1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 #include <trace/events/sched.h> 26 27 /* 28 * Targeted preemption latency for CPU-bound tasks: 29 * 30 * NOTE: this latency value is not the same as the concept of 31 * 'timeslice length' - timeslices in CFS are of variable length 32 * and have no persistent notion like in traditional, time-slice 33 * based scheduling concepts. 34 * 35 * (to see the precise effective timeslice length of your workload, 36 * run vmstat and monitor the context-switches (cs) field) 37 * 38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 39 */ 40 unsigned int sysctl_sched_latency = 6000000ULL; 41 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 42 43 /* 44 * The initial- and re-scaling of tunables is configurable 45 * 46 * Options are: 47 * 48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 51 * 52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 53 */ 54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 55 56 /* 57 * Minimal preemption granularity for CPU-bound tasks: 58 * 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 60 */ 61 unsigned int sysctl_sched_min_granularity = 750000ULL; 62 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 63 64 /* 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 66 */ 67 static unsigned int sched_nr_latency = 8; 68 69 /* 70 * After fork, child runs first. If set to 0 (default) then 71 * parent will (try to) run first. 72 */ 73 unsigned int sysctl_sched_child_runs_first __read_mostly; 74 75 /* 76 * SCHED_OTHER wake-up granularity. 77 * 78 * This option delays the preemption effects of decoupled workloads 79 * and reduces their over-scheduling. Synchronous workloads will still 80 * have immediate wakeup/sleep latencies. 81 * 82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 83 */ 84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 85 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 #ifdef CONFIG_SMP 90 /* 91 * For asym packing, by default the lower numbered CPU has higher priority. 92 */ 93 int __weak arch_asym_cpu_priority(int cpu) 94 { 95 return -cpu; 96 } 97 98 /* 99 * The margin used when comparing utilization with CPU capacity. 100 * 101 * (default: ~20%) 102 */ 103 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 104 105 #endif 106 107 #ifdef CONFIG_CFS_BANDWIDTH 108 /* 109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 110 * each time a cfs_rq requests quota. 111 * 112 * Note: in the case that the slice exceeds the runtime remaining (either due 113 * to consumption or the quota being specified to be smaller than the slice) 114 * we will always only issue the remaining available time. 115 * 116 * (default: 5 msec, units: microseconds) 117 */ 118 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 119 #endif 120 121 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 122 { 123 lw->weight += inc; 124 lw->inv_weight = 0; 125 } 126 127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 128 { 129 lw->weight -= dec; 130 lw->inv_weight = 0; 131 } 132 133 static inline void update_load_set(struct load_weight *lw, unsigned long w) 134 { 135 lw->weight = w; 136 lw->inv_weight = 0; 137 } 138 139 /* 140 * Increase the granularity value when there are more CPUs, 141 * because with more CPUs the 'effective latency' as visible 142 * to users decreases. But the relationship is not linear, 143 * so pick a second-best guess by going with the log2 of the 144 * number of CPUs. 145 * 146 * This idea comes from the SD scheduler of Con Kolivas: 147 */ 148 static unsigned int get_update_sysctl_factor(void) 149 { 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 151 unsigned int factor; 152 153 switch (sysctl_sched_tunable_scaling) { 154 case SCHED_TUNABLESCALING_NONE: 155 factor = 1; 156 break; 157 case SCHED_TUNABLESCALING_LINEAR: 158 factor = cpus; 159 break; 160 case SCHED_TUNABLESCALING_LOG: 161 default: 162 factor = 1 + ilog2(cpus); 163 break; 164 } 165 166 return factor; 167 } 168 169 static void update_sysctl(void) 170 { 171 unsigned int factor = get_update_sysctl_factor(); 172 173 #define SET_SYSCTL(name) \ 174 (sysctl_##name = (factor) * normalized_sysctl_##name) 175 SET_SYSCTL(sched_min_granularity); 176 SET_SYSCTL(sched_latency); 177 SET_SYSCTL(sched_wakeup_granularity); 178 #undef SET_SYSCTL 179 } 180 181 void sched_init_granularity(void) 182 { 183 update_sysctl(); 184 } 185 186 #define WMULT_CONST (~0U) 187 #define WMULT_SHIFT 32 188 189 static void __update_inv_weight(struct load_weight *lw) 190 { 191 unsigned long w; 192 193 if (likely(lw->inv_weight)) 194 return; 195 196 w = scale_load_down(lw->weight); 197 198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 199 lw->inv_weight = 1; 200 else if (unlikely(!w)) 201 lw->inv_weight = WMULT_CONST; 202 else 203 lw->inv_weight = WMULT_CONST / w; 204 } 205 206 /* 207 * delta_exec * weight / lw.weight 208 * OR 209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 210 * 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 212 * we're guaranteed shift stays positive because inv_weight is guaranteed to 213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 214 * 215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 216 * weight/lw.weight <= 1, and therefore our shift will also be positive. 217 */ 218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 219 { 220 u64 fact = scale_load_down(weight); 221 int shift = WMULT_SHIFT; 222 223 __update_inv_weight(lw); 224 225 if (unlikely(fact >> 32)) { 226 while (fact >> 32) { 227 fact >>= 1; 228 shift--; 229 } 230 } 231 232 fact = mul_u32_u32(fact, lw->inv_weight); 233 234 while (fact >> 32) { 235 fact >>= 1; 236 shift--; 237 } 238 239 return mul_u64_u32_shr(delta_exec, fact, shift); 240 } 241 242 243 const struct sched_class fair_sched_class; 244 245 /************************************************************** 246 * CFS operations on generic schedulable entities: 247 */ 248 249 #ifdef CONFIG_FAIR_GROUP_SCHED 250 static inline struct task_struct *task_of(struct sched_entity *se) 251 { 252 SCHED_WARN_ON(!entity_is_task(se)); 253 return container_of(se, struct task_struct, se); 254 } 255 256 /* Walk up scheduling entities hierarchy */ 257 #define for_each_sched_entity(se) \ 258 for (; se; se = se->parent) 259 260 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 261 { 262 return p->se.cfs_rq; 263 } 264 265 /* runqueue on which this entity is (to be) queued */ 266 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 267 { 268 return se->cfs_rq; 269 } 270 271 /* runqueue "owned" by this group */ 272 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 273 { 274 return grp->my_q; 275 } 276 277 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 278 { 279 if (!path) 280 return; 281 282 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg)) 283 autogroup_path(cfs_rq->tg, path, len); 284 else if (cfs_rq && cfs_rq->tg->css.cgroup) 285 cgroup_path(cfs_rq->tg->css.cgroup, path, len); 286 else 287 strlcpy(path, "(null)", len); 288 } 289 290 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 291 { 292 struct rq *rq = rq_of(cfs_rq); 293 int cpu = cpu_of(rq); 294 295 if (cfs_rq->on_list) 296 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 297 298 cfs_rq->on_list = 1; 299 300 /* 301 * Ensure we either appear before our parent (if already 302 * enqueued) or force our parent to appear after us when it is 303 * enqueued. The fact that we always enqueue bottom-up 304 * reduces this to two cases and a special case for the root 305 * cfs_rq. Furthermore, it also means that we will always reset 306 * tmp_alone_branch either when the branch is connected 307 * to a tree or when we reach the top of the tree 308 */ 309 if (cfs_rq->tg->parent && 310 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 311 /* 312 * If parent is already on the list, we add the child 313 * just before. Thanks to circular linked property of 314 * the list, this means to put the child at the tail 315 * of the list that starts by parent. 316 */ 317 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 318 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 319 /* 320 * The branch is now connected to its tree so we can 321 * reset tmp_alone_branch to the beginning of the 322 * list. 323 */ 324 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 325 return true; 326 } 327 328 if (!cfs_rq->tg->parent) { 329 /* 330 * cfs rq without parent should be put 331 * at the tail of the list. 332 */ 333 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 334 &rq->leaf_cfs_rq_list); 335 /* 336 * We have reach the top of a tree so we can reset 337 * tmp_alone_branch to the beginning of the list. 338 */ 339 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 340 return true; 341 } 342 343 /* 344 * The parent has not already been added so we want to 345 * make sure that it will be put after us. 346 * tmp_alone_branch points to the begin of the branch 347 * where we will add parent. 348 */ 349 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 350 /* 351 * update tmp_alone_branch to points to the new begin 352 * of the branch 353 */ 354 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 355 return false; 356 } 357 358 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 359 { 360 if (cfs_rq->on_list) { 361 struct rq *rq = rq_of(cfs_rq); 362 363 /* 364 * With cfs_rq being unthrottled/throttled during an enqueue, 365 * it can happen the tmp_alone_branch points the a leaf that 366 * we finally want to del. In this case, tmp_alone_branch moves 367 * to the prev element but it will point to rq->leaf_cfs_rq_list 368 * at the end of the enqueue. 369 */ 370 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 371 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 372 373 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 374 cfs_rq->on_list = 0; 375 } 376 } 377 378 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 379 { 380 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 381 } 382 383 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 384 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 385 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 386 leaf_cfs_rq_list) 387 388 /* Do the two (enqueued) entities belong to the same group ? */ 389 static inline struct cfs_rq * 390 is_same_group(struct sched_entity *se, struct sched_entity *pse) 391 { 392 if (se->cfs_rq == pse->cfs_rq) 393 return se->cfs_rq; 394 395 return NULL; 396 } 397 398 static inline struct sched_entity *parent_entity(struct sched_entity *se) 399 { 400 return se->parent; 401 } 402 403 static void 404 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 405 { 406 int se_depth, pse_depth; 407 408 /* 409 * preemption test can be made between sibling entities who are in the 410 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 411 * both tasks until we find their ancestors who are siblings of common 412 * parent. 413 */ 414 415 /* First walk up until both entities are at same depth */ 416 se_depth = (*se)->depth; 417 pse_depth = (*pse)->depth; 418 419 while (se_depth > pse_depth) { 420 se_depth--; 421 *se = parent_entity(*se); 422 } 423 424 while (pse_depth > se_depth) { 425 pse_depth--; 426 *pse = parent_entity(*pse); 427 } 428 429 while (!is_same_group(*se, *pse)) { 430 *se = parent_entity(*se); 431 *pse = parent_entity(*pse); 432 } 433 } 434 435 #else /* !CONFIG_FAIR_GROUP_SCHED */ 436 437 static inline struct task_struct *task_of(struct sched_entity *se) 438 { 439 return container_of(se, struct task_struct, se); 440 } 441 442 #define for_each_sched_entity(se) \ 443 for (; se; se = NULL) 444 445 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 446 { 447 return &task_rq(p)->cfs; 448 } 449 450 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 451 { 452 struct task_struct *p = task_of(se); 453 struct rq *rq = task_rq(p); 454 455 return &rq->cfs; 456 } 457 458 /* runqueue "owned" by this group */ 459 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 460 { 461 return NULL; 462 } 463 464 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 465 { 466 if (path) 467 strlcpy(path, "(null)", len); 468 } 469 470 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 471 { 472 return true; 473 } 474 475 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 476 { 477 } 478 479 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 480 { 481 } 482 483 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 484 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 485 486 static inline struct sched_entity *parent_entity(struct sched_entity *se) 487 { 488 return NULL; 489 } 490 491 static inline void 492 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 493 { 494 } 495 496 #endif /* CONFIG_FAIR_GROUP_SCHED */ 497 498 static __always_inline 499 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 500 501 /************************************************************** 502 * Scheduling class tree data structure manipulation methods: 503 */ 504 505 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 506 { 507 s64 delta = (s64)(vruntime - max_vruntime); 508 if (delta > 0) 509 max_vruntime = vruntime; 510 511 return max_vruntime; 512 } 513 514 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 515 { 516 s64 delta = (s64)(vruntime - min_vruntime); 517 if (delta < 0) 518 min_vruntime = vruntime; 519 520 return min_vruntime; 521 } 522 523 static inline int entity_before(struct sched_entity *a, 524 struct sched_entity *b) 525 { 526 return (s64)(a->vruntime - b->vruntime) < 0; 527 } 528 529 static void update_min_vruntime(struct cfs_rq *cfs_rq) 530 { 531 struct sched_entity *curr = cfs_rq->curr; 532 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 533 534 u64 vruntime = cfs_rq->min_vruntime; 535 536 if (curr) { 537 if (curr->on_rq) 538 vruntime = curr->vruntime; 539 else 540 curr = NULL; 541 } 542 543 if (leftmost) { /* non-empty tree */ 544 struct sched_entity *se; 545 se = rb_entry(leftmost, struct sched_entity, run_node); 546 547 if (!curr) 548 vruntime = se->vruntime; 549 else 550 vruntime = min_vruntime(vruntime, se->vruntime); 551 } 552 553 /* ensure we never gain time by being placed backwards. */ 554 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 555 #ifndef CONFIG_64BIT 556 smp_wmb(); 557 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 558 #endif 559 } 560 561 /* 562 * Enqueue an entity into the rb-tree: 563 */ 564 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 565 { 566 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 567 struct rb_node *parent = NULL; 568 struct sched_entity *entry; 569 bool leftmost = true; 570 571 /* 572 * Find the right place in the rbtree: 573 */ 574 while (*link) { 575 parent = *link; 576 entry = rb_entry(parent, struct sched_entity, run_node); 577 /* 578 * We dont care about collisions. Nodes with 579 * the same key stay together. 580 */ 581 if (entity_before(se, entry)) { 582 link = &parent->rb_left; 583 } else { 584 link = &parent->rb_right; 585 leftmost = false; 586 } 587 } 588 589 rb_link_node(&se->run_node, parent, link); 590 rb_insert_color_cached(&se->run_node, 591 &cfs_rq->tasks_timeline, leftmost); 592 } 593 594 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 595 { 596 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 597 } 598 599 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 600 { 601 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 602 603 if (!left) 604 return NULL; 605 606 return rb_entry(left, struct sched_entity, run_node); 607 } 608 609 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 610 { 611 struct rb_node *next = rb_next(&se->run_node); 612 613 if (!next) 614 return NULL; 615 616 return rb_entry(next, struct sched_entity, run_node); 617 } 618 619 #ifdef CONFIG_SCHED_DEBUG 620 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 621 { 622 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 623 624 if (!last) 625 return NULL; 626 627 return rb_entry(last, struct sched_entity, run_node); 628 } 629 630 /************************************************************** 631 * Scheduling class statistics methods: 632 */ 633 634 int sched_proc_update_handler(struct ctl_table *table, int write, 635 void __user *buffer, size_t *lenp, 636 loff_t *ppos) 637 { 638 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 639 unsigned int factor = get_update_sysctl_factor(); 640 641 if (ret || !write) 642 return ret; 643 644 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 645 sysctl_sched_min_granularity); 646 647 #define WRT_SYSCTL(name) \ 648 (normalized_sysctl_##name = sysctl_##name / (factor)) 649 WRT_SYSCTL(sched_min_granularity); 650 WRT_SYSCTL(sched_latency); 651 WRT_SYSCTL(sched_wakeup_granularity); 652 #undef WRT_SYSCTL 653 654 return 0; 655 } 656 #endif 657 658 /* 659 * delta /= w 660 */ 661 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 662 { 663 if (unlikely(se->load.weight != NICE_0_LOAD)) 664 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 665 666 return delta; 667 } 668 669 /* 670 * The idea is to set a period in which each task runs once. 671 * 672 * When there are too many tasks (sched_nr_latency) we have to stretch 673 * this period because otherwise the slices get too small. 674 * 675 * p = (nr <= nl) ? l : l*nr/nl 676 */ 677 static u64 __sched_period(unsigned long nr_running) 678 { 679 if (unlikely(nr_running > sched_nr_latency)) 680 return nr_running * sysctl_sched_min_granularity; 681 else 682 return sysctl_sched_latency; 683 } 684 685 /* 686 * We calculate the wall-time slice from the period by taking a part 687 * proportional to the weight. 688 * 689 * s = p*P[w/rw] 690 */ 691 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 692 { 693 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 694 695 for_each_sched_entity(se) { 696 struct load_weight *load; 697 struct load_weight lw; 698 699 cfs_rq = cfs_rq_of(se); 700 load = &cfs_rq->load; 701 702 if (unlikely(!se->on_rq)) { 703 lw = cfs_rq->load; 704 705 update_load_add(&lw, se->load.weight); 706 load = &lw; 707 } 708 slice = __calc_delta(slice, se->load.weight, load); 709 } 710 return slice; 711 } 712 713 /* 714 * We calculate the vruntime slice of a to-be-inserted task. 715 * 716 * vs = s/w 717 */ 718 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 719 { 720 return calc_delta_fair(sched_slice(cfs_rq, se), se); 721 } 722 723 #include "pelt.h" 724 #ifdef CONFIG_SMP 725 726 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 727 static unsigned long task_h_load(struct task_struct *p); 728 static unsigned long capacity_of(int cpu); 729 730 /* Give new sched_entity start runnable values to heavy its load in infant time */ 731 void init_entity_runnable_average(struct sched_entity *se) 732 { 733 struct sched_avg *sa = &se->avg; 734 735 memset(sa, 0, sizeof(*sa)); 736 737 /* 738 * Tasks are initialized with full load to be seen as heavy tasks until 739 * they get a chance to stabilize to their real load level. 740 * Group entities are initialized with zero load to reflect the fact that 741 * nothing has been attached to the task group yet. 742 */ 743 if (entity_is_task(se)) 744 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight); 745 746 se->runnable_weight = se->load.weight; 747 748 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 749 } 750 751 static void attach_entity_cfs_rq(struct sched_entity *se); 752 753 /* 754 * With new tasks being created, their initial util_avgs are extrapolated 755 * based on the cfs_rq's current util_avg: 756 * 757 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 758 * 759 * However, in many cases, the above util_avg does not give a desired 760 * value. Moreover, the sum of the util_avgs may be divergent, such 761 * as when the series is a harmonic series. 762 * 763 * To solve this problem, we also cap the util_avg of successive tasks to 764 * only 1/2 of the left utilization budget: 765 * 766 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 767 * 768 * where n denotes the nth task and cpu_scale the CPU capacity. 769 * 770 * For example, for a CPU with 1024 of capacity, a simplest series from 771 * the beginning would be like: 772 * 773 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 774 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 775 * 776 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 777 * if util_avg > util_avg_cap. 778 */ 779 void post_init_entity_util_avg(struct task_struct *p) 780 { 781 struct sched_entity *se = &p->se; 782 struct cfs_rq *cfs_rq = cfs_rq_of(se); 783 struct sched_avg *sa = &se->avg; 784 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 785 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 786 787 if (cap > 0) { 788 if (cfs_rq->avg.util_avg != 0) { 789 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 790 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 791 792 if (sa->util_avg > cap) 793 sa->util_avg = cap; 794 } else { 795 sa->util_avg = cap; 796 } 797 } 798 799 if (p->sched_class != &fair_sched_class) { 800 /* 801 * For !fair tasks do: 802 * 803 update_cfs_rq_load_avg(now, cfs_rq); 804 attach_entity_load_avg(cfs_rq, se); 805 switched_from_fair(rq, p); 806 * 807 * such that the next switched_to_fair() has the 808 * expected state. 809 */ 810 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 811 return; 812 } 813 814 attach_entity_cfs_rq(se); 815 } 816 817 #else /* !CONFIG_SMP */ 818 void init_entity_runnable_average(struct sched_entity *se) 819 { 820 } 821 void post_init_entity_util_avg(struct task_struct *p) 822 { 823 } 824 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 825 { 826 } 827 #endif /* CONFIG_SMP */ 828 829 /* 830 * Update the current task's runtime statistics. 831 */ 832 static void update_curr(struct cfs_rq *cfs_rq) 833 { 834 struct sched_entity *curr = cfs_rq->curr; 835 u64 now = rq_clock_task(rq_of(cfs_rq)); 836 u64 delta_exec; 837 838 if (unlikely(!curr)) 839 return; 840 841 delta_exec = now - curr->exec_start; 842 if (unlikely((s64)delta_exec <= 0)) 843 return; 844 845 curr->exec_start = now; 846 847 schedstat_set(curr->statistics.exec_max, 848 max(delta_exec, curr->statistics.exec_max)); 849 850 curr->sum_exec_runtime += delta_exec; 851 schedstat_add(cfs_rq->exec_clock, delta_exec); 852 853 curr->vruntime += calc_delta_fair(delta_exec, curr); 854 update_min_vruntime(cfs_rq); 855 856 if (entity_is_task(curr)) { 857 struct task_struct *curtask = task_of(curr); 858 859 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 860 cgroup_account_cputime(curtask, delta_exec); 861 account_group_exec_runtime(curtask, delta_exec); 862 } 863 864 account_cfs_rq_runtime(cfs_rq, delta_exec); 865 } 866 867 static void update_curr_fair(struct rq *rq) 868 { 869 update_curr(cfs_rq_of(&rq->curr->se)); 870 } 871 872 static inline void 873 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 874 { 875 u64 wait_start, prev_wait_start; 876 877 if (!schedstat_enabled()) 878 return; 879 880 wait_start = rq_clock(rq_of(cfs_rq)); 881 prev_wait_start = schedstat_val(se->statistics.wait_start); 882 883 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 884 likely(wait_start > prev_wait_start)) 885 wait_start -= prev_wait_start; 886 887 __schedstat_set(se->statistics.wait_start, wait_start); 888 } 889 890 static inline void 891 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 892 { 893 struct task_struct *p; 894 u64 delta; 895 896 if (!schedstat_enabled()) 897 return; 898 899 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 900 901 if (entity_is_task(se)) { 902 p = task_of(se); 903 if (task_on_rq_migrating(p)) { 904 /* 905 * Preserve migrating task's wait time so wait_start 906 * time stamp can be adjusted to accumulate wait time 907 * prior to migration. 908 */ 909 __schedstat_set(se->statistics.wait_start, delta); 910 return; 911 } 912 trace_sched_stat_wait(p, delta); 913 } 914 915 __schedstat_set(se->statistics.wait_max, 916 max(schedstat_val(se->statistics.wait_max), delta)); 917 __schedstat_inc(se->statistics.wait_count); 918 __schedstat_add(se->statistics.wait_sum, delta); 919 __schedstat_set(se->statistics.wait_start, 0); 920 } 921 922 static inline void 923 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 924 { 925 struct task_struct *tsk = NULL; 926 u64 sleep_start, block_start; 927 928 if (!schedstat_enabled()) 929 return; 930 931 sleep_start = schedstat_val(se->statistics.sleep_start); 932 block_start = schedstat_val(se->statistics.block_start); 933 934 if (entity_is_task(se)) 935 tsk = task_of(se); 936 937 if (sleep_start) { 938 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 939 940 if ((s64)delta < 0) 941 delta = 0; 942 943 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 944 __schedstat_set(se->statistics.sleep_max, delta); 945 946 __schedstat_set(se->statistics.sleep_start, 0); 947 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 948 949 if (tsk) { 950 account_scheduler_latency(tsk, delta >> 10, 1); 951 trace_sched_stat_sleep(tsk, delta); 952 } 953 } 954 if (block_start) { 955 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 956 957 if ((s64)delta < 0) 958 delta = 0; 959 960 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 961 __schedstat_set(se->statistics.block_max, delta); 962 963 __schedstat_set(se->statistics.block_start, 0); 964 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 965 966 if (tsk) { 967 if (tsk->in_iowait) { 968 __schedstat_add(se->statistics.iowait_sum, delta); 969 __schedstat_inc(se->statistics.iowait_count); 970 trace_sched_stat_iowait(tsk, delta); 971 } 972 973 trace_sched_stat_blocked(tsk, delta); 974 975 /* 976 * Blocking time is in units of nanosecs, so shift by 977 * 20 to get a milliseconds-range estimation of the 978 * amount of time that the task spent sleeping: 979 */ 980 if (unlikely(prof_on == SLEEP_PROFILING)) { 981 profile_hits(SLEEP_PROFILING, 982 (void *)get_wchan(tsk), 983 delta >> 20); 984 } 985 account_scheduler_latency(tsk, delta >> 10, 0); 986 } 987 } 988 } 989 990 /* 991 * Task is being enqueued - update stats: 992 */ 993 static inline void 994 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 995 { 996 if (!schedstat_enabled()) 997 return; 998 999 /* 1000 * Are we enqueueing a waiting task? (for current tasks 1001 * a dequeue/enqueue event is a NOP) 1002 */ 1003 if (se != cfs_rq->curr) 1004 update_stats_wait_start(cfs_rq, se); 1005 1006 if (flags & ENQUEUE_WAKEUP) 1007 update_stats_enqueue_sleeper(cfs_rq, se); 1008 } 1009 1010 static inline void 1011 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1012 { 1013 1014 if (!schedstat_enabled()) 1015 return; 1016 1017 /* 1018 * Mark the end of the wait period if dequeueing a 1019 * waiting task: 1020 */ 1021 if (se != cfs_rq->curr) 1022 update_stats_wait_end(cfs_rq, se); 1023 1024 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1025 struct task_struct *tsk = task_of(se); 1026 1027 if (tsk->state & TASK_INTERRUPTIBLE) 1028 __schedstat_set(se->statistics.sleep_start, 1029 rq_clock(rq_of(cfs_rq))); 1030 if (tsk->state & TASK_UNINTERRUPTIBLE) 1031 __schedstat_set(se->statistics.block_start, 1032 rq_clock(rq_of(cfs_rq))); 1033 } 1034 } 1035 1036 /* 1037 * We are picking a new current task - update its stats: 1038 */ 1039 static inline void 1040 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1041 { 1042 /* 1043 * We are starting a new run period: 1044 */ 1045 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1046 } 1047 1048 /************************************************** 1049 * Scheduling class queueing methods: 1050 */ 1051 1052 #ifdef CONFIG_NUMA_BALANCING 1053 /* 1054 * Approximate time to scan a full NUMA task in ms. The task scan period is 1055 * calculated based on the tasks virtual memory size and 1056 * numa_balancing_scan_size. 1057 */ 1058 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1059 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1060 1061 /* Portion of address space to scan in MB */ 1062 unsigned int sysctl_numa_balancing_scan_size = 256; 1063 1064 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1065 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1066 1067 struct numa_group { 1068 refcount_t refcount; 1069 1070 spinlock_t lock; /* nr_tasks, tasks */ 1071 int nr_tasks; 1072 pid_t gid; 1073 int active_nodes; 1074 1075 struct rcu_head rcu; 1076 unsigned long total_faults; 1077 unsigned long max_faults_cpu; 1078 /* 1079 * Faults_cpu is used to decide whether memory should move 1080 * towards the CPU. As a consequence, these stats are weighted 1081 * more by CPU use than by memory faults. 1082 */ 1083 unsigned long *faults_cpu; 1084 unsigned long faults[0]; 1085 }; 1086 1087 /* 1088 * For functions that can be called in multiple contexts that permit reading 1089 * ->numa_group (see struct task_struct for locking rules). 1090 */ 1091 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1092 { 1093 return rcu_dereference_check(p->numa_group, p == current || 1094 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu))); 1095 } 1096 1097 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1098 { 1099 return rcu_dereference_protected(p->numa_group, p == current); 1100 } 1101 1102 static inline unsigned long group_faults_priv(struct numa_group *ng); 1103 static inline unsigned long group_faults_shared(struct numa_group *ng); 1104 1105 static unsigned int task_nr_scan_windows(struct task_struct *p) 1106 { 1107 unsigned long rss = 0; 1108 unsigned long nr_scan_pages; 1109 1110 /* 1111 * Calculations based on RSS as non-present and empty pages are skipped 1112 * by the PTE scanner and NUMA hinting faults should be trapped based 1113 * on resident pages 1114 */ 1115 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1116 rss = get_mm_rss(p->mm); 1117 if (!rss) 1118 rss = nr_scan_pages; 1119 1120 rss = round_up(rss, nr_scan_pages); 1121 return rss / nr_scan_pages; 1122 } 1123 1124 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1125 #define MAX_SCAN_WINDOW 2560 1126 1127 static unsigned int task_scan_min(struct task_struct *p) 1128 { 1129 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1130 unsigned int scan, floor; 1131 unsigned int windows = 1; 1132 1133 if (scan_size < MAX_SCAN_WINDOW) 1134 windows = MAX_SCAN_WINDOW / scan_size; 1135 floor = 1000 / windows; 1136 1137 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1138 return max_t(unsigned int, floor, scan); 1139 } 1140 1141 static unsigned int task_scan_start(struct task_struct *p) 1142 { 1143 unsigned long smin = task_scan_min(p); 1144 unsigned long period = smin; 1145 struct numa_group *ng; 1146 1147 /* Scale the maximum scan period with the amount of shared memory. */ 1148 rcu_read_lock(); 1149 ng = rcu_dereference(p->numa_group); 1150 if (ng) { 1151 unsigned long shared = group_faults_shared(ng); 1152 unsigned long private = group_faults_priv(ng); 1153 1154 period *= refcount_read(&ng->refcount); 1155 period *= shared + 1; 1156 period /= private + shared + 1; 1157 } 1158 rcu_read_unlock(); 1159 1160 return max(smin, period); 1161 } 1162 1163 static unsigned int task_scan_max(struct task_struct *p) 1164 { 1165 unsigned long smin = task_scan_min(p); 1166 unsigned long smax; 1167 struct numa_group *ng; 1168 1169 /* Watch for min being lower than max due to floor calculations */ 1170 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1171 1172 /* Scale the maximum scan period with the amount of shared memory. */ 1173 ng = deref_curr_numa_group(p); 1174 if (ng) { 1175 unsigned long shared = group_faults_shared(ng); 1176 unsigned long private = group_faults_priv(ng); 1177 unsigned long period = smax; 1178 1179 period *= refcount_read(&ng->refcount); 1180 period *= shared + 1; 1181 period /= private + shared + 1; 1182 1183 smax = max(smax, period); 1184 } 1185 1186 return max(smin, smax); 1187 } 1188 1189 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1190 { 1191 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1192 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1193 } 1194 1195 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1196 { 1197 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1198 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1199 } 1200 1201 /* Shared or private faults. */ 1202 #define NR_NUMA_HINT_FAULT_TYPES 2 1203 1204 /* Memory and CPU locality */ 1205 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1206 1207 /* Averaged statistics, and temporary buffers. */ 1208 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1209 1210 pid_t task_numa_group_id(struct task_struct *p) 1211 { 1212 struct numa_group *ng; 1213 pid_t gid = 0; 1214 1215 rcu_read_lock(); 1216 ng = rcu_dereference(p->numa_group); 1217 if (ng) 1218 gid = ng->gid; 1219 rcu_read_unlock(); 1220 1221 return gid; 1222 } 1223 1224 /* 1225 * The averaged statistics, shared & private, memory & CPU, 1226 * occupy the first half of the array. The second half of the 1227 * array is for current counters, which are averaged into the 1228 * first set by task_numa_placement. 1229 */ 1230 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1231 { 1232 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1233 } 1234 1235 static inline unsigned long task_faults(struct task_struct *p, int nid) 1236 { 1237 if (!p->numa_faults) 1238 return 0; 1239 1240 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1241 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1242 } 1243 1244 static inline unsigned long group_faults(struct task_struct *p, int nid) 1245 { 1246 struct numa_group *ng = deref_task_numa_group(p); 1247 1248 if (!ng) 1249 return 0; 1250 1251 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1252 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1253 } 1254 1255 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1256 { 1257 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1258 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1259 } 1260 1261 static inline unsigned long group_faults_priv(struct numa_group *ng) 1262 { 1263 unsigned long faults = 0; 1264 int node; 1265 1266 for_each_online_node(node) { 1267 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1268 } 1269 1270 return faults; 1271 } 1272 1273 static inline unsigned long group_faults_shared(struct numa_group *ng) 1274 { 1275 unsigned long faults = 0; 1276 int node; 1277 1278 for_each_online_node(node) { 1279 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1280 } 1281 1282 return faults; 1283 } 1284 1285 /* 1286 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1287 * considered part of a numa group's pseudo-interleaving set. Migrations 1288 * between these nodes are slowed down, to allow things to settle down. 1289 */ 1290 #define ACTIVE_NODE_FRACTION 3 1291 1292 static bool numa_is_active_node(int nid, struct numa_group *ng) 1293 { 1294 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1295 } 1296 1297 /* Handle placement on systems where not all nodes are directly connected. */ 1298 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1299 int maxdist, bool task) 1300 { 1301 unsigned long score = 0; 1302 int node; 1303 1304 /* 1305 * All nodes are directly connected, and the same distance 1306 * from each other. No need for fancy placement algorithms. 1307 */ 1308 if (sched_numa_topology_type == NUMA_DIRECT) 1309 return 0; 1310 1311 /* 1312 * This code is called for each node, introducing N^2 complexity, 1313 * which should be ok given the number of nodes rarely exceeds 8. 1314 */ 1315 for_each_online_node(node) { 1316 unsigned long faults; 1317 int dist = node_distance(nid, node); 1318 1319 /* 1320 * The furthest away nodes in the system are not interesting 1321 * for placement; nid was already counted. 1322 */ 1323 if (dist == sched_max_numa_distance || node == nid) 1324 continue; 1325 1326 /* 1327 * On systems with a backplane NUMA topology, compare groups 1328 * of nodes, and move tasks towards the group with the most 1329 * memory accesses. When comparing two nodes at distance 1330 * "hoplimit", only nodes closer by than "hoplimit" are part 1331 * of each group. Skip other nodes. 1332 */ 1333 if (sched_numa_topology_type == NUMA_BACKPLANE && 1334 dist >= maxdist) 1335 continue; 1336 1337 /* Add up the faults from nearby nodes. */ 1338 if (task) 1339 faults = task_faults(p, node); 1340 else 1341 faults = group_faults(p, node); 1342 1343 /* 1344 * On systems with a glueless mesh NUMA topology, there are 1345 * no fixed "groups of nodes". Instead, nodes that are not 1346 * directly connected bounce traffic through intermediate 1347 * nodes; a numa_group can occupy any set of nodes. 1348 * The further away a node is, the less the faults count. 1349 * This seems to result in good task placement. 1350 */ 1351 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1352 faults *= (sched_max_numa_distance - dist); 1353 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1354 } 1355 1356 score += faults; 1357 } 1358 1359 return score; 1360 } 1361 1362 /* 1363 * These return the fraction of accesses done by a particular task, or 1364 * task group, on a particular numa node. The group weight is given a 1365 * larger multiplier, in order to group tasks together that are almost 1366 * evenly spread out between numa nodes. 1367 */ 1368 static inline unsigned long task_weight(struct task_struct *p, int nid, 1369 int dist) 1370 { 1371 unsigned long faults, total_faults; 1372 1373 if (!p->numa_faults) 1374 return 0; 1375 1376 total_faults = p->total_numa_faults; 1377 1378 if (!total_faults) 1379 return 0; 1380 1381 faults = task_faults(p, nid); 1382 faults += score_nearby_nodes(p, nid, dist, true); 1383 1384 return 1000 * faults / total_faults; 1385 } 1386 1387 static inline unsigned long group_weight(struct task_struct *p, int nid, 1388 int dist) 1389 { 1390 struct numa_group *ng = deref_task_numa_group(p); 1391 unsigned long faults, total_faults; 1392 1393 if (!ng) 1394 return 0; 1395 1396 total_faults = ng->total_faults; 1397 1398 if (!total_faults) 1399 return 0; 1400 1401 faults = group_faults(p, nid); 1402 faults += score_nearby_nodes(p, nid, dist, false); 1403 1404 return 1000 * faults / total_faults; 1405 } 1406 1407 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1408 int src_nid, int dst_cpu) 1409 { 1410 struct numa_group *ng = deref_curr_numa_group(p); 1411 int dst_nid = cpu_to_node(dst_cpu); 1412 int last_cpupid, this_cpupid; 1413 1414 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1415 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1416 1417 /* 1418 * Allow first faults or private faults to migrate immediately early in 1419 * the lifetime of a task. The magic number 4 is based on waiting for 1420 * two full passes of the "multi-stage node selection" test that is 1421 * executed below. 1422 */ 1423 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1424 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1425 return true; 1426 1427 /* 1428 * Multi-stage node selection is used in conjunction with a periodic 1429 * migration fault to build a temporal task<->page relation. By using 1430 * a two-stage filter we remove short/unlikely relations. 1431 * 1432 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1433 * a task's usage of a particular page (n_p) per total usage of this 1434 * page (n_t) (in a given time-span) to a probability. 1435 * 1436 * Our periodic faults will sample this probability and getting the 1437 * same result twice in a row, given these samples are fully 1438 * independent, is then given by P(n)^2, provided our sample period 1439 * is sufficiently short compared to the usage pattern. 1440 * 1441 * This quadric squishes small probabilities, making it less likely we 1442 * act on an unlikely task<->page relation. 1443 */ 1444 if (!cpupid_pid_unset(last_cpupid) && 1445 cpupid_to_nid(last_cpupid) != dst_nid) 1446 return false; 1447 1448 /* Always allow migrate on private faults */ 1449 if (cpupid_match_pid(p, last_cpupid)) 1450 return true; 1451 1452 /* A shared fault, but p->numa_group has not been set up yet. */ 1453 if (!ng) 1454 return true; 1455 1456 /* 1457 * Destination node is much more heavily used than the source 1458 * node? Allow migration. 1459 */ 1460 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1461 ACTIVE_NODE_FRACTION) 1462 return true; 1463 1464 /* 1465 * Distribute memory according to CPU & memory use on each node, 1466 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1467 * 1468 * faults_cpu(dst) 3 faults_cpu(src) 1469 * --------------- * - > --------------- 1470 * faults_mem(dst) 4 faults_mem(src) 1471 */ 1472 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1473 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1474 } 1475 1476 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq); 1477 1478 static unsigned long cpu_runnable_load(struct rq *rq) 1479 { 1480 return cfs_rq_runnable_load_avg(&rq->cfs); 1481 } 1482 1483 /* Cached statistics for all CPUs within a node */ 1484 struct numa_stats { 1485 unsigned long load; 1486 1487 /* Total compute capacity of CPUs on a node */ 1488 unsigned long compute_capacity; 1489 }; 1490 1491 /* 1492 * XXX borrowed from update_sg_lb_stats 1493 */ 1494 static void update_numa_stats(struct numa_stats *ns, int nid) 1495 { 1496 int cpu; 1497 1498 memset(ns, 0, sizeof(*ns)); 1499 for_each_cpu(cpu, cpumask_of_node(nid)) { 1500 struct rq *rq = cpu_rq(cpu); 1501 1502 ns->load += cpu_runnable_load(rq); 1503 ns->compute_capacity += capacity_of(cpu); 1504 } 1505 1506 } 1507 1508 struct task_numa_env { 1509 struct task_struct *p; 1510 1511 int src_cpu, src_nid; 1512 int dst_cpu, dst_nid; 1513 1514 struct numa_stats src_stats, dst_stats; 1515 1516 int imbalance_pct; 1517 int dist; 1518 1519 struct task_struct *best_task; 1520 long best_imp; 1521 int best_cpu; 1522 }; 1523 1524 static void task_numa_assign(struct task_numa_env *env, 1525 struct task_struct *p, long imp) 1526 { 1527 struct rq *rq = cpu_rq(env->dst_cpu); 1528 1529 /* Bail out if run-queue part of active NUMA balance. */ 1530 if (xchg(&rq->numa_migrate_on, 1)) 1531 return; 1532 1533 /* 1534 * Clear previous best_cpu/rq numa-migrate flag, since task now 1535 * found a better CPU to move/swap. 1536 */ 1537 if (env->best_cpu != -1) { 1538 rq = cpu_rq(env->best_cpu); 1539 WRITE_ONCE(rq->numa_migrate_on, 0); 1540 } 1541 1542 if (env->best_task) 1543 put_task_struct(env->best_task); 1544 if (p) 1545 get_task_struct(p); 1546 1547 env->best_task = p; 1548 env->best_imp = imp; 1549 env->best_cpu = env->dst_cpu; 1550 } 1551 1552 static bool load_too_imbalanced(long src_load, long dst_load, 1553 struct task_numa_env *env) 1554 { 1555 long imb, old_imb; 1556 long orig_src_load, orig_dst_load; 1557 long src_capacity, dst_capacity; 1558 1559 /* 1560 * The load is corrected for the CPU capacity available on each node. 1561 * 1562 * src_load dst_load 1563 * ------------ vs --------- 1564 * src_capacity dst_capacity 1565 */ 1566 src_capacity = env->src_stats.compute_capacity; 1567 dst_capacity = env->dst_stats.compute_capacity; 1568 1569 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1570 1571 orig_src_load = env->src_stats.load; 1572 orig_dst_load = env->dst_stats.load; 1573 1574 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1575 1576 /* Would this change make things worse? */ 1577 return (imb > old_imb); 1578 } 1579 1580 /* 1581 * Maximum NUMA importance can be 1998 (2*999); 1582 * SMALLIMP @ 30 would be close to 1998/64. 1583 * Used to deter task migration. 1584 */ 1585 #define SMALLIMP 30 1586 1587 /* 1588 * This checks if the overall compute and NUMA accesses of the system would 1589 * be improved if the source tasks was migrated to the target dst_cpu taking 1590 * into account that it might be best if task running on the dst_cpu should 1591 * be exchanged with the source task 1592 */ 1593 static void task_numa_compare(struct task_numa_env *env, 1594 long taskimp, long groupimp, bool maymove) 1595 { 1596 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1597 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1598 long imp = p_ng ? groupimp : taskimp; 1599 struct task_struct *cur; 1600 long src_load, dst_load; 1601 int dist = env->dist; 1602 long moveimp = imp; 1603 long load; 1604 1605 if (READ_ONCE(dst_rq->numa_migrate_on)) 1606 return; 1607 1608 rcu_read_lock(); 1609 cur = rcu_dereference(dst_rq->curr); 1610 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1611 cur = NULL; 1612 1613 /* 1614 * Because we have preemption enabled we can get migrated around and 1615 * end try selecting ourselves (current == env->p) as a swap candidate. 1616 */ 1617 if (cur == env->p) 1618 goto unlock; 1619 1620 if (!cur) { 1621 if (maymove && moveimp >= env->best_imp) 1622 goto assign; 1623 else 1624 goto unlock; 1625 } 1626 1627 /* 1628 * "imp" is the fault differential for the source task between the 1629 * source and destination node. Calculate the total differential for 1630 * the source task and potential destination task. The more negative 1631 * the value is, the more remote accesses that would be expected to 1632 * be incurred if the tasks were swapped. 1633 */ 1634 /* Skip this swap candidate if cannot move to the source cpu */ 1635 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1636 goto unlock; 1637 1638 /* 1639 * If dst and source tasks are in the same NUMA group, or not 1640 * in any group then look only at task weights. 1641 */ 1642 cur_ng = rcu_dereference(cur->numa_group); 1643 if (cur_ng == p_ng) { 1644 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1645 task_weight(cur, env->dst_nid, dist); 1646 /* 1647 * Add some hysteresis to prevent swapping the 1648 * tasks within a group over tiny differences. 1649 */ 1650 if (cur_ng) 1651 imp -= imp / 16; 1652 } else { 1653 /* 1654 * Compare the group weights. If a task is all by itself 1655 * (not part of a group), use the task weight instead. 1656 */ 1657 if (cur_ng && p_ng) 1658 imp += group_weight(cur, env->src_nid, dist) - 1659 group_weight(cur, env->dst_nid, dist); 1660 else 1661 imp += task_weight(cur, env->src_nid, dist) - 1662 task_weight(cur, env->dst_nid, dist); 1663 } 1664 1665 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1666 imp = moveimp; 1667 cur = NULL; 1668 goto assign; 1669 } 1670 1671 /* 1672 * If the NUMA importance is less than SMALLIMP, 1673 * task migration might only result in ping pong 1674 * of tasks and also hurt performance due to cache 1675 * misses. 1676 */ 1677 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1678 goto unlock; 1679 1680 /* 1681 * In the overloaded case, try and keep the load balanced. 1682 */ 1683 load = task_h_load(env->p) - task_h_load(cur); 1684 if (!load) 1685 goto assign; 1686 1687 dst_load = env->dst_stats.load + load; 1688 src_load = env->src_stats.load - load; 1689 1690 if (load_too_imbalanced(src_load, dst_load, env)) 1691 goto unlock; 1692 1693 assign: 1694 /* 1695 * One idle CPU per node is evaluated for a task numa move. 1696 * Call select_idle_sibling to maybe find a better one. 1697 */ 1698 if (!cur) { 1699 /* 1700 * select_idle_siblings() uses an per-CPU cpumask that 1701 * can be used from IRQ context. 1702 */ 1703 local_irq_disable(); 1704 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1705 env->dst_cpu); 1706 local_irq_enable(); 1707 } 1708 1709 task_numa_assign(env, cur, imp); 1710 unlock: 1711 rcu_read_unlock(); 1712 } 1713 1714 static void task_numa_find_cpu(struct task_numa_env *env, 1715 long taskimp, long groupimp) 1716 { 1717 long src_load, dst_load, load; 1718 bool maymove = false; 1719 int cpu; 1720 1721 load = task_h_load(env->p); 1722 dst_load = env->dst_stats.load + load; 1723 src_load = env->src_stats.load - load; 1724 1725 /* 1726 * If the improvement from just moving env->p direction is better 1727 * than swapping tasks around, check if a move is possible. 1728 */ 1729 maymove = !load_too_imbalanced(src_load, dst_load, env); 1730 1731 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1732 /* Skip this CPU if the source task cannot migrate */ 1733 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1734 continue; 1735 1736 env->dst_cpu = cpu; 1737 task_numa_compare(env, taskimp, groupimp, maymove); 1738 } 1739 } 1740 1741 static int task_numa_migrate(struct task_struct *p) 1742 { 1743 struct task_numa_env env = { 1744 .p = p, 1745 1746 .src_cpu = task_cpu(p), 1747 .src_nid = task_node(p), 1748 1749 .imbalance_pct = 112, 1750 1751 .best_task = NULL, 1752 .best_imp = 0, 1753 .best_cpu = -1, 1754 }; 1755 unsigned long taskweight, groupweight; 1756 struct sched_domain *sd; 1757 long taskimp, groupimp; 1758 struct numa_group *ng; 1759 struct rq *best_rq; 1760 int nid, ret, dist; 1761 1762 /* 1763 * Pick the lowest SD_NUMA domain, as that would have the smallest 1764 * imbalance and would be the first to start moving tasks about. 1765 * 1766 * And we want to avoid any moving of tasks about, as that would create 1767 * random movement of tasks -- counter the numa conditions we're trying 1768 * to satisfy here. 1769 */ 1770 rcu_read_lock(); 1771 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1772 if (sd) 1773 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1774 rcu_read_unlock(); 1775 1776 /* 1777 * Cpusets can break the scheduler domain tree into smaller 1778 * balance domains, some of which do not cross NUMA boundaries. 1779 * Tasks that are "trapped" in such domains cannot be migrated 1780 * elsewhere, so there is no point in (re)trying. 1781 */ 1782 if (unlikely(!sd)) { 1783 sched_setnuma(p, task_node(p)); 1784 return -EINVAL; 1785 } 1786 1787 env.dst_nid = p->numa_preferred_nid; 1788 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1789 taskweight = task_weight(p, env.src_nid, dist); 1790 groupweight = group_weight(p, env.src_nid, dist); 1791 update_numa_stats(&env.src_stats, env.src_nid); 1792 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1793 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1794 update_numa_stats(&env.dst_stats, env.dst_nid); 1795 1796 /* Try to find a spot on the preferred nid. */ 1797 task_numa_find_cpu(&env, taskimp, groupimp); 1798 1799 /* 1800 * Look at other nodes in these cases: 1801 * - there is no space available on the preferred_nid 1802 * - the task is part of a numa_group that is interleaved across 1803 * multiple NUMA nodes; in order to better consolidate the group, 1804 * we need to check other locations. 1805 */ 1806 ng = deref_curr_numa_group(p); 1807 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 1808 for_each_online_node(nid) { 1809 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1810 continue; 1811 1812 dist = node_distance(env.src_nid, env.dst_nid); 1813 if (sched_numa_topology_type == NUMA_BACKPLANE && 1814 dist != env.dist) { 1815 taskweight = task_weight(p, env.src_nid, dist); 1816 groupweight = group_weight(p, env.src_nid, dist); 1817 } 1818 1819 /* Only consider nodes where both task and groups benefit */ 1820 taskimp = task_weight(p, nid, dist) - taskweight; 1821 groupimp = group_weight(p, nid, dist) - groupweight; 1822 if (taskimp < 0 && groupimp < 0) 1823 continue; 1824 1825 env.dist = dist; 1826 env.dst_nid = nid; 1827 update_numa_stats(&env.dst_stats, env.dst_nid); 1828 task_numa_find_cpu(&env, taskimp, groupimp); 1829 } 1830 } 1831 1832 /* 1833 * If the task is part of a workload that spans multiple NUMA nodes, 1834 * and is migrating into one of the workload's active nodes, remember 1835 * this node as the task's preferred numa node, so the workload can 1836 * settle down. 1837 * A task that migrated to a second choice node will be better off 1838 * trying for a better one later. Do not set the preferred node here. 1839 */ 1840 if (ng) { 1841 if (env.best_cpu == -1) 1842 nid = env.src_nid; 1843 else 1844 nid = cpu_to_node(env.best_cpu); 1845 1846 if (nid != p->numa_preferred_nid) 1847 sched_setnuma(p, nid); 1848 } 1849 1850 /* No better CPU than the current one was found. */ 1851 if (env.best_cpu == -1) 1852 return -EAGAIN; 1853 1854 best_rq = cpu_rq(env.best_cpu); 1855 if (env.best_task == NULL) { 1856 ret = migrate_task_to(p, env.best_cpu); 1857 WRITE_ONCE(best_rq->numa_migrate_on, 0); 1858 if (ret != 0) 1859 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1860 return ret; 1861 } 1862 1863 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 1864 WRITE_ONCE(best_rq->numa_migrate_on, 0); 1865 1866 if (ret != 0) 1867 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1868 put_task_struct(env.best_task); 1869 return ret; 1870 } 1871 1872 /* Attempt to migrate a task to a CPU on the preferred node. */ 1873 static void numa_migrate_preferred(struct task_struct *p) 1874 { 1875 unsigned long interval = HZ; 1876 1877 /* This task has no NUMA fault statistics yet */ 1878 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 1879 return; 1880 1881 /* Periodically retry migrating the task to the preferred node */ 1882 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1883 p->numa_migrate_retry = jiffies + interval; 1884 1885 /* Success if task is already running on preferred CPU */ 1886 if (task_node(p) == p->numa_preferred_nid) 1887 return; 1888 1889 /* Otherwise, try migrate to a CPU on the preferred node */ 1890 task_numa_migrate(p); 1891 } 1892 1893 /* 1894 * Find out how many nodes on the workload is actively running on. Do this by 1895 * tracking the nodes from which NUMA hinting faults are triggered. This can 1896 * be different from the set of nodes where the workload's memory is currently 1897 * located. 1898 */ 1899 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1900 { 1901 unsigned long faults, max_faults = 0; 1902 int nid, active_nodes = 0; 1903 1904 for_each_online_node(nid) { 1905 faults = group_faults_cpu(numa_group, nid); 1906 if (faults > max_faults) 1907 max_faults = faults; 1908 } 1909 1910 for_each_online_node(nid) { 1911 faults = group_faults_cpu(numa_group, nid); 1912 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1913 active_nodes++; 1914 } 1915 1916 numa_group->max_faults_cpu = max_faults; 1917 numa_group->active_nodes = active_nodes; 1918 } 1919 1920 /* 1921 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1922 * increments. The more local the fault statistics are, the higher the scan 1923 * period will be for the next scan window. If local/(local+remote) ratio is 1924 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1925 * the scan period will decrease. Aim for 70% local accesses. 1926 */ 1927 #define NUMA_PERIOD_SLOTS 10 1928 #define NUMA_PERIOD_THRESHOLD 7 1929 1930 /* 1931 * Increase the scan period (slow down scanning) if the majority of 1932 * our memory is already on our local node, or if the majority of 1933 * the page accesses are shared with other processes. 1934 * Otherwise, decrease the scan period. 1935 */ 1936 static void update_task_scan_period(struct task_struct *p, 1937 unsigned long shared, unsigned long private) 1938 { 1939 unsigned int period_slot; 1940 int lr_ratio, ps_ratio; 1941 int diff; 1942 1943 unsigned long remote = p->numa_faults_locality[0]; 1944 unsigned long local = p->numa_faults_locality[1]; 1945 1946 /* 1947 * If there were no record hinting faults then either the task is 1948 * completely idle or all activity is areas that are not of interest 1949 * to automatic numa balancing. Related to that, if there were failed 1950 * migration then it implies we are migrating too quickly or the local 1951 * node is overloaded. In either case, scan slower 1952 */ 1953 if (local + shared == 0 || p->numa_faults_locality[2]) { 1954 p->numa_scan_period = min(p->numa_scan_period_max, 1955 p->numa_scan_period << 1); 1956 1957 p->mm->numa_next_scan = jiffies + 1958 msecs_to_jiffies(p->numa_scan_period); 1959 1960 return; 1961 } 1962 1963 /* 1964 * Prepare to scale scan period relative to the current period. 1965 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1966 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1967 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1968 */ 1969 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1970 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1971 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 1972 1973 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 1974 /* 1975 * Most memory accesses are local. There is no need to 1976 * do fast NUMA scanning, since memory is already local. 1977 */ 1978 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 1979 if (!slot) 1980 slot = 1; 1981 diff = slot * period_slot; 1982 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 1983 /* 1984 * Most memory accesses are shared with other tasks. 1985 * There is no point in continuing fast NUMA scanning, 1986 * since other tasks may just move the memory elsewhere. 1987 */ 1988 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 1989 if (!slot) 1990 slot = 1; 1991 diff = slot * period_slot; 1992 } else { 1993 /* 1994 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 1995 * yet they are not on the local NUMA node. Speed up 1996 * NUMA scanning to get the memory moved over. 1997 */ 1998 int ratio = max(lr_ratio, ps_ratio); 1999 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2000 } 2001 2002 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2003 task_scan_min(p), task_scan_max(p)); 2004 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2005 } 2006 2007 /* 2008 * Get the fraction of time the task has been running since the last 2009 * NUMA placement cycle. The scheduler keeps similar statistics, but 2010 * decays those on a 32ms period, which is orders of magnitude off 2011 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2012 * stats only if the task is so new there are no NUMA statistics yet. 2013 */ 2014 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2015 { 2016 u64 runtime, delta, now; 2017 /* Use the start of this time slice to avoid calculations. */ 2018 now = p->se.exec_start; 2019 runtime = p->se.sum_exec_runtime; 2020 2021 if (p->last_task_numa_placement) { 2022 delta = runtime - p->last_sum_exec_runtime; 2023 *period = now - p->last_task_numa_placement; 2024 2025 /* Avoid time going backwards, prevent potential divide error: */ 2026 if (unlikely((s64)*period < 0)) 2027 *period = 0; 2028 } else { 2029 delta = p->se.avg.load_sum; 2030 *period = LOAD_AVG_MAX; 2031 } 2032 2033 p->last_sum_exec_runtime = runtime; 2034 p->last_task_numa_placement = now; 2035 2036 return delta; 2037 } 2038 2039 /* 2040 * Determine the preferred nid for a task in a numa_group. This needs to 2041 * be done in a way that produces consistent results with group_weight, 2042 * otherwise workloads might not converge. 2043 */ 2044 static int preferred_group_nid(struct task_struct *p, int nid) 2045 { 2046 nodemask_t nodes; 2047 int dist; 2048 2049 /* Direct connections between all NUMA nodes. */ 2050 if (sched_numa_topology_type == NUMA_DIRECT) 2051 return nid; 2052 2053 /* 2054 * On a system with glueless mesh NUMA topology, group_weight 2055 * scores nodes according to the number of NUMA hinting faults on 2056 * both the node itself, and on nearby nodes. 2057 */ 2058 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2059 unsigned long score, max_score = 0; 2060 int node, max_node = nid; 2061 2062 dist = sched_max_numa_distance; 2063 2064 for_each_online_node(node) { 2065 score = group_weight(p, node, dist); 2066 if (score > max_score) { 2067 max_score = score; 2068 max_node = node; 2069 } 2070 } 2071 return max_node; 2072 } 2073 2074 /* 2075 * Finding the preferred nid in a system with NUMA backplane 2076 * interconnect topology is more involved. The goal is to locate 2077 * tasks from numa_groups near each other in the system, and 2078 * untangle workloads from different sides of the system. This requires 2079 * searching down the hierarchy of node groups, recursively searching 2080 * inside the highest scoring group of nodes. The nodemask tricks 2081 * keep the complexity of the search down. 2082 */ 2083 nodes = node_online_map; 2084 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2085 unsigned long max_faults = 0; 2086 nodemask_t max_group = NODE_MASK_NONE; 2087 int a, b; 2088 2089 /* Are there nodes at this distance from each other? */ 2090 if (!find_numa_distance(dist)) 2091 continue; 2092 2093 for_each_node_mask(a, nodes) { 2094 unsigned long faults = 0; 2095 nodemask_t this_group; 2096 nodes_clear(this_group); 2097 2098 /* Sum group's NUMA faults; includes a==b case. */ 2099 for_each_node_mask(b, nodes) { 2100 if (node_distance(a, b) < dist) { 2101 faults += group_faults(p, b); 2102 node_set(b, this_group); 2103 node_clear(b, nodes); 2104 } 2105 } 2106 2107 /* Remember the top group. */ 2108 if (faults > max_faults) { 2109 max_faults = faults; 2110 max_group = this_group; 2111 /* 2112 * subtle: at the smallest distance there is 2113 * just one node left in each "group", the 2114 * winner is the preferred nid. 2115 */ 2116 nid = a; 2117 } 2118 } 2119 /* Next round, evaluate the nodes within max_group. */ 2120 if (!max_faults) 2121 break; 2122 nodes = max_group; 2123 } 2124 return nid; 2125 } 2126 2127 static void task_numa_placement(struct task_struct *p) 2128 { 2129 int seq, nid, max_nid = NUMA_NO_NODE; 2130 unsigned long max_faults = 0; 2131 unsigned long fault_types[2] = { 0, 0 }; 2132 unsigned long total_faults; 2133 u64 runtime, period; 2134 spinlock_t *group_lock = NULL; 2135 struct numa_group *ng; 2136 2137 /* 2138 * The p->mm->numa_scan_seq field gets updated without 2139 * exclusive access. Use READ_ONCE() here to ensure 2140 * that the field is read in a single access: 2141 */ 2142 seq = READ_ONCE(p->mm->numa_scan_seq); 2143 if (p->numa_scan_seq == seq) 2144 return; 2145 p->numa_scan_seq = seq; 2146 p->numa_scan_period_max = task_scan_max(p); 2147 2148 total_faults = p->numa_faults_locality[0] + 2149 p->numa_faults_locality[1]; 2150 runtime = numa_get_avg_runtime(p, &period); 2151 2152 /* If the task is part of a group prevent parallel updates to group stats */ 2153 ng = deref_curr_numa_group(p); 2154 if (ng) { 2155 group_lock = &ng->lock; 2156 spin_lock_irq(group_lock); 2157 } 2158 2159 /* Find the node with the highest number of faults */ 2160 for_each_online_node(nid) { 2161 /* Keep track of the offsets in numa_faults array */ 2162 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2163 unsigned long faults = 0, group_faults = 0; 2164 int priv; 2165 2166 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2167 long diff, f_diff, f_weight; 2168 2169 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2170 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2171 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2172 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2173 2174 /* Decay existing window, copy faults since last scan */ 2175 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2176 fault_types[priv] += p->numa_faults[membuf_idx]; 2177 p->numa_faults[membuf_idx] = 0; 2178 2179 /* 2180 * Normalize the faults_from, so all tasks in a group 2181 * count according to CPU use, instead of by the raw 2182 * number of faults. Tasks with little runtime have 2183 * little over-all impact on throughput, and thus their 2184 * faults are less important. 2185 */ 2186 f_weight = div64_u64(runtime << 16, period + 1); 2187 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2188 (total_faults + 1); 2189 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2190 p->numa_faults[cpubuf_idx] = 0; 2191 2192 p->numa_faults[mem_idx] += diff; 2193 p->numa_faults[cpu_idx] += f_diff; 2194 faults += p->numa_faults[mem_idx]; 2195 p->total_numa_faults += diff; 2196 if (ng) { 2197 /* 2198 * safe because we can only change our own group 2199 * 2200 * mem_idx represents the offset for a given 2201 * nid and priv in a specific region because it 2202 * is at the beginning of the numa_faults array. 2203 */ 2204 ng->faults[mem_idx] += diff; 2205 ng->faults_cpu[mem_idx] += f_diff; 2206 ng->total_faults += diff; 2207 group_faults += ng->faults[mem_idx]; 2208 } 2209 } 2210 2211 if (!ng) { 2212 if (faults > max_faults) { 2213 max_faults = faults; 2214 max_nid = nid; 2215 } 2216 } else if (group_faults > max_faults) { 2217 max_faults = group_faults; 2218 max_nid = nid; 2219 } 2220 } 2221 2222 if (ng) { 2223 numa_group_count_active_nodes(ng); 2224 spin_unlock_irq(group_lock); 2225 max_nid = preferred_group_nid(p, max_nid); 2226 } 2227 2228 if (max_faults) { 2229 /* Set the new preferred node */ 2230 if (max_nid != p->numa_preferred_nid) 2231 sched_setnuma(p, max_nid); 2232 } 2233 2234 update_task_scan_period(p, fault_types[0], fault_types[1]); 2235 } 2236 2237 static inline int get_numa_group(struct numa_group *grp) 2238 { 2239 return refcount_inc_not_zero(&grp->refcount); 2240 } 2241 2242 static inline void put_numa_group(struct numa_group *grp) 2243 { 2244 if (refcount_dec_and_test(&grp->refcount)) 2245 kfree_rcu(grp, rcu); 2246 } 2247 2248 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2249 int *priv) 2250 { 2251 struct numa_group *grp, *my_grp; 2252 struct task_struct *tsk; 2253 bool join = false; 2254 int cpu = cpupid_to_cpu(cpupid); 2255 int i; 2256 2257 if (unlikely(!deref_curr_numa_group(p))) { 2258 unsigned int size = sizeof(struct numa_group) + 2259 4*nr_node_ids*sizeof(unsigned long); 2260 2261 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2262 if (!grp) 2263 return; 2264 2265 refcount_set(&grp->refcount, 1); 2266 grp->active_nodes = 1; 2267 grp->max_faults_cpu = 0; 2268 spin_lock_init(&grp->lock); 2269 grp->gid = p->pid; 2270 /* Second half of the array tracks nids where faults happen */ 2271 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2272 nr_node_ids; 2273 2274 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2275 grp->faults[i] = p->numa_faults[i]; 2276 2277 grp->total_faults = p->total_numa_faults; 2278 2279 grp->nr_tasks++; 2280 rcu_assign_pointer(p->numa_group, grp); 2281 } 2282 2283 rcu_read_lock(); 2284 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2285 2286 if (!cpupid_match_pid(tsk, cpupid)) 2287 goto no_join; 2288 2289 grp = rcu_dereference(tsk->numa_group); 2290 if (!grp) 2291 goto no_join; 2292 2293 my_grp = deref_curr_numa_group(p); 2294 if (grp == my_grp) 2295 goto no_join; 2296 2297 /* 2298 * Only join the other group if its bigger; if we're the bigger group, 2299 * the other task will join us. 2300 */ 2301 if (my_grp->nr_tasks > grp->nr_tasks) 2302 goto no_join; 2303 2304 /* 2305 * Tie-break on the grp address. 2306 */ 2307 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2308 goto no_join; 2309 2310 /* Always join threads in the same process. */ 2311 if (tsk->mm == current->mm) 2312 join = true; 2313 2314 /* Simple filter to avoid false positives due to PID collisions */ 2315 if (flags & TNF_SHARED) 2316 join = true; 2317 2318 /* Update priv based on whether false sharing was detected */ 2319 *priv = !join; 2320 2321 if (join && !get_numa_group(grp)) 2322 goto no_join; 2323 2324 rcu_read_unlock(); 2325 2326 if (!join) 2327 return; 2328 2329 BUG_ON(irqs_disabled()); 2330 double_lock_irq(&my_grp->lock, &grp->lock); 2331 2332 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2333 my_grp->faults[i] -= p->numa_faults[i]; 2334 grp->faults[i] += p->numa_faults[i]; 2335 } 2336 my_grp->total_faults -= p->total_numa_faults; 2337 grp->total_faults += p->total_numa_faults; 2338 2339 my_grp->nr_tasks--; 2340 grp->nr_tasks++; 2341 2342 spin_unlock(&my_grp->lock); 2343 spin_unlock_irq(&grp->lock); 2344 2345 rcu_assign_pointer(p->numa_group, grp); 2346 2347 put_numa_group(my_grp); 2348 return; 2349 2350 no_join: 2351 rcu_read_unlock(); 2352 return; 2353 } 2354 2355 /* 2356 * Get rid of NUMA staticstics associated with a task (either current or dead). 2357 * If @final is set, the task is dead and has reached refcount zero, so we can 2358 * safely free all relevant data structures. Otherwise, there might be 2359 * concurrent reads from places like load balancing and procfs, and we should 2360 * reset the data back to default state without freeing ->numa_faults. 2361 */ 2362 void task_numa_free(struct task_struct *p, bool final) 2363 { 2364 /* safe: p either is current or is being freed by current */ 2365 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2366 unsigned long *numa_faults = p->numa_faults; 2367 unsigned long flags; 2368 int i; 2369 2370 if (!numa_faults) 2371 return; 2372 2373 if (grp) { 2374 spin_lock_irqsave(&grp->lock, flags); 2375 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2376 grp->faults[i] -= p->numa_faults[i]; 2377 grp->total_faults -= p->total_numa_faults; 2378 2379 grp->nr_tasks--; 2380 spin_unlock_irqrestore(&grp->lock, flags); 2381 RCU_INIT_POINTER(p->numa_group, NULL); 2382 put_numa_group(grp); 2383 } 2384 2385 if (final) { 2386 p->numa_faults = NULL; 2387 kfree(numa_faults); 2388 } else { 2389 p->total_numa_faults = 0; 2390 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2391 numa_faults[i] = 0; 2392 } 2393 } 2394 2395 /* 2396 * Got a PROT_NONE fault for a page on @node. 2397 */ 2398 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2399 { 2400 struct task_struct *p = current; 2401 bool migrated = flags & TNF_MIGRATED; 2402 int cpu_node = task_node(current); 2403 int local = !!(flags & TNF_FAULT_LOCAL); 2404 struct numa_group *ng; 2405 int priv; 2406 2407 if (!static_branch_likely(&sched_numa_balancing)) 2408 return; 2409 2410 /* for example, ksmd faulting in a user's mm */ 2411 if (!p->mm) 2412 return; 2413 2414 /* Allocate buffer to track faults on a per-node basis */ 2415 if (unlikely(!p->numa_faults)) { 2416 int size = sizeof(*p->numa_faults) * 2417 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2418 2419 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2420 if (!p->numa_faults) 2421 return; 2422 2423 p->total_numa_faults = 0; 2424 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2425 } 2426 2427 /* 2428 * First accesses are treated as private, otherwise consider accesses 2429 * to be private if the accessing pid has not changed 2430 */ 2431 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2432 priv = 1; 2433 } else { 2434 priv = cpupid_match_pid(p, last_cpupid); 2435 if (!priv && !(flags & TNF_NO_GROUP)) 2436 task_numa_group(p, last_cpupid, flags, &priv); 2437 } 2438 2439 /* 2440 * If a workload spans multiple NUMA nodes, a shared fault that 2441 * occurs wholly within the set of nodes that the workload is 2442 * actively using should be counted as local. This allows the 2443 * scan rate to slow down when a workload has settled down. 2444 */ 2445 ng = deref_curr_numa_group(p); 2446 if (!priv && !local && ng && ng->active_nodes > 1 && 2447 numa_is_active_node(cpu_node, ng) && 2448 numa_is_active_node(mem_node, ng)) 2449 local = 1; 2450 2451 /* 2452 * Retry to migrate task to preferred node periodically, in case it 2453 * previously failed, or the scheduler moved us. 2454 */ 2455 if (time_after(jiffies, p->numa_migrate_retry)) { 2456 task_numa_placement(p); 2457 numa_migrate_preferred(p); 2458 } 2459 2460 if (migrated) 2461 p->numa_pages_migrated += pages; 2462 if (flags & TNF_MIGRATE_FAIL) 2463 p->numa_faults_locality[2] += pages; 2464 2465 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2466 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2467 p->numa_faults_locality[local] += pages; 2468 } 2469 2470 static void reset_ptenuma_scan(struct task_struct *p) 2471 { 2472 /* 2473 * We only did a read acquisition of the mmap sem, so 2474 * p->mm->numa_scan_seq is written to without exclusive access 2475 * and the update is not guaranteed to be atomic. That's not 2476 * much of an issue though, since this is just used for 2477 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2478 * expensive, to avoid any form of compiler optimizations: 2479 */ 2480 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2481 p->mm->numa_scan_offset = 0; 2482 } 2483 2484 /* 2485 * The expensive part of numa migration is done from task_work context. 2486 * Triggered from task_tick_numa(). 2487 */ 2488 static void task_numa_work(struct callback_head *work) 2489 { 2490 unsigned long migrate, next_scan, now = jiffies; 2491 struct task_struct *p = current; 2492 struct mm_struct *mm = p->mm; 2493 u64 runtime = p->se.sum_exec_runtime; 2494 struct vm_area_struct *vma; 2495 unsigned long start, end; 2496 unsigned long nr_pte_updates = 0; 2497 long pages, virtpages; 2498 2499 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2500 2501 work->next = work; 2502 /* 2503 * Who cares about NUMA placement when they're dying. 2504 * 2505 * NOTE: make sure not to dereference p->mm before this check, 2506 * exit_task_work() happens _after_ exit_mm() so we could be called 2507 * without p->mm even though we still had it when we enqueued this 2508 * work. 2509 */ 2510 if (p->flags & PF_EXITING) 2511 return; 2512 2513 if (!mm->numa_next_scan) { 2514 mm->numa_next_scan = now + 2515 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2516 } 2517 2518 /* 2519 * Enforce maximal scan/migration frequency.. 2520 */ 2521 migrate = mm->numa_next_scan; 2522 if (time_before(now, migrate)) 2523 return; 2524 2525 if (p->numa_scan_period == 0) { 2526 p->numa_scan_period_max = task_scan_max(p); 2527 p->numa_scan_period = task_scan_start(p); 2528 } 2529 2530 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2531 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2532 return; 2533 2534 /* 2535 * Delay this task enough that another task of this mm will likely win 2536 * the next time around. 2537 */ 2538 p->node_stamp += 2 * TICK_NSEC; 2539 2540 start = mm->numa_scan_offset; 2541 pages = sysctl_numa_balancing_scan_size; 2542 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2543 virtpages = pages * 8; /* Scan up to this much virtual space */ 2544 if (!pages) 2545 return; 2546 2547 2548 if (!down_read_trylock(&mm->mmap_sem)) 2549 return; 2550 vma = find_vma(mm, start); 2551 if (!vma) { 2552 reset_ptenuma_scan(p); 2553 start = 0; 2554 vma = mm->mmap; 2555 } 2556 for (; vma; vma = vma->vm_next) { 2557 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2558 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2559 continue; 2560 } 2561 2562 /* 2563 * Shared library pages mapped by multiple processes are not 2564 * migrated as it is expected they are cache replicated. Avoid 2565 * hinting faults in read-only file-backed mappings or the vdso 2566 * as migrating the pages will be of marginal benefit. 2567 */ 2568 if (!vma->vm_mm || 2569 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2570 continue; 2571 2572 /* 2573 * Skip inaccessible VMAs to avoid any confusion between 2574 * PROT_NONE and NUMA hinting ptes 2575 */ 2576 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2577 continue; 2578 2579 do { 2580 start = max(start, vma->vm_start); 2581 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2582 end = min(end, vma->vm_end); 2583 nr_pte_updates = change_prot_numa(vma, start, end); 2584 2585 /* 2586 * Try to scan sysctl_numa_balancing_size worth of 2587 * hpages that have at least one present PTE that 2588 * is not already pte-numa. If the VMA contains 2589 * areas that are unused or already full of prot_numa 2590 * PTEs, scan up to virtpages, to skip through those 2591 * areas faster. 2592 */ 2593 if (nr_pte_updates) 2594 pages -= (end - start) >> PAGE_SHIFT; 2595 virtpages -= (end - start) >> PAGE_SHIFT; 2596 2597 start = end; 2598 if (pages <= 0 || virtpages <= 0) 2599 goto out; 2600 2601 cond_resched(); 2602 } while (end != vma->vm_end); 2603 } 2604 2605 out: 2606 /* 2607 * It is possible to reach the end of the VMA list but the last few 2608 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2609 * would find the !migratable VMA on the next scan but not reset the 2610 * scanner to the start so check it now. 2611 */ 2612 if (vma) 2613 mm->numa_scan_offset = start; 2614 else 2615 reset_ptenuma_scan(p); 2616 up_read(&mm->mmap_sem); 2617 2618 /* 2619 * Make sure tasks use at least 32x as much time to run other code 2620 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2621 * Usually update_task_scan_period slows down scanning enough; on an 2622 * overloaded system we need to limit overhead on a per task basis. 2623 */ 2624 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2625 u64 diff = p->se.sum_exec_runtime - runtime; 2626 p->node_stamp += 32 * diff; 2627 } 2628 } 2629 2630 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 2631 { 2632 int mm_users = 0; 2633 struct mm_struct *mm = p->mm; 2634 2635 if (mm) { 2636 mm_users = atomic_read(&mm->mm_users); 2637 if (mm_users == 1) { 2638 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2639 mm->numa_scan_seq = 0; 2640 } 2641 } 2642 p->node_stamp = 0; 2643 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 2644 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2645 /* Protect against double add, see task_tick_numa and task_numa_work */ 2646 p->numa_work.next = &p->numa_work; 2647 p->numa_faults = NULL; 2648 RCU_INIT_POINTER(p->numa_group, NULL); 2649 p->last_task_numa_placement = 0; 2650 p->last_sum_exec_runtime = 0; 2651 2652 init_task_work(&p->numa_work, task_numa_work); 2653 2654 /* New address space, reset the preferred nid */ 2655 if (!(clone_flags & CLONE_VM)) { 2656 p->numa_preferred_nid = NUMA_NO_NODE; 2657 return; 2658 } 2659 2660 /* 2661 * New thread, keep existing numa_preferred_nid which should be copied 2662 * already by arch_dup_task_struct but stagger when scans start. 2663 */ 2664 if (mm) { 2665 unsigned int delay; 2666 2667 delay = min_t(unsigned int, task_scan_max(current), 2668 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 2669 delay += 2 * TICK_NSEC; 2670 p->node_stamp = delay; 2671 } 2672 } 2673 2674 /* 2675 * Drive the periodic memory faults.. 2676 */ 2677 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2678 { 2679 struct callback_head *work = &curr->numa_work; 2680 u64 period, now; 2681 2682 /* 2683 * We don't care about NUMA placement if we don't have memory. 2684 */ 2685 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2686 return; 2687 2688 /* 2689 * Using runtime rather than walltime has the dual advantage that 2690 * we (mostly) drive the selection from busy threads and that the 2691 * task needs to have done some actual work before we bother with 2692 * NUMA placement. 2693 */ 2694 now = curr->se.sum_exec_runtime; 2695 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2696 2697 if (now > curr->node_stamp + period) { 2698 if (!curr->node_stamp) 2699 curr->numa_scan_period = task_scan_start(curr); 2700 curr->node_stamp += period; 2701 2702 if (!time_before(jiffies, curr->mm->numa_next_scan)) 2703 task_work_add(curr, work, true); 2704 } 2705 } 2706 2707 static void update_scan_period(struct task_struct *p, int new_cpu) 2708 { 2709 int src_nid = cpu_to_node(task_cpu(p)); 2710 int dst_nid = cpu_to_node(new_cpu); 2711 2712 if (!static_branch_likely(&sched_numa_balancing)) 2713 return; 2714 2715 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2716 return; 2717 2718 if (src_nid == dst_nid) 2719 return; 2720 2721 /* 2722 * Allow resets if faults have been trapped before one scan 2723 * has completed. This is most likely due to a new task that 2724 * is pulled cross-node due to wakeups or load balancing. 2725 */ 2726 if (p->numa_scan_seq) { 2727 /* 2728 * Avoid scan adjustments if moving to the preferred 2729 * node or if the task was not previously running on 2730 * the preferred node. 2731 */ 2732 if (dst_nid == p->numa_preferred_nid || 2733 (p->numa_preferred_nid != NUMA_NO_NODE && 2734 src_nid != p->numa_preferred_nid)) 2735 return; 2736 } 2737 2738 p->numa_scan_period = task_scan_start(p); 2739 } 2740 2741 #else 2742 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2743 { 2744 } 2745 2746 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2747 { 2748 } 2749 2750 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2751 { 2752 } 2753 2754 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2755 { 2756 } 2757 2758 #endif /* CONFIG_NUMA_BALANCING */ 2759 2760 static void 2761 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2762 { 2763 update_load_add(&cfs_rq->load, se->load.weight); 2764 #ifdef CONFIG_SMP 2765 if (entity_is_task(se)) { 2766 struct rq *rq = rq_of(cfs_rq); 2767 2768 account_numa_enqueue(rq, task_of(se)); 2769 list_add(&se->group_node, &rq->cfs_tasks); 2770 } 2771 #endif 2772 cfs_rq->nr_running++; 2773 } 2774 2775 static void 2776 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2777 { 2778 update_load_sub(&cfs_rq->load, se->load.weight); 2779 #ifdef CONFIG_SMP 2780 if (entity_is_task(se)) { 2781 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2782 list_del_init(&se->group_node); 2783 } 2784 #endif 2785 cfs_rq->nr_running--; 2786 } 2787 2788 /* 2789 * Signed add and clamp on underflow. 2790 * 2791 * Explicitly do a load-store to ensure the intermediate value never hits 2792 * memory. This allows lockless observations without ever seeing the negative 2793 * values. 2794 */ 2795 #define add_positive(_ptr, _val) do { \ 2796 typeof(_ptr) ptr = (_ptr); \ 2797 typeof(_val) val = (_val); \ 2798 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2799 \ 2800 res = var + val; \ 2801 \ 2802 if (val < 0 && res > var) \ 2803 res = 0; \ 2804 \ 2805 WRITE_ONCE(*ptr, res); \ 2806 } while (0) 2807 2808 /* 2809 * Unsigned subtract and clamp on underflow. 2810 * 2811 * Explicitly do a load-store to ensure the intermediate value never hits 2812 * memory. This allows lockless observations without ever seeing the negative 2813 * values. 2814 */ 2815 #define sub_positive(_ptr, _val) do { \ 2816 typeof(_ptr) ptr = (_ptr); \ 2817 typeof(*ptr) val = (_val); \ 2818 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2819 res = var - val; \ 2820 if (res > var) \ 2821 res = 0; \ 2822 WRITE_ONCE(*ptr, res); \ 2823 } while (0) 2824 2825 /* 2826 * Remove and clamp on negative, from a local variable. 2827 * 2828 * A variant of sub_positive(), which does not use explicit load-store 2829 * and is thus optimized for local variable updates. 2830 */ 2831 #define lsub_positive(_ptr, _val) do { \ 2832 typeof(_ptr) ptr = (_ptr); \ 2833 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 2834 } while (0) 2835 2836 #ifdef CONFIG_SMP 2837 static inline void 2838 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2839 { 2840 cfs_rq->runnable_weight += se->runnable_weight; 2841 2842 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg; 2843 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum; 2844 } 2845 2846 static inline void 2847 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2848 { 2849 cfs_rq->runnable_weight -= se->runnable_weight; 2850 2851 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg); 2852 sub_positive(&cfs_rq->avg.runnable_load_sum, 2853 se_runnable(se) * se->avg.runnable_load_sum); 2854 } 2855 2856 static inline void 2857 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2858 { 2859 cfs_rq->avg.load_avg += se->avg.load_avg; 2860 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 2861 } 2862 2863 static inline void 2864 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2865 { 2866 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 2867 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 2868 } 2869 #else 2870 static inline void 2871 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2872 static inline void 2873 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2874 static inline void 2875 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2876 static inline void 2877 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2878 #endif 2879 2880 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2881 unsigned long weight, unsigned long runnable) 2882 { 2883 if (se->on_rq) { 2884 /* commit outstanding execution time */ 2885 if (cfs_rq->curr == se) 2886 update_curr(cfs_rq); 2887 account_entity_dequeue(cfs_rq, se); 2888 dequeue_runnable_load_avg(cfs_rq, se); 2889 } 2890 dequeue_load_avg(cfs_rq, se); 2891 2892 se->runnable_weight = runnable; 2893 update_load_set(&se->load, weight); 2894 2895 #ifdef CONFIG_SMP 2896 do { 2897 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib; 2898 2899 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 2900 se->avg.runnable_load_avg = 2901 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider); 2902 } while (0); 2903 #endif 2904 2905 enqueue_load_avg(cfs_rq, se); 2906 if (se->on_rq) { 2907 account_entity_enqueue(cfs_rq, se); 2908 enqueue_runnable_load_avg(cfs_rq, se); 2909 } 2910 } 2911 2912 void reweight_task(struct task_struct *p, int prio) 2913 { 2914 struct sched_entity *se = &p->se; 2915 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2916 struct load_weight *load = &se->load; 2917 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 2918 2919 reweight_entity(cfs_rq, se, weight, weight); 2920 load->inv_weight = sched_prio_to_wmult[prio]; 2921 } 2922 2923 #ifdef CONFIG_FAIR_GROUP_SCHED 2924 #ifdef CONFIG_SMP 2925 /* 2926 * All this does is approximate the hierarchical proportion which includes that 2927 * global sum we all love to hate. 2928 * 2929 * That is, the weight of a group entity, is the proportional share of the 2930 * group weight based on the group runqueue weights. That is: 2931 * 2932 * tg->weight * grq->load.weight 2933 * ge->load.weight = ----------------------------- (1) 2934 * \Sum grq->load.weight 2935 * 2936 * Now, because computing that sum is prohibitively expensive to compute (been 2937 * there, done that) we approximate it with this average stuff. The average 2938 * moves slower and therefore the approximation is cheaper and more stable. 2939 * 2940 * So instead of the above, we substitute: 2941 * 2942 * grq->load.weight -> grq->avg.load_avg (2) 2943 * 2944 * which yields the following: 2945 * 2946 * tg->weight * grq->avg.load_avg 2947 * ge->load.weight = ------------------------------ (3) 2948 * tg->load_avg 2949 * 2950 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 2951 * 2952 * That is shares_avg, and it is right (given the approximation (2)). 2953 * 2954 * The problem with it is that because the average is slow -- it was designed 2955 * to be exactly that of course -- this leads to transients in boundary 2956 * conditions. In specific, the case where the group was idle and we start the 2957 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 2958 * yielding bad latency etc.. 2959 * 2960 * Now, in that special case (1) reduces to: 2961 * 2962 * tg->weight * grq->load.weight 2963 * ge->load.weight = ----------------------------- = tg->weight (4) 2964 * grp->load.weight 2965 * 2966 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 2967 * 2968 * So what we do is modify our approximation (3) to approach (4) in the (near) 2969 * UP case, like: 2970 * 2971 * ge->load.weight = 2972 * 2973 * tg->weight * grq->load.weight 2974 * --------------------------------------------------- (5) 2975 * tg->load_avg - grq->avg.load_avg + grq->load.weight 2976 * 2977 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 2978 * we need to use grq->avg.load_avg as its lower bound, which then gives: 2979 * 2980 * 2981 * tg->weight * grq->load.weight 2982 * ge->load.weight = ----------------------------- (6) 2983 * tg_load_avg' 2984 * 2985 * Where: 2986 * 2987 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 2988 * max(grq->load.weight, grq->avg.load_avg) 2989 * 2990 * And that is shares_weight and is icky. In the (near) UP case it approaches 2991 * (4) while in the normal case it approaches (3). It consistently 2992 * overestimates the ge->load.weight and therefore: 2993 * 2994 * \Sum ge->load.weight >= tg->weight 2995 * 2996 * hence icky! 2997 */ 2998 static long calc_group_shares(struct cfs_rq *cfs_rq) 2999 { 3000 long tg_weight, tg_shares, load, shares; 3001 struct task_group *tg = cfs_rq->tg; 3002 3003 tg_shares = READ_ONCE(tg->shares); 3004 3005 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3006 3007 tg_weight = atomic_long_read(&tg->load_avg); 3008 3009 /* Ensure tg_weight >= load */ 3010 tg_weight -= cfs_rq->tg_load_avg_contrib; 3011 tg_weight += load; 3012 3013 shares = (tg_shares * load); 3014 if (tg_weight) 3015 shares /= tg_weight; 3016 3017 /* 3018 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3019 * of a group with small tg->shares value. It is a floor value which is 3020 * assigned as a minimum load.weight to the sched_entity representing 3021 * the group on a CPU. 3022 * 3023 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3024 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3025 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3026 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3027 * instead of 0. 3028 */ 3029 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3030 } 3031 3032 /* 3033 * This calculates the effective runnable weight for a group entity based on 3034 * the group entity weight calculated above. 3035 * 3036 * Because of the above approximation (2), our group entity weight is 3037 * an load_avg based ratio (3). This means that it includes blocked load and 3038 * does not represent the runnable weight. 3039 * 3040 * Approximate the group entity's runnable weight per ratio from the group 3041 * runqueue: 3042 * 3043 * grq->avg.runnable_load_avg 3044 * ge->runnable_weight = ge->load.weight * -------------------------- (7) 3045 * grq->avg.load_avg 3046 * 3047 * However, analogous to above, since the avg numbers are slow, this leads to 3048 * transients in the from-idle case. Instead we use: 3049 * 3050 * ge->runnable_weight = ge->load.weight * 3051 * 3052 * max(grq->avg.runnable_load_avg, grq->runnable_weight) 3053 * ----------------------------------------------------- (8) 3054 * max(grq->avg.load_avg, grq->load.weight) 3055 * 3056 * Where these max() serve both to use the 'instant' values to fix the slow 3057 * from-idle and avoid the /0 on to-idle, similar to (6). 3058 */ 3059 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares) 3060 { 3061 long runnable, load_avg; 3062 3063 load_avg = max(cfs_rq->avg.load_avg, 3064 scale_load_down(cfs_rq->load.weight)); 3065 3066 runnable = max(cfs_rq->avg.runnable_load_avg, 3067 scale_load_down(cfs_rq->runnable_weight)); 3068 3069 runnable *= shares; 3070 if (load_avg) 3071 runnable /= load_avg; 3072 3073 return clamp_t(long, runnable, MIN_SHARES, shares); 3074 } 3075 #endif /* CONFIG_SMP */ 3076 3077 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3078 3079 /* 3080 * Recomputes the group entity based on the current state of its group 3081 * runqueue. 3082 */ 3083 static void update_cfs_group(struct sched_entity *se) 3084 { 3085 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3086 long shares, runnable; 3087 3088 if (!gcfs_rq) 3089 return; 3090 3091 if (throttled_hierarchy(gcfs_rq)) 3092 return; 3093 3094 #ifndef CONFIG_SMP 3095 runnable = shares = READ_ONCE(gcfs_rq->tg->shares); 3096 3097 if (likely(se->load.weight == shares)) 3098 return; 3099 #else 3100 shares = calc_group_shares(gcfs_rq); 3101 runnable = calc_group_runnable(gcfs_rq, shares); 3102 #endif 3103 3104 reweight_entity(cfs_rq_of(se), se, shares, runnable); 3105 } 3106 3107 #else /* CONFIG_FAIR_GROUP_SCHED */ 3108 static inline void update_cfs_group(struct sched_entity *se) 3109 { 3110 } 3111 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3112 3113 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3114 { 3115 struct rq *rq = rq_of(cfs_rq); 3116 3117 if (&rq->cfs == cfs_rq) { 3118 /* 3119 * There are a few boundary cases this might miss but it should 3120 * get called often enough that that should (hopefully) not be 3121 * a real problem. 3122 * 3123 * It will not get called when we go idle, because the idle 3124 * thread is a different class (!fair), nor will the utilization 3125 * number include things like RT tasks. 3126 * 3127 * As is, the util number is not freq-invariant (we'd have to 3128 * implement arch_scale_freq_capacity() for that). 3129 * 3130 * See cpu_util(). 3131 */ 3132 cpufreq_update_util(rq, flags); 3133 } 3134 } 3135 3136 #ifdef CONFIG_SMP 3137 #ifdef CONFIG_FAIR_GROUP_SCHED 3138 /** 3139 * update_tg_load_avg - update the tg's load avg 3140 * @cfs_rq: the cfs_rq whose avg changed 3141 * @force: update regardless of how small the difference 3142 * 3143 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3144 * However, because tg->load_avg is a global value there are performance 3145 * considerations. 3146 * 3147 * In order to avoid having to look at the other cfs_rq's, we use a 3148 * differential update where we store the last value we propagated. This in 3149 * turn allows skipping updates if the differential is 'small'. 3150 * 3151 * Updating tg's load_avg is necessary before update_cfs_share(). 3152 */ 3153 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3154 { 3155 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3156 3157 /* 3158 * No need to update load_avg for root_task_group as it is not used. 3159 */ 3160 if (cfs_rq->tg == &root_task_group) 3161 return; 3162 3163 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3164 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3165 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3166 } 3167 } 3168 3169 /* 3170 * Called within set_task_rq() right before setting a task's CPU. The 3171 * caller only guarantees p->pi_lock is held; no other assumptions, 3172 * including the state of rq->lock, should be made. 3173 */ 3174 void set_task_rq_fair(struct sched_entity *se, 3175 struct cfs_rq *prev, struct cfs_rq *next) 3176 { 3177 u64 p_last_update_time; 3178 u64 n_last_update_time; 3179 3180 if (!sched_feat(ATTACH_AGE_LOAD)) 3181 return; 3182 3183 /* 3184 * We are supposed to update the task to "current" time, then its up to 3185 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3186 * getting what current time is, so simply throw away the out-of-date 3187 * time. This will result in the wakee task is less decayed, but giving 3188 * the wakee more load sounds not bad. 3189 */ 3190 if (!(se->avg.last_update_time && prev)) 3191 return; 3192 3193 #ifndef CONFIG_64BIT 3194 { 3195 u64 p_last_update_time_copy; 3196 u64 n_last_update_time_copy; 3197 3198 do { 3199 p_last_update_time_copy = prev->load_last_update_time_copy; 3200 n_last_update_time_copy = next->load_last_update_time_copy; 3201 3202 smp_rmb(); 3203 3204 p_last_update_time = prev->avg.last_update_time; 3205 n_last_update_time = next->avg.last_update_time; 3206 3207 } while (p_last_update_time != p_last_update_time_copy || 3208 n_last_update_time != n_last_update_time_copy); 3209 } 3210 #else 3211 p_last_update_time = prev->avg.last_update_time; 3212 n_last_update_time = next->avg.last_update_time; 3213 #endif 3214 __update_load_avg_blocked_se(p_last_update_time, se); 3215 se->avg.last_update_time = n_last_update_time; 3216 } 3217 3218 3219 /* 3220 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3221 * propagate its contribution. The key to this propagation is the invariant 3222 * that for each group: 3223 * 3224 * ge->avg == grq->avg (1) 3225 * 3226 * _IFF_ we look at the pure running and runnable sums. Because they 3227 * represent the very same entity, just at different points in the hierarchy. 3228 * 3229 * Per the above update_tg_cfs_util() is trivial and simply copies the running 3230 * sum over (but still wrong, because the group entity and group rq do not have 3231 * their PELT windows aligned). 3232 * 3233 * However, update_tg_cfs_runnable() is more complex. So we have: 3234 * 3235 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3236 * 3237 * And since, like util, the runnable part should be directly transferable, 3238 * the following would _appear_ to be the straight forward approach: 3239 * 3240 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3241 * 3242 * And per (1) we have: 3243 * 3244 * ge->avg.runnable_avg == grq->avg.runnable_avg 3245 * 3246 * Which gives: 3247 * 3248 * ge->load.weight * grq->avg.load_avg 3249 * ge->avg.load_avg = ----------------------------------- (4) 3250 * grq->load.weight 3251 * 3252 * Except that is wrong! 3253 * 3254 * Because while for entities historical weight is not important and we 3255 * really only care about our future and therefore can consider a pure 3256 * runnable sum, runqueues can NOT do this. 3257 * 3258 * We specifically want runqueues to have a load_avg that includes 3259 * historical weights. Those represent the blocked load, the load we expect 3260 * to (shortly) return to us. This only works by keeping the weights as 3261 * integral part of the sum. We therefore cannot decompose as per (3). 3262 * 3263 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3264 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3265 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3266 * runnable section of these tasks overlap (or not). If they were to perfectly 3267 * align the rq as a whole would be runnable 2/3 of the time. If however we 3268 * always have at least 1 runnable task, the rq as a whole is always runnable. 3269 * 3270 * So we'll have to approximate.. :/ 3271 * 3272 * Given the constraint: 3273 * 3274 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3275 * 3276 * We can construct a rule that adds runnable to a rq by assuming minimal 3277 * overlap. 3278 * 3279 * On removal, we'll assume each task is equally runnable; which yields: 3280 * 3281 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3282 * 3283 * XXX: only do this for the part of runnable > running ? 3284 * 3285 */ 3286 3287 static inline void 3288 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3289 { 3290 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3291 3292 /* Nothing to update */ 3293 if (!delta) 3294 return; 3295 3296 /* 3297 * The relation between sum and avg is: 3298 * 3299 * LOAD_AVG_MAX - 1024 + sa->period_contrib 3300 * 3301 * however, the PELT windows are not aligned between grq and gse. 3302 */ 3303 3304 /* Set new sched_entity's utilization */ 3305 se->avg.util_avg = gcfs_rq->avg.util_avg; 3306 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3307 3308 /* Update parent cfs_rq utilization */ 3309 add_positive(&cfs_rq->avg.util_avg, delta); 3310 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3311 } 3312 3313 static inline void 3314 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3315 { 3316 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3317 unsigned long runnable_load_avg, load_avg; 3318 u64 runnable_load_sum, load_sum = 0; 3319 s64 delta_sum; 3320 3321 if (!runnable_sum) 3322 return; 3323 3324 gcfs_rq->prop_runnable_sum = 0; 3325 3326 if (runnable_sum >= 0) { 3327 /* 3328 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3329 * the CPU is saturated running == runnable. 3330 */ 3331 runnable_sum += se->avg.load_sum; 3332 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX); 3333 } else { 3334 /* 3335 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3336 * assuming all tasks are equally runnable. 3337 */ 3338 if (scale_load_down(gcfs_rq->load.weight)) { 3339 load_sum = div_s64(gcfs_rq->avg.load_sum, 3340 scale_load_down(gcfs_rq->load.weight)); 3341 } 3342 3343 /* But make sure to not inflate se's runnable */ 3344 runnable_sum = min(se->avg.load_sum, load_sum); 3345 } 3346 3347 /* 3348 * runnable_sum can't be lower than running_sum 3349 * Rescale running sum to be in the same range as runnable sum 3350 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3351 * runnable_sum is in [0 : LOAD_AVG_MAX] 3352 */ 3353 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3354 runnable_sum = max(runnable_sum, running_sum); 3355 3356 load_sum = (s64)se_weight(se) * runnable_sum; 3357 load_avg = div_s64(load_sum, LOAD_AVG_MAX); 3358 3359 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3360 delta_avg = load_avg - se->avg.load_avg; 3361 3362 se->avg.load_sum = runnable_sum; 3363 se->avg.load_avg = load_avg; 3364 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3365 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3366 3367 runnable_load_sum = (s64)se_runnable(se) * runnable_sum; 3368 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX); 3369 3370 if (se->on_rq) { 3371 delta_sum = runnable_load_sum - 3372 se_weight(se) * se->avg.runnable_load_sum; 3373 delta_avg = runnable_load_avg - se->avg.runnable_load_avg; 3374 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg); 3375 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum); 3376 } 3377 3378 se->avg.runnable_load_sum = runnable_sum; 3379 se->avg.runnable_load_avg = runnable_load_avg; 3380 } 3381 3382 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3383 { 3384 cfs_rq->propagate = 1; 3385 cfs_rq->prop_runnable_sum += runnable_sum; 3386 } 3387 3388 /* Update task and its cfs_rq load average */ 3389 static inline int propagate_entity_load_avg(struct sched_entity *se) 3390 { 3391 struct cfs_rq *cfs_rq, *gcfs_rq; 3392 3393 if (entity_is_task(se)) 3394 return 0; 3395 3396 gcfs_rq = group_cfs_rq(se); 3397 if (!gcfs_rq->propagate) 3398 return 0; 3399 3400 gcfs_rq->propagate = 0; 3401 3402 cfs_rq = cfs_rq_of(se); 3403 3404 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3405 3406 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3407 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3408 3409 trace_pelt_cfs_tp(cfs_rq); 3410 trace_pelt_se_tp(se); 3411 3412 return 1; 3413 } 3414 3415 /* 3416 * Check if we need to update the load and the utilization of a blocked 3417 * group_entity: 3418 */ 3419 static inline bool skip_blocked_update(struct sched_entity *se) 3420 { 3421 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3422 3423 /* 3424 * If sched_entity still have not zero load or utilization, we have to 3425 * decay it: 3426 */ 3427 if (se->avg.load_avg || se->avg.util_avg) 3428 return false; 3429 3430 /* 3431 * If there is a pending propagation, we have to update the load and 3432 * the utilization of the sched_entity: 3433 */ 3434 if (gcfs_rq->propagate) 3435 return false; 3436 3437 /* 3438 * Otherwise, the load and the utilization of the sched_entity is 3439 * already zero and there is no pending propagation, so it will be a 3440 * waste of time to try to decay it: 3441 */ 3442 return true; 3443 } 3444 3445 #else /* CONFIG_FAIR_GROUP_SCHED */ 3446 3447 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3448 3449 static inline int propagate_entity_load_avg(struct sched_entity *se) 3450 { 3451 return 0; 3452 } 3453 3454 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3455 3456 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3457 3458 /** 3459 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3460 * @now: current time, as per cfs_rq_clock_pelt() 3461 * @cfs_rq: cfs_rq to update 3462 * 3463 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3464 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3465 * post_init_entity_util_avg(). 3466 * 3467 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3468 * 3469 * Returns true if the load decayed or we removed load. 3470 * 3471 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3472 * call update_tg_load_avg() when this function returns true. 3473 */ 3474 static inline int 3475 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3476 { 3477 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0; 3478 struct sched_avg *sa = &cfs_rq->avg; 3479 int decayed = 0; 3480 3481 if (cfs_rq->removed.nr) { 3482 unsigned long r; 3483 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3484 3485 raw_spin_lock(&cfs_rq->removed.lock); 3486 swap(cfs_rq->removed.util_avg, removed_util); 3487 swap(cfs_rq->removed.load_avg, removed_load); 3488 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum); 3489 cfs_rq->removed.nr = 0; 3490 raw_spin_unlock(&cfs_rq->removed.lock); 3491 3492 r = removed_load; 3493 sub_positive(&sa->load_avg, r); 3494 sub_positive(&sa->load_sum, r * divider); 3495 3496 r = removed_util; 3497 sub_positive(&sa->util_avg, r); 3498 sub_positive(&sa->util_sum, r * divider); 3499 3500 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum); 3501 3502 decayed = 1; 3503 } 3504 3505 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3506 3507 #ifndef CONFIG_64BIT 3508 smp_wmb(); 3509 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3510 #endif 3511 3512 return decayed; 3513 } 3514 3515 /** 3516 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3517 * @cfs_rq: cfs_rq to attach to 3518 * @se: sched_entity to attach 3519 * @flags: migration hints 3520 * 3521 * Must call update_cfs_rq_load_avg() before this, since we rely on 3522 * cfs_rq->avg.last_update_time being current. 3523 */ 3524 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3525 { 3526 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3527 3528 /* 3529 * When we attach the @se to the @cfs_rq, we must align the decay 3530 * window because without that, really weird and wonderful things can 3531 * happen. 3532 * 3533 * XXX illustrate 3534 */ 3535 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3536 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3537 3538 /* 3539 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3540 * period_contrib. This isn't strictly correct, but since we're 3541 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3542 * _sum a little. 3543 */ 3544 se->avg.util_sum = se->avg.util_avg * divider; 3545 3546 se->avg.load_sum = divider; 3547 if (se_weight(se)) { 3548 se->avg.load_sum = 3549 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3550 } 3551 3552 se->avg.runnable_load_sum = se->avg.load_sum; 3553 3554 enqueue_load_avg(cfs_rq, se); 3555 cfs_rq->avg.util_avg += se->avg.util_avg; 3556 cfs_rq->avg.util_sum += se->avg.util_sum; 3557 3558 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3559 3560 cfs_rq_util_change(cfs_rq, 0); 3561 3562 trace_pelt_cfs_tp(cfs_rq); 3563 } 3564 3565 /** 3566 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3567 * @cfs_rq: cfs_rq to detach from 3568 * @se: sched_entity to detach 3569 * 3570 * Must call update_cfs_rq_load_avg() before this, since we rely on 3571 * cfs_rq->avg.last_update_time being current. 3572 */ 3573 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3574 { 3575 dequeue_load_avg(cfs_rq, se); 3576 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3577 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3578 3579 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3580 3581 cfs_rq_util_change(cfs_rq, 0); 3582 3583 trace_pelt_cfs_tp(cfs_rq); 3584 } 3585 3586 /* 3587 * Optional action to be done while updating the load average 3588 */ 3589 #define UPDATE_TG 0x1 3590 #define SKIP_AGE_LOAD 0x2 3591 #define DO_ATTACH 0x4 3592 3593 /* Update task and its cfs_rq load average */ 3594 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3595 { 3596 u64 now = cfs_rq_clock_pelt(cfs_rq); 3597 int decayed; 3598 3599 /* 3600 * Track task load average for carrying it to new CPU after migrated, and 3601 * track group sched_entity load average for task_h_load calc in migration 3602 */ 3603 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3604 __update_load_avg_se(now, cfs_rq, se); 3605 3606 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3607 decayed |= propagate_entity_load_avg(se); 3608 3609 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3610 3611 /* 3612 * DO_ATTACH means we're here from enqueue_entity(). 3613 * !last_update_time means we've passed through 3614 * migrate_task_rq_fair() indicating we migrated. 3615 * 3616 * IOW we're enqueueing a task on a new CPU. 3617 */ 3618 attach_entity_load_avg(cfs_rq, se); 3619 update_tg_load_avg(cfs_rq, 0); 3620 3621 } else if (decayed) { 3622 cfs_rq_util_change(cfs_rq, 0); 3623 3624 if (flags & UPDATE_TG) 3625 update_tg_load_avg(cfs_rq, 0); 3626 } 3627 } 3628 3629 #ifndef CONFIG_64BIT 3630 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3631 { 3632 u64 last_update_time_copy; 3633 u64 last_update_time; 3634 3635 do { 3636 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3637 smp_rmb(); 3638 last_update_time = cfs_rq->avg.last_update_time; 3639 } while (last_update_time != last_update_time_copy); 3640 3641 return last_update_time; 3642 } 3643 #else 3644 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3645 { 3646 return cfs_rq->avg.last_update_time; 3647 } 3648 #endif 3649 3650 /* 3651 * Synchronize entity load avg of dequeued entity without locking 3652 * the previous rq. 3653 */ 3654 static void sync_entity_load_avg(struct sched_entity *se) 3655 { 3656 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3657 u64 last_update_time; 3658 3659 last_update_time = cfs_rq_last_update_time(cfs_rq); 3660 __update_load_avg_blocked_se(last_update_time, se); 3661 } 3662 3663 /* 3664 * Task first catches up with cfs_rq, and then subtract 3665 * itself from the cfs_rq (task must be off the queue now). 3666 */ 3667 static void remove_entity_load_avg(struct sched_entity *se) 3668 { 3669 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3670 unsigned long flags; 3671 3672 /* 3673 * tasks cannot exit without having gone through wake_up_new_task() -> 3674 * post_init_entity_util_avg() which will have added things to the 3675 * cfs_rq, so we can remove unconditionally. 3676 */ 3677 3678 sync_entity_load_avg(se); 3679 3680 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3681 ++cfs_rq->removed.nr; 3682 cfs_rq->removed.util_avg += se->avg.util_avg; 3683 cfs_rq->removed.load_avg += se->avg.load_avg; 3684 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */ 3685 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3686 } 3687 3688 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3689 { 3690 return cfs_rq->avg.runnable_load_avg; 3691 } 3692 3693 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3694 { 3695 return cfs_rq->avg.load_avg; 3696 } 3697 3698 static inline unsigned long task_util(struct task_struct *p) 3699 { 3700 return READ_ONCE(p->se.avg.util_avg); 3701 } 3702 3703 static inline unsigned long _task_util_est(struct task_struct *p) 3704 { 3705 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3706 3707 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED); 3708 } 3709 3710 static inline unsigned long task_util_est(struct task_struct *p) 3711 { 3712 return max(task_util(p), _task_util_est(p)); 3713 } 3714 3715 #ifdef CONFIG_UCLAMP_TASK 3716 static inline unsigned long uclamp_task_util(struct task_struct *p) 3717 { 3718 return clamp(task_util_est(p), 3719 uclamp_eff_value(p, UCLAMP_MIN), 3720 uclamp_eff_value(p, UCLAMP_MAX)); 3721 } 3722 #else 3723 static inline unsigned long uclamp_task_util(struct task_struct *p) 3724 { 3725 return task_util_est(p); 3726 } 3727 #endif 3728 3729 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3730 struct task_struct *p) 3731 { 3732 unsigned int enqueued; 3733 3734 if (!sched_feat(UTIL_EST)) 3735 return; 3736 3737 /* Update root cfs_rq's estimated utilization */ 3738 enqueued = cfs_rq->avg.util_est.enqueued; 3739 enqueued += _task_util_est(p); 3740 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3741 } 3742 3743 /* 3744 * Check if a (signed) value is within a specified (unsigned) margin, 3745 * based on the observation that: 3746 * 3747 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3748 * 3749 * NOTE: this only works when value + maring < INT_MAX. 3750 */ 3751 static inline bool within_margin(int value, int margin) 3752 { 3753 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3754 } 3755 3756 static void 3757 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) 3758 { 3759 long last_ewma_diff; 3760 struct util_est ue; 3761 int cpu; 3762 3763 if (!sched_feat(UTIL_EST)) 3764 return; 3765 3766 /* Update root cfs_rq's estimated utilization */ 3767 ue.enqueued = cfs_rq->avg.util_est.enqueued; 3768 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p)); 3769 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); 3770 3771 /* 3772 * Skip update of task's estimated utilization when the task has not 3773 * yet completed an activation, e.g. being migrated. 3774 */ 3775 if (!task_sleep) 3776 return; 3777 3778 /* 3779 * If the PELT values haven't changed since enqueue time, 3780 * skip the util_est update. 3781 */ 3782 ue = p->se.avg.util_est; 3783 if (ue.enqueued & UTIL_AVG_UNCHANGED) 3784 return; 3785 3786 /* 3787 * Reset EWMA on utilization increases, the moving average is used only 3788 * to smooth utilization decreases. 3789 */ 3790 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); 3791 if (sched_feat(UTIL_EST_FASTUP)) { 3792 if (ue.ewma < ue.enqueued) { 3793 ue.ewma = ue.enqueued; 3794 goto done; 3795 } 3796 } 3797 3798 /* 3799 * Skip update of task's estimated utilization when its EWMA is 3800 * already ~1% close to its last activation value. 3801 */ 3802 last_ewma_diff = ue.enqueued - ue.ewma; 3803 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) 3804 return; 3805 3806 /* 3807 * To avoid overestimation of actual task utilization, skip updates if 3808 * we cannot grant there is idle time in this CPU. 3809 */ 3810 cpu = cpu_of(rq_of(cfs_rq)); 3811 if (task_util(p) > capacity_orig_of(cpu)) 3812 return; 3813 3814 /* 3815 * Update Task's estimated utilization 3816 * 3817 * When *p completes an activation we can consolidate another sample 3818 * of the task size. This is done by storing the current PELT value 3819 * as ue.enqueued and by using this value to update the Exponential 3820 * Weighted Moving Average (EWMA): 3821 * 3822 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 3823 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 3824 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 3825 * = w * ( last_ewma_diff ) + ewma(t-1) 3826 * = w * (last_ewma_diff + ewma(t-1) / w) 3827 * 3828 * Where 'w' is the weight of new samples, which is configured to be 3829 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 3830 */ 3831 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 3832 ue.ewma += last_ewma_diff; 3833 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 3834 done: 3835 WRITE_ONCE(p->se.avg.util_est, ue); 3836 } 3837 3838 static inline int task_fits_capacity(struct task_struct *p, long capacity) 3839 { 3840 return fits_capacity(uclamp_task_util(p), capacity); 3841 } 3842 3843 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 3844 { 3845 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 3846 return; 3847 3848 if (!p) { 3849 rq->misfit_task_load = 0; 3850 return; 3851 } 3852 3853 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 3854 rq->misfit_task_load = 0; 3855 return; 3856 } 3857 3858 rq->misfit_task_load = task_h_load(p); 3859 } 3860 3861 #else /* CONFIG_SMP */ 3862 3863 #define UPDATE_TG 0x0 3864 #define SKIP_AGE_LOAD 0x0 3865 #define DO_ATTACH 0x0 3866 3867 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 3868 { 3869 cfs_rq_util_change(cfs_rq, 0); 3870 } 3871 3872 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3873 3874 static inline void 3875 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3876 static inline void 3877 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3878 3879 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 3880 { 3881 return 0; 3882 } 3883 3884 static inline void 3885 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 3886 3887 static inline void 3888 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, 3889 bool task_sleep) {} 3890 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 3891 3892 #endif /* CONFIG_SMP */ 3893 3894 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3895 { 3896 #ifdef CONFIG_SCHED_DEBUG 3897 s64 d = se->vruntime - cfs_rq->min_vruntime; 3898 3899 if (d < 0) 3900 d = -d; 3901 3902 if (d > 3*sysctl_sched_latency) 3903 schedstat_inc(cfs_rq->nr_spread_over); 3904 #endif 3905 } 3906 3907 static void 3908 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3909 { 3910 u64 vruntime = cfs_rq->min_vruntime; 3911 3912 /* 3913 * The 'current' period is already promised to the current tasks, 3914 * however the extra weight of the new task will slow them down a 3915 * little, place the new task so that it fits in the slot that 3916 * stays open at the end. 3917 */ 3918 if (initial && sched_feat(START_DEBIT)) 3919 vruntime += sched_vslice(cfs_rq, se); 3920 3921 /* sleeps up to a single latency don't count. */ 3922 if (!initial) { 3923 unsigned long thresh = sysctl_sched_latency; 3924 3925 /* 3926 * Halve their sleep time's effect, to allow 3927 * for a gentler effect of sleepers: 3928 */ 3929 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3930 thresh >>= 1; 3931 3932 vruntime -= thresh; 3933 } 3934 3935 /* ensure we never gain time by being placed backwards. */ 3936 se->vruntime = max_vruntime(se->vruntime, vruntime); 3937 } 3938 3939 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3940 3941 static inline void check_schedstat_required(void) 3942 { 3943 #ifdef CONFIG_SCHEDSTATS 3944 if (schedstat_enabled()) 3945 return; 3946 3947 /* Force schedstat enabled if a dependent tracepoint is active */ 3948 if (trace_sched_stat_wait_enabled() || 3949 trace_sched_stat_sleep_enabled() || 3950 trace_sched_stat_iowait_enabled() || 3951 trace_sched_stat_blocked_enabled() || 3952 trace_sched_stat_runtime_enabled()) { 3953 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3954 "stat_blocked and stat_runtime require the " 3955 "kernel parameter schedstats=enable or " 3956 "kernel.sched_schedstats=1\n"); 3957 } 3958 #endif 3959 } 3960 3961 3962 /* 3963 * MIGRATION 3964 * 3965 * dequeue 3966 * update_curr() 3967 * update_min_vruntime() 3968 * vruntime -= min_vruntime 3969 * 3970 * enqueue 3971 * update_curr() 3972 * update_min_vruntime() 3973 * vruntime += min_vruntime 3974 * 3975 * this way the vruntime transition between RQs is done when both 3976 * min_vruntime are up-to-date. 3977 * 3978 * WAKEUP (remote) 3979 * 3980 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3981 * vruntime -= min_vruntime 3982 * 3983 * enqueue 3984 * update_curr() 3985 * update_min_vruntime() 3986 * vruntime += min_vruntime 3987 * 3988 * this way we don't have the most up-to-date min_vruntime on the originating 3989 * CPU and an up-to-date min_vruntime on the destination CPU. 3990 */ 3991 3992 static void 3993 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3994 { 3995 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 3996 bool curr = cfs_rq->curr == se; 3997 3998 /* 3999 * If we're the current task, we must renormalise before calling 4000 * update_curr(). 4001 */ 4002 if (renorm && curr) 4003 se->vruntime += cfs_rq->min_vruntime; 4004 4005 update_curr(cfs_rq); 4006 4007 /* 4008 * Otherwise, renormalise after, such that we're placed at the current 4009 * moment in time, instead of some random moment in the past. Being 4010 * placed in the past could significantly boost this task to the 4011 * fairness detriment of existing tasks. 4012 */ 4013 if (renorm && !curr) 4014 se->vruntime += cfs_rq->min_vruntime; 4015 4016 /* 4017 * When enqueuing a sched_entity, we must: 4018 * - Update loads to have both entity and cfs_rq synced with now. 4019 * - Add its load to cfs_rq->runnable_avg 4020 * - For group_entity, update its weight to reflect the new share of 4021 * its group cfs_rq 4022 * - Add its new weight to cfs_rq->load.weight 4023 */ 4024 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4025 update_cfs_group(se); 4026 enqueue_runnable_load_avg(cfs_rq, se); 4027 account_entity_enqueue(cfs_rq, se); 4028 4029 if (flags & ENQUEUE_WAKEUP) 4030 place_entity(cfs_rq, se, 0); 4031 4032 check_schedstat_required(); 4033 update_stats_enqueue(cfs_rq, se, flags); 4034 check_spread(cfs_rq, se); 4035 if (!curr) 4036 __enqueue_entity(cfs_rq, se); 4037 se->on_rq = 1; 4038 4039 if (cfs_rq->nr_running == 1) { 4040 list_add_leaf_cfs_rq(cfs_rq); 4041 check_enqueue_throttle(cfs_rq); 4042 } 4043 } 4044 4045 static void __clear_buddies_last(struct sched_entity *se) 4046 { 4047 for_each_sched_entity(se) { 4048 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4049 if (cfs_rq->last != se) 4050 break; 4051 4052 cfs_rq->last = NULL; 4053 } 4054 } 4055 4056 static void __clear_buddies_next(struct sched_entity *se) 4057 { 4058 for_each_sched_entity(se) { 4059 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4060 if (cfs_rq->next != se) 4061 break; 4062 4063 cfs_rq->next = NULL; 4064 } 4065 } 4066 4067 static void __clear_buddies_skip(struct sched_entity *se) 4068 { 4069 for_each_sched_entity(se) { 4070 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4071 if (cfs_rq->skip != se) 4072 break; 4073 4074 cfs_rq->skip = NULL; 4075 } 4076 } 4077 4078 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4079 { 4080 if (cfs_rq->last == se) 4081 __clear_buddies_last(se); 4082 4083 if (cfs_rq->next == se) 4084 __clear_buddies_next(se); 4085 4086 if (cfs_rq->skip == se) 4087 __clear_buddies_skip(se); 4088 } 4089 4090 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4091 4092 static void 4093 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4094 { 4095 /* 4096 * Update run-time statistics of the 'current'. 4097 */ 4098 update_curr(cfs_rq); 4099 4100 /* 4101 * When dequeuing a sched_entity, we must: 4102 * - Update loads to have both entity and cfs_rq synced with now. 4103 * - Subtract its load from the cfs_rq->runnable_avg. 4104 * - Subtract its previous weight from cfs_rq->load.weight. 4105 * - For group entity, update its weight to reflect the new share 4106 * of its group cfs_rq. 4107 */ 4108 update_load_avg(cfs_rq, se, UPDATE_TG); 4109 dequeue_runnable_load_avg(cfs_rq, se); 4110 4111 update_stats_dequeue(cfs_rq, se, flags); 4112 4113 clear_buddies(cfs_rq, se); 4114 4115 if (se != cfs_rq->curr) 4116 __dequeue_entity(cfs_rq, se); 4117 se->on_rq = 0; 4118 account_entity_dequeue(cfs_rq, se); 4119 4120 /* 4121 * Normalize after update_curr(); which will also have moved 4122 * min_vruntime if @se is the one holding it back. But before doing 4123 * update_min_vruntime() again, which will discount @se's position and 4124 * can move min_vruntime forward still more. 4125 */ 4126 if (!(flags & DEQUEUE_SLEEP)) 4127 se->vruntime -= cfs_rq->min_vruntime; 4128 4129 /* return excess runtime on last dequeue */ 4130 return_cfs_rq_runtime(cfs_rq); 4131 4132 update_cfs_group(se); 4133 4134 /* 4135 * Now advance min_vruntime if @se was the entity holding it back, 4136 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4137 * put back on, and if we advance min_vruntime, we'll be placed back 4138 * further than we started -- ie. we'll be penalized. 4139 */ 4140 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4141 update_min_vruntime(cfs_rq); 4142 } 4143 4144 /* 4145 * Preempt the current task with a newly woken task if needed: 4146 */ 4147 static void 4148 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4149 { 4150 unsigned long ideal_runtime, delta_exec; 4151 struct sched_entity *se; 4152 s64 delta; 4153 4154 ideal_runtime = sched_slice(cfs_rq, curr); 4155 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4156 if (delta_exec > ideal_runtime) { 4157 resched_curr(rq_of(cfs_rq)); 4158 /* 4159 * The current task ran long enough, ensure it doesn't get 4160 * re-elected due to buddy favours. 4161 */ 4162 clear_buddies(cfs_rq, curr); 4163 return; 4164 } 4165 4166 /* 4167 * Ensure that a task that missed wakeup preemption by a 4168 * narrow margin doesn't have to wait for a full slice. 4169 * This also mitigates buddy induced latencies under load. 4170 */ 4171 if (delta_exec < sysctl_sched_min_granularity) 4172 return; 4173 4174 se = __pick_first_entity(cfs_rq); 4175 delta = curr->vruntime - se->vruntime; 4176 4177 if (delta < 0) 4178 return; 4179 4180 if (delta > ideal_runtime) 4181 resched_curr(rq_of(cfs_rq)); 4182 } 4183 4184 static void 4185 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4186 { 4187 /* 'current' is not kept within the tree. */ 4188 if (se->on_rq) { 4189 /* 4190 * Any task has to be enqueued before it get to execute on 4191 * a CPU. So account for the time it spent waiting on the 4192 * runqueue. 4193 */ 4194 update_stats_wait_end(cfs_rq, se); 4195 __dequeue_entity(cfs_rq, se); 4196 update_load_avg(cfs_rq, se, UPDATE_TG); 4197 } 4198 4199 update_stats_curr_start(cfs_rq, se); 4200 cfs_rq->curr = se; 4201 4202 /* 4203 * Track our maximum slice length, if the CPU's load is at 4204 * least twice that of our own weight (i.e. dont track it 4205 * when there are only lesser-weight tasks around): 4206 */ 4207 if (schedstat_enabled() && 4208 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4209 schedstat_set(se->statistics.slice_max, 4210 max((u64)schedstat_val(se->statistics.slice_max), 4211 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4212 } 4213 4214 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4215 } 4216 4217 static int 4218 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4219 4220 /* 4221 * Pick the next process, keeping these things in mind, in this order: 4222 * 1) keep things fair between processes/task groups 4223 * 2) pick the "next" process, since someone really wants that to run 4224 * 3) pick the "last" process, for cache locality 4225 * 4) do not run the "skip" process, if something else is available 4226 */ 4227 static struct sched_entity * 4228 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4229 { 4230 struct sched_entity *left = __pick_first_entity(cfs_rq); 4231 struct sched_entity *se; 4232 4233 /* 4234 * If curr is set we have to see if its left of the leftmost entity 4235 * still in the tree, provided there was anything in the tree at all. 4236 */ 4237 if (!left || (curr && entity_before(curr, left))) 4238 left = curr; 4239 4240 se = left; /* ideally we run the leftmost entity */ 4241 4242 /* 4243 * Avoid running the skip buddy, if running something else can 4244 * be done without getting too unfair. 4245 */ 4246 if (cfs_rq->skip == se) { 4247 struct sched_entity *second; 4248 4249 if (se == curr) { 4250 second = __pick_first_entity(cfs_rq); 4251 } else { 4252 second = __pick_next_entity(se); 4253 if (!second || (curr && entity_before(curr, second))) 4254 second = curr; 4255 } 4256 4257 if (second && wakeup_preempt_entity(second, left) < 1) 4258 se = second; 4259 } 4260 4261 /* 4262 * Prefer last buddy, try to return the CPU to a preempted task. 4263 */ 4264 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 4265 se = cfs_rq->last; 4266 4267 /* 4268 * Someone really wants this to run. If it's not unfair, run it. 4269 */ 4270 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 4271 se = cfs_rq->next; 4272 4273 clear_buddies(cfs_rq, se); 4274 4275 return se; 4276 } 4277 4278 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4279 4280 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4281 { 4282 /* 4283 * If still on the runqueue then deactivate_task() 4284 * was not called and update_curr() has to be done: 4285 */ 4286 if (prev->on_rq) 4287 update_curr(cfs_rq); 4288 4289 /* throttle cfs_rqs exceeding runtime */ 4290 check_cfs_rq_runtime(cfs_rq); 4291 4292 check_spread(cfs_rq, prev); 4293 4294 if (prev->on_rq) { 4295 update_stats_wait_start(cfs_rq, prev); 4296 /* Put 'current' back into the tree. */ 4297 __enqueue_entity(cfs_rq, prev); 4298 /* in !on_rq case, update occurred at dequeue */ 4299 update_load_avg(cfs_rq, prev, 0); 4300 } 4301 cfs_rq->curr = NULL; 4302 } 4303 4304 static void 4305 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4306 { 4307 /* 4308 * Update run-time statistics of the 'current'. 4309 */ 4310 update_curr(cfs_rq); 4311 4312 /* 4313 * Ensure that runnable average is periodically updated. 4314 */ 4315 update_load_avg(cfs_rq, curr, UPDATE_TG); 4316 update_cfs_group(curr); 4317 4318 #ifdef CONFIG_SCHED_HRTICK 4319 /* 4320 * queued ticks are scheduled to match the slice, so don't bother 4321 * validating it and just reschedule. 4322 */ 4323 if (queued) { 4324 resched_curr(rq_of(cfs_rq)); 4325 return; 4326 } 4327 /* 4328 * don't let the period tick interfere with the hrtick preemption 4329 */ 4330 if (!sched_feat(DOUBLE_TICK) && 4331 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4332 return; 4333 #endif 4334 4335 if (cfs_rq->nr_running > 1) 4336 check_preempt_tick(cfs_rq, curr); 4337 } 4338 4339 4340 /************************************************** 4341 * CFS bandwidth control machinery 4342 */ 4343 4344 #ifdef CONFIG_CFS_BANDWIDTH 4345 4346 #ifdef CONFIG_JUMP_LABEL 4347 static struct static_key __cfs_bandwidth_used; 4348 4349 static inline bool cfs_bandwidth_used(void) 4350 { 4351 return static_key_false(&__cfs_bandwidth_used); 4352 } 4353 4354 void cfs_bandwidth_usage_inc(void) 4355 { 4356 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4357 } 4358 4359 void cfs_bandwidth_usage_dec(void) 4360 { 4361 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4362 } 4363 #else /* CONFIG_JUMP_LABEL */ 4364 static bool cfs_bandwidth_used(void) 4365 { 4366 return true; 4367 } 4368 4369 void cfs_bandwidth_usage_inc(void) {} 4370 void cfs_bandwidth_usage_dec(void) {} 4371 #endif /* CONFIG_JUMP_LABEL */ 4372 4373 /* 4374 * default period for cfs group bandwidth. 4375 * default: 0.1s, units: nanoseconds 4376 */ 4377 static inline u64 default_cfs_period(void) 4378 { 4379 return 100000000ULL; 4380 } 4381 4382 static inline u64 sched_cfs_bandwidth_slice(void) 4383 { 4384 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4385 } 4386 4387 /* 4388 * Replenish runtime according to assigned quota. We use sched_clock_cpu 4389 * directly instead of rq->clock to avoid adding additional synchronization 4390 * around rq->lock. 4391 * 4392 * requires cfs_b->lock 4393 */ 4394 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4395 { 4396 if (cfs_b->quota != RUNTIME_INF) 4397 cfs_b->runtime = cfs_b->quota; 4398 } 4399 4400 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4401 { 4402 return &tg->cfs_bandwidth; 4403 } 4404 4405 /* returns 0 on failure to allocate runtime */ 4406 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4407 { 4408 struct task_group *tg = cfs_rq->tg; 4409 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4410 u64 amount = 0, min_amount; 4411 4412 /* note: this is a positive sum as runtime_remaining <= 0 */ 4413 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4414 4415 raw_spin_lock(&cfs_b->lock); 4416 if (cfs_b->quota == RUNTIME_INF) 4417 amount = min_amount; 4418 else { 4419 start_cfs_bandwidth(cfs_b); 4420 4421 if (cfs_b->runtime > 0) { 4422 amount = min(cfs_b->runtime, min_amount); 4423 cfs_b->runtime -= amount; 4424 cfs_b->idle = 0; 4425 } 4426 } 4427 raw_spin_unlock(&cfs_b->lock); 4428 4429 cfs_rq->runtime_remaining += amount; 4430 4431 return cfs_rq->runtime_remaining > 0; 4432 } 4433 4434 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4435 { 4436 /* dock delta_exec before expiring quota (as it could span periods) */ 4437 cfs_rq->runtime_remaining -= delta_exec; 4438 4439 if (likely(cfs_rq->runtime_remaining > 0)) 4440 return; 4441 4442 if (cfs_rq->throttled) 4443 return; 4444 /* 4445 * if we're unable to extend our runtime we resched so that the active 4446 * hierarchy can be throttled 4447 */ 4448 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4449 resched_curr(rq_of(cfs_rq)); 4450 } 4451 4452 static __always_inline 4453 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4454 { 4455 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4456 return; 4457 4458 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4459 } 4460 4461 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4462 { 4463 return cfs_bandwidth_used() && cfs_rq->throttled; 4464 } 4465 4466 /* check whether cfs_rq, or any parent, is throttled */ 4467 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4468 { 4469 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4470 } 4471 4472 /* 4473 * Ensure that neither of the group entities corresponding to src_cpu or 4474 * dest_cpu are members of a throttled hierarchy when performing group 4475 * load-balance operations. 4476 */ 4477 static inline int throttled_lb_pair(struct task_group *tg, 4478 int src_cpu, int dest_cpu) 4479 { 4480 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4481 4482 src_cfs_rq = tg->cfs_rq[src_cpu]; 4483 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4484 4485 return throttled_hierarchy(src_cfs_rq) || 4486 throttled_hierarchy(dest_cfs_rq); 4487 } 4488 4489 static int tg_unthrottle_up(struct task_group *tg, void *data) 4490 { 4491 struct rq *rq = data; 4492 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4493 4494 cfs_rq->throttle_count--; 4495 if (!cfs_rq->throttle_count) { 4496 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4497 cfs_rq->throttled_clock_task; 4498 4499 /* Add cfs_rq with already running entity in the list */ 4500 if (cfs_rq->nr_running >= 1) 4501 list_add_leaf_cfs_rq(cfs_rq); 4502 } 4503 4504 return 0; 4505 } 4506 4507 static int tg_throttle_down(struct task_group *tg, void *data) 4508 { 4509 struct rq *rq = data; 4510 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4511 4512 /* group is entering throttled state, stop time */ 4513 if (!cfs_rq->throttle_count) { 4514 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4515 list_del_leaf_cfs_rq(cfs_rq); 4516 } 4517 cfs_rq->throttle_count++; 4518 4519 return 0; 4520 } 4521 4522 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4523 { 4524 struct rq *rq = rq_of(cfs_rq); 4525 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4526 struct sched_entity *se; 4527 long task_delta, idle_task_delta, dequeue = 1; 4528 bool empty; 4529 4530 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4531 4532 /* freeze hierarchy runnable averages while throttled */ 4533 rcu_read_lock(); 4534 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4535 rcu_read_unlock(); 4536 4537 task_delta = cfs_rq->h_nr_running; 4538 idle_task_delta = cfs_rq->idle_h_nr_running; 4539 for_each_sched_entity(se) { 4540 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4541 /* throttled entity or throttle-on-deactivate */ 4542 if (!se->on_rq) 4543 break; 4544 4545 if (dequeue) 4546 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4547 qcfs_rq->h_nr_running -= task_delta; 4548 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4549 4550 if (qcfs_rq->load.weight) 4551 dequeue = 0; 4552 } 4553 4554 if (!se) 4555 sub_nr_running(rq, task_delta); 4556 4557 cfs_rq->throttled = 1; 4558 cfs_rq->throttled_clock = rq_clock(rq); 4559 raw_spin_lock(&cfs_b->lock); 4560 empty = list_empty(&cfs_b->throttled_cfs_rq); 4561 4562 /* 4563 * Add to the _head_ of the list, so that an already-started 4564 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is 4565 * not running add to the tail so that later runqueues don't get starved. 4566 */ 4567 if (cfs_b->distribute_running) 4568 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4569 else 4570 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4571 4572 /* 4573 * If we're the first throttled task, make sure the bandwidth 4574 * timer is running. 4575 */ 4576 if (empty) 4577 start_cfs_bandwidth(cfs_b); 4578 4579 raw_spin_unlock(&cfs_b->lock); 4580 } 4581 4582 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4583 { 4584 struct rq *rq = rq_of(cfs_rq); 4585 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4586 struct sched_entity *se; 4587 int enqueue = 1; 4588 long task_delta, idle_task_delta; 4589 4590 se = cfs_rq->tg->se[cpu_of(rq)]; 4591 4592 cfs_rq->throttled = 0; 4593 4594 update_rq_clock(rq); 4595 4596 raw_spin_lock(&cfs_b->lock); 4597 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4598 list_del_rcu(&cfs_rq->throttled_list); 4599 raw_spin_unlock(&cfs_b->lock); 4600 4601 /* update hierarchical throttle state */ 4602 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4603 4604 if (!cfs_rq->load.weight) 4605 return; 4606 4607 task_delta = cfs_rq->h_nr_running; 4608 idle_task_delta = cfs_rq->idle_h_nr_running; 4609 for_each_sched_entity(se) { 4610 if (se->on_rq) 4611 enqueue = 0; 4612 4613 cfs_rq = cfs_rq_of(se); 4614 if (enqueue) 4615 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4616 cfs_rq->h_nr_running += task_delta; 4617 cfs_rq->idle_h_nr_running += idle_task_delta; 4618 4619 if (cfs_rq_throttled(cfs_rq)) 4620 break; 4621 } 4622 4623 assert_list_leaf_cfs_rq(rq); 4624 4625 if (!se) 4626 add_nr_running(rq, task_delta); 4627 4628 /* Determine whether we need to wake up potentially idle CPU: */ 4629 if (rq->curr == rq->idle && rq->cfs.nr_running) 4630 resched_curr(rq); 4631 } 4632 4633 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, u64 remaining) 4634 { 4635 struct cfs_rq *cfs_rq; 4636 u64 runtime; 4637 u64 starting_runtime = remaining; 4638 4639 rcu_read_lock(); 4640 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4641 throttled_list) { 4642 struct rq *rq = rq_of(cfs_rq); 4643 struct rq_flags rf; 4644 4645 rq_lock_irqsave(rq, &rf); 4646 if (!cfs_rq_throttled(cfs_rq)) 4647 goto next; 4648 4649 /* By the above check, this should never be true */ 4650 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 4651 4652 runtime = -cfs_rq->runtime_remaining + 1; 4653 if (runtime > remaining) 4654 runtime = remaining; 4655 remaining -= runtime; 4656 4657 cfs_rq->runtime_remaining += runtime; 4658 4659 /* we check whether we're throttled above */ 4660 if (cfs_rq->runtime_remaining > 0) 4661 unthrottle_cfs_rq(cfs_rq); 4662 4663 next: 4664 rq_unlock_irqrestore(rq, &rf); 4665 4666 if (!remaining) 4667 break; 4668 } 4669 rcu_read_unlock(); 4670 4671 return starting_runtime - remaining; 4672 } 4673 4674 /* 4675 * Responsible for refilling a task_group's bandwidth and unthrottling its 4676 * cfs_rqs as appropriate. If there has been no activity within the last 4677 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4678 * used to track this state. 4679 */ 4680 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 4681 { 4682 u64 runtime; 4683 int throttled; 4684 4685 /* no need to continue the timer with no bandwidth constraint */ 4686 if (cfs_b->quota == RUNTIME_INF) 4687 goto out_deactivate; 4688 4689 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4690 cfs_b->nr_periods += overrun; 4691 4692 /* 4693 * idle depends on !throttled (for the case of a large deficit), and if 4694 * we're going inactive then everything else can be deferred 4695 */ 4696 if (cfs_b->idle && !throttled) 4697 goto out_deactivate; 4698 4699 __refill_cfs_bandwidth_runtime(cfs_b); 4700 4701 if (!throttled) { 4702 /* mark as potentially idle for the upcoming period */ 4703 cfs_b->idle = 1; 4704 return 0; 4705 } 4706 4707 /* account preceding periods in which throttling occurred */ 4708 cfs_b->nr_throttled += overrun; 4709 4710 /* 4711 * This check is repeated as we are holding onto the new bandwidth while 4712 * we unthrottle. This can potentially race with an unthrottled group 4713 * trying to acquire new bandwidth from the global pool. This can result 4714 * in us over-using our runtime if it is all used during this loop, but 4715 * only by limited amounts in that extreme case. 4716 */ 4717 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) { 4718 runtime = cfs_b->runtime; 4719 cfs_b->distribute_running = 1; 4720 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4721 /* we can't nest cfs_b->lock while distributing bandwidth */ 4722 runtime = distribute_cfs_runtime(cfs_b, runtime); 4723 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4724 4725 cfs_b->distribute_running = 0; 4726 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4727 4728 lsub_positive(&cfs_b->runtime, runtime); 4729 } 4730 4731 /* 4732 * While we are ensured activity in the period following an 4733 * unthrottle, this also covers the case in which the new bandwidth is 4734 * insufficient to cover the existing bandwidth deficit. (Forcing the 4735 * timer to remain active while there are any throttled entities.) 4736 */ 4737 cfs_b->idle = 0; 4738 4739 return 0; 4740 4741 out_deactivate: 4742 return 1; 4743 } 4744 4745 /* a cfs_rq won't donate quota below this amount */ 4746 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4747 /* minimum remaining period time to redistribute slack quota */ 4748 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4749 /* how long we wait to gather additional slack before distributing */ 4750 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4751 4752 /* 4753 * Are we near the end of the current quota period? 4754 * 4755 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4756 * hrtimer base being cleared by hrtimer_start. In the case of 4757 * migrate_hrtimers, base is never cleared, so we are fine. 4758 */ 4759 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4760 { 4761 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4762 u64 remaining; 4763 4764 /* if the call-back is running a quota refresh is already occurring */ 4765 if (hrtimer_callback_running(refresh_timer)) 4766 return 1; 4767 4768 /* is a quota refresh about to occur? */ 4769 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4770 if (remaining < min_expire) 4771 return 1; 4772 4773 return 0; 4774 } 4775 4776 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4777 { 4778 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4779 4780 /* if there's a quota refresh soon don't bother with slack */ 4781 if (runtime_refresh_within(cfs_b, min_left)) 4782 return; 4783 4784 /* don't push forwards an existing deferred unthrottle */ 4785 if (cfs_b->slack_started) 4786 return; 4787 cfs_b->slack_started = true; 4788 4789 hrtimer_start(&cfs_b->slack_timer, 4790 ns_to_ktime(cfs_bandwidth_slack_period), 4791 HRTIMER_MODE_REL); 4792 } 4793 4794 /* we know any runtime found here is valid as update_curr() precedes return */ 4795 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4796 { 4797 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4798 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4799 4800 if (slack_runtime <= 0) 4801 return; 4802 4803 raw_spin_lock(&cfs_b->lock); 4804 if (cfs_b->quota != RUNTIME_INF) { 4805 cfs_b->runtime += slack_runtime; 4806 4807 /* we are under rq->lock, defer unthrottling using a timer */ 4808 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4809 !list_empty(&cfs_b->throttled_cfs_rq)) 4810 start_cfs_slack_bandwidth(cfs_b); 4811 } 4812 raw_spin_unlock(&cfs_b->lock); 4813 4814 /* even if it's not valid for return we don't want to try again */ 4815 cfs_rq->runtime_remaining -= slack_runtime; 4816 } 4817 4818 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4819 { 4820 if (!cfs_bandwidth_used()) 4821 return; 4822 4823 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4824 return; 4825 4826 __return_cfs_rq_runtime(cfs_rq); 4827 } 4828 4829 /* 4830 * This is done with a timer (instead of inline with bandwidth return) since 4831 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4832 */ 4833 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4834 { 4835 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4836 unsigned long flags; 4837 4838 /* confirm we're still not at a refresh boundary */ 4839 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4840 cfs_b->slack_started = false; 4841 if (cfs_b->distribute_running) { 4842 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4843 return; 4844 } 4845 4846 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4847 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4848 return; 4849 } 4850 4851 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4852 runtime = cfs_b->runtime; 4853 4854 if (runtime) 4855 cfs_b->distribute_running = 1; 4856 4857 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4858 4859 if (!runtime) 4860 return; 4861 4862 runtime = distribute_cfs_runtime(cfs_b, runtime); 4863 4864 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4865 lsub_positive(&cfs_b->runtime, runtime); 4866 cfs_b->distribute_running = 0; 4867 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4868 } 4869 4870 /* 4871 * When a group wakes up we want to make sure that its quota is not already 4872 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4873 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4874 */ 4875 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4876 { 4877 if (!cfs_bandwidth_used()) 4878 return; 4879 4880 /* an active group must be handled by the update_curr()->put() path */ 4881 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4882 return; 4883 4884 /* ensure the group is not already throttled */ 4885 if (cfs_rq_throttled(cfs_rq)) 4886 return; 4887 4888 /* update runtime allocation */ 4889 account_cfs_rq_runtime(cfs_rq, 0); 4890 if (cfs_rq->runtime_remaining <= 0) 4891 throttle_cfs_rq(cfs_rq); 4892 } 4893 4894 static void sync_throttle(struct task_group *tg, int cpu) 4895 { 4896 struct cfs_rq *pcfs_rq, *cfs_rq; 4897 4898 if (!cfs_bandwidth_used()) 4899 return; 4900 4901 if (!tg->parent) 4902 return; 4903 4904 cfs_rq = tg->cfs_rq[cpu]; 4905 pcfs_rq = tg->parent->cfs_rq[cpu]; 4906 4907 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4908 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 4909 } 4910 4911 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4912 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4913 { 4914 if (!cfs_bandwidth_used()) 4915 return false; 4916 4917 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4918 return false; 4919 4920 /* 4921 * it's possible for a throttled entity to be forced into a running 4922 * state (e.g. set_curr_task), in this case we're finished. 4923 */ 4924 if (cfs_rq_throttled(cfs_rq)) 4925 return true; 4926 4927 throttle_cfs_rq(cfs_rq); 4928 return true; 4929 } 4930 4931 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4932 { 4933 struct cfs_bandwidth *cfs_b = 4934 container_of(timer, struct cfs_bandwidth, slack_timer); 4935 4936 do_sched_cfs_slack_timer(cfs_b); 4937 4938 return HRTIMER_NORESTART; 4939 } 4940 4941 extern const u64 max_cfs_quota_period; 4942 4943 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4944 { 4945 struct cfs_bandwidth *cfs_b = 4946 container_of(timer, struct cfs_bandwidth, period_timer); 4947 unsigned long flags; 4948 int overrun; 4949 int idle = 0; 4950 int count = 0; 4951 4952 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4953 for (;;) { 4954 overrun = hrtimer_forward_now(timer, cfs_b->period); 4955 if (!overrun) 4956 break; 4957 4958 if (++count > 3) { 4959 u64 new, old = ktime_to_ns(cfs_b->period); 4960 4961 /* 4962 * Grow period by a factor of 2 to avoid losing precision. 4963 * Precision loss in the quota/period ratio can cause __cfs_schedulable 4964 * to fail. 4965 */ 4966 new = old * 2; 4967 if (new < max_cfs_quota_period) { 4968 cfs_b->period = ns_to_ktime(new); 4969 cfs_b->quota *= 2; 4970 4971 pr_warn_ratelimited( 4972 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 4973 smp_processor_id(), 4974 div_u64(new, NSEC_PER_USEC), 4975 div_u64(cfs_b->quota, NSEC_PER_USEC)); 4976 } else { 4977 pr_warn_ratelimited( 4978 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 4979 smp_processor_id(), 4980 div_u64(old, NSEC_PER_USEC), 4981 div_u64(cfs_b->quota, NSEC_PER_USEC)); 4982 } 4983 4984 /* reset count so we don't come right back in here */ 4985 count = 0; 4986 } 4987 4988 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 4989 } 4990 if (idle) 4991 cfs_b->period_active = 0; 4992 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4993 4994 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 4995 } 4996 4997 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4998 { 4999 raw_spin_lock_init(&cfs_b->lock); 5000 cfs_b->runtime = 0; 5001 cfs_b->quota = RUNTIME_INF; 5002 cfs_b->period = ns_to_ktime(default_cfs_period()); 5003 5004 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5005 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5006 cfs_b->period_timer.function = sched_cfs_period_timer; 5007 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5008 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5009 cfs_b->distribute_running = 0; 5010 cfs_b->slack_started = false; 5011 } 5012 5013 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5014 { 5015 cfs_rq->runtime_enabled = 0; 5016 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5017 } 5018 5019 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5020 { 5021 lockdep_assert_held(&cfs_b->lock); 5022 5023 if (cfs_b->period_active) 5024 return; 5025 5026 cfs_b->period_active = 1; 5027 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5028 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5029 } 5030 5031 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5032 { 5033 /* init_cfs_bandwidth() was not called */ 5034 if (!cfs_b->throttled_cfs_rq.next) 5035 return; 5036 5037 hrtimer_cancel(&cfs_b->period_timer); 5038 hrtimer_cancel(&cfs_b->slack_timer); 5039 } 5040 5041 /* 5042 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5043 * 5044 * The race is harmless, since modifying bandwidth settings of unhooked group 5045 * bits doesn't do much. 5046 */ 5047 5048 /* cpu online calback */ 5049 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5050 { 5051 struct task_group *tg; 5052 5053 lockdep_assert_held(&rq->lock); 5054 5055 rcu_read_lock(); 5056 list_for_each_entry_rcu(tg, &task_groups, list) { 5057 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5058 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5059 5060 raw_spin_lock(&cfs_b->lock); 5061 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5062 raw_spin_unlock(&cfs_b->lock); 5063 } 5064 rcu_read_unlock(); 5065 } 5066 5067 /* cpu offline callback */ 5068 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5069 { 5070 struct task_group *tg; 5071 5072 lockdep_assert_held(&rq->lock); 5073 5074 rcu_read_lock(); 5075 list_for_each_entry_rcu(tg, &task_groups, list) { 5076 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5077 5078 if (!cfs_rq->runtime_enabled) 5079 continue; 5080 5081 /* 5082 * clock_task is not advancing so we just need to make sure 5083 * there's some valid quota amount 5084 */ 5085 cfs_rq->runtime_remaining = 1; 5086 /* 5087 * Offline rq is schedulable till CPU is completely disabled 5088 * in take_cpu_down(), so we prevent new cfs throttling here. 5089 */ 5090 cfs_rq->runtime_enabled = 0; 5091 5092 if (cfs_rq_throttled(cfs_rq)) 5093 unthrottle_cfs_rq(cfs_rq); 5094 } 5095 rcu_read_unlock(); 5096 } 5097 5098 #else /* CONFIG_CFS_BANDWIDTH */ 5099 5100 static inline bool cfs_bandwidth_used(void) 5101 { 5102 return false; 5103 } 5104 5105 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5106 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5107 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5108 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5109 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5110 5111 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5112 { 5113 return 0; 5114 } 5115 5116 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5117 { 5118 return 0; 5119 } 5120 5121 static inline int throttled_lb_pair(struct task_group *tg, 5122 int src_cpu, int dest_cpu) 5123 { 5124 return 0; 5125 } 5126 5127 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5128 5129 #ifdef CONFIG_FAIR_GROUP_SCHED 5130 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5131 #endif 5132 5133 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5134 { 5135 return NULL; 5136 } 5137 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5138 static inline void update_runtime_enabled(struct rq *rq) {} 5139 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5140 5141 #endif /* CONFIG_CFS_BANDWIDTH */ 5142 5143 /************************************************** 5144 * CFS operations on tasks: 5145 */ 5146 5147 #ifdef CONFIG_SCHED_HRTICK 5148 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5149 { 5150 struct sched_entity *se = &p->se; 5151 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5152 5153 SCHED_WARN_ON(task_rq(p) != rq); 5154 5155 if (rq->cfs.h_nr_running > 1) { 5156 u64 slice = sched_slice(cfs_rq, se); 5157 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5158 s64 delta = slice - ran; 5159 5160 if (delta < 0) { 5161 if (rq->curr == p) 5162 resched_curr(rq); 5163 return; 5164 } 5165 hrtick_start(rq, delta); 5166 } 5167 } 5168 5169 /* 5170 * called from enqueue/dequeue and updates the hrtick when the 5171 * current task is from our class and nr_running is low enough 5172 * to matter. 5173 */ 5174 static void hrtick_update(struct rq *rq) 5175 { 5176 struct task_struct *curr = rq->curr; 5177 5178 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 5179 return; 5180 5181 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5182 hrtick_start_fair(rq, curr); 5183 } 5184 #else /* !CONFIG_SCHED_HRTICK */ 5185 static inline void 5186 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5187 { 5188 } 5189 5190 static inline void hrtick_update(struct rq *rq) 5191 { 5192 } 5193 #endif 5194 5195 #ifdef CONFIG_SMP 5196 static inline unsigned long cpu_util(int cpu); 5197 5198 static inline bool cpu_overutilized(int cpu) 5199 { 5200 return !fits_capacity(cpu_util(cpu), capacity_of(cpu)); 5201 } 5202 5203 static inline void update_overutilized_status(struct rq *rq) 5204 { 5205 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5206 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5207 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5208 } 5209 } 5210 #else 5211 static inline void update_overutilized_status(struct rq *rq) { } 5212 #endif 5213 5214 /* Runqueue only has SCHED_IDLE tasks enqueued */ 5215 static int sched_idle_rq(struct rq *rq) 5216 { 5217 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 5218 rq->nr_running); 5219 } 5220 5221 #ifdef CONFIG_SMP 5222 static int sched_idle_cpu(int cpu) 5223 { 5224 return sched_idle_rq(cpu_rq(cpu)); 5225 } 5226 #endif 5227 5228 /* 5229 * The enqueue_task method is called before nr_running is 5230 * increased. Here we update the fair scheduling stats and 5231 * then put the task into the rbtree: 5232 */ 5233 static void 5234 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5235 { 5236 struct cfs_rq *cfs_rq; 5237 struct sched_entity *se = &p->se; 5238 int idle_h_nr_running = task_has_idle_policy(p); 5239 5240 /* 5241 * The code below (indirectly) updates schedutil which looks at 5242 * the cfs_rq utilization to select a frequency. 5243 * Let's add the task's estimated utilization to the cfs_rq's 5244 * estimated utilization, before we update schedutil. 5245 */ 5246 util_est_enqueue(&rq->cfs, p); 5247 5248 /* 5249 * If in_iowait is set, the code below may not trigger any cpufreq 5250 * utilization updates, so do it here explicitly with the IOWAIT flag 5251 * passed. 5252 */ 5253 if (p->in_iowait) 5254 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5255 5256 for_each_sched_entity(se) { 5257 if (se->on_rq) 5258 break; 5259 cfs_rq = cfs_rq_of(se); 5260 enqueue_entity(cfs_rq, se, flags); 5261 5262 /* 5263 * end evaluation on encountering a throttled cfs_rq 5264 * 5265 * note: in the case of encountering a throttled cfs_rq we will 5266 * post the final h_nr_running increment below. 5267 */ 5268 if (cfs_rq_throttled(cfs_rq)) 5269 break; 5270 cfs_rq->h_nr_running++; 5271 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5272 5273 flags = ENQUEUE_WAKEUP; 5274 } 5275 5276 for_each_sched_entity(se) { 5277 cfs_rq = cfs_rq_of(se); 5278 cfs_rq->h_nr_running++; 5279 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5280 5281 if (cfs_rq_throttled(cfs_rq)) 5282 break; 5283 5284 update_load_avg(cfs_rq, se, UPDATE_TG); 5285 update_cfs_group(se); 5286 } 5287 5288 if (!se) { 5289 add_nr_running(rq, 1); 5290 /* 5291 * Since new tasks are assigned an initial util_avg equal to 5292 * half of the spare capacity of their CPU, tiny tasks have the 5293 * ability to cross the overutilized threshold, which will 5294 * result in the load balancer ruining all the task placement 5295 * done by EAS. As a way to mitigate that effect, do not account 5296 * for the first enqueue operation of new tasks during the 5297 * overutilized flag detection. 5298 * 5299 * A better way of solving this problem would be to wait for 5300 * the PELT signals of tasks to converge before taking them 5301 * into account, but that is not straightforward to implement, 5302 * and the following generally works well enough in practice. 5303 */ 5304 if (flags & ENQUEUE_WAKEUP) 5305 update_overutilized_status(rq); 5306 5307 } 5308 5309 if (cfs_bandwidth_used()) { 5310 /* 5311 * When bandwidth control is enabled; the cfs_rq_throttled() 5312 * breaks in the above iteration can result in incomplete 5313 * leaf list maintenance, resulting in triggering the assertion 5314 * below. 5315 */ 5316 for_each_sched_entity(se) { 5317 cfs_rq = cfs_rq_of(se); 5318 5319 if (list_add_leaf_cfs_rq(cfs_rq)) 5320 break; 5321 } 5322 } 5323 5324 assert_list_leaf_cfs_rq(rq); 5325 5326 hrtick_update(rq); 5327 } 5328 5329 static void set_next_buddy(struct sched_entity *se); 5330 5331 /* 5332 * The dequeue_task method is called before nr_running is 5333 * decreased. We remove the task from the rbtree and 5334 * update the fair scheduling stats: 5335 */ 5336 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5337 { 5338 struct cfs_rq *cfs_rq; 5339 struct sched_entity *se = &p->se; 5340 int task_sleep = flags & DEQUEUE_SLEEP; 5341 int idle_h_nr_running = task_has_idle_policy(p); 5342 bool was_sched_idle = sched_idle_rq(rq); 5343 5344 for_each_sched_entity(se) { 5345 cfs_rq = cfs_rq_of(se); 5346 dequeue_entity(cfs_rq, se, flags); 5347 5348 /* 5349 * end evaluation on encountering a throttled cfs_rq 5350 * 5351 * note: in the case of encountering a throttled cfs_rq we will 5352 * post the final h_nr_running decrement below. 5353 */ 5354 if (cfs_rq_throttled(cfs_rq)) 5355 break; 5356 cfs_rq->h_nr_running--; 5357 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5358 5359 /* Don't dequeue parent if it has other entities besides us */ 5360 if (cfs_rq->load.weight) { 5361 /* Avoid re-evaluating load for this entity: */ 5362 se = parent_entity(se); 5363 /* 5364 * Bias pick_next to pick a task from this cfs_rq, as 5365 * p is sleeping when it is within its sched_slice. 5366 */ 5367 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5368 set_next_buddy(se); 5369 break; 5370 } 5371 flags |= DEQUEUE_SLEEP; 5372 } 5373 5374 for_each_sched_entity(se) { 5375 cfs_rq = cfs_rq_of(se); 5376 cfs_rq->h_nr_running--; 5377 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5378 5379 if (cfs_rq_throttled(cfs_rq)) 5380 break; 5381 5382 update_load_avg(cfs_rq, se, UPDATE_TG); 5383 update_cfs_group(se); 5384 } 5385 5386 if (!se) 5387 sub_nr_running(rq, 1); 5388 5389 /* balance early to pull high priority tasks */ 5390 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 5391 rq->next_balance = jiffies; 5392 5393 util_est_dequeue(&rq->cfs, p, task_sleep); 5394 hrtick_update(rq); 5395 } 5396 5397 #ifdef CONFIG_SMP 5398 5399 /* Working cpumask for: load_balance, load_balance_newidle. */ 5400 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5401 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5402 5403 #ifdef CONFIG_NO_HZ_COMMON 5404 5405 static struct { 5406 cpumask_var_t idle_cpus_mask; 5407 atomic_t nr_cpus; 5408 int has_blocked; /* Idle CPUS has blocked load */ 5409 unsigned long next_balance; /* in jiffy units */ 5410 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5411 } nohz ____cacheline_aligned; 5412 5413 #endif /* CONFIG_NO_HZ_COMMON */ 5414 5415 static unsigned long cpu_load(struct rq *rq) 5416 { 5417 return cfs_rq_load_avg(&rq->cfs); 5418 } 5419 5420 /* 5421 * cpu_load_without - compute CPU load without any contributions from *p 5422 * @cpu: the CPU which load is requested 5423 * @p: the task which load should be discounted 5424 * 5425 * The load of a CPU is defined by the load of tasks currently enqueued on that 5426 * CPU as well as tasks which are currently sleeping after an execution on that 5427 * CPU. 5428 * 5429 * This method returns the load of the specified CPU by discounting the load of 5430 * the specified task, whenever the task is currently contributing to the CPU 5431 * load. 5432 */ 5433 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 5434 { 5435 struct cfs_rq *cfs_rq; 5436 unsigned int load; 5437 5438 /* Task has no contribution or is new */ 5439 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5440 return cpu_load(rq); 5441 5442 cfs_rq = &rq->cfs; 5443 load = READ_ONCE(cfs_rq->avg.load_avg); 5444 5445 /* Discount task's util from CPU's util */ 5446 lsub_positive(&load, task_h_load(p)); 5447 5448 return load; 5449 } 5450 5451 static unsigned long capacity_of(int cpu) 5452 { 5453 return cpu_rq(cpu)->cpu_capacity; 5454 } 5455 5456 static void record_wakee(struct task_struct *p) 5457 { 5458 /* 5459 * Only decay a single time; tasks that have less then 1 wakeup per 5460 * jiffy will not have built up many flips. 5461 */ 5462 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5463 current->wakee_flips >>= 1; 5464 current->wakee_flip_decay_ts = jiffies; 5465 } 5466 5467 if (current->last_wakee != p) { 5468 current->last_wakee = p; 5469 current->wakee_flips++; 5470 } 5471 } 5472 5473 /* 5474 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5475 * 5476 * A waker of many should wake a different task than the one last awakened 5477 * at a frequency roughly N times higher than one of its wakees. 5478 * 5479 * In order to determine whether we should let the load spread vs consolidating 5480 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5481 * partner, and a factor of lls_size higher frequency in the other. 5482 * 5483 * With both conditions met, we can be relatively sure that the relationship is 5484 * non-monogamous, with partner count exceeding socket size. 5485 * 5486 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5487 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5488 * socket size. 5489 */ 5490 static int wake_wide(struct task_struct *p) 5491 { 5492 unsigned int master = current->wakee_flips; 5493 unsigned int slave = p->wakee_flips; 5494 int factor = this_cpu_read(sd_llc_size); 5495 5496 if (master < slave) 5497 swap(master, slave); 5498 if (slave < factor || master < slave * factor) 5499 return 0; 5500 return 1; 5501 } 5502 5503 /* 5504 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5505 * soonest. For the purpose of speed we only consider the waking and previous 5506 * CPU. 5507 * 5508 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5509 * cache-affine and is (or will be) idle. 5510 * 5511 * wake_affine_weight() - considers the weight to reflect the average 5512 * scheduling latency of the CPUs. This seems to work 5513 * for the overloaded case. 5514 */ 5515 static int 5516 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5517 { 5518 /* 5519 * If this_cpu is idle, it implies the wakeup is from interrupt 5520 * context. Only allow the move if cache is shared. Otherwise an 5521 * interrupt intensive workload could force all tasks onto one 5522 * node depending on the IO topology or IRQ affinity settings. 5523 * 5524 * If the prev_cpu is idle and cache affine then avoid a migration. 5525 * There is no guarantee that the cache hot data from an interrupt 5526 * is more important than cache hot data on the prev_cpu and from 5527 * a cpufreq perspective, it's better to have higher utilisation 5528 * on one CPU. 5529 */ 5530 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5531 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5532 5533 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5534 return this_cpu; 5535 5536 return nr_cpumask_bits; 5537 } 5538 5539 static int 5540 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5541 int this_cpu, int prev_cpu, int sync) 5542 { 5543 s64 this_eff_load, prev_eff_load; 5544 unsigned long task_load; 5545 5546 this_eff_load = cpu_load(cpu_rq(this_cpu)); 5547 5548 if (sync) { 5549 unsigned long current_load = task_h_load(current); 5550 5551 if (current_load > this_eff_load) 5552 return this_cpu; 5553 5554 this_eff_load -= current_load; 5555 } 5556 5557 task_load = task_h_load(p); 5558 5559 this_eff_load += task_load; 5560 if (sched_feat(WA_BIAS)) 5561 this_eff_load *= 100; 5562 this_eff_load *= capacity_of(prev_cpu); 5563 5564 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 5565 prev_eff_load -= task_load; 5566 if (sched_feat(WA_BIAS)) 5567 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5568 prev_eff_load *= capacity_of(this_cpu); 5569 5570 /* 5571 * If sync, adjust the weight of prev_eff_load such that if 5572 * prev_eff == this_eff that select_idle_sibling() will consider 5573 * stacking the wakee on top of the waker if no other CPU is 5574 * idle. 5575 */ 5576 if (sync) 5577 prev_eff_load += 1; 5578 5579 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5580 } 5581 5582 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5583 int this_cpu, int prev_cpu, int sync) 5584 { 5585 int target = nr_cpumask_bits; 5586 5587 if (sched_feat(WA_IDLE)) 5588 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5589 5590 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5591 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5592 5593 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5594 if (target == nr_cpumask_bits) 5595 return prev_cpu; 5596 5597 schedstat_inc(sd->ttwu_move_affine); 5598 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5599 return target; 5600 } 5601 5602 static struct sched_group * 5603 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5604 int this_cpu, int sd_flag); 5605 5606 /* 5607 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 5608 */ 5609 static int 5610 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5611 { 5612 unsigned long load, min_load = ULONG_MAX; 5613 unsigned int min_exit_latency = UINT_MAX; 5614 u64 latest_idle_timestamp = 0; 5615 int least_loaded_cpu = this_cpu; 5616 int shallowest_idle_cpu = -1; 5617 int i; 5618 5619 /* Check if we have any choice: */ 5620 if (group->group_weight == 1) 5621 return cpumask_first(sched_group_span(group)); 5622 5623 /* Traverse only the allowed CPUs */ 5624 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 5625 if (sched_idle_cpu(i)) 5626 return i; 5627 5628 if (available_idle_cpu(i)) { 5629 struct rq *rq = cpu_rq(i); 5630 struct cpuidle_state *idle = idle_get_state(rq); 5631 if (idle && idle->exit_latency < min_exit_latency) { 5632 /* 5633 * We give priority to a CPU whose idle state 5634 * has the smallest exit latency irrespective 5635 * of any idle timestamp. 5636 */ 5637 min_exit_latency = idle->exit_latency; 5638 latest_idle_timestamp = rq->idle_stamp; 5639 shallowest_idle_cpu = i; 5640 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5641 rq->idle_stamp > latest_idle_timestamp) { 5642 /* 5643 * If equal or no active idle state, then 5644 * the most recently idled CPU might have 5645 * a warmer cache. 5646 */ 5647 latest_idle_timestamp = rq->idle_stamp; 5648 shallowest_idle_cpu = i; 5649 } 5650 } else if (shallowest_idle_cpu == -1) { 5651 load = cpu_load(cpu_rq(i)); 5652 if (load < min_load) { 5653 min_load = load; 5654 least_loaded_cpu = i; 5655 } 5656 } 5657 } 5658 5659 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5660 } 5661 5662 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 5663 int cpu, int prev_cpu, int sd_flag) 5664 { 5665 int new_cpu = cpu; 5666 5667 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 5668 return prev_cpu; 5669 5670 /* 5671 * We need task's util for cpu_util_without, sync it up to 5672 * prev_cpu's last_update_time. 5673 */ 5674 if (!(sd_flag & SD_BALANCE_FORK)) 5675 sync_entity_load_avg(&p->se); 5676 5677 while (sd) { 5678 struct sched_group *group; 5679 struct sched_domain *tmp; 5680 int weight; 5681 5682 if (!(sd->flags & sd_flag)) { 5683 sd = sd->child; 5684 continue; 5685 } 5686 5687 group = find_idlest_group(sd, p, cpu, sd_flag); 5688 if (!group) { 5689 sd = sd->child; 5690 continue; 5691 } 5692 5693 new_cpu = find_idlest_group_cpu(group, p, cpu); 5694 if (new_cpu == cpu) { 5695 /* Now try balancing at a lower domain level of 'cpu': */ 5696 sd = sd->child; 5697 continue; 5698 } 5699 5700 /* Now try balancing at a lower domain level of 'new_cpu': */ 5701 cpu = new_cpu; 5702 weight = sd->span_weight; 5703 sd = NULL; 5704 for_each_domain(cpu, tmp) { 5705 if (weight <= tmp->span_weight) 5706 break; 5707 if (tmp->flags & sd_flag) 5708 sd = tmp; 5709 } 5710 } 5711 5712 return new_cpu; 5713 } 5714 5715 #ifdef CONFIG_SCHED_SMT 5716 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5717 EXPORT_SYMBOL_GPL(sched_smt_present); 5718 5719 static inline void set_idle_cores(int cpu, int val) 5720 { 5721 struct sched_domain_shared *sds; 5722 5723 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5724 if (sds) 5725 WRITE_ONCE(sds->has_idle_cores, val); 5726 } 5727 5728 static inline bool test_idle_cores(int cpu, bool def) 5729 { 5730 struct sched_domain_shared *sds; 5731 5732 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5733 if (sds) 5734 return READ_ONCE(sds->has_idle_cores); 5735 5736 return def; 5737 } 5738 5739 /* 5740 * Scans the local SMT mask to see if the entire core is idle, and records this 5741 * information in sd_llc_shared->has_idle_cores. 5742 * 5743 * Since SMT siblings share all cache levels, inspecting this limited remote 5744 * state should be fairly cheap. 5745 */ 5746 void __update_idle_core(struct rq *rq) 5747 { 5748 int core = cpu_of(rq); 5749 int cpu; 5750 5751 rcu_read_lock(); 5752 if (test_idle_cores(core, true)) 5753 goto unlock; 5754 5755 for_each_cpu(cpu, cpu_smt_mask(core)) { 5756 if (cpu == core) 5757 continue; 5758 5759 if (!available_idle_cpu(cpu)) 5760 goto unlock; 5761 } 5762 5763 set_idle_cores(core, 1); 5764 unlock: 5765 rcu_read_unlock(); 5766 } 5767 5768 /* 5769 * Scan the entire LLC domain for idle cores; this dynamically switches off if 5770 * there are no idle cores left in the system; tracked through 5771 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 5772 */ 5773 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5774 { 5775 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 5776 int core, cpu; 5777 5778 if (!static_branch_likely(&sched_smt_present)) 5779 return -1; 5780 5781 if (!test_idle_cores(target, false)) 5782 return -1; 5783 5784 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 5785 5786 for_each_cpu_wrap(core, cpus, target) { 5787 bool idle = true; 5788 5789 for_each_cpu(cpu, cpu_smt_mask(core)) { 5790 __cpumask_clear_cpu(cpu, cpus); 5791 if (!available_idle_cpu(cpu)) 5792 idle = false; 5793 } 5794 5795 if (idle) 5796 return core; 5797 } 5798 5799 /* 5800 * Failed to find an idle core; stop looking for one. 5801 */ 5802 set_idle_cores(target, 0); 5803 5804 return -1; 5805 } 5806 5807 /* 5808 * Scan the local SMT mask for idle CPUs. 5809 */ 5810 static int select_idle_smt(struct task_struct *p, int target) 5811 { 5812 int cpu; 5813 5814 if (!static_branch_likely(&sched_smt_present)) 5815 return -1; 5816 5817 for_each_cpu(cpu, cpu_smt_mask(target)) { 5818 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 5819 continue; 5820 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 5821 return cpu; 5822 } 5823 5824 return -1; 5825 } 5826 5827 #else /* CONFIG_SCHED_SMT */ 5828 5829 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5830 { 5831 return -1; 5832 } 5833 5834 static inline int select_idle_smt(struct task_struct *p, int target) 5835 { 5836 return -1; 5837 } 5838 5839 #endif /* CONFIG_SCHED_SMT */ 5840 5841 /* 5842 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 5843 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 5844 * average idle time for this rq (as found in rq->avg_idle). 5845 */ 5846 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 5847 { 5848 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 5849 struct sched_domain *this_sd; 5850 u64 avg_cost, avg_idle; 5851 u64 time, cost; 5852 s64 delta; 5853 int this = smp_processor_id(); 5854 int cpu, nr = INT_MAX; 5855 5856 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 5857 if (!this_sd) 5858 return -1; 5859 5860 /* 5861 * Due to large variance we need a large fuzz factor; hackbench in 5862 * particularly is sensitive here. 5863 */ 5864 avg_idle = this_rq()->avg_idle / 512; 5865 avg_cost = this_sd->avg_scan_cost + 1; 5866 5867 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 5868 return -1; 5869 5870 if (sched_feat(SIS_PROP)) { 5871 u64 span_avg = sd->span_weight * avg_idle; 5872 if (span_avg > 4*avg_cost) 5873 nr = div_u64(span_avg, avg_cost); 5874 else 5875 nr = 4; 5876 } 5877 5878 time = cpu_clock(this); 5879 5880 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 5881 5882 for_each_cpu_wrap(cpu, cpus, target) { 5883 if (!--nr) 5884 return -1; 5885 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 5886 break; 5887 } 5888 5889 time = cpu_clock(this) - time; 5890 cost = this_sd->avg_scan_cost; 5891 delta = (s64)(time - cost) / 8; 5892 this_sd->avg_scan_cost += delta; 5893 5894 return cpu; 5895 } 5896 5897 /* 5898 * Try and locate an idle core/thread in the LLC cache domain. 5899 */ 5900 static int select_idle_sibling(struct task_struct *p, int prev, int target) 5901 { 5902 struct sched_domain *sd; 5903 int i, recent_used_cpu; 5904 5905 if (available_idle_cpu(target) || sched_idle_cpu(target)) 5906 return target; 5907 5908 /* 5909 * If the previous CPU is cache affine and idle, don't be stupid: 5910 */ 5911 if (prev != target && cpus_share_cache(prev, target) && 5912 (available_idle_cpu(prev) || sched_idle_cpu(prev))) 5913 return prev; 5914 5915 /* Check a recently used CPU as a potential idle candidate: */ 5916 recent_used_cpu = p->recent_used_cpu; 5917 if (recent_used_cpu != prev && 5918 recent_used_cpu != target && 5919 cpus_share_cache(recent_used_cpu, target) && 5920 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 5921 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) { 5922 /* 5923 * Replace recent_used_cpu with prev as it is a potential 5924 * candidate for the next wake: 5925 */ 5926 p->recent_used_cpu = prev; 5927 return recent_used_cpu; 5928 } 5929 5930 sd = rcu_dereference(per_cpu(sd_llc, target)); 5931 if (!sd) 5932 return target; 5933 5934 i = select_idle_core(p, sd, target); 5935 if ((unsigned)i < nr_cpumask_bits) 5936 return i; 5937 5938 i = select_idle_cpu(p, sd, target); 5939 if ((unsigned)i < nr_cpumask_bits) 5940 return i; 5941 5942 i = select_idle_smt(p, target); 5943 if ((unsigned)i < nr_cpumask_bits) 5944 return i; 5945 5946 return target; 5947 } 5948 5949 /** 5950 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks 5951 * @cpu: the CPU to get the utilization of 5952 * 5953 * The unit of the return value must be the one of capacity so we can compare 5954 * the utilization with the capacity of the CPU that is available for CFS task 5955 * (ie cpu_capacity). 5956 * 5957 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 5958 * recent utilization of currently non-runnable tasks on a CPU. It represents 5959 * the amount of utilization of a CPU in the range [0..capacity_orig] where 5960 * capacity_orig is the cpu_capacity available at the highest frequency 5961 * (arch_scale_freq_capacity()). 5962 * The utilization of a CPU converges towards a sum equal to or less than the 5963 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 5964 * the running time on this CPU scaled by capacity_curr. 5965 * 5966 * The estimated utilization of a CPU is defined to be the maximum between its 5967 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 5968 * currently RUNNABLE on that CPU. 5969 * This allows to properly represent the expected utilization of a CPU which 5970 * has just got a big task running since a long sleep period. At the same time 5971 * however it preserves the benefits of the "blocked utilization" in 5972 * describing the potential for other tasks waking up on the same CPU. 5973 * 5974 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 5975 * higher than capacity_orig because of unfortunate rounding in 5976 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 5977 * the average stabilizes with the new running time. We need to check that the 5978 * utilization stays within the range of [0..capacity_orig] and cap it if 5979 * necessary. Without utilization capping, a group could be seen as overloaded 5980 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 5981 * available capacity. We allow utilization to overshoot capacity_curr (but not 5982 * capacity_orig) as it useful for predicting the capacity required after task 5983 * migrations (scheduler-driven DVFS). 5984 * 5985 * Return: the (estimated) utilization for the specified CPU 5986 */ 5987 static inline unsigned long cpu_util(int cpu) 5988 { 5989 struct cfs_rq *cfs_rq; 5990 unsigned int util; 5991 5992 cfs_rq = &cpu_rq(cpu)->cfs; 5993 util = READ_ONCE(cfs_rq->avg.util_avg); 5994 5995 if (sched_feat(UTIL_EST)) 5996 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 5997 5998 return min_t(unsigned long, util, capacity_orig_of(cpu)); 5999 } 6000 6001 /* 6002 * cpu_util_without: compute cpu utilization without any contributions from *p 6003 * @cpu: the CPU which utilization is requested 6004 * @p: the task which utilization should be discounted 6005 * 6006 * The utilization of a CPU is defined by the utilization of tasks currently 6007 * enqueued on that CPU as well as tasks which are currently sleeping after an 6008 * execution on that CPU. 6009 * 6010 * This method returns the utilization of the specified CPU by discounting the 6011 * utilization of the specified task, whenever the task is currently 6012 * contributing to the CPU utilization. 6013 */ 6014 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6015 { 6016 struct cfs_rq *cfs_rq; 6017 unsigned int util; 6018 6019 /* Task has no contribution or is new */ 6020 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6021 return cpu_util(cpu); 6022 6023 cfs_rq = &cpu_rq(cpu)->cfs; 6024 util = READ_ONCE(cfs_rq->avg.util_avg); 6025 6026 /* Discount task's util from CPU's util */ 6027 lsub_positive(&util, task_util(p)); 6028 6029 /* 6030 * Covered cases: 6031 * 6032 * a) if *p is the only task sleeping on this CPU, then: 6033 * cpu_util (== task_util) > util_est (== 0) 6034 * and thus we return: 6035 * cpu_util_without = (cpu_util - task_util) = 0 6036 * 6037 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6038 * IDLE, then: 6039 * cpu_util >= task_util 6040 * cpu_util > util_est (== 0) 6041 * and thus we discount *p's blocked utilization to return: 6042 * cpu_util_without = (cpu_util - task_util) >= 0 6043 * 6044 * c) if other tasks are RUNNABLE on that CPU and 6045 * util_est > cpu_util 6046 * then we use util_est since it returns a more restrictive 6047 * estimation of the spare capacity on that CPU, by just 6048 * considering the expected utilization of tasks already 6049 * runnable on that CPU. 6050 * 6051 * Cases a) and b) are covered by the above code, while case c) is 6052 * covered by the following code when estimated utilization is 6053 * enabled. 6054 */ 6055 if (sched_feat(UTIL_EST)) { 6056 unsigned int estimated = 6057 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6058 6059 /* 6060 * Despite the following checks we still have a small window 6061 * for a possible race, when an execl's select_task_rq_fair() 6062 * races with LB's detach_task(): 6063 * 6064 * detach_task() 6065 * p->on_rq = TASK_ON_RQ_MIGRATING; 6066 * ---------------------------------- A 6067 * deactivate_task() \ 6068 * dequeue_task() + RaceTime 6069 * util_est_dequeue() / 6070 * ---------------------------------- B 6071 * 6072 * The additional check on "current == p" it's required to 6073 * properly fix the execl regression and it helps in further 6074 * reducing the chances for the above race. 6075 */ 6076 if (unlikely(task_on_rq_queued(p) || current == p)) 6077 lsub_positive(&estimated, _task_util_est(p)); 6078 6079 util = max(util, estimated); 6080 } 6081 6082 /* 6083 * Utilization (estimated) can exceed the CPU capacity, thus let's 6084 * clamp to the maximum CPU capacity to ensure consistency with 6085 * the cpu_util call. 6086 */ 6087 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6088 } 6089 6090 /* 6091 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 6092 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 6093 * 6094 * In that case WAKE_AFFINE doesn't make sense and we'll let 6095 * BALANCE_WAKE sort things out. 6096 */ 6097 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 6098 { 6099 long min_cap, max_cap; 6100 6101 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 6102 return 0; 6103 6104 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 6105 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 6106 6107 /* Minimum capacity is close to max, no need to abort wake_affine */ 6108 if (max_cap - min_cap < max_cap >> 3) 6109 return 0; 6110 6111 /* Bring task utilization in sync with prev_cpu */ 6112 sync_entity_load_avg(&p->se); 6113 6114 return !task_fits_capacity(p, min_cap); 6115 } 6116 6117 /* 6118 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) 6119 * to @dst_cpu. 6120 */ 6121 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6122 { 6123 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6124 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); 6125 6126 /* 6127 * If @p migrates from @cpu to another, remove its contribution. Or, 6128 * if @p migrates from another CPU to @cpu, add its contribution. In 6129 * the other cases, @cpu is not impacted by the migration, so the 6130 * util_avg should already be correct. 6131 */ 6132 if (task_cpu(p) == cpu && dst_cpu != cpu) 6133 sub_positive(&util, task_util(p)); 6134 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6135 util += task_util(p); 6136 6137 if (sched_feat(UTIL_EST)) { 6138 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6139 6140 /* 6141 * During wake-up, the task isn't enqueued yet and doesn't 6142 * appear in the cfs_rq->avg.util_est.enqueued of any rq, 6143 * so just add it (if needed) to "simulate" what will be 6144 * cpu_util() after the task has been enqueued. 6145 */ 6146 if (dst_cpu == cpu) 6147 util_est += _task_util_est(p); 6148 6149 util = max(util, util_est); 6150 } 6151 6152 return min(util, capacity_orig_of(cpu)); 6153 } 6154 6155 /* 6156 * compute_energy(): Estimates the energy that @pd would consume if @p was 6157 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6158 * landscape of @pd's CPUs after the task migration, and uses the Energy Model 6159 * to compute what would be the energy if we decided to actually migrate that 6160 * task. 6161 */ 6162 static long 6163 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6164 { 6165 struct cpumask *pd_mask = perf_domain_span(pd); 6166 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask)); 6167 unsigned long max_util = 0, sum_util = 0; 6168 int cpu; 6169 6170 /* 6171 * The capacity state of CPUs of the current rd can be driven by CPUs 6172 * of another rd if they belong to the same pd. So, account for the 6173 * utilization of these CPUs too by masking pd with cpu_online_mask 6174 * instead of the rd span. 6175 * 6176 * If an entire pd is outside of the current rd, it will not appear in 6177 * its pd list and will not be accounted by compute_energy(). 6178 */ 6179 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) { 6180 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu); 6181 struct task_struct *tsk = cpu == dst_cpu ? p : NULL; 6182 6183 /* 6184 * Busy time computation: utilization clamping is not 6185 * required since the ratio (sum_util / cpu_capacity) 6186 * is already enough to scale the EM reported power 6187 * consumption at the (eventually clamped) cpu_capacity. 6188 */ 6189 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap, 6190 ENERGY_UTIL, NULL); 6191 6192 /* 6193 * Performance domain frequency: utilization clamping 6194 * must be considered since it affects the selection 6195 * of the performance domain frequency. 6196 * NOTE: in case RT tasks are running, by default the 6197 * FREQUENCY_UTIL's utilization can be max OPP. 6198 */ 6199 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap, 6200 FREQUENCY_UTIL, tsk); 6201 max_util = max(max_util, cpu_util); 6202 } 6203 6204 return em_pd_energy(pd->em_pd, max_util, sum_util); 6205 } 6206 6207 /* 6208 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6209 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6210 * spare capacity in each performance domain and uses it as a potential 6211 * candidate to execute the task. Then, it uses the Energy Model to figure 6212 * out which of the CPU candidates is the most energy-efficient. 6213 * 6214 * The rationale for this heuristic is as follows. In a performance domain, 6215 * all the most energy efficient CPU candidates (according to the Energy 6216 * Model) are those for which we'll request a low frequency. When there are 6217 * several CPUs for which the frequency request will be the same, we don't 6218 * have enough data to break the tie between them, because the Energy Model 6219 * only includes active power costs. With this model, if we assume that 6220 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6221 * the maximum spare capacity in a performance domain is guaranteed to be among 6222 * the best candidates of the performance domain. 6223 * 6224 * In practice, it could be preferable from an energy standpoint to pack 6225 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6226 * but that could also hurt our chances to go cluster idle, and we have no 6227 * ways to tell with the current Energy Model if this is actually a good 6228 * idea or not. So, find_energy_efficient_cpu() basically favors 6229 * cluster-packing, and spreading inside a cluster. That should at least be 6230 * a good thing for latency, and this is consistent with the idea that most 6231 * of the energy savings of EAS come from the asymmetry of the system, and 6232 * not so much from breaking the tie between identical CPUs. That's also the 6233 * reason why EAS is enabled in the topology code only for systems where 6234 * SD_ASYM_CPUCAPACITY is set. 6235 * 6236 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6237 * they don't have any useful utilization data yet and it's not possible to 6238 * forecast their impact on energy consumption. Consequently, they will be 6239 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6240 * to be energy-inefficient in some use-cases. The alternative would be to 6241 * bias new tasks towards specific types of CPUs first, or to try to infer 6242 * their util_avg from the parent task, but those heuristics could hurt 6243 * other use-cases too. So, until someone finds a better way to solve this, 6244 * let's keep things simple by re-using the existing slow path. 6245 */ 6246 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6247 { 6248 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 6249 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6250 unsigned long cpu_cap, util, base_energy = 0; 6251 int cpu, best_energy_cpu = prev_cpu; 6252 struct sched_domain *sd; 6253 struct perf_domain *pd; 6254 6255 rcu_read_lock(); 6256 pd = rcu_dereference(rd->pd); 6257 if (!pd || READ_ONCE(rd->overutilized)) 6258 goto fail; 6259 6260 /* 6261 * Energy-aware wake-up happens on the lowest sched_domain starting 6262 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6263 */ 6264 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6265 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6266 sd = sd->parent; 6267 if (!sd) 6268 goto fail; 6269 6270 sync_entity_load_avg(&p->se); 6271 if (!task_util_est(p)) 6272 goto unlock; 6273 6274 for (; pd; pd = pd->next) { 6275 unsigned long cur_delta, spare_cap, max_spare_cap = 0; 6276 unsigned long base_energy_pd; 6277 int max_spare_cap_cpu = -1; 6278 6279 /* Compute the 'base' energy of the pd, without @p */ 6280 base_energy_pd = compute_energy(p, -1, pd); 6281 base_energy += base_energy_pd; 6282 6283 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6284 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6285 continue; 6286 6287 util = cpu_util_next(cpu, p, cpu); 6288 cpu_cap = capacity_of(cpu); 6289 spare_cap = cpu_cap - util; 6290 6291 /* 6292 * Skip CPUs that cannot satisfy the capacity request. 6293 * IOW, placing the task there would make the CPU 6294 * overutilized. Take uclamp into account to see how 6295 * much capacity we can get out of the CPU; this is 6296 * aligned with schedutil_cpu_util(). 6297 */ 6298 util = uclamp_rq_util_with(cpu_rq(cpu), util, p); 6299 if (!fits_capacity(util, cpu_cap)) 6300 continue; 6301 6302 /* Always use prev_cpu as a candidate. */ 6303 if (cpu == prev_cpu) { 6304 prev_delta = compute_energy(p, prev_cpu, pd); 6305 prev_delta -= base_energy_pd; 6306 best_delta = min(best_delta, prev_delta); 6307 } 6308 6309 /* 6310 * Find the CPU with the maximum spare capacity in 6311 * the performance domain 6312 */ 6313 if (spare_cap > max_spare_cap) { 6314 max_spare_cap = spare_cap; 6315 max_spare_cap_cpu = cpu; 6316 } 6317 } 6318 6319 /* Evaluate the energy impact of using this CPU. */ 6320 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) { 6321 cur_delta = compute_energy(p, max_spare_cap_cpu, pd); 6322 cur_delta -= base_energy_pd; 6323 if (cur_delta < best_delta) { 6324 best_delta = cur_delta; 6325 best_energy_cpu = max_spare_cap_cpu; 6326 } 6327 } 6328 } 6329 unlock: 6330 rcu_read_unlock(); 6331 6332 /* 6333 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6334 * least 6% of the energy used by prev_cpu. 6335 */ 6336 if (prev_delta == ULONG_MAX) 6337 return best_energy_cpu; 6338 6339 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4)) 6340 return best_energy_cpu; 6341 6342 return prev_cpu; 6343 6344 fail: 6345 rcu_read_unlock(); 6346 6347 return -1; 6348 } 6349 6350 /* 6351 * select_task_rq_fair: Select target runqueue for the waking task in domains 6352 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 6353 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6354 * 6355 * Balances load by selecting the idlest CPU in the idlest group, or under 6356 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6357 * 6358 * Returns the target CPU number. 6359 * 6360 * preempt must be disabled. 6361 */ 6362 static int 6363 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 6364 { 6365 struct sched_domain *tmp, *sd = NULL; 6366 int cpu = smp_processor_id(); 6367 int new_cpu = prev_cpu; 6368 int want_affine = 0; 6369 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6370 6371 if (sd_flag & SD_BALANCE_WAKE) { 6372 record_wakee(p); 6373 6374 if (sched_energy_enabled()) { 6375 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6376 if (new_cpu >= 0) 6377 return new_cpu; 6378 new_cpu = prev_cpu; 6379 } 6380 6381 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) && 6382 cpumask_test_cpu(cpu, p->cpus_ptr); 6383 } 6384 6385 rcu_read_lock(); 6386 for_each_domain(cpu, tmp) { 6387 if (!(tmp->flags & SD_LOAD_BALANCE)) 6388 break; 6389 6390 /* 6391 * If both 'cpu' and 'prev_cpu' are part of this domain, 6392 * cpu is a valid SD_WAKE_AFFINE target. 6393 */ 6394 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6395 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6396 if (cpu != prev_cpu) 6397 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6398 6399 sd = NULL; /* Prefer wake_affine over balance flags */ 6400 break; 6401 } 6402 6403 if (tmp->flags & sd_flag) 6404 sd = tmp; 6405 else if (!want_affine) 6406 break; 6407 } 6408 6409 if (unlikely(sd)) { 6410 /* Slow path */ 6411 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6412 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ 6413 /* Fast path */ 6414 6415 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6416 6417 if (want_affine) 6418 current->recent_used_cpu = cpu; 6419 } 6420 rcu_read_unlock(); 6421 6422 return new_cpu; 6423 } 6424 6425 static void detach_entity_cfs_rq(struct sched_entity *se); 6426 6427 /* 6428 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6429 * cfs_rq_of(p) references at time of call are still valid and identify the 6430 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6431 */ 6432 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6433 { 6434 /* 6435 * As blocked tasks retain absolute vruntime the migration needs to 6436 * deal with this by subtracting the old and adding the new 6437 * min_vruntime -- the latter is done by enqueue_entity() when placing 6438 * the task on the new runqueue. 6439 */ 6440 if (p->state == TASK_WAKING) { 6441 struct sched_entity *se = &p->se; 6442 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6443 u64 min_vruntime; 6444 6445 #ifndef CONFIG_64BIT 6446 u64 min_vruntime_copy; 6447 6448 do { 6449 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6450 smp_rmb(); 6451 min_vruntime = cfs_rq->min_vruntime; 6452 } while (min_vruntime != min_vruntime_copy); 6453 #else 6454 min_vruntime = cfs_rq->min_vruntime; 6455 #endif 6456 6457 se->vruntime -= min_vruntime; 6458 } 6459 6460 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6461 /* 6462 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6463 * rq->lock and can modify state directly. 6464 */ 6465 lockdep_assert_held(&task_rq(p)->lock); 6466 detach_entity_cfs_rq(&p->se); 6467 6468 } else { 6469 /* 6470 * We are supposed to update the task to "current" time, then 6471 * its up to date and ready to go to new CPU/cfs_rq. But we 6472 * have difficulty in getting what current time is, so simply 6473 * throw away the out-of-date time. This will result in the 6474 * wakee task is less decayed, but giving the wakee more load 6475 * sounds not bad. 6476 */ 6477 remove_entity_load_avg(&p->se); 6478 } 6479 6480 /* Tell new CPU we are migrated */ 6481 p->se.avg.last_update_time = 0; 6482 6483 /* We have migrated, no longer consider this task hot */ 6484 p->se.exec_start = 0; 6485 6486 update_scan_period(p, new_cpu); 6487 } 6488 6489 static void task_dead_fair(struct task_struct *p) 6490 { 6491 remove_entity_load_avg(&p->se); 6492 } 6493 6494 static int 6495 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6496 { 6497 if (rq->nr_running) 6498 return 1; 6499 6500 return newidle_balance(rq, rf) != 0; 6501 } 6502 #endif /* CONFIG_SMP */ 6503 6504 static unsigned long wakeup_gran(struct sched_entity *se) 6505 { 6506 unsigned long gran = sysctl_sched_wakeup_granularity; 6507 6508 /* 6509 * Since its curr running now, convert the gran from real-time 6510 * to virtual-time in his units. 6511 * 6512 * By using 'se' instead of 'curr' we penalize light tasks, so 6513 * they get preempted easier. That is, if 'se' < 'curr' then 6514 * the resulting gran will be larger, therefore penalizing the 6515 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6516 * be smaller, again penalizing the lighter task. 6517 * 6518 * This is especially important for buddies when the leftmost 6519 * task is higher priority than the buddy. 6520 */ 6521 return calc_delta_fair(gran, se); 6522 } 6523 6524 /* 6525 * Should 'se' preempt 'curr'. 6526 * 6527 * |s1 6528 * |s2 6529 * |s3 6530 * g 6531 * |<--->|c 6532 * 6533 * w(c, s1) = -1 6534 * w(c, s2) = 0 6535 * w(c, s3) = 1 6536 * 6537 */ 6538 static int 6539 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6540 { 6541 s64 gran, vdiff = curr->vruntime - se->vruntime; 6542 6543 if (vdiff <= 0) 6544 return -1; 6545 6546 gran = wakeup_gran(se); 6547 if (vdiff > gran) 6548 return 1; 6549 6550 return 0; 6551 } 6552 6553 static void set_last_buddy(struct sched_entity *se) 6554 { 6555 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6556 return; 6557 6558 for_each_sched_entity(se) { 6559 if (SCHED_WARN_ON(!se->on_rq)) 6560 return; 6561 cfs_rq_of(se)->last = se; 6562 } 6563 } 6564 6565 static void set_next_buddy(struct sched_entity *se) 6566 { 6567 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6568 return; 6569 6570 for_each_sched_entity(se) { 6571 if (SCHED_WARN_ON(!se->on_rq)) 6572 return; 6573 cfs_rq_of(se)->next = se; 6574 } 6575 } 6576 6577 static void set_skip_buddy(struct sched_entity *se) 6578 { 6579 for_each_sched_entity(se) 6580 cfs_rq_of(se)->skip = se; 6581 } 6582 6583 /* 6584 * Preempt the current task with a newly woken task if needed: 6585 */ 6586 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6587 { 6588 struct task_struct *curr = rq->curr; 6589 struct sched_entity *se = &curr->se, *pse = &p->se; 6590 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6591 int scale = cfs_rq->nr_running >= sched_nr_latency; 6592 int next_buddy_marked = 0; 6593 6594 if (unlikely(se == pse)) 6595 return; 6596 6597 /* 6598 * This is possible from callers such as attach_tasks(), in which we 6599 * unconditionally check_prempt_curr() after an enqueue (which may have 6600 * lead to a throttle). This both saves work and prevents false 6601 * next-buddy nomination below. 6602 */ 6603 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6604 return; 6605 6606 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6607 set_next_buddy(pse); 6608 next_buddy_marked = 1; 6609 } 6610 6611 /* 6612 * We can come here with TIF_NEED_RESCHED already set from new task 6613 * wake up path. 6614 * 6615 * Note: this also catches the edge-case of curr being in a throttled 6616 * group (e.g. via set_curr_task), since update_curr() (in the 6617 * enqueue of curr) will have resulted in resched being set. This 6618 * prevents us from potentially nominating it as a false LAST_BUDDY 6619 * below. 6620 */ 6621 if (test_tsk_need_resched(curr)) 6622 return; 6623 6624 /* Idle tasks are by definition preempted by non-idle tasks. */ 6625 if (unlikely(task_has_idle_policy(curr)) && 6626 likely(!task_has_idle_policy(p))) 6627 goto preempt; 6628 6629 /* 6630 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6631 * is driven by the tick): 6632 */ 6633 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6634 return; 6635 6636 find_matching_se(&se, &pse); 6637 update_curr(cfs_rq_of(se)); 6638 BUG_ON(!pse); 6639 if (wakeup_preempt_entity(se, pse) == 1) { 6640 /* 6641 * Bias pick_next to pick the sched entity that is 6642 * triggering this preemption. 6643 */ 6644 if (!next_buddy_marked) 6645 set_next_buddy(pse); 6646 goto preempt; 6647 } 6648 6649 return; 6650 6651 preempt: 6652 resched_curr(rq); 6653 /* 6654 * Only set the backward buddy when the current task is still 6655 * on the rq. This can happen when a wakeup gets interleaved 6656 * with schedule on the ->pre_schedule() or idle_balance() 6657 * point, either of which can * drop the rq lock. 6658 * 6659 * Also, during early boot the idle thread is in the fair class, 6660 * for obvious reasons its a bad idea to schedule back to it. 6661 */ 6662 if (unlikely(!se->on_rq || curr == rq->idle)) 6663 return; 6664 6665 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6666 set_last_buddy(se); 6667 } 6668 6669 struct task_struct * 6670 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6671 { 6672 struct cfs_rq *cfs_rq = &rq->cfs; 6673 struct sched_entity *se; 6674 struct task_struct *p; 6675 int new_tasks; 6676 6677 again: 6678 if (!sched_fair_runnable(rq)) 6679 goto idle; 6680 6681 #ifdef CONFIG_FAIR_GROUP_SCHED 6682 if (!prev || prev->sched_class != &fair_sched_class) 6683 goto simple; 6684 6685 /* 6686 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6687 * likely that a next task is from the same cgroup as the current. 6688 * 6689 * Therefore attempt to avoid putting and setting the entire cgroup 6690 * hierarchy, only change the part that actually changes. 6691 */ 6692 6693 do { 6694 struct sched_entity *curr = cfs_rq->curr; 6695 6696 /* 6697 * Since we got here without doing put_prev_entity() we also 6698 * have to consider cfs_rq->curr. If it is still a runnable 6699 * entity, update_curr() will update its vruntime, otherwise 6700 * forget we've ever seen it. 6701 */ 6702 if (curr) { 6703 if (curr->on_rq) 6704 update_curr(cfs_rq); 6705 else 6706 curr = NULL; 6707 6708 /* 6709 * This call to check_cfs_rq_runtime() will do the 6710 * throttle and dequeue its entity in the parent(s). 6711 * Therefore the nr_running test will indeed 6712 * be correct. 6713 */ 6714 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 6715 cfs_rq = &rq->cfs; 6716 6717 if (!cfs_rq->nr_running) 6718 goto idle; 6719 6720 goto simple; 6721 } 6722 } 6723 6724 se = pick_next_entity(cfs_rq, curr); 6725 cfs_rq = group_cfs_rq(se); 6726 } while (cfs_rq); 6727 6728 p = task_of(se); 6729 6730 /* 6731 * Since we haven't yet done put_prev_entity and if the selected task 6732 * is a different task than we started out with, try and touch the 6733 * least amount of cfs_rqs. 6734 */ 6735 if (prev != p) { 6736 struct sched_entity *pse = &prev->se; 6737 6738 while (!(cfs_rq = is_same_group(se, pse))) { 6739 int se_depth = se->depth; 6740 int pse_depth = pse->depth; 6741 6742 if (se_depth <= pse_depth) { 6743 put_prev_entity(cfs_rq_of(pse), pse); 6744 pse = parent_entity(pse); 6745 } 6746 if (se_depth >= pse_depth) { 6747 set_next_entity(cfs_rq_of(se), se); 6748 se = parent_entity(se); 6749 } 6750 } 6751 6752 put_prev_entity(cfs_rq, pse); 6753 set_next_entity(cfs_rq, se); 6754 } 6755 6756 goto done; 6757 simple: 6758 #endif 6759 if (prev) 6760 put_prev_task(rq, prev); 6761 6762 do { 6763 se = pick_next_entity(cfs_rq, NULL); 6764 set_next_entity(cfs_rq, se); 6765 cfs_rq = group_cfs_rq(se); 6766 } while (cfs_rq); 6767 6768 p = task_of(se); 6769 6770 done: __maybe_unused; 6771 #ifdef CONFIG_SMP 6772 /* 6773 * Move the next running task to the front of 6774 * the list, so our cfs_tasks list becomes MRU 6775 * one. 6776 */ 6777 list_move(&p->se.group_node, &rq->cfs_tasks); 6778 #endif 6779 6780 if (hrtick_enabled(rq)) 6781 hrtick_start_fair(rq, p); 6782 6783 update_misfit_status(p, rq); 6784 6785 return p; 6786 6787 idle: 6788 if (!rf) 6789 return NULL; 6790 6791 new_tasks = newidle_balance(rq, rf); 6792 6793 /* 6794 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 6795 * possible for any higher priority task to appear. In that case we 6796 * must re-start the pick_next_entity() loop. 6797 */ 6798 if (new_tasks < 0) 6799 return RETRY_TASK; 6800 6801 if (new_tasks > 0) 6802 goto again; 6803 6804 /* 6805 * rq is about to be idle, check if we need to update the 6806 * lost_idle_time of clock_pelt 6807 */ 6808 update_idle_rq_clock_pelt(rq); 6809 6810 return NULL; 6811 } 6812 6813 static struct task_struct *__pick_next_task_fair(struct rq *rq) 6814 { 6815 return pick_next_task_fair(rq, NULL, NULL); 6816 } 6817 6818 /* 6819 * Account for a descheduled task: 6820 */ 6821 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 6822 { 6823 struct sched_entity *se = &prev->se; 6824 struct cfs_rq *cfs_rq; 6825 6826 for_each_sched_entity(se) { 6827 cfs_rq = cfs_rq_of(se); 6828 put_prev_entity(cfs_rq, se); 6829 } 6830 } 6831 6832 /* 6833 * sched_yield() is very simple 6834 * 6835 * The magic of dealing with the ->skip buddy is in pick_next_entity. 6836 */ 6837 static void yield_task_fair(struct rq *rq) 6838 { 6839 struct task_struct *curr = rq->curr; 6840 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6841 struct sched_entity *se = &curr->se; 6842 6843 /* 6844 * Are we the only task in the tree? 6845 */ 6846 if (unlikely(rq->nr_running == 1)) 6847 return; 6848 6849 clear_buddies(cfs_rq, se); 6850 6851 if (curr->policy != SCHED_BATCH) { 6852 update_rq_clock(rq); 6853 /* 6854 * Update run-time statistics of the 'current'. 6855 */ 6856 update_curr(cfs_rq); 6857 /* 6858 * Tell update_rq_clock() that we've just updated, 6859 * so we don't do microscopic update in schedule() 6860 * and double the fastpath cost. 6861 */ 6862 rq_clock_skip_update(rq); 6863 } 6864 6865 set_skip_buddy(se); 6866 } 6867 6868 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 6869 { 6870 struct sched_entity *se = &p->se; 6871 6872 /* throttled hierarchies are not runnable */ 6873 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 6874 return false; 6875 6876 /* Tell the scheduler that we'd really like pse to run next. */ 6877 set_next_buddy(se); 6878 6879 yield_task_fair(rq); 6880 6881 return true; 6882 } 6883 6884 #ifdef CONFIG_SMP 6885 /************************************************** 6886 * Fair scheduling class load-balancing methods. 6887 * 6888 * BASICS 6889 * 6890 * The purpose of load-balancing is to achieve the same basic fairness the 6891 * per-CPU scheduler provides, namely provide a proportional amount of compute 6892 * time to each task. This is expressed in the following equation: 6893 * 6894 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 6895 * 6896 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 6897 * W_i,0 is defined as: 6898 * 6899 * W_i,0 = \Sum_j w_i,j (2) 6900 * 6901 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 6902 * is derived from the nice value as per sched_prio_to_weight[]. 6903 * 6904 * The weight average is an exponential decay average of the instantaneous 6905 * weight: 6906 * 6907 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 6908 * 6909 * C_i is the compute capacity of CPU i, typically it is the 6910 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 6911 * can also include other factors [XXX]. 6912 * 6913 * To achieve this balance we define a measure of imbalance which follows 6914 * directly from (1): 6915 * 6916 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 6917 * 6918 * We them move tasks around to minimize the imbalance. In the continuous 6919 * function space it is obvious this converges, in the discrete case we get 6920 * a few fun cases generally called infeasible weight scenarios. 6921 * 6922 * [XXX expand on: 6923 * - infeasible weights; 6924 * - local vs global optima in the discrete case. ] 6925 * 6926 * 6927 * SCHED DOMAINS 6928 * 6929 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 6930 * for all i,j solution, we create a tree of CPUs that follows the hardware 6931 * topology where each level pairs two lower groups (or better). This results 6932 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 6933 * tree to only the first of the previous level and we decrease the frequency 6934 * of load-balance at each level inv. proportional to the number of CPUs in 6935 * the groups. 6936 * 6937 * This yields: 6938 * 6939 * log_2 n 1 n 6940 * \Sum { --- * --- * 2^i } = O(n) (5) 6941 * i = 0 2^i 2^i 6942 * `- size of each group 6943 * | | `- number of CPUs doing load-balance 6944 * | `- freq 6945 * `- sum over all levels 6946 * 6947 * Coupled with a limit on how many tasks we can migrate every balance pass, 6948 * this makes (5) the runtime complexity of the balancer. 6949 * 6950 * An important property here is that each CPU is still (indirectly) connected 6951 * to every other CPU in at most O(log n) steps: 6952 * 6953 * The adjacency matrix of the resulting graph is given by: 6954 * 6955 * log_2 n 6956 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 6957 * k = 0 6958 * 6959 * And you'll find that: 6960 * 6961 * A^(log_2 n)_i,j != 0 for all i,j (7) 6962 * 6963 * Showing there's indeed a path between every CPU in at most O(log n) steps. 6964 * The task movement gives a factor of O(m), giving a convergence complexity 6965 * of: 6966 * 6967 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 6968 * 6969 * 6970 * WORK CONSERVING 6971 * 6972 * In order to avoid CPUs going idle while there's still work to do, new idle 6973 * balancing is more aggressive and has the newly idle CPU iterate up the domain 6974 * tree itself instead of relying on other CPUs to bring it work. 6975 * 6976 * This adds some complexity to both (5) and (8) but it reduces the total idle 6977 * time. 6978 * 6979 * [XXX more?] 6980 * 6981 * 6982 * CGROUPS 6983 * 6984 * Cgroups make a horror show out of (2), instead of a simple sum we get: 6985 * 6986 * s_k,i 6987 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 6988 * S_k 6989 * 6990 * Where 6991 * 6992 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 6993 * 6994 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 6995 * 6996 * The big problem is S_k, its a global sum needed to compute a local (W_i) 6997 * property. 6998 * 6999 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7000 * rewrite all of this once again.] 7001 */ 7002 7003 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7004 7005 enum fbq_type { regular, remote, all }; 7006 7007 /* 7008 * 'group_type' describes the group of CPUs at the moment of load balancing. 7009 * 7010 * The enum is ordered by pulling priority, with the group with lowest priority 7011 * first so the group_type can simply be compared when selecting the busiest 7012 * group. See update_sd_pick_busiest(). 7013 */ 7014 enum group_type { 7015 /* The group has spare capacity that can be used to run more tasks. */ 7016 group_has_spare = 0, 7017 /* 7018 * The group is fully used and the tasks don't compete for more CPU 7019 * cycles. Nevertheless, some tasks might wait before running. 7020 */ 7021 group_fully_busy, 7022 /* 7023 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity 7024 * and must be migrated to a more powerful CPU. 7025 */ 7026 group_misfit_task, 7027 /* 7028 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 7029 * and the task should be migrated to it instead of running on the 7030 * current CPU. 7031 */ 7032 group_asym_packing, 7033 /* 7034 * The tasks' affinity constraints previously prevented the scheduler 7035 * from balancing the load across the system. 7036 */ 7037 group_imbalanced, 7038 /* 7039 * The CPU is overloaded and can't provide expected CPU cycles to all 7040 * tasks. 7041 */ 7042 group_overloaded 7043 }; 7044 7045 enum migration_type { 7046 migrate_load = 0, 7047 migrate_util, 7048 migrate_task, 7049 migrate_misfit 7050 }; 7051 7052 #define LBF_ALL_PINNED 0x01 7053 #define LBF_NEED_BREAK 0x02 7054 #define LBF_DST_PINNED 0x04 7055 #define LBF_SOME_PINNED 0x08 7056 #define LBF_NOHZ_STATS 0x10 7057 #define LBF_NOHZ_AGAIN 0x20 7058 7059 struct lb_env { 7060 struct sched_domain *sd; 7061 7062 struct rq *src_rq; 7063 int src_cpu; 7064 7065 int dst_cpu; 7066 struct rq *dst_rq; 7067 7068 struct cpumask *dst_grpmask; 7069 int new_dst_cpu; 7070 enum cpu_idle_type idle; 7071 long imbalance; 7072 /* The set of CPUs under consideration for load-balancing */ 7073 struct cpumask *cpus; 7074 7075 unsigned int flags; 7076 7077 unsigned int loop; 7078 unsigned int loop_break; 7079 unsigned int loop_max; 7080 7081 enum fbq_type fbq_type; 7082 enum migration_type migration_type; 7083 struct list_head tasks; 7084 }; 7085 7086 /* 7087 * Is this task likely cache-hot: 7088 */ 7089 static int task_hot(struct task_struct *p, struct lb_env *env) 7090 { 7091 s64 delta; 7092 7093 lockdep_assert_held(&env->src_rq->lock); 7094 7095 if (p->sched_class != &fair_sched_class) 7096 return 0; 7097 7098 if (unlikely(task_has_idle_policy(p))) 7099 return 0; 7100 7101 /* 7102 * Buddy candidates are cache hot: 7103 */ 7104 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7105 (&p->se == cfs_rq_of(&p->se)->next || 7106 &p->se == cfs_rq_of(&p->se)->last)) 7107 return 1; 7108 7109 if (sysctl_sched_migration_cost == -1) 7110 return 1; 7111 if (sysctl_sched_migration_cost == 0) 7112 return 0; 7113 7114 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7115 7116 return delta < (s64)sysctl_sched_migration_cost; 7117 } 7118 7119 #ifdef CONFIG_NUMA_BALANCING 7120 /* 7121 * Returns 1, if task migration degrades locality 7122 * Returns 0, if task migration improves locality i.e migration preferred. 7123 * Returns -1, if task migration is not affected by locality. 7124 */ 7125 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7126 { 7127 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7128 unsigned long src_weight, dst_weight; 7129 int src_nid, dst_nid, dist; 7130 7131 if (!static_branch_likely(&sched_numa_balancing)) 7132 return -1; 7133 7134 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7135 return -1; 7136 7137 src_nid = cpu_to_node(env->src_cpu); 7138 dst_nid = cpu_to_node(env->dst_cpu); 7139 7140 if (src_nid == dst_nid) 7141 return -1; 7142 7143 /* Migrating away from the preferred node is always bad. */ 7144 if (src_nid == p->numa_preferred_nid) { 7145 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7146 return 1; 7147 else 7148 return -1; 7149 } 7150 7151 /* Encourage migration to the preferred node. */ 7152 if (dst_nid == p->numa_preferred_nid) 7153 return 0; 7154 7155 /* Leaving a core idle is often worse than degrading locality. */ 7156 if (env->idle == CPU_IDLE) 7157 return -1; 7158 7159 dist = node_distance(src_nid, dst_nid); 7160 if (numa_group) { 7161 src_weight = group_weight(p, src_nid, dist); 7162 dst_weight = group_weight(p, dst_nid, dist); 7163 } else { 7164 src_weight = task_weight(p, src_nid, dist); 7165 dst_weight = task_weight(p, dst_nid, dist); 7166 } 7167 7168 return dst_weight < src_weight; 7169 } 7170 7171 #else 7172 static inline int migrate_degrades_locality(struct task_struct *p, 7173 struct lb_env *env) 7174 { 7175 return -1; 7176 } 7177 #endif 7178 7179 /* 7180 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7181 */ 7182 static 7183 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7184 { 7185 int tsk_cache_hot; 7186 7187 lockdep_assert_held(&env->src_rq->lock); 7188 7189 /* 7190 * We do not migrate tasks that are: 7191 * 1) throttled_lb_pair, or 7192 * 2) cannot be migrated to this CPU due to cpus_ptr, or 7193 * 3) running (obviously), or 7194 * 4) are cache-hot on their current CPU. 7195 */ 7196 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7197 return 0; 7198 7199 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 7200 int cpu; 7201 7202 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7203 7204 env->flags |= LBF_SOME_PINNED; 7205 7206 /* 7207 * Remember if this task can be migrated to any other CPU in 7208 * our sched_group. We may want to revisit it if we couldn't 7209 * meet load balance goals by pulling other tasks on src_cpu. 7210 * 7211 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 7212 * already computed one in current iteration. 7213 */ 7214 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 7215 return 0; 7216 7217 /* Prevent to re-select dst_cpu via env's CPUs: */ 7218 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7219 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 7220 env->flags |= LBF_DST_PINNED; 7221 env->new_dst_cpu = cpu; 7222 break; 7223 } 7224 } 7225 7226 return 0; 7227 } 7228 7229 /* Record that we found atleast one task that could run on dst_cpu */ 7230 env->flags &= ~LBF_ALL_PINNED; 7231 7232 if (task_running(env->src_rq, p)) { 7233 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7234 return 0; 7235 } 7236 7237 /* 7238 * Aggressive migration if: 7239 * 1) destination numa is preferred 7240 * 2) task is cache cold, or 7241 * 3) too many balance attempts have failed. 7242 */ 7243 tsk_cache_hot = migrate_degrades_locality(p, env); 7244 if (tsk_cache_hot == -1) 7245 tsk_cache_hot = task_hot(p, env); 7246 7247 if (tsk_cache_hot <= 0 || 7248 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7249 if (tsk_cache_hot == 1) { 7250 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7251 schedstat_inc(p->se.statistics.nr_forced_migrations); 7252 } 7253 return 1; 7254 } 7255 7256 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7257 return 0; 7258 } 7259 7260 /* 7261 * detach_task() -- detach the task for the migration specified in env 7262 */ 7263 static void detach_task(struct task_struct *p, struct lb_env *env) 7264 { 7265 lockdep_assert_held(&env->src_rq->lock); 7266 7267 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7268 set_task_cpu(p, env->dst_cpu); 7269 } 7270 7271 /* 7272 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7273 * part of active balancing operations within "domain". 7274 * 7275 * Returns a task if successful and NULL otherwise. 7276 */ 7277 static struct task_struct *detach_one_task(struct lb_env *env) 7278 { 7279 struct task_struct *p; 7280 7281 lockdep_assert_held(&env->src_rq->lock); 7282 7283 list_for_each_entry_reverse(p, 7284 &env->src_rq->cfs_tasks, se.group_node) { 7285 if (!can_migrate_task(p, env)) 7286 continue; 7287 7288 detach_task(p, env); 7289 7290 /* 7291 * Right now, this is only the second place where 7292 * lb_gained[env->idle] is updated (other is detach_tasks) 7293 * so we can safely collect stats here rather than 7294 * inside detach_tasks(). 7295 */ 7296 schedstat_inc(env->sd->lb_gained[env->idle]); 7297 return p; 7298 } 7299 return NULL; 7300 } 7301 7302 static const unsigned int sched_nr_migrate_break = 32; 7303 7304 /* 7305 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 7306 * busiest_rq, as part of a balancing operation within domain "sd". 7307 * 7308 * Returns number of detached tasks if successful and 0 otherwise. 7309 */ 7310 static int detach_tasks(struct lb_env *env) 7311 { 7312 struct list_head *tasks = &env->src_rq->cfs_tasks; 7313 unsigned long util, load; 7314 struct task_struct *p; 7315 int detached = 0; 7316 7317 lockdep_assert_held(&env->src_rq->lock); 7318 7319 if (env->imbalance <= 0) 7320 return 0; 7321 7322 while (!list_empty(tasks)) { 7323 /* 7324 * We don't want to steal all, otherwise we may be treated likewise, 7325 * which could at worst lead to a livelock crash. 7326 */ 7327 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7328 break; 7329 7330 p = list_last_entry(tasks, struct task_struct, se.group_node); 7331 7332 env->loop++; 7333 /* We've more or less seen every task there is, call it quits */ 7334 if (env->loop > env->loop_max) 7335 break; 7336 7337 /* take a breather every nr_migrate tasks */ 7338 if (env->loop > env->loop_break) { 7339 env->loop_break += sched_nr_migrate_break; 7340 env->flags |= LBF_NEED_BREAK; 7341 break; 7342 } 7343 7344 if (!can_migrate_task(p, env)) 7345 goto next; 7346 7347 switch (env->migration_type) { 7348 case migrate_load: 7349 load = task_h_load(p); 7350 7351 if (sched_feat(LB_MIN) && 7352 load < 16 && !env->sd->nr_balance_failed) 7353 goto next; 7354 7355 /* 7356 * Make sure that we don't migrate too much load. 7357 * Nevertheless, let relax the constraint if 7358 * scheduler fails to find a good waiting task to 7359 * migrate. 7360 */ 7361 if (load/2 > env->imbalance && 7362 env->sd->nr_balance_failed <= env->sd->cache_nice_tries) 7363 goto next; 7364 7365 env->imbalance -= load; 7366 break; 7367 7368 case migrate_util: 7369 util = task_util_est(p); 7370 7371 if (util > env->imbalance) 7372 goto next; 7373 7374 env->imbalance -= util; 7375 break; 7376 7377 case migrate_task: 7378 env->imbalance--; 7379 break; 7380 7381 case migrate_misfit: 7382 /* This is not a misfit task */ 7383 if (task_fits_capacity(p, capacity_of(env->src_cpu))) 7384 goto next; 7385 7386 env->imbalance = 0; 7387 break; 7388 } 7389 7390 detach_task(p, env); 7391 list_add(&p->se.group_node, &env->tasks); 7392 7393 detached++; 7394 7395 #ifdef CONFIG_PREEMPTION 7396 /* 7397 * NEWIDLE balancing is a source of latency, so preemptible 7398 * kernels will stop after the first task is detached to minimize 7399 * the critical section. 7400 */ 7401 if (env->idle == CPU_NEWLY_IDLE) 7402 break; 7403 #endif 7404 7405 /* 7406 * We only want to steal up to the prescribed amount of 7407 * load/util/tasks. 7408 */ 7409 if (env->imbalance <= 0) 7410 break; 7411 7412 continue; 7413 next: 7414 list_move(&p->se.group_node, tasks); 7415 } 7416 7417 /* 7418 * Right now, this is one of only two places we collect this stat 7419 * so we can safely collect detach_one_task() stats here rather 7420 * than inside detach_one_task(). 7421 */ 7422 schedstat_add(env->sd->lb_gained[env->idle], detached); 7423 7424 return detached; 7425 } 7426 7427 /* 7428 * attach_task() -- attach the task detached by detach_task() to its new rq. 7429 */ 7430 static void attach_task(struct rq *rq, struct task_struct *p) 7431 { 7432 lockdep_assert_held(&rq->lock); 7433 7434 BUG_ON(task_rq(p) != rq); 7435 activate_task(rq, p, ENQUEUE_NOCLOCK); 7436 check_preempt_curr(rq, p, 0); 7437 } 7438 7439 /* 7440 * attach_one_task() -- attaches the task returned from detach_one_task() to 7441 * its new rq. 7442 */ 7443 static void attach_one_task(struct rq *rq, struct task_struct *p) 7444 { 7445 struct rq_flags rf; 7446 7447 rq_lock(rq, &rf); 7448 update_rq_clock(rq); 7449 attach_task(rq, p); 7450 rq_unlock(rq, &rf); 7451 } 7452 7453 /* 7454 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7455 * new rq. 7456 */ 7457 static void attach_tasks(struct lb_env *env) 7458 { 7459 struct list_head *tasks = &env->tasks; 7460 struct task_struct *p; 7461 struct rq_flags rf; 7462 7463 rq_lock(env->dst_rq, &rf); 7464 update_rq_clock(env->dst_rq); 7465 7466 while (!list_empty(tasks)) { 7467 p = list_first_entry(tasks, struct task_struct, se.group_node); 7468 list_del_init(&p->se.group_node); 7469 7470 attach_task(env->dst_rq, p); 7471 } 7472 7473 rq_unlock(env->dst_rq, &rf); 7474 } 7475 7476 #ifdef CONFIG_NO_HZ_COMMON 7477 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7478 { 7479 if (cfs_rq->avg.load_avg) 7480 return true; 7481 7482 if (cfs_rq->avg.util_avg) 7483 return true; 7484 7485 return false; 7486 } 7487 7488 static inline bool others_have_blocked(struct rq *rq) 7489 { 7490 if (READ_ONCE(rq->avg_rt.util_avg)) 7491 return true; 7492 7493 if (READ_ONCE(rq->avg_dl.util_avg)) 7494 return true; 7495 7496 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 7497 if (READ_ONCE(rq->avg_irq.util_avg)) 7498 return true; 7499 #endif 7500 7501 return false; 7502 } 7503 7504 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 7505 { 7506 rq->last_blocked_load_update_tick = jiffies; 7507 7508 if (!has_blocked) 7509 rq->has_blocked_load = 0; 7510 } 7511 #else 7512 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 7513 static inline bool others_have_blocked(struct rq *rq) { return false; } 7514 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 7515 #endif 7516 7517 static bool __update_blocked_others(struct rq *rq, bool *done) 7518 { 7519 const struct sched_class *curr_class; 7520 u64 now = rq_clock_pelt(rq); 7521 bool decayed; 7522 7523 /* 7524 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 7525 * DL and IRQ signals have been updated before updating CFS. 7526 */ 7527 curr_class = rq->curr->sched_class; 7528 7529 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 7530 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 7531 update_irq_load_avg(rq, 0); 7532 7533 if (others_have_blocked(rq)) 7534 *done = false; 7535 7536 return decayed; 7537 } 7538 7539 #ifdef CONFIG_FAIR_GROUP_SCHED 7540 7541 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7542 { 7543 if (cfs_rq->load.weight) 7544 return false; 7545 7546 if (cfs_rq->avg.load_sum) 7547 return false; 7548 7549 if (cfs_rq->avg.util_sum) 7550 return false; 7551 7552 if (cfs_rq->avg.runnable_load_sum) 7553 return false; 7554 7555 return true; 7556 } 7557 7558 static bool __update_blocked_fair(struct rq *rq, bool *done) 7559 { 7560 struct cfs_rq *cfs_rq, *pos; 7561 bool decayed = false; 7562 int cpu = cpu_of(rq); 7563 7564 /* 7565 * Iterates the task_group tree in a bottom up fashion, see 7566 * list_add_leaf_cfs_rq() for details. 7567 */ 7568 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7569 struct sched_entity *se; 7570 7571 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 7572 update_tg_load_avg(cfs_rq, 0); 7573 7574 if (cfs_rq == &rq->cfs) 7575 decayed = true; 7576 } 7577 7578 /* Propagate pending load changes to the parent, if any: */ 7579 se = cfs_rq->tg->se[cpu]; 7580 if (se && !skip_blocked_update(se)) 7581 update_load_avg(cfs_rq_of(se), se, 0); 7582 7583 /* 7584 * There can be a lot of idle CPU cgroups. Don't let fully 7585 * decayed cfs_rqs linger on the list. 7586 */ 7587 if (cfs_rq_is_decayed(cfs_rq)) 7588 list_del_leaf_cfs_rq(cfs_rq); 7589 7590 /* Don't need periodic decay once load/util_avg are null */ 7591 if (cfs_rq_has_blocked(cfs_rq)) 7592 *done = false; 7593 } 7594 7595 return decayed; 7596 } 7597 7598 /* 7599 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7600 * This needs to be done in a top-down fashion because the load of a child 7601 * group is a fraction of its parents load. 7602 */ 7603 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7604 { 7605 struct rq *rq = rq_of(cfs_rq); 7606 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7607 unsigned long now = jiffies; 7608 unsigned long load; 7609 7610 if (cfs_rq->last_h_load_update == now) 7611 return; 7612 7613 WRITE_ONCE(cfs_rq->h_load_next, NULL); 7614 for_each_sched_entity(se) { 7615 cfs_rq = cfs_rq_of(se); 7616 WRITE_ONCE(cfs_rq->h_load_next, se); 7617 if (cfs_rq->last_h_load_update == now) 7618 break; 7619 } 7620 7621 if (!se) { 7622 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7623 cfs_rq->last_h_load_update = now; 7624 } 7625 7626 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 7627 load = cfs_rq->h_load; 7628 load = div64_ul(load * se->avg.load_avg, 7629 cfs_rq_load_avg(cfs_rq) + 1); 7630 cfs_rq = group_cfs_rq(se); 7631 cfs_rq->h_load = load; 7632 cfs_rq->last_h_load_update = now; 7633 } 7634 } 7635 7636 static unsigned long task_h_load(struct task_struct *p) 7637 { 7638 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7639 7640 update_cfs_rq_h_load(cfs_rq); 7641 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7642 cfs_rq_load_avg(cfs_rq) + 1); 7643 } 7644 #else 7645 static bool __update_blocked_fair(struct rq *rq, bool *done) 7646 { 7647 struct cfs_rq *cfs_rq = &rq->cfs; 7648 bool decayed; 7649 7650 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 7651 if (cfs_rq_has_blocked(cfs_rq)) 7652 *done = false; 7653 7654 return decayed; 7655 } 7656 7657 static unsigned long task_h_load(struct task_struct *p) 7658 { 7659 return p->se.avg.load_avg; 7660 } 7661 #endif 7662 7663 static void update_blocked_averages(int cpu) 7664 { 7665 bool decayed = false, done = true; 7666 struct rq *rq = cpu_rq(cpu); 7667 struct rq_flags rf; 7668 7669 rq_lock_irqsave(rq, &rf); 7670 update_rq_clock(rq); 7671 7672 decayed |= __update_blocked_others(rq, &done); 7673 decayed |= __update_blocked_fair(rq, &done); 7674 7675 update_blocked_load_status(rq, !done); 7676 if (decayed) 7677 cpufreq_update_util(rq, 0); 7678 rq_unlock_irqrestore(rq, &rf); 7679 } 7680 7681 /********** Helpers for find_busiest_group ************************/ 7682 7683 /* 7684 * sg_lb_stats - stats of a sched_group required for load_balancing 7685 */ 7686 struct sg_lb_stats { 7687 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7688 unsigned long group_load; /* Total load over the CPUs of the group */ 7689 unsigned long group_capacity; 7690 unsigned long group_util; /* Total utilization of the group */ 7691 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 7692 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 7693 unsigned int idle_cpus; 7694 unsigned int group_weight; 7695 enum group_type group_type; 7696 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 7697 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 7698 #ifdef CONFIG_NUMA_BALANCING 7699 unsigned int nr_numa_running; 7700 unsigned int nr_preferred_running; 7701 #endif 7702 }; 7703 7704 /* 7705 * sd_lb_stats - Structure to store the statistics of a sched_domain 7706 * during load balancing. 7707 */ 7708 struct sd_lb_stats { 7709 struct sched_group *busiest; /* Busiest group in this sd */ 7710 struct sched_group *local; /* Local group in this sd */ 7711 unsigned long total_load; /* Total load of all groups in sd */ 7712 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7713 unsigned long avg_load; /* Average load across all groups in sd */ 7714 unsigned int prefer_sibling; /* tasks should go to sibling first */ 7715 7716 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7717 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7718 }; 7719 7720 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7721 { 7722 /* 7723 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7724 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7725 * We must however set busiest_stat::group_type and 7726 * busiest_stat::idle_cpus to the worst busiest group because 7727 * update_sd_pick_busiest() reads these before assignment. 7728 */ 7729 *sds = (struct sd_lb_stats){ 7730 .busiest = NULL, 7731 .local = NULL, 7732 .total_load = 0UL, 7733 .total_capacity = 0UL, 7734 .busiest_stat = { 7735 .idle_cpus = UINT_MAX, 7736 .group_type = group_has_spare, 7737 }, 7738 }; 7739 } 7740 7741 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu) 7742 { 7743 struct rq *rq = cpu_rq(cpu); 7744 unsigned long max = arch_scale_cpu_capacity(cpu); 7745 unsigned long used, free; 7746 unsigned long irq; 7747 7748 irq = cpu_util_irq(rq); 7749 7750 if (unlikely(irq >= max)) 7751 return 1; 7752 7753 used = READ_ONCE(rq->avg_rt.util_avg); 7754 used += READ_ONCE(rq->avg_dl.util_avg); 7755 7756 if (unlikely(used >= max)) 7757 return 1; 7758 7759 free = max - used; 7760 7761 return scale_irq_capacity(free, irq, max); 7762 } 7763 7764 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 7765 { 7766 unsigned long capacity = scale_rt_capacity(sd, cpu); 7767 struct sched_group *sdg = sd->groups; 7768 7769 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 7770 7771 if (!capacity) 7772 capacity = 1; 7773 7774 cpu_rq(cpu)->cpu_capacity = capacity; 7775 sdg->sgc->capacity = capacity; 7776 sdg->sgc->min_capacity = capacity; 7777 sdg->sgc->max_capacity = capacity; 7778 } 7779 7780 void update_group_capacity(struct sched_domain *sd, int cpu) 7781 { 7782 struct sched_domain *child = sd->child; 7783 struct sched_group *group, *sdg = sd->groups; 7784 unsigned long capacity, min_capacity, max_capacity; 7785 unsigned long interval; 7786 7787 interval = msecs_to_jiffies(sd->balance_interval); 7788 interval = clamp(interval, 1UL, max_load_balance_interval); 7789 sdg->sgc->next_update = jiffies + interval; 7790 7791 if (!child) { 7792 update_cpu_capacity(sd, cpu); 7793 return; 7794 } 7795 7796 capacity = 0; 7797 min_capacity = ULONG_MAX; 7798 max_capacity = 0; 7799 7800 if (child->flags & SD_OVERLAP) { 7801 /* 7802 * SD_OVERLAP domains cannot assume that child groups 7803 * span the current group. 7804 */ 7805 7806 for_each_cpu(cpu, sched_group_span(sdg)) { 7807 unsigned long cpu_cap = capacity_of(cpu); 7808 7809 capacity += cpu_cap; 7810 min_capacity = min(cpu_cap, min_capacity); 7811 max_capacity = max(cpu_cap, max_capacity); 7812 } 7813 } else { 7814 /* 7815 * !SD_OVERLAP domains can assume that child groups 7816 * span the current group. 7817 */ 7818 7819 group = child->groups; 7820 do { 7821 struct sched_group_capacity *sgc = group->sgc; 7822 7823 capacity += sgc->capacity; 7824 min_capacity = min(sgc->min_capacity, min_capacity); 7825 max_capacity = max(sgc->max_capacity, max_capacity); 7826 group = group->next; 7827 } while (group != child->groups); 7828 } 7829 7830 sdg->sgc->capacity = capacity; 7831 sdg->sgc->min_capacity = min_capacity; 7832 sdg->sgc->max_capacity = max_capacity; 7833 } 7834 7835 /* 7836 * Check whether the capacity of the rq has been noticeably reduced by side 7837 * activity. The imbalance_pct is used for the threshold. 7838 * Return true is the capacity is reduced 7839 */ 7840 static inline int 7841 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 7842 { 7843 return ((rq->cpu_capacity * sd->imbalance_pct) < 7844 (rq->cpu_capacity_orig * 100)); 7845 } 7846 7847 /* 7848 * Check whether a rq has a misfit task and if it looks like we can actually 7849 * help that task: we can migrate the task to a CPU of higher capacity, or 7850 * the task's current CPU is heavily pressured. 7851 */ 7852 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 7853 { 7854 return rq->misfit_task_load && 7855 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 7856 check_cpu_capacity(rq, sd)); 7857 } 7858 7859 /* 7860 * Group imbalance indicates (and tries to solve) the problem where balancing 7861 * groups is inadequate due to ->cpus_ptr constraints. 7862 * 7863 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 7864 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 7865 * Something like: 7866 * 7867 * { 0 1 2 3 } { 4 5 6 7 } 7868 * * * * * 7869 * 7870 * If we were to balance group-wise we'd place two tasks in the first group and 7871 * two tasks in the second group. Clearly this is undesired as it will overload 7872 * cpu 3 and leave one of the CPUs in the second group unused. 7873 * 7874 * The current solution to this issue is detecting the skew in the first group 7875 * by noticing the lower domain failed to reach balance and had difficulty 7876 * moving tasks due to affinity constraints. 7877 * 7878 * When this is so detected; this group becomes a candidate for busiest; see 7879 * update_sd_pick_busiest(). And calculate_imbalance() and 7880 * find_busiest_group() avoid some of the usual balance conditions to allow it 7881 * to create an effective group imbalance. 7882 * 7883 * This is a somewhat tricky proposition since the next run might not find the 7884 * group imbalance and decide the groups need to be balanced again. A most 7885 * subtle and fragile situation. 7886 */ 7887 7888 static inline int sg_imbalanced(struct sched_group *group) 7889 { 7890 return group->sgc->imbalance; 7891 } 7892 7893 /* 7894 * group_has_capacity returns true if the group has spare capacity that could 7895 * be used by some tasks. 7896 * We consider that a group has spare capacity if the * number of task is 7897 * smaller than the number of CPUs or if the utilization is lower than the 7898 * available capacity for CFS tasks. 7899 * For the latter, we use a threshold to stabilize the state, to take into 7900 * account the variance of the tasks' load and to return true if the available 7901 * capacity in meaningful for the load balancer. 7902 * As an example, an available capacity of 1% can appear but it doesn't make 7903 * any benefit for the load balance. 7904 */ 7905 static inline bool 7906 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 7907 { 7908 if (sgs->sum_nr_running < sgs->group_weight) 7909 return true; 7910 7911 if ((sgs->group_capacity * 100) > 7912 (sgs->group_util * imbalance_pct)) 7913 return true; 7914 7915 return false; 7916 } 7917 7918 /* 7919 * group_is_overloaded returns true if the group has more tasks than it can 7920 * handle. 7921 * group_is_overloaded is not equals to !group_has_capacity because a group 7922 * with the exact right number of tasks, has no more spare capacity but is not 7923 * overloaded so both group_has_capacity and group_is_overloaded return 7924 * false. 7925 */ 7926 static inline bool 7927 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 7928 { 7929 if (sgs->sum_nr_running <= sgs->group_weight) 7930 return false; 7931 7932 if ((sgs->group_capacity * 100) < 7933 (sgs->group_util * imbalance_pct)) 7934 return true; 7935 7936 return false; 7937 } 7938 7939 /* 7940 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller 7941 * per-CPU capacity than sched_group ref. 7942 */ 7943 static inline bool 7944 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7945 { 7946 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity); 7947 } 7948 7949 /* 7950 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller 7951 * per-CPU capacity_orig than sched_group ref. 7952 */ 7953 static inline bool 7954 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7955 { 7956 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity); 7957 } 7958 7959 static inline enum 7960 group_type group_classify(unsigned int imbalance_pct, 7961 struct sched_group *group, 7962 struct sg_lb_stats *sgs) 7963 { 7964 if (group_is_overloaded(imbalance_pct, sgs)) 7965 return group_overloaded; 7966 7967 if (sg_imbalanced(group)) 7968 return group_imbalanced; 7969 7970 if (sgs->group_asym_packing) 7971 return group_asym_packing; 7972 7973 if (sgs->group_misfit_task_load) 7974 return group_misfit_task; 7975 7976 if (!group_has_capacity(imbalance_pct, sgs)) 7977 return group_fully_busy; 7978 7979 return group_has_spare; 7980 } 7981 7982 static bool update_nohz_stats(struct rq *rq, bool force) 7983 { 7984 #ifdef CONFIG_NO_HZ_COMMON 7985 unsigned int cpu = rq->cpu; 7986 7987 if (!rq->has_blocked_load) 7988 return false; 7989 7990 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 7991 return false; 7992 7993 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) 7994 return true; 7995 7996 update_blocked_averages(cpu); 7997 7998 return rq->has_blocked_load; 7999 #else 8000 return false; 8001 #endif 8002 } 8003 8004 /** 8005 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8006 * @env: The load balancing environment. 8007 * @group: sched_group whose statistics are to be updated. 8008 * @sgs: variable to hold the statistics for this group. 8009 * @sg_status: Holds flag indicating the status of the sched_group 8010 */ 8011 static inline void update_sg_lb_stats(struct lb_env *env, 8012 struct sched_group *group, 8013 struct sg_lb_stats *sgs, 8014 int *sg_status) 8015 { 8016 int i, nr_running, local_group; 8017 8018 memset(sgs, 0, sizeof(*sgs)); 8019 8020 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group)); 8021 8022 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8023 struct rq *rq = cpu_rq(i); 8024 8025 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) 8026 env->flags |= LBF_NOHZ_AGAIN; 8027 8028 sgs->group_load += cpu_load(rq); 8029 sgs->group_util += cpu_util(i); 8030 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 8031 8032 nr_running = rq->nr_running; 8033 sgs->sum_nr_running += nr_running; 8034 8035 if (nr_running > 1) 8036 *sg_status |= SG_OVERLOAD; 8037 8038 if (cpu_overutilized(i)) 8039 *sg_status |= SG_OVERUTILIZED; 8040 8041 #ifdef CONFIG_NUMA_BALANCING 8042 sgs->nr_numa_running += rq->nr_numa_running; 8043 sgs->nr_preferred_running += rq->nr_preferred_running; 8044 #endif 8045 /* 8046 * No need to call idle_cpu() if nr_running is not 0 8047 */ 8048 if (!nr_running && idle_cpu(i)) { 8049 sgs->idle_cpus++; 8050 /* Idle cpu can't have misfit task */ 8051 continue; 8052 } 8053 8054 if (local_group) 8055 continue; 8056 8057 /* Check for a misfit task on the cpu */ 8058 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8059 sgs->group_misfit_task_load < rq->misfit_task_load) { 8060 sgs->group_misfit_task_load = rq->misfit_task_load; 8061 *sg_status |= SG_OVERLOAD; 8062 } 8063 } 8064 8065 /* Check if dst CPU is idle and preferred to this group */ 8066 if (env->sd->flags & SD_ASYM_PACKING && 8067 env->idle != CPU_NOT_IDLE && 8068 sgs->sum_h_nr_running && 8069 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) { 8070 sgs->group_asym_packing = 1; 8071 } 8072 8073 sgs->group_capacity = group->sgc->capacity; 8074 8075 sgs->group_weight = group->group_weight; 8076 8077 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 8078 8079 /* Computing avg_load makes sense only when group is overloaded */ 8080 if (sgs->group_type == group_overloaded) 8081 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8082 sgs->group_capacity; 8083 } 8084 8085 /** 8086 * update_sd_pick_busiest - return 1 on busiest group 8087 * @env: The load balancing environment. 8088 * @sds: sched_domain statistics 8089 * @sg: sched_group candidate to be checked for being the busiest 8090 * @sgs: sched_group statistics 8091 * 8092 * Determine if @sg is a busier group than the previously selected 8093 * busiest group. 8094 * 8095 * Return: %true if @sg is a busier group than the previously selected 8096 * busiest group. %false otherwise. 8097 */ 8098 static bool update_sd_pick_busiest(struct lb_env *env, 8099 struct sd_lb_stats *sds, 8100 struct sched_group *sg, 8101 struct sg_lb_stats *sgs) 8102 { 8103 struct sg_lb_stats *busiest = &sds->busiest_stat; 8104 8105 /* Make sure that there is at least one task to pull */ 8106 if (!sgs->sum_h_nr_running) 8107 return false; 8108 8109 /* 8110 * Don't try to pull misfit tasks we can't help. 8111 * We can use max_capacity here as reduction in capacity on some 8112 * CPUs in the group should either be possible to resolve 8113 * internally or be covered by avg_load imbalance (eventually). 8114 */ 8115 if (sgs->group_type == group_misfit_task && 8116 (!group_smaller_max_cpu_capacity(sg, sds->local) || 8117 sds->local_stat.group_type != group_has_spare)) 8118 return false; 8119 8120 if (sgs->group_type > busiest->group_type) 8121 return true; 8122 8123 if (sgs->group_type < busiest->group_type) 8124 return false; 8125 8126 /* 8127 * The candidate and the current busiest group are the same type of 8128 * group. Let check which one is the busiest according to the type. 8129 */ 8130 8131 switch (sgs->group_type) { 8132 case group_overloaded: 8133 /* Select the overloaded group with highest avg_load. */ 8134 if (sgs->avg_load <= busiest->avg_load) 8135 return false; 8136 break; 8137 8138 case group_imbalanced: 8139 /* 8140 * Select the 1st imbalanced group as we don't have any way to 8141 * choose one more than another. 8142 */ 8143 return false; 8144 8145 case group_asym_packing: 8146 /* Prefer to move from lowest priority CPU's work */ 8147 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 8148 return false; 8149 break; 8150 8151 case group_misfit_task: 8152 /* 8153 * If we have more than one misfit sg go with the biggest 8154 * misfit. 8155 */ 8156 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8157 return false; 8158 break; 8159 8160 case group_fully_busy: 8161 /* 8162 * Select the fully busy group with highest avg_load. In 8163 * theory, there is no need to pull task from such kind of 8164 * group because tasks have all compute capacity that they need 8165 * but we can still improve the overall throughput by reducing 8166 * contention when accessing shared HW resources. 8167 * 8168 * XXX for now avg_load is not computed and always 0 so we 8169 * select the 1st one. 8170 */ 8171 if (sgs->avg_load <= busiest->avg_load) 8172 return false; 8173 break; 8174 8175 case group_has_spare: 8176 /* 8177 * Select not overloaded group with lowest number of idle cpus 8178 * and highest number of running tasks. We could also compare 8179 * the spare capacity which is more stable but it can end up 8180 * that the group has less spare capacity but finally more idle 8181 * CPUs which means less opportunity to pull tasks. 8182 */ 8183 if (sgs->idle_cpus > busiest->idle_cpus) 8184 return false; 8185 else if ((sgs->idle_cpus == busiest->idle_cpus) && 8186 (sgs->sum_nr_running <= busiest->sum_nr_running)) 8187 return false; 8188 8189 break; 8190 } 8191 8192 /* 8193 * Candidate sg has no more than one task per CPU and has higher 8194 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 8195 * throughput. Maximize throughput, power/energy consequences are not 8196 * considered. 8197 */ 8198 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 8199 (sgs->group_type <= group_fully_busy) && 8200 (group_smaller_min_cpu_capacity(sds->local, sg))) 8201 return false; 8202 8203 return true; 8204 } 8205 8206 #ifdef CONFIG_NUMA_BALANCING 8207 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8208 { 8209 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 8210 return regular; 8211 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 8212 return remote; 8213 return all; 8214 } 8215 8216 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8217 { 8218 if (rq->nr_running > rq->nr_numa_running) 8219 return regular; 8220 if (rq->nr_running > rq->nr_preferred_running) 8221 return remote; 8222 return all; 8223 } 8224 #else 8225 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8226 { 8227 return all; 8228 } 8229 8230 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8231 { 8232 return regular; 8233 } 8234 #endif /* CONFIG_NUMA_BALANCING */ 8235 8236 8237 struct sg_lb_stats; 8238 8239 /* 8240 * task_running_on_cpu - return 1 if @p is running on @cpu. 8241 */ 8242 8243 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 8244 { 8245 /* Task has no contribution or is new */ 8246 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8247 return 0; 8248 8249 if (task_on_rq_queued(p)) 8250 return 1; 8251 8252 return 0; 8253 } 8254 8255 /** 8256 * idle_cpu_without - would a given CPU be idle without p ? 8257 * @cpu: the processor on which idleness is tested. 8258 * @p: task which should be ignored. 8259 * 8260 * Return: 1 if the CPU would be idle. 0 otherwise. 8261 */ 8262 static int idle_cpu_without(int cpu, struct task_struct *p) 8263 { 8264 struct rq *rq = cpu_rq(cpu); 8265 8266 if (rq->curr != rq->idle && rq->curr != p) 8267 return 0; 8268 8269 /* 8270 * rq->nr_running can't be used but an updated version without the 8271 * impact of p on cpu must be used instead. The updated nr_running 8272 * be computed and tested before calling idle_cpu_without(). 8273 */ 8274 8275 #ifdef CONFIG_SMP 8276 if (!llist_empty(&rq->wake_list)) 8277 return 0; 8278 #endif 8279 8280 return 1; 8281 } 8282 8283 /* 8284 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 8285 * @sd: The sched_domain level to look for idlest group. 8286 * @group: sched_group whose statistics are to be updated. 8287 * @sgs: variable to hold the statistics for this group. 8288 * @p: The task for which we look for the idlest group/CPU. 8289 */ 8290 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 8291 struct sched_group *group, 8292 struct sg_lb_stats *sgs, 8293 struct task_struct *p) 8294 { 8295 int i, nr_running; 8296 8297 memset(sgs, 0, sizeof(*sgs)); 8298 8299 for_each_cpu(i, sched_group_span(group)) { 8300 struct rq *rq = cpu_rq(i); 8301 unsigned int local; 8302 8303 sgs->group_load += cpu_load_without(rq, p); 8304 sgs->group_util += cpu_util_without(i, p); 8305 local = task_running_on_cpu(i, p); 8306 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 8307 8308 nr_running = rq->nr_running - local; 8309 sgs->sum_nr_running += nr_running; 8310 8311 /* 8312 * No need to call idle_cpu_without() if nr_running is not 0 8313 */ 8314 if (!nr_running && idle_cpu_without(i, p)) 8315 sgs->idle_cpus++; 8316 8317 } 8318 8319 /* Check if task fits in the group */ 8320 if (sd->flags & SD_ASYM_CPUCAPACITY && 8321 !task_fits_capacity(p, group->sgc->max_capacity)) { 8322 sgs->group_misfit_task_load = 1; 8323 } 8324 8325 sgs->group_capacity = group->sgc->capacity; 8326 8327 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 8328 8329 /* 8330 * Computing avg_load makes sense only when group is fully busy or 8331 * overloaded 8332 */ 8333 if (sgs->group_type < group_fully_busy) 8334 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8335 sgs->group_capacity; 8336 } 8337 8338 static bool update_pick_idlest(struct sched_group *idlest, 8339 struct sg_lb_stats *idlest_sgs, 8340 struct sched_group *group, 8341 struct sg_lb_stats *sgs) 8342 { 8343 if (sgs->group_type < idlest_sgs->group_type) 8344 return true; 8345 8346 if (sgs->group_type > idlest_sgs->group_type) 8347 return false; 8348 8349 /* 8350 * The candidate and the current idlest group are the same type of 8351 * group. Let check which one is the idlest according to the type. 8352 */ 8353 8354 switch (sgs->group_type) { 8355 case group_overloaded: 8356 case group_fully_busy: 8357 /* Select the group with lowest avg_load. */ 8358 if (idlest_sgs->avg_load <= sgs->avg_load) 8359 return false; 8360 break; 8361 8362 case group_imbalanced: 8363 case group_asym_packing: 8364 /* Those types are not used in the slow wakeup path */ 8365 return false; 8366 8367 case group_misfit_task: 8368 /* Select group with the highest max capacity */ 8369 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 8370 return false; 8371 break; 8372 8373 case group_has_spare: 8374 /* Select group with most idle CPUs */ 8375 if (idlest_sgs->idle_cpus >= sgs->idle_cpus) 8376 return false; 8377 break; 8378 } 8379 8380 return true; 8381 } 8382 8383 /* 8384 * find_idlest_group() finds and returns the least busy CPU group within the 8385 * domain. 8386 * 8387 * Assumes p is allowed on at least one CPU in sd. 8388 */ 8389 static struct sched_group * 8390 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 8391 int this_cpu, int sd_flag) 8392 { 8393 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 8394 struct sg_lb_stats local_sgs, tmp_sgs; 8395 struct sg_lb_stats *sgs; 8396 unsigned long imbalance; 8397 struct sg_lb_stats idlest_sgs = { 8398 .avg_load = UINT_MAX, 8399 .group_type = group_overloaded, 8400 }; 8401 8402 imbalance = scale_load_down(NICE_0_LOAD) * 8403 (sd->imbalance_pct-100) / 100; 8404 8405 do { 8406 int local_group; 8407 8408 /* Skip over this group if it has no CPUs allowed */ 8409 if (!cpumask_intersects(sched_group_span(group), 8410 p->cpus_ptr)) 8411 continue; 8412 8413 local_group = cpumask_test_cpu(this_cpu, 8414 sched_group_span(group)); 8415 8416 if (local_group) { 8417 sgs = &local_sgs; 8418 local = group; 8419 } else { 8420 sgs = &tmp_sgs; 8421 } 8422 8423 update_sg_wakeup_stats(sd, group, sgs, p); 8424 8425 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 8426 idlest = group; 8427 idlest_sgs = *sgs; 8428 } 8429 8430 } while (group = group->next, group != sd->groups); 8431 8432 8433 /* There is no idlest group to push tasks to */ 8434 if (!idlest) 8435 return NULL; 8436 8437 /* The local group has been skipped because of CPU affinity */ 8438 if (!local) 8439 return idlest; 8440 8441 /* 8442 * If the local group is idler than the selected idlest group 8443 * don't try and push the task. 8444 */ 8445 if (local_sgs.group_type < idlest_sgs.group_type) 8446 return NULL; 8447 8448 /* 8449 * If the local group is busier than the selected idlest group 8450 * try and push the task. 8451 */ 8452 if (local_sgs.group_type > idlest_sgs.group_type) 8453 return idlest; 8454 8455 switch (local_sgs.group_type) { 8456 case group_overloaded: 8457 case group_fully_busy: 8458 /* 8459 * When comparing groups across NUMA domains, it's possible for 8460 * the local domain to be very lightly loaded relative to the 8461 * remote domains but "imbalance" skews the comparison making 8462 * remote CPUs look much more favourable. When considering 8463 * cross-domain, add imbalance to the load on the remote node 8464 * and consider staying local. 8465 */ 8466 8467 if ((sd->flags & SD_NUMA) && 8468 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 8469 return NULL; 8470 8471 /* 8472 * If the local group is less loaded than the selected 8473 * idlest group don't try and push any tasks. 8474 */ 8475 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 8476 return NULL; 8477 8478 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 8479 return NULL; 8480 break; 8481 8482 case group_imbalanced: 8483 case group_asym_packing: 8484 /* Those type are not used in the slow wakeup path */ 8485 return NULL; 8486 8487 case group_misfit_task: 8488 /* Select group with the highest max capacity */ 8489 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 8490 return NULL; 8491 break; 8492 8493 case group_has_spare: 8494 if (sd->flags & SD_NUMA) { 8495 #ifdef CONFIG_NUMA_BALANCING 8496 int idlest_cpu; 8497 /* 8498 * If there is spare capacity at NUMA, try to select 8499 * the preferred node 8500 */ 8501 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 8502 return NULL; 8503 8504 idlest_cpu = cpumask_first(sched_group_span(idlest)); 8505 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 8506 return idlest; 8507 #endif 8508 /* 8509 * Otherwise, keep the task on this node to stay close 8510 * its wakeup source and improve locality. If there is 8511 * a real need of migration, periodic load balance will 8512 * take care of it. 8513 */ 8514 if (local_sgs.idle_cpus) 8515 return NULL; 8516 } 8517 8518 /* 8519 * Select group with highest number of idle CPUs. We could also 8520 * compare the utilization which is more stable but it can end 8521 * up that the group has less spare capacity but finally more 8522 * idle CPUs which means more opportunity to run task. 8523 */ 8524 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 8525 return NULL; 8526 break; 8527 } 8528 8529 return idlest; 8530 } 8531 8532 /** 8533 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 8534 * @env: The load balancing environment. 8535 * @sds: variable to hold the statistics for this sched_domain. 8536 */ 8537 8538 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 8539 { 8540 struct sched_domain *child = env->sd->child; 8541 struct sched_group *sg = env->sd->groups; 8542 struct sg_lb_stats *local = &sds->local_stat; 8543 struct sg_lb_stats tmp_sgs; 8544 int sg_status = 0; 8545 8546 #ifdef CONFIG_NO_HZ_COMMON 8547 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) 8548 env->flags |= LBF_NOHZ_STATS; 8549 #endif 8550 8551 do { 8552 struct sg_lb_stats *sgs = &tmp_sgs; 8553 int local_group; 8554 8555 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 8556 if (local_group) { 8557 sds->local = sg; 8558 sgs = local; 8559 8560 if (env->idle != CPU_NEWLY_IDLE || 8561 time_after_eq(jiffies, sg->sgc->next_update)) 8562 update_group_capacity(env->sd, env->dst_cpu); 8563 } 8564 8565 update_sg_lb_stats(env, sg, sgs, &sg_status); 8566 8567 if (local_group) 8568 goto next_group; 8569 8570 8571 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 8572 sds->busiest = sg; 8573 sds->busiest_stat = *sgs; 8574 } 8575 8576 next_group: 8577 /* Now, start updating sd_lb_stats */ 8578 sds->total_load += sgs->group_load; 8579 sds->total_capacity += sgs->group_capacity; 8580 8581 sg = sg->next; 8582 } while (sg != env->sd->groups); 8583 8584 /* Tag domain that child domain prefers tasks go to siblings first */ 8585 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 8586 8587 #ifdef CONFIG_NO_HZ_COMMON 8588 if ((env->flags & LBF_NOHZ_AGAIN) && 8589 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { 8590 8591 WRITE_ONCE(nohz.next_blocked, 8592 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); 8593 } 8594 #endif 8595 8596 if (env->sd->flags & SD_NUMA) 8597 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 8598 8599 if (!env->sd->parent) { 8600 struct root_domain *rd = env->dst_rq->rd; 8601 8602 /* update overload indicator if we are at root domain */ 8603 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 8604 8605 /* Update over-utilization (tipping point, U >= 0) indicator */ 8606 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 8607 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 8608 } else if (sg_status & SG_OVERUTILIZED) { 8609 struct root_domain *rd = env->dst_rq->rd; 8610 8611 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 8612 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 8613 } 8614 } 8615 8616 /** 8617 * calculate_imbalance - Calculate the amount of imbalance present within the 8618 * groups of a given sched_domain during load balance. 8619 * @env: load balance environment 8620 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 8621 */ 8622 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8623 { 8624 struct sg_lb_stats *local, *busiest; 8625 8626 local = &sds->local_stat; 8627 busiest = &sds->busiest_stat; 8628 8629 if (busiest->group_type == group_misfit_task) { 8630 /* Set imbalance to allow misfit tasks to be balanced. */ 8631 env->migration_type = migrate_misfit; 8632 env->imbalance = 1; 8633 return; 8634 } 8635 8636 if (busiest->group_type == group_asym_packing) { 8637 /* 8638 * In case of asym capacity, we will try to migrate all load to 8639 * the preferred CPU. 8640 */ 8641 env->migration_type = migrate_task; 8642 env->imbalance = busiest->sum_h_nr_running; 8643 return; 8644 } 8645 8646 if (busiest->group_type == group_imbalanced) { 8647 /* 8648 * In the group_imb case we cannot rely on group-wide averages 8649 * to ensure CPU-load equilibrium, try to move any task to fix 8650 * the imbalance. The next load balance will take care of 8651 * balancing back the system. 8652 */ 8653 env->migration_type = migrate_task; 8654 env->imbalance = 1; 8655 return; 8656 } 8657 8658 /* 8659 * Try to use spare capacity of local group without overloading it or 8660 * emptying busiest. 8661 * XXX Spreading tasks across NUMA nodes is not always the best policy 8662 * and special care should be taken for SD_NUMA domain level before 8663 * spreading the tasks. For now, load_balance() fully relies on 8664 * NUMA_BALANCING and fbq_classify_group/rq to override the decision. 8665 */ 8666 if (local->group_type == group_has_spare) { 8667 if (busiest->group_type > group_fully_busy) { 8668 /* 8669 * If busiest is overloaded, try to fill spare 8670 * capacity. This might end up creating spare capacity 8671 * in busiest or busiest still being overloaded but 8672 * there is no simple way to directly compute the 8673 * amount of load to migrate in order to balance the 8674 * system. 8675 */ 8676 env->migration_type = migrate_util; 8677 env->imbalance = max(local->group_capacity, local->group_util) - 8678 local->group_util; 8679 8680 /* 8681 * In some cases, the group's utilization is max or even 8682 * higher than capacity because of migrations but the 8683 * local CPU is (newly) idle. There is at least one 8684 * waiting task in this overloaded busiest group. Let's 8685 * try to pull it. 8686 */ 8687 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 8688 env->migration_type = migrate_task; 8689 env->imbalance = 1; 8690 } 8691 8692 return; 8693 } 8694 8695 if (busiest->group_weight == 1 || sds->prefer_sibling) { 8696 unsigned int nr_diff = busiest->sum_nr_running; 8697 /* 8698 * When prefer sibling, evenly spread running tasks on 8699 * groups. 8700 */ 8701 env->migration_type = migrate_task; 8702 lsub_positive(&nr_diff, local->sum_nr_running); 8703 env->imbalance = nr_diff >> 1; 8704 return; 8705 } 8706 8707 /* 8708 * If there is no overload, we just want to even the number of 8709 * idle cpus. 8710 */ 8711 env->migration_type = migrate_task; 8712 env->imbalance = max_t(long, 0, (local->idle_cpus - 8713 busiest->idle_cpus) >> 1); 8714 return; 8715 } 8716 8717 /* 8718 * Local is fully busy but has to take more load to relieve the 8719 * busiest group 8720 */ 8721 if (local->group_type < group_overloaded) { 8722 /* 8723 * Local will become overloaded so the avg_load metrics are 8724 * finally needed. 8725 */ 8726 8727 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 8728 local->group_capacity; 8729 8730 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 8731 sds->total_capacity; 8732 } 8733 8734 /* 8735 * Both group are or will become overloaded and we're trying to get all 8736 * the CPUs to the average_load, so we don't want to push ourselves 8737 * above the average load, nor do we wish to reduce the max loaded CPU 8738 * below the average load. At the same time, we also don't want to 8739 * reduce the group load below the group capacity. Thus we look for 8740 * the minimum possible imbalance. 8741 */ 8742 env->migration_type = migrate_load; 8743 env->imbalance = min( 8744 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 8745 (sds->avg_load - local->avg_load) * local->group_capacity 8746 ) / SCHED_CAPACITY_SCALE; 8747 } 8748 8749 /******* find_busiest_group() helpers end here *********************/ 8750 8751 /* 8752 * Decision matrix according to the local and busiest group type: 8753 * 8754 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 8755 * has_spare nr_idle balanced N/A N/A balanced balanced 8756 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 8757 * misfit_task force N/A N/A N/A force force 8758 * asym_packing force force N/A N/A force force 8759 * imbalanced force force N/A N/A force force 8760 * overloaded force force N/A N/A force avg_load 8761 * 8762 * N/A : Not Applicable because already filtered while updating 8763 * statistics. 8764 * balanced : The system is balanced for these 2 groups. 8765 * force : Calculate the imbalance as load migration is probably needed. 8766 * avg_load : Only if imbalance is significant enough. 8767 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 8768 * different in groups. 8769 */ 8770 8771 /** 8772 * find_busiest_group - Returns the busiest group within the sched_domain 8773 * if there is an imbalance. 8774 * 8775 * Also calculates the amount of runnable load which should be moved 8776 * to restore balance. 8777 * 8778 * @env: The load balancing environment. 8779 * 8780 * Return: - The busiest group if imbalance exists. 8781 */ 8782 static struct sched_group *find_busiest_group(struct lb_env *env) 8783 { 8784 struct sg_lb_stats *local, *busiest; 8785 struct sd_lb_stats sds; 8786 8787 init_sd_lb_stats(&sds); 8788 8789 /* 8790 * Compute the various statistics relevant for load balancing at 8791 * this level. 8792 */ 8793 update_sd_lb_stats(env, &sds); 8794 8795 if (sched_energy_enabled()) { 8796 struct root_domain *rd = env->dst_rq->rd; 8797 8798 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 8799 goto out_balanced; 8800 } 8801 8802 local = &sds.local_stat; 8803 busiest = &sds.busiest_stat; 8804 8805 /* There is no busy sibling group to pull tasks from */ 8806 if (!sds.busiest) 8807 goto out_balanced; 8808 8809 /* Misfit tasks should be dealt with regardless of the avg load */ 8810 if (busiest->group_type == group_misfit_task) 8811 goto force_balance; 8812 8813 /* ASYM feature bypasses nice load balance check */ 8814 if (busiest->group_type == group_asym_packing) 8815 goto force_balance; 8816 8817 /* 8818 * If the busiest group is imbalanced the below checks don't 8819 * work because they assume all things are equal, which typically 8820 * isn't true due to cpus_ptr constraints and the like. 8821 */ 8822 if (busiest->group_type == group_imbalanced) 8823 goto force_balance; 8824 8825 /* 8826 * If the local group is busier than the selected busiest group 8827 * don't try and pull any tasks. 8828 */ 8829 if (local->group_type > busiest->group_type) 8830 goto out_balanced; 8831 8832 /* 8833 * When groups are overloaded, use the avg_load to ensure fairness 8834 * between tasks. 8835 */ 8836 if (local->group_type == group_overloaded) { 8837 /* 8838 * If the local group is more loaded than the selected 8839 * busiest group don't try to pull any tasks. 8840 */ 8841 if (local->avg_load >= busiest->avg_load) 8842 goto out_balanced; 8843 8844 /* XXX broken for overlapping NUMA groups */ 8845 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 8846 sds.total_capacity; 8847 8848 /* 8849 * Don't pull any tasks if this group is already above the 8850 * domain average load. 8851 */ 8852 if (local->avg_load >= sds.avg_load) 8853 goto out_balanced; 8854 8855 /* 8856 * If the busiest group is more loaded, use imbalance_pct to be 8857 * conservative. 8858 */ 8859 if (100 * busiest->avg_load <= 8860 env->sd->imbalance_pct * local->avg_load) 8861 goto out_balanced; 8862 } 8863 8864 /* Try to move all excess tasks to child's sibling domain */ 8865 if (sds.prefer_sibling && local->group_type == group_has_spare && 8866 busiest->sum_nr_running > local->sum_nr_running + 1) 8867 goto force_balance; 8868 8869 if (busiest->group_type != group_overloaded) { 8870 if (env->idle == CPU_NOT_IDLE) 8871 /* 8872 * If the busiest group is not overloaded (and as a 8873 * result the local one too) but this CPU is already 8874 * busy, let another idle CPU try to pull task. 8875 */ 8876 goto out_balanced; 8877 8878 if (busiest->group_weight > 1 && 8879 local->idle_cpus <= (busiest->idle_cpus + 1)) 8880 /* 8881 * If the busiest group is not overloaded 8882 * and there is no imbalance between this and busiest 8883 * group wrt idle CPUs, it is balanced. The imbalance 8884 * becomes significant if the diff is greater than 1 8885 * otherwise we might end up to just move the imbalance 8886 * on another group. Of course this applies only if 8887 * there is more than 1 CPU per group. 8888 */ 8889 goto out_balanced; 8890 8891 if (busiest->sum_h_nr_running == 1) 8892 /* 8893 * busiest doesn't have any tasks waiting to run 8894 */ 8895 goto out_balanced; 8896 } 8897 8898 force_balance: 8899 /* Looks like there is an imbalance. Compute it */ 8900 calculate_imbalance(env, &sds); 8901 return env->imbalance ? sds.busiest : NULL; 8902 8903 out_balanced: 8904 env->imbalance = 0; 8905 return NULL; 8906 } 8907 8908 /* 8909 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 8910 */ 8911 static struct rq *find_busiest_queue(struct lb_env *env, 8912 struct sched_group *group) 8913 { 8914 struct rq *busiest = NULL, *rq; 8915 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 8916 unsigned int busiest_nr = 0; 8917 int i; 8918 8919 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8920 unsigned long capacity, load, util; 8921 unsigned int nr_running; 8922 enum fbq_type rt; 8923 8924 rq = cpu_rq(i); 8925 rt = fbq_classify_rq(rq); 8926 8927 /* 8928 * We classify groups/runqueues into three groups: 8929 * - regular: there are !numa tasks 8930 * - remote: there are numa tasks that run on the 'wrong' node 8931 * - all: there is no distinction 8932 * 8933 * In order to avoid migrating ideally placed numa tasks, 8934 * ignore those when there's better options. 8935 * 8936 * If we ignore the actual busiest queue to migrate another 8937 * task, the next balance pass can still reduce the busiest 8938 * queue by moving tasks around inside the node. 8939 * 8940 * If we cannot move enough load due to this classification 8941 * the next pass will adjust the group classification and 8942 * allow migration of more tasks. 8943 * 8944 * Both cases only affect the total convergence complexity. 8945 */ 8946 if (rt > env->fbq_type) 8947 continue; 8948 8949 capacity = capacity_of(i); 8950 nr_running = rq->cfs.h_nr_running; 8951 8952 /* 8953 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 8954 * eventually lead to active_balancing high->low capacity. 8955 * Higher per-CPU capacity is considered better than balancing 8956 * average load. 8957 */ 8958 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8959 capacity_of(env->dst_cpu) < capacity && 8960 nr_running == 1) 8961 continue; 8962 8963 switch (env->migration_type) { 8964 case migrate_load: 8965 /* 8966 * When comparing with load imbalance, use cpu_load() 8967 * which is not scaled with the CPU capacity. 8968 */ 8969 load = cpu_load(rq); 8970 8971 if (nr_running == 1 && load > env->imbalance && 8972 !check_cpu_capacity(rq, env->sd)) 8973 break; 8974 8975 /* 8976 * For the load comparisons with the other CPUs, 8977 * consider the cpu_load() scaled with the CPU 8978 * capacity, so that the load can be moved away 8979 * from the CPU that is potentially running at a 8980 * lower capacity. 8981 * 8982 * Thus we're looking for max(load_i / capacity_i), 8983 * crosswise multiplication to rid ourselves of the 8984 * division works out to: 8985 * load_i * capacity_j > load_j * capacity_i; 8986 * where j is our previous maximum. 8987 */ 8988 if (load * busiest_capacity > busiest_load * capacity) { 8989 busiest_load = load; 8990 busiest_capacity = capacity; 8991 busiest = rq; 8992 } 8993 break; 8994 8995 case migrate_util: 8996 util = cpu_util(cpu_of(rq)); 8997 8998 if (busiest_util < util) { 8999 busiest_util = util; 9000 busiest = rq; 9001 } 9002 break; 9003 9004 case migrate_task: 9005 if (busiest_nr < nr_running) { 9006 busiest_nr = nr_running; 9007 busiest = rq; 9008 } 9009 break; 9010 9011 case migrate_misfit: 9012 /* 9013 * For ASYM_CPUCAPACITY domains with misfit tasks we 9014 * simply seek the "biggest" misfit task. 9015 */ 9016 if (rq->misfit_task_load > busiest_load) { 9017 busiest_load = rq->misfit_task_load; 9018 busiest = rq; 9019 } 9020 9021 break; 9022 9023 } 9024 } 9025 9026 return busiest; 9027 } 9028 9029 /* 9030 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 9031 * so long as it is large enough. 9032 */ 9033 #define MAX_PINNED_INTERVAL 512 9034 9035 static inline bool 9036 asym_active_balance(struct lb_env *env) 9037 { 9038 /* 9039 * ASYM_PACKING needs to force migrate tasks from busy but 9040 * lower priority CPUs in order to pack all tasks in the 9041 * highest priority CPUs. 9042 */ 9043 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 9044 sched_asym_prefer(env->dst_cpu, env->src_cpu); 9045 } 9046 9047 static inline bool 9048 voluntary_active_balance(struct lb_env *env) 9049 { 9050 struct sched_domain *sd = env->sd; 9051 9052 if (asym_active_balance(env)) 9053 return 1; 9054 9055 /* 9056 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 9057 * It's worth migrating the task if the src_cpu's capacity is reduced 9058 * because of other sched_class or IRQs if more capacity stays 9059 * available on dst_cpu. 9060 */ 9061 if ((env->idle != CPU_NOT_IDLE) && 9062 (env->src_rq->cfs.h_nr_running == 1)) { 9063 if ((check_cpu_capacity(env->src_rq, sd)) && 9064 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 9065 return 1; 9066 } 9067 9068 if (env->migration_type == migrate_misfit) 9069 return 1; 9070 9071 return 0; 9072 } 9073 9074 static int need_active_balance(struct lb_env *env) 9075 { 9076 struct sched_domain *sd = env->sd; 9077 9078 if (voluntary_active_balance(env)) 9079 return 1; 9080 9081 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 9082 } 9083 9084 static int active_load_balance_cpu_stop(void *data); 9085 9086 static int should_we_balance(struct lb_env *env) 9087 { 9088 struct sched_group *sg = env->sd->groups; 9089 int cpu, balance_cpu = -1; 9090 9091 /* 9092 * Ensure the balancing environment is consistent; can happen 9093 * when the softirq triggers 'during' hotplug. 9094 */ 9095 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 9096 return 0; 9097 9098 /* 9099 * In the newly idle case, we will allow all the CPUs 9100 * to do the newly idle load balance. 9101 */ 9102 if (env->idle == CPU_NEWLY_IDLE) 9103 return 1; 9104 9105 /* Try to find first idle CPU */ 9106 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 9107 if (!idle_cpu(cpu)) 9108 continue; 9109 9110 balance_cpu = cpu; 9111 break; 9112 } 9113 9114 if (balance_cpu == -1) 9115 balance_cpu = group_balance_cpu(sg); 9116 9117 /* 9118 * First idle CPU or the first CPU(busiest) in this sched group 9119 * is eligible for doing load balancing at this and above domains. 9120 */ 9121 return balance_cpu == env->dst_cpu; 9122 } 9123 9124 /* 9125 * Check this_cpu to ensure it is balanced within domain. Attempt to move 9126 * tasks if there is an imbalance. 9127 */ 9128 static int load_balance(int this_cpu, struct rq *this_rq, 9129 struct sched_domain *sd, enum cpu_idle_type idle, 9130 int *continue_balancing) 9131 { 9132 int ld_moved, cur_ld_moved, active_balance = 0; 9133 struct sched_domain *sd_parent = sd->parent; 9134 struct sched_group *group; 9135 struct rq *busiest; 9136 struct rq_flags rf; 9137 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 9138 9139 struct lb_env env = { 9140 .sd = sd, 9141 .dst_cpu = this_cpu, 9142 .dst_rq = this_rq, 9143 .dst_grpmask = sched_group_span(sd->groups), 9144 .idle = idle, 9145 .loop_break = sched_nr_migrate_break, 9146 .cpus = cpus, 9147 .fbq_type = all, 9148 .tasks = LIST_HEAD_INIT(env.tasks), 9149 }; 9150 9151 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 9152 9153 schedstat_inc(sd->lb_count[idle]); 9154 9155 redo: 9156 if (!should_we_balance(&env)) { 9157 *continue_balancing = 0; 9158 goto out_balanced; 9159 } 9160 9161 group = find_busiest_group(&env); 9162 if (!group) { 9163 schedstat_inc(sd->lb_nobusyg[idle]); 9164 goto out_balanced; 9165 } 9166 9167 busiest = find_busiest_queue(&env, group); 9168 if (!busiest) { 9169 schedstat_inc(sd->lb_nobusyq[idle]); 9170 goto out_balanced; 9171 } 9172 9173 BUG_ON(busiest == env.dst_rq); 9174 9175 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 9176 9177 env.src_cpu = busiest->cpu; 9178 env.src_rq = busiest; 9179 9180 ld_moved = 0; 9181 if (busiest->nr_running > 1) { 9182 /* 9183 * Attempt to move tasks. If find_busiest_group has found 9184 * an imbalance but busiest->nr_running <= 1, the group is 9185 * still unbalanced. ld_moved simply stays zero, so it is 9186 * correctly treated as an imbalance. 9187 */ 9188 env.flags |= LBF_ALL_PINNED; 9189 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 9190 9191 more_balance: 9192 rq_lock_irqsave(busiest, &rf); 9193 update_rq_clock(busiest); 9194 9195 /* 9196 * cur_ld_moved - load moved in current iteration 9197 * ld_moved - cumulative load moved across iterations 9198 */ 9199 cur_ld_moved = detach_tasks(&env); 9200 9201 /* 9202 * We've detached some tasks from busiest_rq. Every 9203 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 9204 * unlock busiest->lock, and we are able to be sure 9205 * that nobody can manipulate the tasks in parallel. 9206 * See task_rq_lock() family for the details. 9207 */ 9208 9209 rq_unlock(busiest, &rf); 9210 9211 if (cur_ld_moved) { 9212 attach_tasks(&env); 9213 ld_moved += cur_ld_moved; 9214 } 9215 9216 local_irq_restore(rf.flags); 9217 9218 if (env.flags & LBF_NEED_BREAK) { 9219 env.flags &= ~LBF_NEED_BREAK; 9220 goto more_balance; 9221 } 9222 9223 /* 9224 * Revisit (affine) tasks on src_cpu that couldn't be moved to 9225 * us and move them to an alternate dst_cpu in our sched_group 9226 * where they can run. The upper limit on how many times we 9227 * iterate on same src_cpu is dependent on number of CPUs in our 9228 * sched_group. 9229 * 9230 * This changes load balance semantics a bit on who can move 9231 * load to a given_cpu. In addition to the given_cpu itself 9232 * (or a ilb_cpu acting on its behalf where given_cpu is 9233 * nohz-idle), we now have balance_cpu in a position to move 9234 * load to given_cpu. In rare situations, this may cause 9235 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 9236 * _independently_ and at _same_ time to move some load to 9237 * given_cpu) causing exceess load to be moved to given_cpu. 9238 * This however should not happen so much in practice and 9239 * moreover subsequent load balance cycles should correct the 9240 * excess load moved. 9241 */ 9242 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 9243 9244 /* Prevent to re-select dst_cpu via env's CPUs */ 9245 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 9246 9247 env.dst_rq = cpu_rq(env.new_dst_cpu); 9248 env.dst_cpu = env.new_dst_cpu; 9249 env.flags &= ~LBF_DST_PINNED; 9250 env.loop = 0; 9251 env.loop_break = sched_nr_migrate_break; 9252 9253 /* 9254 * Go back to "more_balance" rather than "redo" since we 9255 * need to continue with same src_cpu. 9256 */ 9257 goto more_balance; 9258 } 9259 9260 /* 9261 * We failed to reach balance because of affinity. 9262 */ 9263 if (sd_parent) { 9264 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9265 9266 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 9267 *group_imbalance = 1; 9268 } 9269 9270 /* All tasks on this runqueue were pinned by CPU affinity */ 9271 if (unlikely(env.flags & LBF_ALL_PINNED)) { 9272 __cpumask_clear_cpu(cpu_of(busiest), cpus); 9273 /* 9274 * Attempting to continue load balancing at the current 9275 * sched_domain level only makes sense if there are 9276 * active CPUs remaining as possible busiest CPUs to 9277 * pull load from which are not contained within the 9278 * destination group that is receiving any migrated 9279 * load. 9280 */ 9281 if (!cpumask_subset(cpus, env.dst_grpmask)) { 9282 env.loop = 0; 9283 env.loop_break = sched_nr_migrate_break; 9284 goto redo; 9285 } 9286 goto out_all_pinned; 9287 } 9288 } 9289 9290 if (!ld_moved) { 9291 schedstat_inc(sd->lb_failed[idle]); 9292 /* 9293 * Increment the failure counter only on periodic balance. 9294 * We do not want newidle balance, which can be very 9295 * frequent, pollute the failure counter causing 9296 * excessive cache_hot migrations and active balances. 9297 */ 9298 if (idle != CPU_NEWLY_IDLE) 9299 sd->nr_balance_failed++; 9300 9301 if (need_active_balance(&env)) { 9302 unsigned long flags; 9303 9304 raw_spin_lock_irqsave(&busiest->lock, flags); 9305 9306 /* 9307 * Don't kick the active_load_balance_cpu_stop, 9308 * if the curr task on busiest CPU can't be 9309 * moved to this_cpu: 9310 */ 9311 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 9312 raw_spin_unlock_irqrestore(&busiest->lock, 9313 flags); 9314 env.flags |= LBF_ALL_PINNED; 9315 goto out_one_pinned; 9316 } 9317 9318 /* 9319 * ->active_balance synchronizes accesses to 9320 * ->active_balance_work. Once set, it's cleared 9321 * only after active load balance is finished. 9322 */ 9323 if (!busiest->active_balance) { 9324 busiest->active_balance = 1; 9325 busiest->push_cpu = this_cpu; 9326 active_balance = 1; 9327 } 9328 raw_spin_unlock_irqrestore(&busiest->lock, flags); 9329 9330 if (active_balance) { 9331 stop_one_cpu_nowait(cpu_of(busiest), 9332 active_load_balance_cpu_stop, busiest, 9333 &busiest->active_balance_work); 9334 } 9335 9336 /* We've kicked active balancing, force task migration. */ 9337 sd->nr_balance_failed = sd->cache_nice_tries+1; 9338 } 9339 } else 9340 sd->nr_balance_failed = 0; 9341 9342 if (likely(!active_balance) || voluntary_active_balance(&env)) { 9343 /* We were unbalanced, so reset the balancing interval */ 9344 sd->balance_interval = sd->min_interval; 9345 } else { 9346 /* 9347 * If we've begun active balancing, start to back off. This 9348 * case may not be covered by the all_pinned logic if there 9349 * is only 1 task on the busy runqueue (because we don't call 9350 * detach_tasks). 9351 */ 9352 if (sd->balance_interval < sd->max_interval) 9353 sd->balance_interval *= 2; 9354 } 9355 9356 goto out; 9357 9358 out_balanced: 9359 /* 9360 * We reach balance although we may have faced some affinity 9361 * constraints. Clear the imbalance flag only if other tasks got 9362 * a chance to move and fix the imbalance. 9363 */ 9364 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 9365 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9366 9367 if (*group_imbalance) 9368 *group_imbalance = 0; 9369 } 9370 9371 out_all_pinned: 9372 /* 9373 * We reach balance because all tasks are pinned at this level so 9374 * we can't migrate them. Let the imbalance flag set so parent level 9375 * can try to migrate them. 9376 */ 9377 schedstat_inc(sd->lb_balanced[idle]); 9378 9379 sd->nr_balance_failed = 0; 9380 9381 out_one_pinned: 9382 ld_moved = 0; 9383 9384 /* 9385 * newidle_balance() disregards balance intervals, so we could 9386 * repeatedly reach this code, which would lead to balance_interval 9387 * skyrocketting in a short amount of time. Skip the balance_interval 9388 * increase logic to avoid that. 9389 */ 9390 if (env.idle == CPU_NEWLY_IDLE) 9391 goto out; 9392 9393 /* tune up the balancing interval */ 9394 if ((env.flags & LBF_ALL_PINNED && 9395 sd->balance_interval < MAX_PINNED_INTERVAL) || 9396 sd->balance_interval < sd->max_interval) 9397 sd->balance_interval *= 2; 9398 out: 9399 return ld_moved; 9400 } 9401 9402 static inline unsigned long 9403 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 9404 { 9405 unsigned long interval = sd->balance_interval; 9406 9407 if (cpu_busy) 9408 interval *= sd->busy_factor; 9409 9410 /* scale ms to jiffies */ 9411 interval = msecs_to_jiffies(interval); 9412 interval = clamp(interval, 1UL, max_load_balance_interval); 9413 9414 return interval; 9415 } 9416 9417 static inline void 9418 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 9419 { 9420 unsigned long interval, next; 9421 9422 /* used by idle balance, so cpu_busy = 0 */ 9423 interval = get_sd_balance_interval(sd, 0); 9424 next = sd->last_balance + interval; 9425 9426 if (time_after(*next_balance, next)) 9427 *next_balance = next; 9428 } 9429 9430 /* 9431 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 9432 * running tasks off the busiest CPU onto idle CPUs. It requires at 9433 * least 1 task to be running on each physical CPU where possible, and 9434 * avoids physical / logical imbalances. 9435 */ 9436 static int active_load_balance_cpu_stop(void *data) 9437 { 9438 struct rq *busiest_rq = data; 9439 int busiest_cpu = cpu_of(busiest_rq); 9440 int target_cpu = busiest_rq->push_cpu; 9441 struct rq *target_rq = cpu_rq(target_cpu); 9442 struct sched_domain *sd; 9443 struct task_struct *p = NULL; 9444 struct rq_flags rf; 9445 9446 rq_lock_irq(busiest_rq, &rf); 9447 /* 9448 * Between queueing the stop-work and running it is a hole in which 9449 * CPUs can become inactive. We should not move tasks from or to 9450 * inactive CPUs. 9451 */ 9452 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 9453 goto out_unlock; 9454 9455 /* Make sure the requested CPU hasn't gone down in the meantime: */ 9456 if (unlikely(busiest_cpu != smp_processor_id() || 9457 !busiest_rq->active_balance)) 9458 goto out_unlock; 9459 9460 /* Is there any task to move? */ 9461 if (busiest_rq->nr_running <= 1) 9462 goto out_unlock; 9463 9464 /* 9465 * This condition is "impossible", if it occurs 9466 * we need to fix it. Originally reported by 9467 * Bjorn Helgaas on a 128-CPU setup. 9468 */ 9469 BUG_ON(busiest_rq == target_rq); 9470 9471 /* Search for an sd spanning us and the target CPU. */ 9472 rcu_read_lock(); 9473 for_each_domain(target_cpu, sd) { 9474 if ((sd->flags & SD_LOAD_BALANCE) && 9475 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 9476 break; 9477 } 9478 9479 if (likely(sd)) { 9480 struct lb_env env = { 9481 .sd = sd, 9482 .dst_cpu = target_cpu, 9483 .dst_rq = target_rq, 9484 .src_cpu = busiest_rq->cpu, 9485 .src_rq = busiest_rq, 9486 .idle = CPU_IDLE, 9487 /* 9488 * can_migrate_task() doesn't need to compute new_dst_cpu 9489 * for active balancing. Since we have CPU_IDLE, but no 9490 * @dst_grpmask we need to make that test go away with lying 9491 * about DST_PINNED. 9492 */ 9493 .flags = LBF_DST_PINNED, 9494 }; 9495 9496 schedstat_inc(sd->alb_count); 9497 update_rq_clock(busiest_rq); 9498 9499 p = detach_one_task(&env); 9500 if (p) { 9501 schedstat_inc(sd->alb_pushed); 9502 /* Active balancing done, reset the failure counter. */ 9503 sd->nr_balance_failed = 0; 9504 } else { 9505 schedstat_inc(sd->alb_failed); 9506 } 9507 } 9508 rcu_read_unlock(); 9509 out_unlock: 9510 busiest_rq->active_balance = 0; 9511 rq_unlock(busiest_rq, &rf); 9512 9513 if (p) 9514 attach_one_task(target_rq, p); 9515 9516 local_irq_enable(); 9517 9518 return 0; 9519 } 9520 9521 static DEFINE_SPINLOCK(balancing); 9522 9523 /* 9524 * Scale the max load_balance interval with the number of CPUs in the system. 9525 * This trades load-balance latency on larger machines for less cross talk. 9526 */ 9527 void update_max_interval(void) 9528 { 9529 max_load_balance_interval = HZ*num_online_cpus()/10; 9530 } 9531 9532 /* 9533 * It checks each scheduling domain to see if it is due to be balanced, 9534 * and initiates a balancing operation if so. 9535 * 9536 * Balancing parameters are set up in init_sched_domains. 9537 */ 9538 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 9539 { 9540 int continue_balancing = 1; 9541 int cpu = rq->cpu; 9542 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 9543 unsigned long interval; 9544 struct sched_domain *sd; 9545 /* Earliest time when we have to do rebalance again */ 9546 unsigned long next_balance = jiffies + 60*HZ; 9547 int update_next_balance = 0; 9548 int need_serialize, need_decay = 0; 9549 u64 max_cost = 0; 9550 9551 rcu_read_lock(); 9552 for_each_domain(cpu, sd) { 9553 /* 9554 * Decay the newidle max times here because this is a regular 9555 * visit to all the domains. Decay ~1% per second. 9556 */ 9557 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 9558 sd->max_newidle_lb_cost = 9559 (sd->max_newidle_lb_cost * 253) / 256; 9560 sd->next_decay_max_lb_cost = jiffies + HZ; 9561 need_decay = 1; 9562 } 9563 max_cost += sd->max_newidle_lb_cost; 9564 9565 if (!(sd->flags & SD_LOAD_BALANCE)) 9566 continue; 9567 9568 /* 9569 * Stop the load balance at this level. There is another 9570 * CPU in our sched group which is doing load balancing more 9571 * actively. 9572 */ 9573 if (!continue_balancing) { 9574 if (need_decay) 9575 continue; 9576 break; 9577 } 9578 9579 interval = get_sd_balance_interval(sd, busy); 9580 9581 need_serialize = sd->flags & SD_SERIALIZE; 9582 if (need_serialize) { 9583 if (!spin_trylock(&balancing)) 9584 goto out; 9585 } 9586 9587 if (time_after_eq(jiffies, sd->last_balance + interval)) { 9588 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 9589 /* 9590 * The LBF_DST_PINNED logic could have changed 9591 * env->dst_cpu, so we can't know our idle 9592 * state even if we migrated tasks. Update it. 9593 */ 9594 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 9595 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 9596 } 9597 sd->last_balance = jiffies; 9598 interval = get_sd_balance_interval(sd, busy); 9599 } 9600 if (need_serialize) 9601 spin_unlock(&balancing); 9602 out: 9603 if (time_after(next_balance, sd->last_balance + interval)) { 9604 next_balance = sd->last_balance + interval; 9605 update_next_balance = 1; 9606 } 9607 } 9608 if (need_decay) { 9609 /* 9610 * Ensure the rq-wide value also decays but keep it at a 9611 * reasonable floor to avoid funnies with rq->avg_idle. 9612 */ 9613 rq->max_idle_balance_cost = 9614 max((u64)sysctl_sched_migration_cost, max_cost); 9615 } 9616 rcu_read_unlock(); 9617 9618 /* 9619 * next_balance will be updated only when there is a need. 9620 * When the cpu is attached to null domain for ex, it will not be 9621 * updated. 9622 */ 9623 if (likely(update_next_balance)) { 9624 rq->next_balance = next_balance; 9625 9626 #ifdef CONFIG_NO_HZ_COMMON 9627 /* 9628 * If this CPU has been elected to perform the nohz idle 9629 * balance. Other idle CPUs have already rebalanced with 9630 * nohz_idle_balance() and nohz.next_balance has been 9631 * updated accordingly. This CPU is now running the idle load 9632 * balance for itself and we need to update the 9633 * nohz.next_balance accordingly. 9634 */ 9635 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 9636 nohz.next_balance = rq->next_balance; 9637 #endif 9638 } 9639 } 9640 9641 static inline int on_null_domain(struct rq *rq) 9642 { 9643 return unlikely(!rcu_dereference_sched(rq->sd)); 9644 } 9645 9646 #ifdef CONFIG_NO_HZ_COMMON 9647 /* 9648 * idle load balancing details 9649 * - When one of the busy CPUs notice that there may be an idle rebalancing 9650 * needed, they will kick the idle load balancer, which then does idle 9651 * load balancing for all the idle CPUs. 9652 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set 9653 * anywhere yet. 9654 */ 9655 9656 static inline int find_new_ilb(void) 9657 { 9658 int ilb; 9659 9660 for_each_cpu_and(ilb, nohz.idle_cpus_mask, 9661 housekeeping_cpumask(HK_FLAG_MISC)) { 9662 if (idle_cpu(ilb)) 9663 return ilb; 9664 } 9665 9666 return nr_cpu_ids; 9667 } 9668 9669 /* 9670 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 9671 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one). 9672 */ 9673 static void kick_ilb(unsigned int flags) 9674 { 9675 int ilb_cpu; 9676 9677 nohz.next_balance++; 9678 9679 ilb_cpu = find_new_ilb(); 9680 9681 if (ilb_cpu >= nr_cpu_ids) 9682 return; 9683 9684 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 9685 if (flags & NOHZ_KICK_MASK) 9686 return; 9687 9688 /* 9689 * Use smp_send_reschedule() instead of resched_cpu(). 9690 * This way we generate a sched IPI on the target CPU which 9691 * is idle. And the softirq performing nohz idle load balance 9692 * will be run before returning from the IPI. 9693 */ 9694 smp_send_reschedule(ilb_cpu); 9695 } 9696 9697 /* 9698 * Current decision point for kicking the idle load balancer in the presence 9699 * of idle CPUs in the system. 9700 */ 9701 static void nohz_balancer_kick(struct rq *rq) 9702 { 9703 unsigned long now = jiffies; 9704 struct sched_domain_shared *sds; 9705 struct sched_domain *sd; 9706 int nr_busy, i, cpu = rq->cpu; 9707 unsigned int flags = 0; 9708 9709 if (unlikely(rq->idle_balance)) 9710 return; 9711 9712 /* 9713 * We may be recently in ticked or tickless idle mode. At the first 9714 * busy tick after returning from idle, we will update the busy stats. 9715 */ 9716 nohz_balance_exit_idle(rq); 9717 9718 /* 9719 * None are in tickless mode and hence no need for NOHZ idle load 9720 * balancing. 9721 */ 9722 if (likely(!atomic_read(&nohz.nr_cpus))) 9723 return; 9724 9725 if (READ_ONCE(nohz.has_blocked) && 9726 time_after(now, READ_ONCE(nohz.next_blocked))) 9727 flags = NOHZ_STATS_KICK; 9728 9729 if (time_before(now, nohz.next_balance)) 9730 goto out; 9731 9732 if (rq->nr_running >= 2) { 9733 flags = NOHZ_KICK_MASK; 9734 goto out; 9735 } 9736 9737 rcu_read_lock(); 9738 9739 sd = rcu_dereference(rq->sd); 9740 if (sd) { 9741 /* 9742 * If there's a CFS task and the current CPU has reduced 9743 * capacity; kick the ILB to see if there's a better CPU to run 9744 * on. 9745 */ 9746 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 9747 flags = NOHZ_KICK_MASK; 9748 goto unlock; 9749 } 9750 } 9751 9752 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 9753 if (sd) { 9754 /* 9755 * When ASYM_PACKING; see if there's a more preferred CPU 9756 * currently idle; in which case, kick the ILB to move tasks 9757 * around. 9758 */ 9759 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 9760 if (sched_asym_prefer(i, cpu)) { 9761 flags = NOHZ_KICK_MASK; 9762 goto unlock; 9763 } 9764 } 9765 } 9766 9767 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 9768 if (sd) { 9769 /* 9770 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 9771 * to run the misfit task on. 9772 */ 9773 if (check_misfit_status(rq, sd)) { 9774 flags = NOHZ_KICK_MASK; 9775 goto unlock; 9776 } 9777 9778 /* 9779 * For asymmetric systems, we do not want to nicely balance 9780 * cache use, instead we want to embrace asymmetry and only 9781 * ensure tasks have enough CPU capacity. 9782 * 9783 * Skip the LLC logic because it's not relevant in that case. 9784 */ 9785 goto unlock; 9786 } 9787 9788 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 9789 if (sds) { 9790 /* 9791 * If there is an imbalance between LLC domains (IOW we could 9792 * increase the overall cache use), we need some less-loaded LLC 9793 * domain to pull some load. Likewise, we may need to spread 9794 * load within the current LLC domain (e.g. packed SMT cores but 9795 * other CPUs are idle). We can't really know from here how busy 9796 * the others are - so just get a nohz balance going if it looks 9797 * like this LLC domain has tasks we could move. 9798 */ 9799 nr_busy = atomic_read(&sds->nr_busy_cpus); 9800 if (nr_busy > 1) { 9801 flags = NOHZ_KICK_MASK; 9802 goto unlock; 9803 } 9804 } 9805 unlock: 9806 rcu_read_unlock(); 9807 out: 9808 if (flags) 9809 kick_ilb(flags); 9810 } 9811 9812 static void set_cpu_sd_state_busy(int cpu) 9813 { 9814 struct sched_domain *sd; 9815 9816 rcu_read_lock(); 9817 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9818 9819 if (!sd || !sd->nohz_idle) 9820 goto unlock; 9821 sd->nohz_idle = 0; 9822 9823 atomic_inc(&sd->shared->nr_busy_cpus); 9824 unlock: 9825 rcu_read_unlock(); 9826 } 9827 9828 void nohz_balance_exit_idle(struct rq *rq) 9829 { 9830 SCHED_WARN_ON(rq != this_rq()); 9831 9832 if (likely(!rq->nohz_tick_stopped)) 9833 return; 9834 9835 rq->nohz_tick_stopped = 0; 9836 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 9837 atomic_dec(&nohz.nr_cpus); 9838 9839 set_cpu_sd_state_busy(rq->cpu); 9840 } 9841 9842 static void set_cpu_sd_state_idle(int cpu) 9843 { 9844 struct sched_domain *sd; 9845 9846 rcu_read_lock(); 9847 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9848 9849 if (!sd || sd->nohz_idle) 9850 goto unlock; 9851 sd->nohz_idle = 1; 9852 9853 atomic_dec(&sd->shared->nr_busy_cpus); 9854 unlock: 9855 rcu_read_unlock(); 9856 } 9857 9858 /* 9859 * This routine will record that the CPU is going idle with tick stopped. 9860 * This info will be used in performing idle load balancing in the future. 9861 */ 9862 void nohz_balance_enter_idle(int cpu) 9863 { 9864 struct rq *rq = cpu_rq(cpu); 9865 9866 SCHED_WARN_ON(cpu != smp_processor_id()); 9867 9868 /* If this CPU is going down, then nothing needs to be done: */ 9869 if (!cpu_active(cpu)) 9870 return; 9871 9872 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 9873 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 9874 return; 9875 9876 /* 9877 * Can be set safely without rq->lock held 9878 * If a clear happens, it will have evaluated last additions because 9879 * rq->lock is held during the check and the clear 9880 */ 9881 rq->has_blocked_load = 1; 9882 9883 /* 9884 * The tick is still stopped but load could have been added in the 9885 * meantime. We set the nohz.has_blocked flag to trig a check of the 9886 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 9887 * of nohz.has_blocked can only happen after checking the new load 9888 */ 9889 if (rq->nohz_tick_stopped) 9890 goto out; 9891 9892 /* If we're a completely isolated CPU, we don't play: */ 9893 if (on_null_domain(rq)) 9894 return; 9895 9896 rq->nohz_tick_stopped = 1; 9897 9898 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 9899 atomic_inc(&nohz.nr_cpus); 9900 9901 /* 9902 * Ensures that if nohz_idle_balance() fails to observe our 9903 * @idle_cpus_mask store, it must observe the @has_blocked 9904 * store. 9905 */ 9906 smp_mb__after_atomic(); 9907 9908 set_cpu_sd_state_idle(cpu); 9909 9910 out: 9911 /* 9912 * Each time a cpu enter idle, we assume that it has blocked load and 9913 * enable the periodic update of the load of idle cpus 9914 */ 9915 WRITE_ONCE(nohz.has_blocked, 1); 9916 } 9917 9918 /* 9919 * Internal function that runs load balance for all idle cpus. The load balance 9920 * can be a simple update of blocked load or a complete load balance with 9921 * tasks movement depending of flags. 9922 * The function returns false if the loop has stopped before running 9923 * through all idle CPUs. 9924 */ 9925 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 9926 enum cpu_idle_type idle) 9927 { 9928 /* Earliest time when we have to do rebalance again */ 9929 unsigned long now = jiffies; 9930 unsigned long next_balance = now + 60*HZ; 9931 bool has_blocked_load = false; 9932 int update_next_balance = 0; 9933 int this_cpu = this_rq->cpu; 9934 int balance_cpu; 9935 int ret = false; 9936 struct rq *rq; 9937 9938 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 9939 9940 /* 9941 * We assume there will be no idle load after this update and clear 9942 * the has_blocked flag. If a cpu enters idle in the mean time, it will 9943 * set the has_blocked flag and trig another update of idle load. 9944 * Because a cpu that becomes idle, is added to idle_cpus_mask before 9945 * setting the flag, we are sure to not clear the state and not 9946 * check the load of an idle cpu. 9947 */ 9948 WRITE_ONCE(nohz.has_blocked, 0); 9949 9950 /* 9951 * Ensures that if we miss the CPU, we must see the has_blocked 9952 * store from nohz_balance_enter_idle(). 9953 */ 9954 smp_mb(); 9955 9956 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 9957 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 9958 continue; 9959 9960 /* 9961 * If this CPU gets work to do, stop the load balancing 9962 * work being done for other CPUs. Next load 9963 * balancing owner will pick it up. 9964 */ 9965 if (need_resched()) { 9966 has_blocked_load = true; 9967 goto abort; 9968 } 9969 9970 rq = cpu_rq(balance_cpu); 9971 9972 has_blocked_load |= update_nohz_stats(rq, true); 9973 9974 /* 9975 * If time for next balance is due, 9976 * do the balance. 9977 */ 9978 if (time_after_eq(jiffies, rq->next_balance)) { 9979 struct rq_flags rf; 9980 9981 rq_lock_irqsave(rq, &rf); 9982 update_rq_clock(rq); 9983 rq_unlock_irqrestore(rq, &rf); 9984 9985 if (flags & NOHZ_BALANCE_KICK) 9986 rebalance_domains(rq, CPU_IDLE); 9987 } 9988 9989 if (time_after(next_balance, rq->next_balance)) { 9990 next_balance = rq->next_balance; 9991 update_next_balance = 1; 9992 } 9993 } 9994 9995 /* Newly idle CPU doesn't need an update */ 9996 if (idle != CPU_NEWLY_IDLE) { 9997 update_blocked_averages(this_cpu); 9998 has_blocked_load |= this_rq->has_blocked_load; 9999 } 10000 10001 if (flags & NOHZ_BALANCE_KICK) 10002 rebalance_domains(this_rq, CPU_IDLE); 10003 10004 WRITE_ONCE(nohz.next_blocked, 10005 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 10006 10007 /* The full idle balance loop has been done */ 10008 ret = true; 10009 10010 abort: 10011 /* There is still blocked load, enable periodic update */ 10012 if (has_blocked_load) 10013 WRITE_ONCE(nohz.has_blocked, 1); 10014 10015 /* 10016 * next_balance will be updated only when there is a need. 10017 * When the CPU is attached to null domain for ex, it will not be 10018 * updated. 10019 */ 10020 if (likely(update_next_balance)) 10021 nohz.next_balance = next_balance; 10022 10023 return ret; 10024 } 10025 10026 /* 10027 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 10028 * rebalancing for all the cpus for whom scheduler ticks are stopped. 10029 */ 10030 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10031 { 10032 int this_cpu = this_rq->cpu; 10033 unsigned int flags; 10034 10035 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK)) 10036 return false; 10037 10038 if (idle != CPU_IDLE) { 10039 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 10040 return false; 10041 } 10042 10043 /* could be _relaxed() */ 10044 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 10045 if (!(flags & NOHZ_KICK_MASK)) 10046 return false; 10047 10048 _nohz_idle_balance(this_rq, flags, idle); 10049 10050 return true; 10051 } 10052 10053 static void nohz_newidle_balance(struct rq *this_rq) 10054 { 10055 int this_cpu = this_rq->cpu; 10056 10057 /* 10058 * This CPU doesn't want to be disturbed by scheduler 10059 * housekeeping 10060 */ 10061 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 10062 return; 10063 10064 /* Will wake up very soon. No time for doing anything else*/ 10065 if (this_rq->avg_idle < sysctl_sched_migration_cost) 10066 return; 10067 10068 /* Don't need to update blocked load of idle CPUs*/ 10069 if (!READ_ONCE(nohz.has_blocked) || 10070 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 10071 return; 10072 10073 raw_spin_unlock(&this_rq->lock); 10074 /* 10075 * This CPU is going to be idle and blocked load of idle CPUs 10076 * need to be updated. Run the ilb locally as it is a good 10077 * candidate for ilb instead of waking up another idle CPU. 10078 * Kick an normal ilb if we failed to do the update. 10079 */ 10080 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) 10081 kick_ilb(NOHZ_STATS_KICK); 10082 raw_spin_lock(&this_rq->lock); 10083 } 10084 10085 #else /* !CONFIG_NO_HZ_COMMON */ 10086 static inline void nohz_balancer_kick(struct rq *rq) { } 10087 10088 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10089 { 10090 return false; 10091 } 10092 10093 static inline void nohz_newidle_balance(struct rq *this_rq) { } 10094 #endif /* CONFIG_NO_HZ_COMMON */ 10095 10096 /* 10097 * idle_balance is called by schedule() if this_cpu is about to become 10098 * idle. Attempts to pull tasks from other CPUs. 10099 * 10100 * Returns: 10101 * < 0 - we released the lock and there are !fair tasks present 10102 * 0 - failed, no new tasks 10103 * > 0 - success, new (fair) tasks present 10104 */ 10105 int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 10106 { 10107 unsigned long next_balance = jiffies + HZ; 10108 int this_cpu = this_rq->cpu; 10109 struct sched_domain *sd; 10110 int pulled_task = 0; 10111 u64 curr_cost = 0; 10112 10113 update_misfit_status(NULL, this_rq); 10114 /* 10115 * We must set idle_stamp _before_ calling idle_balance(), such that we 10116 * measure the duration of idle_balance() as idle time. 10117 */ 10118 this_rq->idle_stamp = rq_clock(this_rq); 10119 10120 /* 10121 * Do not pull tasks towards !active CPUs... 10122 */ 10123 if (!cpu_active(this_cpu)) 10124 return 0; 10125 10126 /* 10127 * This is OK, because current is on_cpu, which avoids it being picked 10128 * for load-balance and preemption/IRQs are still disabled avoiding 10129 * further scheduler activity on it and we're being very careful to 10130 * re-start the picking loop. 10131 */ 10132 rq_unpin_lock(this_rq, rf); 10133 10134 if (this_rq->avg_idle < sysctl_sched_migration_cost || 10135 !READ_ONCE(this_rq->rd->overload)) { 10136 10137 rcu_read_lock(); 10138 sd = rcu_dereference_check_sched_domain(this_rq->sd); 10139 if (sd) 10140 update_next_balance(sd, &next_balance); 10141 rcu_read_unlock(); 10142 10143 nohz_newidle_balance(this_rq); 10144 10145 goto out; 10146 } 10147 10148 raw_spin_unlock(&this_rq->lock); 10149 10150 update_blocked_averages(this_cpu); 10151 rcu_read_lock(); 10152 for_each_domain(this_cpu, sd) { 10153 int continue_balancing = 1; 10154 u64 t0, domain_cost; 10155 10156 if (!(sd->flags & SD_LOAD_BALANCE)) 10157 continue; 10158 10159 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 10160 update_next_balance(sd, &next_balance); 10161 break; 10162 } 10163 10164 if (sd->flags & SD_BALANCE_NEWIDLE) { 10165 t0 = sched_clock_cpu(this_cpu); 10166 10167 pulled_task = load_balance(this_cpu, this_rq, 10168 sd, CPU_NEWLY_IDLE, 10169 &continue_balancing); 10170 10171 domain_cost = sched_clock_cpu(this_cpu) - t0; 10172 if (domain_cost > sd->max_newidle_lb_cost) 10173 sd->max_newidle_lb_cost = domain_cost; 10174 10175 curr_cost += domain_cost; 10176 } 10177 10178 update_next_balance(sd, &next_balance); 10179 10180 /* 10181 * Stop searching for tasks to pull if there are 10182 * now runnable tasks on this rq. 10183 */ 10184 if (pulled_task || this_rq->nr_running > 0) 10185 break; 10186 } 10187 rcu_read_unlock(); 10188 10189 raw_spin_lock(&this_rq->lock); 10190 10191 if (curr_cost > this_rq->max_idle_balance_cost) 10192 this_rq->max_idle_balance_cost = curr_cost; 10193 10194 out: 10195 /* 10196 * While browsing the domains, we released the rq lock, a task could 10197 * have been enqueued in the meantime. Since we're not going idle, 10198 * pretend we pulled a task. 10199 */ 10200 if (this_rq->cfs.h_nr_running && !pulled_task) 10201 pulled_task = 1; 10202 10203 /* Move the next balance forward */ 10204 if (time_after(this_rq->next_balance, next_balance)) 10205 this_rq->next_balance = next_balance; 10206 10207 /* Is there a task of a high priority class? */ 10208 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 10209 pulled_task = -1; 10210 10211 if (pulled_task) 10212 this_rq->idle_stamp = 0; 10213 10214 rq_repin_lock(this_rq, rf); 10215 10216 return pulled_task; 10217 } 10218 10219 /* 10220 * run_rebalance_domains is triggered when needed from the scheduler tick. 10221 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 10222 */ 10223 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 10224 { 10225 struct rq *this_rq = this_rq(); 10226 enum cpu_idle_type idle = this_rq->idle_balance ? 10227 CPU_IDLE : CPU_NOT_IDLE; 10228 10229 /* 10230 * If this CPU has a pending nohz_balance_kick, then do the 10231 * balancing on behalf of the other idle CPUs whose ticks are 10232 * stopped. Do nohz_idle_balance *before* rebalance_domains to 10233 * give the idle CPUs a chance to load balance. Else we may 10234 * load balance only within the local sched_domain hierarchy 10235 * and abort nohz_idle_balance altogether if we pull some load. 10236 */ 10237 if (nohz_idle_balance(this_rq, idle)) 10238 return; 10239 10240 /* normal load balance */ 10241 update_blocked_averages(this_rq->cpu); 10242 rebalance_domains(this_rq, idle); 10243 } 10244 10245 /* 10246 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 10247 */ 10248 void trigger_load_balance(struct rq *rq) 10249 { 10250 /* Don't need to rebalance while attached to NULL domain */ 10251 if (unlikely(on_null_domain(rq))) 10252 return; 10253 10254 if (time_after_eq(jiffies, rq->next_balance)) 10255 raise_softirq(SCHED_SOFTIRQ); 10256 10257 nohz_balancer_kick(rq); 10258 } 10259 10260 static void rq_online_fair(struct rq *rq) 10261 { 10262 update_sysctl(); 10263 10264 update_runtime_enabled(rq); 10265 } 10266 10267 static void rq_offline_fair(struct rq *rq) 10268 { 10269 update_sysctl(); 10270 10271 /* Ensure any throttled groups are reachable by pick_next_task */ 10272 unthrottle_offline_cfs_rqs(rq); 10273 } 10274 10275 #endif /* CONFIG_SMP */ 10276 10277 /* 10278 * scheduler tick hitting a task of our scheduling class. 10279 * 10280 * NOTE: This function can be called remotely by the tick offload that 10281 * goes along full dynticks. Therefore no local assumption can be made 10282 * and everything must be accessed through the @rq and @curr passed in 10283 * parameters. 10284 */ 10285 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 10286 { 10287 struct cfs_rq *cfs_rq; 10288 struct sched_entity *se = &curr->se; 10289 10290 for_each_sched_entity(se) { 10291 cfs_rq = cfs_rq_of(se); 10292 entity_tick(cfs_rq, se, queued); 10293 } 10294 10295 if (static_branch_unlikely(&sched_numa_balancing)) 10296 task_tick_numa(rq, curr); 10297 10298 update_misfit_status(curr, rq); 10299 update_overutilized_status(task_rq(curr)); 10300 } 10301 10302 /* 10303 * called on fork with the child task as argument from the parent's context 10304 * - child not yet on the tasklist 10305 * - preemption disabled 10306 */ 10307 static void task_fork_fair(struct task_struct *p) 10308 { 10309 struct cfs_rq *cfs_rq; 10310 struct sched_entity *se = &p->se, *curr; 10311 struct rq *rq = this_rq(); 10312 struct rq_flags rf; 10313 10314 rq_lock(rq, &rf); 10315 update_rq_clock(rq); 10316 10317 cfs_rq = task_cfs_rq(current); 10318 curr = cfs_rq->curr; 10319 if (curr) { 10320 update_curr(cfs_rq); 10321 se->vruntime = curr->vruntime; 10322 } 10323 place_entity(cfs_rq, se, 1); 10324 10325 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 10326 /* 10327 * Upon rescheduling, sched_class::put_prev_task() will place 10328 * 'current' within the tree based on its new key value. 10329 */ 10330 swap(curr->vruntime, se->vruntime); 10331 resched_curr(rq); 10332 } 10333 10334 se->vruntime -= cfs_rq->min_vruntime; 10335 rq_unlock(rq, &rf); 10336 } 10337 10338 /* 10339 * Priority of the task has changed. Check to see if we preempt 10340 * the current task. 10341 */ 10342 static void 10343 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 10344 { 10345 if (!task_on_rq_queued(p)) 10346 return; 10347 10348 if (rq->cfs.nr_running == 1) 10349 return; 10350 10351 /* 10352 * Reschedule if we are currently running on this runqueue and 10353 * our priority decreased, or if we are not currently running on 10354 * this runqueue and our priority is higher than the current's 10355 */ 10356 if (rq->curr == p) { 10357 if (p->prio > oldprio) 10358 resched_curr(rq); 10359 } else 10360 check_preempt_curr(rq, p, 0); 10361 } 10362 10363 static inline bool vruntime_normalized(struct task_struct *p) 10364 { 10365 struct sched_entity *se = &p->se; 10366 10367 /* 10368 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 10369 * the dequeue_entity(.flags=0) will already have normalized the 10370 * vruntime. 10371 */ 10372 if (p->on_rq) 10373 return true; 10374 10375 /* 10376 * When !on_rq, vruntime of the task has usually NOT been normalized. 10377 * But there are some cases where it has already been normalized: 10378 * 10379 * - A forked child which is waiting for being woken up by 10380 * wake_up_new_task(). 10381 * - A task which has been woken up by try_to_wake_up() and 10382 * waiting for actually being woken up by sched_ttwu_pending(). 10383 */ 10384 if (!se->sum_exec_runtime || 10385 (p->state == TASK_WAKING && p->sched_remote_wakeup)) 10386 return true; 10387 10388 return false; 10389 } 10390 10391 #ifdef CONFIG_FAIR_GROUP_SCHED 10392 /* 10393 * Propagate the changes of the sched_entity across the tg tree to make it 10394 * visible to the root 10395 */ 10396 static void propagate_entity_cfs_rq(struct sched_entity *se) 10397 { 10398 struct cfs_rq *cfs_rq; 10399 10400 /* Start to propagate at parent */ 10401 se = se->parent; 10402 10403 for_each_sched_entity(se) { 10404 cfs_rq = cfs_rq_of(se); 10405 10406 if (cfs_rq_throttled(cfs_rq)) 10407 break; 10408 10409 update_load_avg(cfs_rq, se, UPDATE_TG); 10410 } 10411 } 10412 #else 10413 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 10414 #endif 10415 10416 static void detach_entity_cfs_rq(struct sched_entity *se) 10417 { 10418 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10419 10420 /* Catch up with the cfs_rq and remove our load when we leave */ 10421 update_load_avg(cfs_rq, se, 0); 10422 detach_entity_load_avg(cfs_rq, se); 10423 update_tg_load_avg(cfs_rq, false); 10424 propagate_entity_cfs_rq(se); 10425 } 10426 10427 static void attach_entity_cfs_rq(struct sched_entity *se) 10428 { 10429 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10430 10431 #ifdef CONFIG_FAIR_GROUP_SCHED 10432 /* 10433 * Since the real-depth could have been changed (only FAIR 10434 * class maintain depth value), reset depth properly. 10435 */ 10436 se->depth = se->parent ? se->parent->depth + 1 : 0; 10437 #endif 10438 10439 /* Synchronize entity with its cfs_rq */ 10440 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 10441 attach_entity_load_avg(cfs_rq, se); 10442 update_tg_load_avg(cfs_rq, false); 10443 propagate_entity_cfs_rq(se); 10444 } 10445 10446 static void detach_task_cfs_rq(struct task_struct *p) 10447 { 10448 struct sched_entity *se = &p->se; 10449 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10450 10451 if (!vruntime_normalized(p)) { 10452 /* 10453 * Fix up our vruntime so that the current sleep doesn't 10454 * cause 'unlimited' sleep bonus. 10455 */ 10456 place_entity(cfs_rq, se, 0); 10457 se->vruntime -= cfs_rq->min_vruntime; 10458 } 10459 10460 detach_entity_cfs_rq(se); 10461 } 10462 10463 static void attach_task_cfs_rq(struct task_struct *p) 10464 { 10465 struct sched_entity *se = &p->se; 10466 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10467 10468 attach_entity_cfs_rq(se); 10469 10470 if (!vruntime_normalized(p)) 10471 se->vruntime += cfs_rq->min_vruntime; 10472 } 10473 10474 static void switched_from_fair(struct rq *rq, struct task_struct *p) 10475 { 10476 detach_task_cfs_rq(p); 10477 } 10478 10479 static void switched_to_fair(struct rq *rq, struct task_struct *p) 10480 { 10481 attach_task_cfs_rq(p); 10482 10483 if (task_on_rq_queued(p)) { 10484 /* 10485 * We were most likely switched from sched_rt, so 10486 * kick off the schedule if running, otherwise just see 10487 * if we can still preempt the current task. 10488 */ 10489 if (rq->curr == p) 10490 resched_curr(rq); 10491 else 10492 check_preempt_curr(rq, p, 0); 10493 } 10494 } 10495 10496 /* Account for a task changing its policy or group. 10497 * 10498 * This routine is mostly called to set cfs_rq->curr field when a task 10499 * migrates between groups/classes. 10500 */ 10501 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 10502 { 10503 struct sched_entity *se = &p->se; 10504 10505 #ifdef CONFIG_SMP 10506 if (task_on_rq_queued(p)) { 10507 /* 10508 * Move the next running task to the front of the list, so our 10509 * cfs_tasks list becomes MRU one. 10510 */ 10511 list_move(&se->group_node, &rq->cfs_tasks); 10512 } 10513 #endif 10514 10515 for_each_sched_entity(se) { 10516 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10517 10518 set_next_entity(cfs_rq, se); 10519 /* ensure bandwidth has been allocated on our new cfs_rq */ 10520 account_cfs_rq_runtime(cfs_rq, 0); 10521 } 10522 } 10523 10524 void init_cfs_rq(struct cfs_rq *cfs_rq) 10525 { 10526 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 10527 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 10528 #ifndef CONFIG_64BIT 10529 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 10530 #endif 10531 #ifdef CONFIG_SMP 10532 raw_spin_lock_init(&cfs_rq->removed.lock); 10533 #endif 10534 } 10535 10536 #ifdef CONFIG_FAIR_GROUP_SCHED 10537 static void task_set_group_fair(struct task_struct *p) 10538 { 10539 struct sched_entity *se = &p->se; 10540 10541 set_task_rq(p, task_cpu(p)); 10542 se->depth = se->parent ? se->parent->depth + 1 : 0; 10543 } 10544 10545 static void task_move_group_fair(struct task_struct *p) 10546 { 10547 detach_task_cfs_rq(p); 10548 set_task_rq(p, task_cpu(p)); 10549 10550 #ifdef CONFIG_SMP 10551 /* Tell se's cfs_rq has been changed -- migrated */ 10552 p->se.avg.last_update_time = 0; 10553 #endif 10554 attach_task_cfs_rq(p); 10555 } 10556 10557 static void task_change_group_fair(struct task_struct *p, int type) 10558 { 10559 switch (type) { 10560 case TASK_SET_GROUP: 10561 task_set_group_fair(p); 10562 break; 10563 10564 case TASK_MOVE_GROUP: 10565 task_move_group_fair(p); 10566 break; 10567 } 10568 } 10569 10570 void free_fair_sched_group(struct task_group *tg) 10571 { 10572 int i; 10573 10574 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10575 10576 for_each_possible_cpu(i) { 10577 if (tg->cfs_rq) 10578 kfree(tg->cfs_rq[i]); 10579 if (tg->se) 10580 kfree(tg->se[i]); 10581 } 10582 10583 kfree(tg->cfs_rq); 10584 kfree(tg->se); 10585 } 10586 10587 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10588 { 10589 struct sched_entity *se; 10590 struct cfs_rq *cfs_rq; 10591 int i; 10592 10593 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 10594 if (!tg->cfs_rq) 10595 goto err; 10596 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 10597 if (!tg->se) 10598 goto err; 10599 10600 tg->shares = NICE_0_LOAD; 10601 10602 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10603 10604 for_each_possible_cpu(i) { 10605 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 10606 GFP_KERNEL, cpu_to_node(i)); 10607 if (!cfs_rq) 10608 goto err; 10609 10610 se = kzalloc_node(sizeof(struct sched_entity), 10611 GFP_KERNEL, cpu_to_node(i)); 10612 if (!se) 10613 goto err_free_rq; 10614 10615 init_cfs_rq(cfs_rq); 10616 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 10617 init_entity_runnable_average(se); 10618 } 10619 10620 return 1; 10621 10622 err_free_rq: 10623 kfree(cfs_rq); 10624 err: 10625 return 0; 10626 } 10627 10628 void online_fair_sched_group(struct task_group *tg) 10629 { 10630 struct sched_entity *se; 10631 struct rq_flags rf; 10632 struct rq *rq; 10633 int i; 10634 10635 for_each_possible_cpu(i) { 10636 rq = cpu_rq(i); 10637 se = tg->se[i]; 10638 rq_lock_irq(rq, &rf); 10639 update_rq_clock(rq); 10640 attach_entity_cfs_rq(se); 10641 sync_throttle(tg, i); 10642 rq_unlock_irq(rq, &rf); 10643 } 10644 } 10645 10646 void unregister_fair_sched_group(struct task_group *tg) 10647 { 10648 unsigned long flags; 10649 struct rq *rq; 10650 int cpu; 10651 10652 for_each_possible_cpu(cpu) { 10653 if (tg->se[cpu]) 10654 remove_entity_load_avg(tg->se[cpu]); 10655 10656 /* 10657 * Only empty task groups can be destroyed; so we can speculatively 10658 * check on_list without danger of it being re-added. 10659 */ 10660 if (!tg->cfs_rq[cpu]->on_list) 10661 continue; 10662 10663 rq = cpu_rq(cpu); 10664 10665 raw_spin_lock_irqsave(&rq->lock, flags); 10666 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 10667 raw_spin_unlock_irqrestore(&rq->lock, flags); 10668 } 10669 } 10670 10671 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 10672 struct sched_entity *se, int cpu, 10673 struct sched_entity *parent) 10674 { 10675 struct rq *rq = cpu_rq(cpu); 10676 10677 cfs_rq->tg = tg; 10678 cfs_rq->rq = rq; 10679 init_cfs_rq_runtime(cfs_rq); 10680 10681 tg->cfs_rq[cpu] = cfs_rq; 10682 tg->se[cpu] = se; 10683 10684 /* se could be NULL for root_task_group */ 10685 if (!se) 10686 return; 10687 10688 if (!parent) { 10689 se->cfs_rq = &rq->cfs; 10690 se->depth = 0; 10691 } else { 10692 se->cfs_rq = parent->my_q; 10693 se->depth = parent->depth + 1; 10694 } 10695 10696 se->my_q = cfs_rq; 10697 /* guarantee group entities always have weight */ 10698 update_load_set(&se->load, NICE_0_LOAD); 10699 se->parent = parent; 10700 } 10701 10702 static DEFINE_MUTEX(shares_mutex); 10703 10704 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 10705 { 10706 int i; 10707 10708 /* 10709 * We can't change the weight of the root cgroup. 10710 */ 10711 if (!tg->se[0]) 10712 return -EINVAL; 10713 10714 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 10715 10716 mutex_lock(&shares_mutex); 10717 if (tg->shares == shares) 10718 goto done; 10719 10720 tg->shares = shares; 10721 for_each_possible_cpu(i) { 10722 struct rq *rq = cpu_rq(i); 10723 struct sched_entity *se = tg->se[i]; 10724 struct rq_flags rf; 10725 10726 /* Propagate contribution to hierarchy */ 10727 rq_lock_irqsave(rq, &rf); 10728 update_rq_clock(rq); 10729 for_each_sched_entity(se) { 10730 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 10731 update_cfs_group(se); 10732 } 10733 rq_unlock_irqrestore(rq, &rf); 10734 } 10735 10736 done: 10737 mutex_unlock(&shares_mutex); 10738 return 0; 10739 } 10740 #else /* CONFIG_FAIR_GROUP_SCHED */ 10741 10742 void free_fair_sched_group(struct task_group *tg) { } 10743 10744 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10745 { 10746 return 1; 10747 } 10748 10749 void online_fair_sched_group(struct task_group *tg) { } 10750 10751 void unregister_fair_sched_group(struct task_group *tg) { } 10752 10753 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10754 10755 10756 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 10757 { 10758 struct sched_entity *se = &task->se; 10759 unsigned int rr_interval = 0; 10760 10761 /* 10762 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 10763 * idle runqueue: 10764 */ 10765 if (rq->cfs.load.weight) 10766 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 10767 10768 return rr_interval; 10769 } 10770 10771 /* 10772 * All the scheduling class methods: 10773 */ 10774 const struct sched_class fair_sched_class = { 10775 .next = &idle_sched_class, 10776 .enqueue_task = enqueue_task_fair, 10777 .dequeue_task = dequeue_task_fair, 10778 .yield_task = yield_task_fair, 10779 .yield_to_task = yield_to_task_fair, 10780 10781 .check_preempt_curr = check_preempt_wakeup, 10782 10783 .pick_next_task = __pick_next_task_fair, 10784 .put_prev_task = put_prev_task_fair, 10785 .set_next_task = set_next_task_fair, 10786 10787 #ifdef CONFIG_SMP 10788 .balance = balance_fair, 10789 .select_task_rq = select_task_rq_fair, 10790 .migrate_task_rq = migrate_task_rq_fair, 10791 10792 .rq_online = rq_online_fair, 10793 .rq_offline = rq_offline_fair, 10794 10795 .task_dead = task_dead_fair, 10796 .set_cpus_allowed = set_cpus_allowed_common, 10797 #endif 10798 10799 .task_tick = task_tick_fair, 10800 .task_fork = task_fork_fair, 10801 10802 .prio_changed = prio_changed_fair, 10803 .switched_from = switched_from_fair, 10804 .switched_to = switched_to_fair, 10805 10806 .get_rr_interval = get_rr_interval_fair, 10807 10808 .update_curr = update_curr_fair, 10809 10810 #ifdef CONFIG_FAIR_GROUP_SCHED 10811 .task_change_group = task_change_group_fair, 10812 #endif 10813 10814 #ifdef CONFIG_UCLAMP_TASK 10815 .uclamp_enabled = 1, 10816 #endif 10817 }; 10818 10819 #ifdef CONFIG_SCHED_DEBUG 10820 void print_cfs_stats(struct seq_file *m, int cpu) 10821 { 10822 struct cfs_rq *cfs_rq, *pos; 10823 10824 rcu_read_lock(); 10825 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 10826 print_cfs_rq(m, cpu, cfs_rq); 10827 rcu_read_unlock(); 10828 } 10829 10830 #ifdef CONFIG_NUMA_BALANCING 10831 void show_numa_stats(struct task_struct *p, struct seq_file *m) 10832 { 10833 int node; 10834 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 10835 struct numa_group *ng; 10836 10837 rcu_read_lock(); 10838 ng = rcu_dereference(p->numa_group); 10839 for_each_online_node(node) { 10840 if (p->numa_faults) { 10841 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 10842 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 10843 } 10844 if (ng) { 10845 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 10846 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 10847 } 10848 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 10849 } 10850 rcu_read_unlock(); 10851 } 10852 #endif /* CONFIG_NUMA_BALANCING */ 10853 #endif /* CONFIG_SCHED_DEBUG */ 10854 10855 __init void init_sched_fair_class(void) 10856 { 10857 #ifdef CONFIG_SMP 10858 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 10859 10860 #ifdef CONFIG_NO_HZ_COMMON 10861 nohz.next_balance = jiffies; 10862 nohz.next_blocked = jiffies; 10863 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 10864 #endif 10865 #endif /* SMP */ 10866 10867 } 10868 10869 /* 10870 * Helper functions to facilitate extracting info from tracepoints. 10871 */ 10872 10873 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq) 10874 { 10875 #ifdef CONFIG_SMP 10876 return cfs_rq ? &cfs_rq->avg : NULL; 10877 #else 10878 return NULL; 10879 #endif 10880 } 10881 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg); 10882 10883 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len) 10884 { 10885 if (!cfs_rq) { 10886 if (str) 10887 strlcpy(str, "(null)", len); 10888 else 10889 return NULL; 10890 } 10891 10892 cfs_rq_tg_path(cfs_rq, str, len); 10893 return str; 10894 } 10895 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path); 10896 10897 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq) 10898 { 10899 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1; 10900 } 10901 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu); 10902 10903 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq) 10904 { 10905 #ifdef CONFIG_SMP 10906 return rq ? &rq->avg_rt : NULL; 10907 #else 10908 return NULL; 10909 #endif 10910 } 10911 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt); 10912 10913 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq) 10914 { 10915 #ifdef CONFIG_SMP 10916 return rq ? &rq->avg_dl : NULL; 10917 #else 10918 return NULL; 10919 #endif 10920 } 10921 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl); 10922 10923 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq) 10924 { 10925 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ) 10926 return rq ? &rq->avg_irq : NULL; 10927 #else 10928 return NULL; 10929 #endif 10930 } 10931 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq); 10932 10933 int sched_trace_rq_cpu(struct rq *rq) 10934 { 10935 return rq ? cpu_of(rq) : -1; 10936 } 10937 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu); 10938 10939 const struct cpumask *sched_trace_rd_span(struct root_domain *rd) 10940 { 10941 #ifdef CONFIG_SMP 10942 return rd ? rd->span : NULL; 10943 #else 10944 return NULL; 10945 #endif 10946 } 10947 EXPORT_SYMBOL_GPL(sched_trace_rd_span); 10948