
2147 		src_load = env->src_stats.load - load;
2148 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2149 	}
2150 
2151 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2152 		/* Skip this CPU if the source task cannot migrate */
2153 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2154 			continue;
2155 
2156 		env->dst_cpu = cpu;
2157 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2158 			break;
2159 	}
2160 }
2161 
2162 static int task_numa_migrate(struct task_struct *p)
2163 {
2164 	struct task_numa_env env = {
2165 		.p = p,
2166 
2167 		.src_cpu = task_cpu(p),
2168 		.src_nid = task_node(p),
2169 
2170 		.imbalance_pct = 112,
2171 
2172 		.best_task = NULL,
2173 		.best_imp = 0,
2174 		.best_cpu = -1,
2175 	};
2176 	unsigned long taskweight, groupweight;
2177 	struct sched_domain *sd;
2178 	long taskimp, groupimp;
2179 	struct numa_group *ng;
2180 	struct rq *best_rq;
2181 	int nid, ret, dist;
2182 
2183 	/*
2184 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2185 	 * imbalance and would be the first to start moving tasks about.
2186 	 *
2187 	 * And we want to avoid any moving of tasks about, as that would create
2188 	 * random movement of tasks -- counter the numa conditions we're trying
2189 	 * to satisfy here.
2190 	 */
2191 	rcu_read_lock();
2192 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2193 	if (sd) {
2194 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2195 		env.imb_numa_nr = sd->imb_numa_nr;
2196 	}
2197 	rcu_read_unlock();
2198 
2199 	/*
2200 	 * Cpusets can break the scheduler domain tree into smaller
2201 	 * balance domains, some of which do not cross NUMA boundaries.
2202 	 * Tasks that are "trapped" in such domains cannot be migrated
2203 	 * elsewhere, so there is no point in (re)trying.
2204 	 */
2205 	if (unlikely(!sd)) {
2206 		sched_setnuma(p, task_node(p));
2207 		return -EINVAL;
2208 	}
2209 
2210 	env.dst_nid = p->numa_preferred_nid;
2211 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2212 	taskweight = task_weight(p, env.src_nid, dist);
2213 	groupweight = group_weight(p, env.src_nid, dist);
2214 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2215 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2216 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2217 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2218 
2219 	/* Try to find a spot on the preferred nid. */
2220 	task_numa_find_cpu(&env, taskimp, groupimp);
2221 
2222 	/*
2223 	 * Look at other nodes in these cases:
2224 	 * - there is no space available on the preferred_nid
2225 	 * - the task is part of a numa_group that is interleaved across
2226 	 *   multiple NUMA nodes; in order to better consolidate the group,
2227 	 *   we need to check other locations.
2228 	 */
2229 	ng = deref_curr_numa_group(p);
2230 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2231 		for_each_node_state(nid, N_CPU) {
2232 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2233 				continue;
2234 
2235 			dist = node_distance(env.src_nid, env.dst_nid);
2236 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2237 						dist != env.dist) {
2238 				taskweight = task_weight(p, env.src_nid, dist);
2239 				groupweight = group_weight(p, env.src_nid, dist);
2240 			}
2241 
2242 			/* Only consider nodes where both task and groups benefit */
2243 			taskimp = task_weight(p, nid, dist) - taskweight;
2244 			groupimp = group_weight(p, nid, dist) - groupweight;
2245 			if (taskimp < 0 && groupimp < 0)
2246 				continue;
2247 
2248 			env.dist = dist;
2249 			env.dst_nid = nid;
2250 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2251 			task_numa_find_cpu(&env, taskimp, groupimp);
2252 		}
2253 	}
2254 
2255 	/*
2256 	 * If the task is part of a workload that spans multiple NUMA nodes,
2257 	 * and is migrating into one of the workload's active nodes, remember
2258 	 * this node as the task's preferred numa node, so the workload can
2259 	 * settle down.
2260 	 * A task that migrated to a second choice node will be better off
2261 	 * trying for a better one later. Do not set the preferred node here.
2262 	 */
2263 	if (ng) {
2264 		if (env.best_cpu == -1)
2265 			nid = env.src_nid;
2266 		else
2267 			nid = cpu_to_node(env.best_cpu);
2268 
2269 		if (nid != p->numa_preferred_nid)
2270 			sched_setnuma(p, nid);
2271 	}
2272 
2273 	/* No better CPU than the current one was found. */
2274 	if (env.best_cpu == -1) {
2275 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2276 		return -EAGAIN;
2277 	}
2278 
2279 	best_rq = cpu_rq(env.best_cpu);
2280 	if (env.best_task == NULL) {
2281 		ret = migrate_task_to(p, env.best_cpu);
2282 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2283 		if (ret != 0)
2284 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2285 		return ret;
2286 	}
2287 
2288 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2289 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2290 
2291 	if (ret != 0)
2292 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2293 	put_task_struct(env.best_task);
2294 	return ret;
2295 }
2296 
2297 /* Attempt to migrate a task to a CPU on the preferred node. */
2298 static void numa_migrate_preferred(struct task_struct *p)
2299 {
2300 	unsigned long interval = HZ;
2301 
2302 	/* This task has no NUMA fault statistics yet */
2303 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2304 		return;
2305 
2306 	/* Periodically retry migrating the task to the preferred node */
2307 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2308 	p->numa_migrate_retry = jiffies + interval;
2309 
2310 	/* Success if task is already running on preferred CPU */
2311 	if (task_node(p) == p->numa_preferred_nid)
2312 		return;
2313 
2314 	/* Otherwise, try migrate to a CPU on the preferred node */
2315 	task_numa_migrate(p);
2316 }
2317 
2318 /*
2319  * Find out how many nodes the workload is actively running on. Do this by
2320  * tracking the nodes from which NUMA hinting faults are triggered. This can
2321  * be different from the set of nodes where the workload's memory is currently
2322  * located.
2323  */
2324 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2325 {
2326 	unsigned long faults, max_faults = 0;
2327 	int nid, active_nodes = 0;
2328 
2329 	for_each_node_state(nid, N_CPU) {
2330 		faults = group_faults_cpu(numa_group, nid);
2331 		if (faults > max_faults)
2332 			max_faults = faults;
2333 	}
2334 
2335 	for_each_node_state(nid, N_CPU) {
2336 		faults = group_faults_cpu(numa_group, nid);
2337 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2338 			active_nodes++;
2339 	}
2340 
2341 	numa_group->max_faults_cpu = max_faults;
2342 	numa_group->active_nodes = active_nodes;
2343 }
2344 
2345 /*
2346  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2347  * increments. The more local the fault statistics are, the higher the scan
2348  * period will be for the next scan window. If local/(local+remote) ratio is
2349  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2350  * the scan period will decrease. Aim for 70% local accesses.
2351  */
2352 #define NUMA_PERIOD_SLOTS 10
2353 #define NUMA_PERIOD_THRESHOLD 7
2354 
2355 /*
2356  * Increase the scan period (slow down scanning) if the majority of
2357  * our memory is already on our local node, or if the majority of
2358  * the page accesses are shared with other processes.
2359  * Otherwise, decrease the scan period.
2360  */
2361 static void update_task_scan_period(struct task_struct *p,
2362 			unsigned long shared, unsigned long private)
2363 {
2364 	unsigned int period_slot;
2365 	int lr_ratio, ps_ratio;
2366 	int diff;
2367 
2368 	unsigned long remote = p->numa_faults_locality[0];
2369 	unsigned long local = p->numa_faults_locality[1];
2370 
2371 	/*
2372 	 * If there were no record hinting faults then either the task is
2373 	 * completely idle or all activity is in areas that are not of interest
2374 	 * to automatic numa balancing. Related to that, if there were failed
2375 	 * migration then it implies we are migrating too quickly or the local
2376 	 * node is overloaded. In either case, scan slower
2377 	 */
2378 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2379 		p->numa_scan_period = min(p->numa_scan_period_max,
2380 			p->numa_scan_period << 1);
2381 
2382 		p->mm->numa_next_scan = jiffies +
2383 			msecs_to_jiffies(p->numa_scan_period);
2384 
2385 		return;
2386 	}
2387 
2388 	/*
2389 	 * Prepare to scale scan period relative to the current period.
2390 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2391 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2392 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2393 	 */
2394 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2395 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2396 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2397 
2398 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2399 		/*
2400 		 * Most memory accesses are local. There is no need to
2401 		 * do fast NUMA scanning, since memory is already local.
2402 		 */
2403 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2404 		if (!slot)
2405 			slot = 1;
2406 		diff = slot * period_slot;
2407 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2408 		/*
2409 		 * Most memory accesses are shared with other tasks.
2410 		 * There is no point in continuing fast NUMA scanning,
2411 		 * since other tasks may just move the memory elsewhere.
2412 		 */
2413 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2414 		if (!slot)
2415 			slot = 1;
2416 		diff = slot * period_slot;
2417 	} else {
2418 		/*
2419 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2420 		 * yet they are not on the local NUMA node. Speed up
2421 		 * NUMA scanning to get the memory moved over.
2422 		 */
2423 		int ratio = max(lr_ratio, ps_ratio);
2424 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2425 	}
2426 
2427 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2428 			task_scan_min(p), task_scan_max(p));
2429 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2430 }
2431 
2432 /*
2433  * Get the fraction of time the task has been running since the last
2434  * NUMA placement cycle. The scheduler keeps similar statistics, but
2435  * decays those on a 32ms period, which is orders of magnitude off
2436  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2437  * stats only if the task is so new there are no NUMA statistics yet.
2438  */
2439 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2440 {
2441 	u64 runtime, delta, now;
2442 	/* Use the start of this time slice to avoid calculations. */
2443 	now = p->se.exec_start;
2444 	runtime = p->se.sum_exec_runtime;
2445 
2446 	if (p->last_task_numa_placement) {
2447 		delta = runtime - p->last_sum_exec_runtime;
2448 		*period = now - p->last_task_numa_placement;
2449 
2450 		/* Avoid time going backwards, prevent potential divide error: */
2451 		if (unlikely((s64)*period < 0))
2452 			*period = 0;
2453 	} else {
2454 		delta = p->se.avg.load_sum;
2455 		*period = LOAD_AVG_MAX;
2456 	}
2457 
2458 	p->last_sum_exec_runtime = runtime;
2459 	p->last_task_numa_placement = now;
2460 
2461 	return delta;
2462 }
2463 
2464 /*
2465  * Determine the preferred nid for a task in a numa_group. This needs to
2466  * be done in a way that produces consistent results with group_weight,
2467  * otherwise workloads might not converge.
2468  */
2469 static int preferred_group_nid(struct task_struct *p, int nid)
2470 {
2471 	nodemask_t nodes;
2472 	int dist;
2473 
2474 	/* Direct connections between all NUMA nodes. */
2475 	if (sched_numa_topology_type == NUMA_DIRECT)
2476 		return nid;
2477 
2478 	/*
2479 	 * On a system with glueless mesh NUMA topology, group_weight
2480 	 * scores nodes according to the number of NUMA hinting faults on
2481 	 * both the node itself, and on nearby nodes.
2482 	 */
2483 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2484 		unsigned long score, max_score = 0;
2485 		int node, max_node = nid;
2486 
2487 		dist = sched_max_numa_distance;
2488 
2489 		for_each_node_state(node, N_CPU) {
2490 			score = group_weight(p, node, dist);
2491 			if (score > max_score) {
2492 				max_score = score;
2493 				max_node = node;
2494 			}
2495 		}
2496 		return max_node;
2497 	}
2498 
2499 	/*
2500 	 * Finding the preferred nid in a system with NUMA backplane
2501 	 * interconnect topology is more involved. The goal is to locate
2502 	 * tasks from numa_groups near each other in the system, and
2503 	 * untangle workloads from different sides of the system. This requires
2504 	 * searching down the hierarchy of node groups, recursively searching
2505 	 * inside the highest scoring group of nodes. The nodemask tricks
2506 	 * keep the complexity of the search down.
2507 	 */
2508 	nodes = node_states[N_CPU];
2509 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2510 		unsigned long max_faults = 0;
2511 		nodemask_t max_group = NODE_MASK_NONE;
2512 		int a, b;
2513 
2514 		/* Are there nodes at this distance from each other? */
2515 		if (!find_numa_distance(dist))
2516 			continue;
2517 
2518 		for_each_node_mask(a, nodes) {
2519 			unsigned long faults = 0;
2520 			nodemask_t this_group;
2521 			nodes_clear(this_group);
2522 
2523 			/* Sum group's NUMA faults; includes a==b case. */
2524 			for_each_node_mask(b, nodes) {
2525 				if (node_distance(a, b) < dist) {
2526 					faults += group_faults(p, b);
2527 					node_set(b, this_group);
2528 					node_clear(b, nodes);
2529 				}
2530 			}
2531 
2532 			/* Remember the top group. */
2533 			if (faults > max_faults) {
2534 				max_faults = faults;
2535 				max_group = this_group;
2536 				/*
2537 				 * subtle: at the smallest distance there is
2538 				 * just one node left in each "group", the
2539 				 * winner is the preferred nid.
2540 				 */
2541 				nid = a;
2542 			}
2543 		}
2544 		/* Next round, evaluate the nodes within max_group. */
2545 		if (!max_faults)
2546 			break;
2547 		nodes = max_group;
2548 	}
2549 	return nid;
2550 }
2551 
2552 static void task_numa_placement(struct task_struct *p)
2553 {
2554 	int seq, nid, max_nid = NUMA_NO_NODE;
2555 	unsigned long max_faults = 0;
2556 	unsigned long fault_types[2] = { 0, 0 };
2557 	unsigned long total_faults;
2558 	u64 runtime, period;
2559 	spinlock_t *group_lock = NULL;
2560 	struct numa_group *ng;
2561 
2562 	/*
2563 	 * The p->mm->numa_scan_seq field gets updated without
2564 	 * exclusive access. Use READ_ONCE() here to ensure
2565 	 * that the field is read in a single access:
2566 	 */
2567 	seq = READ_ONCE(p->mm->numa_scan_seq);
2568 	if (p->numa_scan_seq == seq)
2569 		return;
2570 	p->numa_scan_seq = seq;
2571 	p->numa_scan_period_max = task_scan_max(p);
2572 
2573 	total_faults = p->numa_faults_locality[0] +
2574 		       p->numa_faults_locality[1];
2575 	runtime = numa_get_avg_runtime(p, &period);
2576 
2577 	/* If the task is part of a group prevent parallel updates to group stats */
2578 	ng = deref_curr_numa_group(p);
2579 	if (ng) {
2580 		group_lock = &ng->lock;
2581 		spin_lock_irq(group_lock);
2582 	}
2583 
2584 	/* Find the node with the highest number of faults */
2585 	for_each_online_node(nid) {
2586 		/* Keep track of the offsets in numa_faults array */
2587 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2588 		unsigned long faults = 0, group_faults = 0;
2589 		int priv;
2590 
2591 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2592 			long diff, f_diff, f_weight;
2593 
2594 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2595 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2596 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2597 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2598 
2599 			/* Decay existing window, copy faults since last scan */
2600 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2601 			fault_types[priv] += p->numa_faults[membuf_idx];
2602 			p->numa_faults[membuf_idx] = 0;
2603 
2604 			/*
2605 			 * Normalize the faults_from, so all tasks in a group
2606 			 * count according to CPU use, instead of by the raw
2607 			 * number of faults. Tasks with little runtime have
2608 			 * little over-all impact on throughput, and thus their
2609 			 * faults are less important.
2610 			 */
2611 			f_weight = div64_u64(runtime << 16, period + 1);
2612 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2613 				   (total_faults + 1);
2614 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2615 			p->numa_faults[cpubuf_idx] = 0;
2616 
2617 			p->numa_faults[mem_idx] += diff;
2618 			p->numa_faults[cpu_idx] += f_diff;
2619 			faults += p->numa_faults[mem_idx];
2620 			p->total_numa_faults += diff;
2621 			if (ng) {
2622 				/*
2623 				 * safe because we can only change our own group
2624 				 *
2625 				 * mem_idx represents the offset for a given
2626 				 * nid and priv in a specific region because it
2627 				 * is at the beginning of the numa_faults array.
2628 				 */
2629 				ng->faults[mem_idx] += diff;
2630 				ng->faults[cpu_idx] += f_diff;
2631 				ng->total_faults += diff;
2632 				group_faults += ng->faults[mem_idx];
2633 			}
2634 		}
2635 
2636 		if (!ng) {
2637 			if (faults > max_faults) {
2638 				max_faults = faults;
2639 				max_nid = nid;
2640 			}
2641 		} else if (group_faults > max_faults) {
2642 			max_faults = group_faults;
2643 			max_nid = nid;
2644 		}
2645 	}
2646 
2647 	/* Cannot migrate task to CPU-less node */
2648 	if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
2649 		int near_nid = max_nid;
2650 		int distance, near_distance = INT_MAX;
2651 
2652 		for_each_node_state(nid, N_CPU) {
2653 			distance = node_distance(max_nid, nid);
2654 			if (distance < near_distance) {
2655 				near_nid = nid;
2656 				near_distance = distance;
2657 			}
2658 		}
2659 		max_nid = near_nid;
2660 	}
2661 
2662 	if (ng) {
2663 		numa_group_count_active_nodes(ng);
2664 		spin_unlock_irq(group_lock);
2665 		max_nid = preferred_group_nid(p, max_nid);
2666 	}
2667 
2668 	if (max_faults) {
2669 		/* Set the new preferred node */
2670 		if (max_nid != p->numa_preferred_nid)
2671 			sched_setnuma(p, max_nid);
2672 	}
2673 
2674 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2675 }
2676 
2677 static inline int get_numa_group(struct numa_group *grp)
2678 {
2679 	return refcount_inc_not_zero(&grp->refcount);
2680 }
2681 
2682 static inline void put_numa_group(struct numa_group *grp)
2683 {
2684 	if (refcount_dec_and_test(&grp->refcount))
2685 		kfree_rcu(grp, rcu);
2686 }
2687 
2688 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2689 			int *priv)
2690 {
2691 	struct numa_group *grp, *my_grp;
2692 	struct task_struct *tsk;
2693 	bool join = false;
2694 	int cpu = cpupid_to_cpu(cpupid);
2695 	int i;
2696 
2697 	if (unlikely(!deref_curr_numa_group(p))) {
2698 		unsigned int size = sizeof(struct numa_group) +
2699 				    NR_NUMA_HINT_FAULT_STATS *
2700 				    nr_node_ids * sizeof(unsigned long);
2701 
2702 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2703 		if (!grp)
2704 			return;
2705 
2706 		refcount_set(&grp->refcount, 1);
2707 		grp->active_nodes = 1;
2708 		grp->max_faults_cpu = 0;
2709 		spin_lock_init(&grp->lock);
2710 		grp->gid = p->pid;
2711 
2712 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2713 			grp->faults[i] = p->numa_faults[i];
2714 
2715 		grp->total_faults = p->total_numa_faults;
2716 
2717 		grp->nr_tasks++;
2718 		rcu_assign_pointer(p->numa_group, grp);
2719 	}
2720 
2721 	rcu_read_lock();
2722 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2723 
2724 	if (!cpupid_match_pid(tsk, cpupid))
2725 		goto no_join;
2726 
2727 	grp = rcu_dereference(tsk->numa_group);
2728 	if (!grp)
2729 		goto no_join;
2730 
2731 	my_grp = deref_curr_numa_group(p);
2732 	if (grp == my_grp)
2733 		goto no_join;
2734 
2735 	/*
2736 	 * Only join the other group if its bigger; if we're the bigger group,
2737 	 * the other task will join us.
2738 	 */
2739 	if (my_grp->nr_tasks > grp->nr_tasks)
2740 		goto no_join;
2741 
2742 	/*
2743 	 * Tie-break on the grp address.
2744 	 */
2745 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2746 		goto no_join;
2747 
2748 	/* Always join threads in the same process. */
2749 	if (tsk->mm == current->mm)
2750 		join = true;
2751 
2752 	/* Simple filter to avoid false positives due to PID collisions */
2753 	if (flags & TNF_SHARED)
2754 		join = true;
2755 
2756 	/* Update priv based on whether false sharing was detected */
2757 	*priv = !join;
2758 
2759 	if (join && !get_numa_group(grp))
2760 		goto no_join;
2761 
2762 	rcu_read_unlock();
2763 
2764 	if (!join)
2765 		return;
2766 
2767 	WARN_ON_ONCE(irqs_disabled());
2768 	double_lock_irq(&my_grp->lock, &grp->lock);
2769 
2770 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2771 		my_grp->faults[i] -= p->numa_faults[i];
2772 		grp->faults[i] += p->numa_faults[i];
2773 	}
2774 	my_grp->total_faults -= p->total_numa_faults;
2775 	grp->total_faults += p->total_numa_faults;
2776 
2777 	my_grp->nr_tasks--;
2778 	grp->nr_tasks++;
2779 
2780 	spin_unlock(&my_grp->lock);
2781 	spin_unlock_irq(&grp->lock);
2782 
2783 	rcu_assign_pointer(p->numa_group, grp);
2784 
2785 	put_numa_group(my_grp);
2786 	return;
2787 
2788 no_join:
2789 	rcu_read_unlock();
2790 	return;
2791 }
2792 
2793 /*
2794  * Get rid of NUMA statistics associated with a task (either current or dead).
2795  * If @final is set, the task is dead and has reached refcount zero, so we can
2796  * safely free all relevant data structures. Otherwise, there might be
2797  * concurrent reads from places like load balancing and procfs, and we should
2798  * reset the data back to default state without freeing ->numa_faults.
2799  */
2800 void task_numa_free(struct task_struct *p, bool final)
2801 {
2802 	/* safe: p either is current or is being freed by current */
2803 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2804 	unsigned long *numa_faults = p->numa_faults;
2805 	unsigned long flags;
2806 	int i;
2807 
2808 	if (!numa_faults)
2809 		return;
2810 
2811 	if (grp) {
2812 		spin_lock_irqsave(&grp->lock, flags);
2813 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2814 			grp->faults[i] -= p->numa_faults[i];
2815 		grp->total_faults -= p->total_numa_faults;
2816 
2817 		grp->nr_tasks--;
2818 		spin_unlock_irqrestore(&grp->lock, flags);
2819 		RCU_INIT_POINTER(p->numa_group, NULL);
2820 		put_numa_group(grp);
2821 	}
2822 
2823 	if (final) {
2824 		p->numa_faults = NULL;
2825 		kfree(numa_faults);
2826 	} else {
2827 		p->total_numa_faults = 0;
2828 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2829 			numa_faults[i] = 0;
2830 	}
2831 }
2832 
2833 /*
2834  * Got a PROT_NONE fault for a page on @node.
2835  */
2836 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2837 {
2838 	struct task_struct *p = current;
2839 	bool migrated = flags & TNF_MIGRATED;
2840 	int cpu_node = task_node(current);
2841 	int local = !!(flags & TNF_FAULT_LOCAL);
2842 	struct numa_group *ng;
2843 	int priv;
2844 
2845 	if (!static_branch_likely(&sched_numa_balancing))
2846 		return;
2847 
2848 	/* for example, ksmd faulting in a user's mm */
2849 	if (!p->mm)
2850 		return;
2851 
2852 	/*
2853 	 * NUMA faults statistics are unnecessary for the slow memory
2854 	 * node for memory tiering mode.
2855 	 */
2856 	if (!node_is_toptier(mem_node) &&
2857 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
2858 	     !cpupid_valid(last_cpupid)))
2859 		return;
2860 
2861 	/* Allocate buffer to track faults on a per-node basis */
2862 	if (unlikely(!p->numa_faults)) {
2863 		int size = sizeof(*p->numa_faults) *
2864 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2865 
2866 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2867 		if (!p->numa_faults)
2868 			return;
2869 
2870 		p->total_numa_faults = 0;
2871 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2872 	}
2873 
2874 	/*
2875 	 * First accesses are treated as private, otherwise consider accesses
2876 	 * to be private if the accessing pid has not changed
2877 	 */
2878 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2879 		priv = 1;
2880 	} else {
2881 		priv = cpupid_match_pid(p, last_cpupid);
2882 		if (!priv && !(flags & TNF_NO_GROUP))
2883 			task_numa_group(p, last_cpupid, flags, &priv);
2884 	}
2885 
2886 	/*
2887 	 * If a workload spans multiple NUMA nodes, a shared fault that
2888 	 * occurs wholly within the set of nodes that the workload is
2889 	 * actively using should be counted as local. This allows the
2890 	 * scan rate to slow down when a workload has settled down.
2891 	 */
2892 	ng = deref_curr_numa_group(p);
2893 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2894 				numa_is_active_node(cpu_node, ng) &&
2895 				numa_is_active_node(mem_node, ng))
2896 		local = 1;
2897 
2898 	/*
2899 	 * Retry to migrate task to preferred node periodically, in case it
2900 	 * previously failed, or the scheduler moved us.
2901 	 */
2902 	if (time_after(jiffies, p->numa_migrate_retry)) {
2903 		task_numa_placement(p);
2904 		numa_migrate_preferred(p);
2905 	}
2906 
2907 	if (migrated)
2908 		p->numa_pages_migrated += pages;
2909 	if (flags & TNF_MIGRATE_FAIL)
2910 		p->numa_faults_locality[2] += pages;
2911 
2912 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2913 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2914 	p->numa_faults_locality[local] += pages;
2915 }
2916 
2917 static void reset_ptenuma_scan(struct task_struct *p)
2918 {
2919 	/*
2920 	 * We only did a read acquisition of the mmap sem, so
2921 	 * p->mm->numa_scan_seq is written to without exclusive access
2922 	 * and the update is not guaranteed to be atomic. That's not
2923 	 * much of an issue though, since this is just used for
2924 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2925 	 * expensive, to avoid any form of compiler optimizations:
2926 	 */
2927 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2928 	p->mm->numa_scan_offset = 0;
2929 }
2930 
2931 static bool vma_is_accessed(struct vm_area_struct *vma)
2932 {
2933 	unsigned long pids;
2934 	/*
2935 	 * Allow unconditional access first two times, so that all the (pages)
2936 	 * of VMAs get prot_none fault introduced irrespective of accesses.
2937 	 * This is also done to avoid any side effect of task scanning
2938 	 * amplifying the unfairness of disjoint set of VMAs' access.
2939 	 */
2940 	if (READ_ONCE(current->mm->numa_scan_seq) < 2)
2941 		return true;
2942 
2943 	pids = vma->numab_state->access_pids[0] | vma->numab_state->access_pids[1];
2944 	return test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids);
2945 }
2946 
2947 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
2948 
2949 /*
2950  * The expensive part of numa migration is done from task_work context.
2951  * Triggered from task_tick_numa().
2952  */
2953 static void task_numa_work(struct callback_head *work)
2954 {
2955 	unsigned long migrate, next_scan, now = jiffies;
2956 	struct task_struct *p = current;
2957 	struct mm_struct *mm = p->mm;
2958 	u64 runtime = p->se.sum_exec_runtime;
2959 	struct vm_area_struct *vma;
2960 	unsigned long start, end;
2961 	unsigned long nr_pte_updates = 0;
2962 	long pages, virtpages;
2963 	struct vma_iterator vmi;
2964 
2965 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2966 
2967 	work->next = work;
2968 	/*
2969 	 * Who cares about NUMA placement when they're dying.
2970 	 *
2971 	 * NOTE: make sure not to dereference p->mm before this check,
2972 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2973 	 * without p->mm even though we still had it when we enqueued this
2974 	 * work.
2975 	 */
2976 	if (p->flags & PF_EXITING)
2977 		return;
2978 
2979 	if (!mm->numa_next_scan) {
2980 		mm->numa_next_scan = now +
2981 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2982 	}
2983 
2984 	/*
2985 	 * Enforce maximal scan/migration frequency..
2986 	 */
2987 	migrate = mm->numa_next_scan;
2988 	if (time_before(now, migrate))
2989 		return;
2990 
2991 	if (p->numa_scan_period == 0) {
2992 		p->numa_scan_period_max = task_scan_max(p);
2993 		p->numa_scan_period = task_scan_start(p);
2994 	}
2995 
2996 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2997 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
2998 		return;
2999 
3000 	/*
3001 	 * Delay this task enough that another task of this mm will likely win
3002 	 * the next time around.
3003 	 */
3004 	p->node_stamp += 2 * TICK_NSEC;
3005 
3006 	start = mm->numa_scan_offset;
3007 	pages = sysctl_numa_balancing_scan_size;
3008 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3009 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3010 	if (!pages)
3011 		return;
3012 
3013 
3014 	if (!mmap_read_trylock(mm))
3015 		return;
3016 	vma_iter_init(&vmi, mm, start);
3017 	vma = vma_next(&vmi);
3018 	if (!vma) {
3019 		reset_ptenuma_scan(p);
3020 		start = 0;
3021 		vma_iter_set(&vmi, start);
3022 		vma = vma_next(&vmi);
3023 	}
3024 
3025 	do {
3026 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3027 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3028 			continue;
3029 		}
3030 
3031 		/*
3032 		 * Shared library pages mapped by multiple processes are not
3033 		 * migrated as it is expected they are cache replicated. Avoid
3034 		 * hinting faults in read-only file-backed mappings or the vdso
3035 		 * as migrating the pages will be of marginal benefit.
3036 		 */
3037 		if (!vma->vm_mm ||
3038 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
3039 			continue;
3040 
3041 		/*
3042 		 * Skip inaccessible VMAs to avoid any confusion between
3043 		 * PROT_NONE and NUMA hinting ptes
3044 		 */
3045 		if (!vma_is_accessible(vma))
3046 			continue;
3047 
3048 		/* Initialise new per-VMA NUMAB state. */
3049 		if (!vma->numab_state) {
3050 			vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3051 				GFP_KERNEL);
3052 			if (!vma->numab_state)
3053 				continue;
3054 
3055 			vma->numab_state->next_scan = now +
3056 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3057 
3058 			/* Reset happens after 4 times scan delay of scan start */
3059 			vma->numab_state->next_pid_reset =  vma->numab_state->next_scan +
3060 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3061 		}
3062 
3063 		/*
3064 		 * Scanning the VMA's of short lived tasks add more overhead. So
3065 		 * delay the scan for new VMAs.
3066 		 */
3067 		if (mm->numa_scan_seq && time_before(jiffies,
3068 						vma->numab_state->next_scan))
3069 			continue;
3070 
3071 		/* Do not scan the VMA if task has not accessed */
3072 		if (!vma_is_accessed(vma))
3073 			continue;
3074 
3075 		/*
3076 		 * RESET access PIDs regularly for old VMAs. Resetting after checking
3077 		 * vma for recent access to avoid clearing PID info before access..
3078 		 */
3079 		if (mm->numa_scan_seq &&
3080 				time_after(jiffies, vma->numab_state->next_pid_reset)) {
3081 			vma->numab_state->next_pid_reset = vma->numab_state->next_pid_reset +
3082 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3083 			vma->numab_state->access_pids[0] = READ_ONCE(vma->numab_state->access_pids[1]);
3084 			vma->numab_state->access_pids[1] = 0;
3085 		}
3086 
3087 		do {
3088 			start = max(start, vma->vm_start);
3089 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3090 			end = min(end, vma->vm_end);
3091 			nr_pte_updates = change_prot_numa(vma, start, end);
3092 
3093 			/*
3094 			 * Try to scan sysctl_numa_balancing_size worth of
3095 			 * hpages that have at least one present PTE that
3096 			 * is not already pte-numa. If the VMA contains
3097 			 * areas that are unused or already full of prot_numa
3098 			 * PTEs, scan up to virtpages, to skip through those
3099 			 * areas faster.
3100 			 */
3101 			if (nr_pte_updates)
3102 				pages -= (end - start) >> PAGE_SHIFT;
3103 			virtpages -= (end - start) >> PAGE_SHIFT;
3104 
3105 			start = end;
3106 			if (pages <= 0 || virtpages <= 0)
3107 				goto out;
3108 
3109 			cond_resched();
3110 		} while (end != vma->vm_end);
3111 	} for_each_vma(vmi, vma);
3112 
3113 out:
3114 	/*
3115 	 * It is possible to reach the end of the VMA list but the last few
3116 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3117 	 * would find the !migratable VMA on the next scan but not reset the
3118 	 * scanner to the start so check it now.
3119 	 */
3120 	if (vma)
3121 		mm->numa_scan_offset = start;
3122 	else
3123 		reset_ptenuma_scan(p);
3124 	mmap_read_unlock(mm);
3125 
3126 	/*
3127 	 * Make sure tasks use at least 32x as much time to run other code
3128 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3129 	 * Usually update_task_scan_period slows down scanning enough; on an
3130 	 * overloaded system we need to limit overhead on a per task basis.
3131 	 */
3132 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3133 		u64 diff = p->se.sum_exec_runtime - runtime;
3134 		p->node_stamp += 32 * diff;
3135 	}
3136 }
3137 
3138 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3139 {
3140 	int mm_users = 0;
3141 	struct mm_struct *mm = p->mm;
3142 
3143 	if (mm) {
3144 		mm_users = atomic_read(&mm->mm_users);
3145 		if (mm_users == 1) {
3146 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3147 			mm->numa_scan_seq = 0;
3148 		}
3149 	}
3150 	p->node_stamp			= 0;
3151 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3152 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3153 	p->numa_migrate_retry		= 0;
3154 	/* Protect against double add, see task_tick_numa and task_numa_work */
3155 	p->numa_work.next		= &p->numa_work;
3156 	p->numa_faults			= NULL;
3157 	p->numa_pages_migrated		= 0;
3158 	p->total_numa_faults		= 0;
3159 	RCU_INIT_POINTER(p->numa_group, NULL);
3160 	p->last_task_numa_placement	= 0;
3161 	p->last_sum_exec_runtime	= 0;
3162 
3163 	init_task_work(&p->numa_work, task_numa_work);
3164 
3165 	/* New address space, reset the preferred nid */
3166 	if (!(clone_flags & CLONE_VM)) {
3167 		p->numa_preferred_nid = NUMA_NO_NODE;
3168 		return;
3169 	}
3170 
3171 	/*
3172 	 * New thread, keep existing numa_preferred_nid which should be copied
3173 	 * already by arch_dup_task_struct but stagger when scans start.
3174 	 */
3175 	if (mm) {
3176 		unsigned int delay;
3177 
3178 		delay = min_t(unsigned int, task_scan_max(current),
3179 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3180 		delay += 2 * TICK_NSEC;
3181 		p->node_stamp = delay;
3182 	}
3183 }
3184 
3185 /*
3186  * Drive the periodic memory faults..
3187  */
3188 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3189 {
3190 	struct callback_head *work = &curr->numa_work;
3191 	u64 period, now;
3192 
3193 	/*
3194 	 * We don't care about NUMA placement if we don't have memory.
3195 	 */
3196 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3197 		return;
3198 
3199 	/*
3200 	 * Using runtime rather than walltime has the dual advantage that
3201 	 * we (mostly) drive the selection from busy threads and that the
3202 	 * task needs to have done some actual work before we bother with
3203 	 * NUMA placement.
3204 	 */
3205 	now = curr->se.sum_exec_runtime;
3206 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3207 
3208 	if (now > curr->node_stamp + period) {
3209 		if (!curr->node_stamp)
3210 			curr->numa_scan_period = task_scan_start(curr);
3211 		curr->node_stamp += period;
3212 
3213 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3214 			task_work_add(curr, work, TWA_RESUME);
3215 	}
3216 }
3217 
3218 static void update_scan_period(struct task_struct *p, int new_cpu)
3219 {
3220 	int src_nid = cpu_to_node(task_cpu(p));
3221 	int dst_nid = cpu_to_node(new_cpu);
3222 
3223 	if (!static_branch_likely(&sched_numa_balancing))
3224 		return;
3225 
3226 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3227 		return;
3228 
3229 	if (src_nid == dst_nid)
3230 		return;
3231 
3232 	/*
3233 	 * Allow resets if faults have been trapped before one scan
3234 	 * has completed. This is most likely due to a new task that
3235 	 * is pulled cross-node due to wakeups or load balancing.
3236 	 */
3237 	if (p->numa_scan_seq) {
3238 		/*
3239 		 * Avoid scan adjustments if moving to the preferred
3240 		 * node or if the task was not previously running on
3241 		 * the preferred node.
3242 		 */
3243 		if (dst_nid == p->numa_preferred_nid ||
3244 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3245 			src_nid != p->numa_preferred_nid))
3246 			return;
3247 	}
3248 
3249 	p->numa_scan_period = task_scan_start(p);
3250 }
3251 
3252 #else
3253 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3254 {
3255 }
3256 
3257 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3258 {
3259 }
3260 
3261 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3262 {
3263 }
3264 
3265 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3266 {
3267 }
3268 
3269 #endif /* CONFIG_NUMA_BALANCING */
3270 
3271 static void
3272 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3273 {
3274 	update_load_add(&cfs_rq->load, se->load.weight);
3275 #ifdef CONFIG_SMP
3276 	if (entity_is_task(se)) {
3277 		struct rq *rq = rq_of(cfs_rq);
3278 
3279 		account_numa_enqueue(rq, task_of(se));
3280 		list_add(&se->group_node, &rq->cfs_tasks);
3281 	}
3282 #endif
3283 	cfs_rq->nr_running++;
3284 	if (se_is_idle(se))
3285 		cfs_rq->idle_nr_running++;
3286 }
3287 
3288 static void
3289 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3290 {
3291 	update_load_sub(&cfs_rq->load, se->load.weight);
3292 #ifdef CONFIG_SMP
3293 	if (entity_is_task(se)) {
3294 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3295 		list_del_init(&se->group_node);
3296 	}
3297 #endif
3298 	cfs_rq->nr_running--;
3299 	if (se_is_idle(se))
3300 		cfs_rq->idle_nr_running--;
3301 }
3302 
3303 /*
3304  * Signed add and clamp on underflow.
3305  *
3306  * Explicitly do a load-store to ensure the intermediate value never hits
3307  * memory. This allows lockless observations without ever seeing the negative
3308  * values.
3309  */
3310 #define add_positive(_ptr, _val) do {                           \
3311 	typeof(_ptr) ptr = (_ptr);                              \
3312 	typeof(_val) val = (_val);                              \
3313 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3314 								\
3315 	res = var + val;                                        \
3316 								\
3317 	if (val < 0 && res > var)                               \
3318 		res = 0;                                        \
3319 								\
3320 	WRITE_ONCE(*ptr, res);                                  \
3321 } while (0)
3322 
3323 /*
3324  * Unsigned subtract and clamp on underflow.
3325  *
3326  * Explicitly do a load-store to ensure the intermediate value never hits
3327  * memory. This allows lockless observations without ever seeing the negative
3328  * values.
3329  */
3330 #define sub_positive(_ptr, _val) do {				\
3331 	typeof(_ptr) ptr = (_ptr);				\
3332 	typeof(*ptr) val = (_val);				\
3333 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3334 	res = var - val;					\
3335 	if (res > var)						\
3336 		res = 0;					\
3337 	WRITE_ONCE(*ptr, res);					\
3338 } while (0)
3339 
3340 /*
3341  * Remove and clamp on negative, from a local variable.
3342  *
3343  * A variant of sub_positive(), which does not use explicit load-store
3344  * and is thus optimized for local variable updates.
3345  */
3346 #define lsub_positive(_ptr, _val) do {				\
3347 	typeof(_ptr) ptr = (_ptr);				\
3348 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3349 } while (0)
3350 
3351 #ifdef CONFIG_SMP
3352 static inline void
3353 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3354 {
3355 	cfs_rq->avg.load_avg += se->avg.load_avg;
3356 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3357 }
3358 
3359 static inline void
3360 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3361 {
3362 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3363 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3364 	/* See update_cfs_rq_load_avg() */
3365 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3366 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3367 }
3368 #else
3369 static inline void
3370 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3371 static inline void
3372 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3373 #endif
3374 
3375 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3376 			    unsigned long weight)
3377 {
3378 	if (se->on_rq) {
3379 		/* commit outstanding execution time */
3380 		if (cfs_rq->curr == se)
3381 			update_curr(cfs_rq);
3382 		update_load_sub(&cfs_rq->load, se->load.weight);
3383 	}
3384 	dequeue_load_avg(cfs_rq, se);
3385 
3386 	update_load_set(&se->load, weight);
3387 
3388 #ifdef CONFIG_SMP
3389 	do {
3390 		u32 divider = get_pelt_divider(&se->avg);
3391 
3392 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3393 	} while (0);
3394 #endif
3395 
3396 	enqueue_load_avg(cfs_rq, se);
3397 	if (se->on_rq)
3398 		update_load_add(&cfs_rq->load, se->load.weight);
3399 
3400 }
3401 
3402 void reweight_task(struct task_struct *p, int prio)
3403 {
3404 	struct sched_entity *se = &p->se;
3405 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3406 	struct load_weight *load = &se->load;
3407 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3408 
3409 	reweight_entity(cfs_rq, se, weight);
3410 	load->inv_weight = sched_prio_to_wmult[prio];
3411 }
3412 
3413 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3414 
3415 #ifdef CONFIG_FAIR_GROUP_SCHED
3416 #ifdef CONFIG_SMP
3417 /*
3418  * All this does is approximate the hierarchical proportion which includes that
3419  * global sum we all love to hate.
3420  *
3421  * That is, the weight of a group entity, is the proportional share of the
3422  * group weight based on the group runqueue weights. That is:
3423  *
3424  *                     tg->weight * grq->load.weight
3425  *   ge->load.weight = -----------------------------               (1)
3426  *                       \Sum grq->load.weight
3427  *
3428  * Now, because computing that sum is prohibitively expensive to compute (been
3429  * there, done that) we approximate it with this average stuff. The average
3430  * moves slower and therefore the approximation is cheaper and more stable.
3431  *
3432  * So instead of the above, we substitute:
3433  *
3434  *   grq->load.weight -> grq->avg.load_avg                         (2)
3435  *
3436  * which yields the following:
3437  *
3438  *                     tg->weight * grq->avg.load_avg
3439  *   ge->load.weight = ------------------------------              (3)
3440  *                             tg->load_avg
3441  *
3442  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3443  *
3444  * That is shares_avg, and it is right (given the approximation (2)).
3445  *
3446  * The problem with it is that because the average is slow -- it was designed
3447  * to be exactly that of course -- this leads to transients in boundary
3448  * conditions. In specific, the case where the group was idle and we start the
3449  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3450  * yielding bad latency etc..
3451  *
3452  * Now, in that special case (1) reduces to:
3453  *
3454  *                     tg->weight * grq->load.weight
3455  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3456  *                         grp->load.weight
3457  *
3458  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3459  *
3460  * So what we do is modify our approximation (3) to approach (4) in the (near)
3461  * UP case, like:
3462  *
3463  *   ge->load.weight =
3464  *
3465  *              tg->weight * grq->load.weight
3466  *     ---------------------------------------------------         (5)
3467  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3468  *
3469  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3470  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3471  *
3472  *
3473  *                     tg->weight * grq->load.weight
3474  *   ge->load.weight = -----------------------------		   (6)
3475  *                             tg_load_avg'
3476  *
3477  * Where:
3478  *
3479  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3480  *                  max(grq->load.weight, grq->avg.load_avg)
3481  *
3482  * And that is shares_weight and is icky. In the (near) UP case it approaches
3483  * (4) while in the normal case it approaches (3). It consistently
3484  * overestimates the ge->load.weight and therefore:
3485  *
3486  *   \Sum ge->load.weight >= tg->weight
3487  *
3488  * hence icky!
3489  */
3490 static long calc_group_shares(struct cfs_rq *cfs_rq)
3491 {
3492 	long tg_weight, tg_shares, load, shares;
3493 	struct task_group *tg = cfs_rq->tg;
3494 
3495 	tg_shares = READ_ONCE(tg->shares);
3496 
3497 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3498 
3499 	tg_weight = atomic_long_read(&tg->load_avg);
3500 
3501 	/* Ensure tg_weight >= load */
3502 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3503 	tg_weight += load;
3504 
3505 	shares = (tg_shares * load);
3506 	if (tg_weight)
3507 		shares /= tg_weight;
3508 
3509 	/*
3510 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3511 	 * of a group with small tg->shares value. It is a floor value which is
3512 	 * assigned as a minimum load.weight to the sched_entity representing
3513 	 * the group on a CPU.
3514 	 *
3515 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3516 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3517 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3518 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3519 	 * instead of 0.
3520 	 */
3521 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3522 }
3523 #endif /* CONFIG_SMP */
3524 
3525 /*
3526  * Recomputes the group entity based on the current state of its group
3527  * runqueue.
3528  */
3529 static void update_cfs_group(struct sched_entity *se)
3530 {
3531 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3532 	long shares;
3533 
3534 	if (!gcfs_rq)
3535 		return;
3536 
3537 	if (throttled_hierarchy(gcfs_rq))
3538 		return;
3539 
3540 #ifndef CONFIG_SMP
3541 	shares = READ_ONCE(gcfs_rq->tg->shares);
3542 
3543 	if (likely(se->load.weight == shares))
3544 		return;
3545 #else
3546 	shares   = calc_group_shares(gcfs_rq);
3547 #endif
3548 
3549 	reweight_entity(cfs_rq_of(se), se, shares);
3550 }
3551 
3552 #else /* CONFIG_FAIR_GROUP_SCHED */
3553 static inline void update_cfs_group(struct sched_entity *se)
3554 {
3555 }
3556 #endif /* CONFIG_FAIR_GROUP_SCHED */
3557 
3558 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3559 {
3560 	struct rq *rq = rq_of(cfs_rq);
3561 
3562 	if (&rq->cfs == cfs_rq) {
3563 		/*
3564 		 * There are a few boundary cases this might miss but it should
3565 		 * get called often enough that that should (hopefully) not be
3566 		 * a real problem.
3567 		 *
3568 		 * It will not get called when we go idle, because the idle
3569 		 * thread is a different class (!fair), nor will the utilization
3570 		 * number include things like RT tasks.
3571 		 *
3572 		 * As is, the util number is not freq-invariant (we'd have to
3573 		 * implement arch_scale_freq_capacity() for that).
3574 		 *
3575 		 * See cpu_util_cfs().
3576 		 */
3577 		cpufreq_update_util(rq, flags);
3578 	}
3579 }
3580 
3581 #ifdef CONFIG_SMP
3582 static inline bool load_avg_is_decayed(struct sched_avg *sa)
3583 {
3584 	if (sa->load_sum)
3585 		return false;
3586 
3587 	if (sa->util_sum)
3588 		return false;
3589 
3590 	if (sa->runnable_sum)
3591 		return false;
3592 
3593 	/*
3594 	 * _avg must be null when _sum are null because _avg = _sum / divider
3595 	 * Make sure that rounding and/or propagation of PELT values never
3596 	 * break this.
3597 	 */
3598 	SCHED_WARN_ON(sa->load_avg ||
3599 		      sa->util_avg ||
3600 		      sa->runnable_avg);
3601 
3602 	return true;
3603 }
3604 
3605 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3606 {
3607 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
3608 				 cfs_rq->last_update_time_copy);
3609 }
3610 #ifdef CONFIG_FAIR_GROUP_SCHED
3611 /*
3612  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3613  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3614  * bottom-up, we only have to test whether the cfs_rq before us on the list
3615  * is our child.
3616  * If cfs_rq is not on the list, test whether a child needs its to be added to
3617  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
3618  */
3619 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3620 {
3621 	struct cfs_rq *prev_cfs_rq;
3622 	struct list_head *prev;
3623 
3624 	if (cfs_rq->on_list) {
3625 		prev = cfs_rq->leaf_cfs_rq_list.prev;
3626 	} else {
3627 		struct rq *rq = rq_of(cfs_rq);
3628 
3629 		prev = rq->tmp_alone_branch;
3630 	}
3631 
3632 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3633 
3634 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3635 }
3636 
3637 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3638 {
3639 	if (cfs_rq->load.weight)
3640 		return false;
3641 
3642 	if (!load_avg_is_decayed(&cfs_rq->avg))
3643 		return false;
3644 
3645 	if (child_cfs_rq_on_list(cfs_rq))
3646 		return false;
3647 
3648 	return true;
3649 }
3650 
3651 /**
3652  * update_tg_load_avg - update the tg's load avg
3653  * @cfs_rq: the cfs_rq whose avg changed
3654  *
3655  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3656  * However, because tg->load_avg is a global value there are performance
3657  * considerations.
3658  *
3659  * In order to avoid having to look at the other cfs_rq's, we use a
3660  * differential update where we store the last value we propagated. This in
3661  * turn allows skipping updates if the differential is 'small'.
3662  *
3663  * Updating tg's load_avg is necessary before update_cfs_share().
3664  */
3665 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3666 {
3667 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3668 
3669 	/*
3670 	 * No need to update load_avg for root_task_group as it is not used.
3671 	 */
3672 	if (cfs_rq->tg == &root_task_group)
3673 		return;
3674 
3675 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3676 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3677 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3678 	}
3679 }
3680 
3681 /*
3682  * Called within set_task_rq() right before setting a task's CPU. The
3683  * caller only guarantees p->pi_lock is held; no other assumptions,
3684  * including the state of rq->lock, should be made.
3685  */
3686 void set_task_rq_fair(struct sched_entity *se,
3687 		      struct cfs_rq *prev, struct cfs_rq *next)
3688 {
3689 	u64 p_last_update_time;
3690 	u64 n_last_update_time;
3691 
3692 	if (!sched_feat(ATTACH_AGE_LOAD))
3693 		return;
3694 
3695 	/*
3696 	 * We are supposed to update the task to "current" time, then its up to
3697 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3698 	 * getting what current time is, so simply throw away the out-of-date
3699 	 * time. This will result in the wakee task is less decayed, but giving
3700 	 * the wakee more load sounds not bad.
3701 	 */
3702 	if (!(se->avg.last_update_time && prev))
3703 		return;
3704 
3705 	p_last_update_time = cfs_rq_last_update_time(prev);
3706 	n_last_update_time = cfs_rq_last_update_time(next);
3707 
3708 	__update_load_avg_blocked_se(p_last_update_time, se);
3709 	se->avg.last_update_time = n_last_update_time;
3710 }
3711 
3712 /*
3713  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3714  * propagate its contribution. The key to this propagation is the invariant
3715  * that for each group:
3716  *
3717  *   ge->avg == grq->avg						(1)
3718  *
3719  * _IFF_ we look at the pure running and runnable sums. Because they
3720  * represent the very same entity, just at different points in the hierarchy.
3721  *
3722  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3723  * and simply copies the running/runnable sum over (but still wrong, because
3724  * the group entity and group rq do not have their PELT windows aligned).
3725  *
3726  * However, update_tg_cfs_load() is more complex. So we have:
3727  *
3728  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3729  *
3730  * And since, like util, the runnable part should be directly transferable,
3731  * the following would _appear_ to be the straight forward approach:
3732  *
3733  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3734  *
3735  * And per (1) we have:
3736  *
3737  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3738  *
3739  * Which gives:
3740  *
3741  *                      ge->load.weight * grq->avg.load_avg
3742  *   ge->avg.load_avg = -----------------------------------		(4)
3743  *                               grq->load.weight
3744  *
3745  * Except that is wrong!
3746  *
3747  * Because while for entities historical weight is not important and we
3748  * really only care about our future and therefore can consider a pure
3749  * runnable sum, runqueues can NOT do this.
3750  *
3751  * We specifically want runqueues to have a load_avg that includes
3752  * historical weights. Those represent the blocked load, the load we expect
3753  * to (shortly) return to us. This only works by keeping the weights as
3754  * integral part of the sum. We therefore cannot decompose as per (3).
3755  *
3756  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3757  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3758  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3759  * runnable section of these tasks overlap (or not). If they were to perfectly
3760  * align the rq as a whole would be runnable 2/3 of the time. If however we
3761  * always have at least 1 runnable task, the rq as a whole is always runnable.
3762  *
3763  * So we'll have to approximate.. :/
3764  *
3765  * Given the constraint:
3766  *
3767  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3768  *
3769  * We can construct a rule that adds runnable to a rq by assuming minimal
3770  * overlap.
3771  *
3772  * On removal, we'll assume each task is equally runnable; which yields:
3773  *
3774  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3775  *
3776  * XXX: only do this for the part of runnable > running ?
3777  *
3778  */
3779 static inline void
3780 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3781 {
3782 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
3783 	u32 new_sum, divider;
3784 
3785 	/* Nothing to update */
3786 	if (!delta_avg)
3787 		return;
3788 
3789 	/*
3790 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3791 	 * See ___update_load_avg() for details.
3792 	 */
3793 	divider = get_pelt_divider(&cfs_rq->avg);
3794 
3795 
3796 	/* Set new sched_entity's utilization */
3797 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3798 	new_sum = se->avg.util_avg * divider;
3799 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
3800 	se->avg.util_sum = new_sum;
3801 
3802 	/* Update parent cfs_rq utilization */
3803 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
3804 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
3805 
3806 	/* See update_cfs_rq_load_avg() */
3807 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
3808 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
3809 }
3810 
3811 static inline void
3812 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3813 {
3814 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3815 	u32 new_sum, divider;
3816 
3817 	/* Nothing to update */
3818 	if (!delta_avg)
3819 		return;
3820 
3821 	/*
3822 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3823 	 * See ___update_load_avg() for details.
3824 	 */
3825 	divider = get_pelt_divider(&cfs_rq->avg);
3826 
3827 	/* Set new sched_entity's runnable */
3828 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3829 	new_sum = se->avg.runnable_avg * divider;
3830 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
3831 	se->avg.runnable_sum = new_sum;
3832 
3833 	/* Update parent cfs_rq runnable */
3834 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
3835 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
3836 	/* See update_cfs_rq_load_avg() */
3837 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
3838 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
3839 }
3840 
3841 static inline void
3842 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3843 {
3844 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3845 	unsigned long load_avg;
3846 	u64 load_sum = 0;
3847 	s64 delta_sum;
3848 	u32 divider;
3849 
3850 	if (!runnable_sum)
3851 		return;
3852 
3853 	gcfs_rq->prop_runnable_sum = 0;
3854 
3855 	/*
3856 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3857 	 * See ___update_load_avg() for details.
3858 	 */
3859 	divider = get_pelt_divider(&cfs_rq->avg);
3860 
3861 	if (runnable_sum >= 0) {
3862 		/*
3863 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3864 		 * the CPU is saturated running == runnable.
3865 		 */
3866 		runnable_sum += se->avg.load_sum;
3867 		runnable_sum = min_t(long, runnable_sum, divider);
3868 	} else {
3869 		/*
3870 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3871 		 * assuming all tasks are equally runnable.
3872 		 */
3873 		if (scale_load_down(gcfs_rq->load.weight)) {
3874 			load_sum = div_u64(gcfs_rq->avg.load_sum,
3875 				scale_load_down(gcfs_rq->load.weight));
3876 		}
3877 
3878 		/* But make sure to not inflate se's runnable */
3879 		runnable_sum = min(se->avg.load_sum, load_sum);
3880 	}
3881 
3882 	/*
3883 	 * runnable_sum can't be lower than running_sum
3884 	 * Rescale running sum to be in the same range as runnable sum
3885 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3886 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3887 	 */
3888 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3889 	runnable_sum = max(runnable_sum, running_sum);
3890 
3891 	load_sum = se_weight(se) * runnable_sum;
3892 	load_avg = div_u64(load_sum, divider);
3893 
3894 	delta_avg = load_avg - se->avg.load_avg;
3895 	if (!delta_avg)
3896 		return;
3897 
3898 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3899 
3900 	se->avg.load_sum = runnable_sum;
3901 	se->avg.load_avg = load_avg;
3902 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3903 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3904 	/* See update_cfs_rq_load_avg() */
3905 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3906 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3907 }
3908 
3909 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3910 {
3911 	cfs_rq->propagate = 1;
3912 	cfs_rq->prop_runnable_sum += runnable_sum;
3913 }
3914 
3915 /* Update task and its cfs_rq load average */
3916 static inline int propagate_entity_load_avg(struct sched_entity *se)
3917 {
3918 	struct cfs_rq *cfs_rq, *gcfs_rq;
3919 
3920 	if (entity_is_task(se))
3921 		return 0;
3922 
3923 	gcfs_rq = group_cfs_rq(se);
3924 	if (!gcfs_rq->propagate)
3925 		return 0;
3926 
3927 	gcfs_rq->propagate = 0;
3928 
3929 	cfs_rq = cfs_rq_of(se);
3930 
3931 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3932 
3933 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3934 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3935 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3936 
3937 	trace_pelt_cfs_tp(cfs_rq);
3938 	trace_pelt_se_tp(se);
3939 
3940 	return 1;
3941 }
3942 
3943 /*
3944  * Check if we need to update the load and the utilization of a blocked
3945  * group_entity:
3946  */
3947 static inline bool skip_blocked_update(struct sched_entity *se)
3948 {
3949 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3950 
3951 	/*
3952 	 * If sched_entity still have not zero load or utilization, we have to
3953 	 * decay it:
3954 	 */
3955 	if (se->avg.load_avg || se->avg.util_avg)
3956 		return false;
3957 
3958 	/*
3959 	 * If there is a pending propagation, we have to update the load and
3960 	 * the utilization of the sched_entity:
3961 	 */
3962 	if (gcfs_rq->propagate)
3963 		return false;
3964 
3965 	/*
3966 	 * Otherwise, the load and the utilization of the sched_entity is
3967 	 * already zero and there is no pending propagation, so it will be a
3968 	 * waste of time to try to decay it:
3969 	 */
3970 	return true;
3971 }
3972 
3973 #else /* CONFIG_FAIR_GROUP_SCHED */
3974 
3975 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3976 
3977 static inline int propagate_entity_load_avg(struct sched_entity *se)
3978 {
3979 	return 0;
3980 }
3981 
3982 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3983 
3984 #endif /* CONFIG_FAIR_GROUP_SCHED */
3985 
3986 #ifdef CONFIG_NO_HZ_COMMON
3987 static inline void migrate_se_pelt_lag(struct sched_entity *se)
3988 {
3989 	u64 throttled = 0, now, lut;
3990 	struct cfs_rq *cfs_rq;
3991 	struct rq *rq;
3992 	bool is_idle;
3993 
3994 	if (load_avg_is_decayed(&se->avg))
3995 		return;
3996 
3997 	cfs_rq = cfs_rq_of(se);
3998 	rq = rq_of(cfs_rq);
3999 
4000 	rcu_read_lock();
4001 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4002 	rcu_read_unlock();
4003 
4004 	/*
4005 	 * The lag estimation comes with a cost we don't want to pay all the
4006 	 * time. Hence, limiting to the case where the source CPU is idle and
4007 	 * we know we are at the greatest risk to have an outdated clock.
4008 	 */
4009 	if (!is_idle)
4010 		return;
4011 
4012 	/*
4013 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4014 	 *
4015 	 *   last_update_time (the cfs_rq's last_update_time)
4016 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4017 	 *      = rq_clock_pelt()@cfs_rq_idle
4018 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4019 	 *
4020 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4021 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4022 	 *
4023 	 *   rq_idle_lag (delta between now and rq's update)
4024 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4025 	 *
4026 	 * We can then write:
4027 	 *
4028 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4029 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4030 	 * Where:
4031 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4032 	 *      rq_clock()@rq_idle      is rq->clock_idle
4033 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4034 	 *                              is cfs_rq->throttled_pelt_idle
4035 	 */
4036 
4037 #ifdef CONFIG_CFS_BANDWIDTH
4038 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4039 	/* The clock has been stopped for throttling */
4040 	if (throttled == U64_MAX)
4041 		return;
4042 #endif
4043 	now = u64_u32_load(rq->clock_pelt_idle);
4044 	/*
4045 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4046 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4047 	 * which lead to an underestimation. The opposite would lead to an
4048 	 * overestimation.
4049 	 */
4050 	smp_rmb();
4051 	lut = cfs_rq_last_update_time(cfs_rq);
4052 
4053 	now -= throttled;
4054 	if (now < lut)
4055 		/*
4056 		 * cfs_rq->avg.last_update_time is more recent than our
4057 		 * estimation, let's use it.
4058 		 */
4059 		now = lut;
4060 	else
4061 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4062 
4063 	__update_load_avg_blocked_se(now, se);
4064 }
4065 #else
4066 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4067 #endif
4068 
4069 /**
4070  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4071  * @now: current time, as per cfs_rq_clock_pelt()
4072  * @cfs_rq: cfs_rq to update
4073  *
4074  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4075  * avg. The immediate corollary is that all (fair) tasks must be attached.
4076  *
4077  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4078  *
4079  * Return: true if the load decayed or we removed load.
4080  *
4081  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4082  * call update_tg_load_avg() when this function returns true.
4083  */
4084 static inline int
4085 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4086 {
4087 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4088 	struct sched_avg *sa = &cfs_rq->avg;
4089 	int decayed = 0;
4090 
4091 	if (cfs_rq->removed.nr) {
4092 		unsigned long r;
4093 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4094 
4095 		raw_spin_lock(&cfs_rq->removed.lock);
4096 		swap(cfs_rq->removed.util_avg, removed_util);
4097 		swap(cfs_rq->removed.load_avg, removed_load);
4098 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4099 		cfs_rq->removed.nr = 0;
4100 		raw_spin_unlock(&cfs_rq->removed.lock);
4101 
4102 		r = removed_load;
4103 		sub_positive(&sa->load_avg, r);
4104 		sub_positive(&sa->load_sum, r * divider);
4105 		/* See sa->util_sum below */
4106 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4107 
4108 		r = removed_util;
4109 		sub_positive(&sa->util_avg, r);
4110 		sub_positive(&sa->util_sum, r * divider);
4111 		/*
4112 		 * Because of rounding, se->util_sum might ends up being +1 more than
4113 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4114 		 * a lot of tasks with the rounding problem between 2 updates of
4115 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4116 		 * cfs_util_avg is not.
4117 		 * Check that util_sum is still above its lower bound for the new
4118 		 * util_avg. Given that period_contrib might have moved since the last
4119 		 * sync, we are only sure that util_sum must be above or equal to
4120 		 *    util_avg * minimum possible divider
4121 		 */
4122 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4123 
4124 		r = removed_runnable;
4125 		sub_positive(&sa->runnable_avg, r);
4126 		sub_positive(&sa->runnable_sum, r * divider);
4127 		/* See sa->util_sum above */
4128 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4129 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4130 
4131 		/*
4132 		 * removed_runnable is the unweighted version of removed_load so we
4133 		 * can use it to estimate removed_load_sum.
4134 		 */
4135 		add_tg_cfs_propagate(cfs_rq,
4136 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4137 
4138 		decayed = 1;
4139 	}
4140 
4141 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4142 	u64_u32_store_copy(sa->last_update_time,
4143 			   cfs_rq->last_update_time_copy,
4144 			   sa->last_update_time);
4145 	return decayed;
4146 }
4147 
4148 /**
4149  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4150  * @cfs_rq: cfs_rq to attach to
4151  * @se: sched_entity to attach
4152  *
4153  * Must call update_cfs_rq_load_avg() before this, since we rely on
4154  * cfs_rq->avg.last_update_time being current.
4155  */
4156 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4157 {
4158 	/*
4159 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4160 	 * See ___update_load_avg() for details.
4161 	 */
4162 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4163 
4164 	/*
4165 	 * When we attach the @se to the @cfs_rq, we must align the decay
4166 	 * window because without that, really weird and wonderful things can
4167 	 * happen.
4168 	 *
4169 	 * XXX illustrate
4170 	 */
4171 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4172 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4173 
4174 	/*
4175 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4176 	 * period_contrib. This isn't strictly correct, but since we're
4177 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4178 	 * _sum a little.
4179 	 */
4180 	se->avg.util_sum = se->avg.util_avg * divider;
4181 
4182 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4183 
4184 	se->avg.load_sum = se->avg.load_avg * divider;
4185 	if (se_weight(se) < se->avg.load_sum)
4186 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4187 	else
4188 		se->avg.load_sum = 1;
4189 
4190 	enqueue_load_avg(cfs_rq, se);
4191 	cfs_rq->avg.util_avg += se->avg.util_avg;
4192 	cfs_rq->avg.util_sum += se->avg.util_sum;
4193 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4194 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4195 
4196 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4197 
4198 	cfs_rq_util_change(cfs_rq, 0);
4199 
4200 	trace_pelt_cfs_tp(cfs_rq);
4201 }
4202 
4203 /**
4204  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4205  * @cfs_rq: cfs_rq to detach from
4206  * @se: sched_entity to detach
4207  *
4208  * Must call update_cfs_rq_load_avg() before this, since we rely on
4209  * cfs_rq->avg.last_update_time being current.
4210  */
4211 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4212 {
4213 	dequeue_load_avg(cfs_rq, se);
4214 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4215 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4216 	/* See update_cfs_rq_load_avg() */
4217 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4218 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4219 
4220 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4221 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4222 	/* See update_cfs_rq_load_avg() */
4223 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4224 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4225 
4226 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4227 
4228 	cfs_rq_util_change(cfs_rq, 0);
4229 
4230 	trace_pelt_cfs_tp(cfs_rq);
4231 }
4232 
4233 /*
4234  * Optional action to be done while updating the load average
4235  */
4236 #define UPDATE_TG	0x1
4237 #define SKIP_AGE_LOAD	0x2
4238 #define DO_ATTACH	0x4
4239 #define DO_DETACH	0x8
4240 
4241 /* Update task and its cfs_rq load average */
4242 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4243 {
4244 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4245 	int decayed;
4246 
4247 	/*
4248 	 * Track task load average for carrying it to new CPU after migrated, and
4249 	 * track group sched_entity load average for task_h_load calc in migration
4250 	 */
4251 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4252 		__update_load_avg_se(now, cfs_rq, se);
4253 
4254 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4255 	decayed |= propagate_entity_load_avg(se);
4256 
4257 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4258 
4259 		/*
4260 		 * DO_ATTACH means we're here from enqueue_entity().
4261 		 * !last_update_time means we've passed through
4262 		 * migrate_task_rq_fair() indicating we migrated.
4263 		 *
4264 		 * IOW we're enqueueing a task on a new CPU.
4265 		 */
4266 		attach_entity_load_avg(cfs_rq, se);
4267 		update_tg_load_avg(cfs_rq);
4268 
4269 	} else if (flags & DO_DETACH) {
4270 		/*
4271 		 * DO_DETACH means we're here from dequeue_entity()
4272 		 * and we are migrating task out of the CPU.
4273 		 */
4274 		detach_entity_load_avg(cfs_rq, se);
4275 		update_tg_load_avg(cfs_rq);
4276 	} else if (decayed) {
4277 		cfs_rq_util_change(cfs_rq, 0);
4278 
4279 		if (flags & UPDATE_TG)
4280 			update_tg_load_avg(cfs_rq);
4281 	}
4282 }
4283 
4284 /*
4285  * Synchronize entity load avg of dequeued entity without locking
4286  * the previous rq.
4287  */
4288 static void sync_entity_load_avg(struct sched_entity *se)
4289 {
4290 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4291 	u64 last_update_time;
4292 
4293 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4294 	__update_load_avg_blocked_se(last_update_time, se);
4295 }
4296 
4297 /*
4298  * Task first catches up with cfs_rq, and then subtract
4299  * itself from the cfs_rq (task must be off the queue now).
4300  */
4301 static void remove_entity_load_avg(struct sched_entity *se)
4302 {
4303 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4304 	unsigned long flags;
4305 
4306 	/*
4307 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4308 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4309 	 * so we can remove unconditionally.
4310 	 */
4311 
4312 	sync_entity_load_avg(se);
4313 
4314 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4315 	++cfs_rq->removed.nr;
4316 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4317 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4318 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4319 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4320 }
4321 
4322 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4323 {
4324 	return cfs_rq->avg.runnable_avg;
4325 }
4326 
4327 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4328 {
4329 	return cfs_rq->avg.load_avg;
4330 }
4331 
4332 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4333 
4334 static inline unsigned long task_util(struct task_struct *p)
4335 {
4336 	return READ_ONCE(p->se.avg.util_avg);
4337 }
4338 
4339 static inline unsigned long _task_util_est(struct task_struct *p)
4340 {
4341 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
4342 
4343 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4344 }
4345 
4346 static inline unsigned long task_util_est(struct task_struct *p)
4347 {
4348 	return max(task_util(p), _task_util_est(p));
4349 }
4350 
4351 #ifdef CONFIG_UCLAMP_TASK
4352 static inline unsigned long uclamp_task_util(struct task_struct *p,
4353 					     unsigned long uclamp_min,
4354 					     unsigned long uclamp_max)
4355 {
4356 	return clamp(task_util_est(p), uclamp_min, uclamp_max);
4357 }
4358 #else
4359 static inline unsigned long uclamp_task_util(struct task_struct *p,
4360 					     unsigned long uclamp_min,
4361 					     unsigned long uclamp_max)
4362 {
4363 	return task_util_est(p);
4364 }
4365 #endif
4366 
4367 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4368 				    struct task_struct *p)
4369 {
4370 	unsigned int enqueued;
4371 
4372 	if (!sched_feat(UTIL_EST))
4373 		return;
4374 
4375 	/* Update root cfs_rq's estimated utilization */
4376 	enqueued  = cfs_rq->avg.util_est.enqueued;
4377 	enqueued += _task_util_est(p);
4378 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4379 
4380 	trace_sched_util_est_cfs_tp(cfs_rq);
4381 }
4382 
4383 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4384 				    struct task_struct *p)
4385 {
4386 	unsigned int enqueued;
4387 
4388 	if (!sched_feat(UTIL_EST))
4389 		return;
4390 
4391 	/* Update root cfs_rq's estimated utilization */
4392 	enqueued  = cfs_rq->avg.util_est.enqueued;
4393 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4394 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4395 
4396 	trace_sched_util_est_cfs_tp(cfs_rq);
4397 }
4398 
4399 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4400 
4401 /*
4402  * Check if a (signed) value is within a specified (unsigned) margin,
4403  * based on the observation that:
4404  *
4405  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4406  *
4407  * NOTE: this only works when value + margin < INT_MAX.
4408  */
4409 static inline bool within_margin(int value, int margin)
4410 {
4411 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4412 }
4413 
4414 static inline void util_est_update(struct cfs_rq *cfs_rq,
4415 				   struct task_struct *p,
4416 				   bool task_sleep)
4417 {
4418 	long last_ewma_diff, last_enqueued_diff;
4419 	struct util_est ue;
4420 
4421 	if (!sched_feat(UTIL_EST))
4422 		return;
4423 
4424 	/*
4425 	 * Skip update of task's estimated utilization when the task has not
4426 	 * yet completed an activation, e.g. being migrated.
4427 	 */
4428 	if (!task_sleep)
4429 		return;
4430 
4431 	/*
4432 	 * If the PELT values haven't changed since enqueue time,
4433 	 * skip the util_est update.
4434 	 */
4435 	ue = p->se.avg.util_est;
4436 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4437 		return;
4438 
4439 	last_enqueued_diff = ue.enqueued;
4440 
4441 	/*
4442 	 * Reset EWMA on utilization increases, the moving average is used only
4443 	 * to smooth utilization decreases.
4444 	 */
4445 	ue.enqueued = task_util(p);
4446 	if (sched_feat(UTIL_EST_FASTUP)) {
4447 		if (ue.ewma < ue.enqueued) {
4448 			ue.ewma = ue.enqueued;
4449 			goto done;
4450 		}
4451 	}
4452 
4453 	/*
4454 	 * Skip update of task's estimated utilization when its members are
4455 	 * already ~1% close to its last activation value.
4456 	 */
4457 	last_ewma_diff = ue.enqueued - ue.ewma;
4458 	last_enqueued_diff -= ue.enqueued;
4459 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4460 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4461 			goto done;
4462 
4463 		return;
4464 	}
4465 
4466 	/*
4467 	 * To avoid overestimation of actual task utilization, skip updates if
4468 	 * we cannot grant there is idle time in this CPU.
4469 	 */
4470 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4471 		return;
4472 
4473 	/*
4474 	 * Update Task's estimated utilization
4475 	 *
4476 	 * When *p completes an activation we can consolidate another sample
4477 	 * of the task size. This is done by storing the current PELT value
4478 	 * as ue.enqueued and by using this value to update the Exponential
4479 	 * Weighted Moving Average (EWMA):
4480 	 *
4481 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4482 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4483 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4484 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4485 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4486 	 *
4487 	 * Where 'w' is the weight of new samples, which is configured to be
4488 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4489 	 */
4490 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4491 	ue.ewma  += last_ewma_diff;
4492 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4493 done:
4494 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4495 	WRITE_ONCE(p->se.avg.util_est, ue);
4496 
4497 	trace_sched_util_est_se_tp(&p->se);
4498 }
4499 
4500 static inline int util_fits_cpu(unsigned long util,
4501 				unsigned long uclamp_min,
4502 				unsigned long uclamp_max,
4503 				int cpu)
4504 {
4505 	unsigned long capacity_orig, capacity_orig_thermal;
4506 	unsigned long capacity = capacity_of(cpu);
4507 	bool fits, uclamp_max_fits;
4508 
4509 	/*
4510 	 * Check if the real util fits without any uclamp boost/cap applied.
4511 	 */
4512 	fits = fits_capacity(util, capacity);
4513 
4514 	if (!uclamp_is_used())
4515 		return fits;
4516 
4517 	/*
4518 	 * We must use capacity_orig_of() for comparing against uclamp_min and
4519 	 * uclamp_max. We only care about capacity pressure (by using
4520 	 * capacity_of()) for comparing against the real util.
4521 	 *
4522 	 * If a task is boosted to 1024 for example, we don't want a tiny
4523 	 * pressure to skew the check whether it fits a CPU or not.
4524 	 *
4525 	 * Similarly if a task is capped to capacity_orig_of(little_cpu), it
4526 	 * should fit a little cpu even if there's some pressure.
4527 	 *
4528 	 * Only exception is for thermal pressure since it has a direct impact
4529 	 * on available OPP of the system.
4530 	 *
4531 	 * We honour it for uclamp_min only as a drop in performance level
4532 	 * could result in not getting the requested minimum performance level.
4533 	 *
4534 	 * For uclamp_max, we can tolerate a drop in performance level as the
4535 	 * goal is to cap the task. So it's okay if it's getting less.
4536 	 */
4537 	capacity_orig = capacity_orig_of(cpu);
4538 	capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
4539 
4540 	/*
4541 	 * We want to force a task to fit a cpu as implied by uclamp_max.
4542 	 * But we do have some corner cases to cater for..
4543 	 *
4544 	 *
4545 	 *                                 C=z
4546 	 *   |                             ___
4547 	 *   |                  C=y       |   |
4548 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
4549 	 *   |      C=x        |   |      |   |
4550 	 *   |      ___        |   |      |   |
4551 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
4552 	 *   |     |   |       |   |      |   |
4553 	 *   |     |   |       |   |      |   |
4554 	 *   +----------------------------------------
4555 	 *         cpu0        cpu1       cpu2
4556 	 *
4557 	 *   In the above example if a task is capped to a specific performance
4558 	 *   point, y, then when:
4559 	 *
4560 	 *   * util = 80% of x then it does not fit on cpu0 and should migrate
4561 	 *     to cpu1
4562 	 *   * util = 80% of y then it is forced to fit on cpu1 to honour
4563 	 *     uclamp_max request.
4564 	 *
4565 	 *   which is what we're enforcing here. A task always fits if
4566 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
4567 	 *   the normal upmigration rules should withhold still.
4568 	 *
4569 	 *   Only exception is when we are on max capacity, then we need to be
4570 	 *   careful not to block overutilized state. This is so because:
4571 	 *
4572 	 *     1. There's no concept of capping at max_capacity! We can't go
4573 	 *        beyond this performance level anyway.
4574 	 *     2. The system is being saturated when we're operating near
4575 	 *        max capacity, it doesn't make sense to block overutilized.
4576 	 */
4577 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
4578 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
4579 	fits = fits || uclamp_max_fits;
4580 
4581 	/*
4582 	 *
4583 	 *                                 C=z
4584 	 *   |                             ___       (region a, capped, util >= uclamp_max)
4585 	 *   |                  C=y       |   |
4586 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
4587 	 *   |      C=x        |   |      |   |
4588 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
4589 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
4590 	 *   |     |   |       |   |      |   |
4591 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
4592 	 *   +----------------------------------------
4593 	 *         cpu0        cpu1       cpu2
4594 	 *
4595 	 * a) If util > uclamp_max, then we're capped, we don't care about
4596 	 *    actual fitness value here. We only care if uclamp_max fits
4597 	 *    capacity without taking margin/pressure into account.
4598 	 *    See comment above.
4599 	 *
4600 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
4601 	 *    fits_capacity() rules apply. Except we need to ensure that we
4602 	 *    enforce we remain within uclamp_max, see comment above.
4603 	 *
4604 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
4605 	 *    need to take into account the boosted value fits the CPU without
4606 	 *    taking margin/pressure into account.
4607 	 *
4608 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
4609 	 * just need to consider an extra check for case (c) after ensuring we
4610 	 * handle the case uclamp_min > uclamp_max.
4611 	 */
4612 	uclamp_min = min(uclamp_min, uclamp_max);
4613 	if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
4614 		return -1;
4615 
4616 	return fits;
4617 }
4618 
4619 static inline int task_fits_cpu(struct task_struct *p, int cpu)
4620 {
4621 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
4622 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
4623 	unsigned long util = task_util_est(p);
4624 	/*
4625 	 * Return true only if the cpu fully fits the task requirements, which
4626 	 * include the utilization but also the performance hints.
4627 	 */
4628 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
4629 }
4630 
4631 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4632 {
4633 	if (!sched_asym_cpucap_active())
4634 		return;
4635 
4636 	if (!p || p->nr_cpus_allowed == 1) {
4637 		rq->misfit_task_load = 0;
4638 		return;
4639 	}
4640 
4641 	if (task_fits_cpu(p, cpu_of(rq))) {
4642 		rq->misfit_task_load = 0;
4643 		return;
4644 	}
4645 
4646 	/*
4647 	 * Make sure that misfit_task_load will not be null even if
4648 	 * task_h_load() returns 0.
4649 	 */
4650 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4651 }
4652 
4653 #else /* CONFIG_SMP */
4654 
4655 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4656 {
4657 	return true;
4658 }
4659 
4660 #define UPDATE_TG	0x0
4661 #define SKIP_AGE_LOAD	0x0
4662 #define DO_ATTACH	0x0
4663 #define DO_DETACH	0x0
4664 
4665 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4666 {
4667 	cfs_rq_util_change(cfs_rq, 0);
4668 }
4669 
4670 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4671 
4672 static inline void
4673 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4674 static inline void
4675 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4676 
4677 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4678 {
4679 	return 0;
4680 }
4681 
4682 static inline void
4683 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4684 
4685 static inline void
4686 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4687 
4688 static inline void
4689 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4690 		bool task_sleep) {}
4691 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4692 
4693 #endif /* CONFIG_SMP */
4694 
4695 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4696 {
4697 #ifdef CONFIG_SCHED_DEBUG
4698 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4699 
4700 	if (d < 0)
4701 		d = -d;
4702 
4703 	if (d > 3*sysctl_sched_latency)
4704 		schedstat_inc(cfs_rq->nr_spread_over);
4705 #endif
4706 }
4707 
4708 static inline bool entity_is_long_sleeper(struct sched_entity *se)
4709 {
4710 	struct cfs_rq *cfs_rq;
4711 	u64 sleep_time;
4712 
4713 	if (se->exec_start == 0)
4714 		return false;
4715 
4716 	cfs_rq = cfs_rq_of(se);
4717 
4718 	sleep_time = rq_clock_task(rq_of(cfs_rq));
4719 
4720 	/* Happen while migrating because of clock task divergence */
4721 	if (sleep_time <= se->exec_start)
4722 		return false;
4723 
4724 	sleep_time -= se->exec_start;
4725 	if (sleep_time > ((1ULL << 63) / scale_load_down(NICE_0_LOAD)))
4726 		return true;
4727 
4728 	return false;
4729 }
4730 
4731 static void
4732 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4733 {
4734 	u64 vruntime = cfs_rq->min_vruntime;
4735 
4736 	/*
4737 	 * The 'current' period is already promised to the current tasks,
4738 	 * however the extra weight of the new task will slow them down a
4739 	 * little, place the new task so that it fits in the slot that
4740 	 * stays open at the end.
4741 	 */
4742 	if (initial && sched_feat(START_DEBIT))
4743 		vruntime += sched_vslice(cfs_rq, se);
4744 
4745 	/* sleeps up to a single latency don't count. */
4746 	if (!initial) {
4747 		unsigned long thresh;
4748 
4749 		if (se_is_idle(se))
4750 			thresh = sysctl_sched_min_granularity;
4751 		else
4752 			thresh = sysctl_sched_latency;
4753 
4754 		/*
4755 		 * Halve their sleep time's effect, to allow
4756 		 * for a gentler effect of sleepers:
4757 		 */
4758 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4759 			thresh >>= 1;
4760 
4761 		vruntime -= thresh;
4762 	}
4763 
4764 	/*
4765 	 * Pull vruntime of the entity being placed to the base level of
4766 	 * cfs_rq, to prevent boosting it if placed backwards.
4767 	 * However, min_vruntime can advance much faster than real time, with
4768 	 * the extreme being when an entity with the minimal weight always runs
4769 	 * on the cfs_rq. If the waking entity slept for a long time, its
4770 	 * vruntime difference from min_vruntime may overflow s64 and their
4771 	 * comparison may get inversed, so ignore the entity's original
4772 	 * vruntime in that case.
4773 	 * The maximal vruntime speedup is given by the ratio of normal to
4774 	 * minimal weight: scale_load_down(NICE_0_LOAD) / MIN_SHARES.
4775 	 * When placing a migrated waking entity, its exec_start has been set
4776 	 * from a different rq. In order to take into account a possible
4777 	 * divergence between new and prev rq's clocks task because of irq and
4778 	 * stolen time, we take an additional margin.
4779 	 * So, cutting off on the sleep time of
4780 	 *     2^63 / scale_load_down(NICE_0_LOAD) ~ 104 days
4781 	 * should be safe.
4782 	 */
4783 	if (entity_is_long_sleeper(se))
4784 		se->vruntime = vruntime;
4785 	else
4786 		se->vruntime = max_vruntime(se->vruntime, vruntime);
4787 }
4788 
4789 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4790 
4791 static inline bool cfs_bandwidth_used(void);
4792 
4793 /*
4794  * MIGRATION
4795  *
4796  *	dequeue
4797  *	  update_curr()
4798  *	    update_min_vruntime()
4799  *	  vruntime -= min_vruntime
4800  *
4801  *	enqueue
4802  *	  update_curr()
4803  *	    update_min_vruntime()
4804  *	  vruntime += min_vruntime
4805  *
4806  * this way the vruntime transition between RQs is done when both
4807  * min_vruntime are up-to-date.
4808  *
4809  * WAKEUP (remote)
4810  *
4811  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4812  *	  vruntime -= min_vruntime
4813  *
4814  *	enqueue
4815  *	  update_curr()
4816  *	    update_min_vruntime()
4817  *	  vruntime += min_vruntime
4818  *
4819  * this way we don't have the most up-to-date min_vruntime on the originating
4820  * CPU and an up-to-date min_vruntime on the destination CPU.
4821  */
4822 
4823 static void
4824 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4825 {
4826 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4827 	bool curr = cfs_rq->curr == se;
4828 
4829 	/*
4830 	 * If we're the current task, we must renormalise before calling
4831 	 * update_curr().
4832 	 */
4833 	if (renorm && curr)
4834 		se->vruntime += cfs_rq->min_vruntime;
4835 
4836 	update_curr(cfs_rq);
4837 
4838 	/*
4839 	 * Otherwise, renormalise after, such that we're placed at the current
4840 	 * moment in time, instead of some random moment in the past. Being
4841 	 * placed in the past could significantly boost this task to the
4842 	 * fairness detriment of existing tasks.
4843 	 */
4844 	if (renorm && !curr)
4845 		se->vruntime += cfs_rq->min_vruntime;
4846 
4847 	/*
4848 	 * When enqueuing a sched_entity, we must:
4849 	 *   - Update loads to have both entity and cfs_rq synced with now.
4850 	 *   - For group_entity, update its runnable_weight to reflect the new
4851 	 *     h_nr_running of its group cfs_rq.
4852 	 *   - For group_entity, update its weight to reflect the new share of
4853 	 *     its group cfs_rq
4854 	 *   - Add its new weight to cfs_rq->load.weight
4855 	 */
4856 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4857 	se_update_runnable(se);
4858 	update_cfs_group(se);
4859 	account_entity_enqueue(cfs_rq, se);
4860 
4861 	if (flags & ENQUEUE_WAKEUP)
4862 		place_entity(cfs_rq, se, 0);
4863 	/* Entity has migrated, no longer consider this task hot */
4864 	if (flags & ENQUEUE_MIGRATED)
4865 		se->exec_start = 0;
4866 
4867 	check_schedstat_required();
4868 	update_stats_enqueue_fair(cfs_rq, se, flags);
4869 	check_spread(cfs_rq, se);
4870 	if (!curr)
4871 		__enqueue_entity(cfs_rq, se);
4872 	se->on_rq = 1;
4873 
4874 	if (cfs_rq->nr_running == 1) {
4875 		check_enqueue_throttle(cfs_rq);
4876 		if (!throttled_hierarchy(cfs_rq))
4877 			list_add_leaf_cfs_rq(cfs_rq);
4878 	}
4879 }
4880 
4881 static void __clear_buddies_last(struct sched_entity *se)
4882 {
4883 	for_each_sched_entity(se) {
4884 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4885 		if (cfs_rq->last != se)
4886 			break;
4887 
4888 		cfs_rq->last = NULL;
4889 	}
4890 }
4891 
4892 static void __clear_buddies_next(struct sched_entity *se)
4893 {
4894 	for_each_sched_entity(se) {
4895 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4896 		if (cfs_rq->next != se)
4897 			break;
4898 
4899 		cfs_rq->next = NULL;
4900 	}
4901 }
4902 
4903 static void __clear_buddies_skip(struct sched_entity *se)
4904 {
4905 	for_each_sched_entity(se) {
4906 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4907 		if (cfs_rq->skip != se)
4908 			break;
4909 
4910 		cfs_rq->skip = NULL;
4911 	}
4912 }
4913 
4914 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4915 {
4916 	if (cfs_rq->last == se)
4917 		__clear_buddies_last(se);
4918 
4919 	if (cfs_rq->next == se)
4920 		__clear_buddies_next(se);
4921 
4922 	if (cfs_rq->skip == se)
4923 		__clear_buddies_skip(se);
4924 }
4925 
4926 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4927 
4928 static void
4929 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4930 {
4931 	int action = UPDATE_TG;
4932 
4933 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
4934 		action |= DO_DETACH;
4935 
4936 	/*
4937 	 * Update run-time statistics of the 'current'.
4938 	 */
4939 	update_curr(cfs_rq);
4940 
4941 	/*
4942 	 * When dequeuing a sched_entity, we must:
4943 	 *   - Update loads to have both entity and cfs_rq synced with now.
4944 	 *   - For group_entity, update its runnable_weight to reflect the new
4945 	 *     h_nr_running of its group cfs_rq.
4946 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4947 	 *   - For group entity, update its weight to reflect the new share
4948 	 *     of its group cfs_rq.
4949 	 */
4950 	update_load_avg(cfs_rq, se, action);
4951 	se_update_runnable(se);
4952 
4953 	update_stats_dequeue_fair(cfs_rq, se, flags);
4954 
4955 	clear_buddies(cfs_rq, se);
4956 
4957 	if (se != cfs_rq->curr)
4958 		__dequeue_entity(cfs_rq, se);
4959 	se->on_rq = 0;
4960 	account_entity_dequeue(cfs_rq, se);
4961 
4962 	/*
4963 	 * Normalize after update_curr(); which will also have moved
4964 	 * min_vruntime if @se is the one holding it back. But before doing
4965 	 * update_min_vruntime() again, which will discount @se's position and
4966 	 * can move min_vruntime forward still more.
4967 	 */
4968 	if (!(flags & DEQUEUE_SLEEP))
4969 		se->vruntime -= cfs_rq->min_vruntime;
4970 
4971 	/* return excess runtime on last dequeue */
4972 	return_cfs_rq_runtime(cfs_rq);
4973 
4974 	update_cfs_group(se);
4975 
4976 	/*
4977 	 * Now advance min_vruntime if @se was the entity holding it back,
4978 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4979 	 * put back on, and if we advance min_vruntime, we'll be placed back
4980 	 * further than we started -- ie. we'll be penalized.
4981 	 */
4982 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4983 		update_min_vruntime(cfs_rq);
4984 
4985 	if (cfs_rq->nr_running == 0)
4986 		update_idle_cfs_rq_clock_pelt(cfs_rq);
4987 }
4988 
4989 /*
4990  * Preempt the current task with a newly woken task if needed:
4991  */
4992 static void
4993 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4994 {
4995 	unsigned long ideal_runtime, delta_exec;
4996 	struct sched_entity *se;
4997 	s64 delta;
4998 
4999 	/*
5000 	 * When many tasks blow up the sched_period; it is possible that
5001 	 * sched_slice() reports unusually large results (when many tasks are
5002 	 * very light for example). Therefore impose a maximum.
5003 	 */
5004 	ideal_runtime = min_t(u64, sched_slice(cfs_rq, curr), sysctl_sched_latency);
5005 
5006 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
5007 	if (delta_exec > ideal_runtime) {
5008 		resched_curr(rq_of(cfs_rq));
5009 		/*
5010 		 * The current task ran long enough, ensure it doesn't get
5011 		 * re-elected due to buddy favours.
5012 		 */
5013 		clear_buddies(cfs_rq, curr);
5014 		return;
5015 	}
5016 
5017 	/*
5018 	 * Ensure that a task that missed wakeup preemption by a
5019 	 * narrow margin doesn't have to wait for a full slice.
5020 	 * This also mitigates buddy induced latencies under load.
5021 	 */
5022 	if (delta_exec < sysctl_sched_min_granularity)
5023 		return;
5024 
5025 	se = __pick_first_entity(cfs_rq);
5026 	delta = curr->vruntime - se->vruntime;
5027 
5028 	if (delta < 0)
5029 		return;
5030 
5031 	if (delta > ideal_runtime)
5032 		resched_curr(rq_of(cfs_rq));
5033 }
5034 
5035 static void
5036 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5037 {
5038 	clear_buddies(cfs_rq, se);
5039 
5040 	/* 'current' is not kept within the tree. */
5041 	if (se->on_rq) {
5042 		/*
5043 		 * Any task has to be enqueued before it get to execute on
5044 		 * a CPU. So account for the time it spent waiting on the
5045 		 * runqueue.
5046 		 */
5047 		update_stats_wait_end_fair(cfs_rq, se);
5048 		__dequeue_entity(cfs_rq, se);
5049 		update_load_avg(cfs_rq, se, UPDATE_TG);
5050 	}
5051 
5052 	update_stats_curr_start(cfs_rq, se);
5053 	cfs_rq->curr = se;
5054 
5055 	/*
5056 	 * Track our maximum slice length, if the CPU's load is at
5057 	 * least twice that of our own weight (i.e. dont track it
5058 	 * when there are only lesser-weight tasks around):
5059 	 */
5060 	if (schedstat_enabled() &&
5061 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5062 		struct sched_statistics *stats;
5063 
5064 		stats = __schedstats_from_se(se);
5065 		__schedstat_set(stats->slice_max,
5066 				max((u64)stats->slice_max,
5067 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5068 	}
5069 
5070 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5071 }
5072 
5073 static int
5074 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
5075 
5076 /*
5077  * Pick the next process, keeping these things in mind, in this order:
5078  * 1) keep things fair between processes/task groups
5079  * 2) pick the "next" process, since someone really wants that to run
5080  * 3) pick the "last" process, for cache locality
5081  * 4) do not run the "skip" process, if something else is available
5082  */
5083 static struct sched_entity *
5084 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
5085 {
5086 	struct sched_entity *left = __pick_first_entity(cfs_rq);
5087 	struct sched_entity *se;
5088 
5089 	/*
5090 	 * If curr is set we have to see if its left of the leftmost entity
5091 	 * still in the tree, provided there was anything in the tree at all.
5092 	 */
5093 	if (!left || (curr && entity_before(curr, left)))
5094 		left = curr;
5095 
5096 	se = left; /* ideally we run the leftmost entity */
5097 
5098 	/*
5099 	 * Avoid running the skip buddy, if running something else can
5100 	 * be done without getting too unfair.
5101 	 */
5102 	if (cfs_rq->skip && cfs_rq->skip == se) {
5103 		struct sched_entity *second;
5104 
5105 		if (se == curr) {
5106 			second = __pick_first_entity(cfs_rq);
5107 		} else {
5108 			second = __pick_next_entity(se);
5109 			if (!second || (curr && entity_before(curr, second)))
5110 				second = curr;
5111 		}
5112 
5113 		if (second && wakeup_preempt_entity(second, left) < 1)
5114 			se = second;
5115 	}
5116 
5117 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
5118 		/*
5119 		 * Someone really wants this to run. If it's not unfair, run it.
5120 		 */
5121 		se = cfs_rq->next;
5122 	} else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
5123 		/*
5124 		 * Prefer last buddy, try to return the CPU to a preempted task.
5125 		 */
5126 		se = cfs_rq->last;
5127 	}
5128 
5129 	return se;
5130 }
5131 
5132 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5133 
5134 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5135 {
5136 	/*
5137 	 * If still on the runqueue then deactivate_task()
5138 	 * was not called and update_curr() has to be done:
5139 	 */
5140 	if (prev->on_rq)
5141 		update_curr(cfs_rq);
5142 
5143 	/* throttle cfs_rqs exceeding runtime */
5144 	check_cfs_rq_runtime(cfs_rq);
5145 
5146 	check_spread(cfs_rq, prev);
5147 
5148 	if (prev->on_rq) {
5149 		update_stats_wait_start_fair(cfs_rq, prev);
5150 		/* Put 'current' back into the tree. */
5151 		__enqueue_entity(cfs_rq, prev);
5152 		/* in !on_rq case, update occurred at dequeue */
5153 		update_load_avg(cfs_rq, prev, 0);
5154 	}
5155 	cfs_rq->curr = NULL;
5156 }
5157 
5158 static void
5159 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5160 {
5161 	/*
5162 	 * Update run-time statistics of the 'current'.
5163 	 */
5164 	update_curr(cfs_rq);
5165 
5166 	/*
5167 	 * Ensure that runnable average is periodically updated.
5168 	 */
5169 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5170 	update_cfs_group(curr);
5171 
5172 #ifdef CONFIG_SCHED_HRTICK
5173 	/*
5174 	 * queued ticks are scheduled to match the slice, so don't bother
5175 	 * validating it and just reschedule.
5176 	 */
5177 	if (queued) {
5178 		resched_curr(rq_of(cfs_rq));
5179 		return;
5180 	}
5181 	/*
5182 	 * don't let the period tick interfere with the hrtick preemption
5183 	 */
5184 	if (!sched_feat(DOUBLE_TICK) &&
5185 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5186 		return;
5187 #endif
5188 
5189 	if (cfs_rq->nr_running > 1)
5190 		check_preempt_tick(cfs_rq, curr);
5191 }
5192 
5193 
5194 /**************************************************
5195  * CFS bandwidth control machinery
5196  */
5197 
5198 #ifdef CONFIG_CFS_BANDWIDTH
5199 
5200 #ifdef CONFIG_JUMP_LABEL
5201 static struct static_key __cfs_bandwidth_used;
5202 
5203 static inline bool cfs_bandwidth_used(void)
5204 {
5205 	return static_key_false(&__cfs_bandwidth_used);
5206 }
5207 
5208 void cfs_bandwidth_usage_inc(void)
5209 {
5210 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5211 }
5212 
5213 void cfs_bandwidth_usage_dec(void)
5214 {
5215 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5216 }
5217 #else /* CONFIG_JUMP_LABEL */
5218 static bool cfs_bandwidth_used(void)
5219 {
5220 	return true;
5221 }
5222 
5223 void cfs_bandwidth_usage_inc(void) {}
5224 void cfs_bandwidth_usage_dec(void) {}
5225 #endif /* CONFIG_JUMP_LABEL */
5226 
5227 /*
5228  * default period for cfs group bandwidth.
5229  * default: 0.1s, units: nanoseconds
5230  */
5231 static inline u64 default_cfs_period(void)
5232 {
5233 	return 100000000ULL;
5234 }
5235 
5236 static inline u64 sched_cfs_bandwidth_slice(void)
5237 {
5238 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5239 }
5240 
5241 /*
5242  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5243  * directly instead of rq->clock to avoid adding additional synchronization
5244  * around rq->lock.
5245  *
5246  * requires cfs_b->lock
5247  */
5248 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5249 {
5250 	s64 runtime;
5251 
5252 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5253 		return;
5254 
5255 	cfs_b->runtime += cfs_b->quota;
5256 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5257 	if (runtime > 0) {
5258 		cfs_b->burst_time += runtime;
5259 		cfs_b->nr_burst++;
5260 	}
5261 
5262 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5263 	cfs_b->runtime_snap = cfs_b->runtime;
5264 }
5265 
5266 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5267 {
5268 	return &tg->cfs_bandwidth;
5269 }
5270 
5271 /* returns 0 on failure to allocate runtime */
5272 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5273 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5274 {
5275 	u64 min_amount, amount = 0;
5276 
5277 	lockdep_assert_held(&cfs_b->lock);
5278 
5279 	/* note: this is a positive sum as runtime_remaining <= 0 */
5280 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5281 
5282 	if (cfs_b->quota == RUNTIME_INF)
5283 		amount = min_amount;
5284 	else {
5285 		start_cfs_bandwidth(cfs_b);
5286 
5287 		if (cfs_b->runtime > 0) {
5288 			amount = min(cfs_b->runtime, min_amount);
5289 			cfs_b->runtime -= amount;
5290 			cfs_b->idle = 0;
5291 		}
5292 	}
5293 
5294 	cfs_rq->runtime_remaining += amount;
5295 
5296 	return cfs_rq->runtime_remaining > 0;
5297 }
5298 
5299 /* returns 0 on failure to allocate runtime */
5300 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5301 {
5302 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5303 	int ret;
5304 
5305 	raw_spin_lock(&cfs_b->lock);
5306 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5307 	raw_spin_unlock(&cfs_b->lock);
5308 
5309 	return ret;
5310 }
5311 
5312 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5313 {
5314 	/* dock delta_exec before expiring quota (as it could span periods) */
5315 	cfs_rq->runtime_remaining -= delta_exec;
5316 
5317 	if (likely(cfs_rq->runtime_remaining > 0))
5318 		return;
5319 
5320 	if (cfs_rq->throttled)
5321 		return;
5322 	/*
5323 	 * if we're unable to extend our runtime we resched so that the active
5324 	 * hierarchy can be throttled
5325 	 */
5326 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5327 		resched_curr(rq_of(cfs_rq));
5328 }
5329 
5330 static __always_inline
5331 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5332 {
5333 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5334 		return;
5335 
5336 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5337 }
5338 
5339 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5340 {
5341 	return cfs_bandwidth_used() && cfs_rq->throttled;
5342 }
5343 
5344 /* check whether cfs_rq, or any parent, is throttled */
5345 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5346 {
5347 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5348 }
5349 
5350 /*
5351  * Ensure that neither of the group entities corresponding to src_cpu or
5352  * dest_cpu are members of a throttled hierarchy when performing group
5353  * load-balance operations.
5354  */
5355 static inline int throttled_lb_pair(struct task_group *tg,
5356 				    int src_cpu, int dest_cpu)
5357 {
5358 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5359 
5360 	src_cfs_rq = tg->cfs_rq[src_cpu];
5361 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5362 
5363 	return throttled_hierarchy(src_cfs_rq) ||
5364 	       throttled_hierarchy(dest_cfs_rq);
5365 }
5366 
5367 static int tg_unthrottle_up(struct task_group *tg, void *data)
5368 {
5369 	struct rq *rq = data;
5370 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5371 
5372 	cfs_rq->throttle_count--;
5373 	if (!cfs_rq->throttle_count) {
5374 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5375 					     cfs_rq->throttled_clock_pelt;
5376 
5377 		/* Add cfs_rq with load or one or more already running entities to the list */
5378 		if (!cfs_rq_is_decayed(cfs_rq))
5379 			list_add_leaf_cfs_rq(cfs_rq);
5380 	}
5381 
5382 	return 0;
5383 }
5384 
5385 static int tg_throttle_down(struct task_group *tg, void *data)
5386 {
5387 	struct rq *rq = data;
5388 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5389 
5390 	/* group is entering throttled state, stop time */
5391 	if (!cfs_rq->throttle_count) {
5392 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5393 		list_del_leaf_cfs_rq(cfs_rq);
5394 	}
5395 	cfs_rq->throttle_count++;
5396 
5397 	return 0;
5398 }
5399 
5400 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5401 {
5402 	struct rq *rq = rq_of(cfs_rq);
5403 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5404 	struct sched_entity *se;
5405 	long task_delta, idle_task_delta, dequeue = 1;
5406 
5407 	raw_spin_lock(&cfs_b->lock);
5408 	/* This will start the period timer if necessary */
5409 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5410 		/*
5411 		 * We have raced with bandwidth becoming available, and if we
5412 		 * actually throttled the timer might not unthrottle us for an
5413 		 * entire period. We additionally needed to make sure that any
5414 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5415 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5416 		 * for 1ns of runtime rather than just check cfs_b.
5417 		 */
5418 		dequeue = 0;
5419 	} else {
5420 		list_add_tail_rcu(&cfs_rq->throttled_list,
5421 				  &cfs_b->throttled_cfs_rq);
5422 	}
5423 	raw_spin_unlock(&cfs_b->lock);
5424 
5425 	if (!dequeue)
5426 		return false;  /* Throttle no longer required. */
5427 
5428 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5429 
5430 	/* freeze hierarchy runnable averages while throttled */
5431 	rcu_read_lock();
5432 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5433 	rcu_read_unlock();
5434 
5435 	task_delta = cfs_rq->h_nr_running;
5436 	idle_task_delta = cfs_rq->idle_h_nr_running;
5437 	for_each_sched_entity(se) {
5438 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5439 		/* throttled entity or throttle-on-deactivate */
5440 		if (!se->on_rq)
5441 			goto done;
5442 
5443 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5444 
5445 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5446 			idle_task_delta = cfs_rq->h_nr_running;
5447 
5448 		qcfs_rq->h_nr_running -= task_delta;
5449 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5450 
5451 		if (qcfs_rq->load.weight) {
5452 			/* Avoid re-evaluating load for this entity: */
5453 			se = parent_entity(se);
5454 			break;
5455 		}
5456 	}
5457 
5458 	for_each_sched_entity(se) {
5459 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5460 		/* throttled entity or throttle-on-deactivate */
5461 		if (!se->on_rq)
5462 			goto done;
5463 
5464 		update_load_avg(qcfs_rq, se, 0);
5465 		se_update_runnable(se);
5466 
5467 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5468 			idle_task_delta = cfs_rq->h_nr_running;
5469 
5470 		qcfs_rq->h_nr_running -= task_delta;
5471 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5472 	}
5473 
5474 	/* At this point se is NULL and we are at root level*/
5475 	sub_nr_running(rq, task_delta);
5476 
5477 done:
5478 	/*
5479 	 * Note: distribution will already see us throttled via the
5480 	 * throttled-list.  rq->lock protects completion.
5481 	 */
5482 	cfs_rq->throttled = 1;
5483 	cfs_rq->throttled_clock = rq_clock(rq);
5484 	return true;
5485 }
5486 
5487 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5488 {
5489 	struct rq *rq = rq_of(cfs_rq);
5490 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5491 	struct sched_entity *se;
5492 	long task_delta, idle_task_delta;
5493 
5494 	se = cfs_rq->tg->se[cpu_of(rq)];
5495 
5496 	cfs_rq->throttled = 0;
5497 
5498 	update_rq_clock(rq);
5499 
5500 	raw_spin_lock(&cfs_b->lock);
5501 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5502 	list_del_rcu(&cfs_rq->throttled_list);
5503 	raw_spin_unlock(&cfs_b->lock);
5504 
5505 	/* update hierarchical throttle state */
5506 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5507 
5508 	if (!cfs_rq->load.weight) {
5509 		if (!cfs_rq->on_list)
5510 			return;
5511 		/*
5512 		 * Nothing to run but something to decay (on_list)?
5513 		 * Complete the branch.
5514 		 */
5515 		for_each_sched_entity(se) {
5516 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5517 				break;
5518 		}
5519 		goto unthrottle_throttle;
5520 	}
5521 
5522 	task_delta = cfs_rq->h_nr_running;
5523 	idle_task_delta = cfs_rq->idle_h_nr_running;
5524 	for_each_sched_entity(se) {
5525 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5526 
5527 		if (se->on_rq)
5528 			break;
5529 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5530 
5531 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5532 			idle_task_delta = cfs_rq->h_nr_running;
5533 
5534 		qcfs_rq->h_nr_running += task_delta;
5535 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5536 
5537 		/* end evaluation on encountering a throttled cfs_rq */
5538 		if (cfs_rq_throttled(qcfs_rq))
5539 			goto unthrottle_throttle;
5540 	}
5541 
5542 	for_each_sched_entity(se) {
5543 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5544 
5545 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5546 		se_update_runnable(se);
5547 
5548 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5549 			idle_task_delta = cfs_rq->h_nr_running;
5550 
5551 		qcfs_rq->h_nr_running += task_delta;
5552 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5553 
5554 		/* end evaluation on encountering a throttled cfs_rq */
5555 		if (cfs_rq_throttled(qcfs_rq))
5556 			goto unthrottle_throttle;
5557 	}
5558 
5559 	/* At this point se is NULL and we are at root level*/
5560 	add_nr_running(rq, task_delta);
5561 
5562 unthrottle_throttle:
5563 	assert_list_leaf_cfs_rq(rq);
5564 
5565 	/* Determine whether we need to wake up potentially idle CPU: */
5566 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5567 		resched_curr(rq);
5568 }
5569 
5570 #ifdef CONFIG_SMP
5571 static void __cfsb_csd_unthrottle(void *arg)
5572 {
5573 	struct cfs_rq *cursor, *tmp;
5574 	struct rq *rq = arg;
5575 	struct rq_flags rf;
5576 
5577 	rq_lock(rq, &rf);
5578 
5579 	/*
5580 	 * Iterating over the list can trigger several call to
5581 	 * update_rq_clock() in unthrottle_cfs_rq().
5582 	 * Do it once and skip the potential next ones.
5583 	 */
5584 	update_rq_clock(rq);
5585 	rq_clock_start_loop_update(rq);
5586 
5587 	/*
5588 	 * Since we hold rq lock we're safe from concurrent manipulation of
5589 	 * the CSD list. However, this RCU critical section annotates the
5590 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
5591 	 * race with group being freed in the window between removing it
5592 	 * from the list and advancing to the next entry in the list.
5593 	 */
5594 	rcu_read_lock();
5595 
5596 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
5597 				 throttled_csd_list) {
5598 		list_del_init(&cursor->throttled_csd_list);
5599 
5600 		if (cfs_rq_throttled(cursor))
5601 			unthrottle_cfs_rq(cursor);
5602 	}
5603 
5604 	rcu_read_unlock();
5605 
5606 	rq_clock_stop_loop_update(rq);
5607 	rq_unlock(rq, &rf);
5608 }
5609 
5610 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5611 {
5612 	struct rq *rq = rq_of(cfs_rq);
5613 	bool first;
5614 
5615 	if (rq == this_rq()) {
5616 		unthrottle_cfs_rq(cfs_rq);
5617 		return;
5618 	}
5619 
5620 	/* Already enqueued */
5621 	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
5622 		return;
5623 
5624 	first = list_empty(&rq->cfsb_csd_list);
5625 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
5626 	if (first)
5627 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
5628 }
5629 #else
5630 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5631 {
5632 	unthrottle_cfs_rq(cfs_rq);
5633 }
5634 #endif
5635 
5636 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5637 {
5638 	lockdep_assert_rq_held(rq_of(cfs_rq));
5639 
5640 	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
5641 	    cfs_rq->runtime_remaining <= 0))
5642 		return;
5643 
5644 	__unthrottle_cfs_rq_async(cfs_rq);
5645 }
5646 
5647 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5648 {
5649 	struct cfs_rq *local_unthrottle = NULL;
5650 	int this_cpu = smp_processor_id();
5651 	u64 runtime, remaining = 1;
5652 	bool throttled = false;
5653 	struct cfs_rq *cfs_rq;
5654 	struct rq_flags rf;
5655 	struct rq *rq;
5656 
5657 	rcu_read_lock();
5658 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5659 				throttled_list) {
5660 		rq = rq_of(cfs_rq);
5661 
5662 		if (!remaining) {
5663 			throttled = true;
5664 			break;
5665 		}
5666 
5667 		rq_lock_irqsave(rq, &rf);
5668 		if (!cfs_rq_throttled(cfs_rq))
5669 			goto next;
5670 
5671 #ifdef CONFIG_SMP
5672 		/* Already queued for async unthrottle */
5673 		if (!list_empty(&cfs_rq->throttled_csd_list))
5674 			goto next;
5675 #endif
5676 
5677 		/* By the above checks, this should never be true */
5678 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5679 
5680 		raw_spin_lock(&cfs_b->lock);
5681 		runtime = -cfs_rq->runtime_remaining + 1;
5682 		if (runtime > cfs_b->runtime)
5683 			runtime = cfs_b->runtime;
5684 		cfs_b->runtime -= runtime;
5685 		remaining = cfs_b->runtime;
5686 		raw_spin_unlock(&cfs_b->lock);
5687 
5688 		cfs_rq->runtime_remaining += runtime;
5689 
5690 		/* we check whether we're throttled above */
5691 		if (cfs_rq->runtime_remaining > 0) {
5692 			if (cpu_of(rq) != this_cpu ||
5693 			    SCHED_WARN_ON(local_unthrottle))
5694 				unthrottle_cfs_rq_async(cfs_rq);
5695 			else
5696 				local_unthrottle = cfs_rq;
5697 		} else {
5698 			throttled = true;
5699 		}
5700 
5701 next:
5702 		rq_unlock_irqrestore(rq, &rf);
5703 	}
5704 	rcu_read_unlock();
5705 
5706 	if (local_unthrottle) {
5707 		rq = cpu_rq(this_cpu);
5708 		rq_lock_irqsave(rq, &rf);
5709 		if (cfs_rq_throttled(local_unthrottle))
5710 			unthrottle_cfs_rq(local_unthrottle);
5711 		rq_unlock_irqrestore(rq, &rf);
5712 	}
5713 
5714 	return throttled;
5715 }
5716 
5717 /*
5718  * Responsible for refilling a task_group's bandwidth and unthrottling its
5719  * cfs_rqs as appropriate. If there has been no activity within the last
5720  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5721  * used to track this state.
5722  */
5723 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5724 {
5725 	int throttled;
5726 
5727 	/* no need to continue the timer with no bandwidth constraint */
5728 	if (cfs_b->quota == RUNTIME_INF)
5729 		goto out_deactivate;
5730 
5731 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5732 	cfs_b->nr_periods += overrun;
5733 
5734 	/* Refill extra burst quota even if cfs_b->idle */
5735 	__refill_cfs_bandwidth_runtime(cfs_b);
5736 
5737 	/*
5738 	 * idle depends on !throttled (for the case of a large deficit), and if
5739 	 * we're going inactive then everything else can be deferred
5740 	 */
5741 	if (cfs_b->idle && !throttled)
5742 		goto out_deactivate;
5743 
5744 	if (!throttled) {
5745 		/* mark as potentially idle for the upcoming period */
5746 		cfs_b->idle = 1;
5747 		return 0;
5748 	}
5749 
5750 	/* account preceding periods in which throttling occurred */
5751 	cfs_b->nr_throttled += overrun;
5752 
5753 	/*
5754 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
5755 	 */
5756 	while (throttled && cfs_b->runtime > 0) {
5757 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5758 		/* we can't nest cfs_b->lock while distributing bandwidth */
5759 		throttled = distribute_cfs_runtime(cfs_b);
5760 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
5761 	}
5762 
5763 	/*
5764 	 * While we are ensured activity in the period following an
5765 	 * unthrottle, this also covers the case in which the new bandwidth is
5766 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
5767 	 * timer to remain active while there are any throttled entities.)
5768 	 */
5769 	cfs_b->idle = 0;
5770 
5771 	return 0;
5772 
5773 out_deactivate:
5774 	return 1;
5775 }
5776 
5777 /* a cfs_rq won't donate quota below this amount */
5778 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5779 /* minimum remaining period time to redistribute slack quota */
5780 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5781 /* how long we wait to gather additional slack before distributing */
5782 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5783 
5784 /*
5785  * Are we near the end of the current quota period?
5786  *
5787  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5788  * hrtimer base being cleared by hrtimer_start. In the case of
5789  * migrate_hrtimers, base is never cleared, so we are fine.
5790  */
5791 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5792 {
5793 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
5794 	s64 remaining;
5795 
5796 	/* if the call-back is running a quota refresh is already occurring */
5797 	if (hrtimer_callback_running(refresh_timer))
5798 		return 1;
5799 
5800 	/* is a quota refresh about to occur? */
5801 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5802 	if (remaining < (s64)min_expire)
5803 		return 1;
5804 
5805 	return 0;
5806 }
5807 
5808 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5809 {
5810 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5811 
5812 	/* if there's a quota refresh soon don't bother with slack */
5813 	if (runtime_refresh_within(cfs_b, min_left))
5814 		return;
5815 
5816 	/* don't push forwards an existing deferred unthrottle */
5817 	if (cfs_b->slack_started)
5818 		return;
5819 	cfs_b->slack_started = true;
5820 
5821 	hrtimer_start(&cfs_b->slack_timer,
5822 			ns_to_ktime(cfs_bandwidth_slack_period),
5823 			HRTIMER_MODE_REL);
5824 }
5825 
5826 /* we know any runtime found here is valid as update_curr() precedes return */
5827 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5828 {
5829 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5830 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5831 
5832 	if (slack_runtime <= 0)
5833 		return;
5834 
5835 	raw_spin_lock(&cfs_b->lock);
5836 	if (cfs_b->quota != RUNTIME_INF) {
5837 		cfs_b->runtime += slack_runtime;
5838 
5839 		/* we are under rq->lock, defer unthrottling using a timer */
5840 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5841 		    !list_empty(&cfs_b->throttled_cfs_rq))
5842 			start_cfs_slack_bandwidth(cfs_b);
5843 	}
5844 	raw_spin_unlock(&cfs_b->lock);
5845 
5846 	/* even if it's not valid for return we don't want to try again */
5847 	cfs_rq->runtime_remaining -= slack_runtime;
5848 }
5849 
5850 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5851 {
5852 	if (!cfs_bandwidth_used())
5853 		return;
5854 
5855 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5856 		return;
5857 
5858 	__return_cfs_rq_runtime(cfs_rq);
5859 }
5860 
5861 /*
5862  * This is done with a timer (instead of inline with bandwidth return) since
5863  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5864  */
5865 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5866 {
5867 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5868 	unsigned long flags;
5869 
5870 	/* confirm we're still not at a refresh boundary */
5871 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5872 	cfs_b->slack_started = false;
5873 
5874 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5875 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5876 		return;
5877 	}
5878 
5879 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5880 		runtime = cfs_b->runtime;
5881 
5882 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5883 
5884 	if (!runtime)
5885 		return;
5886 
5887 	distribute_cfs_runtime(cfs_b);
5888 }
5889 
5890 /*
5891  * When a group wakes up we want to make sure that its quota is not already
5892  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5893  * runtime as update_curr() throttling can not trigger until it's on-rq.
5894  */
5895 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5896 {
5897 	if (!cfs_bandwidth_used())
5898 		return;
5899 
5900 	/* an active group must be handled by the update_curr()->put() path */
5901 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5902 		return;
5903 
5904 	/* ensure the group is not already throttled */
5905 	if (cfs_rq_throttled(cfs_rq))
5906 		return;
5907 
5908 	/* update runtime allocation */
5909 	account_cfs_rq_runtime(cfs_rq, 0);
5910 	if (cfs_rq->runtime_remaining <= 0)
5911 		throttle_cfs_rq(cfs_rq);
5912 }
5913 
5914 static void sync_throttle(struct task_group *tg, int cpu)
5915 {
5916 	struct cfs_rq *pcfs_rq, *cfs_rq;
5917 
5918 	if (!cfs_bandwidth_used())
5919 		return;
5920 
5921 	if (!tg->parent)
5922 		return;
5923 
5924 	cfs_rq = tg->cfs_rq[cpu];
5925 	pcfs_rq = tg->parent->cfs_rq[cpu];
5926 
5927 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5928 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
5929 }
5930 
5931 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5932 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5933 {
5934 	if (!cfs_bandwidth_used())
5935 		return false;
5936 
5937 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5938 		return false;
5939 
5940 	/*
5941 	 * it's possible for a throttled entity to be forced into a running
5942 	 * state (e.g. set_curr_task), in this case we're finished.
5943 	 */
5944 	if (cfs_rq_throttled(cfs_rq))
5945 		return true;
5946 
5947 	return throttle_cfs_rq(cfs_rq);
5948 }
5949 
5950 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5951 {
5952 	struct cfs_bandwidth *cfs_b =
5953 		container_of(timer, struct cfs_bandwidth, slack_timer);
5954 
5955 	do_sched_cfs_slack_timer(cfs_b);
5956 
5957 	return HRTIMER_NORESTART;
5958 }
5959 
5960 extern const u64 max_cfs_quota_period;
5961 
5962 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5963 {
5964 	struct cfs_bandwidth *cfs_b =
5965 		container_of(timer, struct cfs_bandwidth, period_timer);
5966 	unsigned long flags;
5967 	int overrun;
5968 	int idle = 0;
5969 	int count = 0;
5970 
5971 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5972 	for (;;) {
5973 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5974 		if (!overrun)
5975 			break;
5976 
5977 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5978 
5979 		if (++count > 3) {
5980 			u64 new, old = ktime_to_ns(cfs_b->period);
5981 
5982 			/*
5983 			 * Grow period by a factor of 2 to avoid losing precision.
5984 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5985 			 * to fail.
5986 			 */
5987 			new = old * 2;
5988 			if (new < max_cfs_quota_period) {
5989 				cfs_b->period = ns_to_ktime(new);
5990 				cfs_b->quota *= 2;
5991 				cfs_b->burst *= 2;
5992 
5993 				pr_warn_ratelimited(
5994 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5995 					smp_processor_id(),
5996 					div_u64(new, NSEC_PER_USEC),
5997 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5998 			} else {
5999 				pr_warn_ratelimited(
6000 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6001 					smp_processor_id(),
6002 					div_u64(old, NSEC_PER_USEC),
6003 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6004 			}
6005 
6006 			/* reset count so we don't come right back in here */
6007 			count = 0;
6008 		}
6009 	}
6010 	if (idle)
6011 		cfs_b->period_active = 0;
6012 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6013 
6014 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6015 }
6016 
6017 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6018 {
6019 	raw_spin_lock_init(&cfs_b->lock);
6020 	cfs_b->runtime = 0;
6021 	cfs_b->quota = RUNTIME_INF;
6022 	cfs_b->period = ns_to_ktime(default_cfs_period());
6023 	cfs_b->burst = 0;
6024 
6025 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6026 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6027 	cfs_b->period_timer.function = sched_cfs_period_timer;
6028 
6029 	/* Add a random offset so that timers interleave */
6030 	hrtimer_set_expires(&cfs_b->period_timer,
6031 			    get_random_u32_below(cfs_b->period));
6032 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6033 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6034 	cfs_b->slack_started = false;
6035 }
6036 
6037 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6038 {
6039 	cfs_rq->runtime_enabled = 0;
6040 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6041 #ifdef CONFIG_SMP
6042 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6043 #endif
6044 }
6045 
6046 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6047 {
6048 	lockdep_assert_held(&cfs_b->lock);
6049 
6050 	if (cfs_b->period_active)
6051 		return;
6052 
6053 	cfs_b->period_active = 1;
6054 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6055 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6056 }
6057 
6058 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6059 {
6060 	int __maybe_unused i;
6061 
6062 	/* init_cfs_bandwidth() was not called */
6063 	if (!cfs_b->throttled_cfs_rq.next)
6064 		return;
6065 
6066 	hrtimer_cancel(&cfs_b->period_timer);
6067 	hrtimer_cancel(&cfs_b->slack_timer);
6068 
6069 	/*
6070 	 * It is possible that we still have some cfs_rq's pending on a CSD
6071 	 * list, though this race is very rare. In order for this to occur, we
6072 	 * must have raced with the last task leaving the group while there
6073 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6074 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6075 	 * we can simply flush all pending CSD work inline here. We're
6076 	 * guaranteed at this point that no additional cfs_rq of this group can
6077 	 * join a CSD list.
6078 	 */
6079 #ifdef CONFIG_SMP
6080 	for_each_possible_cpu(i) {
6081 		struct rq *rq = cpu_rq(i);
6082 		unsigned long flags;
6083 
6084 		if (list_empty(&rq->cfsb_csd_list))
6085 			continue;
6086 
6087 		local_irq_save(flags);
6088 		__cfsb_csd_unthrottle(rq);
6089 		local_irq_restore(flags);
6090 	}
6091 #endif
6092 }
6093 
6094 /*
6095  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6096  *
6097  * The race is harmless, since modifying bandwidth settings of unhooked group
6098  * bits doesn't do much.
6099  */
6100 
6101 /* cpu online callback */
6102 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6103 {
6104 	struct task_group *tg;
6105 
6106 	lockdep_assert_rq_held(rq);
6107 
6108 	rcu_read_lock();
6109 	list_for_each_entry_rcu(tg, &task_groups, list) {
6110 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6111 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6112 
6113 		raw_spin_lock(&cfs_b->lock);
6114 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6115 		raw_spin_unlock(&cfs_b->lock);
6116 	}
6117 	rcu_read_unlock();
6118 }
6119 
6120 /* cpu offline callback */
6121 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6122 {
6123 	struct task_group *tg;
6124 
6125 	lockdep_assert_rq_held(rq);
6126 
6127 	/*
6128 	 * The rq clock has already been updated in the
6129 	 * set_rq_offline(), so we should skip updating
6130 	 * the rq clock again in unthrottle_cfs_rq().
6131 	 */
6132 	rq_clock_start_loop_update(rq);
6133 
6134 	rcu_read_lock();
6135 	list_for_each_entry_rcu(tg, &task_groups, list) {
6136 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6137 
6138 		if (!cfs_rq->runtime_enabled)
6139 			continue;
6140 
6141 		/*
6142 		 * clock_task is not advancing so we just need to make sure
6143 		 * there's some valid quota amount
6144 		 */
6145 		cfs_rq->runtime_remaining = 1;
6146 		/*
6147 		 * Offline rq is schedulable till CPU is completely disabled
6148 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6149 		 */
6150 		cfs_rq->runtime_enabled = 0;
6151 
6152 		if (cfs_rq_throttled(cfs_rq))
6153 			unthrottle_cfs_rq(cfs_rq);
6154 	}
6155 	rcu_read_unlock();
6156 
6157 	rq_clock_stop_loop_update(rq);
6158 }
6159 
6160 #else /* CONFIG_CFS_BANDWIDTH */
6161 
6162 static inline bool cfs_bandwidth_used(void)
6163 {
6164 	return false;
6165 }
6166 
6167 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6168 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6169 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6170 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6171 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6172 
6173 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6174 {
6175 	return 0;
6176 }
6177 
6178 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6179 {
6180 	return 0;
6181 }
6182 
6183 static inline int throttled_lb_pair(struct task_group *tg,
6184 				    int src_cpu, int dest_cpu)
6185 {
6186 	return 0;
6187 }
6188 
6189 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6190 
6191 #ifdef CONFIG_FAIR_GROUP_SCHED
6192 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6193 #endif
6194 
6195 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6196 {
6197 	return NULL;
6198 }
6199 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6200 static inline void update_runtime_enabled(struct rq *rq) {}
6201 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6202 
6203 #endif /* CONFIG_CFS_BANDWIDTH */
6204 
6205 /**************************************************
6206  * CFS operations on tasks:
6207  */
6208 
6209 #ifdef CONFIG_SCHED_HRTICK
6210 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6211 {
6212 	struct sched_entity *se = &p->se;
6213 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
6214 
6215 	SCHED_WARN_ON(task_rq(p) != rq);
6216 
6217 	if (rq->cfs.h_nr_running > 1) {
6218 		u64 slice = sched_slice(cfs_rq, se);
6219 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6220 		s64 delta = slice - ran;
6221 
6222 		if (delta < 0) {
6223 			if (task_current(rq, p))
6224 				resched_curr(rq);
6225 			return;
6226 		}
6227 		hrtick_start(rq, delta);
6228 	}
6229 }
6230 
6231 /*
6232  * called from enqueue/dequeue and updates the hrtick when the
6233  * current task is from our class and nr_running is low enough
6234  * to matter.
6235  */
6236 static void hrtick_update(struct rq *rq)
6237 {
6238 	struct task_struct *curr = rq->curr;
6239 
6240 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6241 		return;
6242 
6243 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
6244 		hrtick_start_fair(rq, curr);
6245 }
6246 #else /* !CONFIG_SCHED_HRTICK */
6247 static inline void
6248 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6249 {
6250 }
6251 
6252 static inline void hrtick_update(struct rq *rq)
6253 {
6254 }
6255 #endif
6256 
6257 #ifdef CONFIG_SMP
6258 static inline bool cpu_overutilized(int cpu)
6259 {
6260 	unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6261 	unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6262 
6263 	/* Return true only if the utilization doesn't fit CPU's capacity */
6264 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6265 }
6266 
6267 static inline void update_overutilized_status(struct rq *rq)
6268 {
6269 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
6270 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
6271 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
6272 	}
6273 }
6274 #else
6275 static inline void update_overutilized_status(struct rq *rq) { }
6276 #endif
6277 
6278 /* Runqueue only has SCHED_IDLE tasks enqueued */
6279 static int sched_idle_rq(struct rq *rq)
6280 {
6281 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6282 			rq->nr_running);
6283 }
6284 
6285 /*
6286  * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
6287  * of idle_nr_running, which does not consider idle descendants of normal
6288  * entities.
6289  */
6290 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
6291 {
6292 	return cfs_rq->nr_running &&
6293 		cfs_rq->nr_running == cfs_rq->idle_nr_running;
6294 }
6295 
6296 #ifdef CONFIG_SMP
6297 static int sched_idle_cpu(int cpu)
6298 {
6299 	return sched_idle_rq(cpu_rq(cpu));
6300 }
6301 #endif
6302 
6303 /*
6304  * The enqueue_task method is called before nr_running is
6305  * increased. Here we update the fair scheduling stats and
6306  * then put the task into the rbtree:
6307  */
6308 static void
6309 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6310 {
6311 	struct cfs_rq *cfs_rq;
6312 	struct sched_entity *se = &p->se;
6313 	int idle_h_nr_running = task_has_idle_policy(p);
6314 	int task_new = !(flags & ENQUEUE_WAKEUP);
6315 
6316 	/*
6317 	 * The code below (indirectly) updates schedutil which looks at
6318 	 * the cfs_rq utilization to select a frequency.
6319 	 * Let's add the task's estimated utilization to the cfs_rq's
6320 	 * estimated utilization, before we update schedutil.
6321 	 */
6322 	util_est_enqueue(&rq->cfs, p);
6323 
6324 	/*
6325 	 * If in_iowait is set, the code below may not trigger any cpufreq
6326 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6327 	 * passed.
6328 	 */
6329 	if (p->in_iowait)
6330 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6331 
6332 	for_each_sched_entity(se) {
6333 		if (se->on_rq)
6334 			break;
6335 		cfs_rq = cfs_rq_of(se);
6336 		enqueue_entity(cfs_rq, se, flags);
6337 
6338 		cfs_rq->h_nr_running++;
6339 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6340 
6341 		if (cfs_rq_is_idle(cfs_rq))
6342 			idle_h_nr_running = 1;
6343 
6344 		/* end evaluation on encountering a throttled cfs_rq */
6345 		if (cfs_rq_throttled(cfs_rq))
6346 			goto enqueue_throttle;
6347 
6348 		flags = ENQUEUE_WAKEUP;
6349 	}
6350 
6351 	for_each_sched_entity(se) {
6352 		cfs_rq = cfs_rq_of(se);
6353 
6354 		update_load_avg(cfs_rq, se, UPDATE_TG);
6355 		se_update_runnable(se);
6356 		update_cfs_group(se);
6357 
6358 		cfs_rq->h_nr_running++;
6359 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6360 
6361 		if (cfs_rq_is_idle(cfs_rq))
6362 			idle_h_nr_running = 1;
6363 
6364 		/* end evaluation on encountering a throttled cfs_rq */
6365 		if (cfs_rq_throttled(cfs_rq))
6366 			goto enqueue_throttle;
6367 	}
6368 
6369 	/* At this point se is NULL and we are at root level*/
6370 	add_nr_running(rq, 1);
6371 
6372 	/*
6373 	 * Since new tasks are assigned an initial util_avg equal to
6374 	 * half of the spare capacity of their CPU, tiny tasks have the
6375 	 * ability to cross the overutilized threshold, which will
6376 	 * result in the load balancer ruining all the task placement
6377 	 * done by EAS. As a way to mitigate that effect, do not account
6378 	 * for the first enqueue operation of new tasks during the
6379 	 * overutilized flag detection.
6380 	 *
6381 	 * A better way of solving this problem would be to wait for
6382 	 * the PELT signals of tasks to converge before taking them
6383 	 * into account, but that is not straightforward to implement,
6384 	 * and the following generally works well enough in practice.
6385 	 */
6386 	if (!task_new)
6387 		update_overutilized_status(rq);
6388 
6389 enqueue_throttle:
6390 	assert_list_leaf_cfs_rq(rq);
6391 
6392 	hrtick_update(rq);
6393 }
6394 
6395 static void set_next_buddy(struct sched_entity *se);
6396 
6397 /*
6398  * The dequeue_task method is called before nr_running is
6399  * decreased. We remove the task from the rbtree and
6400  * update the fair scheduling stats:
6401  */
6402 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6403 {
6404 	struct cfs_rq *cfs_rq;
6405 	struct sched_entity *se = &p->se;
6406 	int task_sleep = flags & DEQUEUE_SLEEP;
6407 	int idle_h_nr_running = task_has_idle_policy(p);
6408 	bool was_sched_idle = sched_idle_rq(rq);
6409 
6410 	util_est_dequeue(&rq->cfs, p);
6411 
6412 	for_each_sched_entity(se) {
6413 		cfs_rq = cfs_rq_of(se);
6414 		dequeue_entity(cfs_rq, se, flags);
6415 
6416 		cfs_rq->h_nr_running--;
6417 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6418 
6419 		if (cfs_rq_is_idle(cfs_rq))
6420 			idle_h_nr_running = 1;
6421 
6422 		/* end evaluation on encountering a throttled cfs_rq */
6423 		if (cfs_rq_throttled(cfs_rq))
6424 			goto dequeue_throttle;
6425 
6426 		/* Don't dequeue parent if it has other entities besides us */
6427 		if (cfs_rq->load.weight) {
6428 			/* Avoid re-evaluating load for this entity: */
6429 			se = parent_entity(se);
6430 			/*
6431 			 * Bias pick_next to pick a task from this cfs_rq, as
6432 			 * p is sleeping when it is within its sched_slice.
6433 			 */
6434 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6435 				set_next_buddy(se);
6436 			break;
6437 		}
6438 		flags |= DEQUEUE_SLEEP;
6439 	}
6440 
6441 	for_each_sched_entity(se) {
6442 		cfs_rq = cfs_rq_of(se);
6443 
6444 		update_load_avg(cfs_rq, se, UPDATE_TG);
6445 		se_update_runnable(se);
6446 		update_cfs_group(se);
6447 
6448 		cfs_rq->h_nr_running--;
6449 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6450 
6451 		if (cfs_rq_is_idle(cfs_rq))
6452 			idle_h_nr_running = 1;
6453 
6454 		/* end evaluation on encountering a throttled cfs_rq */
6455 		if (cfs_rq_throttled(cfs_rq))
6456 			goto dequeue_throttle;
6457 
6458 	}
6459 
6460 	/* At this point se is NULL and we are at root level*/
6461 	sub_nr_running(rq, 1);
6462 
6463 	/* balance early to pull high priority tasks */
6464 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6465 		rq->next_balance = jiffies;
6466 
6467 dequeue_throttle:
6468 	util_est_update(&rq->cfs, p, task_sleep);
6469 	hrtick_update(rq);
6470 }
6471 
6472 #ifdef CONFIG_SMP
6473 
6474 /* Working cpumask for: load_balance, load_balance_newidle. */
6475 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6476 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6477 
6478 #ifdef CONFIG_NO_HZ_COMMON
6479 
6480 static struct {
6481 	cpumask_var_t idle_cpus_mask;
6482 	atomic_t nr_cpus;
6483 	int has_blocked;		/* Idle CPUS has blocked load */
6484 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
6485 	unsigned long next_balance;     /* in jiffy units */
6486 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
6487 } nohz ____cacheline_aligned;
6488 
6489 #endif /* CONFIG_NO_HZ_COMMON */
6490 
6491 static unsigned long cpu_load(struct rq *rq)
6492 {
6493 	return cfs_rq_load_avg(&rq->cfs);
6494 }
6495 
6496 /*
6497  * cpu_load_without - compute CPU load without any contributions from *p
6498  * @cpu: the CPU which load is requested
6499  * @p: the task which load should be discounted
6500  *
6501  * The load of a CPU is defined by the load of tasks currently enqueued on that
6502  * CPU as well as tasks which are currently sleeping after an execution on that
6503  * CPU.
6504  *
6505  * This method returns the load of the specified CPU by discounting the load of
6506  * the specified task, whenever the task is currently contributing to the CPU
6507  * load.
6508  */
6509 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6510 {
6511 	struct cfs_rq *cfs_rq;
6512 	unsigned int load;
6513 
6514 	/* Task has no contribution or is new */
6515 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6516 		return cpu_load(rq);
6517 
6518 	cfs_rq = &rq->cfs;
6519 	load = READ_ONCE(cfs_rq->avg.load_avg);
6520 
6521 	/* Discount task's util from CPU's util */
6522 	lsub_positive(&load, task_h_load(p));
6523 
6524 	return load;
6525 }
6526 
6527 static unsigned long cpu_runnable(struct rq *rq)
6528 {
6529 	return cfs_rq_runnable_avg(&rq->cfs);
6530 }
6531 
6532 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6533 {
6534 	struct cfs_rq *cfs_rq;
6535 	unsigned int runnable;
6536 
6537 	/* Task has no contribution or is new */
6538 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6539 		return cpu_runnable(rq);
6540 
6541 	cfs_rq = &rq->cfs;
6542 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6543 
6544 	/* Discount task's runnable from CPU's runnable */
6545 	lsub_positive(&runnable, p->se.avg.runnable_avg);
6546 
6547 	return runnable;
6548 }
6549 
6550 static unsigned long capacity_of(int cpu)
6551 {
6552 	return cpu_rq(cpu)->cpu_capacity;
6553 }
6554 
6555 static void record_wakee(struct task_struct *p)
6556 {
6557 	/*
6558 	 * Only decay a single time; tasks that have less then 1 wakeup per
6559 	 * jiffy will not have built up many flips.
6560 	 */
6561 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6562 		current->wakee_flips >>= 1;
6563 		current->wakee_flip_decay_ts = jiffies;
6564 	}
6565 
6566 	if (current->last_wakee != p) {
6567 		current->last_wakee = p;
6568 		current->wakee_flips++;
6569 	}
6570 }
6571 
6572 /*
6573  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6574  *
6575  * A waker of many should wake a different task than the one last awakened
6576  * at a frequency roughly N times higher than one of its wakees.
6577  *
6578  * In order to determine whether we should let the load spread vs consolidating
6579  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6580  * partner, and a factor of lls_size higher frequency in the other.
6581  *
6582  * With both conditions met, we can be relatively sure that the relationship is
6583  * non-monogamous, with partner count exceeding socket size.
6584  *
6585  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6586  * whatever is irrelevant, spread criteria is apparent partner count exceeds
6587  * socket size.
6588  */
6589 static int wake_wide(struct task_struct *p)
6590 {
6591 	unsigned int master = current->wakee_flips;
6592 	unsigned int slave = p->wakee_flips;
6593 	int factor = __this_cpu_read(sd_llc_size);
6594 
6595 	if (master < slave)
6596 		swap(master, slave);
6597 	if (slave < factor || master < slave * factor)
6598 		return 0;
6599 	return 1;
6600 }
6601 
6602 /*
6603  * The purpose of wake_affine() is to quickly determine on which CPU we can run
6604  * soonest. For the purpose of speed we only consider the waking and previous
6605  * CPU.
6606  *
6607  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
6608  *			cache-affine and is (or	will be) idle.
6609  *
6610  * wake_affine_weight() - considers the weight to reflect the average
6611  *			  scheduling latency of the CPUs. This seems to work
6612  *			  for the overloaded case.
6613  */
6614 static int
6615 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
6616 {
6617 	/*
6618 	 * If this_cpu is idle, it implies the wakeup is from interrupt
6619 	 * context. Only allow the move if cache is shared. Otherwise an
6620 	 * interrupt intensive workload could force all tasks onto one
6621 	 * node depending on the IO topology or IRQ affinity settings.
6622 	 *
6623 	 * If the prev_cpu is idle and cache affine then avoid a migration.
6624 	 * There is no guarantee that the cache hot data from an interrupt
6625 	 * is more important than cache hot data on the prev_cpu and from
6626 	 * a cpufreq perspective, it's better to have higher utilisation
6627 	 * on one CPU.
6628 	 */
6629 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
6630 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
6631 
6632 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
6633 		return this_cpu;
6634 
6635 	if (available_idle_cpu(prev_cpu))
6636 		return prev_cpu;
6637 
6638 	return nr_cpumask_bits;
6639 }
6640 
6641 static int
6642 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
6643 		   int this_cpu, int prev_cpu, int sync)
6644 {
6645 	s64 this_eff_load, prev_eff_load;
6646 	unsigned long task_load;
6647 
6648 	this_eff_load = cpu_load(cpu_rq(this_cpu));
6649 
6650 	if (sync) {
6651 		unsigned long current_load = task_h_load(current);
6652 
6653 		if (current_load > this_eff_load)
6654 			return this_cpu;
6655 
6656 		this_eff_load -= current_load;
6657 	}
6658 
6659 	task_load = task_h_load(p);
6660 
6661 	this_eff_load += task_load;
6662 	if (sched_feat(WA_BIAS))
6663 		this_eff_load *= 100;
6664 	this_eff_load *= capacity_of(prev_cpu);
6665 
6666 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
6667 	prev_eff_load -= task_load;
6668 	if (sched_feat(WA_BIAS))
6669 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
6670 	prev_eff_load *= capacity_of(this_cpu);
6671 
6672 	/*
6673 	 * If sync, adjust the weight of prev_eff_load such that if
6674 	 * prev_eff == this_eff that select_idle_sibling() will consider
6675 	 * stacking the wakee on top of the waker if no other CPU is
6676 	 * idle.
6677 	 */
6678 	if (sync)
6679 		prev_eff_load += 1;
6680 
6681 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
6682 }
6683 
6684 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
6685 		       int this_cpu, int prev_cpu, int sync)
6686 {
6687 	int target = nr_cpumask_bits;
6688 
6689 	if (sched_feat(WA_IDLE))
6690 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
6691 
6692 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
6693 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6694 
6695 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
6696 	if (target != this_cpu)
6697 		return prev_cpu;
6698 
6699 	schedstat_inc(sd->ttwu_move_affine);
6700 	schedstat_inc(p->stats.nr_wakeups_affine);
6701 	return target;
6702 }
6703 
6704 static struct sched_group *
6705 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6706 
6707 /*
6708  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6709  */
6710 static int
6711 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6712 {
6713 	unsigned long load, min_load = ULONG_MAX;
6714 	unsigned int min_exit_latency = UINT_MAX;
6715 	u64 latest_idle_timestamp = 0;
6716 	int least_loaded_cpu = this_cpu;
6717 	int shallowest_idle_cpu = -1;
6718 	int i;
6719 
6720 	/* Check if we have any choice: */
6721 	if (group->group_weight == 1)
6722 		return cpumask_first(sched_group_span(group));
6723 
6724 	/* Traverse only the allowed CPUs */
6725 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6726 		struct rq *rq = cpu_rq(i);
6727 
6728 		if (!sched_core_cookie_match(rq, p))
6729 			continue;
6730 
6731 		if (sched_idle_cpu(i))
6732 			return i;
6733 
6734 		if (available_idle_cpu(i)) {
6735 			struct cpuidle_state *idle = idle_get_state(rq);
6736 			if (idle && idle->exit_latency < min_exit_latency) {
6737 				/*
6738 				 * We give priority to a CPU whose idle state
6739 				 * has the smallest exit latency irrespective
6740 				 * of any idle timestamp.
6741 				 */
6742 				min_exit_latency = idle->exit_latency;
6743 				latest_idle_timestamp = rq->idle_stamp;
6744 				shallowest_idle_cpu = i;
6745 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
6746 				   rq->idle_stamp > latest_idle_timestamp) {
6747 				/*
6748 				 * If equal or no active idle state, then
6749 				 * the most recently idled CPU might have
6750 				 * a warmer cache.
6751 				 */
6752 				latest_idle_timestamp = rq->idle_stamp;
6753 				shallowest_idle_cpu = i;
6754 			}
6755 		} else if (shallowest_idle_cpu == -1) {
6756 			load = cpu_load(cpu_rq(i));
6757 			if (load < min_load) {
6758 				min_load = load;
6759 				least_loaded_cpu = i;
6760 			}
6761 		}
6762 	}
6763 
6764 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6765 }
6766 
6767 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6768 				  int cpu, int prev_cpu, int sd_flag)
6769 {
6770 	int new_cpu = cpu;
6771 
6772 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6773 		return prev_cpu;
6774 
6775 	/*
6776 	 * We need task's util for cpu_util_without, sync it up to
6777 	 * prev_cpu's last_update_time.
6778 	 */
6779 	if (!(sd_flag & SD_BALANCE_FORK))
6780 		sync_entity_load_avg(&p->se);
6781 
6782 	while (sd) {
6783 		struct sched_group *group;
6784 		struct sched_domain *tmp;
6785 		int weight;
6786 
6787 		if (!(sd->flags & sd_flag)) {
6788 			sd = sd->child;
6789 			continue;
6790 		}
6791 
6792 		group = find_idlest_group(sd, p, cpu);
6793 		if (!group) {
6794 			sd = sd->child;
6795 			continue;
6796 		}
6797 
6798 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6799 		if (new_cpu == cpu) {
6800 			/* Now try balancing at a lower domain level of 'cpu': */
6801 			sd = sd->child;
6802 			continue;
6803 		}
6804 
6805 		/* Now try balancing at a lower domain level of 'new_cpu': */
6806 		cpu = new_cpu;
6807 		weight = sd->span_weight;
6808 		sd = NULL;
6809 		for_each_domain(cpu, tmp) {
6810 			if (weight <= tmp->span_weight)
6811 				break;
6812 			if (tmp->flags & sd_flag)
6813 				sd = tmp;
6814 		}
6815 	}
6816 
6817 	return new_cpu;
6818 }
6819 
6820 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6821 {
6822 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6823 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
6824 		return cpu;
6825 
6826 	return -1;
6827 }
6828 
6829 #ifdef CONFIG_SCHED_SMT
6830 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6831 EXPORT_SYMBOL_GPL(sched_smt_present);
6832 
6833 static inline void set_idle_cores(int cpu, int val)
6834 {
6835 	struct sched_domain_shared *sds;
6836 
6837 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6838 	if (sds)
6839 		WRITE_ONCE(sds->has_idle_cores, val);
6840 }
6841 
6842 static inline bool test_idle_cores(int cpu)
6843 {
6844 	struct sched_domain_shared *sds;
6845 
6846 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6847 	if (sds)
6848 		return READ_ONCE(sds->has_idle_cores);
6849 
6850 	return false;
6851 }
6852 
6853 /*
6854  * Scans the local SMT mask to see if the entire core is idle, and records this
6855  * information in sd_llc_shared->has_idle_cores.
6856  *
6857  * Since SMT siblings share all cache levels, inspecting this limited remote
6858  * state should be fairly cheap.
6859  */
6860 void __update_idle_core(struct rq *rq)
6861 {
6862 	int core = cpu_of(rq);
6863 	int cpu;
6864 
6865 	rcu_read_lock();
6866 	if (test_idle_cores(core))
6867 		goto unlock;
6868 
6869 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6870 		if (cpu == core)
6871 			continue;
6872 
6873 		if (!available_idle_cpu(cpu))
6874 			goto unlock;
6875 	}
6876 
6877 	set_idle_cores(core, 1);
6878 unlock:
6879 	rcu_read_unlock();
6880 }
6881 
6882 /*
6883  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6884  * there are no idle cores left in the system; tracked through
6885  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6886  */
6887 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6888 {
6889 	bool idle = true;
6890 	int cpu;
6891 
6892 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6893 		if (!available_idle_cpu(cpu)) {
6894 			idle = false;
6895 			if (*idle_cpu == -1) {
6896 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6897 					*idle_cpu = cpu;
6898 					break;
6899 				}
6900 				continue;
6901 			}
6902 			break;
6903 		}
6904 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6905 			*idle_cpu = cpu;
6906 	}
6907 
6908 	if (idle)
6909 		return core;
6910 
6911 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6912 	return -1;
6913 }
6914 
6915 /*
6916  * Scan the local SMT mask for idle CPUs.
6917  */
6918 static int select_idle_smt(struct task_struct *p, int target)
6919 {
6920 	int cpu;
6921 
6922 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
6923 		if (cpu == target)
6924 			continue;
6925 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6926 			return cpu;
6927 	}
6928 
6929 	return -1;
6930 }
6931 
6932 #else /* CONFIG_SCHED_SMT */
6933 
6934 static inline void set_idle_cores(int cpu, int val)
6935 {
6936 }
6937 
6938 static inline bool test_idle_cores(int cpu)
6939 {
6940 	return false;
6941 }
6942 
6943 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6944 {
6945 	return __select_idle_cpu(core, p);
6946 }
6947 
6948 static inline int select_idle_smt(struct task_struct *p, int target)
6949 {
6950 	return -1;
6951 }
6952 
6953 #endif /* CONFIG_SCHED_SMT */
6954 
6955 /*
6956  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6957  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6958  * average idle time for this rq (as found in rq->avg_idle).
6959  */
6960 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6961 {
6962 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
6963 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
6964 	struct sched_domain_shared *sd_share;
6965 	struct rq *this_rq = this_rq();
6966 	int this = smp_processor_id();
6967 	struct sched_domain *this_sd = NULL;
6968 	u64 time = 0;
6969 
6970 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6971 
6972 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6973 		u64 avg_cost, avg_idle, span_avg;
6974 		unsigned long now = jiffies;
6975 
6976 		this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6977 		if (!this_sd)
6978 			return -1;
6979 
6980 		/*
6981 		 * If we're busy, the assumption that the last idle period
6982 		 * predicts the future is flawed; age away the remaining
6983 		 * predicted idle time.
6984 		 */
6985 		if (unlikely(this_rq->wake_stamp < now)) {
6986 			while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6987 				this_rq->wake_stamp++;
6988 				this_rq->wake_avg_idle >>= 1;
6989 			}
6990 		}
6991 
6992 		avg_idle = this_rq->wake_avg_idle;
6993 		avg_cost = this_sd->avg_scan_cost + 1;
6994 
6995 		span_avg = sd->span_weight * avg_idle;
6996 		if (span_avg > 4*avg_cost)
6997 			nr = div_u64(span_avg, avg_cost);
6998 		else
6999 			nr = 4;
7000 
7001 		time = cpu_clock(this);
7002 	}
7003 
7004 	if (sched_feat(SIS_UTIL)) {
7005 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7006 		if (sd_share) {
7007 			/* because !--nr is the condition to stop scan */
7008 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7009 			/* overloaded LLC is unlikely to have idle cpu/core */
7010 			if (nr == 1)
7011 				return -1;
7012 		}
7013 	}
7014 
7015 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7016 		if (has_idle_core) {
7017 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7018 			if ((unsigned int)i < nr_cpumask_bits)
7019 				return i;
7020 
7021 		} else {
7022 			if (!--nr)
7023 				return -1;
7024 			idle_cpu = __select_idle_cpu(cpu, p);
7025 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7026 				break;
7027 		}
7028 	}
7029 
7030 	if (has_idle_core)
7031 		set_idle_cores(target, false);
7032 
7033 	if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) {
7034 		time = cpu_clock(this) - time;
7035 
7036 		/*
7037 		 * Account for the scan cost of wakeups against the average
7038 		 * idle time.
7039 		 */
7040 		this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
7041 
7042 		update_avg(&this_sd->avg_scan_cost, time);
7043 	}
7044 
7045 	return idle_cpu;
7046 }
7047 
7048 /*
7049  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7050  * the task fits. If no CPU is big enough, but there are idle ones, try to
7051  * maximize capacity.
7052  */
7053 static int
7054 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7055 {
7056 	unsigned long task_util, util_min, util_max, best_cap = 0;
7057 	int fits, best_fits = 0;
7058 	int cpu, best_cpu = -1;
7059 	struct cpumask *cpus;
7060 
7061 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7062 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7063 
7064 	task_util = task_util_est(p);
7065 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7066 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7067 
7068 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7069 		unsigned long cpu_cap = capacity_of(cpu);
7070 
7071 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7072 			continue;
7073 
7074 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7075 
7076 		/* This CPU fits with all requirements */
7077 		if (fits > 0)
7078 			return cpu;
7079 		/*
7080 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7081 		 * Look for the CPU with best capacity.
7082 		 */
7083 		else if (fits < 0)
7084 			cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu));
7085 
7086 		/*
7087 		 * First, select CPU which fits better (-1 being better than 0).
7088 		 * Then, select the one with best capacity at same level.
7089 		 */
7090 		if ((fits < best_fits) ||
7091 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7092 			best_cap = cpu_cap;
7093 			best_cpu = cpu;
7094 			best_fits = fits;
7095 		}
7096 	}
7097 
7098 	return best_cpu;
7099 }
7100 
7101 static inline bool asym_fits_cpu(unsigned long util,
7102 				 unsigned long util_min,
7103 				 unsigned long util_max,
7104 				 int cpu)
7105 {
7106 	if (sched_asym_cpucap_active())
7107 		/*
7108 		 * Return true only if the cpu fully fits the task requirements
7109 		 * which include the utilization and the performance hints.
7110 		 */
7111 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7112 
7113 	return true;
7114 }
7115 
7116 /*
7117  * Try and locate an idle core/thread in the LLC cache domain.
7118  */
7119 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7120 {
7121 	bool has_idle_core = false;
7122 	struct sched_domain *sd;
7123 	unsigned long task_util, util_min, util_max;
7124 	int i, recent_used_cpu;
7125 
7126 	/*
7127 	 * On asymmetric system, update task utilization because we will check
7128 	 * that the task fits with cpu's capacity.
7129 	 */
7130 	if (sched_asym_cpucap_active()) {
7131 		sync_entity_load_avg(&p->se);
7132 		task_util = task_util_est(p);
7133 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7134 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7135 	}
7136 
7137 	/*
7138 	 * per-cpu select_rq_mask usage
7139 	 */
7140 	lockdep_assert_irqs_disabled();
7141 
7142 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7143 	    asym_fits_cpu(task_util, util_min, util_max, target))
7144 		return target;
7145 
7146 	/*
7147 	 * If the previous CPU is cache affine and idle, don't be stupid:
7148 	 */
7149 	if (prev != target && cpus_share_cache(prev, target) &&
7150 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7151 	    asym_fits_cpu(task_util, util_min, util_max, prev))
7152 		return prev;
7153 
7154 	/*
7155 	 * Allow a per-cpu kthread to stack with the wakee if the
7156 	 * kworker thread and the tasks previous CPUs are the same.
7157 	 * The assumption is that the wakee queued work for the
7158 	 * per-cpu kthread that is now complete and the wakeup is
7159 	 * essentially a sync wakeup. An obvious example of this
7160 	 * pattern is IO completions.
7161 	 */
7162 	if (is_per_cpu_kthread(current) &&
7163 	    in_task() &&
7164 	    prev == smp_processor_id() &&
7165 	    this_rq()->nr_running <= 1 &&
7166 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7167 		return prev;
7168 	}
7169 
7170 	/* Check a recently used CPU as a potential idle candidate: */
7171 	recent_used_cpu = p->recent_used_cpu;
7172 	p->recent_used_cpu = prev;
7173 	if (recent_used_cpu != prev &&
7174 	    recent_used_cpu != target &&
7175 	    cpus_share_cache(recent_used_cpu, target) &&
7176 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7177 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
7178 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7179 		return recent_used_cpu;
7180 	}
7181 
7182 	/*
7183 	 * For asymmetric CPU capacity systems, our domain of interest is
7184 	 * sd_asym_cpucapacity rather than sd_llc.
7185 	 */
7186 	if (sched_asym_cpucap_active()) {
7187 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7188 		/*
7189 		 * On an asymmetric CPU capacity system where an exclusive
7190 		 * cpuset defines a symmetric island (i.e. one unique
7191 		 * capacity_orig value through the cpuset), the key will be set
7192 		 * but the CPUs within that cpuset will not have a domain with
7193 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7194 		 * capacity path.
7195 		 */
7196 		if (sd) {
7197 			i = select_idle_capacity(p, sd, target);
7198 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7199 		}
7200 	}
7201 
7202 	sd = rcu_dereference(per_cpu(sd_llc, target));
7203 	if (!sd)
7204 		return target;
7205 
7206 	if (sched_smt_active()) {
7207 		has_idle_core = test_idle_cores(target);
7208 
7209 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7210 			i = select_idle_smt(p, prev);
7211 			if ((unsigned int)i < nr_cpumask_bits)
7212 				return i;
7213 		}
7214 	}
7215 
7216 	i = select_idle_cpu(p, sd, has_idle_core, target);
7217 	if ((unsigned)i < nr_cpumask_bits)
7218 		return i;
7219 
7220 	return target;
7221 }
7222 
7223 /**
7224  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7225  * @cpu: the CPU to get the utilization for
7226  * @p: task for which the CPU utilization should be predicted or NULL
7227  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7228  * @boost: 1 to enable boosting, otherwise 0
7229  *
7230  * The unit of the return value must be the same as the one of CPU capacity
7231  * so that CPU utilization can be compared with CPU capacity.
7232  *
7233  * CPU utilization is the sum of running time of runnable tasks plus the
7234  * recent utilization of currently non-runnable tasks on that CPU.
7235  * It represents the amount of CPU capacity currently used by CFS tasks in
7236  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7237  * capacity at f_max.
7238  *
7239  * The estimated CPU utilization is defined as the maximum between CPU
7240  * utilization and sum of the estimated utilization of the currently
7241  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7242  * previously-executed tasks, which helps better deduce how busy a CPU will
7243  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7244  * of such a task would be significantly decayed at this point of time.
7245  *
7246  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7247  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7248  * utilization. Boosting is implemented in cpu_util() so that internal
7249  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7250  * latter via cpu_util_cfs_boost().
7251  *
7252  * CPU utilization can be higher than the current CPU capacity
7253  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7254  * of rounding errors as well as task migrations or wakeups of new tasks.
7255  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7256  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7257  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7258  * capacity. CPU utilization is allowed to overshoot current CPU capacity
7259  * though since this is useful for predicting the CPU capacity required
7260  * after task migrations (scheduler-driven DVFS).
7261  *
7262  * Return: (Boosted) (estimated) utilization for the specified CPU.
7263  */
7264 static unsigned long
7265 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7266 {
7267 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7268 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7269 	unsigned long runnable;
7270 
7271 	if (boost) {
7272 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7273 		util = max(util, runnable);
7274 	}
7275 
7276 	/*
7277 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7278 	 * contribution. If @p migrates from another CPU to @cpu add its
7279 	 * contribution. In all the other cases @cpu is not impacted by the
7280 	 * migration so its util_avg is already correct.
7281 	 */
7282 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7283 		lsub_positive(&util, task_util(p));
7284 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7285 		util += task_util(p);
7286 
7287 	if (sched_feat(UTIL_EST)) {
7288 		unsigned long util_est;
7289 
7290 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
7291 
7292 		if (boost)
7293 			util_est = max(util_est, runnable);
7294 
7295 		/*
7296 		 * During wake-up @p isn't enqueued yet and doesn't contribute
7297 		 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
7298 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7299 		 * has been enqueued.
7300 		 *
7301 		 * During exec (@dst_cpu = -1) @p is enqueued and does
7302 		 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
7303 		 * Remove it to "simulate" cpu_util without @p's contribution.
7304 		 *
7305 		 * Despite the task_on_rq_queued(@p) check there is still a
7306 		 * small window for a possible race when an exec
7307 		 * select_task_rq_fair() races with LB's detach_task().
7308 		 *
7309 		 *   detach_task()
7310 		 *     deactivate_task()
7311 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
7312 		 *       -------------------------------- A
7313 		 *       dequeue_task()                    \
7314 		 *         dequeue_task_fair()              + Race Time
7315 		 *           util_est_dequeue()            /
7316 		 *       -------------------------------- B
7317 		 *
7318 		 * The additional check "current == p" is required to further
7319 		 * reduce the race window.
7320 		 */
7321 		if (dst_cpu == cpu)
7322 			util_est += _task_util_est(p);
7323 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
7324 			lsub_positive(&util_est, _task_util_est(p));
7325 
7326 		util = max(util, util_est);
7327 	}
7328 
7329 	return min(util, capacity_orig_of(cpu));
7330 }
7331 
7332 unsigned long cpu_util_cfs(int cpu)
7333 {
7334 	return cpu_util(cpu, NULL, -1, 0);
7335 }
7336 
7337 unsigned long cpu_util_cfs_boost(int cpu)
7338 {
7339 	return cpu_util(cpu, NULL, -1, 1);
7340 }
7341 
7342 /*
7343  * cpu_util_without: compute cpu utilization without any contributions from *p
7344  * @cpu: the CPU which utilization is requested
7345  * @p: the task which utilization should be discounted
7346  *
7347  * The utilization of a CPU is defined by the utilization of tasks currently
7348  * enqueued on that CPU as well as tasks which are currently sleeping after an
7349  * execution on that CPU.
7350  *
7351  * This method returns the utilization of the specified CPU by discounting the
7352  * utilization of the specified task, whenever the task is currently
7353  * contributing to the CPU utilization.
7354  */
7355 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7356 {
7357 	/* Task has no contribution or is new */
7358 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7359 		p = NULL;
7360 
7361 	return cpu_util(cpu, p, -1, 0);
7362 }
7363 
7364 /*
7365  * energy_env - Utilization landscape for energy estimation.
7366  * @task_busy_time: Utilization contribution by the task for which we test the
7367  *                  placement. Given by eenv_task_busy_time().
7368  * @pd_busy_time:   Utilization of the whole perf domain without the task
7369  *                  contribution. Given by eenv_pd_busy_time().
7370  * @cpu_cap:        Maximum CPU capacity for the perf domain.
7371  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7372  */
7373 struct energy_env {
7374 	unsigned long task_busy_time;
7375 	unsigned long pd_busy_time;
7376 	unsigned long cpu_cap;
7377 	unsigned long pd_cap;
7378 };
7379 
7380 /*
7381  * Compute the task busy time for compute_energy(). This time cannot be
7382  * injected directly into effective_cpu_util() because of the IRQ scaling.
7383  * The latter only makes sense with the most recent CPUs where the task has
7384  * run.
7385  */
7386 static inline void eenv_task_busy_time(struct energy_env *eenv,
7387 				       struct task_struct *p, int prev_cpu)
7388 {
7389 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7390 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7391 
7392 	if (unlikely(irq >= max_cap))
7393 		busy_time = max_cap;
7394 	else
7395 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7396 
7397 	eenv->task_busy_time = busy_time;
7398 }
7399 
7400 /*
7401  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7402  * utilization for each @pd_cpus, it however doesn't take into account
7403  * clamping since the ratio (utilization / cpu_capacity) is already enough to
7404  * scale the EM reported power consumption at the (eventually clamped)
7405  * cpu_capacity.
7406  *
7407  * The contribution of the task @p for which we want to estimate the
7408  * energy cost is removed (by cpu_util()) and must be calculated
7409  * separately (see eenv_task_busy_time). This ensures:
7410  *
7411  *   - A stable PD utilization, no matter which CPU of that PD we want to place
7412  *     the task on.
7413  *
7414  *   - A fair comparison between CPUs as the task contribution (task_util())
7415  *     will always be the same no matter which CPU utilization we rely on
7416  *     (util_avg or util_est).
7417  *
7418  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7419  * exceed @eenv->pd_cap.
7420  */
7421 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7422 				     struct cpumask *pd_cpus,
7423 				     struct task_struct *p)
7424 {
7425 	unsigned long busy_time = 0;
7426 	int cpu;
7427 
7428 	for_each_cpu(cpu, pd_cpus) {
7429 		unsigned long util = cpu_util(cpu, p, -1, 0);
7430 
7431 		busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
7432 	}
7433 
7434 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7435 }
7436 
7437 /*
7438  * Compute the maximum utilization for compute_energy() when the task @p
7439  * is placed on the cpu @dst_cpu.
7440  *
7441  * Returns the maximum utilization among @eenv->cpus. This utilization can't
7442  * exceed @eenv->cpu_cap.
7443  */
7444 static inline unsigned long
7445 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7446 		 struct task_struct *p, int dst_cpu)
7447 {
7448 	unsigned long max_util = 0;
7449 	int cpu;
7450 
7451 	for_each_cpu(cpu, pd_cpus) {
7452 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7453 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
7454 		unsigned long eff_util;
7455 
7456 		/*
7457 		 * Performance domain frequency: utilization clamping
7458 		 * must be considered since it affects the selection
7459 		 * of the performance domain frequency.
7460 		 * NOTE: in case RT tasks are running, by default the
7461 		 * FREQUENCY_UTIL's utilization can be max OPP.
7462 		 */
7463 		eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
7464 		max_util = max(max_util, eff_util);
7465 	}
7466 
7467 	return min(max_util, eenv->cpu_cap);
7468 }
7469 
7470 /*
7471  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7472  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7473  * contribution is ignored.
7474  */
7475 static inline unsigned long
7476 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7477 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7478 {
7479 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7480 	unsigned long busy_time = eenv->pd_busy_time;
7481 
7482 	if (dst_cpu >= 0)
7483 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7484 
7485 	return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7486 }
7487 
7488 /*
7489  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7490  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7491  * spare capacity in each performance domain and uses it as a potential
7492  * candidate to execute the task. Then, it uses the Energy Model to figure
7493  * out which of the CPU candidates is the most energy-efficient.
7494  *
7495  * The rationale for this heuristic is as follows. In a performance domain,
7496  * all the most energy efficient CPU candidates (according to the Energy
7497  * Model) are those for which we'll request a low frequency. When there are
7498  * several CPUs for which the frequency request will be the same, we don't
7499  * have enough data to break the tie between them, because the Energy Model
7500  * only includes active power costs. With this model, if we assume that
7501  * frequency requests follow utilization (e.g. using schedutil), the CPU with
7502  * the maximum spare capacity in a performance domain is guaranteed to be among
7503  * the best candidates of the performance domain.
7504  *
7505  * In practice, it could be preferable from an energy standpoint to pack
7506  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7507  * but that could also hurt our chances to go cluster idle, and we have no
7508  * ways to tell with the current Energy Model if this is actually a good
7509  * idea or not. So, find_energy_efficient_cpu() basically favors
7510  * cluster-packing, and spreading inside a cluster. That should at least be
7511  * a good thing for latency, and this is consistent with the idea that most
7512  * of the energy savings of EAS come from the asymmetry of the system, and
7513  * not so much from breaking the tie between identical CPUs. That's also the
7514  * reason why EAS is enabled in the topology code only for systems where
7515  * SD_ASYM_CPUCAPACITY is set.
7516  *
7517  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7518  * they don't have any useful utilization data yet and it's not possible to
7519  * forecast their impact on energy consumption. Consequently, they will be
7520  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7521  * to be energy-inefficient in some use-cases. The alternative would be to
7522  * bias new tasks towards specific types of CPUs first, or to try to infer
7523  * their util_avg from the parent task, but those heuristics could hurt
7524  * other use-cases too. So, until someone finds a better way to solve this,
7525  * let's keep things simple by re-using the existing slow path.
7526  */
7527 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7528 {
7529 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7530 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7531 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7532 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7533 	struct root_domain *rd = this_rq()->rd;
7534 	int cpu, best_energy_cpu, target = -1;
7535 	int prev_fits = -1, best_fits = -1;
7536 	unsigned long best_thermal_cap = 0;
7537 	unsigned long prev_thermal_cap = 0;
7538 	struct sched_domain *sd;
7539 	struct perf_domain *pd;
7540 	struct energy_env eenv;
7541 
7542 	rcu_read_lock();
7543 	pd = rcu_dereference(rd->pd);
7544 	if (!pd || READ_ONCE(rd->overutilized))
7545 		goto unlock;
7546 
7547 	/*
7548 	 * Energy-aware wake-up happens on the lowest sched_domain starting
7549 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7550 	 */
7551 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7552 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7553 		sd = sd->parent;
7554 	if (!sd)
7555 		goto unlock;
7556 
7557 	target = prev_cpu;
7558 
7559 	sync_entity_load_avg(&p->se);
7560 	if (!uclamp_task_util(p, p_util_min, p_util_max))
7561 		goto unlock;
7562 
7563 	eenv_task_busy_time(&eenv, p, prev_cpu);
7564 
7565 	for (; pd; pd = pd->next) {
7566 		unsigned long util_min = p_util_min, util_max = p_util_max;
7567 		unsigned long cpu_cap, cpu_thermal_cap, util;
7568 		unsigned long cur_delta, max_spare_cap = 0;
7569 		unsigned long rq_util_min, rq_util_max;
7570 		unsigned long prev_spare_cap = 0;
7571 		int max_spare_cap_cpu = -1;
7572 		unsigned long base_energy;
7573 		int fits, max_fits = -1;
7574 
7575 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
7576 
7577 		if (cpumask_empty(cpus))
7578 			continue;
7579 
7580 		/* Account thermal pressure for the energy estimation */
7581 		cpu = cpumask_first(cpus);
7582 		cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
7583 		cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
7584 
7585 		eenv.cpu_cap = cpu_thermal_cap;
7586 		eenv.pd_cap = 0;
7587 
7588 		for_each_cpu(cpu, cpus) {
7589 			struct rq *rq = cpu_rq(cpu);
7590 
7591 			eenv.pd_cap += cpu_thermal_cap;
7592 
7593 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7594 				continue;
7595 
7596 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
7597 				continue;
7598 
7599 			util = cpu_util(cpu, p, cpu, 0);
7600 			cpu_cap = capacity_of(cpu);
7601 
7602 			/*
7603 			 * Skip CPUs that cannot satisfy the capacity request.
7604 			 * IOW, placing the task there would make the CPU
7605 			 * overutilized. Take uclamp into account to see how
7606 			 * much capacity we can get out of the CPU; this is
7607 			 * aligned with sched_cpu_util().
7608 			 */
7609 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
7610 				/*
7611 				 * Open code uclamp_rq_util_with() except for
7612 				 * the clamp() part. Ie: apply max aggregation
7613 				 * only. util_fits_cpu() logic requires to
7614 				 * operate on non clamped util but must use the
7615 				 * max-aggregated uclamp_{min, max}.
7616 				 */
7617 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
7618 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
7619 
7620 				util_min = max(rq_util_min, p_util_min);
7621 				util_max = max(rq_util_max, p_util_max);
7622 			}
7623 
7624 			fits = util_fits_cpu(util, util_min, util_max, cpu);
7625 			if (!fits)
7626 				continue;
7627 
7628 			lsub_positive(&cpu_cap, util);
7629 
7630 			if (cpu == prev_cpu) {
7631 				/* Always use prev_cpu as a candidate. */
7632 				prev_spare_cap = cpu_cap;
7633 				prev_fits = fits;
7634 			} else if ((fits > max_fits) ||
7635 				   ((fits == max_fits) && (cpu_cap > max_spare_cap))) {
7636 				/*
7637 				 * Find the CPU with the maximum spare capacity
7638 				 * among the remaining CPUs in the performance
7639 				 * domain.
7640 				 */
7641 				max_spare_cap = cpu_cap;
7642 				max_spare_cap_cpu = cpu;
7643 				max_fits = fits;
7644 			}
7645 		}
7646 
7647 		if (max_spare_cap_cpu < 0 && prev_spare_cap == 0)
7648 			continue;
7649 
7650 		eenv_pd_busy_time(&eenv, cpus, p);
7651 		/* Compute the 'base' energy of the pd, without @p */
7652 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
7653 
7654 		/* Evaluate the energy impact of using prev_cpu. */
7655 		if (prev_spare_cap > 0) {
7656 			prev_delta = compute_energy(&eenv, pd, cpus, p,
7657 						    prev_cpu);
7658 			/* CPU utilization has changed */
7659 			if (prev_delta < base_energy)
7660 				goto unlock;
7661 			prev_delta -= base_energy;
7662 			prev_thermal_cap = cpu_thermal_cap;
7663 			best_delta = min(best_delta, prev_delta);
7664 		}
7665 
7666 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
7667 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
7668 			/* Current best energy cpu fits better */
7669 			if (max_fits < best_fits)
7670 				continue;
7671 
7672 			/*
7673 			 * Both don't fit performance hint (i.e. uclamp_min)
7674 			 * but best energy cpu has better capacity.
7675 			 */
7676 			if ((max_fits < 0) &&
7677 			    (cpu_thermal_cap <= best_thermal_cap))
7678 				continue;
7679 
7680 			cur_delta = compute_energy(&eenv, pd, cpus, p,
7681 						   max_spare_cap_cpu);
7682 			/* CPU utilization has changed */
7683 			if (cur_delta < base_energy)
7684 				goto unlock;
7685 			cur_delta -= base_energy;
7686 
7687 			/*
7688 			 * Both fit for the task but best energy cpu has lower
7689 			 * energy impact.
7690 			 */
7691 			if ((max_fits > 0) && (best_fits > 0) &&
7692 			    (cur_delta >= best_delta))
7693 				continue;
7694 
7695 			best_delta = cur_delta;
7696 			best_energy_cpu = max_spare_cap_cpu;
7697 			best_fits = max_fits;
7698 			best_thermal_cap = cpu_thermal_cap;
7699 		}
7700 	}
7701 	rcu_read_unlock();
7702 
7703 	if ((best_fits > prev_fits) ||
7704 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
7705 	    ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
7706 		target = best_energy_cpu;
7707 
7708 	return target;
7709 
7710 unlock:
7711 	rcu_read_unlock();
7712 
7713 	return target;
7714 }
7715 
7716 /*
7717  * select_task_rq_fair: Select target runqueue for the waking task in domains
7718  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
7719  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
7720  *
7721  * Balances load by selecting the idlest CPU in the idlest group, or under
7722  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
7723  *
7724  * Returns the target CPU number.
7725  */
7726 static int
7727 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
7728 {
7729 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
7730 	struct sched_domain *tmp, *sd = NULL;
7731 	int cpu = smp_processor_id();
7732 	int new_cpu = prev_cpu;
7733 	int want_affine = 0;
7734 	/* SD_flags and WF_flags share the first nibble */
7735 	int sd_flag = wake_flags & 0xF;
7736 
7737 	/*
7738 	 * required for stable ->cpus_allowed
7739 	 */
7740 	lockdep_assert_held(&p->pi_lock);
7741 	if (wake_flags & WF_TTWU) {
7742 		record_wakee(p);
7743 
7744 		if (sched_energy_enabled()) {
7745 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
7746 			if (new_cpu >= 0)
7747 				return new_cpu;
7748 			new_cpu = prev_cpu;
7749 		}
7750 
7751 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
7752 	}
7753 
7754 	rcu_read_lock();
7755 	for_each_domain(cpu, tmp) {
7756 		/*
7757 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
7758 		 * cpu is a valid SD_WAKE_AFFINE target.
7759 		 */
7760 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
7761 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
7762 			if (cpu != prev_cpu)
7763 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
7764 
7765 			sd = NULL; /* Prefer wake_affine over balance flags */
7766 			break;
7767 		}
7768 
7769 		/*
7770 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
7771 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
7772 		 * will usually go to the fast path.
7773 		 */
7774 		if (tmp->flags & sd_flag)
7775 			sd = tmp;
7776 		else if (!want_affine)
7777 			break;
7778 	}
7779 
7780 	if (unlikely(sd)) {
7781 		/* Slow path */
7782 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
7783 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
7784 		/* Fast path */
7785 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
7786 	}
7787 	rcu_read_unlock();
7788 
7789 	return new_cpu;
7790 }
7791 
7792 /*
7793  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
7794  * cfs_rq_of(p) references at time of call are still valid and identify the
7795  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
7796  */
7797 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
7798 {
7799 	struct sched_entity *se = &p->se;
7800 
7801 	/*
7802 	 * As blocked tasks retain absolute vruntime the migration needs to
7803 	 * deal with this by subtracting the old and adding the new
7804 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
7805 	 * the task on the new runqueue.
7806 	 */
7807 	if (READ_ONCE(p->__state) == TASK_WAKING) {
7808 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7809 
7810 		se->vruntime -= u64_u32_load(cfs_rq->min_vruntime);
7811 	}
7812 
7813 	if (!task_on_rq_migrating(p)) {
7814 		remove_entity_load_avg(se);
7815 
7816 		/*
7817 		 * Here, the task's PELT values have been updated according to
7818 		 * the current rq's clock. But if that clock hasn't been
7819 		 * updated in a while, a substantial idle time will be missed,
7820 		 * leading to an inflation after wake-up on the new rq.
7821 		 *
7822 		 * Estimate the missing time from the cfs_rq last_update_time
7823 		 * and update sched_avg to improve the PELT continuity after
7824 		 * migration.
7825 		 */
7826 		migrate_se_pelt_lag(se);
7827 	}
7828 
7829 	/* Tell new CPU we are migrated */
7830 	se->avg.last_update_time = 0;
7831 
7832 	update_scan_period(p, new_cpu);
7833 }
7834 
7835 static void task_dead_fair(struct task_struct *p)
7836 {
7837 	remove_entity_load_avg(&p->se);
7838 }
7839 
7840 static int
7841 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7842 {
7843 	if (rq->nr_running)
7844 		return 1;
7845 
7846 	return newidle_balance(rq, rf) != 0;
7847 }
7848 #endif /* CONFIG_SMP */
7849 
7850 static unsigned long wakeup_gran(struct sched_entity *se)
7851 {
7852 	unsigned long gran = sysctl_sched_wakeup_granularity;
7853 
7854 	/*
7855 	 * Since its curr running now, convert the gran from real-time
7856 	 * to virtual-time in his units.
7857 	 *
7858 	 * By using 'se' instead of 'curr' we penalize light tasks, so
7859 	 * they get preempted easier. That is, if 'se' < 'curr' then
7860 	 * the resulting gran will be larger, therefore penalizing the
7861 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7862 	 * be smaller, again penalizing the lighter task.
7863 	 *
7864 	 * This is especially important for buddies when the leftmost
7865 	 * task is higher priority than the buddy.
7866 	 */
7867 	return calc_delta_fair(gran, se);
7868 }
7869 
7870 /*
7871  * Should 'se' preempt 'curr'.
7872  *
7873  *             |s1
7874  *        |s2
7875  *   |s3
7876  *         g
7877  *      |<--->|c
7878  *
7879  *  w(c, s1) = -1
7880  *  w(c, s2) =  0
7881  *  w(c, s3) =  1
7882  *
7883  */
7884 static int
7885 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7886 {
7887 	s64 gran, vdiff = curr->vruntime - se->vruntime;
7888 
7889 	if (vdiff <= 0)
7890 		return -1;
7891 
7892 	gran = wakeup_gran(se);
7893 	if (vdiff > gran)
7894 		return 1;
7895 
7896 	return 0;
7897 }
7898 
7899 static void set_last_buddy(struct sched_entity *se)
7900 {
7901 	for_each_sched_entity(se) {
7902 		if (SCHED_WARN_ON(!se->on_rq))
7903 			return;
7904 		if (se_is_idle(se))
7905 			return;
7906 		cfs_rq_of(se)->last = se;
7907 	}
7908 }
7909 
7910 static void set_next_buddy(struct sched_entity *se)
7911 {
7912 	for_each_sched_entity(se) {
7913 		if (SCHED_WARN_ON(!se->on_rq))
7914 			return;
7915 		if (se_is_idle(se))
7916 			return;
7917 		cfs_rq_of(se)->next = se;
7918 	}
7919 }
7920 
7921 static void set_skip_buddy(struct sched_entity *se)
7922 {
7923 	for_each_sched_entity(se)
7924 		cfs_rq_of(se)->skip = se;
7925 }
7926 
7927 /*
7928  * Preempt the current task with a newly woken task if needed:
7929  */
7930 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7931 {
7932 	struct task_struct *curr = rq->curr;
7933 	struct sched_entity *se = &curr->se, *pse = &p->se;
7934 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7935 	int scale = cfs_rq->nr_running >= sched_nr_latency;
7936 	int next_buddy_marked = 0;
7937 	int cse_is_idle, pse_is_idle;
7938 
7939 	if (unlikely(se == pse))
7940 		return;
7941 
7942 	/*
7943 	 * This is possible from callers such as attach_tasks(), in which we
7944 	 * unconditionally check_preempt_curr() after an enqueue (which may have
7945 	 * lead to a throttle).  This both saves work and prevents false
7946 	 * next-buddy nomination below.
7947 	 */
7948 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7949 		return;
7950 
7951 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7952 		set_next_buddy(pse);
7953 		next_buddy_marked = 1;
7954 	}
7955 
7956 	/*
7957 	 * We can come here with TIF_NEED_RESCHED already set from new task
7958 	 * wake up path.
7959 	 *
7960 	 * Note: this also catches the edge-case of curr being in a throttled
7961 	 * group (e.g. via set_curr_task), since update_curr() (in the
7962 	 * enqueue of curr) will have resulted in resched being set.  This
7963 	 * prevents us from potentially nominating it as a false LAST_BUDDY
7964 	 * below.
7965 	 */
7966 	if (test_tsk_need_resched(curr))
7967 		return;
7968 
7969 	/* Idle tasks are by definition preempted by non-idle tasks. */
7970 	if (unlikely(task_has_idle_policy(curr)) &&
7971 	    likely(!task_has_idle_policy(p)))
7972 		goto preempt;
7973 
7974 	/*
7975 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7976 	 * is driven by the tick):
7977 	 */
7978 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7979 		return;
7980 
7981 	find_matching_se(&se, &pse);
7982 	WARN_ON_ONCE(!pse);
7983 
7984 	cse_is_idle = se_is_idle(se);
7985 	pse_is_idle = se_is_idle(pse);
7986 
7987 	/*
7988 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
7989 	 * in the inverse case).
7990 	 */
7991 	if (cse_is_idle && !pse_is_idle)
7992 		goto preempt;
7993 	if (cse_is_idle != pse_is_idle)
7994 		return;
7995 
7996 	update_curr(cfs_rq_of(se));
7997 	if (wakeup_preempt_entity(se, pse) == 1) {
7998 		/*
7999 		 * Bias pick_next to pick the sched entity that is
8000 		 * triggering this preemption.
8001 		 */
8002 		if (!next_buddy_marked)
8003 			set_next_buddy(pse);
8004 		goto preempt;
8005 	}
8006 
8007 	return;
8008 
8009 preempt:
8010 	resched_curr(rq);
8011 	/*
8012 	 * Only set the backward buddy when the current task is still
8013 	 * on the rq. This can happen when a wakeup gets interleaved
8014 	 * with schedule on the ->pre_schedule() or idle_balance()
8015 	 * point, either of which can * drop the rq lock.
8016 	 *
8017 	 * Also, during early boot the idle thread is in the fair class,
8018 	 * for obvious reasons its a bad idea to schedule back to it.
8019 	 */
8020 	if (unlikely(!se->on_rq || curr == rq->idle))
8021 		return;
8022 
8023 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
8024 		set_last_buddy(se);
8025 }
8026 
8027 #ifdef CONFIG_SMP
8028 static struct task_struct *pick_task_fair(struct rq *rq)
8029 {
8030 	struct sched_entity *se;
8031 	struct cfs_rq *cfs_rq;
8032 
8033 again:
8034 	cfs_rq = &rq->cfs;
8035 	if (!cfs_rq->nr_running)
8036 		return NULL;
8037 
8038 	do {
8039 		struct sched_entity *curr = cfs_rq->curr;
8040 
8041 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
8042 		if (curr) {
8043 			if (curr->on_rq)
8044 				update_curr(cfs_rq);
8045 			else
8046 				curr = NULL;
8047 
8048 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8049 				goto again;
8050 		}
8051 
8052 		se = pick_next_entity(cfs_rq, curr);
8053 		cfs_rq = group_cfs_rq(se);
8054 	} while (cfs_rq);
8055 
8056 	return task_of(se);
8057 }
8058 #endif
8059 
8060 struct task_struct *
8061 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8062 {
8063 	struct cfs_rq *cfs_rq = &rq->cfs;
8064 	struct sched_entity *se;
8065 	struct task_struct *p;
8066 	int new_tasks;
8067 
8068 again:
8069 	if (!sched_fair_runnable(rq))
8070 		goto idle;
8071 
8072 #ifdef CONFIG_FAIR_GROUP_SCHED
8073 	if (!prev || prev->sched_class != &fair_sched_class)
8074 		goto simple;
8075 
8076 	/*
8077 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8078 	 * likely that a next task is from the same cgroup as the current.
8079 	 *
8080 	 * Therefore attempt to avoid putting and setting the entire cgroup
8081 	 * hierarchy, only change the part that actually changes.
8082 	 */
8083 
8084 	do {
8085 		struct sched_entity *curr = cfs_rq->curr;
8086 
8087 		/*
8088 		 * Since we got here without doing put_prev_entity() we also
8089 		 * have to consider cfs_rq->curr. If it is still a runnable
8090 		 * entity, update_curr() will update its vruntime, otherwise
8091 		 * forget we've ever seen it.
8092 		 */
8093 		if (curr) {
8094 			if (curr->on_rq)
8095 				update_curr(cfs_rq);
8096 			else
8097 				curr = NULL;
8098 
8099 			/*
8100 			 * This call to check_cfs_rq_runtime() will do the
8101 			 * throttle and dequeue its entity in the parent(s).
8102 			 * Therefore the nr_running test will indeed
8103 			 * be correct.
8104 			 */
8105 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8106 				cfs_rq = &rq->cfs;
8107 
8108 				if (!cfs_rq->nr_running)
8109 					goto idle;
8110 
8111 				goto simple;
8112 			}
8113 		}
8114 
8115 		se = pick_next_entity(cfs_rq, curr);
8116 		cfs_rq = group_cfs_rq(se);
8117 	} while (cfs_rq);
8118 
8119 	p = task_of(se);
8120 
8121 	/*
8122 	 * Since we haven't yet done put_prev_entity and if the selected task
8123 	 * is a different task than we started out with, try and touch the
8124 	 * least amount of cfs_rqs.
8125 	 */
8126 	if (prev != p) {
8127 		struct sched_entity *pse = &prev->se;
8128 
8129 		while (!(cfs_rq = is_same_group(se, pse))) {
8130 			int se_depth = se->depth;
8131 			int pse_depth = pse->depth;
8132 
8133 			if (se_depth <= pse_depth) {
8134 				put_prev_entity(cfs_rq_of(pse), pse);
8135 				pse = parent_entity(pse);
8136 			}
8137 			if (se_depth >= pse_depth) {
8138 				set_next_entity(cfs_rq_of(se), se);
8139 				se = parent_entity(se);
8140 			}
8141 		}
8142 
8143 		put_prev_entity(cfs_rq, pse);
8144 		set_next_entity(cfs_rq, se);
8145 	}
8146 
8147 	goto done;
8148 simple:
8149 #endif
8150 	if (prev)
8151 		put_prev_task(rq, prev);
8152 
8153 	do {
8154 		se = pick_next_entity(cfs_rq, NULL);
8155 		set_next_entity(cfs_rq, se);
8156 		cfs_rq = group_cfs_rq(se);
8157 	} while (cfs_rq);
8158 
8159 	p = task_of(se);
8160 
8161 done: __maybe_unused;
8162 #ifdef CONFIG_SMP
8163 	/*
8164 	 * Move the next running task to the front of
8165 	 * the list, so our cfs_tasks list becomes MRU
8166 	 * one.
8167 	 */
8168 	list_move(&p->se.group_node, &rq->cfs_tasks);
8169 #endif
8170 
8171 	if (hrtick_enabled_fair(rq))
8172 		hrtick_start_fair(rq, p);
8173 
8174 	update_misfit_status(p, rq);
8175 
8176 	return p;
8177 
8178 idle:
8179 	if (!rf)
8180 		return NULL;
8181 
8182 	new_tasks = newidle_balance(rq, rf);
8183 
8184 	/*
8185 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
8186 	 * possible for any higher priority task to appear. In that case we
8187 	 * must re-start the pick_next_entity() loop.
8188 	 */
8189 	if (new_tasks < 0)
8190 		return RETRY_TASK;
8191 
8192 	if (new_tasks > 0)
8193 		goto again;
8194 
8195 	/*
8196 	 * rq is about to be idle, check if we need to update the
8197 	 * lost_idle_time of clock_pelt
8198 	 */
8199 	update_idle_rq_clock_pelt(rq);
8200 
8201 	return NULL;
8202 }
8203 
8204 static struct task_struct *__pick_next_task_fair(struct rq *rq)
8205 {
8206 	return pick_next_task_fair(rq, NULL, NULL);
8207 }
8208 
8209 /*
8210  * Account for a descheduled task:
8211  */
8212 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8213 {
8214 	struct sched_entity *se = &prev->se;
8215 	struct cfs_rq *cfs_rq;
8216 
8217 	for_each_sched_entity(se) {
8218 		cfs_rq = cfs_rq_of(se);
8219 		put_prev_entity(cfs_rq, se);
8220 	}
8221 }
8222 
8223 /*
8224  * sched_yield() is very simple
8225  *
8226  * The magic of dealing with the ->skip buddy is in pick_next_entity.
8227  */
8228 static void yield_task_fair(struct rq *rq)
8229 {
8230 	struct task_struct *curr = rq->curr;
8231 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8232 	struct sched_entity *se = &curr->se;
8233 
8234 	/*
8235 	 * Are we the only task in the tree?
8236 	 */
8237 	if (unlikely(rq->nr_running == 1))
8238 		return;
8239 
8240 	clear_buddies(cfs_rq, se);
8241 
8242 	if (curr->policy != SCHED_BATCH) {
8243 		update_rq_clock(rq);
8244 		/*
8245 		 * Update run-time statistics of the 'current'.
8246 		 */
8247 		update_curr(cfs_rq);
8248 		/*
8249 		 * Tell update_rq_clock() that we've just updated,
8250 		 * so we don't do microscopic update in schedule()
8251 		 * and double the fastpath cost.
8252 		 */
8253 		rq_clock_skip_update(rq);
8254 	}
8255 
8256 	set_skip_buddy(se);
8257 }
8258 
8259 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8260 {
8261 	struct sched_entity *se = &p->se;
8262 
8263 	/* throttled hierarchies are not runnable */
8264 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8265 		return false;
8266 
8267 	/* Tell the scheduler that we'd really like pse to run next. */
8268 	set_next_buddy(se);
8269 
8270 	yield_task_fair(rq);
8271 
8272 	return true;
8273 }
8274 
8275 #ifdef CONFIG_SMP
8276 /**************************************************
8277  * Fair scheduling class load-balancing methods.
8278  *
8279  * BASICS
8280  *
8281  * The purpose of load-balancing is to achieve the same basic fairness the
8282  * per-CPU scheduler provides, namely provide a proportional amount of compute
8283  * time to each task. This is expressed in the following equation:
8284  *
8285  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
8286  *
8287  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8288  * W_i,0 is defined as:
8289  *
8290  *   W_i,0 = \Sum_j w_i,j                                             (2)
8291  *
8292  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8293  * is derived from the nice value as per sched_prio_to_weight[].
8294  *
8295  * The weight average is an exponential decay average of the instantaneous
8296  * weight:
8297  *
8298  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
8299  *
8300  * C_i is the compute capacity of CPU i, typically it is the
8301  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8302  * can also include other factors [XXX].
8303  *
8304  * To achieve this balance we define a measure of imbalance which follows
8305  * directly from (1):
8306  *
8307  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
8308  *
8309  * We them move tasks around to minimize the imbalance. In the continuous
8310  * function space it is obvious this converges, in the discrete case we get
8311  * a few fun cases generally called infeasible weight scenarios.
8312  *
8313  * [XXX expand on:
8314  *     - infeasible weights;
8315  *     - local vs global optima in the discrete case. ]
8316  *
8317  *
8318  * SCHED DOMAINS
8319  *
8320  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8321  * for all i,j solution, we create a tree of CPUs that follows the hardware
8322  * topology where each level pairs two lower groups (or better). This results
8323  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8324  * tree to only the first of the previous level and we decrease the frequency
8325  * of load-balance at each level inv. proportional to the number of CPUs in
8326  * the groups.
8327  *
8328  * This yields:
8329  *
8330  *     log_2 n     1     n
8331  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
8332  *     i = 0      2^i   2^i
8333  *                               `- size of each group
8334  *         |         |     `- number of CPUs doing load-balance
8335  *         |         `- freq
8336  *         `- sum over all levels
8337  *
8338  * Coupled with a limit on how many tasks we can migrate every balance pass,
8339  * this makes (5) the runtime complexity of the balancer.
8340  *
8341  * An important property here is that each CPU is still (indirectly) connected
8342  * to every other CPU in at most O(log n) steps:
8343  *
8344  * The adjacency matrix of the resulting graph is given by:
8345  *
8346  *             log_2 n
8347  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
8348  *             k = 0
8349  *
8350  * And you'll find that:
8351  *
8352  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
8353  *
8354  * Showing there's indeed a path between every CPU in at most O(log n) steps.
8355  * The task movement gives a factor of O(m), giving a convergence complexity
8356  * of:
8357  *
8358  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
8359  *
8360  *
8361  * WORK CONSERVING
8362  *
8363  * In order to avoid CPUs going idle while there's still work to do, new idle
8364  * balancing is more aggressive and has the newly idle CPU iterate up the domain
8365  * tree itself instead of relying on other CPUs to bring it work.
8366  *
8367  * This adds some complexity to both (5) and (8) but it reduces the total idle
8368  * time.
8369  *
8370  * [XXX more?]
8371  *
8372  *
8373  * CGROUPS
8374  *
8375  * Cgroups make a horror show out of (2), instead of a simple sum we get:
8376  *
8377  *                                s_k,i
8378  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
8379  *                                 S_k
8380  *
8381  * Where
8382  *
8383  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
8384  *
8385  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8386  *
8387  * The big problem is S_k, its a global sum needed to compute a local (W_i)
8388  * property.
8389  *
8390  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8391  *      rewrite all of this once again.]
8392  */
8393 
8394 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8395 
8396 enum fbq_type { regular, remote, all };
8397 
8398 /*
8399  * 'group_type' describes the group of CPUs at the moment of load balancing.
8400  *
8401  * The enum is ordered by pulling priority, with the group with lowest priority
8402  * first so the group_type can simply be compared when selecting the busiest
8403  * group. See update_sd_pick_busiest().
8404  */
8405 enum group_type {
8406 	/* The group has spare capacity that can be used to run more tasks.  */
8407 	group_has_spare = 0,
8408 	/*
8409 	 * The group is fully used and the tasks don't compete for more CPU
8410 	 * cycles. Nevertheless, some tasks might wait before running.
8411 	 */
8412 	group_fully_busy,
8413 	/*
8414 	 * One task doesn't fit with CPU's capacity and must be migrated to a
8415 	 * more powerful CPU.
8416 	 */
8417 	group_misfit_task,
8418 	/*
8419 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8420 	 * and the task should be migrated to it instead of running on the
8421 	 * current CPU.
8422 	 */
8423 	group_asym_packing,
8424 	/*
8425 	 * The tasks' affinity constraints previously prevented the scheduler
8426 	 * from balancing the load across the system.
8427 	 */
8428 	group_imbalanced,
8429 	/*
8430 	 * The CPU is overloaded and can't provide expected CPU cycles to all
8431 	 * tasks.
8432 	 */
8433 	group_overloaded
8434 };
8435 
8436 enum migration_type {
8437 	migrate_load = 0,
8438 	migrate_util,
8439 	migrate_task,
8440 	migrate_misfit
8441 };
8442 
8443 #define LBF_ALL_PINNED	0x01
8444 #define LBF_NEED_BREAK	0x02
8445 #define LBF_DST_PINNED  0x04
8446 #define LBF_SOME_PINNED	0x08
8447 #define LBF_ACTIVE_LB	0x10
8448 
8449 struct lb_env {
8450 	struct sched_domain	*sd;
8451 
8452 	struct rq		*src_rq;
8453 	int			src_cpu;
8454 
8455 	int			dst_cpu;
8456 	struct rq		*dst_rq;
8457 
8458 	struct cpumask		*dst_grpmask;
8459 	int			new_dst_cpu;
8460 	enum cpu_idle_type	idle;
8461 	long			imbalance;
8462 	/* The set of CPUs under consideration for load-balancing */
8463 	struct cpumask		*cpus;
8464 
8465 	unsigned int		flags;
8466 
8467 	unsigned int		loop;
8468 	unsigned int		loop_break;
8469 	unsigned int		loop_max;
8470 
8471 	enum fbq_type		fbq_type;
8472 	enum migration_type	migration_type;
8473 	struct list_head	tasks;
8474 };
8475 
8476 /*
8477  * Is this task likely cache-hot:
8478  */
8479 static int task_hot(struct task_struct *p, struct lb_env *env)
8480 {
8481 	s64 delta;
8482 
8483 	lockdep_assert_rq_held(env->src_rq);
8484 
8485 	if (p->sched_class != &fair_sched_class)
8486 		return 0;
8487 
8488 	if (unlikely(task_has_idle_policy(p)))
8489 		return 0;
8490 
8491 	/* SMT siblings share cache */
8492 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8493 		return 0;
8494 
8495 	/*
8496 	 * Buddy candidates are cache hot:
8497 	 */
8498 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8499 			(&p->se == cfs_rq_of(&p->se)->next ||
8500 			 &p->se == cfs_rq_of(&p->se)->last))
8501 		return 1;
8502 
8503 	if (sysctl_sched_migration_cost == -1)
8504 		return 1;
8505 
8506 	/*
8507 	 * Don't migrate task if the task's cookie does not match
8508 	 * with the destination CPU's core cookie.
8509 	 */
8510 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8511 		return 1;
8512 
8513 	if (sysctl_sched_migration_cost == 0)
8514 		return 0;
8515 
8516 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8517 
8518 	return delta < (s64)sysctl_sched_migration_cost;
8519 }
8520 
8521 #ifdef CONFIG_NUMA_BALANCING
8522 /*
8523  * Returns 1, if task migration degrades locality
8524  * Returns 0, if task migration improves locality i.e migration preferred.
8525  * Returns -1, if task migration is not affected by locality.
8526  */
8527 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8528 {
8529 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
8530 	unsigned long src_weight, dst_weight;
8531 	int src_nid, dst_nid, dist;
8532 
8533 	if (!static_branch_likely(&sched_numa_balancing))
8534 		return -1;
8535 
8536 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8537 		return -1;
8538 
8539 	src_nid = cpu_to_node(env->src_cpu);
8540 	dst_nid = cpu_to_node(env->dst_cpu);
8541 
8542 	if (src_nid == dst_nid)
8543 		return -1;
8544 
8545 	/* Migrating away from the preferred node is always bad. */
8546 	if (src_nid == p->numa_preferred_nid) {
8547 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8548 			return 1;
8549 		else
8550 			return -1;
8551 	}
8552 
8553 	/* Encourage migration to the preferred node. */
8554 	if (dst_nid == p->numa_preferred_nid)
8555 		return 0;
8556 
8557 	/* Leaving a core idle is often worse than degrading locality. */
8558 	if (env->idle == CPU_IDLE)
8559 		return -1;
8560 
8561 	dist = node_distance(src_nid, dst_nid);
8562 	if (numa_group) {
8563 		src_weight = group_weight(p, src_nid, dist);
8564 		dst_weight = group_weight(p, dst_nid, dist);
8565 	} else {
8566 		src_weight = task_weight(p, src_nid, dist);
8567 		dst_weight = task_weight(p, dst_nid, dist);
8568 	}
8569 
8570 	return dst_weight < src_weight;
8571 }
8572 
8573 #else
8574 static inline int migrate_degrades_locality(struct task_struct *p,
8575 					     struct lb_env *env)
8576 {
8577 	return -1;
8578 }
8579 #endif
8580 
8581 /*
8582  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8583  */
8584 static
8585 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8586 {
8587 	int tsk_cache_hot;
8588 
8589 	lockdep_assert_rq_held(env->src_rq);
8590 
8591 	/*
8592 	 * We do not migrate tasks that are:
8593 	 * 1) throttled_lb_pair, or
8594 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8595 	 * 3) running (obviously), or
8596 	 * 4) are cache-hot on their current CPU.
8597 	 */
8598 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8599 		return 0;
8600 
8601 	/* Disregard pcpu kthreads; they are where they need to be. */
8602 	if (kthread_is_per_cpu(p))
8603 		return 0;
8604 
8605 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8606 		int cpu;
8607 
8608 		schedstat_inc(p->stats.nr_failed_migrations_affine);
8609 
8610 		env->flags |= LBF_SOME_PINNED;
8611 
8612 		/*
8613 		 * Remember if this task can be migrated to any other CPU in
8614 		 * our sched_group. We may want to revisit it if we couldn't
8615 		 * meet load balance goals by pulling other tasks on src_cpu.
8616 		 *
8617 		 * Avoid computing new_dst_cpu
8618 		 * - for NEWLY_IDLE
8619 		 * - if we have already computed one in current iteration
8620 		 * - if it's an active balance
8621 		 */
8622 		if (env->idle == CPU_NEWLY_IDLE ||
8623 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8624 			return 0;
8625 
8626 		/* Prevent to re-select dst_cpu via env's CPUs: */
8627 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8628 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8629 				env->flags |= LBF_DST_PINNED;
8630 				env->new_dst_cpu = cpu;
8631 				break;
8632 			}
8633 		}
8634 
8635 		return 0;
8636 	}
8637 
8638 	/* Record that we found at least one task that could run on dst_cpu */
8639 	env->flags &= ~LBF_ALL_PINNED;
8640 
8641 	if (task_on_cpu(env->src_rq, p)) {
8642 		schedstat_inc(p->stats.nr_failed_migrations_running);
8643 		return 0;
8644 	}
8645 
8646 	/*
8647 	 * Aggressive migration if:
8648 	 * 1) active balance
8649 	 * 2) destination numa is preferred
8650 	 * 3) task is cache cold, or
8651 	 * 4) too many balance attempts have failed.
8652 	 */
8653 	if (env->flags & LBF_ACTIVE_LB)
8654 		return 1;
8655 
8656 	tsk_cache_hot = migrate_degrades_locality(p, env);
8657 	if (tsk_cache_hot == -1)
8658 		tsk_cache_hot = task_hot(p, env);
8659 
8660 	if (tsk_cache_hot <= 0 ||
8661 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8662 		if (tsk_cache_hot == 1) {
8663 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8664 			schedstat_inc(p->stats.nr_forced_migrations);
8665 		}
8666 		return 1;
8667 	}
8668 
8669 	schedstat_inc(p->stats.nr_failed_migrations_hot);
8670 	return 0;
8671 }
8672 
8673 /*
8674  * detach_task() -- detach the task for the migration specified in env
8675  */
8676 static void detach_task(struct task_struct *p, struct lb_env *env)
8677 {
8678 	lockdep_assert_rq_held(env->src_rq);
8679 
8680 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
8681 	set_task_cpu(p, env->dst_cpu);
8682 }
8683 
8684 /*
8685  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
8686  * part of active balancing operations within "domain".
8687  *
8688  * Returns a task if successful and NULL otherwise.
8689  */
8690 static struct task_struct *detach_one_task(struct lb_env *env)
8691 {
8692 	struct task_struct *p;
8693 
8694 	lockdep_assert_rq_held(env->src_rq);
8695 
8696 	list_for_each_entry_reverse(p,
8697 			&env->src_rq->cfs_tasks, se.group_node) {
8698 		if (!can_migrate_task(p, env))
8699 			continue;
8700 
8701 		detach_task(p, env);
8702 
8703 		/*
8704 		 * Right now, this is only the second place where
8705 		 * lb_gained[env->idle] is updated (other is detach_tasks)
8706 		 * so we can safely collect stats here rather than
8707 		 * inside detach_tasks().
8708 		 */
8709 		schedstat_inc(env->sd->lb_gained[env->idle]);
8710 		return p;
8711 	}
8712 	return NULL;
8713 }
8714 
8715 /*
8716  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
8717  * busiest_rq, as part of a balancing operation within domain "sd".
8718  *
8719  * Returns number of detached tasks if successful and 0 otherwise.
8720  */
8721 static int detach_tasks(struct lb_env *env)
8722 {
8723 	struct list_head *tasks = &env->src_rq->cfs_tasks;
8724 	unsigned long util, load;
8725 	struct task_struct *p;
8726 	int detached = 0;
8727 
8728 	lockdep_assert_rq_held(env->src_rq);
8729 
8730 	/*
8731 	 * Source run queue has been emptied by another CPU, clear
8732 	 * LBF_ALL_PINNED flag as we will not test any task.
8733 	 */
8734 	if (env->src_rq->nr_running <= 1) {
8735 		env->flags &= ~LBF_ALL_PINNED;
8736 		return 0;
8737 	}
8738 
8739 	if (env->imbalance <= 0)
8740 		return 0;
8741 
8742 	while (!list_empty(tasks)) {
8743 		/*
8744 		 * We don't want to steal all, otherwise we may be treated likewise,
8745 		 * which could at worst lead to a livelock crash.
8746 		 */
8747 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
8748 			break;
8749 
8750 		env->loop++;
8751 		/*
8752 		 * We've more or less seen every task there is, call it quits
8753 		 * unless we haven't found any movable task yet.
8754 		 */
8755 		if (env->loop > env->loop_max &&
8756 		    !(env->flags & LBF_ALL_PINNED))
8757 			break;
8758 
8759 		/* take a breather every nr_migrate tasks */
8760 		if (env->loop > env->loop_break) {
8761 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
8762 			env->flags |= LBF_NEED_BREAK;
8763 			break;
8764 		}
8765 
8766 		p = list_last_entry(tasks, struct task_struct, se.group_node);
8767 
8768 		if (!can_migrate_task(p, env))
8769 			goto next;
8770 
8771 		switch (env->migration_type) {
8772 		case migrate_load:
8773 			/*
8774 			 * Depending of the number of CPUs and tasks and the
8775 			 * cgroup hierarchy, task_h_load() can return a null
8776 			 * value. Make sure that env->imbalance decreases
8777 			 * otherwise detach_tasks() will stop only after
8778 			 * detaching up to loop_max tasks.
8779 			 */
8780 			load = max_t(unsigned long, task_h_load(p), 1);
8781 
8782 			if (sched_feat(LB_MIN) &&
8783 			    load < 16 && !env->sd->nr_balance_failed)
8784 				goto next;
8785 
8786 			/*
8787 			 * Make sure that we don't migrate too much load.
8788 			 * Nevertheless, let relax the constraint if
8789 			 * scheduler fails to find a good waiting task to
8790 			 * migrate.
8791 			 */
8792 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
8793 				goto next;
8794 
8795 			env->imbalance -= load;
8796 			break;
8797 
8798 		case migrate_util:
8799 			util = task_util_est(p);
8800 
8801 			if (util > env->imbalance)
8802 				goto next;
8803 
8804 			env->imbalance -= util;
8805 			break;
8806 
8807 		case migrate_task:
8808 			env->imbalance--;
8809 			break;
8810 
8811 		case migrate_misfit:
8812 			/* This is not a misfit task */
8813 			if (task_fits_cpu(p, env->src_cpu))
8814 				goto next;
8815 
8816 			env->imbalance = 0;
8817 			break;
8818 		}
8819 
8820 		detach_task(p, env);
8821 		list_add(&p->se.group_node, &env->tasks);
8822 
8823 		detached++;
8824 
8825 #ifdef CONFIG_PREEMPTION
8826 		/*
8827 		 * NEWIDLE balancing is a source of latency, so preemptible
8828 		 * kernels will stop after the first task is detached to minimize
8829 		 * the critical section.
8830 		 */
8831 		if (env->idle == CPU_NEWLY_IDLE)
8832 			break;
8833 #endif
8834 
8835 		/*
8836 		 * We only want to steal up to the prescribed amount of
8837 		 * load/util/tasks.
8838 		 */
8839 		if (env->imbalance <= 0)
8840 			break;
8841 
8842 		continue;
8843 next:
8844 		list_move(&p->se.group_node, tasks);
8845 	}
8846 
8847 	/*
8848 	 * Right now, this is one of only two places we collect this stat
8849 	 * so we can safely collect detach_one_task() stats here rather
8850 	 * than inside detach_one_task().
8851 	 */
8852 	schedstat_add(env->sd->lb_gained[env->idle], detached);
8853 
8854 	return detached;
8855 }
8856 
8857 /*
8858  * attach_task() -- attach the task detached by detach_task() to its new rq.
8859  */
8860 static void attach_task(struct rq *rq, struct task_struct *p)
8861 {
8862 	lockdep_assert_rq_held(rq);
8863 
8864 	WARN_ON_ONCE(task_rq(p) != rq);
8865 	activate_task(rq, p, ENQUEUE_NOCLOCK);
8866 	check_preempt_curr(rq, p, 0);
8867 }
8868 
8869 /*
8870  * attach_one_task() -- attaches the task returned from detach_one_task() to
8871  * its new rq.
8872  */
8873 static void attach_one_task(struct rq *rq, struct task_struct *p)
8874 {
8875 	struct rq_flags rf;
8876 
8877 	rq_lock(rq, &rf);
8878 	update_rq_clock(rq);
8879 	attach_task(rq, p);
8880 	rq_unlock(rq, &rf);
8881 }
8882 
8883 /*
8884  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8885  * new rq.
8886  */
8887 static void attach_tasks(struct lb_env *env)
8888 {
8889 	struct list_head *tasks = &env->tasks;
8890 	struct task_struct *p;
8891 	struct rq_flags rf;
8892 
8893 	rq_lock(env->dst_rq, &rf);
8894 	update_rq_clock(env->dst_rq);
8895 
8896 	while (!list_empty(tasks)) {
8897 		p = list_first_entry(tasks, struct task_struct, se.group_node);
8898 		list_del_init(&p->se.group_node);
8899 
8900 		attach_task(env->dst_rq, p);
8901 	}
8902 
8903 	rq_unlock(env->dst_rq, &rf);
8904 }
8905 
8906 #ifdef CONFIG_NO_HZ_COMMON
8907 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8908 {
8909 	if (cfs_rq->avg.load_avg)
8910 		return true;
8911 
8912 	if (cfs_rq->avg.util_avg)
8913 		return true;
8914 
8915 	return false;
8916 }
8917 
8918 static inline bool others_have_blocked(struct rq *rq)
8919 {
8920 	if (READ_ONCE(rq->avg_rt.util_avg))
8921 		return true;
8922 
8923 	if (READ_ONCE(rq->avg_dl.util_avg))
8924 		return true;
8925 
8926 	if (thermal_load_avg(rq))
8927 		return true;
8928 
8929 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8930 	if (READ_ONCE(rq->avg_irq.util_avg))
8931 		return true;
8932 #endif
8933 
8934 	return false;
8935 }
8936 
8937 static inline void update_blocked_load_tick(struct rq *rq)
8938 {
8939 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8940 }
8941 
8942 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8943 {
8944 	if (!has_blocked)
8945 		rq->has_blocked_load = 0;
8946 }
8947 #else
8948 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8949 static inline bool others_have_blocked(struct rq *rq) { return false; }
8950 static inline void update_blocked_load_tick(struct rq *rq) {}
8951 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8952 #endif
8953 
8954 static bool __update_blocked_others(struct rq *rq, bool *done)
8955 {
8956 	const struct sched_class *curr_class;
8957 	u64 now = rq_clock_pelt(rq);
8958 	unsigned long thermal_pressure;
8959 	bool decayed;
8960 
8961 	/*
8962 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8963 	 * DL and IRQ signals have been updated before updating CFS.
8964 	 */
8965 	curr_class = rq->curr->sched_class;
8966 
8967 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8968 
8969 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8970 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8971 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8972 		  update_irq_load_avg(rq, 0);
8973 
8974 	if (others_have_blocked(rq))
8975 		*done = false;
8976 
8977 	return decayed;
8978 }
8979 
8980 #ifdef CONFIG_FAIR_GROUP_SCHED
8981 
8982 static bool __update_blocked_fair(struct rq *rq, bool *done)
8983 {
8984 	struct cfs_rq *cfs_rq, *pos;
8985 	bool decayed = false;
8986 	int cpu = cpu_of(rq);
8987 
8988 	/*
8989 	 * Iterates the task_group tree in a bottom up fashion, see
8990 	 * list_add_leaf_cfs_rq() for details.
8991 	 */
8992 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8993 		struct sched_entity *se;
8994 
8995 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8996 			update_tg_load_avg(cfs_rq);
8997 
8998 			if (cfs_rq->nr_running == 0)
8999 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9000 
9001 			if (cfs_rq == &rq->cfs)
9002 				decayed = true;
9003 		}
9004 
9005 		/* Propagate pending load changes to the parent, if any: */
9006 		se = cfs_rq->tg->se[cpu];
9007 		if (se && !skip_blocked_update(se))
9008 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9009 
9010 		/*
9011 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9012 		 * decayed cfs_rqs linger on the list.
9013 		 */
9014 		if (cfs_rq_is_decayed(cfs_rq))
9015 			list_del_leaf_cfs_rq(cfs_rq);
9016 
9017 		/* Don't need periodic decay once load/util_avg are null */
9018 		if (cfs_rq_has_blocked(cfs_rq))
9019 			*done = false;
9020 	}
9021 
9022 	return decayed;
9023 }
9024 
9025 /*
9026  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9027  * This needs to be done in a top-down fashion because the load of a child
9028  * group is a fraction of its parents load.
9029  */
9030 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9031 {
9032 	struct rq *rq = rq_of(cfs_rq);
9033 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9034 	unsigned long now = jiffies;
9035 	unsigned long load;
9036 
9037 	if (cfs_rq->last_h_load_update == now)
9038 		return;
9039 
9040 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9041 	for_each_sched_entity(se) {
9042 		cfs_rq = cfs_rq_of(se);
9043 		WRITE_ONCE(cfs_rq->h_load_next, se);
9044 		if (cfs_rq->last_h_load_update == now)
9045 			break;
9046 	}
9047 
9048 	if (!se) {
9049 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9050 		cfs_rq->last_h_load_update = now;
9051 	}
9052 
9053 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9054 		load = cfs_rq->h_load;
9055 		load = div64_ul(load * se->avg.load_avg,
9056 			cfs_rq_load_avg(cfs_rq) + 1);
9057 		cfs_rq = group_cfs_rq(se);
9058 		cfs_rq->h_load = load;
9059 		cfs_rq->last_h_load_update = now;
9060 	}
9061 }
9062 
9063 static unsigned long task_h_load(struct task_struct *p)
9064 {
9065 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9066 
9067 	update_cfs_rq_h_load(cfs_rq);
9068 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9069 			cfs_rq_load_avg(cfs_rq) + 1);
9070 }
9071 #else
9072 static bool __update_blocked_fair(struct rq *rq, bool *done)
9073 {
9074 	struct cfs_rq *cfs_rq = &rq->cfs;
9075 	bool decayed;
9076 
9077 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9078 	if (cfs_rq_has_blocked(cfs_rq))
9079 		*done = false;
9080 
9081 	return decayed;
9082 }
9083 
9084 static unsigned long task_h_load(struct task_struct *p)
9085 {
9086 	return p->se.avg.load_avg;
9087 }
9088 #endif
9089 
9090 static void update_blocked_averages(int cpu)
9091 {
9092 	bool decayed = false, done = true;
9093 	struct rq *rq = cpu_rq(cpu);
9094 	struct rq_flags rf;
9095 
9096 	rq_lock_irqsave(rq, &rf);
9097 	update_blocked_load_tick(rq);
9098 	update_rq_clock(rq);
9099 
9100 	decayed |= __update_blocked_others(rq, &done);
9101 	decayed |= __update_blocked_fair(rq, &done);
9102 
9103 	update_blocked_load_status(rq, !done);
9104 	if (decayed)
9105 		cpufreq_update_util(rq, 0);
9106 	rq_unlock_irqrestore(rq, &rf);
9107 }
9108 
9109 /********** Helpers for find_busiest_group ************************/
9110 
9111 /*
9112  * sg_lb_stats - stats of a sched_group required for load_balancing
9113  */
9114 struct sg_lb_stats {
9115 	unsigned long avg_load; /*Avg load across the CPUs of the group */
9116 	unsigned long group_load; /* Total load over the CPUs of the group */
9117 	unsigned long group_capacity;
9118 	unsigned long group_util; /* Total utilization over the CPUs of the group */
9119 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9120 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
9121 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9122 	unsigned int idle_cpus;
9123 	unsigned int group_weight;
9124 	enum group_type group_type;
9125 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9126 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9127 #ifdef CONFIG_NUMA_BALANCING
9128 	unsigned int nr_numa_running;
9129 	unsigned int nr_preferred_running;
9130 #endif
9131 };
9132 
9133 /*
9134  * sd_lb_stats - Structure to store the statistics of a sched_domain
9135  *		 during load balancing.
9136  */
9137 struct sd_lb_stats {
9138 	struct sched_group *busiest;	/* Busiest group in this sd */
9139 	struct sched_group *local;	/* Local group in this sd */
9140 	unsigned long total_load;	/* Total load of all groups in sd */
9141 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
9142 	unsigned long avg_load;	/* Average load across all groups in sd */
9143 	unsigned int prefer_sibling; /* tasks should go to sibling first */
9144 
9145 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
9146 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
9147 };
9148 
9149 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9150 {
9151 	/*
9152 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9153 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9154 	 * We must however set busiest_stat::group_type and
9155 	 * busiest_stat::idle_cpus to the worst busiest group because
9156 	 * update_sd_pick_busiest() reads these before assignment.
9157 	 */
9158 	*sds = (struct sd_lb_stats){
9159 		.busiest = NULL,
9160 		.local = NULL,
9161 		.total_load = 0UL,
9162 		.total_capacity = 0UL,
9163 		.busiest_stat = {
9164 			.idle_cpus = UINT_MAX,
9165 			.group_type = group_has_spare,
9166 		},
9167 	};
9168 }
9169 
9170 static unsigned long scale_rt_capacity(int cpu)
9171 {
9172 	struct rq *rq = cpu_rq(cpu);
9173 	unsigned long max = arch_scale_cpu_capacity(cpu);
9174 	unsigned long used, free;
9175 	unsigned long irq;
9176 
9177 	irq = cpu_util_irq(rq);
9178 
9179 	if (unlikely(irq >= max))
9180 		return 1;
9181 
9182 	/*
9183 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9184 	 * (running and not running) with weights 0 and 1024 respectively.
9185 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
9186 	 * average uses the actual delta max capacity(load).
9187 	 */
9188 	used = READ_ONCE(rq->avg_rt.util_avg);
9189 	used += READ_ONCE(rq->avg_dl.util_avg);
9190 	used += thermal_load_avg(rq);
9191 
9192 	if (unlikely(used >= max))
9193 		return 1;
9194 
9195 	free = max - used;
9196 
9197 	return scale_irq_capacity(free, irq, max);
9198 }
9199 
9200 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9201 {
9202 	unsigned long capacity = scale_rt_capacity(cpu);
9203 	struct sched_group *sdg = sd->groups;
9204 
9205 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
9206 
9207 	if (!capacity)
9208 		capacity = 1;
9209 
9210 	cpu_rq(cpu)->cpu_capacity = capacity;
9211 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9212 
9213 	sdg->sgc->capacity = capacity;
9214 	sdg->sgc->min_capacity = capacity;
9215 	sdg->sgc->max_capacity = capacity;
9216 }
9217 
9218 void update_group_capacity(struct sched_domain *sd, int cpu)
9219 {
9220 	struct sched_domain *child = sd->child;
9221 	struct sched_group *group, *sdg = sd->groups;
9222 	unsigned long capacity, min_capacity, max_capacity;
9223 	unsigned long interval;
9224 
9225 	interval = msecs_to_jiffies(sd->balance_interval);
9226 	interval = clamp(interval, 1UL, max_load_balance_interval);
9227 	sdg->sgc->next_update = jiffies + interval;
9228 
9229 	if (!child) {
9230 		update_cpu_capacity(sd, cpu);
9231 		return;
9232 	}
9233 
9234 	capacity = 0;
9235 	min_capacity = ULONG_MAX;
9236 	max_capacity = 0;
9237 
9238 	if (child->flags & SD_OVERLAP) {
9239 		/*
9240 		 * SD_OVERLAP domains cannot assume that child groups
9241 		 * span the current group.
9242 		 */
9243 
9244 		for_each_cpu(cpu, sched_group_span(sdg)) {
9245 			unsigned long cpu_cap = capacity_of(cpu);
9246 
9247 			capacity += cpu_cap;
9248 			min_capacity = min(cpu_cap, min_capacity);
9249 			max_capacity = max(cpu_cap, max_capacity);
9250 		}
9251 	} else  {
9252 		/*
9253 		 * !SD_OVERLAP domains can assume that child groups
9254 		 * span the current group.
9255 		 */
9256 
9257 		group = child->groups;
9258 		do {
9259 			struct sched_group_capacity *sgc = group->sgc;
9260 
9261 			capacity += sgc->capacity;
9262 			min_capacity = min(sgc->min_capacity, min_capacity);
9263 			max_capacity = max(sgc->max_capacity, max_capacity);
9264 			group = group->next;
9265 		} while (group != child->groups);
9266 	}
9267 
9268 	sdg->sgc->capacity = capacity;
9269 	sdg->sgc->min_capacity = min_capacity;
9270 	sdg->sgc->max_capacity = max_capacity;
9271 }
9272 
9273 /*
9274  * Check whether the capacity of the rq has been noticeably reduced by side
9275  * activity. The imbalance_pct is used for the threshold.
9276  * Return true is the capacity is reduced
9277  */
9278 static inline int
9279 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9280 {
9281 	return ((rq->cpu_capacity * sd->imbalance_pct) <
9282 				(rq->cpu_capacity_orig * 100));
9283 }
9284 
9285 /*
9286  * Check whether a rq has a misfit task and if it looks like we can actually
9287  * help that task: we can migrate the task to a CPU of higher capacity, or
9288  * the task's current CPU is heavily pressured.
9289  */
9290 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
9291 {
9292 	return rq->misfit_task_load &&
9293 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
9294 		 check_cpu_capacity(rq, sd));
9295 }
9296 
9297 /*
9298  * Group imbalance indicates (and tries to solve) the problem where balancing
9299  * groups is inadequate due to ->cpus_ptr constraints.
9300  *
9301  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9302  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9303  * Something like:
9304  *
9305  *	{ 0 1 2 3 } { 4 5 6 7 }
9306  *	        *     * * *
9307  *
9308  * If we were to balance group-wise we'd place two tasks in the first group and
9309  * two tasks in the second group. Clearly this is undesired as it will overload
9310  * cpu 3 and leave one of the CPUs in the second group unused.
9311  *
9312  * The current solution to this issue is detecting the skew in the first group
9313  * by noticing the lower domain failed to reach balance and had difficulty
9314  * moving tasks due to affinity constraints.
9315  *
9316  * When this is so detected; this group becomes a candidate for busiest; see
9317  * update_sd_pick_busiest(). And calculate_imbalance() and
9318  * find_busiest_group() avoid some of the usual balance conditions to allow it
9319  * to create an effective group imbalance.
9320  *
9321  * This is a somewhat tricky proposition since the next run might not find the
9322  * group imbalance and decide the groups need to be balanced again. A most
9323  * subtle and fragile situation.
9324  */
9325 
9326 static inline int sg_imbalanced(struct sched_group *group)
9327 {
9328 	return group->sgc->imbalance;
9329 }
9330 
9331 /*
9332  * group_has_capacity returns true if the group has spare capacity that could
9333  * be used by some tasks.
9334  * We consider that a group has spare capacity if the number of task is
9335  * smaller than the number of CPUs or if the utilization is lower than the
9336  * available capacity for CFS tasks.
9337  * For the latter, we use a threshold to stabilize the state, to take into
9338  * account the variance of the tasks' load and to return true if the available
9339  * capacity in meaningful for the load balancer.
9340  * As an example, an available capacity of 1% can appear but it doesn't make
9341  * any benefit for the load balance.
9342  */
9343 static inline bool
9344 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9345 {
9346 	if (sgs->sum_nr_running < sgs->group_weight)
9347 		return true;
9348 
9349 	if ((sgs->group_capacity * imbalance_pct) <
9350 			(sgs->group_runnable * 100))
9351 		return false;
9352 
9353 	if ((sgs->group_capacity * 100) >
9354 			(sgs->group_util * imbalance_pct))
9355 		return true;
9356 
9357 	return false;
9358 }
9359 
9360 /*
9361  *  group_is_overloaded returns true if the group has more tasks than it can
9362  *  handle.
9363  *  group_is_overloaded is not equals to !group_has_capacity because a group
9364  *  with the exact right number of tasks, has no more spare capacity but is not
9365  *  overloaded so both group_has_capacity and group_is_overloaded return
9366  *  false.
9367  */
9368 static inline bool
9369 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9370 {
9371 	if (sgs->sum_nr_running <= sgs->group_weight)
9372 		return false;
9373 
9374 	if ((sgs->group_capacity * 100) <
9375 			(sgs->group_util * imbalance_pct))
9376 		return true;
9377 
9378 	if ((sgs->group_capacity * imbalance_pct) <
9379 			(sgs->group_runnable * 100))
9380 		return true;
9381 
9382 	return false;
9383 }
9384 
9385 static inline enum
9386 group_type group_classify(unsigned int imbalance_pct,
9387 			  struct sched_group *group,
9388 			  struct sg_lb_stats *sgs)
9389 {
9390 	if (group_is_overloaded(imbalance_pct, sgs))
9391 		return group_overloaded;
9392 
9393 	if (sg_imbalanced(group))
9394 		return group_imbalanced;
9395 
9396 	if (sgs->group_asym_packing)
9397 		return group_asym_packing;
9398 
9399 	if (sgs->group_misfit_task_load)
9400 		return group_misfit_task;
9401 
9402 	if (!group_has_capacity(imbalance_pct, sgs))
9403 		return group_fully_busy;
9404 
9405 	return group_has_spare;
9406 }
9407 
9408 /**
9409  * sched_use_asym_prio - Check whether asym_packing priority must be used
9410  * @sd:		The scheduling domain of the load balancing
9411  * @cpu:	A CPU
9412  *
9413  * Always use CPU priority when balancing load between SMT siblings. When
9414  * balancing load between cores, it is not sufficient that @cpu is idle. Only
9415  * use CPU priority if the whole core is idle.
9416  *
9417  * Returns: True if the priority of @cpu must be followed. False otherwise.
9418  */
9419 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
9420 {
9421 	if (!sched_smt_active())
9422 		return true;
9423 
9424 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
9425 }
9426 
9427 /**
9428  * sched_asym - Check if the destination CPU can do asym_packing load balance
9429  * @env:	The load balancing environment
9430  * @sds:	Load-balancing data with statistics of the local group
9431  * @sgs:	Load-balancing statistics of the candidate busiest group
9432  * @group:	The candidate busiest group
9433  *
9434  * @env::dst_cpu can do asym_packing if it has higher priority than the
9435  * preferred CPU of @group.
9436  *
9437  * SMT is a special case. If we are balancing load between cores, @env::dst_cpu
9438  * can do asym_packing balance only if all its SMT siblings are idle. Also, it
9439  * can only do it if @group is an SMT group and has exactly on busy CPU. Larger
9440  * imbalances in the number of CPUS are dealt with in find_busiest_group().
9441  *
9442  * If we are balancing load within an SMT core, or at DIE domain level, always
9443  * proceed.
9444  *
9445  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
9446  * otherwise.
9447  */
9448 static inline bool
9449 sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
9450 	   struct sched_group *group)
9451 {
9452 	/* Ensure that the whole local core is idle, if applicable. */
9453 	if (!sched_use_asym_prio(env->sd, env->dst_cpu))
9454 		return false;
9455 
9456 	/*
9457 	 * CPU priorities does not make sense for SMT cores with more than one
9458 	 * busy sibling.
9459 	 */
9460 	if (group->flags & SD_SHARE_CPUCAPACITY) {
9461 		if (sgs->group_weight - sgs->idle_cpus != 1)
9462 			return false;
9463 	}
9464 
9465 	return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
9466 }
9467 
9468 static inline bool
9469 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9470 {
9471 	/*
9472 	 * When there is more than 1 task, the group_overloaded case already
9473 	 * takes care of cpu with reduced capacity
9474 	 */
9475 	if (rq->cfs.h_nr_running != 1)
9476 		return false;
9477 
9478 	return check_cpu_capacity(rq, sd);
9479 }
9480 
9481 /**
9482  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9483  * @env: The load balancing environment.
9484  * @sds: Load-balancing data with statistics of the local group.
9485  * @group: sched_group whose statistics are to be updated.
9486  * @sgs: variable to hold the statistics for this group.
9487  * @sg_status: Holds flag indicating the status of the sched_group
9488  */
9489 static inline void update_sg_lb_stats(struct lb_env *env,
9490 				      struct sd_lb_stats *sds,
9491 				      struct sched_group *group,
9492 				      struct sg_lb_stats *sgs,
9493 				      int *sg_status)
9494 {
9495 	int i, nr_running, local_group;
9496 
9497 	memset(sgs, 0, sizeof(*sgs));
9498 
9499 	local_group = group == sds->local;
9500 
9501 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9502 		struct rq *rq = cpu_rq(i);
9503 		unsigned long load = cpu_load(rq);
9504 
9505 		sgs->group_load += load;
9506 		sgs->group_util += cpu_util_cfs(i);
9507 		sgs->group_runnable += cpu_runnable(rq);
9508 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9509 
9510 		nr_running = rq->nr_running;
9511 		sgs->sum_nr_running += nr_running;
9512 
9513 		if (nr_running > 1)
9514 			*sg_status |= SG_OVERLOAD;
9515 
9516 		if (cpu_overutilized(i))
9517 			*sg_status |= SG_OVERUTILIZED;
9518 
9519 #ifdef CONFIG_NUMA_BALANCING
9520 		sgs->nr_numa_running += rq->nr_numa_running;
9521 		sgs->nr_preferred_running += rq->nr_preferred_running;
9522 #endif
9523 		/*
9524 		 * No need to call idle_cpu() if nr_running is not 0
9525 		 */
9526 		if (!nr_running && idle_cpu(i)) {
9527 			sgs->idle_cpus++;
9528 			/* Idle cpu can't have misfit task */
9529 			continue;
9530 		}
9531 
9532 		if (local_group)
9533 			continue;
9534 
9535 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9536 			/* Check for a misfit task on the cpu */
9537 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9538 				sgs->group_misfit_task_load = rq->misfit_task_load;
9539 				*sg_status |= SG_OVERLOAD;
9540 			}
9541 		} else if ((env->idle != CPU_NOT_IDLE) &&
9542 			   sched_reduced_capacity(rq, env->sd)) {
9543 			/* Check for a task running on a CPU with reduced capacity */
9544 			if (sgs->group_misfit_task_load < load)
9545 				sgs->group_misfit_task_load = load;
9546 		}
9547 	}
9548 
9549 	sgs->group_capacity = group->sgc->capacity;
9550 
9551 	sgs->group_weight = group->group_weight;
9552 
9553 	/* Check if dst CPU is idle and preferred to this group */
9554 	if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
9555 	    env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9556 	    sched_asym(env, sds, sgs, group)) {
9557 		sgs->group_asym_packing = 1;
9558 	}
9559 
9560 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9561 
9562 	/* Computing avg_load makes sense only when group is overloaded */
9563 	if (sgs->group_type == group_overloaded)
9564 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9565 				sgs->group_capacity;
9566 }
9567 
9568 /**
9569  * update_sd_pick_busiest - return 1 on busiest group
9570  * @env: The load balancing environment.
9571  * @sds: sched_domain statistics
9572  * @sg: sched_group candidate to be checked for being the busiest
9573  * @sgs: sched_group statistics
9574  *
9575  * Determine if @sg is a busier group than the previously selected
9576  * busiest group.
9577  *
9578  * Return: %true if @sg is a busier group than the previously selected
9579  * busiest group. %false otherwise.
9580  */
9581 static bool update_sd_pick_busiest(struct lb_env *env,
9582 				   struct sd_lb_stats *sds,
9583 				   struct sched_group *sg,
9584 				   struct sg_lb_stats *sgs)
9585 {
9586 	struct sg_lb_stats *busiest = &sds->busiest_stat;
9587 
9588 	/* Make sure that there is at least one task to pull */
9589 	if (!sgs->sum_h_nr_running)
9590 		return false;
9591 
9592 	/*
9593 	 * Don't try to pull misfit tasks we can't help.
9594 	 * We can use max_capacity here as reduction in capacity on some
9595 	 * CPUs in the group should either be possible to resolve
9596 	 * internally or be covered by avg_load imbalance (eventually).
9597 	 */
9598 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9599 	    (sgs->group_type == group_misfit_task) &&
9600 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
9601 	     sds->local_stat.group_type != group_has_spare))
9602 		return false;
9603 
9604 	if (sgs->group_type > busiest->group_type)
9605 		return true;
9606 
9607 	if (sgs->group_type < busiest->group_type)
9608 		return false;
9609 
9610 	/*
9611 	 * The candidate and the current busiest group are the same type of
9612 	 * group. Let check which one is the busiest according to the type.
9613 	 */
9614 
9615 	switch (sgs->group_type) {
9616 	case group_overloaded:
9617 		/* Select the overloaded group with highest avg_load. */
9618 		if (sgs->avg_load <= busiest->avg_load)
9619 			return false;
9620 		break;
9621 
9622 	case group_imbalanced:
9623 		/*
9624 		 * Select the 1st imbalanced group as we don't have any way to
9625 		 * choose one more than another.
9626 		 */
9627 		return false;
9628 
9629 	case group_asym_packing:
9630 		/* Prefer to move from lowest priority CPU's work */
9631 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
9632 			return false;
9633 		break;
9634 
9635 	case group_misfit_task:
9636 		/*
9637 		 * If we have more than one misfit sg go with the biggest
9638 		 * misfit.
9639 		 */
9640 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9641 			return false;
9642 		break;
9643 
9644 	case group_fully_busy:
9645 		/*
9646 		 * Select the fully busy group with highest avg_load. In
9647 		 * theory, there is no need to pull task from such kind of
9648 		 * group because tasks have all compute capacity that they need
9649 		 * but we can still improve the overall throughput by reducing
9650 		 * contention when accessing shared HW resources.
9651 		 *
9652 		 * XXX for now avg_load is not computed and always 0 so we
9653 		 * select the 1st one, except if @sg is composed of SMT
9654 		 * siblings.
9655 		 */
9656 
9657 		if (sgs->avg_load < busiest->avg_load)
9658 			return false;
9659 
9660 		if (sgs->avg_load == busiest->avg_load) {
9661 			/*
9662 			 * SMT sched groups need more help than non-SMT groups.
9663 			 * If @sg happens to also be SMT, either choice is good.
9664 			 */
9665 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
9666 				return false;
9667 		}
9668 
9669 		break;
9670 
9671 	case group_has_spare:
9672 		/*
9673 		 * Select not overloaded group with lowest number of idle cpus
9674 		 * and highest number of running tasks. We could also compare
9675 		 * the spare capacity which is more stable but it can end up
9676 		 * that the group has less spare capacity but finally more idle
9677 		 * CPUs which means less opportunity to pull tasks.
9678 		 */
9679 		if (sgs->idle_cpus > busiest->idle_cpus)
9680 			return false;
9681 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
9682 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
9683 			return false;
9684 
9685 		break;
9686 	}
9687 
9688 	/*
9689 	 * Candidate sg has no more than one task per CPU and has higher
9690 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
9691 	 * throughput. Maximize throughput, power/energy consequences are not
9692 	 * considered.
9693 	 */
9694 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9695 	    (sgs->group_type <= group_fully_busy) &&
9696 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
9697 		return false;
9698 
9699 	return true;
9700 }
9701 
9702 #ifdef CONFIG_NUMA_BALANCING
9703 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9704 {
9705 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
9706 		return regular;
9707 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
9708 		return remote;
9709 	return all;
9710 }
9711 
9712 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9713 {
9714 	if (rq->nr_running > rq->nr_numa_running)
9715 		return regular;
9716 	if (rq->nr_running > rq->nr_preferred_running)
9717 		return remote;
9718 	return all;
9719 }
9720 #else
9721 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9722 {
9723 	return all;
9724 }
9725 
9726 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9727 {
9728 	return regular;
9729 }
9730 #endif /* CONFIG_NUMA_BALANCING */
9731 
9732 
9733 struct sg_lb_stats;
9734 
9735 /*
9736  * task_running_on_cpu - return 1 if @p is running on @cpu.
9737  */
9738 
9739 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
9740 {
9741 	/* Task has no contribution or is new */
9742 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
9743 		return 0;
9744 
9745 	if (task_on_rq_queued(p))
9746 		return 1;
9747 
9748 	return 0;
9749 }
9750 
9751 /**
9752  * idle_cpu_without - would a given CPU be idle without p ?
9753  * @cpu: the processor on which idleness is tested.
9754  * @p: task which should be ignored.
9755  *
9756  * Return: 1 if the CPU would be idle. 0 otherwise.
9757  */
9758 static int idle_cpu_without(int cpu, struct task_struct *p)
9759 {
9760 	struct rq *rq = cpu_rq(cpu);
9761 
9762 	if (rq->curr != rq->idle && rq->curr != p)
9763 		return 0;
9764 
9765 	/*
9766 	 * rq->nr_running can't be used but an updated version without the
9767 	 * impact of p on cpu must be used instead. The updated nr_running
9768 	 * be computed and tested before calling idle_cpu_without().
9769 	 */
9770 
9771 #ifdef CONFIG_SMP
9772 	if (rq->ttwu_pending)
9773 		return 0;
9774 #endif
9775 
9776 	return 1;
9777 }
9778 
9779 /*
9780  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
9781  * @sd: The sched_domain level to look for idlest group.
9782  * @group: sched_group whose statistics are to be updated.
9783  * @sgs: variable to hold the statistics for this group.
9784  * @p: The task for which we look for the idlest group/CPU.
9785  */
9786 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
9787 					  struct sched_group *group,
9788 					  struct sg_lb_stats *sgs,
9789 					  struct task_struct *p)
9790 {
9791 	int i, nr_running;
9792 
9793 	memset(sgs, 0, sizeof(*sgs));
9794 
9795 	/* Assume that task can't fit any CPU of the group */
9796 	if (sd->flags & SD_ASYM_CPUCAPACITY)
9797 		sgs->group_misfit_task_load = 1;
9798 
9799 	for_each_cpu(i, sched_group_span(group)) {
9800 		struct rq *rq = cpu_rq(i);
9801 		unsigned int local;
9802 
9803 		sgs->group_load += cpu_load_without(rq, p);
9804 		sgs->group_util += cpu_util_without(i, p);
9805 		sgs->group_runnable += cpu_runnable_without(rq, p);
9806 		local = task_running_on_cpu(i, p);
9807 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
9808 
9809 		nr_running = rq->nr_running - local;
9810 		sgs->sum_nr_running += nr_running;
9811 
9812 		/*
9813 		 * No need to call idle_cpu_without() if nr_running is not 0
9814 		 */
9815 		if (!nr_running && idle_cpu_without(i, p))
9816 			sgs->idle_cpus++;
9817 
9818 		/* Check if task fits in the CPU */
9819 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
9820 		    sgs->group_misfit_task_load &&
9821 		    task_fits_cpu(p, i))
9822 			sgs->group_misfit_task_load = 0;
9823 
9824 	}
9825 
9826 	sgs->group_capacity = group->sgc->capacity;
9827 
9828 	sgs->group_weight = group->group_weight;
9829 
9830 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
9831 
9832 	/*
9833 	 * Computing avg_load makes sense only when group is fully busy or
9834 	 * overloaded
9835 	 */
9836 	if (sgs->group_type == group_fully_busy ||
9837 		sgs->group_type == group_overloaded)
9838 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9839 				sgs->group_capacity;
9840 }
9841 
9842 static bool update_pick_idlest(struct sched_group *idlest,
9843 			       struct sg_lb_stats *idlest_sgs,
9844 			       struct sched_group *group,
9845 			       struct sg_lb_stats *sgs)
9846 {
9847 	if (sgs->group_type < idlest_sgs->group_type)
9848 		return true;
9849 
9850 	if (sgs->group_type > idlest_sgs->group_type)
9851 		return false;
9852 
9853 	/*
9854 	 * The candidate and the current idlest group are the same type of
9855 	 * group. Let check which one is the idlest according to the type.
9856 	 */
9857 
9858 	switch (sgs->group_type) {
9859 	case group_overloaded:
9860 	case group_fully_busy:
9861 		/* Select the group with lowest avg_load. */
9862 		if (idlest_sgs->avg_load <= sgs->avg_load)
9863 			return false;
9864 		break;
9865 
9866 	case group_imbalanced:
9867 	case group_asym_packing:
9868 		/* Those types are not used in the slow wakeup path */
9869 		return false;
9870 
9871 	case group_misfit_task:
9872 		/* Select group with the highest max capacity */
9873 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
9874 			return false;
9875 		break;
9876 
9877 	case group_has_spare:
9878 		/* Select group with most idle CPUs */
9879 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
9880 			return false;
9881 
9882 		/* Select group with lowest group_util */
9883 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
9884 			idlest_sgs->group_util <= sgs->group_util)
9885 			return false;
9886 
9887 		break;
9888 	}
9889 
9890 	return true;
9891 }
9892 
9893 /*
9894  * find_idlest_group() finds and returns the least busy CPU group within the
9895  * domain.
9896  *
9897  * Assumes p is allowed on at least one CPU in sd.
9898  */
9899 static struct sched_group *
9900 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9901 {
9902 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9903 	struct sg_lb_stats local_sgs, tmp_sgs;
9904 	struct sg_lb_stats *sgs;
9905 	unsigned long imbalance;
9906 	struct sg_lb_stats idlest_sgs = {
9907 			.avg_load = UINT_MAX,
9908 			.group_type = group_overloaded,
9909 	};
9910 
9911 	do {
9912 		int local_group;
9913 
9914 		/* Skip over this group if it has no CPUs allowed */
9915 		if (!cpumask_intersects(sched_group_span(group),
9916 					p->cpus_ptr))
9917 			continue;
9918 
9919 		/* Skip over this group if no cookie matched */
9920 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9921 			continue;
9922 
9923 		local_group = cpumask_test_cpu(this_cpu,
9924 					       sched_group_span(group));
9925 
9926 		if (local_group) {
9927 			sgs = &local_sgs;
9928 			local = group;
9929 		} else {
9930 			sgs = &tmp_sgs;
9931 		}
9932 
9933 		update_sg_wakeup_stats(sd, group, sgs, p);
9934 
9935 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9936 			idlest = group;
9937 			idlest_sgs = *sgs;
9938 		}
9939 
9940 	} while (group = group->next, group != sd->groups);
9941 
9942 
9943 	/* There is no idlest group to push tasks to */
9944 	if (!idlest)
9945 		return NULL;
9946 
9947 	/* The local group has been skipped because of CPU affinity */
9948 	if (!local)
9949 		return idlest;
9950 
9951 	/*
9952 	 * If the local group is idler than the selected idlest group
9953 	 * don't try and push the task.
9954 	 */
9955 	if (local_sgs.group_type < idlest_sgs.group_type)
9956 		return NULL;
9957 
9958 	/*
9959 	 * If the local group is busier than the selected idlest group
9960 	 * try and push the task.
9961 	 */
9962 	if (local_sgs.group_type > idlest_sgs.group_type)
9963 		return idlest;
9964 
9965 	switch (local_sgs.group_type) {
9966 	case group_overloaded:
9967 	case group_fully_busy:
9968 
9969 		/* Calculate allowed imbalance based on load */
9970 		imbalance = scale_load_down(NICE_0_LOAD) *
9971 				(sd->imbalance_pct-100) / 100;
9972 
9973 		/*
9974 		 * When comparing groups across NUMA domains, it's possible for
9975 		 * the local domain to be very lightly loaded relative to the
9976 		 * remote domains but "imbalance" skews the comparison making
9977 		 * remote CPUs look much more favourable. When considering
9978 		 * cross-domain, add imbalance to the load on the remote node
9979 		 * and consider staying local.
9980 		 */
9981 
9982 		if ((sd->flags & SD_NUMA) &&
9983 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9984 			return NULL;
9985 
9986 		/*
9987 		 * If the local group is less loaded than the selected
9988 		 * idlest group don't try and push any tasks.
9989 		 */
9990 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9991 			return NULL;
9992 
9993 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9994 			return NULL;
9995 		break;
9996 
9997 	case group_imbalanced:
9998 	case group_asym_packing:
9999 		/* Those type are not used in the slow wakeup path */
10000 		return NULL;
10001 
10002 	case group_misfit_task:
10003 		/* Select group with the highest max capacity */
10004 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10005 			return NULL;
10006 		break;
10007 
10008 	case group_has_spare:
10009 #ifdef CONFIG_NUMA
10010 		if (sd->flags & SD_NUMA) {
10011 			int imb_numa_nr = sd->imb_numa_nr;
10012 #ifdef CONFIG_NUMA_BALANCING
10013 			int idlest_cpu;
10014 			/*
10015 			 * If there is spare capacity at NUMA, try to select
10016 			 * the preferred node
10017 			 */
10018 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10019 				return NULL;
10020 
10021 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10022 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10023 				return idlest;
10024 #endif /* CONFIG_NUMA_BALANCING */
10025 			/*
10026 			 * Otherwise, keep the task close to the wakeup source
10027 			 * and improve locality if the number of running tasks
10028 			 * would remain below threshold where an imbalance is
10029 			 * allowed while accounting for the possibility the
10030 			 * task is pinned to a subset of CPUs. If there is a
10031 			 * real need of migration, periodic load balance will
10032 			 * take care of it.
10033 			 */
10034 			if (p->nr_cpus_allowed != NR_CPUS) {
10035 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10036 
10037 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10038 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10039 			}
10040 
10041 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10042 			if (!adjust_numa_imbalance(imbalance,
10043 						   local_sgs.sum_nr_running + 1,
10044 						   imb_numa_nr)) {
10045 				return NULL;
10046 			}
10047 		}
10048 #endif /* CONFIG_NUMA */
10049 
10050 		/*
10051 		 * Select group with highest number of idle CPUs. We could also
10052 		 * compare the utilization which is more stable but it can end
10053 		 * up that the group has less spare capacity but finally more
10054 		 * idle CPUs which means more opportunity to run task.
10055 		 */
10056 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10057 			return NULL;
10058 		break;
10059 	}
10060 
10061 	return idlest;
10062 }
10063 
10064 static void update_idle_cpu_scan(struct lb_env *env,
10065 				 unsigned long sum_util)
10066 {
10067 	struct sched_domain_shared *sd_share;
10068 	int llc_weight, pct;
10069 	u64 x, y, tmp;
10070 	/*
10071 	 * Update the number of CPUs to scan in LLC domain, which could
10072 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10073 	 * could be expensive because it is within a shared cache line.
10074 	 * So the write of this hint only occurs during periodic load
10075 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10076 	 * can fire way more frequently than the former.
10077 	 */
10078 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10079 		return;
10080 
10081 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10082 	if (env->sd->span_weight != llc_weight)
10083 		return;
10084 
10085 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10086 	if (!sd_share)
10087 		return;
10088 
10089 	/*
10090 	 * The number of CPUs to search drops as sum_util increases, when
10091 	 * sum_util hits 85% or above, the scan stops.
10092 	 * The reason to choose 85% as the threshold is because this is the
10093 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10094 	 *
10095 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10096 	 * and y'= y / SCHED_CAPACITY_SCALE
10097 	 *
10098 	 * x is the ratio of sum_util compared to the CPU capacity:
10099 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10100 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10101 	 * and the number of CPUs to scan is calculated by:
10102 	 *
10103 	 * nr_scan = llc_weight * y'                                    [2]
10104 	 *
10105 	 * When x hits the threshold of overloaded, AKA, when
10106 	 * x = 100 / pct, y drops to 0. According to [1],
10107 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10108 	 *
10109 	 * Scale x by SCHED_CAPACITY_SCALE:
10110 	 * x' = sum_util / llc_weight;                                  [3]
10111 	 *
10112 	 * and finally [1] becomes:
10113 	 * y = SCHED_CAPACITY_SCALE -
10114 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10115 	 *
10116 	 */
10117 	/* equation [3] */
10118 	x = sum_util;
10119 	do_div(x, llc_weight);
10120 
10121 	/* equation [4] */
10122 	pct = env->sd->imbalance_pct;
10123 	tmp = x * x * pct * pct;
10124 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10125 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10126 	y = SCHED_CAPACITY_SCALE - tmp;
10127 
10128 	/* equation [2] */
10129 	y *= llc_weight;
10130 	do_div(y, SCHED_CAPACITY_SCALE);
10131 	if ((int)y != sd_share->nr_idle_scan)
10132 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10133 }
10134 
10135 /**
10136  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10137  * @env: The load balancing environment.
10138  * @sds: variable to hold the statistics for this sched_domain.
10139  */
10140 
10141 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10142 {
10143 	struct sched_group *sg = env->sd->groups;
10144 	struct sg_lb_stats *local = &sds->local_stat;
10145 	struct sg_lb_stats tmp_sgs;
10146 	unsigned long sum_util = 0;
10147 	int sg_status = 0;
10148 
10149 	do {
10150 		struct sg_lb_stats *sgs = &tmp_sgs;
10151 		int local_group;
10152 
10153 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10154 		if (local_group) {
10155 			sds->local = sg;
10156 			sgs = local;
10157 
10158 			if (env->idle != CPU_NEWLY_IDLE ||
10159 			    time_after_eq(jiffies, sg->sgc->next_update))
10160 				update_group_capacity(env->sd, env->dst_cpu);
10161 		}
10162 
10163 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
10164 
10165 		if (local_group)
10166 			goto next_group;
10167 
10168 
10169 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
10170 			sds->busiest = sg;
10171 			sds->busiest_stat = *sgs;
10172 		}
10173 
10174 next_group:
10175 		/* Now, start updating sd_lb_stats */
10176 		sds->total_load += sgs->group_load;
10177 		sds->total_capacity += sgs->group_capacity;
10178 
10179 		sum_util += sgs->group_util;
10180 		sg = sg->next;
10181 	} while (sg != env->sd->groups);
10182 
10183 	/*
10184 	 * Indicate that the child domain of the busiest group prefers tasks
10185 	 * go to a child's sibling domains first. NB the flags of a sched group
10186 	 * are those of the child domain.
10187 	 */
10188 	if (sds->busiest)
10189 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10190 
10191 
10192 	if (env->sd->flags & SD_NUMA)
10193 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10194 
10195 	if (!env->sd->parent) {
10196 		struct root_domain *rd = env->dst_rq->rd;
10197 
10198 		/* update overload indicator if we are at root domain */
10199 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
10200 
10201 		/* Update over-utilization (tipping point, U >= 0) indicator */
10202 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
10203 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
10204 	} else if (sg_status & SG_OVERUTILIZED) {
10205 		struct root_domain *rd = env->dst_rq->rd;
10206 
10207 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
10208 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
10209 	}
10210 
10211 	update_idle_cpu_scan(env, sum_util);
10212 }
10213 
10214 /**
10215  * calculate_imbalance - Calculate the amount of imbalance present within the
10216  *			 groups of a given sched_domain during load balance.
10217  * @env: load balance environment
10218  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10219  */
10220 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10221 {
10222 	struct sg_lb_stats *local, *busiest;
10223 
10224 	local = &sds->local_stat;
10225 	busiest = &sds->busiest_stat;
10226 
10227 	if (busiest->group_type == group_misfit_task) {
10228 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10229 			/* Set imbalance to allow misfit tasks to be balanced. */
10230 			env->migration_type = migrate_misfit;
10231 			env->imbalance = 1;
10232 		} else {
10233 			/*
10234 			 * Set load imbalance to allow moving task from cpu
10235 			 * with reduced capacity.
10236 			 */
10237 			env->migration_type = migrate_load;
10238 			env->imbalance = busiest->group_misfit_task_load;
10239 		}
10240 		return;
10241 	}
10242 
10243 	if (busiest->group_type == group_asym_packing) {
10244 		/*
10245 		 * In case of asym capacity, we will try to migrate all load to
10246 		 * the preferred CPU.
10247 		 */
10248 		env->migration_type = migrate_task;
10249 		env->imbalance = busiest->sum_h_nr_running;
10250 		return;
10251 	}
10252 
10253 	if (busiest->group_type == group_imbalanced) {
10254 		/*
10255 		 * In the group_imb case we cannot rely on group-wide averages
10256 		 * to ensure CPU-load equilibrium, try to move any task to fix
10257 		 * the imbalance. The next load balance will take care of
10258 		 * balancing back the system.
10259 		 */
10260 		env->migration_type = migrate_task;
10261 		env->imbalance = 1;
10262 		return;
10263 	}
10264 
10265 	/*
10266 	 * Try to use spare capacity of local group without overloading it or
10267 	 * emptying busiest.
10268 	 */
10269 	if (local->group_type == group_has_spare) {
10270 		if ((busiest->group_type > group_fully_busy) &&
10271 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
10272 			/*
10273 			 * If busiest is overloaded, try to fill spare
10274 			 * capacity. This might end up creating spare capacity
10275 			 * in busiest or busiest still being overloaded but
10276 			 * there is no simple way to directly compute the
10277 			 * amount of load to migrate in order to balance the
10278 			 * system.
10279 			 */
10280 			env->migration_type = migrate_util;
10281 			env->imbalance = max(local->group_capacity, local->group_util) -
10282 					 local->group_util;
10283 
10284 			/*
10285 			 * In some cases, the group's utilization is max or even
10286 			 * higher than capacity because of migrations but the
10287 			 * local CPU is (newly) idle. There is at least one
10288 			 * waiting task in this overloaded busiest group. Let's
10289 			 * try to pull it.
10290 			 */
10291 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
10292 				env->migration_type = migrate_task;
10293 				env->imbalance = 1;
10294 			}
10295 
10296 			return;
10297 		}
10298 
10299 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
10300 			unsigned int nr_diff = busiest->sum_nr_running;
10301 			/*
10302 			 * When prefer sibling, evenly spread running tasks on
10303 			 * groups.
10304 			 */
10305 			env->migration_type = migrate_task;
10306 			lsub_positive(&nr_diff, local->sum_nr_running);
10307 			env->imbalance = nr_diff;
10308 		} else {
10309 
10310 			/*
10311 			 * If there is no overload, we just want to even the number of
10312 			 * idle cpus.
10313 			 */
10314 			env->migration_type = migrate_task;
10315 			env->imbalance = max_t(long, 0,
10316 					       (local->idle_cpus - busiest->idle_cpus));
10317 		}
10318 
10319 #ifdef CONFIG_NUMA
10320 		/* Consider allowing a small imbalance between NUMA groups */
10321 		if (env->sd->flags & SD_NUMA) {
10322 			env->imbalance = adjust_numa_imbalance(env->imbalance,
10323 							       local->sum_nr_running + 1,
10324 							       env->sd->imb_numa_nr);
10325 		}
10326 #endif
10327 
10328 		/* Number of tasks to move to restore balance */
10329 		env->imbalance >>= 1;
10330 
10331 		return;
10332 	}
10333 
10334 	/*
10335 	 * Local is fully busy but has to take more load to relieve the
10336 	 * busiest group
10337 	 */
10338 	if (local->group_type < group_overloaded) {
10339 		/*
10340 		 * Local will become overloaded so the avg_load metrics are
10341 		 * finally needed.
10342 		 */
10343 
10344 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10345 				  local->group_capacity;
10346 
10347 		/*
10348 		 * If the local group is more loaded than the selected
10349 		 * busiest group don't try to pull any tasks.
10350 		 */
10351 		if (local->avg_load >= busiest->avg_load) {
10352 			env->imbalance = 0;
10353 			return;
10354 		}
10355 
10356 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10357 				sds->total_capacity;
10358 
10359 		/*
10360 		 * If the local group is more loaded than the average system
10361 		 * load, don't try to pull any tasks.
10362 		 */
10363 		if (local->avg_load >= sds->avg_load) {
10364 			env->imbalance = 0;
10365 			return;
10366 		}
10367 
10368 	}
10369 
10370 	/*
10371 	 * Both group are or will become overloaded and we're trying to get all
10372 	 * the CPUs to the average_load, so we don't want to push ourselves
10373 	 * above the average load, nor do we wish to reduce the max loaded CPU
10374 	 * below the average load. At the same time, we also don't want to
10375 	 * reduce the group load below the group capacity. Thus we look for
10376 	 * the minimum possible imbalance.
10377 	 */
10378 	env->migration_type = migrate_load;
10379 	env->imbalance = min(
10380 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10381 		(sds->avg_load - local->avg_load) * local->group_capacity
10382 	) / SCHED_CAPACITY_SCALE;
10383 }
10384 
10385 /******* find_busiest_group() helpers end here *********************/
10386 
10387 /*
10388  * Decision matrix according to the local and busiest group type:
10389  *
10390  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10391  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
10392  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
10393  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
10394  * asym_packing     force     force      N/A    N/A  force      force
10395  * imbalanced       force     force      N/A    N/A  force      force
10396  * overloaded       force     force      N/A    N/A  force      avg_load
10397  *
10398  * N/A :      Not Applicable because already filtered while updating
10399  *            statistics.
10400  * balanced : The system is balanced for these 2 groups.
10401  * force :    Calculate the imbalance as load migration is probably needed.
10402  * avg_load : Only if imbalance is significant enough.
10403  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
10404  *            different in groups.
10405  */
10406 
10407 /**
10408  * find_busiest_group - Returns the busiest group within the sched_domain
10409  * if there is an imbalance.
10410  * @env: The load balancing environment.
10411  *
10412  * Also calculates the amount of runnable load which should be moved
10413  * to restore balance.
10414  *
10415  * Return:	- The busiest group if imbalance exists.
10416  */
10417 static struct sched_group *find_busiest_group(struct lb_env *env)
10418 {
10419 	struct sg_lb_stats *local, *busiest;
10420 	struct sd_lb_stats sds;
10421 
10422 	init_sd_lb_stats(&sds);
10423 
10424 	/*
10425 	 * Compute the various statistics relevant for load balancing at
10426 	 * this level.
10427 	 */
10428 	update_sd_lb_stats(env, &sds);
10429 
10430 	/* There is no busy sibling group to pull tasks from */
10431 	if (!sds.busiest)
10432 		goto out_balanced;
10433 
10434 	busiest = &sds.busiest_stat;
10435 
10436 	/* Misfit tasks should be dealt with regardless of the avg load */
10437 	if (busiest->group_type == group_misfit_task)
10438 		goto force_balance;
10439 
10440 	if (sched_energy_enabled()) {
10441 		struct root_domain *rd = env->dst_rq->rd;
10442 
10443 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
10444 			goto out_balanced;
10445 	}
10446 
10447 	/* ASYM feature bypasses nice load balance check */
10448 	if (busiest->group_type == group_asym_packing)
10449 		goto force_balance;
10450 
10451 	/*
10452 	 * If the busiest group is imbalanced the below checks don't
10453 	 * work because they assume all things are equal, which typically
10454 	 * isn't true due to cpus_ptr constraints and the like.
10455 	 */
10456 	if (busiest->group_type == group_imbalanced)
10457 		goto force_balance;
10458 
10459 	local = &sds.local_stat;
10460 	/*
10461 	 * If the local group is busier than the selected busiest group
10462 	 * don't try and pull any tasks.
10463 	 */
10464 	if (local->group_type > busiest->group_type)
10465 		goto out_balanced;
10466 
10467 	/*
10468 	 * When groups are overloaded, use the avg_load to ensure fairness
10469 	 * between tasks.
10470 	 */
10471 	if (local->group_type == group_overloaded) {
10472 		/*
10473 		 * If the local group is more loaded than the selected
10474 		 * busiest group don't try to pull any tasks.
10475 		 */
10476 		if (local->avg_load >= busiest->avg_load)
10477 			goto out_balanced;
10478 
10479 		/* XXX broken for overlapping NUMA groups */
10480 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10481 				sds.total_capacity;
10482 
10483 		/*
10484 		 * Don't pull any tasks if this group is already above the
10485 		 * domain average load.
10486 		 */
10487 		if (local->avg_load >= sds.avg_load)
10488 			goto out_balanced;
10489 
10490 		/*
10491 		 * If the busiest group is more loaded, use imbalance_pct to be
10492 		 * conservative.
10493 		 */
10494 		if (100 * busiest->avg_load <=
10495 				env->sd->imbalance_pct * local->avg_load)
10496 			goto out_balanced;
10497 	}
10498 
10499 	/*
10500 	 * Try to move all excess tasks to a sibling domain of the busiest
10501 	 * group's child domain.
10502 	 */
10503 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
10504 	    busiest->sum_nr_running > local->sum_nr_running + 1)
10505 		goto force_balance;
10506 
10507 	if (busiest->group_type != group_overloaded) {
10508 		if (env->idle == CPU_NOT_IDLE)
10509 			/*
10510 			 * If the busiest group is not overloaded (and as a
10511 			 * result the local one too) but this CPU is already
10512 			 * busy, let another idle CPU try to pull task.
10513 			 */
10514 			goto out_balanced;
10515 
10516 		if (busiest->group_weight > 1 &&
10517 		    local->idle_cpus <= (busiest->idle_cpus + 1))
10518 			/*
10519 			 * If the busiest group is not overloaded
10520 			 * and there is no imbalance between this and busiest
10521 			 * group wrt idle CPUs, it is balanced. The imbalance
10522 			 * becomes significant if the diff is greater than 1
10523 			 * otherwise we might end up to just move the imbalance
10524 			 * on another group. Of course this applies only if
10525 			 * there is more than 1 CPU per group.
10526 			 */
10527 			goto out_balanced;
10528 
10529 		if (busiest->sum_h_nr_running == 1)
10530 			/*
10531 			 * busiest doesn't have any tasks waiting to run
10532 			 */
10533 			goto out_balanced;
10534 	}
10535 
10536 force_balance:
10537 	/* Looks like there is an imbalance. Compute it */
10538 	calculate_imbalance(env, &sds);
10539 	return env->imbalance ? sds.busiest : NULL;
10540 
10541 out_balanced:
10542 	env->imbalance = 0;
10543 	return NULL;
10544 }
10545 
10546 /*
10547  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10548  */
10549 static struct rq *find_busiest_queue(struct lb_env *env,
10550 				     struct sched_group *group)
10551 {
10552 	struct rq *busiest = NULL, *rq;
10553 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10554 	unsigned int busiest_nr = 0;
10555 	int i;
10556 
10557 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10558 		unsigned long capacity, load, util;
10559 		unsigned int nr_running;
10560 		enum fbq_type rt;
10561 
10562 		rq = cpu_rq(i);
10563 		rt = fbq_classify_rq(rq);
10564 
10565 		/*
10566 		 * We classify groups/runqueues into three groups:
10567 		 *  - regular: there are !numa tasks
10568 		 *  - remote:  there are numa tasks that run on the 'wrong' node
10569 		 *  - all:     there is no distinction
10570 		 *
10571 		 * In order to avoid migrating ideally placed numa tasks,
10572 		 * ignore those when there's better options.
10573 		 *
10574 		 * If we ignore the actual busiest queue to migrate another
10575 		 * task, the next balance pass can still reduce the busiest
10576 		 * queue by moving tasks around inside the node.
10577 		 *
10578 		 * If we cannot move enough load due to this classification
10579 		 * the next pass will adjust the group classification and
10580 		 * allow migration of more tasks.
10581 		 *
10582 		 * Both cases only affect the total convergence complexity.
10583 		 */
10584 		if (rt > env->fbq_type)
10585 			continue;
10586 
10587 		nr_running = rq->cfs.h_nr_running;
10588 		if (!nr_running)
10589 			continue;
10590 
10591 		capacity = capacity_of(i);
10592 
10593 		/*
10594 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
10595 		 * eventually lead to active_balancing high->low capacity.
10596 		 * Higher per-CPU capacity is considered better than balancing
10597 		 * average load.
10598 		 */
10599 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
10600 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
10601 		    nr_running == 1)
10602 			continue;
10603 
10604 		/*
10605 		 * Make sure we only pull tasks from a CPU of lower priority
10606 		 * when balancing between SMT siblings.
10607 		 *
10608 		 * If balancing between cores, let lower priority CPUs help
10609 		 * SMT cores with more than one busy sibling.
10610 		 */
10611 		if ((env->sd->flags & SD_ASYM_PACKING) &&
10612 		    sched_use_asym_prio(env->sd, i) &&
10613 		    sched_asym_prefer(i, env->dst_cpu) &&
10614 		    nr_running == 1)
10615 			continue;
10616 
10617 		switch (env->migration_type) {
10618 		case migrate_load:
10619 			/*
10620 			 * When comparing with load imbalance, use cpu_load()
10621 			 * which is not scaled with the CPU capacity.
10622 			 */
10623 			load = cpu_load(rq);
10624 
10625 			if (nr_running == 1 && load > env->imbalance &&
10626 			    !check_cpu_capacity(rq, env->sd))
10627 				break;
10628 
10629 			/*
10630 			 * For the load comparisons with the other CPUs,
10631 			 * consider the cpu_load() scaled with the CPU
10632 			 * capacity, so that the load can be moved away
10633 			 * from the CPU that is potentially running at a
10634 			 * lower capacity.
10635 			 *
10636 			 * Thus we're looking for max(load_i / capacity_i),
10637 			 * crosswise multiplication to rid ourselves of the
10638 			 * division works out to:
10639 			 * load_i * capacity_j > load_j * capacity_i;
10640 			 * where j is our previous maximum.
10641 			 */
10642 			if (load * busiest_capacity > busiest_load * capacity) {
10643 				busiest_load = load;
10644 				busiest_capacity = capacity;
10645 				busiest = rq;
10646 			}
10647 			break;
10648 
10649 		case migrate_util:
10650 			util = cpu_util_cfs_boost(i);
10651 
10652 			/*
10653 			 * Don't try to pull utilization from a CPU with one
10654 			 * running task. Whatever its utilization, we will fail
10655 			 * detach the task.
10656 			 */
10657 			if (nr_running <= 1)
10658 				continue;
10659 
10660 			if (busiest_util < util) {
10661 				busiest_util = util;
10662 				busiest = rq;
10663 			}
10664 			break;
10665 
10666 		case migrate_task:
10667 			if (busiest_nr < nr_running) {
10668 				busiest_nr = nr_running;
10669 				busiest = rq;
10670 			}
10671 			break;
10672 
10673 		case migrate_misfit:
10674 			/*
10675 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
10676 			 * simply seek the "biggest" misfit task.
10677 			 */
10678 			if (rq->misfit_task_load > busiest_load) {
10679 				busiest_load = rq->misfit_task_load;
10680 				busiest = rq;
10681 			}
10682 
10683 			break;
10684 
10685 		}
10686 	}
10687 
10688 	return busiest;
10689 }
10690 
10691 /*
10692  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
10693  * so long as it is large enough.
10694  */
10695 #define MAX_PINNED_INTERVAL	512
10696 
10697 static inline bool
10698 asym_active_balance(struct lb_env *env)
10699 {
10700 	/*
10701 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
10702 	 * priority CPUs in order to pack all tasks in the highest priority
10703 	 * CPUs. When done between cores, do it only if the whole core if the
10704 	 * whole core is idle.
10705 	 *
10706 	 * If @env::src_cpu is an SMT core with busy siblings, let
10707 	 * the lower priority @env::dst_cpu help it. Do not follow
10708 	 * CPU priority.
10709 	 */
10710 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
10711 	       sched_use_asym_prio(env->sd, env->dst_cpu) &&
10712 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
10713 		!sched_use_asym_prio(env->sd, env->src_cpu));
10714 }
10715 
10716 static inline bool
10717 imbalanced_active_balance(struct lb_env *env)
10718 {
10719 	struct sched_domain *sd = env->sd;
10720 
10721 	/*
10722 	 * The imbalanced case includes the case of pinned tasks preventing a fair
10723 	 * distribution of the load on the system but also the even distribution of the
10724 	 * threads on a system with spare capacity
10725 	 */
10726 	if ((env->migration_type == migrate_task) &&
10727 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
10728 		return 1;
10729 
10730 	return 0;
10731 }
10732 
10733 static int need_active_balance(struct lb_env *env)
10734 {
10735 	struct sched_domain *sd = env->sd;
10736 
10737 	if (asym_active_balance(env))
10738 		return 1;
10739 
10740 	if (imbalanced_active_balance(env))
10741 		return 1;
10742 
10743 	/*
10744 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
10745 	 * It's worth migrating the task if the src_cpu's capacity is reduced
10746 	 * because of other sched_class or IRQs if more capacity stays
10747 	 * available on dst_cpu.
10748 	 */
10749 	if ((env->idle != CPU_NOT_IDLE) &&
10750 	    (env->src_rq->cfs.h_nr_running == 1)) {
10751 		if ((check_cpu_capacity(env->src_rq, sd)) &&
10752 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
10753 			return 1;
10754 	}
10755 
10756 	if (env->migration_type == migrate_misfit)
10757 		return 1;
10758 
10759 	return 0;
10760 }
10761 
10762 static int active_load_balance_cpu_stop(void *data);
10763 
10764 static int should_we_balance(struct lb_env *env)
10765 {
10766 	struct sched_group *sg = env->sd->groups;
10767 	int cpu;
10768 
10769 	/*
10770 	 * Ensure the balancing environment is consistent; can happen
10771 	 * when the softirq triggers 'during' hotplug.
10772 	 */
10773 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
10774 		return 0;
10775 
10776 	/*
10777 	 * In the newly idle case, we will allow all the CPUs
10778 	 * to do the newly idle load balance.
10779 	 *
10780 	 * However, we bail out if we already have tasks or a wakeup pending,
10781 	 * to optimize wakeup latency.
10782 	 */
10783 	if (env->idle == CPU_NEWLY_IDLE) {
10784 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
10785 			return 0;
10786 		return 1;
10787 	}
10788 
10789 	/* Try to find first idle CPU */
10790 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
10791 		if (!idle_cpu(cpu))
10792 			continue;
10793 
10794 		/* Are we the first idle CPU? */
10795 		return cpu == env->dst_cpu;
10796 	}
10797 
10798 	/* Are we the first CPU of this group ? */
10799 	return group_balance_cpu(sg) == env->dst_cpu;
10800 }
10801 
10802 /*
10803  * Check this_cpu to ensure it is balanced within domain. Attempt to move
10804  * tasks if there is an imbalance.
10805  */
10806 static int load_balance(int this_cpu, struct rq *this_rq,
10807 			struct sched_domain *sd, enum cpu_idle_type idle,
10808 			int *continue_balancing)
10809 {
10810 	int ld_moved, cur_ld_moved, active_balance = 0;
10811 	struct sched_domain *sd_parent = sd->parent;
10812 	struct sched_group *group;
10813 	struct rq *busiest;
10814 	struct rq_flags rf;
10815 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
10816 	struct lb_env env = {
10817 		.sd		= sd,
10818 		.dst_cpu	= this_cpu,
10819 		.dst_rq		= this_rq,
10820 		.dst_grpmask    = group_balance_mask(sd->groups),
10821 		.idle		= idle,
10822 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
10823 		.cpus		= cpus,
10824 		.fbq_type	= all,
10825 		.tasks		= LIST_HEAD_INIT(env.tasks),
10826 	};
10827 
10828 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
10829 
10830 	schedstat_inc(sd->lb_count[idle]);
10831 
10832 redo:
10833 	if (!should_we_balance(&env)) {
10834 		*continue_balancing = 0;
10835 		goto out_balanced;
10836 	}
10837 
10838 	group = find_busiest_group(&env);
10839 	if (!group) {
10840 		schedstat_inc(sd->lb_nobusyg[idle]);
10841 		goto out_balanced;
10842 	}
10843 
10844 	busiest = find_busiest_queue(&env, group);
10845 	if (!busiest) {
10846 		schedstat_inc(sd->lb_nobusyq[idle]);
10847 		goto out_balanced;
10848 	}
10849 
10850 	WARN_ON_ONCE(busiest == env.dst_rq);
10851 
10852 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
10853 
10854 	env.src_cpu = busiest->cpu;
10855 	env.src_rq = busiest;
10856 
10857 	ld_moved = 0;
10858 	/* Clear this flag as soon as we find a pullable task */
10859 	env.flags |= LBF_ALL_PINNED;
10860 	if (busiest->nr_running > 1) {
10861 		/*
10862 		 * Attempt to move tasks. If find_busiest_group has found
10863 		 * an imbalance but busiest->nr_running <= 1, the group is
10864 		 * still unbalanced. ld_moved simply stays zero, so it is
10865 		 * correctly treated as an imbalance.
10866 		 */
10867 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
10868 
10869 more_balance:
10870 		rq_lock_irqsave(busiest, &rf);
10871 		update_rq_clock(busiest);
10872 
10873 		/*
10874 		 * cur_ld_moved - load moved in current iteration
10875 		 * ld_moved     - cumulative load moved across iterations
10876 		 */
10877 		cur_ld_moved = detach_tasks(&env);
10878 
10879 		/*
10880 		 * We've detached some tasks from busiest_rq. Every
10881 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
10882 		 * unlock busiest->lock, and we are able to be sure
10883 		 * that nobody can manipulate the tasks in parallel.
10884 		 * See task_rq_lock() family for the details.
10885 		 */
10886 
10887 		rq_unlock(busiest, &rf);
10888 
10889 		if (cur_ld_moved) {
10890 			attach_tasks(&env);
10891 			ld_moved += cur_ld_moved;
10892 		}
10893 
10894 		local_irq_restore(rf.flags);
10895 
10896 		if (env.flags & LBF_NEED_BREAK) {
10897 			env.flags &= ~LBF_NEED_BREAK;
10898 			/* Stop if we tried all running tasks */
10899 			if (env.loop < busiest->nr_running)
10900 				goto more_balance;
10901 		}
10902 
10903 		/*
10904 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
10905 		 * us and move them to an alternate dst_cpu in our sched_group
10906 		 * where they can run. The upper limit on how many times we
10907 		 * iterate on same src_cpu is dependent on number of CPUs in our
10908 		 * sched_group.
10909 		 *
10910 		 * This changes load balance semantics a bit on who can move
10911 		 * load to a given_cpu. In addition to the given_cpu itself
10912 		 * (or a ilb_cpu acting on its behalf where given_cpu is
10913 		 * nohz-idle), we now have balance_cpu in a position to move
10914 		 * load to given_cpu. In rare situations, this may cause
10915 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
10916 		 * _independently_ and at _same_ time to move some load to
10917 		 * given_cpu) causing excess load to be moved to given_cpu.
10918 		 * This however should not happen so much in practice and
10919 		 * moreover subsequent load balance cycles should correct the
10920 		 * excess load moved.
10921 		 */
10922 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
10923 
10924 			/* Prevent to re-select dst_cpu via env's CPUs */
10925 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
10926 
10927 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
10928 			env.dst_cpu	 = env.new_dst_cpu;
10929 			env.flags	&= ~LBF_DST_PINNED;
10930 			env.loop	 = 0;
10931 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
10932 
10933 			/*
10934 			 * Go back to "more_balance" rather than "redo" since we
10935 			 * need to continue with same src_cpu.
10936 			 */
10937 			goto more_balance;
10938 		}
10939 
10940 		/*
10941 		 * We failed to reach balance because of affinity.
10942 		 */
10943 		if (sd_parent) {
10944 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10945 
10946 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
10947 				*group_imbalance = 1;
10948 		}
10949 
10950 		/* All tasks on this runqueue were pinned by CPU affinity */
10951 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
10952 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
10953 			/*
10954 			 * Attempting to continue load balancing at the current
10955 			 * sched_domain level only makes sense if there are
10956 			 * active CPUs remaining as possible busiest CPUs to
10957 			 * pull load from which are not contained within the
10958 			 * destination group that is receiving any migrated
10959 			 * load.
10960 			 */
10961 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
10962 				env.loop = 0;
10963 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
10964 				goto redo;
10965 			}
10966 			goto out_all_pinned;
10967 		}
10968 	}
10969 
10970 	if (!ld_moved) {
10971 		schedstat_inc(sd->lb_failed[idle]);
10972 		/*
10973 		 * Increment the failure counter only on periodic balance.
10974 		 * We do not want newidle balance, which can be very
10975 		 * frequent, pollute the failure counter causing
10976 		 * excessive cache_hot migrations and active balances.
10977 		 */
10978 		if (idle != CPU_NEWLY_IDLE)
10979 			sd->nr_balance_failed++;
10980 
10981 		if (need_active_balance(&env)) {
10982 			unsigned long flags;
10983 
10984 			raw_spin_rq_lock_irqsave(busiest, flags);
10985 
10986 			/*
10987 			 * Don't kick the active_load_balance_cpu_stop,
10988 			 * if the curr task on busiest CPU can't be
10989 			 * moved to this_cpu:
10990 			 */
10991 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
10992 				raw_spin_rq_unlock_irqrestore(busiest, flags);
10993 				goto out_one_pinned;
10994 			}
10995 
10996 			/* Record that we found at least one task that could run on this_cpu */
10997 			env.flags &= ~LBF_ALL_PINNED;
10998 
10999 			/*
11000 			 * ->active_balance synchronizes accesses to
11001 			 * ->active_balance_work.  Once set, it's cleared
11002 			 * only after active load balance is finished.
11003 			 */
11004 			if (!busiest->active_balance) {
11005 				busiest->active_balance = 1;
11006 				busiest->push_cpu = this_cpu;
11007 				active_balance = 1;
11008 			}
11009 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11010 
11011 			if (active_balance) {
11012 				stop_one_cpu_nowait(cpu_of(busiest),
11013 					active_load_balance_cpu_stop, busiest,
11014 					&busiest->active_balance_work);
11015 			}
11016 		}
11017 	} else {
11018 		sd->nr_balance_failed = 0;
11019 	}
11020 
11021 	if (likely(!active_balance) || need_active_balance(&env)) {
11022 		/* We were unbalanced, so reset the balancing interval */
11023 		sd->balance_interval = sd->min_interval;
11024 	}
11025 
11026 	goto out;
11027 
11028 out_balanced:
11029 	/*
11030 	 * We reach balance although we may have faced some affinity
11031 	 * constraints. Clear the imbalance flag only if other tasks got
11032 	 * a chance to move and fix the imbalance.
11033 	 */
11034 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11035 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11036 
11037 		if (*group_imbalance)
11038 			*group_imbalance = 0;
11039 	}
11040 
11041 out_all_pinned:
11042 	/*
11043 	 * We reach balance because all tasks are pinned at this level so
11044 	 * we can't migrate them. Let the imbalance flag set so parent level
11045 	 * can try to migrate them.
11046 	 */
11047 	schedstat_inc(sd->lb_balanced[idle]);
11048 
11049 	sd->nr_balance_failed = 0;
11050 
11051 out_one_pinned:
11052 	ld_moved = 0;
11053 
11054 	/*
11055 	 * newidle_balance() disregards balance intervals, so we could
11056 	 * repeatedly reach this code, which would lead to balance_interval
11057 	 * skyrocketing in a short amount of time. Skip the balance_interval
11058 	 * increase logic to avoid that.
11059 	 */
11060 	if (env.idle == CPU_NEWLY_IDLE)
11061 		goto out;
11062 
11063 	/* tune up the balancing interval */
11064 	if ((env.flags & LBF_ALL_PINNED &&
11065 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11066 	    sd->balance_interval < sd->max_interval)
11067 		sd->balance_interval *= 2;
11068 out:
11069 	return ld_moved;
11070 }
11071 
11072 static inline unsigned long
11073 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11074 {
11075 	unsigned long interval = sd->balance_interval;
11076 
11077 	if (cpu_busy)
11078 		interval *= sd->busy_factor;
11079 
11080 	/* scale ms to jiffies */
11081 	interval = msecs_to_jiffies(interval);
11082 
11083 	/*
11084 	 * Reduce likelihood of busy balancing at higher domains racing with
11085 	 * balancing at lower domains by preventing their balancing periods
11086 	 * from being multiples of each other.
11087 	 */
11088 	if (cpu_busy)
11089 		interval -= 1;
11090 
11091 	interval = clamp(interval, 1UL, max_load_balance_interval);
11092 
11093 	return interval;
11094 }
11095 
11096 static inline void
11097 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11098 {
11099 	unsigned long interval, next;
11100 
11101 	/* used by idle balance, so cpu_busy = 0 */
11102 	interval = get_sd_balance_interval(sd, 0);
11103 	next = sd->last_balance + interval;
11104 
11105 	if (time_after(*next_balance, next))
11106 		*next_balance = next;
11107 }
11108 
11109 /*
11110  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11111  * running tasks off the busiest CPU onto idle CPUs. It requires at
11112  * least 1 task to be running on each physical CPU where possible, and
11113  * avoids physical / logical imbalances.
11114  */
11115 static int active_load_balance_cpu_stop(void *data)
11116 {
11117 	struct rq *busiest_rq = data;
11118 	int busiest_cpu = cpu_of(busiest_rq);
11119 	int target_cpu = busiest_rq->push_cpu;
11120 	struct rq *target_rq = cpu_rq(target_cpu);
11121 	struct sched_domain *sd;
11122 	struct task_struct *p = NULL;
11123 	struct rq_flags rf;
11124 
11125 	rq_lock_irq(busiest_rq, &rf);
11126 	/*
11127 	 * Between queueing the stop-work and running it is a hole in which
11128 	 * CPUs can become inactive. We should not move tasks from or to
11129 	 * inactive CPUs.
11130 	 */
11131 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11132 		goto out_unlock;
11133 
11134 	/* Make sure the requested CPU hasn't gone down in the meantime: */
11135 	if (unlikely(busiest_cpu != smp_processor_id() ||
11136 		     !busiest_rq->active_balance))
11137 		goto out_unlock;
11138 
11139 	/* Is there any task to move? */
11140 	if (busiest_rq->nr_running <= 1)
11141 		goto out_unlock;
11142 
11143 	/*
11144 	 * This condition is "impossible", if it occurs
11145 	 * we need to fix it. Originally reported by
11146 	 * Bjorn Helgaas on a 128-CPU setup.
11147 	 */
11148 	WARN_ON_ONCE(busiest_rq == target_rq);
11149 
11150 	/* Search for an sd spanning us and the target CPU. */
11151 	rcu_read_lock();
11152 	for_each_domain(target_cpu, sd) {
11153 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11154 			break;
11155 	}
11156 
11157 	if (likely(sd)) {
11158 		struct lb_env env = {
11159 			.sd		= sd,
11160 			.dst_cpu	= target_cpu,
11161 			.dst_rq		= target_rq,
11162 			.src_cpu	= busiest_rq->cpu,
11163 			.src_rq		= busiest_rq,
11164 			.idle		= CPU_IDLE,
11165 			.flags		= LBF_ACTIVE_LB,
11166 		};
11167 
11168 		schedstat_inc(sd->alb_count);
11169 		update_rq_clock(busiest_rq);
11170 
11171 		p = detach_one_task(&env);
11172 		if (p) {
11173 			schedstat_inc(sd->alb_pushed);
11174 			/* Active balancing done, reset the failure counter. */
11175 			sd->nr_balance_failed = 0;
11176 		} else {
11177 			schedstat_inc(sd->alb_failed);
11178 		}
11179 	}
11180 	rcu_read_unlock();
11181 out_unlock:
11182 	busiest_rq->active_balance = 0;
11183 	rq_unlock(busiest_rq, &rf);
11184 
11185 	if (p)
11186 		attach_one_task(target_rq, p);
11187 
11188 	local_irq_enable();
11189 
11190 	return 0;
11191 }
11192 
11193 static DEFINE_SPINLOCK(balancing);
11194 
11195 /*
11196  * Scale the max load_balance interval with the number of CPUs in the system.
11197  * This trades load-balance latency on larger machines for less cross talk.
11198  */
11199 void update_max_interval(void)
11200 {
11201 	max_load_balance_interval = HZ*num_online_cpus()/10;
11202 }
11203 
11204 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11205 {
11206 	if (cost > sd->max_newidle_lb_cost) {
11207 		/*
11208 		 * Track max cost of a domain to make sure to not delay the
11209 		 * next wakeup on the CPU.
11210 		 */
11211 		sd->max_newidle_lb_cost = cost;
11212 		sd->last_decay_max_lb_cost = jiffies;
11213 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11214 		/*
11215 		 * Decay the newidle max times by ~1% per second to ensure that
11216 		 * it is not outdated and the current max cost is actually
11217 		 * shorter.
11218 		 */
11219 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11220 		sd->last_decay_max_lb_cost = jiffies;
11221 
11222 		return true;
11223 	}
11224 
11225 	return false;
11226 }
11227 
11228 /*
11229  * It checks each scheduling domain to see if it is due to be balanced,
11230  * and initiates a balancing operation if so.
11231  *
11232  * Balancing parameters are set up in init_sched_domains.
11233  */
11234 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
11235 {
11236 	int continue_balancing = 1;
11237 	int cpu = rq->cpu;
11238 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11239 	unsigned long interval;
11240 	struct sched_domain *sd;
11241 	/* Earliest time when we have to do rebalance again */
11242 	unsigned long next_balance = jiffies + 60*HZ;
11243 	int update_next_balance = 0;
11244 	int need_serialize, need_decay = 0;
11245 	u64 max_cost = 0;
11246 
11247 	rcu_read_lock();
11248 	for_each_domain(cpu, sd) {
11249 		/*
11250 		 * Decay the newidle max times here because this is a regular
11251 		 * visit to all the domains.
11252 		 */
11253 		need_decay = update_newidle_cost(sd, 0);
11254 		max_cost += sd->max_newidle_lb_cost;
11255 
11256 		/*
11257 		 * Stop the load balance at this level. There is another
11258 		 * CPU in our sched group which is doing load balancing more
11259 		 * actively.
11260 		 */
11261 		if (!continue_balancing) {
11262 			if (need_decay)
11263 				continue;
11264 			break;
11265 		}
11266 
11267 		interval = get_sd_balance_interval(sd, busy);
11268 
11269 		need_serialize = sd->flags & SD_SERIALIZE;
11270 		if (need_serialize) {
11271 			if (!spin_trylock(&balancing))
11272 				goto out;
11273 		}
11274 
11275 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
11276 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
11277 				/*
11278 				 * The LBF_DST_PINNED logic could have changed
11279 				 * env->dst_cpu, so we can't know our idle
11280 				 * state even if we migrated tasks. Update it.
11281 				 */
11282 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
11283 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11284 			}
11285 			sd->last_balance = jiffies;
11286 			interval = get_sd_balance_interval(sd, busy);
11287 		}
11288 		if (need_serialize)
11289 			spin_unlock(&balancing);
11290 out:
11291 		if (time_after(next_balance, sd->last_balance + interval)) {
11292 			next_balance = sd->last_balance + interval;
11293 			update_next_balance = 1;
11294 		}
11295 	}
11296 	if (need_decay) {
11297 		/*
11298 		 * Ensure the rq-wide value also decays but keep it at a
11299 		 * reasonable floor to avoid funnies with rq->avg_idle.
11300 		 */
11301 		rq->max_idle_balance_cost =
11302 			max((u64)sysctl_sched_migration_cost, max_cost);
11303 	}
11304 	rcu_read_unlock();
11305 
11306 	/*
11307 	 * next_balance will be updated only when there is a need.
11308 	 * When the cpu is attached to null domain for ex, it will not be
11309 	 * updated.
11310 	 */
11311 	if (likely(update_next_balance))
11312 		rq->next_balance = next_balance;
11313 
11314 }
11315 
11316 static inline int on_null_domain(struct rq *rq)
11317 {
11318 	return unlikely(!rcu_dereference_sched(rq->sd));
11319 }
11320 
11321 #ifdef CONFIG_NO_HZ_COMMON
11322 /*
11323  * idle load balancing details
11324  * - When one of the busy CPUs notice that there may be an idle rebalancing
11325  *   needed, they will kick the idle load balancer, which then does idle
11326  *   load balancing for all the idle CPUs.
11327  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
11328  *   anywhere yet.
11329  */
11330 
11331 static inline int find_new_ilb(void)
11332 {
11333 	int ilb;
11334 	const struct cpumask *hk_mask;
11335 
11336 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11337 
11338 	for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
11339 
11340 		if (ilb == smp_processor_id())
11341 			continue;
11342 
11343 		if (idle_cpu(ilb))
11344 			return ilb;
11345 	}
11346 
11347 	return nr_cpu_ids;
11348 }
11349 
11350 /*
11351  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
11352  * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11353  */
11354 static void kick_ilb(unsigned int flags)
11355 {
11356 	int ilb_cpu;
11357 
11358 	/*
11359 	 * Increase nohz.next_balance only when if full ilb is triggered but
11360 	 * not if we only update stats.
11361 	 */
11362 	if (flags & NOHZ_BALANCE_KICK)
11363 		nohz.next_balance = jiffies+1;
11364 
11365 	ilb_cpu = find_new_ilb();
11366 
11367 	if (ilb_cpu >= nr_cpu_ids)
11368 		return;
11369 
11370 	/*
11371 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11372 	 * the first flag owns it; cleared by nohz_csd_func().
11373 	 */
11374 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11375 	if (flags & NOHZ_KICK_MASK)
11376 		return;
11377 
11378 	/*
11379 	 * This way we generate an IPI on the target CPU which
11380 	 * is idle. And the softirq performing nohz idle load balance
11381 	 * will be run before returning from the IPI.
11382 	 */
11383 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11384 }
11385 
11386 /*
11387  * Current decision point for kicking the idle load balancer in the presence
11388  * of idle CPUs in the system.
11389  */
11390 static void nohz_balancer_kick(struct rq *rq)
11391 {
11392 	unsigned long now = jiffies;
11393 	struct sched_domain_shared *sds;
11394 	struct sched_domain *sd;
11395 	int nr_busy, i, cpu = rq->cpu;
11396 	unsigned int flags = 0;
11397 
11398 	if (unlikely(rq->idle_balance))
11399 		return;
11400 
11401 	/*
11402 	 * We may be recently in ticked or tickless idle mode. At the first
11403 	 * busy tick after returning from idle, we will update the busy stats.
11404 	 */
11405 	nohz_balance_exit_idle(rq);
11406 
11407 	/*
11408 	 * None are in tickless mode and hence no need for NOHZ idle load
11409 	 * balancing.
11410 	 */
11411 	if (likely(!atomic_read(&nohz.nr_cpus)))
11412 		return;
11413 
11414 	if (READ_ONCE(nohz.has_blocked) &&
11415 	    time_after(now, READ_ONCE(nohz.next_blocked)))
11416 		flags = NOHZ_STATS_KICK;
11417 
11418 	if (time_before(now, nohz.next_balance))
11419 		goto out;
11420 
11421 	if (rq->nr_running >= 2) {
11422 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11423 		goto out;
11424 	}
11425 
11426 	rcu_read_lock();
11427 
11428 	sd = rcu_dereference(rq->sd);
11429 	if (sd) {
11430 		/*
11431 		 * If there's a CFS task and the current CPU has reduced
11432 		 * capacity; kick the ILB to see if there's a better CPU to run
11433 		 * on.
11434 		 */
11435 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11436 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11437 			goto unlock;
11438 		}
11439 	}
11440 
11441 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11442 	if (sd) {
11443 		/*
11444 		 * When ASYM_PACKING; see if there's a more preferred CPU
11445 		 * currently idle; in which case, kick the ILB to move tasks
11446 		 * around.
11447 		 *
11448 		 * When balancing betwen cores, all the SMT siblings of the
11449 		 * preferred CPU must be idle.
11450 		 */
11451 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11452 			if (sched_use_asym_prio(sd, i) &&
11453 			    sched_asym_prefer(i, cpu)) {
11454 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11455 				goto unlock;
11456 			}
11457 		}
11458 	}
11459 
11460 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11461 	if (sd) {
11462 		/*
11463 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11464 		 * to run the misfit task on.
11465 		 */
11466 		if (check_misfit_status(rq, sd)) {
11467 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11468 			goto unlock;
11469 		}
11470 
11471 		/*
11472 		 * For asymmetric systems, we do not want to nicely balance
11473 		 * cache use, instead we want to embrace asymmetry and only
11474 		 * ensure tasks have enough CPU capacity.
11475 		 *
11476 		 * Skip the LLC logic because it's not relevant in that case.
11477 		 */
11478 		goto unlock;
11479 	}
11480 
11481 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11482 	if (sds) {
11483 		/*
11484 		 * If there is an imbalance between LLC domains (IOW we could
11485 		 * increase the overall cache use), we need some less-loaded LLC
11486 		 * domain to pull some load. Likewise, we may need to spread
11487 		 * load within the current LLC domain (e.g. packed SMT cores but
11488 		 * other CPUs are idle). We can't really know from here how busy
11489 		 * the others are - so just get a nohz balance going if it looks
11490 		 * like this LLC domain has tasks we could move.
11491 		 */
11492 		nr_busy = atomic_read(&sds->nr_busy_cpus);
11493 		if (nr_busy > 1) {
11494 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11495 			goto unlock;
11496 		}
11497 	}
11498 unlock:
11499 	rcu_read_unlock();
11500 out:
11501 	if (READ_ONCE(nohz.needs_update))
11502 		flags |= NOHZ_NEXT_KICK;
11503 
11504 	if (flags)
11505 		kick_ilb(flags);
11506 }
11507 
11508 static void set_cpu_sd_state_busy(int cpu)
11509 {
11510 	struct sched_domain *sd;
11511 
11512 	rcu_read_lock();
11513 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11514 
11515 	if (!sd || !sd->nohz_idle)
11516 		goto unlock;
11517 	sd->nohz_idle = 0;
11518 
11519 	atomic_inc(&sd->shared->nr_busy_cpus);
11520 unlock:
11521 	rcu_read_unlock();
11522 }
11523 
11524 void nohz_balance_exit_idle(struct rq *rq)
11525 {
11526 	SCHED_WARN_ON(rq != this_rq());
11527 
11528 	if (likely(!rq->nohz_tick_stopped))
11529 		return;
11530 
11531 	rq->nohz_tick_stopped = 0;
11532 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
11533 	atomic_dec(&nohz.nr_cpus);
11534 
11535 	set_cpu_sd_state_busy(rq->cpu);
11536 }
11537 
11538 static void set_cpu_sd_state_idle(int cpu)
11539 {
11540 	struct sched_domain *sd;
11541 
11542 	rcu_read_lock();
11543 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11544 
11545 	if (!sd || sd->nohz_idle)
11546 		goto unlock;
11547 	sd->nohz_idle = 1;
11548 
11549 	atomic_dec(&sd->shared->nr_busy_cpus);
11550 unlock:
11551 	rcu_read_unlock();
11552 }
11553 
11554 /*
11555  * This routine will record that the CPU is going idle with tick stopped.
11556  * This info will be used in performing idle load balancing in the future.
11557  */
11558 void nohz_balance_enter_idle(int cpu)
11559 {
11560 	struct rq *rq = cpu_rq(cpu);
11561 
11562 	SCHED_WARN_ON(cpu != smp_processor_id());
11563 
11564 	/* If this CPU is going down, then nothing needs to be done: */
11565 	if (!cpu_active(cpu))
11566 		return;
11567 
11568 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
11569 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
11570 		return;
11571 
11572 	/*
11573 	 * Can be set safely without rq->lock held
11574 	 * If a clear happens, it will have evaluated last additions because
11575 	 * rq->lock is held during the check and the clear
11576 	 */
11577 	rq->has_blocked_load = 1;
11578 
11579 	/*
11580 	 * The tick is still stopped but load could have been added in the
11581 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
11582 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
11583 	 * of nohz.has_blocked can only happen after checking the new load
11584 	 */
11585 	if (rq->nohz_tick_stopped)
11586 		goto out;
11587 
11588 	/* If we're a completely isolated CPU, we don't play: */
11589 	if (on_null_domain(rq))
11590 		return;
11591 
11592 	rq->nohz_tick_stopped = 1;
11593 
11594 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
11595 	atomic_inc(&nohz.nr_cpus);
11596 
11597 	/*
11598 	 * Ensures that if nohz_idle_balance() fails to observe our
11599 	 * @idle_cpus_mask store, it must observe the @has_blocked
11600 	 * and @needs_update stores.
11601 	 */
11602 	smp_mb__after_atomic();
11603 
11604 	set_cpu_sd_state_idle(cpu);
11605 
11606 	WRITE_ONCE(nohz.needs_update, 1);
11607 out:
11608 	/*
11609 	 * Each time a cpu enter idle, we assume that it has blocked load and
11610 	 * enable the periodic update of the load of idle cpus
11611 	 */
11612 	WRITE_ONCE(nohz.has_blocked, 1);
11613 }
11614 
11615 static bool update_nohz_stats(struct rq *rq)
11616 {
11617 	unsigned int cpu = rq->cpu;
11618 
11619 	if (!rq->has_blocked_load)
11620 		return false;
11621 
11622 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
11623 		return false;
11624 
11625 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
11626 		return true;
11627 
11628 	update_blocked_averages(cpu);
11629 
11630 	return rq->has_blocked_load;
11631 }
11632 
11633 /*
11634  * Internal function that runs load balance for all idle cpus. The load balance
11635  * can be a simple update of blocked load or a complete load balance with
11636  * tasks movement depending of flags.
11637  */
11638 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
11639 {
11640 	/* Earliest time when we have to do rebalance again */
11641 	unsigned long now = jiffies;
11642 	unsigned long next_balance = now + 60*HZ;
11643 	bool has_blocked_load = false;
11644 	int update_next_balance = 0;
11645 	int this_cpu = this_rq->cpu;
11646 	int balance_cpu;
11647 	struct rq *rq;
11648 
11649 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
11650 
11651 	/*
11652 	 * We assume there will be no idle load after this update and clear
11653 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
11654 	 * set the has_blocked flag and trigger another update of idle load.
11655 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
11656 	 * setting the flag, we are sure to not clear the state and not
11657 	 * check the load of an idle cpu.
11658 	 *
11659 	 * Same applies to idle_cpus_mask vs needs_update.
11660 	 */
11661 	if (flags & NOHZ_STATS_KICK)
11662 		WRITE_ONCE(nohz.has_blocked, 0);
11663 	if (flags & NOHZ_NEXT_KICK)
11664 		WRITE_ONCE(nohz.needs_update, 0);
11665 
11666 	/*
11667 	 * Ensures that if we miss the CPU, we must see the has_blocked
11668 	 * store from nohz_balance_enter_idle().
11669 	 */
11670 	smp_mb();
11671 
11672 	/*
11673 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
11674 	 * chance for other idle cpu to pull load.
11675 	 */
11676 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
11677 		if (!idle_cpu(balance_cpu))
11678 			continue;
11679 
11680 		/*
11681 		 * If this CPU gets work to do, stop the load balancing
11682 		 * work being done for other CPUs. Next load
11683 		 * balancing owner will pick it up.
11684 		 */
11685 		if (need_resched()) {
11686 			if (flags & NOHZ_STATS_KICK)
11687 				has_blocked_load = true;
11688 			if (flags & NOHZ_NEXT_KICK)
11689 				WRITE_ONCE(nohz.needs_update, 1);
11690 			goto abort;
11691 		}
11692 
11693 		rq = cpu_rq(balance_cpu);
11694 
11695 		if (flags & NOHZ_STATS_KICK)
11696 			has_blocked_load |= update_nohz_stats(rq);
11697 
11698 		/*
11699 		 * If time for next balance is due,
11700 		 * do the balance.
11701 		 */
11702 		if (time_after_eq(jiffies, rq->next_balance)) {
11703 			struct rq_flags rf;
11704 
11705 			rq_lock_irqsave(rq, &rf);
11706 			update_rq_clock(rq);
11707 			rq_unlock_irqrestore(rq, &rf);
11708 
11709 			if (flags & NOHZ_BALANCE_KICK)
11710 				rebalance_domains(rq, CPU_IDLE);
11711 		}
11712 
11713 		if (time_after(next_balance, rq->next_balance)) {
11714 			next_balance = rq->next_balance;
11715 			update_next_balance = 1;
11716 		}
11717 	}
11718 
11719 	/*
11720 	 * next_balance will be updated only when there is a need.
11721 	 * When the CPU is attached to null domain for ex, it will not be
11722 	 * updated.
11723 	 */
11724 	if (likely(update_next_balance))
11725 		nohz.next_balance = next_balance;
11726 
11727 	if (flags & NOHZ_STATS_KICK)
11728 		WRITE_ONCE(nohz.next_blocked,
11729 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
11730 
11731 abort:
11732 	/* There is still blocked load, enable periodic update */
11733 	if (has_blocked_load)
11734 		WRITE_ONCE(nohz.has_blocked, 1);
11735 }
11736 
11737 /*
11738  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
11739  * rebalancing for all the cpus for whom scheduler ticks are stopped.
11740  */
11741 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11742 {
11743 	unsigned int flags = this_rq->nohz_idle_balance;
11744 
11745 	if (!flags)
11746 		return false;
11747 
11748 	this_rq->nohz_idle_balance = 0;
11749 
11750 	if (idle != CPU_IDLE)
11751 		return false;
11752 
11753 	_nohz_idle_balance(this_rq, flags);
11754 
11755 	return true;
11756 }
11757 
11758 /*
11759  * Check if we need to run the ILB for updating blocked load before entering
11760  * idle state.
11761  */
11762 void nohz_run_idle_balance(int cpu)
11763 {
11764 	unsigned int flags;
11765 
11766 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
11767 
11768 	/*
11769 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
11770 	 * (ie NOHZ_STATS_KICK set) and will do the same.
11771 	 */
11772 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
11773 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
11774 }
11775 
11776 static void nohz_newidle_balance(struct rq *this_rq)
11777 {
11778 	int this_cpu = this_rq->cpu;
11779 
11780 	/*
11781 	 * This CPU doesn't want to be disturbed by scheduler
11782 	 * housekeeping
11783 	 */
11784 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
11785 		return;
11786 
11787 	/* Will wake up very soon. No time for doing anything else*/
11788 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
11789 		return;
11790 
11791 	/* Don't need to update blocked load of idle CPUs*/
11792 	if (!READ_ONCE(nohz.has_blocked) ||
11793 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
11794 		return;
11795 
11796 	/*
11797 	 * Set the need to trigger ILB in order to update blocked load
11798 	 * before entering idle state.
11799 	 */
11800 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
11801 }
11802 
11803 #else /* !CONFIG_NO_HZ_COMMON */
11804 static inline void nohz_balancer_kick(struct rq *rq) { }
11805 
11806 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11807 {
11808 	return false;
11809 }
11810 
11811 static inline void nohz_newidle_balance(struct rq *this_rq) { }
11812 #endif /* CONFIG_NO_HZ_COMMON */
11813 
11814 /*
11815  * newidle_balance is called by schedule() if this_cpu is about to become
11816  * idle. Attempts to pull tasks from other CPUs.
11817  *
11818  * Returns:
11819  *   < 0 - we released the lock and there are !fair tasks present
11820  *     0 - failed, no new tasks
11821  *   > 0 - success, new (fair) tasks present
11822  */
11823 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
11824 {
11825 	unsigned long next_balance = jiffies + HZ;
11826 	int this_cpu = this_rq->cpu;
11827 	u64 t0, t1, curr_cost = 0;
11828 	struct sched_domain *sd;
11829 	int pulled_task = 0;
11830 
11831 	update_misfit_status(NULL, this_rq);
11832 
11833 	/*
11834 	 * There is a task waiting to run. No need to search for one.
11835 	 * Return 0; the task will be enqueued when switching to idle.
11836 	 */
11837 	if (this_rq->ttwu_pending)
11838 		return 0;
11839 
11840 	/*
11841 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
11842 	 * measure the duration of idle_balance() as idle time.
11843 	 */
11844 	this_rq->idle_stamp = rq_clock(this_rq);
11845 
11846 	/*
11847 	 * Do not pull tasks towards !active CPUs...
11848 	 */
11849 	if (!cpu_active(this_cpu))
11850 		return 0;
11851 
11852 	/*
11853 	 * This is OK, because current is on_cpu, which avoids it being picked
11854 	 * for load-balance and preemption/IRQs are still disabled avoiding
11855 	 * further scheduler activity on it and we're being very careful to
11856 	 * re-start the picking loop.
11857 	 */
11858 	rq_unpin_lock(this_rq, rf);
11859 
11860 	rcu_read_lock();
11861 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
11862 
11863 	if (!READ_ONCE(this_rq->rd->overload) ||
11864 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
11865 
11866 		if (sd)
11867 			update_next_balance(sd, &next_balance);
11868 		rcu_read_unlock();
11869 
11870 		goto out;
11871 	}
11872 	rcu_read_unlock();
11873 
11874 	raw_spin_rq_unlock(this_rq);
11875 
11876 	t0 = sched_clock_cpu(this_cpu);
11877 	update_blocked_averages(this_cpu);
11878 
11879 	rcu_read_lock();
11880 	for_each_domain(this_cpu, sd) {
11881 		int continue_balancing = 1;
11882 		u64 domain_cost;
11883 
11884 		update_next_balance(sd, &next_balance);
11885 
11886 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
11887 			break;
11888 
11889 		if (sd->flags & SD_BALANCE_NEWIDLE) {
11890 
11891 			pulled_task = load_balance(this_cpu, this_rq,
11892 						   sd, CPU_NEWLY_IDLE,
11893 						   &continue_balancing);
11894 
11895 			t1 = sched_clock_cpu(this_cpu);
11896 			domain_cost = t1 - t0;
11897 			update_newidle_cost(sd, domain_cost);
11898 
11899 			curr_cost += domain_cost;
11900 			t0 = t1;
11901 		}
11902 
11903 		/*
11904 		 * Stop searching for tasks to pull if there are
11905 		 * now runnable tasks on this rq.
11906 		 */
11907 		if (pulled_task || this_rq->nr_running > 0 ||
11908 		    this_rq->ttwu_pending)
11909 			break;
11910 	}
11911 	rcu_read_unlock();
11912 
11913 	raw_spin_rq_lock(this_rq);
11914 
11915 	if (curr_cost > this_rq->max_idle_balance_cost)
11916 		this_rq->max_idle_balance_cost = curr_cost;
11917 
11918 	/*
11919 	 * While browsing the domains, we released the rq lock, a task could
11920 	 * have been enqueued in the meantime. Since we're not going idle,
11921 	 * pretend we pulled a task.
11922 	 */
11923 	if (this_rq->cfs.h_nr_running && !pulled_task)
11924 		pulled_task = 1;
11925 
11926 	/* Is there a task of a high priority class? */
11927 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
11928 		pulled_task = -1;
11929 
11930 out:
11931 	/* Move the next balance forward */
11932 	if (time_after(this_rq->next_balance, next_balance))
11933 		this_rq->next_balance = next_balance;
11934 
11935 	if (pulled_task)
11936 		this_rq->idle_stamp = 0;
11937 	else
11938 		nohz_newidle_balance(this_rq);
11939 
11940 	rq_repin_lock(this_rq, rf);
11941 
11942 	return pulled_task;
11943 }
11944 
11945 /*
11946  * run_rebalance_domains is triggered when needed from the scheduler tick.
11947  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
11948  */
11949 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
11950 {
11951 	struct rq *this_rq = this_rq();
11952 	enum cpu_idle_type idle = this_rq->idle_balance ?
11953 						CPU_IDLE : CPU_NOT_IDLE;
11954 
11955 	/*
11956 	 * If this CPU has a pending nohz_balance_kick, then do the
11957 	 * balancing on behalf of the other idle CPUs whose ticks are
11958 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
11959 	 * give the idle CPUs a chance to load balance. Else we may
11960 	 * load balance only within the local sched_domain hierarchy
11961 	 * and abort nohz_idle_balance altogether if we pull some load.
11962 	 */
11963 	if (nohz_idle_balance(this_rq, idle))
11964 		return;
11965 
11966 	/* normal load balance */
11967 	update_blocked_averages(this_rq->cpu);
11968 	rebalance_domains(this_rq, idle);
11969 }
11970 
11971 /*
11972  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
11973  */
11974 void trigger_load_balance(struct rq *rq)
11975 {
11976 	/*
11977 	 * Don't need to rebalance while attached to NULL domain or
11978 	 * runqueue CPU is not active
11979 	 */
11980 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
11981 		return;
11982 
11983 	if (time_after_eq(jiffies, rq->next_balance))
11984 		raise_softirq(SCHED_SOFTIRQ);
11985 
11986 	nohz_balancer_kick(rq);
11987 }
11988 
11989 static void rq_online_fair(struct rq *rq)
11990 {
11991 	update_sysctl();
11992 
11993 	update_runtime_enabled(rq);
11994 }
11995 
11996 static void rq_offline_fair(struct rq *rq)
11997 {
11998 	update_sysctl();
11999 
12000 	/* Ensure any throttled groups are reachable by pick_next_task */
12001 	unthrottle_offline_cfs_rqs(rq);
12002 }
12003 
12004 #endif /* CONFIG_SMP */
12005 
12006 #ifdef CONFIG_SCHED_CORE
12007 static inline bool
12008 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12009 {
12010 	u64 slice = sched_slice(cfs_rq_of(se), se);
12011 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12012 
12013 	return (rtime * min_nr_tasks > slice);
12014 }
12015 
12016 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
12017 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12018 {
12019 	if (!sched_core_enabled(rq))
12020 		return;
12021 
12022 	/*
12023 	 * If runqueue has only one task which used up its slice and
12024 	 * if the sibling is forced idle, then trigger schedule to
12025 	 * give forced idle task a chance.
12026 	 *
12027 	 * sched_slice() considers only this active rq and it gets the
12028 	 * whole slice. But during force idle, we have siblings acting
12029 	 * like a single runqueue and hence we need to consider runnable
12030 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12031 	 * go through the forced idle rq, but that would be a perf hit.
12032 	 * We can assume that the forced idle CPU has at least
12033 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12034 	 * if we need to give up the CPU.
12035 	 */
12036 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12037 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12038 		resched_curr(rq);
12039 }
12040 
12041 /*
12042  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12043  */
12044 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12045 			 bool forceidle)
12046 {
12047 	for_each_sched_entity(se) {
12048 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12049 
12050 		if (forceidle) {
12051 			if (cfs_rq->forceidle_seq == fi_seq)
12052 				break;
12053 			cfs_rq->forceidle_seq = fi_seq;
12054 		}
12055 
12056 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12057 	}
12058 }
12059 
12060 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12061 {
12062 	struct sched_entity *se = &p->se;
12063 
12064 	if (p->sched_class != &fair_sched_class)
12065 		return;
12066 
12067 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12068 }
12069 
12070 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12071 			bool in_fi)
12072 {
12073 	struct rq *rq = task_rq(a);
12074 	const struct sched_entity *sea = &a->se;
12075 	const struct sched_entity *seb = &b->se;
12076 	struct cfs_rq *cfs_rqa;
12077 	struct cfs_rq *cfs_rqb;
12078 	s64 delta;
12079 
12080 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
12081 
12082 #ifdef CONFIG_FAIR_GROUP_SCHED
12083 	/*
12084 	 * Find an se in the hierarchy for tasks a and b, such that the se's
12085 	 * are immediate siblings.
12086 	 */
12087 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12088 		int sea_depth = sea->depth;
12089 		int seb_depth = seb->depth;
12090 
12091 		if (sea_depth >= seb_depth)
12092 			sea = parent_entity(sea);
12093 		if (sea_depth <= seb_depth)
12094 			seb = parent_entity(seb);
12095 	}
12096 
12097 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12098 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12099 
12100 	cfs_rqa = sea->cfs_rq;
12101 	cfs_rqb = seb->cfs_rq;
12102 #else
12103 	cfs_rqa = &task_rq(a)->cfs;
12104 	cfs_rqb = &task_rq(b)->cfs;
12105 #endif
12106 
12107 	/*
12108 	 * Find delta after normalizing se's vruntime with its cfs_rq's
12109 	 * min_vruntime_fi, which would have been updated in prior calls
12110 	 * to se_fi_update().
12111 	 */
12112 	delta = (s64)(sea->vruntime - seb->vruntime) +
12113 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12114 
12115 	return delta > 0;
12116 }
12117 
12118 static int task_is_throttled_fair(struct task_struct *p, int cpu)
12119 {
12120 	struct cfs_rq *cfs_rq;
12121 
12122 #ifdef CONFIG_FAIR_GROUP_SCHED
12123 	cfs_rq = task_group(p)->cfs_rq[cpu];
12124 #else
12125 	cfs_rq = &cpu_rq(cpu)->cfs;
12126 #endif
12127 	return throttled_hierarchy(cfs_rq);
12128 }
12129 #else
12130 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12131 #endif
12132 
12133 /*
12134  * scheduler tick hitting a task of our scheduling class.
12135  *
12136  * NOTE: This function can be called remotely by the tick offload that
12137  * goes along full dynticks. Therefore no local assumption can be made
12138  * and everything must be accessed through the @rq and @curr passed in
12139  * parameters.
12140  */
12141 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12142 {
12143 	struct cfs_rq *cfs_rq;
12144 	struct sched_entity *se = &curr->se;
12145 
12146 	for_each_sched_entity(se) {
12147 		cfs_rq = cfs_rq_of(se);
12148 		entity_tick(cfs_rq, se, queued);
12149 	}
12150 
12151 	if (static_branch_unlikely(&sched_numa_balancing))
12152 		task_tick_numa(rq, curr);
12153 
12154 	update_misfit_status(curr, rq);
12155 	update_overutilized_status(task_rq(curr));
12156 
12157 	task_tick_core(rq, curr);
12158 }
12159 
12160 /*
12161  * called on fork with the child task as argument from the parent's context
12162  *  - child not yet on the tasklist
12163  *  - preemption disabled
12164  */
12165 static void task_fork_fair(struct task_struct *p)
12166 {
12167 	struct cfs_rq *cfs_rq;
12168 	struct sched_entity *se = &p->se, *curr;
12169 	struct rq *rq = this_rq();
12170 	struct rq_flags rf;
12171 
12172 	rq_lock(rq, &rf);
12173 	update_rq_clock(rq);
12174 
12175 	cfs_rq = task_cfs_rq(current);
12176 	curr = cfs_rq->curr;
12177 	if (curr) {
12178 		update_curr(cfs_rq);
12179 		se->vruntime = curr->vruntime;
12180 	}
12181 	place_entity(cfs_rq, se, 1);
12182 
12183 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
12184 		/*
12185 		 * Upon rescheduling, sched_class::put_prev_task() will place
12186 		 * 'current' within the tree based on its new key value.
12187 		 */
12188 		swap(curr->vruntime, se->vruntime);
12189 		resched_curr(rq);
12190 	}
12191 
12192 	se->vruntime -= cfs_rq->min_vruntime;
12193 	rq_unlock(rq, &rf);
12194 }
12195 
12196 /*
12197  * Priority of the task has changed. Check to see if we preempt
12198  * the current task.
12199  */
12200 static void
12201 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12202 {
12203 	if (!task_on_rq_queued(p))
12204 		return;
12205 
12206 	if (rq->cfs.nr_running == 1)
12207 		return;
12208 
12209 	/*
12210 	 * Reschedule if we are currently running on this runqueue and
12211 	 * our priority decreased, or if we are not currently running on
12212 	 * this runqueue and our priority is higher than the current's
12213 	 */
12214 	if (task_current(rq, p)) {
12215 		if (p->prio > oldprio)
12216 			resched_curr(rq);
12217 	} else
12218 		check_preempt_curr(rq, p, 0);
12219 }
12220 
12221 static inline bool vruntime_normalized(struct task_struct *p)
12222 {
12223 	struct sched_entity *se = &p->se;
12224 
12225 	/*
12226 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
12227 	 * the dequeue_entity(.flags=0) will already have normalized the
12228 	 * vruntime.
12229 	 */
12230 	if (p->on_rq)
12231 		return true;
12232 
12233 	/*
12234 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
12235 	 * But there are some cases where it has already been normalized:
12236 	 *
12237 	 * - A forked child which is waiting for being woken up by
12238 	 *   wake_up_new_task().
12239 	 * - A task which has been woken up by try_to_wake_up() and
12240 	 *   waiting for actually being woken up by sched_ttwu_pending().
12241 	 */
12242 	if (!se->sum_exec_runtime ||
12243 	    (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
12244 		return true;
12245 
12246 	return false;
12247 }
12248 
12249 #ifdef CONFIG_FAIR_GROUP_SCHED
12250 /*
12251  * Propagate the changes of the sched_entity across the tg tree to make it
12252  * visible to the root
12253  */
12254 static void propagate_entity_cfs_rq(struct sched_entity *se)
12255 {
12256 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12257 
12258 	if (cfs_rq_throttled(cfs_rq))
12259 		return;
12260 
12261 	if (!throttled_hierarchy(cfs_rq))
12262 		list_add_leaf_cfs_rq(cfs_rq);
12263 
12264 	/* Start to propagate at parent */
12265 	se = se->parent;
12266 
12267 	for_each_sched_entity(se) {
12268 		cfs_rq = cfs_rq_of(se);
12269 
12270 		update_load_avg(cfs_rq, se, UPDATE_TG);
12271 
12272 		if (cfs_rq_throttled(cfs_rq))
12273 			break;
12274 
12275 		if (!throttled_hierarchy(cfs_rq))
12276 			list_add_leaf_cfs_rq(cfs_rq);
12277 	}
12278 }
12279 #else
12280 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12281 #endif
12282 
12283 static void detach_entity_cfs_rq(struct sched_entity *se)
12284 {
12285 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12286 
12287 #ifdef CONFIG_SMP
12288 	/*
12289 	 * In case the task sched_avg hasn't been attached:
12290 	 * - A forked task which hasn't been woken up by wake_up_new_task().
12291 	 * - A task which has been woken up by try_to_wake_up() but is
12292 	 *   waiting for actually being woken up by sched_ttwu_pending().
12293 	 */
12294 	if (!se->avg.last_update_time)
12295 		return;
12296 #endif
12297 
12298 	/* Catch up with the cfs_rq and remove our load when we leave */
12299 	update_load_avg(cfs_rq, se, 0);
12300 	detach_entity_load_avg(cfs_rq, se);
12301 	update_tg_load_avg(cfs_rq);
12302 	propagate_entity_cfs_rq(se);
12303 }
12304 
12305 static void attach_entity_cfs_rq(struct sched_entity *se)
12306 {
12307 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12308 
12309 	/* Synchronize entity with its cfs_rq */
12310 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
12311 	attach_entity_load_avg(cfs_rq, se);
12312 	update_tg_load_avg(cfs_rq);
12313 	propagate_entity_cfs_rq(se);
12314 }
12315 
12316 static void detach_task_cfs_rq(struct task_struct *p)
12317 {
12318 	struct sched_entity *se = &p->se;
12319 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12320 
12321 	if (!vruntime_normalized(p)) {
12322 		/*
12323 		 * Fix up our vruntime so that the current sleep doesn't
12324 		 * cause 'unlimited' sleep bonus.
12325 		 */
12326 		place_entity(cfs_rq, se, 0);
12327 		se->vruntime -= cfs_rq->min_vruntime;
12328 	}
12329 
12330 	detach_entity_cfs_rq(se);
12331 }
12332 
12333 static void attach_task_cfs_rq(struct task_struct *p)
12334 {
12335 	struct sched_entity *se = &p->se;
12336 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12337 
12338 	attach_entity_cfs_rq(se);
12339 
12340 	if (!vruntime_normalized(p))
12341 		se->vruntime += cfs_rq->min_vruntime;
12342 }
12343 
12344 static void switched_from_fair(struct rq *rq, struct task_struct *p)
12345 {
12346 	detach_task_cfs_rq(p);
12347 }
12348 
12349 static void switched_to_fair(struct rq *rq, struct task_struct *p)
12350 {
12351 	attach_task_cfs_rq(p);
12352 
12353 	if (task_on_rq_queued(p)) {
12354 		/*
12355 		 * We were most likely switched from sched_rt, so
12356 		 * kick off the schedule if running, otherwise just see
12357 		 * if we can still preempt the current task.
12358 		 */
12359 		if (task_current(rq, p))
12360 			resched_curr(rq);
12361 		else
12362 			check_preempt_curr(rq, p, 0);
12363 	}
12364 }
12365 
12366 /* Account for a task changing its policy or group.
12367  *
12368  * This routine is mostly called to set cfs_rq->curr field when a task
12369  * migrates between groups/classes.
12370  */
12371 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12372 {
12373 	struct sched_entity *se = &p->se;
12374 
12375 #ifdef CONFIG_SMP
12376 	if (task_on_rq_queued(p)) {
12377 		/*
12378 		 * Move the next running task to the front of the list, so our
12379 		 * cfs_tasks list becomes MRU one.
12380 		 */
12381 		list_move(&se->group_node, &rq->cfs_tasks);
12382 	}
12383 #endif
12384 
12385 	for_each_sched_entity(se) {
12386 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12387 
12388 		set_next_entity(cfs_rq, se);
12389 		/* ensure bandwidth has been allocated on our new cfs_rq */
12390 		account_cfs_rq_runtime(cfs_rq, 0);
12391 	}
12392 }
12393 
12394 void init_cfs_rq(struct cfs_rq *cfs_rq)
12395 {
12396 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12397 	u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12398 #ifdef CONFIG_SMP
12399 	raw_spin_lock_init(&cfs_rq->removed.lock);
12400 #endif
12401 }
12402 
12403 #ifdef CONFIG_FAIR_GROUP_SCHED
12404 static void task_change_group_fair(struct task_struct *p)
12405 {
12406 	/*
12407 	 * We couldn't detach or attach a forked task which
12408 	 * hasn't been woken up by wake_up_new_task().
12409 	 */
12410 	if (READ_ONCE(p->__state) == TASK_NEW)
12411 		return;
12412 
12413 	detach_task_cfs_rq(p);
12414 
12415 #ifdef CONFIG_SMP
12416 	/* Tell se's cfs_rq has been changed -- migrated */
12417 	p->se.avg.last_update_time = 0;
12418 #endif
12419 	set_task_rq(p, task_cpu(p));
12420 	attach_task_cfs_rq(p);
12421 }
12422 
12423 void free_fair_sched_group(struct task_group *tg)
12424 {
12425 	int i;
12426 
12427 	for_each_possible_cpu(i) {
12428 		if (tg->cfs_rq)
12429 			kfree(tg->cfs_rq[i]);
12430 		if (tg->se)
12431 			kfree(tg->se[i]);
12432 	}
12433 
12434 	kfree(tg->cfs_rq);
12435 	kfree(tg->se);
12436 }
12437 
12438 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12439 {
12440 	struct sched_entity *se;
12441 	struct cfs_rq *cfs_rq;
12442 	int i;
12443 
12444 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12445 	if (!tg->cfs_rq)
12446 		goto err;
12447 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12448 	if (!tg->se)
12449 		goto err;
12450 
12451 	tg->shares = NICE_0_LOAD;
12452 
12453 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
12454 
12455 	for_each_possible_cpu(i) {
12456 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12457 				      GFP_KERNEL, cpu_to_node(i));
12458 		if (!cfs_rq)
12459 			goto err;
12460 
12461 		se = kzalloc_node(sizeof(struct sched_entity_stats),
12462 				  GFP_KERNEL, cpu_to_node(i));
12463 		if (!se)
12464 			goto err_free_rq;
12465 
12466 		init_cfs_rq(cfs_rq);
12467 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12468 		init_entity_runnable_average(se);
12469 	}
12470 
12471 	return 1;
12472 
12473 err_free_rq:
12474 	kfree(cfs_rq);
12475 err:
12476 	return 0;
12477 }
12478 
12479 void online_fair_sched_group(struct task_group *tg)
12480 {
12481 	struct sched_entity *se;
12482 	struct rq_flags rf;
12483 	struct rq *rq;
12484 	int i;
12485 
12486 	for_each_possible_cpu(i) {
12487 		rq = cpu_rq(i);
12488 		se = tg->se[i];
12489 		rq_lock_irq(rq, &rf);
12490 		update_rq_clock(rq);
12491 		attach_entity_cfs_rq(se);
12492 		sync_throttle(tg, i);
12493 		rq_unlock_irq(rq, &rf);
12494 	}
12495 }
12496 
12497 void unregister_fair_sched_group(struct task_group *tg)
12498 {
12499 	unsigned long flags;
12500 	struct rq *rq;
12501 	int cpu;
12502 
12503 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12504 
12505 	for_each_possible_cpu(cpu) {
12506 		if (tg->se[cpu])
12507 			remove_entity_load_avg(tg->se[cpu]);
12508 
12509 		/*
12510 		 * Only empty task groups can be destroyed; so we can speculatively
12511 		 * check on_list without danger of it being re-added.
12512 		 */
12513 		if (!tg->cfs_rq[cpu]->on_list)
12514 			continue;
12515 
12516 		rq = cpu_rq(cpu);
12517 
12518 		raw_spin_rq_lock_irqsave(rq, flags);
12519 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
12520 		raw_spin_rq_unlock_irqrestore(rq, flags);
12521 	}
12522 }
12523 
12524 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12525 			struct sched_entity *se, int cpu,
12526 			struct sched_entity *parent)
12527 {
12528 	struct rq *rq = cpu_rq(cpu);
12529 
12530 	cfs_rq->tg = tg;
12531 	cfs_rq->rq = rq;
12532 	init_cfs_rq_runtime(cfs_rq);
12533 
12534 	tg->cfs_rq[cpu] = cfs_rq;
12535 	tg->se[cpu] = se;
12536 
12537 	/* se could be NULL for root_task_group */
12538 	if (!se)
12539 		return;
12540 
12541 	if (!parent) {
12542 		se->cfs_rq = &rq->cfs;
12543 		se->depth = 0;
12544 	} else {
12545 		se->cfs_rq = parent->my_q;
12546 		se->depth = parent->depth + 1;
12547 	}
12548 
12549 	se->my_q = cfs_rq;
12550 	/* guarantee group entities always have weight */
12551 	update_load_set(&se->load, NICE_0_LOAD);
12552 	se->parent = parent;
12553 }
12554 
12555 static DEFINE_MUTEX(shares_mutex);
12556 
12557 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
12558 {
12559 	int i;
12560 
12561 	lockdep_assert_held(&shares_mutex);
12562 
12563 	/*
12564 	 * We can't change the weight of the root cgroup.
12565 	 */
12566 	if (!tg->se[0])
12567 		return -EINVAL;
12568 
12569 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12570 
12571 	if (tg->shares == shares)
12572 		return 0;
12573 
12574 	tg->shares = shares;
12575 	for_each_possible_cpu(i) {
12576 		struct rq *rq = cpu_rq(i);
12577 		struct sched_entity *se = tg->se[i];
12578 		struct rq_flags rf;
12579 
12580 		/* Propagate contribution to hierarchy */
12581 		rq_lock_irqsave(rq, &rf);
12582 		update_rq_clock(rq);
12583 		for_each_sched_entity(se) {
12584 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
12585 			update_cfs_group(se);
12586 		}
12587 		rq_unlock_irqrestore(rq, &rf);
12588 	}
12589 
12590 	return 0;
12591 }
12592 
12593 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
12594 {
12595 	int ret;
12596 
12597 	mutex_lock(&shares_mutex);
12598 	if (tg_is_idle(tg))
12599 		ret = -EINVAL;
12600 	else
12601 		ret = __sched_group_set_shares(tg, shares);
12602 	mutex_unlock(&shares_mutex);
12603 
12604 	return ret;
12605 }
12606 
12607 int sched_group_set_idle(struct task_group *tg, long idle)
12608 {
12609 	int i;
12610 
12611 	if (tg == &root_task_group)
12612 		return -EINVAL;
12613 
12614 	if (idle < 0 || idle > 1)
12615 		return -EINVAL;
12616 
12617 	mutex_lock(&shares_mutex);
12618 
12619 	if (tg->idle == idle) {
12620 		mutex_unlock(&shares_mutex);
12621 		return 0;
12622 	}
12623 
12624 	tg->idle = idle;
12625 
12626 	for_each_possible_cpu(i) {
12627 		struct rq *rq = cpu_rq(i);
12628 		struct sched_entity *se = tg->se[i];
12629 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
12630 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
12631 		long idle_task_delta;
12632 		struct rq_flags rf;
12633 
12634 		rq_lock_irqsave(rq, &rf);
12635 
12636 		grp_cfs_rq->idle = idle;
12637 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
12638 			goto next_cpu;
12639 
12640 		if (se->on_rq) {
12641 			parent_cfs_rq = cfs_rq_of(se);
12642 			if (cfs_rq_is_idle(grp_cfs_rq))
12643 				parent_cfs_rq->idle_nr_running++;
12644 			else
12645 				parent_cfs_rq->idle_nr_running--;
12646 		}
12647 
12648 		idle_task_delta = grp_cfs_rq->h_nr_running -
12649 				  grp_cfs_rq->idle_h_nr_running;
12650 		if (!cfs_rq_is_idle(grp_cfs_rq))
12651 			idle_task_delta *= -1;
12652 
12653 		for_each_sched_entity(se) {
12654 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
12655 
12656 			if (!se->on_rq)
12657 				break;
12658 
12659 			cfs_rq->idle_h_nr_running += idle_task_delta;
12660 
12661 			/* Already accounted at parent level and above. */
12662 			if (cfs_rq_is_idle(cfs_rq))
12663 				break;
12664 		}
12665 
12666 next_cpu:
12667 		rq_unlock_irqrestore(rq, &rf);
12668 	}
12669 
12670 	/* Idle groups have minimum weight. */
12671 	if (tg_is_idle(tg))
12672 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
12673 	else
12674 		__sched_group_set_shares(tg, NICE_0_LOAD);
12675 
12676 	mutex_unlock(&shares_mutex);
12677 	return 0;
12678 }
12679 
12680 #else /* CONFIG_FAIR_GROUP_SCHED */
12681 
12682 void free_fair_sched_group(struct task_group *tg) { }
12683 
12684 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12685 {
12686 	return 1;
12687 }
12688 
12689 void online_fair_sched_group(struct task_group *tg) { }
12690 
12691 void unregister_fair_sched_group(struct task_group *tg) { }
12692 
12693 #endif /* CONFIG_FAIR_GROUP_SCHED */
12694 
12695 
12696 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
12697 {
12698 	struct sched_entity *se = &task->se;
12699 	unsigned int rr_interval = 0;
12700 
12701 	/*
12702 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
12703 	 * idle runqueue:
12704 	 */
12705 	if (rq->cfs.load.weight)
12706 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
12707 
12708 	return rr_interval;
12709 }
12710 
12711 /*
12712  * All the scheduling class methods:
12713  */
12714 DEFINE_SCHED_CLASS(fair) = {
12715 
12716 	.enqueue_task		= enqueue_task_fair,
12717 	.dequeue_task		= dequeue_task_fair,
12718 	.yield_task		= yield_task_fair,
12719 	.yield_to_task		= yield_to_task_fair,
12720 
12721 	.check_preempt_curr	= check_preempt_wakeup,
12722 
12723 	.pick_next_task		= __pick_next_task_fair,
12724 	.put_prev_task		= put_prev_task_fair,
12725 	.set_next_task          = set_next_task_fair,
12726 
12727 #ifdef CONFIG_SMP
12728 	.balance		= balance_fair,
12729 	.pick_task		= pick_task_fair,
12730 	.select_task_rq		= select_task_rq_fair,
12731 	.migrate_task_rq	= migrate_task_rq_fair,
12732 
12733 	.rq_online		= rq_online_fair,
12734 	.rq_offline		= rq_offline_fair,
12735 
12736 	.task_dead		= task_dead_fair,
12737 	.set_cpus_allowed	= set_cpus_allowed_common,
12738 #endif
12739 
12740 	.task_tick		= task_tick_fair,
12741 	.task_fork		= task_fork_fair,
12742 
12743 	.prio_changed		= prio_changed_fair,
12744 	.switched_from		= switched_from_fair,
12745 	.switched_to		= switched_to_fair,
12746 
12747 	.get_rr_interval	= get_rr_interval_fair,
12748 
12749 	.update_curr		= update_curr_fair,
12750 
12751 #ifdef CONFIG_FAIR_GROUP_SCHED
12752 	.task_change_group	= task_change_group_fair,
12753 #endif
12754 
12755 #ifdef CONFIG_SCHED_CORE
12756 	.task_is_throttled	= task_is_throttled_fair,
12757 #endif
12758 
12759 #ifdef CONFIG_UCLAMP_TASK
12760 	.uclamp_enabled		= 1,
12761 #endif
12762 };
12763 
12764 #ifdef CONFIG_SCHED_DEBUG
12765 void print_cfs_stats(struct seq_file *m, int cpu)
12766 {
12767 	struct cfs_rq *cfs_rq, *pos;
12768 
12769 	rcu_read_lock();
12770 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
12771 		print_cfs_rq(m, cpu, cfs_rq);
12772 	rcu_read_unlock();
12773 }
12774 
12775 #ifdef CONFIG_NUMA_BALANCING
12776 void show_numa_stats(struct task_struct *p, struct seq_file *m)
12777 {
12778 	int node;
12779 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
12780 	struct numa_group *ng;
12781 
12782 	rcu_read_lock();
12783 	ng = rcu_dereference(p->numa_group);
12784 	for_each_online_node(node) {
12785 		if (p->numa_faults) {
12786 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
12787 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
12788 		}
12789 		if (ng) {
12790 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
12791 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
12792 		}
12793 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
12794 	}
12795 	rcu_read_unlock();
12796 }
12797 #endif /* CONFIG_NUMA_BALANCING */
12798 #endif /* CONFIG_SCHED_DEBUG */
12799 
12800 __init void init_sched_fair_class(void)
12801 {
12802 #ifdef CONFIG_SMP
12803 	int i;
12804 
12805 	for_each_possible_cpu(i) {
12806 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
12807 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
12808 
12809 #ifdef CONFIG_CFS_BANDWIDTH
12810 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
12811 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
12812 #endif
12813 	}
12814 
12815 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
12816 
12817 #ifdef CONFIG_NO_HZ_COMMON
12818 	nohz.next_balance = jiffies;
12819 	nohz.next_blocked = jiffies;
12820 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
12821 #endif
12822 #endif /* SMP */
12823 
12824 }
12825