xref: /openbmc/linux/kernel/sched/fair.c (revision 09a4f6f5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 /*
26  * Targeted preemption latency for CPU-bound tasks:
27  *
28  * NOTE: this latency value is not the same as the concept of
29  * 'timeslice length' - timeslices in CFS are of variable length
30  * and have no persistent notion like in traditional, time-slice
31  * based scheduling concepts.
32  *
33  * (to see the precise effective timeslice length of your workload,
34  *  run vmstat and monitor the context-switches (cs) field)
35  *
36  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37  */
38 unsigned int sysctl_sched_latency			= 6000000ULL;
39 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
40 
41 /*
42  * The initial- and re-scaling of tunables is configurable
43  *
44  * Options are:
45  *
46  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
47  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49  *
50  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
51  */
52 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
53 
54 /*
55  * Minimal preemption granularity for CPU-bound tasks:
56  *
57  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58  */
59 unsigned int sysctl_sched_min_granularity			= 750000ULL;
60 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
61 
62 /*
63  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
64  */
65 static unsigned int sched_nr_latency = 8;
66 
67 /*
68  * After fork, child runs first. If set to 0 (default) then
69  * parent will (try to) run first.
70  */
71 unsigned int sysctl_sched_child_runs_first __read_mostly;
72 
73 /*
74  * SCHED_OTHER wake-up granularity.
75  *
76  * This option delays the preemption effects of decoupled workloads
77  * and reduces their over-scheduling. Synchronous workloads will still
78  * have immediate wakeup/sleep latencies.
79  *
80  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
81  */
82 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
83 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
84 
85 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
86 
87 int sched_thermal_decay_shift;
88 static int __init setup_sched_thermal_decay_shift(char *str)
89 {
90 	int _shift = 0;
91 
92 	if (kstrtoint(str, 0, &_shift))
93 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
94 
95 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
96 	return 1;
97 }
98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
99 
100 #ifdef CONFIG_SMP
101 /*
102  * For asym packing, by default the lower numbered CPU has higher priority.
103  */
104 int __weak arch_asym_cpu_priority(int cpu)
105 {
106 	return -cpu;
107 }
108 
109 /*
110  * The margin used when comparing utilization with CPU capacity.
111  *
112  * (default: ~20%)
113  */
114 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
115 
116 #endif
117 
118 #ifdef CONFIG_CFS_BANDWIDTH
119 /*
120  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
121  * each time a cfs_rq requests quota.
122  *
123  * Note: in the case that the slice exceeds the runtime remaining (either due
124  * to consumption or the quota being specified to be smaller than the slice)
125  * we will always only issue the remaining available time.
126  *
127  * (default: 5 msec, units: microseconds)
128  */
129 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
130 #endif
131 
132 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
133 {
134 	lw->weight += inc;
135 	lw->inv_weight = 0;
136 }
137 
138 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
139 {
140 	lw->weight -= dec;
141 	lw->inv_weight = 0;
142 }
143 
144 static inline void update_load_set(struct load_weight *lw, unsigned long w)
145 {
146 	lw->weight = w;
147 	lw->inv_weight = 0;
148 }
149 
150 /*
151  * Increase the granularity value when there are more CPUs,
152  * because with more CPUs the 'effective latency' as visible
153  * to users decreases. But the relationship is not linear,
154  * so pick a second-best guess by going with the log2 of the
155  * number of CPUs.
156  *
157  * This idea comes from the SD scheduler of Con Kolivas:
158  */
159 static unsigned int get_update_sysctl_factor(void)
160 {
161 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
162 	unsigned int factor;
163 
164 	switch (sysctl_sched_tunable_scaling) {
165 	case SCHED_TUNABLESCALING_NONE:
166 		factor = 1;
167 		break;
168 	case SCHED_TUNABLESCALING_LINEAR:
169 		factor = cpus;
170 		break;
171 	case SCHED_TUNABLESCALING_LOG:
172 	default:
173 		factor = 1 + ilog2(cpus);
174 		break;
175 	}
176 
177 	return factor;
178 }
179 
180 static void update_sysctl(void)
181 {
182 	unsigned int factor = get_update_sysctl_factor();
183 
184 #define SET_SYSCTL(name) \
185 	(sysctl_##name = (factor) * normalized_sysctl_##name)
186 	SET_SYSCTL(sched_min_granularity);
187 	SET_SYSCTL(sched_latency);
188 	SET_SYSCTL(sched_wakeup_granularity);
189 #undef SET_SYSCTL
190 }
191 
192 void __init sched_init_granularity(void)
193 {
194 	update_sysctl();
195 }
196 
197 #define WMULT_CONST	(~0U)
198 #define WMULT_SHIFT	32
199 
200 static void __update_inv_weight(struct load_weight *lw)
201 {
202 	unsigned long w;
203 
204 	if (likely(lw->inv_weight))
205 		return;
206 
207 	w = scale_load_down(lw->weight);
208 
209 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
210 		lw->inv_weight = 1;
211 	else if (unlikely(!w))
212 		lw->inv_weight = WMULT_CONST;
213 	else
214 		lw->inv_weight = WMULT_CONST / w;
215 }
216 
217 /*
218  * delta_exec * weight / lw.weight
219  *   OR
220  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
221  *
222  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
223  * we're guaranteed shift stays positive because inv_weight is guaranteed to
224  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
225  *
226  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
227  * weight/lw.weight <= 1, and therefore our shift will also be positive.
228  */
229 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
230 {
231 	u64 fact = scale_load_down(weight);
232 	int shift = WMULT_SHIFT;
233 
234 	__update_inv_weight(lw);
235 
236 	if (unlikely(fact >> 32)) {
237 		while (fact >> 32) {
238 			fact >>= 1;
239 			shift--;
240 		}
241 	}
242 
243 	fact = mul_u32_u32(fact, lw->inv_weight);
244 
245 	while (fact >> 32) {
246 		fact >>= 1;
247 		shift--;
248 	}
249 
250 	return mul_u64_u32_shr(delta_exec, fact, shift);
251 }
252 
253 
254 const struct sched_class fair_sched_class;
255 
256 /**************************************************************
257  * CFS operations on generic schedulable entities:
258  */
259 
260 #ifdef CONFIG_FAIR_GROUP_SCHED
261 static inline struct task_struct *task_of(struct sched_entity *se)
262 {
263 	SCHED_WARN_ON(!entity_is_task(se));
264 	return container_of(se, struct task_struct, se);
265 }
266 
267 /* Walk up scheduling entities hierarchy */
268 #define for_each_sched_entity(se) \
269 		for (; se; se = se->parent)
270 
271 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
272 {
273 	return p->se.cfs_rq;
274 }
275 
276 /* runqueue on which this entity is (to be) queued */
277 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
278 {
279 	return se->cfs_rq;
280 }
281 
282 /* runqueue "owned" by this group */
283 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
284 {
285 	return grp->my_q;
286 }
287 
288 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
289 {
290 	if (!path)
291 		return;
292 
293 	if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
294 		autogroup_path(cfs_rq->tg, path, len);
295 	else if (cfs_rq && cfs_rq->tg->css.cgroup)
296 		cgroup_path(cfs_rq->tg->css.cgroup, path, len);
297 	else
298 		strlcpy(path, "(null)", len);
299 }
300 
301 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302 {
303 	struct rq *rq = rq_of(cfs_rq);
304 	int cpu = cpu_of(rq);
305 
306 	if (cfs_rq->on_list)
307 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
308 
309 	cfs_rq->on_list = 1;
310 
311 	/*
312 	 * Ensure we either appear before our parent (if already
313 	 * enqueued) or force our parent to appear after us when it is
314 	 * enqueued. The fact that we always enqueue bottom-up
315 	 * reduces this to two cases and a special case for the root
316 	 * cfs_rq. Furthermore, it also means that we will always reset
317 	 * tmp_alone_branch either when the branch is connected
318 	 * to a tree or when we reach the top of the tree
319 	 */
320 	if (cfs_rq->tg->parent &&
321 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
322 		/*
323 		 * If parent is already on the list, we add the child
324 		 * just before. Thanks to circular linked property of
325 		 * the list, this means to put the child at the tail
326 		 * of the list that starts by parent.
327 		 */
328 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
329 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
330 		/*
331 		 * The branch is now connected to its tree so we can
332 		 * reset tmp_alone_branch to the beginning of the
333 		 * list.
334 		 */
335 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
336 		return true;
337 	}
338 
339 	if (!cfs_rq->tg->parent) {
340 		/*
341 		 * cfs rq without parent should be put
342 		 * at the tail of the list.
343 		 */
344 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
345 			&rq->leaf_cfs_rq_list);
346 		/*
347 		 * We have reach the top of a tree so we can reset
348 		 * tmp_alone_branch to the beginning of the list.
349 		 */
350 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
351 		return true;
352 	}
353 
354 	/*
355 	 * The parent has not already been added so we want to
356 	 * make sure that it will be put after us.
357 	 * tmp_alone_branch points to the begin of the branch
358 	 * where we will add parent.
359 	 */
360 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
361 	/*
362 	 * update tmp_alone_branch to points to the new begin
363 	 * of the branch
364 	 */
365 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
366 	return false;
367 }
368 
369 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
370 {
371 	if (cfs_rq->on_list) {
372 		struct rq *rq = rq_of(cfs_rq);
373 
374 		/*
375 		 * With cfs_rq being unthrottled/throttled during an enqueue,
376 		 * it can happen the tmp_alone_branch points the a leaf that
377 		 * we finally want to del. In this case, tmp_alone_branch moves
378 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
379 		 * at the end of the enqueue.
380 		 */
381 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
382 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
383 
384 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
385 		cfs_rq->on_list = 0;
386 	}
387 }
388 
389 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
390 {
391 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
392 }
393 
394 /* Iterate thr' all leaf cfs_rq's on a runqueue */
395 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
396 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
397 				 leaf_cfs_rq_list)
398 
399 /* Do the two (enqueued) entities belong to the same group ? */
400 static inline struct cfs_rq *
401 is_same_group(struct sched_entity *se, struct sched_entity *pse)
402 {
403 	if (se->cfs_rq == pse->cfs_rq)
404 		return se->cfs_rq;
405 
406 	return NULL;
407 }
408 
409 static inline struct sched_entity *parent_entity(struct sched_entity *se)
410 {
411 	return se->parent;
412 }
413 
414 static void
415 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
416 {
417 	int se_depth, pse_depth;
418 
419 	/*
420 	 * preemption test can be made between sibling entities who are in the
421 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
422 	 * both tasks until we find their ancestors who are siblings of common
423 	 * parent.
424 	 */
425 
426 	/* First walk up until both entities are at same depth */
427 	se_depth = (*se)->depth;
428 	pse_depth = (*pse)->depth;
429 
430 	while (se_depth > pse_depth) {
431 		se_depth--;
432 		*se = parent_entity(*se);
433 	}
434 
435 	while (pse_depth > se_depth) {
436 		pse_depth--;
437 		*pse = parent_entity(*pse);
438 	}
439 
440 	while (!is_same_group(*se, *pse)) {
441 		*se = parent_entity(*se);
442 		*pse = parent_entity(*pse);
443 	}
444 }
445 
446 #else	/* !CONFIG_FAIR_GROUP_SCHED */
447 
448 static inline struct task_struct *task_of(struct sched_entity *se)
449 {
450 	return container_of(se, struct task_struct, se);
451 }
452 
453 #define for_each_sched_entity(se) \
454 		for (; se; se = NULL)
455 
456 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
457 {
458 	return &task_rq(p)->cfs;
459 }
460 
461 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
462 {
463 	struct task_struct *p = task_of(se);
464 	struct rq *rq = task_rq(p);
465 
466 	return &rq->cfs;
467 }
468 
469 /* runqueue "owned" by this group */
470 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
471 {
472 	return NULL;
473 }
474 
475 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
476 {
477 	if (path)
478 		strlcpy(path, "(null)", len);
479 }
480 
481 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
482 {
483 	return true;
484 }
485 
486 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
487 {
488 }
489 
490 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
491 {
492 }
493 
494 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
495 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
496 
497 static inline struct sched_entity *parent_entity(struct sched_entity *se)
498 {
499 	return NULL;
500 }
501 
502 static inline void
503 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
504 {
505 }
506 
507 #endif	/* CONFIG_FAIR_GROUP_SCHED */
508 
509 static __always_inline
510 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
511 
512 /**************************************************************
513  * Scheduling class tree data structure manipulation methods:
514  */
515 
516 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
517 {
518 	s64 delta = (s64)(vruntime - max_vruntime);
519 	if (delta > 0)
520 		max_vruntime = vruntime;
521 
522 	return max_vruntime;
523 }
524 
525 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
526 {
527 	s64 delta = (s64)(vruntime - min_vruntime);
528 	if (delta < 0)
529 		min_vruntime = vruntime;
530 
531 	return min_vruntime;
532 }
533 
534 static inline int entity_before(struct sched_entity *a,
535 				struct sched_entity *b)
536 {
537 	return (s64)(a->vruntime - b->vruntime) < 0;
538 }
539 
540 static void update_min_vruntime(struct cfs_rq *cfs_rq)
541 {
542 	struct sched_entity *curr = cfs_rq->curr;
543 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
544 
545 	u64 vruntime = cfs_rq->min_vruntime;
546 
547 	if (curr) {
548 		if (curr->on_rq)
549 			vruntime = curr->vruntime;
550 		else
551 			curr = NULL;
552 	}
553 
554 	if (leftmost) { /* non-empty tree */
555 		struct sched_entity *se;
556 		se = rb_entry(leftmost, struct sched_entity, run_node);
557 
558 		if (!curr)
559 			vruntime = se->vruntime;
560 		else
561 			vruntime = min_vruntime(vruntime, se->vruntime);
562 	}
563 
564 	/* ensure we never gain time by being placed backwards. */
565 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
566 #ifndef CONFIG_64BIT
567 	smp_wmb();
568 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
569 #endif
570 }
571 
572 /*
573  * Enqueue an entity into the rb-tree:
574  */
575 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
576 {
577 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
578 	struct rb_node *parent = NULL;
579 	struct sched_entity *entry;
580 	bool leftmost = true;
581 
582 	/*
583 	 * Find the right place in the rbtree:
584 	 */
585 	while (*link) {
586 		parent = *link;
587 		entry = rb_entry(parent, struct sched_entity, run_node);
588 		/*
589 		 * We dont care about collisions. Nodes with
590 		 * the same key stay together.
591 		 */
592 		if (entity_before(se, entry)) {
593 			link = &parent->rb_left;
594 		} else {
595 			link = &parent->rb_right;
596 			leftmost = false;
597 		}
598 	}
599 
600 	rb_link_node(&se->run_node, parent, link);
601 	rb_insert_color_cached(&se->run_node,
602 			       &cfs_rq->tasks_timeline, leftmost);
603 }
604 
605 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
606 {
607 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
608 }
609 
610 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
611 {
612 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
613 
614 	if (!left)
615 		return NULL;
616 
617 	return rb_entry(left, struct sched_entity, run_node);
618 }
619 
620 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
621 {
622 	struct rb_node *next = rb_next(&se->run_node);
623 
624 	if (!next)
625 		return NULL;
626 
627 	return rb_entry(next, struct sched_entity, run_node);
628 }
629 
630 #ifdef CONFIG_SCHED_DEBUG
631 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
632 {
633 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
634 
635 	if (!last)
636 		return NULL;
637 
638 	return rb_entry(last, struct sched_entity, run_node);
639 }
640 
641 /**************************************************************
642  * Scheduling class statistics methods:
643  */
644 
645 int sched_proc_update_handler(struct ctl_table *table, int write,
646 		void *buffer, size_t *lenp, loff_t *ppos)
647 {
648 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
649 	unsigned int factor = get_update_sysctl_factor();
650 
651 	if (ret || !write)
652 		return ret;
653 
654 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
655 					sysctl_sched_min_granularity);
656 
657 #define WRT_SYSCTL(name) \
658 	(normalized_sysctl_##name = sysctl_##name / (factor))
659 	WRT_SYSCTL(sched_min_granularity);
660 	WRT_SYSCTL(sched_latency);
661 	WRT_SYSCTL(sched_wakeup_granularity);
662 #undef WRT_SYSCTL
663 
664 	return 0;
665 }
666 #endif
667 
668 /*
669  * delta /= w
670  */
671 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
672 {
673 	if (unlikely(se->load.weight != NICE_0_LOAD))
674 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
675 
676 	return delta;
677 }
678 
679 /*
680  * The idea is to set a period in which each task runs once.
681  *
682  * When there are too many tasks (sched_nr_latency) we have to stretch
683  * this period because otherwise the slices get too small.
684  *
685  * p = (nr <= nl) ? l : l*nr/nl
686  */
687 static u64 __sched_period(unsigned long nr_running)
688 {
689 	if (unlikely(nr_running > sched_nr_latency))
690 		return nr_running * sysctl_sched_min_granularity;
691 	else
692 		return sysctl_sched_latency;
693 }
694 
695 /*
696  * We calculate the wall-time slice from the period by taking a part
697  * proportional to the weight.
698  *
699  * s = p*P[w/rw]
700  */
701 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
702 {
703 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
704 
705 	for_each_sched_entity(se) {
706 		struct load_weight *load;
707 		struct load_weight lw;
708 
709 		cfs_rq = cfs_rq_of(se);
710 		load = &cfs_rq->load;
711 
712 		if (unlikely(!se->on_rq)) {
713 			lw = cfs_rq->load;
714 
715 			update_load_add(&lw, se->load.weight);
716 			load = &lw;
717 		}
718 		slice = __calc_delta(slice, se->load.weight, load);
719 	}
720 	return slice;
721 }
722 
723 /*
724  * We calculate the vruntime slice of a to-be-inserted task.
725  *
726  * vs = s/w
727  */
728 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
729 {
730 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
731 }
732 
733 #include "pelt.h"
734 #ifdef CONFIG_SMP
735 
736 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
737 static unsigned long task_h_load(struct task_struct *p);
738 static unsigned long capacity_of(int cpu);
739 
740 /* Give new sched_entity start runnable values to heavy its load in infant time */
741 void init_entity_runnable_average(struct sched_entity *se)
742 {
743 	struct sched_avg *sa = &se->avg;
744 
745 	memset(sa, 0, sizeof(*sa));
746 
747 	/*
748 	 * Tasks are initialized with full load to be seen as heavy tasks until
749 	 * they get a chance to stabilize to their real load level.
750 	 * Group entities are initialized with zero load to reflect the fact that
751 	 * nothing has been attached to the task group yet.
752 	 */
753 	if (entity_is_task(se))
754 		sa->load_avg = scale_load_down(se->load.weight);
755 
756 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
757 }
758 
759 static void attach_entity_cfs_rq(struct sched_entity *se);
760 
761 /*
762  * With new tasks being created, their initial util_avgs are extrapolated
763  * based on the cfs_rq's current util_avg:
764  *
765  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
766  *
767  * However, in many cases, the above util_avg does not give a desired
768  * value. Moreover, the sum of the util_avgs may be divergent, such
769  * as when the series is a harmonic series.
770  *
771  * To solve this problem, we also cap the util_avg of successive tasks to
772  * only 1/2 of the left utilization budget:
773  *
774  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
775  *
776  * where n denotes the nth task and cpu_scale the CPU capacity.
777  *
778  * For example, for a CPU with 1024 of capacity, a simplest series from
779  * the beginning would be like:
780  *
781  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
782  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
783  *
784  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
785  * if util_avg > util_avg_cap.
786  */
787 void post_init_entity_util_avg(struct task_struct *p)
788 {
789 	struct sched_entity *se = &p->se;
790 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
791 	struct sched_avg *sa = &se->avg;
792 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
793 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
794 
795 	if (cap > 0) {
796 		if (cfs_rq->avg.util_avg != 0) {
797 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
798 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
799 
800 			if (sa->util_avg > cap)
801 				sa->util_avg = cap;
802 		} else {
803 			sa->util_avg = cap;
804 		}
805 	}
806 
807 	sa->runnable_avg = sa->util_avg;
808 
809 	if (p->sched_class != &fair_sched_class) {
810 		/*
811 		 * For !fair tasks do:
812 		 *
813 		update_cfs_rq_load_avg(now, cfs_rq);
814 		attach_entity_load_avg(cfs_rq, se);
815 		switched_from_fair(rq, p);
816 		 *
817 		 * such that the next switched_to_fair() has the
818 		 * expected state.
819 		 */
820 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
821 		return;
822 	}
823 
824 	attach_entity_cfs_rq(se);
825 }
826 
827 #else /* !CONFIG_SMP */
828 void init_entity_runnable_average(struct sched_entity *se)
829 {
830 }
831 void post_init_entity_util_avg(struct task_struct *p)
832 {
833 }
834 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
835 {
836 }
837 #endif /* CONFIG_SMP */
838 
839 /*
840  * Update the current task's runtime statistics.
841  */
842 static void update_curr(struct cfs_rq *cfs_rq)
843 {
844 	struct sched_entity *curr = cfs_rq->curr;
845 	u64 now = rq_clock_task(rq_of(cfs_rq));
846 	u64 delta_exec;
847 
848 	if (unlikely(!curr))
849 		return;
850 
851 	delta_exec = now - curr->exec_start;
852 	if (unlikely((s64)delta_exec <= 0))
853 		return;
854 
855 	curr->exec_start = now;
856 
857 	schedstat_set(curr->statistics.exec_max,
858 		      max(delta_exec, curr->statistics.exec_max));
859 
860 	curr->sum_exec_runtime += delta_exec;
861 	schedstat_add(cfs_rq->exec_clock, delta_exec);
862 
863 	curr->vruntime += calc_delta_fair(delta_exec, curr);
864 	update_min_vruntime(cfs_rq);
865 
866 	if (entity_is_task(curr)) {
867 		struct task_struct *curtask = task_of(curr);
868 
869 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
870 		cgroup_account_cputime(curtask, delta_exec);
871 		account_group_exec_runtime(curtask, delta_exec);
872 	}
873 
874 	account_cfs_rq_runtime(cfs_rq, delta_exec);
875 }
876 
877 static void update_curr_fair(struct rq *rq)
878 {
879 	update_curr(cfs_rq_of(&rq->curr->se));
880 }
881 
882 static inline void
883 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
884 {
885 	u64 wait_start, prev_wait_start;
886 
887 	if (!schedstat_enabled())
888 		return;
889 
890 	wait_start = rq_clock(rq_of(cfs_rq));
891 	prev_wait_start = schedstat_val(se->statistics.wait_start);
892 
893 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
894 	    likely(wait_start > prev_wait_start))
895 		wait_start -= prev_wait_start;
896 
897 	__schedstat_set(se->statistics.wait_start, wait_start);
898 }
899 
900 static inline void
901 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
902 {
903 	struct task_struct *p;
904 	u64 delta;
905 
906 	if (!schedstat_enabled())
907 		return;
908 
909 	/*
910 	 * When the sched_schedstat changes from 0 to 1, some sched se
911 	 * maybe already in the runqueue, the se->statistics.wait_start
912 	 * will be 0.So it will let the delta wrong. We need to avoid this
913 	 * scenario.
914 	 */
915 	if (unlikely(!schedstat_val(se->statistics.wait_start)))
916 		return;
917 
918 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
919 
920 	if (entity_is_task(se)) {
921 		p = task_of(se);
922 		if (task_on_rq_migrating(p)) {
923 			/*
924 			 * Preserve migrating task's wait time so wait_start
925 			 * time stamp can be adjusted to accumulate wait time
926 			 * prior to migration.
927 			 */
928 			__schedstat_set(se->statistics.wait_start, delta);
929 			return;
930 		}
931 		trace_sched_stat_wait(p, delta);
932 	}
933 
934 	__schedstat_set(se->statistics.wait_max,
935 		      max(schedstat_val(se->statistics.wait_max), delta));
936 	__schedstat_inc(se->statistics.wait_count);
937 	__schedstat_add(se->statistics.wait_sum, delta);
938 	__schedstat_set(se->statistics.wait_start, 0);
939 }
940 
941 static inline void
942 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
943 {
944 	struct task_struct *tsk = NULL;
945 	u64 sleep_start, block_start;
946 
947 	if (!schedstat_enabled())
948 		return;
949 
950 	sleep_start = schedstat_val(se->statistics.sleep_start);
951 	block_start = schedstat_val(se->statistics.block_start);
952 
953 	if (entity_is_task(se))
954 		tsk = task_of(se);
955 
956 	if (sleep_start) {
957 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
958 
959 		if ((s64)delta < 0)
960 			delta = 0;
961 
962 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
963 			__schedstat_set(se->statistics.sleep_max, delta);
964 
965 		__schedstat_set(se->statistics.sleep_start, 0);
966 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
967 
968 		if (tsk) {
969 			account_scheduler_latency(tsk, delta >> 10, 1);
970 			trace_sched_stat_sleep(tsk, delta);
971 		}
972 	}
973 	if (block_start) {
974 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
975 
976 		if ((s64)delta < 0)
977 			delta = 0;
978 
979 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
980 			__schedstat_set(se->statistics.block_max, delta);
981 
982 		__schedstat_set(se->statistics.block_start, 0);
983 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
984 
985 		if (tsk) {
986 			if (tsk->in_iowait) {
987 				__schedstat_add(se->statistics.iowait_sum, delta);
988 				__schedstat_inc(se->statistics.iowait_count);
989 				trace_sched_stat_iowait(tsk, delta);
990 			}
991 
992 			trace_sched_stat_blocked(tsk, delta);
993 
994 			/*
995 			 * Blocking time is in units of nanosecs, so shift by
996 			 * 20 to get a milliseconds-range estimation of the
997 			 * amount of time that the task spent sleeping:
998 			 */
999 			if (unlikely(prof_on == SLEEP_PROFILING)) {
1000 				profile_hits(SLEEP_PROFILING,
1001 						(void *)get_wchan(tsk),
1002 						delta >> 20);
1003 			}
1004 			account_scheduler_latency(tsk, delta >> 10, 0);
1005 		}
1006 	}
1007 }
1008 
1009 /*
1010  * Task is being enqueued - update stats:
1011  */
1012 static inline void
1013 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1014 {
1015 	if (!schedstat_enabled())
1016 		return;
1017 
1018 	/*
1019 	 * Are we enqueueing a waiting task? (for current tasks
1020 	 * a dequeue/enqueue event is a NOP)
1021 	 */
1022 	if (se != cfs_rq->curr)
1023 		update_stats_wait_start(cfs_rq, se);
1024 
1025 	if (flags & ENQUEUE_WAKEUP)
1026 		update_stats_enqueue_sleeper(cfs_rq, se);
1027 }
1028 
1029 static inline void
1030 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1031 {
1032 
1033 	if (!schedstat_enabled())
1034 		return;
1035 
1036 	/*
1037 	 * Mark the end of the wait period if dequeueing a
1038 	 * waiting task:
1039 	 */
1040 	if (se != cfs_rq->curr)
1041 		update_stats_wait_end(cfs_rq, se);
1042 
1043 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1044 		struct task_struct *tsk = task_of(se);
1045 
1046 		if (tsk->state & TASK_INTERRUPTIBLE)
1047 			__schedstat_set(se->statistics.sleep_start,
1048 				      rq_clock(rq_of(cfs_rq)));
1049 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1050 			__schedstat_set(se->statistics.block_start,
1051 				      rq_clock(rq_of(cfs_rq)));
1052 	}
1053 }
1054 
1055 /*
1056  * We are picking a new current task - update its stats:
1057  */
1058 static inline void
1059 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1060 {
1061 	/*
1062 	 * We are starting a new run period:
1063 	 */
1064 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1065 }
1066 
1067 /**************************************************
1068  * Scheduling class queueing methods:
1069  */
1070 
1071 #ifdef CONFIG_NUMA_BALANCING
1072 /*
1073  * Approximate time to scan a full NUMA task in ms. The task scan period is
1074  * calculated based on the tasks virtual memory size and
1075  * numa_balancing_scan_size.
1076  */
1077 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1078 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1079 
1080 /* Portion of address space to scan in MB */
1081 unsigned int sysctl_numa_balancing_scan_size = 256;
1082 
1083 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1084 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1085 
1086 struct numa_group {
1087 	refcount_t refcount;
1088 
1089 	spinlock_t lock; /* nr_tasks, tasks */
1090 	int nr_tasks;
1091 	pid_t gid;
1092 	int active_nodes;
1093 
1094 	struct rcu_head rcu;
1095 	unsigned long total_faults;
1096 	unsigned long max_faults_cpu;
1097 	/*
1098 	 * Faults_cpu is used to decide whether memory should move
1099 	 * towards the CPU. As a consequence, these stats are weighted
1100 	 * more by CPU use than by memory faults.
1101 	 */
1102 	unsigned long *faults_cpu;
1103 	unsigned long faults[];
1104 };
1105 
1106 /*
1107  * For functions that can be called in multiple contexts that permit reading
1108  * ->numa_group (see struct task_struct for locking rules).
1109  */
1110 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1111 {
1112 	return rcu_dereference_check(p->numa_group, p == current ||
1113 		(lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1114 }
1115 
1116 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1117 {
1118 	return rcu_dereference_protected(p->numa_group, p == current);
1119 }
1120 
1121 static inline unsigned long group_faults_priv(struct numa_group *ng);
1122 static inline unsigned long group_faults_shared(struct numa_group *ng);
1123 
1124 static unsigned int task_nr_scan_windows(struct task_struct *p)
1125 {
1126 	unsigned long rss = 0;
1127 	unsigned long nr_scan_pages;
1128 
1129 	/*
1130 	 * Calculations based on RSS as non-present and empty pages are skipped
1131 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1132 	 * on resident pages
1133 	 */
1134 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1135 	rss = get_mm_rss(p->mm);
1136 	if (!rss)
1137 		rss = nr_scan_pages;
1138 
1139 	rss = round_up(rss, nr_scan_pages);
1140 	return rss / nr_scan_pages;
1141 }
1142 
1143 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1144 #define MAX_SCAN_WINDOW 2560
1145 
1146 static unsigned int task_scan_min(struct task_struct *p)
1147 {
1148 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1149 	unsigned int scan, floor;
1150 	unsigned int windows = 1;
1151 
1152 	if (scan_size < MAX_SCAN_WINDOW)
1153 		windows = MAX_SCAN_WINDOW / scan_size;
1154 	floor = 1000 / windows;
1155 
1156 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1157 	return max_t(unsigned int, floor, scan);
1158 }
1159 
1160 static unsigned int task_scan_start(struct task_struct *p)
1161 {
1162 	unsigned long smin = task_scan_min(p);
1163 	unsigned long period = smin;
1164 	struct numa_group *ng;
1165 
1166 	/* Scale the maximum scan period with the amount of shared memory. */
1167 	rcu_read_lock();
1168 	ng = rcu_dereference(p->numa_group);
1169 	if (ng) {
1170 		unsigned long shared = group_faults_shared(ng);
1171 		unsigned long private = group_faults_priv(ng);
1172 
1173 		period *= refcount_read(&ng->refcount);
1174 		period *= shared + 1;
1175 		period /= private + shared + 1;
1176 	}
1177 	rcu_read_unlock();
1178 
1179 	return max(smin, period);
1180 }
1181 
1182 static unsigned int task_scan_max(struct task_struct *p)
1183 {
1184 	unsigned long smin = task_scan_min(p);
1185 	unsigned long smax;
1186 	struct numa_group *ng;
1187 
1188 	/* Watch for min being lower than max due to floor calculations */
1189 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1190 
1191 	/* Scale the maximum scan period with the amount of shared memory. */
1192 	ng = deref_curr_numa_group(p);
1193 	if (ng) {
1194 		unsigned long shared = group_faults_shared(ng);
1195 		unsigned long private = group_faults_priv(ng);
1196 		unsigned long period = smax;
1197 
1198 		period *= refcount_read(&ng->refcount);
1199 		period *= shared + 1;
1200 		period /= private + shared + 1;
1201 
1202 		smax = max(smax, period);
1203 	}
1204 
1205 	return max(smin, smax);
1206 }
1207 
1208 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1209 {
1210 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1211 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1212 }
1213 
1214 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1215 {
1216 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1217 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1218 }
1219 
1220 /* Shared or private faults. */
1221 #define NR_NUMA_HINT_FAULT_TYPES 2
1222 
1223 /* Memory and CPU locality */
1224 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1225 
1226 /* Averaged statistics, and temporary buffers. */
1227 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1228 
1229 pid_t task_numa_group_id(struct task_struct *p)
1230 {
1231 	struct numa_group *ng;
1232 	pid_t gid = 0;
1233 
1234 	rcu_read_lock();
1235 	ng = rcu_dereference(p->numa_group);
1236 	if (ng)
1237 		gid = ng->gid;
1238 	rcu_read_unlock();
1239 
1240 	return gid;
1241 }
1242 
1243 /*
1244  * The averaged statistics, shared & private, memory & CPU,
1245  * occupy the first half of the array. The second half of the
1246  * array is for current counters, which are averaged into the
1247  * first set by task_numa_placement.
1248  */
1249 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1250 {
1251 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1252 }
1253 
1254 static inline unsigned long task_faults(struct task_struct *p, int nid)
1255 {
1256 	if (!p->numa_faults)
1257 		return 0;
1258 
1259 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1260 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1261 }
1262 
1263 static inline unsigned long group_faults(struct task_struct *p, int nid)
1264 {
1265 	struct numa_group *ng = deref_task_numa_group(p);
1266 
1267 	if (!ng)
1268 		return 0;
1269 
1270 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1271 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1272 }
1273 
1274 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1275 {
1276 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1277 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1278 }
1279 
1280 static inline unsigned long group_faults_priv(struct numa_group *ng)
1281 {
1282 	unsigned long faults = 0;
1283 	int node;
1284 
1285 	for_each_online_node(node) {
1286 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1287 	}
1288 
1289 	return faults;
1290 }
1291 
1292 static inline unsigned long group_faults_shared(struct numa_group *ng)
1293 {
1294 	unsigned long faults = 0;
1295 	int node;
1296 
1297 	for_each_online_node(node) {
1298 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1299 	}
1300 
1301 	return faults;
1302 }
1303 
1304 /*
1305  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1306  * considered part of a numa group's pseudo-interleaving set. Migrations
1307  * between these nodes are slowed down, to allow things to settle down.
1308  */
1309 #define ACTIVE_NODE_FRACTION 3
1310 
1311 static bool numa_is_active_node(int nid, struct numa_group *ng)
1312 {
1313 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1314 }
1315 
1316 /* Handle placement on systems where not all nodes are directly connected. */
1317 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1318 					int maxdist, bool task)
1319 {
1320 	unsigned long score = 0;
1321 	int node;
1322 
1323 	/*
1324 	 * All nodes are directly connected, and the same distance
1325 	 * from each other. No need for fancy placement algorithms.
1326 	 */
1327 	if (sched_numa_topology_type == NUMA_DIRECT)
1328 		return 0;
1329 
1330 	/*
1331 	 * This code is called for each node, introducing N^2 complexity,
1332 	 * which should be ok given the number of nodes rarely exceeds 8.
1333 	 */
1334 	for_each_online_node(node) {
1335 		unsigned long faults;
1336 		int dist = node_distance(nid, node);
1337 
1338 		/*
1339 		 * The furthest away nodes in the system are not interesting
1340 		 * for placement; nid was already counted.
1341 		 */
1342 		if (dist == sched_max_numa_distance || node == nid)
1343 			continue;
1344 
1345 		/*
1346 		 * On systems with a backplane NUMA topology, compare groups
1347 		 * of nodes, and move tasks towards the group with the most
1348 		 * memory accesses. When comparing two nodes at distance
1349 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1350 		 * of each group. Skip other nodes.
1351 		 */
1352 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1353 					dist >= maxdist)
1354 			continue;
1355 
1356 		/* Add up the faults from nearby nodes. */
1357 		if (task)
1358 			faults = task_faults(p, node);
1359 		else
1360 			faults = group_faults(p, node);
1361 
1362 		/*
1363 		 * On systems with a glueless mesh NUMA topology, there are
1364 		 * no fixed "groups of nodes". Instead, nodes that are not
1365 		 * directly connected bounce traffic through intermediate
1366 		 * nodes; a numa_group can occupy any set of nodes.
1367 		 * The further away a node is, the less the faults count.
1368 		 * This seems to result in good task placement.
1369 		 */
1370 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1371 			faults *= (sched_max_numa_distance - dist);
1372 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1373 		}
1374 
1375 		score += faults;
1376 	}
1377 
1378 	return score;
1379 }
1380 
1381 /*
1382  * These return the fraction of accesses done by a particular task, or
1383  * task group, on a particular numa node.  The group weight is given a
1384  * larger multiplier, in order to group tasks together that are almost
1385  * evenly spread out between numa nodes.
1386  */
1387 static inline unsigned long task_weight(struct task_struct *p, int nid,
1388 					int dist)
1389 {
1390 	unsigned long faults, total_faults;
1391 
1392 	if (!p->numa_faults)
1393 		return 0;
1394 
1395 	total_faults = p->total_numa_faults;
1396 
1397 	if (!total_faults)
1398 		return 0;
1399 
1400 	faults = task_faults(p, nid);
1401 	faults += score_nearby_nodes(p, nid, dist, true);
1402 
1403 	return 1000 * faults / total_faults;
1404 }
1405 
1406 static inline unsigned long group_weight(struct task_struct *p, int nid,
1407 					 int dist)
1408 {
1409 	struct numa_group *ng = deref_task_numa_group(p);
1410 	unsigned long faults, total_faults;
1411 
1412 	if (!ng)
1413 		return 0;
1414 
1415 	total_faults = ng->total_faults;
1416 
1417 	if (!total_faults)
1418 		return 0;
1419 
1420 	faults = group_faults(p, nid);
1421 	faults += score_nearby_nodes(p, nid, dist, false);
1422 
1423 	return 1000 * faults / total_faults;
1424 }
1425 
1426 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1427 				int src_nid, int dst_cpu)
1428 {
1429 	struct numa_group *ng = deref_curr_numa_group(p);
1430 	int dst_nid = cpu_to_node(dst_cpu);
1431 	int last_cpupid, this_cpupid;
1432 
1433 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1434 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1435 
1436 	/*
1437 	 * Allow first faults or private faults to migrate immediately early in
1438 	 * the lifetime of a task. The magic number 4 is based on waiting for
1439 	 * two full passes of the "multi-stage node selection" test that is
1440 	 * executed below.
1441 	 */
1442 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1443 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1444 		return true;
1445 
1446 	/*
1447 	 * Multi-stage node selection is used in conjunction with a periodic
1448 	 * migration fault to build a temporal task<->page relation. By using
1449 	 * a two-stage filter we remove short/unlikely relations.
1450 	 *
1451 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1452 	 * a task's usage of a particular page (n_p) per total usage of this
1453 	 * page (n_t) (in a given time-span) to a probability.
1454 	 *
1455 	 * Our periodic faults will sample this probability and getting the
1456 	 * same result twice in a row, given these samples are fully
1457 	 * independent, is then given by P(n)^2, provided our sample period
1458 	 * is sufficiently short compared to the usage pattern.
1459 	 *
1460 	 * This quadric squishes small probabilities, making it less likely we
1461 	 * act on an unlikely task<->page relation.
1462 	 */
1463 	if (!cpupid_pid_unset(last_cpupid) &&
1464 				cpupid_to_nid(last_cpupid) != dst_nid)
1465 		return false;
1466 
1467 	/* Always allow migrate on private faults */
1468 	if (cpupid_match_pid(p, last_cpupid))
1469 		return true;
1470 
1471 	/* A shared fault, but p->numa_group has not been set up yet. */
1472 	if (!ng)
1473 		return true;
1474 
1475 	/*
1476 	 * Destination node is much more heavily used than the source
1477 	 * node? Allow migration.
1478 	 */
1479 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1480 					ACTIVE_NODE_FRACTION)
1481 		return true;
1482 
1483 	/*
1484 	 * Distribute memory according to CPU & memory use on each node,
1485 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1486 	 *
1487 	 * faults_cpu(dst)   3   faults_cpu(src)
1488 	 * --------------- * - > ---------------
1489 	 * faults_mem(dst)   4   faults_mem(src)
1490 	 */
1491 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1492 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1493 }
1494 
1495 /*
1496  * 'numa_type' describes the node at the moment of load balancing.
1497  */
1498 enum numa_type {
1499 	/* The node has spare capacity that can be used to run more tasks.  */
1500 	node_has_spare = 0,
1501 	/*
1502 	 * The node is fully used and the tasks don't compete for more CPU
1503 	 * cycles. Nevertheless, some tasks might wait before running.
1504 	 */
1505 	node_fully_busy,
1506 	/*
1507 	 * The node is overloaded and can't provide expected CPU cycles to all
1508 	 * tasks.
1509 	 */
1510 	node_overloaded
1511 };
1512 
1513 /* Cached statistics for all CPUs within a node */
1514 struct numa_stats {
1515 	unsigned long load;
1516 	unsigned long runnable;
1517 	unsigned long util;
1518 	/* Total compute capacity of CPUs on a node */
1519 	unsigned long compute_capacity;
1520 	unsigned int nr_running;
1521 	unsigned int weight;
1522 	enum numa_type node_type;
1523 	int idle_cpu;
1524 };
1525 
1526 static inline bool is_core_idle(int cpu)
1527 {
1528 #ifdef CONFIG_SCHED_SMT
1529 	int sibling;
1530 
1531 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1532 		if (cpu == sibling)
1533 			continue;
1534 
1535 		if (!idle_cpu(cpu))
1536 			return false;
1537 	}
1538 #endif
1539 
1540 	return true;
1541 }
1542 
1543 struct task_numa_env {
1544 	struct task_struct *p;
1545 
1546 	int src_cpu, src_nid;
1547 	int dst_cpu, dst_nid;
1548 
1549 	struct numa_stats src_stats, dst_stats;
1550 
1551 	int imbalance_pct;
1552 	int dist;
1553 
1554 	struct task_struct *best_task;
1555 	long best_imp;
1556 	int best_cpu;
1557 };
1558 
1559 static unsigned long cpu_load(struct rq *rq);
1560 static unsigned long cpu_runnable(struct rq *rq);
1561 static unsigned long cpu_util(int cpu);
1562 static inline long adjust_numa_imbalance(int imbalance,
1563 					int dst_running, int dst_weight);
1564 
1565 static inline enum
1566 numa_type numa_classify(unsigned int imbalance_pct,
1567 			 struct numa_stats *ns)
1568 {
1569 	if ((ns->nr_running > ns->weight) &&
1570 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1571 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1572 		return node_overloaded;
1573 
1574 	if ((ns->nr_running < ns->weight) ||
1575 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1576 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1577 		return node_has_spare;
1578 
1579 	return node_fully_busy;
1580 }
1581 
1582 #ifdef CONFIG_SCHED_SMT
1583 /* Forward declarations of select_idle_sibling helpers */
1584 static inline bool test_idle_cores(int cpu, bool def);
1585 static inline int numa_idle_core(int idle_core, int cpu)
1586 {
1587 	if (!static_branch_likely(&sched_smt_present) ||
1588 	    idle_core >= 0 || !test_idle_cores(cpu, false))
1589 		return idle_core;
1590 
1591 	/*
1592 	 * Prefer cores instead of packing HT siblings
1593 	 * and triggering future load balancing.
1594 	 */
1595 	if (is_core_idle(cpu))
1596 		idle_core = cpu;
1597 
1598 	return idle_core;
1599 }
1600 #else
1601 static inline int numa_idle_core(int idle_core, int cpu)
1602 {
1603 	return idle_core;
1604 }
1605 #endif
1606 
1607 /*
1608  * Gather all necessary information to make NUMA balancing placement
1609  * decisions that are compatible with standard load balancer. This
1610  * borrows code and logic from update_sg_lb_stats but sharing a
1611  * common implementation is impractical.
1612  */
1613 static void update_numa_stats(struct task_numa_env *env,
1614 			      struct numa_stats *ns, int nid,
1615 			      bool find_idle)
1616 {
1617 	int cpu, idle_core = -1;
1618 
1619 	memset(ns, 0, sizeof(*ns));
1620 	ns->idle_cpu = -1;
1621 
1622 	rcu_read_lock();
1623 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1624 		struct rq *rq = cpu_rq(cpu);
1625 
1626 		ns->load += cpu_load(rq);
1627 		ns->runnable += cpu_runnable(rq);
1628 		ns->util += cpu_util(cpu);
1629 		ns->nr_running += rq->cfs.h_nr_running;
1630 		ns->compute_capacity += capacity_of(cpu);
1631 
1632 		if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1633 			if (READ_ONCE(rq->numa_migrate_on) ||
1634 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1635 				continue;
1636 
1637 			if (ns->idle_cpu == -1)
1638 				ns->idle_cpu = cpu;
1639 
1640 			idle_core = numa_idle_core(idle_core, cpu);
1641 		}
1642 	}
1643 	rcu_read_unlock();
1644 
1645 	ns->weight = cpumask_weight(cpumask_of_node(nid));
1646 
1647 	ns->node_type = numa_classify(env->imbalance_pct, ns);
1648 
1649 	if (idle_core >= 0)
1650 		ns->idle_cpu = idle_core;
1651 }
1652 
1653 static void task_numa_assign(struct task_numa_env *env,
1654 			     struct task_struct *p, long imp)
1655 {
1656 	struct rq *rq = cpu_rq(env->dst_cpu);
1657 
1658 	/* Check if run-queue part of active NUMA balance. */
1659 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1660 		int cpu;
1661 		int start = env->dst_cpu;
1662 
1663 		/* Find alternative idle CPU. */
1664 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1665 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1666 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1667 				continue;
1668 			}
1669 
1670 			env->dst_cpu = cpu;
1671 			rq = cpu_rq(env->dst_cpu);
1672 			if (!xchg(&rq->numa_migrate_on, 1))
1673 				goto assign;
1674 		}
1675 
1676 		/* Failed to find an alternative idle CPU */
1677 		return;
1678 	}
1679 
1680 assign:
1681 	/*
1682 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1683 	 * found a better CPU to move/swap.
1684 	 */
1685 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1686 		rq = cpu_rq(env->best_cpu);
1687 		WRITE_ONCE(rq->numa_migrate_on, 0);
1688 	}
1689 
1690 	if (env->best_task)
1691 		put_task_struct(env->best_task);
1692 	if (p)
1693 		get_task_struct(p);
1694 
1695 	env->best_task = p;
1696 	env->best_imp = imp;
1697 	env->best_cpu = env->dst_cpu;
1698 }
1699 
1700 static bool load_too_imbalanced(long src_load, long dst_load,
1701 				struct task_numa_env *env)
1702 {
1703 	long imb, old_imb;
1704 	long orig_src_load, orig_dst_load;
1705 	long src_capacity, dst_capacity;
1706 
1707 	/*
1708 	 * The load is corrected for the CPU capacity available on each node.
1709 	 *
1710 	 * src_load        dst_load
1711 	 * ------------ vs ---------
1712 	 * src_capacity    dst_capacity
1713 	 */
1714 	src_capacity = env->src_stats.compute_capacity;
1715 	dst_capacity = env->dst_stats.compute_capacity;
1716 
1717 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1718 
1719 	orig_src_load = env->src_stats.load;
1720 	orig_dst_load = env->dst_stats.load;
1721 
1722 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1723 
1724 	/* Would this change make things worse? */
1725 	return (imb > old_imb);
1726 }
1727 
1728 /*
1729  * Maximum NUMA importance can be 1998 (2*999);
1730  * SMALLIMP @ 30 would be close to 1998/64.
1731  * Used to deter task migration.
1732  */
1733 #define SMALLIMP	30
1734 
1735 /*
1736  * This checks if the overall compute and NUMA accesses of the system would
1737  * be improved if the source tasks was migrated to the target dst_cpu taking
1738  * into account that it might be best if task running on the dst_cpu should
1739  * be exchanged with the source task
1740  */
1741 static bool task_numa_compare(struct task_numa_env *env,
1742 			      long taskimp, long groupimp, bool maymove)
1743 {
1744 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1745 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1746 	long imp = p_ng ? groupimp : taskimp;
1747 	struct task_struct *cur;
1748 	long src_load, dst_load;
1749 	int dist = env->dist;
1750 	long moveimp = imp;
1751 	long load;
1752 	bool stopsearch = false;
1753 
1754 	if (READ_ONCE(dst_rq->numa_migrate_on))
1755 		return false;
1756 
1757 	rcu_read_lock();
1758 	cur = rcu_dereference(dst_rq->curr);
1759 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1760 		cur = NULL;
1761 
1762 	/*
1763 	 * Because we have preemption enabled we can get migrated around and
1764 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1765 	 */
1766 	if (cur == env->p) {
1767 		stopsearch = true;
1768 		goto unlock;
1769 	}
1770 
1771 	if (!cur) {
1772 		if (maymove && moveimp >= env->best_imp)
1773 			goto assign;
1774 		else
1775 			goto unlock;
1776 	}
1777 
1778 	/* Skip this swap candidate if cannot move to the source cpu. */
1779 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1780 		goto unlock;
1781 
1782 	/*
1783 	 * Skip this swap candidate if it is not moving to its preferred
1784 	 * node and the best task is.
1785 	 */
1786 	if (env->best_task &&
1787 	    env->best_task->numa_preferred_nid == env->src_nid &&
1788 	    cur->numa_preferred_nid != env->src_nid) {
1789 		goto unlock;
1790 	}
1791 
1792 	/*
1793 	 * "imp" is the fault differential for the source task between the
1794 	 * source and destination node. Calculate the total differential for
1795 	 * the source task and potential destination task. The more negative
1796 	 * the value is, the more remote accesses that would be expected to
1797 	 * be incurred if the tasks were swapped.
1798 	 *
1799 	 * If dst and source tasks are in the same NUMA group, or not
1800 	 * in any group then look only at task weights.
1801 	 */
1802 	cur_ng = rcu_dereference(cur->numa_group);
1803 	if (cur_ng == p_ng) {
1804 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1805 		      task_weight(cur, env->dst_nid, dist);
1806 		/*
1807 		 * Add some hysteresis to prevent swapping the
1808 		 * tasks within a group over tiny differences.
1809 		 */
1810 		if (cur_ng)
1811 			imp -= imp / 16;
1812 	} else {
1813 		/*
1814 		 * Compare the group weights. If a task is all by itself
1815 		 * (not part of a group), use the task weight instead.
1816 		 */
1817 		if (cur_ng && p_ng)
1818 			imp += group_weight(cur, env->src_nid, dist) -
1819 			       group_weight(cur, env->dst_nid, dist);
1820 		else
1821 			imp += task_weight(cur, env->src_nid, dist) -
1822 			       task_weight(cur, env->dst_nid, dist);
1823 	}
1824 
1825 	/* Discourage picking a task already on its preferred node */
1826 	if (cur->numa_preferred_nid == env->dst_nid)
1827 		imp -= imp / 16;
1828 
1829 	/*
1830 	 * Encourage picking a task that moves to its preferred node.
1831 	 * This potentially makes imp larger than it's maximum of
1832 	 * 1998 (see SMALLIMP and task_weight for why) but in this
1833 	 * case, it does not matter.
1834 	 */
1835 	if (cur->numa_preferred_nid == env->src_nid)
1836 		imp += imp / 8;
1837 
1838 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1839 		imp = moveimp;
1840 		cur = NULL;
1841 		goto assign;
1842 	}
1843 
1844 	/*
1845 	 * Prefer swapping with a task moving to its preferred node over a
1846 	 * task that is not.
1847 	 */
1848 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1849 	    env->best_task->numa_preferred_nid != env->src_nid) {
1850 		goto assign;
1851 	}
1852 
1853 	/*
1854 	 * If the NUMA importance is less than SMALLIMP,
1855 	 * task migration might only result in ping pong
1856 	 * of tasks and also hurt performance due to cache
1857 	 * misses.
1858 	 */
1859 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1860 		goto unlock;
1861 
1862 	/*
1863 	 * In the overloaded case, try and keep the load balanced.
1864 	 */
1865 	load = task_h_load(env->p) - task_h_load(cur);
1866 	if (!load)
1867 		goto assign;
1868 
1869 	dst_load = env->dst_stats.load + load;
1870 	src_load = env->src_stats.load - load;
1871 
1872 	if (load_too_imbalanced(src_load, dst_load, env))
1873 		goto unlock;
1874 
1875 assign:
1876 	/* Evaluate an idle CPU for a task numa move. */
1877 	if (!cur) {
1878 		int cpu = env->dst_stats.idle_cpu;
1879 
1880 		/* Nothing cached so current CPU went idle since the search. */
1881 		if (cpu < 0)
1882 			cpu = env->dst_cpu;
1883 
1884 		/*
1885 		 * If the CPU is no longer truly idle and the previous best CPU
1886 		 * is, keep using it.
1887 		 */
1888 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1889 		    idle_cpu(env->best_cpu)) {
1890 			cpu = env->best_cpu;
1891 		}
1892 
1893 		env->dst_cpu = cpu;
1894 	}
1895 
1896 	task_numa_assign(env, cur, imp);
1897 
1898 	/*
1899 	 * If a move to idle is allowed because there is capacity or load
1900 	 * balance improves then stop the search. While a better swap
1901 	 * candidate may exist, a search is not free.
1902 	 */
1903 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1904 		stopsearch = true;
1905 
1906 	/*
1907 	 * If a swap candidate must be identified and the current best task
1908 	 * moves its preferred node then stop the search.
1909 	 */
1910 	if (!maymove && env->best_task &&
1911 	    env->best_task->numa_preferred_nid == env->src_nid) {
1912 		stopsearch = true;
1913 	}
1914 unlock:
1915 	rcu_read_unlock();
1916 
1917 	return stopsearch;
1918 }
1919 
1920 static void task_numa_find_cpu(struct task_numa_env *env,
1921 				long taskimp, long groupimp)
1922 {
1923 	bool maymove = false;
1924 	int cpu;
1925 
1926 	/*
1927 	 * If dst node has spare capacity, then check if there is an
1928 	 * imbalance that would be overruled by the load balancer.
1929 	 */
1930 	if (env->dst_stats.node_type == node_has_spare) {
1931 		unsigned int imbalance;
1932 		int src_running, dst_running;
1933 
1934 		/*
1935 		 * Would movement cause an imbalance? Note that if src has
1936 		 * more running tasks that the imbalance is ignored as the
1937 		 * move improves the imbalance from the perspective of the
1938 		 * CPU load balancer.
1939 		 * */
1940 		src_running = env->src_stats.nr_running - 1;
1941 		dst_running = env->dst_stats.nr_running + 1;
1942 		imbalance = max(0, dst_running - src_running);
1943 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
1944 							env->dst_stats.weight);
1945 
1946 		/* Use idle CPU if there is no imbalance */
1947 		if (!imbalance) {
1948 			maymove = true;
1949 			if (env->dst_stats.idle_cpu >= 0) {
1950 				env->dst_cpu = env->dst_stats.idle_cpu;
1951 				task_numa_assign(env, NULL, 0);
1952 				return;
1953 			}
1954 		}
1955 	} else {
1956 		long src_load, dst_load, load;
1957 		/*
1958 		 * If the improvement from just moving env->p direction is better
1959 		 * than swapping tasks around, check if a move is possible.
1960 		 */
1961 		load = task_h_load(env->p);
1962 		dst_load = env->dst_stats.load + load;
1963 		src_load = env->src_stats.load - load;
1964 		maymove = !load_too_imbalanced(src_load, dst_load, env);
1965 	}
1966 
1967 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1968 		/* Skip this CPU if the source task cannot migrate */
1969 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1970 			continue;
1971 
1972 		env->dst_cpu = cpu;
1973 		if (task_numa_compare(env, taskimp, groupimp, maymove))
1974 			break;
1975 	}
1976 }
1977 
1978 static int task_numa_migrate(struct task_struct *p)
1979 {
1980 	struct task_numa_env env = {
1981 		.p = p,
1982 
1983 		.src_cpu = task_cpu(p),
1984 		.src_nid = task_node(p),
1985 
1986 		.imbalance_pct = 112,
1987 
1988 		.best_task = NULL,
1989 		.best_imp = 0,
1990 		.best_cpu = -1,
1991 	};
1992 	unsigned long taskweight, groupweight;
1993 	struct sched_domain *sd;
1994 	long taskimp, groupimp;
1995 	struct numa_group *ng;
1996 	struct rq *best_rq;
1997 	int nid, ret, dist;
1998 
1999 	/*
2000 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2001 	 * imbalance and would be the first to start moving tasks about.
2002 	 *
2003 	 * And we want to avoid any moving of tasks about, as that would create
2004 	 * random movement of tasks -- counter the numa conditions we're trying
2005 	 * to satisfy here.
2006 	 */
2007 	rcu_read_lock();
2008 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2009 	if (sd)
2010 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2011 	rcu_read_unlock();
2012 
2013 	/*
2014 	 * Cpusets can break the scheduler domain tree into smaller
2015 	 * balance domains, some of which do not cross NUMA boundaries.
2016 	 * Tasks that are "trapped" in such domains cannot be migrated
2017 	 * elsewhere, so there is no point in (re)trying.
2018 	 */
2019 	if (unlikely(!sd)) {
2020 		sched_setnuma(p, task_node(p));
2021 		return -EINVAL;
2022 	}
2023 
2024 	env.dst_nid = p->numa_preferred_nid;
2025 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2026 	taskweight = task_weight(p, env.src_nid, dist);
2027 	groupweight = group_weight(p, env.src_nid, dist);
2028 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2029 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2030 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2031 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2032 
2033 	/* Try to find a spot on the preferred nid. */
2034 	task_numa_find_cpu(&env, taskimp, groupimp);
2035 
2036 	/*
2037 	 * Look at other nodes in these cases:
2038 	 * - there is no space available on the preferred_nid
2039 	 * - the task is part of a numa_group that is interleaved across
2040 	 *   multiple NUMA nodes; in order to better consolidate the group,
2041 	 *   we need to check other locations.
2042 	 */
2043 	ng = deref_curr_numa_group(p);
2044 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2045 		for_each_online_node(nid) {
2046 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2047 				continue;
2048 
2049 			dist = node_distance(env.src_nid, env.dst_nid);
2050 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2051 						dist != env.dist) {
2052 				taskweight = task_weight(p, env.src_nid, dist);
2053 				groupweight = group_weight(p, env.src_nid, dist);
2054 			}
2055 
2056 			/* Only consider nodes where both task and groups benefit */
2057 			taskimp = task_weight(p, nid, dist) - taskweight;
2058 			groupimp = group_weight(p, nid, dist) - groupweight;
2059 			if (taskimp < 0 && groupimp < 0)
2060 				continue;
2061 
2062 			env.dist = dist;
2063 			env.dst_nid = nid;
2064 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2065 			task_numa_find_cpu(&env, taskimp, groupimp);
2066 		}
2067 	}
2068 
2069 	/*
2070 	 * If the task is part of a workload that spans multiple NUMA nodes,
2071 	 * and is migrating into one of the workload's active nodes, remember
2072 	 * this node as the task's preferred numa node, so the workload can
2073 	 * settle down.
2074 	 * A task that migrated to a second choice node will be better off
2075 	 * trying for a better one later. Do not set the preferred node here.
2076 	 */
2077 	if (ng) {
2078 		if (env.best_cpu == -1)
2079 			nid = env.src_nid;
2080 		else
2081 			nid = cpu_to_node(env.best_cpu);
2082 
2083 		if (nid != p->numa_preferred_nid)
2084 			sched_setnuma(p, nid);
2085 	}
2086 
2087 	/* No better CPU than the current one was found. */
2088 	if (env.best_cpu == -1) {
2089 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2090 		return -EAGAIN;
2091 	}
2092 
2093 	best_rq = cpu_rq(env.best_cpu);
2094 	if (env.best_task == NULL) {
2095 		ret = migrate_task_to(p, env.best_cpu);
2096 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2097 		if (ret != 0)
2098 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2099 		return ret;
2100 	}
2101 
2102 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2103 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2104 
2105 	if (ret != 0)
2106 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2107 	put_task_struct(env.best_task);
2108 	return ret;
2109 }
2110 
2111 /* Attempt to migrate a task to a CPU on the preferred node. */
2112 static void numa_migrate_preferred(struct task_struct *p)
2113 {
2114 	unsigned long interval = HZ;
2115 
2116 	/* This task has no NUMA fault statistics yet */
2117 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2118 		return;
2119 
2120 	/* Periodically retry migrating the task to the preferred node */
2121 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2122 	p->numa_migrate_retry = jiffies + interval;
2123 
2124 	/* Success if task is already running on preferred CPU */
2125 	if (task_node(p) == p->numa_preferred_nid)
2126 		return;
2127 
2128 	/* Otherwise, try migrate to a CPU on the preferred node */
2129 	task_numa_migrate(p);
2130 }
2131 
2132 /*
2133  * Find out how many nodes on the workload is actively running on. Do this by
2134  * tracking the nodes from which NUMA hinting faults are triggered. This can
2135  * be different from the set of nodes where the workload's memory is currently
2136  * located.
2137  */
2138 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2139 {
2140 	unsigned long faults, max_faults = 0;
2141 	int nid, active_nodes = 0;
2142 
2143 	for_each_online_node(nid) {
2144 		faults = group_faults_cpu(numa_group, nid);
2145 		if (faults > max_faults)
2146 			max_faults = faults;
2147 	}
2148 
2149 	for_each_online_node(nid) {
2150 		faults = group_faults_cpu(numa_group, nid);
2151 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2152 			active_nodes++;
2153 	}
2154 
2155 	numa_group->max_faults_cpu = max_faults;
2156 	numa_group->active_nodes = active_nodes;
2157 }
2158 
2159 /*
2160  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2161  * increments. The more local the fault statistics are, the higher the scan
2162  * period will be for the next scan window. If local/(local+remote) ratio is
2163  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2164  * the scan period will decrease. Aim for 70% local accesses.
2165  */
2166 #define NUMA_PERIOD_SLOTS 10
2167 #define NUMA_PERIOD_THRESHOLD 7
2168 
2169 /*
2170  * Increase the scan period (slow down scanning) if the majority of
2171  * our memory is already on our local node, or if the majority of
2172  * the page accesses are shared with other processes.
2173  * Otherwise, decrease the scan period.
2174  */
2175 static void update_task_scan_period(struct task_struct *p,
2176 			unsigned long shared, unsigned long private)
2177 {
2178 	unsigned int period_slot;
2179 	int lr_ratio, ps_ratio;
2180 	int diff;
2181 
2182 	unsigned long remote = p->numa_faults_locality[0];
2183 	unsigned long local = p->numa_faults_locality[1];
2184 
2185 	/*
2186 	 * If there were no record hinting faults then either the task is
2187 	 * completely idle or all activity is areas that are not of interest
2188 	 * to automatic numa balancing. Related to that, if there were failed
2189 	 * migration then it implies we are migrating too quickly or the local
2190 	 * node is overloaded. In either case, scan slower
2191 	 */
2192 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2193 		p->numa_scan_period = min(p->numa_scan_period_max,
2194 			p->numa_scan_period << 1);
2195 
2196 		p->mm->numa_next_scan = jiffies +
2197 			msecs_to_jiffies(p->numa_scan_period);
2198 
2199 		return;
2200 	}
2201 
2202 	/*
2203 	 * Prepare to scale scan period relative to the current period.
2204 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2205 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2206 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2207 	 */
2208 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2209 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2210 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2211 
2212 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2213 		/*
2214 		 * Most memory accesses are local. There is no need to
2215 		 * do fast NUMA scanning, since memory is already local.
2216 		 */
2217 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2218 		if (!slot)
2219 			slot = 1;
2220 		diff = slot * period_slot;
2221 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2222 		/*
2223 		 * Most memory accesses are shared with other tasks.
2224 		 * There is no point in continuing fast NUMA scanning,
2225 		 * since other tasks may just move the memory elsewhere.
2226 		 */
2227 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2228 		if (!slot)
2229 			slot = 1;
2230 		diff = slot * period_slot;
2231 	} else {
2232 		/*
2233 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2234 		 * yet they are not on the local NUMA node. Speed up
2235 		 * NUMA scanning to get the memory moved over.
2236 		 */
2237 		int ratio = max(lr_ratio, ps_ratio);
2238 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2239 	}
2240 
2241 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2242 			task_scan_min(p), task_scan_max(p));
2243 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2244 }
2245 
2246 /*
2247  * Get the fraction of time the task has been running since the last
2248  * NUMA placement cycle. The scheduler keeps similar statistics, but
2249  * decays those on a 32ms period, which is orders of magnitude off
2250  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2251  * stats only if the task is so new there are no NUMA statistics yet.
2252  */
2253 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2254 {
2255 	u64 runtime, delta, now;
2256 	/* Use the start of this time slice to avoid calculations. */
2257 	now = p->se.exec_start;
2258 	runtime = p->se.sum_exec_runtime;
2259 
2260 	if (p->last_task_numa_placement) {
2261 		delta = runtime - p->last_sum_exec_runtime;
2262 		*period = now - p->last_task_numa_placement;
2263 
2264 		/* Avoid time going backwards, prevent potential divide error: */
2265 		if (unlikely((s64)*period < 0))
2266 			*period = 0;
2267 	} else {
2268 		delta = p->se.avg.load_sum;
2269 		*period = LOAD_AVG_MAX;
2270 	}
2271 
2272 	p->last_sum_exec_runtime = runtime;
2273 	p->last_task_numa_placement = now;
2274 
2275 	return delta;
2276 }
2277 
2278 /*
2279  * Determine the preferred nid for a task in a numa_group. This needs to
2280  * be done in a way that produces consistent results with group_weight,
2281  * otherwise workloads might not converge.
2282  */
2283 static int preferred_group_nid(struct task_struct *p, int nid)
2284 {
2285 	nodemask_t nodes;
2286 	int dist;
2287 
2288 	/* Direct connections between all NUMA nodes. */
2289 	if (sched_numa_topology_type == NUMA_DIRECT)
2290 		return nid;
2291 
2292 	/*
2293 	 * On a system with glueless mesh NUMA topology, group_weight
2294 	 * scores nodes according to the number of NUMA hinting faults on
2295 	 * both the node itself, and on nearby nodes.
2296 	 */
2297 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2298 		unsigned long score, max_score = 0;
2299 		int node, max_node = nid;
2300 
2301 		dist = sched_max_numa_distance;
2302 
2303 		for_each_online_node(node) {
2304 			score = group_weight(p, node, dist);
2305 			if (score > max_score) {
2306 				max_score = score;
2307 				max_node = node;
2308 			}
2309 		}
2310 		return max_node;
2311 	}
2312 
2313 	/*
2314 	 * Finding the preferred nid in a system with NUMA backplane
2315 	 * interconnect topology is more involved. The goal is to locate
2316 	 * tasks from numa_groups near each other in the system, and
2317 	 * untangle workloads from different sides of the system. This requires
2318 	 * searching down the hierarchy of node groups, recursively searching
2319 	 * inside the highest scoring group of nodes. The nodemask tricks
2320 	 * keep the complexity of the search down.
2321 	 */
2322 	nodes = node_online_map;
2323 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2324 		unsigned long max_faults = 0;
2325 		nodemask_t max_group = NODE_MASK_NONE;
2326 		int a, b;
2327 
2328 		/* Are there nodes at this distance from each other? */
2329 		if (!find_numa_distance(dist))
2330 			continue;
2331 
2332 		for_each_node_mask(a, nodes) {
2333 			unsigned long faults = 0;
2334 			nodemask_t this_group;
2335 			nodes_clear(this_group);
2336 
2337 			/* Sum group's NUMA faults; includes a==b case. */
2338 			for_each_node_mask(b, nodes) {
2339 				if (node_distance(a, b) < dist) {
2340 					faults += group_faults(p, b);
2341 					node_set(b, this_group);
2342 					node_clear(b, nodes);
2343 				}
2344 			}
2345 
2346 			/* Remember the top group. */
2347 			if (faults > max_faults) {
2348 				max_faults = faults;
2349 				max_group = this_group;
2350 				/*
2351 				 * subtle: at the smallest distance there is
2352 				 * just one node left in each "group", the
2353 				 * winner is the preferred nid.
2354 				 */
2355 				nid = a;
2356 			}
2357 		}
2358 		/* Next round, evaluate the nodes within max_group. */
2359 		if (!max_faults)
2360 			break;
2361 		nodes = max_group;
2362 	}
2363 	return nid;
2364 }
2365 
2366 static void task_numa_placement(struct task_struct *p)
2367 {
2368 	int seq, nid, max_nid = NUMA_NO_NODE;
2369 	unsigned long max_faults = 0;
2370 	unsigned long fault_types[2] = { 0, 0 };
2371 	unsigned long total_faults;
2372 	u64 runtime, period;
2373 	spinlock_t *group_lock = NULL;
2374 	struct numa_group *ng;
2375 
2376 	/*
2377 	 * The p->mm->numa_scan_seq field gets updated without
2378 	 * exclusive access. Use READ_ONCE() here to ensure
2379 	 * that the field is read in a single access:
2380 	 */
2381 	seq = READ_ONCE(p->mm->numa_scan_seq);
2382 	if (p->numa_scan_seq == seq)
2383 		return;
2384 	p->numa_scan_seq = seq;
2385 	p->numa_scan_period_max = task_scan_max(p);
2386 
2387 	total_faults = p->numa_faults_locality[0] +
2388 		       p->numa_faults_locality[1];
2389 	runtime = numa_get_avg_runtime(p, &period);
2390 
2391 	/* If the task is part of a group prevent parallel updates to group stats */
2392 	ng = deref_curr_numa_group(p);
2393 	if (ng) {
2394 		group_lock = &ng->lock;
2395 		spin_lock_irq(group_lock);
2396 	}
2397 
2398 	/* Find the node with the highest number of faults */
2399 	for_each_online_node(nid) {
2400 		/* Keep track of the offsets in numa_faults array */
2401 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2402 		unsigned long faults = 0, group_faults = 0;
2403 		int priv;
2404 
2405 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2406 			long diff, f_diff, f_weight;
2407 
2408 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2409 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2410 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2411 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2412 
2413 			/* Decay existing window, copy faults since last scan */
2414 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2415 			fault_types[priv] += p->numa_faults[membuf_idx];
2416 			p->numa_faults[membuf_idx] = 0;
2417 
2418 			/*
2419 			 * Normalize the faults_from, so all tasks in a group
2420 			 * count according to CPU use, instead of by the raw
2421 			 * number of faults. Tasks with little runtime have
2422 			 * little over-all impact on throughput, and thus their
2423 			 * faults are less important.
2424 			 */
2425 			f_weight = div64_u64(runtime << 16, period + 1);
2426 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2427 				   (total_faults + 1);
2428 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2429 			p->numa_faults[cpubuf_idx] = 0;
2430 
2431 			p->numa_faults[mem_idx] += diff;
2432 			p->numa_faults[cpu_idx] += f_diff;
2433 			faults += p->numa_faults[mem_idx];
2434 			p->total_numa_faults += diff;
2435 			if (ng) {
2436 				/*
2437 				 * safe because we can only change our own group
2438 				 *
2439 				 * mem_idx represents the offset for a given
2440 				 * nid and priv in a specific region because it
2441 				 * is at the beginning of the numa_faults array.
2442 				 */
2443 				ng->faults[mem_idx] += diff;
2444 				ng->faults_cpu[mem_idx] += f_diff;
2445 				ng->total_faults += diff;
2446 				group_faults += ng->faults[mem_idx];
2447 			}
2448 		}
2449 
2450 		if (!ng) {
2451 			if (faults > max_faults) {
2452 				max_faults = faults;
2453 				max_nid = nid;
2454 			}
2455 		} else if (group_faults > max_faults) {
2456 			max_faults = group_faults;
2457 			max_nid = nid;
2458 		}
2459 	}
2460 
2461 	if (ng) {
2462 		numa_group_count_active_nodes(ng);
2463 		spin_unlock_irq(group_lock);
2464 		max_nid = preferred_group_nid(p, max_nid);
2465 	}
2466 
2467 	if (max_faults) {
2468 		/* Set the new preferred node */
2469 		if (max_nid != p->numa_preferred_nid)
2470 			sched_setnuma(p, max_nid);
2471 	}
2472 
2473 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2474 }
2475 
2476 static inline int get_numa_group(struct numa_group *grp)
2477 {
2478 	return refcount_inc_not_zero(&grp->refcount);
2479 }
2480 
2481 static inline void put_numa_group(struct numa_group *grp)
2482 {
2483 	if (refcount_dec_and_test(&grp->refcount))
2484 		kfree_rcu(grp, rcu);
2485 }
2486 
2487 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2488 			int *priv)
2489 {
2490 	struct numa_group *grp, *my_grp;
2491 	struct task_struct *tsk;
2492 	bool join = false;
2493 	int cpu = cpupid_to_cpu(cpupid);
2494 	int i;
2495 
2496 	if (unlikely(!deref_curr_numa_group(p))) {
2497 		unsigned int size = sizeof(struct numa_group) +
2498 				    4*nr_node_ids*sizeof(unsigned long);
2499 
2500 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2501 		if (!grp)
2502 			return;
2503 
2504 		refcount_set(&grp->refcount, 1);
2505 		grp->active_nodes = 1;
2506 		grp->max_faults_cpu = 0;
2507 		spin_lock_init(&grp->lock);
2508 		grp->gid = p->pid;
2509 		/* Second half of the array tracks nids where faults happen */
2510 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2511 						nr_node_ids;
2512 
2513 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2514 			grp->faults[i] = p->numa_faults[i];
2515 
2516 		grp->total_faults = p->total_numa_faults;
2517 
2518 		grp->nr_tasks++;
2519 		rcu_assign_pointer(p->numa_group, grp);
2520 	}
2521 
2522 	rcu_read_lock();
2523 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2524 
2525 	if (!cpupid_match_pid(tsk, cpupid))
2526 		goto no_join;
2527 
2528 	grp = rcu_dereference(tsk->numa_group);
2529 	if (!grp)
2530 		goto no_join;
2531 
2532 	my_grp = deref_curr_numa_group(p);
2533 	if (grp == my_grp)
2534 		goto no_join;
2535 
2536 	/*
2537 	 * Only join the other group if its bigger; if we're the bigger group,
2538 	 * the other task will join us.
2539 	 */
2540 	if (my_grp->nr_tasks > grp->nr_tasks)
2541 		goto no_join;
2542 
2543 	/*
2544 	 * Tie-break on the grp address.
2545 	 */
2546 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2547 		goto no_join;
2548 
2549 	/* Always join threads in the same process. */
2550 	if (tsk->mm == current->mm)
2551 		join = true;
2552 
2553 	/* Simple filter to avoid false positives due to PID collisions */
2554 	if (flags & TNF_SHARED)
2555 		join = true;
2556 
2557 	/* Update priv based on whether false sharing was detected */
2558 	*priv = !join;
2559 
2560 	if (join && !get_numa_group(grp))
2561 		goto no_join;
2562 
2563 	rcu_read_unlock();
2564 
2565 	if (!join)
2566 		return;
2567 
2568 	BUG_ON(irqs_disabled());
2569 	double_lock_irq(&my_grp->lock, &grp->lock);
2570 
2571 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2572 		my_grp->faults[i] -= p->numa_faults[i];
2573 		grp->faults[i] += p->numa_faults[i];
2574 	}
2575 	my_grp->total_faults -= p->total_numa_faults;
2576 	grp->total_faults += p->total_numa_faults;
2577 
2578 	my_grp->nr_tasks--;
2579 	grp->nr_tasks++;
2580 
2581 	spin_unlock(&my_grp->lock);
2582 	spin_unlock_irq(&grp->lock);
2583 
2584 	rcu_assign_pointer(p->numa_group, grp);
2585 
2586 	put_numa_group(my_grp);
2587 	return;
2588 
2589 no_join:
2590 	rcu_read_unlock();
2591 	return;
2592 }
2593 
2594 /*
2595  * Get rid of NUMA staticstics associated with a task (either current or dead).
2596  * If @final is set, the task is dead and has reached refcount zero, so we can
2597  * safely free all relevant data structures. Otherwise, there might be
2598  * concurrent reads from places like load balancing and procfs, and we should
2599  * reset the data back to default state without freeing ->numa_faults.
2600  */
2601 void task_numa_free(struct task_struct *p, bool final)
2602 {
2603 	/* safe: p either is current or is being freed by current */
2604 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2605 	unsigned long *numa_faults = p->numa_faults;
2606 	unsigned long flags;
2607 	int i;
2608 
2609 	if (!numa_faults)
2610 		return;
2611 
2612 	if (grp) {
2613 		spin_lock_irqsave(&grp->lock, flags);
2614 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2615 			grp->faults[i] -= p->numa_faults[i];
2616 		grp->total_faults -= p->total_numa_faults;
2617 
2618 		grp->nr_tasks--;
2619 		spin_unlock_irqrestore(&grp->lock, flags);
2620 		RCU_INIT_POINTER(p->numa_group, NULL);
2621 		put_numa_group(grp);
2622 	}
2623 
2624 	if (final) {
2625 		p->numa_faults = NULL;
2626 		kfree(numa_faults);
2627 	} else {
2628 		p->total_numa_faults = 0;
2629 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2630 			numa_faults[i] = 0;
2631 	}
2632 }
2633 
2634 /*
2635  * Got a PROT_NONE fault for a page on @node.
2636  */
2637 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2638 {
2639 	struct task_struct *p = current;
2640 	bool migrated = flags & TNF_MIGRATED;
2641 	int cpu_node = task_node(current);
2642 	int local = !!(flags & TNF_FAULT_LOCAL);
2643 	struct numa_group *ng;
2644 	int priv;
2645 
2646 	if (!static_branch_likely(&sched_numa_balancing))
2647 		return;
2648 
2649 	/* for example, ksmd faulting in a user's mm */
2650 	if (!p->mm)
2651 		return;
2652 
2653 	/* Allocate buffer to track faults on a per-node basis */
2654 	if (unlikely(!p->numa_faults)) {
2655 		int size = sizeof(*p->numa_faults) *
2656 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2657 
2658 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2659 		if (!p->numa_faults)
2660 			return;
2661 
2662 		p->total_numa_faults = 0;
2663 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2664 	}
2665 
2666 	/*
2667 	 * First accesses are treated as private, otherwise consider accesses
2668 	 * to be private if the accessing pid has not changed
2669 	 */
2670 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2671 		priv = 1;
2672 	} else {
2673 		priv = cpupid_match_pid(p, last_cpupid);
2674 		if (!priv && !(flags & TNF_NO_GROUP))
2675 			task_numa_group(p, last_cpupid, flags, &priv);
2676 	}
2677 
2678 	/*
2679 	 * If a workload spans multiple NUMA nodes, a shared fault that
2680 	 * occurs wholly within the set of nodes that the workload is
2681 	 * actively using should be counted as local. This allows the
2682 	 * scan rate to slow down when a workload has settled down.
2683 	 */
2684 	ng = deref_curr_numa_group(p);
2685 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2686 				numa_is_active_node(cpu_node, ng) &&
2687 				numa_is_active_node(mem_node, ng))
2688 		local = 1;
2689 
2690 	/*
2691 	 * Retry to migrate task to preferred node periodically, in case it
2692 	 * previously failed, or the scheduler moved us.
2693 	 */
2694 	if (time_after(jiffies, p->numa_migrate_retry)) {
2695 		task_numa_placement(p);
2696 		numa_migrate_preferred(p);
2697 	}
2698 
2699 	if (migrated)
2700 		p->numa_pages_migrated += pages;
2701 	if (flags & TNF_MIGRATE_FAIL)
2702 		p->numa_faults_locality[2] += pages;
2703 
2704 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2705 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2706 	p->numa_faults_locality[local] += pages;
2707 }
2708 
2709 static void reset_ptenuma_scan(struct task_struct *p)
2710 {
2711 	/*
2712 	 * We only did a read acquisition of the mmap sem, so
2713 	 * p->mm->numa_scan_seq is written to without exclusive access
2714 	 * and the update is not guaranteed to be atomic. That's not
2715 	 * much of an issue though, since this is just used for
2716 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2717 	 * expensive, to avoid any form of compiler optimizations:
2718 	 */
2719 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2720 	p->mm->numa_scan_offset = 0;
2721 }
2722 
2723 /*
2724  * The expensive part of numa migration is done from task_work context.
2725  * Triggered from task_tick_numa().
2726  */
2727 static void task_numa_work(struct callback_head *work)
2728 {
2729 	unsigned long migrate, next_scan, now = jiffies;
2730 	struct task_struct *p = current;
2731 	struct mm_struct *mm = p->mm;
2732 	u64 runtime = p->se.sum_exec_runtime;
2733 	struct vm_area_struct *vma;
2734 	unsigned long start, end;
2735 	unsigned long nr_pte_updates = 0;
2736 	long pages, virtpages;
2737 
2738 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2739 
2740 	work->next = work;
2741 	/*
2742 	 * Who cares about NUMA placement when they're dying.
2743 	 *
2744 	 * NOTE: make sure not to dereference p->mm before this check,
2745 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2746 	 * without p->mm even though we still had it when we enqueued this
2747 	 * work.
2748 	 */
2749 	if (p->flags & PF_EXITING)
2750 		return;
2751 
2752 	if (!mm->numa_next_scan) {
2753 		mm->numa_next_scan = now +
2754 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2755 	}
2756 
2757 	/*
2758 	 * Enforce maximal scan/migration frequency..
2759 	 */
2760 	migrate = mm->numa_next_scan;
2761 	if (time_before(now, migrate))
2762 		return;
2763 
2764 	if (p->numa_scan_period == 0) {
2765 		p->numa_scan_period_max = task_scan_max(p);
2766 		p->numa_scan_period = task_scan_start(p);
2767 	}
2768 
2769 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2770 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2771 		return;
2772 
2773 	/*
2774 	 * Delay this task enough that another task of this mm will likely win
2775 	 * the next time around.
2776 	 */
2777 	p->node_stamp += 2 * TICK_NSEC;
2778 
2779 	start = mm->numa_scan_offset;
2780 	pages = sysctl_numa_balancing_scan_size;
2781 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2782 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2783 	if (!pages)
2784 		return;
2785 
2786 
2787 	if (!mmap_read_trylock(mm))
2788 		return;
2789 	vma = find_vma(mm, start);
2790 	if (!vma) {
2791 		reset_ptenuma_scan(p);
2792 		start = 0;
2793 		vma = mm->mmap;
2794 	}
2795 	for (; vma; vma = vma->vm_next) {
2796 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2797 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2798 			continue;
2799 		}
2800 
2801 		/*
2802 		 * Shared library pages mapped by multiple processes are not
2803 		 * migrated as it is expected they are cache replicated. Avoid
2804 		 * hinting faults in read-only file-backed mappings or the vdso
2805 		 * as migrating the pages will be of marginal benefit.
2806 		 */
2807 		if (!vma->vm_mm ||
2808 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2809 			continue;
2810 
2811 		/*
2812 		 * Skip inaccessible VMAs to avoid any confusion between
2813 		 * PROT_NONE and NUMA hinting ptes
2814 		 */
2815 		if (!vma_is_accessible(vma))
2816 			continue;
2817 
2818 		do {
2819 			start = max(start, vma->vm_start);
2820 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2821 			end = min(end, vma->vm_end);
2822 			nr_pte_updates = change_prot_numa(vma, start, end);
2823 
2824 			/*
2825 			 * Try to scan sysctl_numa_balancing_size worth of
2826 			 * hpages that have at least one present PTE that
2827 			 * is not already pte-numa. If the VMA contains
2828 			 * areas that are unused or already full of prot_numa
2829 			 * PTEs, scan up to virtpages, to skip through those
2830 			 * areas faster.
2831 			 */
2832 			if (nr_pte_updates)
2833 				pages -= (end - start) >> PAGE_SHIFT;
2834 			virtpages -= (end - start) >> PAGE_SHIFT;
2835 
2836 			start = end;
2837 			if (pages <= 0 || virtpages <= 0)
2838 				goto out;
2839 
2840 			cond_resched();
2841 		} while (end != vma->vm_end);
2842 	}
2843 
2844 out:
2845 	/*
2846 	 * It is possible to reach the end of the VMA list but the last few
2847 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2848 	 * would find the !migratable VMA on the next scan but not reset the
2849 	 * scanner to the start so check it now.
2850 	 */
2851 	if (vma)
2852 		mm->numa_scan_offset = start;
2853 	else
2854 		reset_ptenuma_scan(p);
2855 	mmap_read_unlock(mm);
2856 
2857 	/*
2858 	 * Make sure tasks use at least 32x as much time to run other code
2859 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2860 	 * Usually update_task_scan_period slows down scanning enough; on an
2861 	 * overloaded system we need to limit overhead on a per task basis.
2862 	 */
2863 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2864 		u64 diff = p->se.sum_exec_runtime - runtime;
2865 		p->node_stamp += 32 * diff;
2866 	}
2867 }
2868 
2869 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2870 {
2871 	int mm_users = 0;
2872 	struct mm_struct *mm = p->mm;
2873 
2874 	if (mm) {
2875 		mm_users = atomic_read(&mm->mm_users);
2876 		if (mm_users == 1) {
2877 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2878 			mm->numa_scan_seq = 0;
2879 		}
2880 	}
2881 	p->node_stamp			= 0;
2882 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
2883 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
2884 	/* Protect against double add, see task_tick_numa and task_numa_work */
2885 	p->numa_work.next		= &p->numa_work;
2886 	p->numa_faults			= NULL;
2887 	RCU_INIT_POINTER(p->numa_group, NULL);
2888 	p->last_task_numa_placement	= 0;
2889 	p->last_sum_exec_runtime	= 0;
2890 
2891 	init_task_work(&p->numa_work, task_numa_work);
2892 
2893 	/* New address space, reset the preferred nid */
2894 	if (!(clone_flags & CLONE_VM)) {
2895 		p->numa_preferred_nid = NUMA_NO_NODE;
2896 		return;
2897 	}
2898 
2899 	/*
2900 	 * New thread, keep existing numa_preferred_nid which should be copied
2901 	 * already by arch_dup_task_struct but stagger when scans start.
2902 	 */
2903 	if (mm) {
2904 		unsigned int delay;
2905 
2906 		delay = min_t(unsigned int, task_scan_max(current),
2907 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2908 		delay += 2 * TICK_NSEC;
2909 		p->node_stamp = delay;
2910 	}
2911 }
2912 
2913 /*
2914  * Drive the periodic memory faults..
2915  */
2916 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2917 {
2918 	struct callback_head *work = &curr->numa_work;
2919 	u64 period, now;
2920 
2921 	/*
2922 	 * We don't care about NUMA placement if we don't have memory.
2923 	 */
2924 	if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2925 		return;
2926 
2927 	/*
2928 	 * Using runtime rather than walltime has the dual advantage that
2929 	 * we (mostly) drive the selection from busy threads and that the
2930 	 * task needs to have done some actual work before we bother with
2931 	 * NUMA placement.
2932 	 */
2933 	now = curr->se.sum_exec_runtime;
2934 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2935 
2936 	if (now > curr->node_stamp + period) {
2937 		if (!curr->node_stamp)
2938 			curr->numa_scan_period = task_scan_start(curr);
2939 		curr->node_stamp += period;
2940 
2941 		if (!time_before(jiffies, curr->mm->numa_next_scan))
2942 			task_work_add(curr, work, TWA_RESUME);
2943 	}
2944 }
2945 
2946 static void update_scan_period(struct task_struct *p, int new_cpu)
2947 {
2948 	int src_nid = cpu_to_node(task_cpu(p));
2949 	int dst_nid = cpu_to_node(new_cpu);
2950 
2951 	if (!static_branch_likely(&sched_numa_balancing))
2952 		return;
2953 
2954 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2955 		return;
2956 
2957 	if (src_nid == dst_nid)
2958 		return;
2959 
2960 	/*
2961 	 * Allow resets if faults have been trapped before one scan
2962 	 * has completed. This is most likely due to a new task that
2963 	 * is pulled cross-node due to wakeups or load balancing.
2964 	 */
2965 	if (p->numa_scan_seq) {
2966 		/*
2967 		 * Avoid scan adjustments if moving to the preferred
2968 		 * node or if the task was not previously running on
2969 		 * the preferred node.
2970 		 */
2971 		if (dst_nid == p->numa_preferred_nid ||
2972 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2973 			src_nid != p->numa_preferred_nid))
2974 			return;
2975 	}
2976 
2977 	p->numa_scan_period = task_scan_start(p);
2978 }
2979 
2980 #else
2981 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2982 {
2983 }
2984 
2985 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2986 {
2987 }
2988 
2989 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2990 {
2991 }
2992 
2993 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2994 {
2995 }
2996 
2997 #endif /* CONFIG_NUMA_BALANCING */
2998 
2999 static void
3000 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3001 {
3002 	update_load_add(&cfs_rq->load, se->load.weight);
3003 #ifdef CONFIG_SMP
3004 	if (entity_is_task(se)) {
3005 		struct rq *rq = rq_of(cfs_rq);
3006 
3007 		account_numa_enqueue(rq, task_of(se));
3008 		list_add(&se->group_node, &rq->cfs_tasks);
3009 	}
3010 #endif
3011 	cfs_rq->nr_running++;
3012 }
3013 
3014 static void
3015 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3016 {
3017 	update_load_sub(&cfs_rq->load, se->load.weight);
3018 #ifdef CONFIG_SMP
3019 	if (entity_is_task(se)) {
3020 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3021 		list_del_init(&se->group_node);
3022 	}
3023 #endif
3024 	cfs_rq->nr_running--;
3025 }
3026 
3027 /*
3028  * Signed add and clamp on underflow.
3029  *
3030  * Explicitly do a load-store to ensure the intermediate value never hits
3031  * memory. This allows lockless observations without ever seeing the negative
3032  * values.
3033  */
3034 #define add_positive(_ptr, _val) do {                           \
3035 	typeof(_ptr) ptr = (_ptr);                              \
3036 	typeof(_val) val = (_val);                              \
3037 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3038 								\
3039 	res = var + val;                                        \
3040 								\
3041 	if (val < 0 && res > var)                               \
3042 		res = 0;                                        \
3043 								\
3044 	WRITE_ONCE(*ptr, res);                                  \
3045 } while (0)
3046 
3047 /*
3048  * Unsigned subtract and clamp on underflow.
3049  *
3050  * Explicitly do a load-store to ensure the intermediate value never hits
3051  * memory. This allows lockless observations without ever seeing the negative
3052  * values.
3053  */
3054 #define sub_positive(_ptr, _val) do {				\
3055 	typeof(_ptr) ptr = (_ptr);				\
3056 	typeof(*ptr) val = (_val);				\
3057 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3058 	res = var - val;					\
3059 	if (res > var)						\
3060 		res = 0;					\
3061 	WRITE_ONCE(*ptr, res);					\
3062 } while (0)
3063 
3064 /*
3065  * Remove and clamp on negative, from a local variable.
3066  *
3067  * A variant of sub_positive(), which does not use explicit load-store
3068  * and is thus optimized for local variable updates.
3069  */
3070 #define lsub_positive(_ptr, _val) do {				\
3071 	typeof(_ptr) ptr = (_ptr);				\
3072 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3073 } while (0)
3074 
3075 #ifdef CONFIG_SMP
3076 static inline void
3077 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3078 {
3079 	cfs_rq->avg.load_avg += se->avg.load_avg;
3080 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3081 }
3082 
3083 static inline void
3084 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3085 {
3086 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3087 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3088 }
3089 #else
3090 static inline void
3091 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3092 static inline void
3093 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3094 #endif
3095 
3096 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3097 			    unsigned long weight)
3098 {
3099 	if (se->on_rq) {
3100 		/* commit outstanding execution time */
3101 		if (cfs_rq->curr == se)
3102 			update_curr(cfs_rq);
3103 		update_load_sub(&cfs_rq->load, se->load.weight);
3104 	}
3105 	dequeue_load_avg(cfs_rq, se);
3106 
3107 	update_load_set(&se->load, weight);
3108 
3109 #ifdef CONFIG_SMP
3110 	do {
3111 		u32 divider = get_pelt_divider(&se->avg);
3112 
3113 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3114 	} while (0);
3115 #endif
3116 
3117 	enqueue_load_avg(cfs_rq, se);
3118 	if (se->on_rq)
3119 		update_load_add(&cfs_rq->load, se->load.weight);
3120 
3121 }
3122 
3123 void reweight_task(struct task_struct *p, int prio)
3124 {
3125 	struct sched_entity *se = &p->se;
3126 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3127 	struct load_weight *load = &se->load;
3128 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3129 
3130 	reweight_entity(cfs_rq, se, weight);
3131 	load->inv_weight = sched_prio_to_wmult[prio];
3132 }
3133 
3134 #ifdef CONFIG_FAIR_GROUP_SCHED
3135 #ifdef CONFIG_SMP
3136 /*
3137  * All this does is approximate the hierarchical proportion which includes that
3138  * global sum we all love to hate.
3139  *
3140  * That is, the weight of a group entity, is the proportional share of the
3141  * group weight based on the group runqueue weights. That is:
3142  *
3143  *                     tg->weight * grq->load.weight
3144  *   ge->load.weight = -----------------------------               (1)
3145  *			  \Sum grq->load.weight
3146  *
3147  * Now, because computing that sum is prohibitively expensive to compute (been
3148  * there, done that) we approximate it with this average stuff. The average
3149  * moves slower and therefore the approximation is cheaper and more stable.
3150  *
3151  * So instead of the above, we substitute:
3152  *
3153  *   grq->load.weight -> grq->avg.load_avg                         (2)
3154  *
3155  * which yields the following:
3156  *
3157  *                     tg->weight * grq->avg.load_avg
3158  *   ge->load.weight = ------------------------------              (3)
3159  *				tg->load_avg
3160  *
3161  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3162  *
3163  * That is shares_avg, and it is right (given the approximation (2)).
3164  *
3165  * The problem with it is that because the average is slow -- it was designed
3166  * to be exactly that of course -- this leads to transients in boundary
3167  * conditions. In specific, the case where the group was idle and we start the
3168  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3169  * yielding bad latency etc..
3170  *
3171  * Now, in that special case (1) reduces to:
3172  *
3173  *                     tg->weight * grq->load.weight
3174  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3175  *			    grp->load.weight
3176  *
3177  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3178  *
3179  * So what we do is modify our approximation (3) to approach (4) in the (near)
3180  * UP case, like:
3181  *
3182  *   ge->load.weight =
3183  *
3184  *              tg->weight * grq->load.weight
3185  *     ---------------------------------------------------         (5)
3186  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3187  *
3188  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3189  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3190  *
3191  *
3192  *                     tg->weight * grq->load.weight
3193  *   ge->load.weight = -----------------------------		   (6)
3194  *				tg_load_avg'
3195  *
3196  * Where:
3197  *
3198  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3199  *                  max(grq->load.weight, grq->avg.load_avg)
3200  *
3201  * And that is shares_weight and is icky. In the (near) UP case it approaches
3202  * (4) while in the normal case it approaches (3). It consistently
3203  * overestimates the ge->load.weight and therefore:
3204  *
3205  *   \Sum ge->load.weight >= tg->weight
3206  *
3207  * hence icky!
3208  */
3209 static long calc_group_shares(struct cfs_rq *cfs_rq)
3210 {
3211 	long tg_weight, tg_shares, load, shares;
3212 	struct task_group *tg = cfs_rq->tg;
3213 
3214 	tg_shares = READ_ONCE(tg->shares);
3215 
3216 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3217 
3218 	tg_weight = atomic_long_read(&tg->load_avg);
3219 
3220 	/* Ensure tg_weight >= load */
3221 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3222 	tg_weight += load;
3223 
3224 	shares = (tg_shares * load);
3225 	if (tg_weight)
3226 		shares /= tg_weight;
3227 
3228 	/*
3229 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3230 	 * of a group with small tg->shares value. It is a floor value which is
3231 	 * assigned as a minimum load.weight to the sched_entity representing
3232 	 * the group on a CPU.
3233 	 *
3234 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3235 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3236 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3237 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3238 	 * instead of 0.
3239 	 */
3240 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3241 }
3242 #endif /* CONFIG_SMP */
3243 
3244 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3245 
3246 /*
3247  * Recomputes the group entity based on the current state of its group
3248  * runqueue.
3249  */
3250 static void update_cfs_group(struct sched_entity *se)
3251 {
3252 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3253 	long shares;
3254 
3255 	if (!gcfs_rq)
3256 		return;
3257 
3258 	if (throttled_hierarchy(gcfs_rq))
3259 		return;
3260 
3261 #ifndef CONFIG_SMP
3262 	shares = READ_ONCE(gcfs_rq->tg->shares);
3263 
3264 	if (likely(se->load.weight == shares))
3265 		return;
3266 #else
3267 	shares   = calc_group_shares(gcfs_rq);
3268 #endif
3269 
3270 	reweight_entity(cfs_rq_of(se), se, shares);
3271 }
3272 
3273 #else /* CONFIG_FAIR_GROUP_SCHED */
3274 static inline void update_cfs_group(struct sched_entity *se)
3275 {
3276 }
3277 #endif /* CONFIG_FAIR_GROUP_SCHED */
3278 
3279 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3280 {
3281 	struct rq *rq = rq_of(cfs_rq);
3282 
3283 	if (&rq->cfs == cfs_rq) {
3284 		/*
3285 		 * There are a few boundary cases this might miss but it should
3286 		 * get called often enough that that should (hopefully) not be
3287 		 * a real problem.
3288 		 *
3289 		 * It will not get called when we go idle, because the idle
3290 		 * thread is a different class (!fair), nor will the utilization
3291 		 * number include things like RT tasks.
3292 		 *
3293 		 * As is, the util number is not freq-invariant (we'd have to
3294 		 * implement arch_scale_freq_capacity() for that).
3295 		 *
3296 		 * See cpu_util().
3297 		 */
3298 		cpufreq_update_util(rq, flags);
3299 	}
3300 }
3301 
3302 #ifdef CONFIG_SMP
3303 #ifdef CONFIG_FAIR_GROUP_SCHED
3304 /**
3305  * update_tg_load_avg - update the tg's load avg
3306  * @cfs_rq: the cfs_rq whose avg changed
3307  *
3308  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3309  * However, because tg->load_avg is a global value there are performance
3310  * considerations.
3311  *
3312  * In order to avoid having to look at the other cfs_rq's, we use a
3313  * differential update where we store the last value we propagated. This in
3314  * turn allows skipping updates if the differential is 'small'.
3315  *
3316  * Updating tg's load_avg is necessary before update_cfs_share().
3317  */
3318 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3319 {
3320 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3321 
3322 	/*
3323 	 * No need to update load_avg for root_task_group as it is not used.
3324 	 */
3325 	if (cfs_rq->tg == &root_task_group)
3326 		return;
3327 
3328 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3329 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3330 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3331 	}
3332 }
3333 
3334 /*
3335  * Called within set_task_rq() right before setting a task's CPU. The
3336  * caller only guarantees p->pi_lock is held; no other assumptions,
3337  * including the state of rq->lock, should be made.
3338  */
3339 void set_task_rq_fair(struct sched_entity *se,
3340 		      struct cfs_rq *prev, struct cfs_rq *next)
3341 {
3342 	u64 p_last_update_time;
3343 	u64 n_last_update_time;
3344 
3345 	if (!sched_feat(ATTACH_AGE_LOAD))
3346 		return;
3347 
3348 	/*
3349 	 * We are supposed to update the task to "current" time, then its up to
3350 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3351 	 * getting what current time is, so simply throw away the out-of-date
3352 	 * time. This will result in the wakee task is less decayed, but giving
3353 	 * the wakee more load sounds not bad.
3354 	 */
3355 	if (!(se->avg.last_update_time && prev))
3356 		return;
3357 
3358 #ifndef CONFIG_64BIT
3359 	{
3360 		u64 p_last_update_time_copy;
3361 		u64 n_last_update_time_copy;
3362 
3363 		do {
3364 			p_last_update_time_copy = prev->load_last_update_time_copy;
3365 			n_last_update_time_copy = next->load_last_update_time_copy;
3366 
3367 			smp_rmb();
3368 
3369 			p_last_update_time = prev->avg.last_update_time;
3370 			n_last_update_time = next->avg.last_update_time;
3371 
3372 		} while (p_last_update_time != p_last_update_time_copy ||
3373 			 n_last_update_time != n_last_update_time_copy);
3374 	}
3375 #else
3376 	p_last_update_time = prev->avg.last_update_time;
3377 	n_last_update_time = next->avg.last_update_time;
3378 #endif
3379 	__update_load_avg_blocked_se(p_last_update_time, se);
3380 	se->avg.last_update_time = n_last_update_time;
3381 }
3382 
3383 
3384 /*
3385  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3386  * propagate its contribution. The key to this propagation is the invariant
3387  * that for each group:
3388  *
3389  *   ge->avg == grq->avg						(1)
3390  *
3391  * _IFF_ we look at the pure running and runnable sums. Because they
3392  * represent the very same entity, just at different points in the hierarchy.
3393  *
3394  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3395  * and simply copies the running/runnable sum over (but still wrong, because
3396  * the group entity and group rq do not have their PELT windows aligned).
3397  *
3398  * However, update_tg_cfs_load() is more complex. So we have:
3399  *
3400  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3401  *
3402  * And since, like util, the runnable part should be directly transferable,
3403  * the following would _appear_ to be the straight forward approach:
3404  *
3405  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3406  *
3407  * And per (1) we have:
3408  *
3409  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3410  *
3411  * Which gives:
3412  *
3413  *                      ge->load.weight * grq->avg.load_avg
3414  *   ge->avg.load_avg = -----------------------------------		(4)
3415  *                               grq->load.weight
3416  *
3417  * Except that is wrong!
3418  *
3419  * Because while for entities historical weight is not important and we
3420  * really only care about our future and therefore can consider a pure
3421  * runnable sum, runqueues can NOT do this.
3422  *
3423  * We specifically want runqueues to have a load_avg that includes
3424  * historical weights. Those represent the blocked load, the load we expect
3425  * to (shortly) return to us. This only works by keeping the weights as
3426  * integral part of the sum. We therefore cannot decompose as per (3).
3427  *
3428  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3429  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3430  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3431  * runnable section of these tasks overlap (or not). If they were to perfectly
3432  * align the rq as a whole would be runnable 2/3 of the time. If however we
3433  * always have at least 1 runnable task, the rq as a whole is always runnable.
3434  *
3435  * So we'll have to approximate.. :/
3436  *
3437  * Given the constraint:
3438  *
3439  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3440  *
3441  * We can construct a rule that adds runnable to a rq by assuming minimal
3442  * overlap.
3443  *
3444  * On removal, we'll assume each task is equally runnable; which yields:
3445  *
3446  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3447  *
3448  * XXX: only do this for the part of runnable > running ?
3449  *
3450  */
3451 
3452 static inline void
3453 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3454 {
3455 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3456 	u32 divider;
3457 
3458 	/* Nothing to update */
3459 	if (!delta)
3460 		return;
3461 
3462 	/*
3463 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3464 	 * See ___update_load_avg() for details.
3465 	 */
3466 	divider = get_pelt_divider(&cfs_rq->avg);
3467 
3468 	/* Set new sched_entity's utilization */
3469 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3470 	se->avg.util_sum = se->avg.util_avg * divider;
3471 
3472 	/* Update parent cfs_rq utilization */
3473 	add_positive(&cfs_rq->avg.util_avg, delta);
3474 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3475 }
3476 
3477 static inline void
3478 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3479 {
3480 	long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3481 	u32 divider;
3482 
3483 	/* Nothing to update */
3484 	if (!delta)
3485 		return;
3486 
3487 	/*
3488 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3489 	 * See ___update_load_avg() for details.
3490 	 */
3491 	divider = get_pelt_divider(&cfs_rq->avg);
3492 
3493 	/* Set new sched_entity's runnable */
3494 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3495 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3496 
3497 	/* Update parent cfs_rq runnable */
3498 	add_positive(&cfs_rq->avg.runnable_avg, delta);
3499 	cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3500 }
3501 
3502 static inline void
3503 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3504 {
3505 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3506 	unsigned long load_avg;
3507 	u64 load_sum = 0;
3508 	s64 delta_sum;
3509 	u32 divider;
3510 
3511 	if (!runnable_sum)
3512 		return;
3513 
3514 	gcfs_rq->prop_runnable_sum = 0;
3515 
3516 	/*
3517 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3518 	 * See ___update_load_avg() for details.
3519 	 */
3520 	divider = get_pelt_divider(&cfs_rq->avg);
3521 
3522 	if (runnable_sum >= 0) {
3523 		/*
3524 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3525 		 * the CPU is saturated running == runnable.
3526 		 */
3527 		runnable_sum += se->avg.load_sum;
3528 		runnable_sum = min_t(long, runnable_sum, divider);
3529 	} else {
3530 		/*
3531 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3532 		 * assuming all tasks are equally runnable.
3533 		 */
3534 		if (scale_load_down(gcfs_rq->load.weight)) {
3535 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3536 				scale_load_down(gcfs_rq->load.weight));
3537 		}
3538 
3539 		/* But make sure to not inflate se's runnable */
3540 		runnable_sum = min(se->avg.load_sum, load_sum);
3541 	}
3542 
3543 	/*
3544 	 * runnable_sum can't be lower than running_sum
3545 	 * Rescale running sum to be in the same range as runnable sum
3546 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3547 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3548 	 */
3549 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3550 	runnable_sum = max(runnable_sum, running_sum);
3551 
3552 	load_sum = (s64)se_weight(se) * runnable_sum;
3553 	load_avg = div_s64(load_sum, divider);
3554 
3555 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3556 	delta_avg = load_avg - se->avg.load_avg;
3557 
3558 	se->avg.load_sum = runnable_sum;
3559 	se->avg.load_avg = load_avg;
3560 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3561 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3562 }
3563 
3564 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3565 {
3566 	cfs_rq->propagate = 1;
3567 	cfs_rq->prop_runnable_sum += runnable_sum;
3568 }
3569 
3570 /* Update task and its cfs_rq load average */
3571 static inline int propagate_entity_load_avg(struct sched_entity *se)
3572 {
3573 	struct cfs_rq *cfs_rq, *gcfs_rq;
3574 
3575 	if (entity_is_task(se))
3576 		return 0;
3577 
3578 	gcfs_rq = group_cfs_rq(se);
3579 	if (!gcfs_rq->propagate)
3580 		return 0;
3581 
3582 	gcfs_rq->propagate = 0;
3583 
3584 	cfs_rq = cfs_rq_of(se);
3585 
3586 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3587 
3588 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3589 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3590 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3591 
3592 	trace_pelt_cfs_tp(cfs_rq);
3593 	trace_pelt_se_tp(se);
3594 
3595 	return 1;
3596 }
3597 
3598 /*
3599  * Check if we need to update the load and the utilization of a blocked
3600  * group_entity:
3601  */
3602 static inline bool skip_blocked_update(struct sched_entity *se)
3603 {
3604 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3605 
3606 	/*
3607 	 * If sched_entity still have not zero load or utilization, we have to
3608 	 * decay it:
3609 	 */
3610 	if (se->avg.load_avg || se->avg.util_avg)
3611 		return false;
3612 
3613 	/*
3614 	 * If there is a pending propagation, we have to update the load and
3615 	 * the utilization of the sched_entity:
3616 	 */
3617 	if (gcfs_rq->propagate)
3618 		return false;
3619 
3620 	/*
3621 	 * Otherwise, the load and the utilization of the sched_entity is
3622 	 * already zero and there is no pending propagation, so it will be a
3623 	 * waste of time to try to decay it:
3624 	 */
3625 	return true;
3626 }
3627 
3628 #else /* CONFIG_FAIR_GROUP_SCHED */
3629 
3630 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3631 
3632 static inline int propagate_entity_load_avg(struct sched_entity *se)
3633 {
3634 	return 0;
3635 }
3636 
3637 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3638 
3639 #endif /* CONFIG_FAIR_GROUP_SCHED */
3640 
3641 /**
3642  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3643  * @now: current time, as per cfs_rq_clock_pelt()
3644  * @cfs_rq: cfs_rq to update
3645  *
3646  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3647  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3648  * post_init_entity_util_avg().
3649  *
3650  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3651  *
3652  * Returns true if the load decayed or we removed load.
3653  *
3654  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3655  * call update_tg_load_avg() when this function returns true.
3656  */
3657 static inline int
3658 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3659 {
3660 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3661 	struct sched_avg *sa = &cfs_rq->avg;
3662 	int decayed = 0;
3663 
3664 	if (cfs_rq->removed.nr) {
3665 		unsigned long r;
3666 		u32 divider = get_pelt_divider(&cfs_rq->avg);
3667 
3668 		raw_spin_lock(&cfs_rq->removed.lock);
3669 		swap(cfs_rq->removed.util_avg, removed_util);
3670 		swap(cfs_rq->removed.load_avg, removed_load);
3671 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
3672 		cfs_rq->removed.nr = 0;
3673 		raw_spin_unlock(&cfs_rq->removed.lock);
3674 
3675 		r = removed_load;
3676 		sub_positive(&sa->load_avg, r);
3677 		sub_positive(&sa->load_sum, r * divider);
3678 
3679 		r = removed_util;
3680 		sub_positive(&sa->util_avg, r);
3681 		sub_positive(&sa->util_sum, r * divider);
3682 
3683 		r = removed_runnable;
3684 		sub_positive(&sa->runnable_avg, r);
3685 		sub_positive(&sa->runnable_sum, r * divider);
3686 
3687 		/*
3688 		 * removed_runnable is the unweighted version of removed_load so we
3689 		 * can use it to estimate removed_load_sum.
3690 		 */
3691 		add_tg_cfs_propagate(cfs_rq,
3692 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3693 
3694 		decayed = 1;
3695 	}
3696 
3697 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3698 
3699 #ifndef CONFIG_64BIT
3700 	smp_wmb();
3701 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3702 #endif
3703 
3704 	return decayed;
3705 }
3706 
3707 /**
3708  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3709  * @cfs_rq: cfs_rq to attach to
3710  * @se: sched_entity to attach
3711  *
3712  * Must call update_cfs_rq_load_avg() before this, since we rely on
3713  * cfs_rq->avg.last_update_time being current.
3714  */
3715 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3716 {
3717 	/*
3718 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3719 	 * See ___update_load_avg() for details.
3720 	 */
3721 	u32 divider = get_pelt_divider(&cfs_rq->avg);
3722 
3723 	/*
3724 	 * When we attach the @se to the @cfs_rq, we must align the decay
3725 	 * window because without that, really weird and wonderful things can
3726 	 * happen.
3727 	 *
3728 	 * XXX illustrate
3729 	 */
3730 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3731 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3732 
3733 	/*
3734 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3735 	 * period_contrib. This isn't strictly correct, but since we're
3736 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3737 	 * _sum a little.
3738 	 */
3739 	se->avg.util_sum = se->avg.util_avg * divider;
3740 
3741 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3742 
3743 	se->avg.load_sum = divider;
3744 	if (se_weight(se)) {
3745 		se->avg.load_sum =
3746 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3747 	}
3748 
3749 	enqueue_load_avg(cfs_rq, se);
3750 	cfs_rq->avg.util_avg += se->avg.util_avg;
3751 	cfs_rq->avg.util_sum += se->avg.util_sum;
3752 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3753 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3754 
3755 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3756 
3757 	cfs_rq_util_change(cfs_rq, 0);
3758 
3759 	trace_pelt_cfs_tp(cfs_rq);
3760 }
3761 
3762 /**
3763  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3764  * @cfs_rq: cfs_rq to detach from
3765  * @se: sched_entity to detach
3766  *
3767  * Must call update_cfs_rq_load_avg() before this, since we rely on
3768  * cfs_rq->avg.last_update_time being current.
3769  */
3770 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3771 {
3772 	dequeue_load_avg(cfs_rq, se);
3773 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3774 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3775 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3776 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
3777 
3778 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3779 
3780 	cfs_rq_util_change(cfs_rq, 0);
3781 
3782 	trace_pelt_cfs_tp(cfs_rq);
3783 }
3784 
3785 /*
3786  * Optional action to be done while updating the load average
3787  */
3788 #define UPDATE_TG	0x1
3789 #define SKIP_AGE_LOAD	0x2
3790 #define DO_ATTACH	0x4
3791 
3792 /* Update task and its cfs_rq load average */
3793 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3794 {
3795 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3796 	int decayed;
3797 
3798 	/*
3799 	 * Track task load average for carrying it to new CPU after migrated, and
3800 	 * track group sched_entity load average for task_h_load calc in migration
3801 	 */
3802 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3803 		__update_load_avg_se(now, cfs_rq, se);
3804 
3805 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3806 	decayed |= propagate_entity_load_avg(se);
3807 
3808 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3809 
3810 		/*
3811 		 * DO_ATTACH means we're here from enqueue_entity().
3812 		 * !last_update_time means we've passed through
3813 		 * migrate_task_rq_fair() indicating we migrated.
3814 		 *
3815 		 * IOW we're enqueueing a task on a new CPU.
3816 		 */
3817 		attach_entity_load_avg(cfs_rq, se);
3818 		update_tg_load_avg(cfs_rq);
3819 
3820 	} else if (decayed) {
3821 		cfs_rq_util_change(cfs_rq, 0);
3822 
3823 		if (flags & UPDATE_TG)
3824 			update_tg_load_avg(cfs_rq);
3825 	}
3826 }
3827 
3828 #ifndef CONFIG_64BIT
3829 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3830 {
3831 	u64 last_update_time_copy;
3832 	u64 last_update_time;
3833 
3834 	do {
3835 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3836 		smp_rmb();
3837 		last_update_time = cfs_rq->avg.last_update_time;
3838 	} while (last_update_time != last_update_time_copy);
3839 
3840 	return last_update_time;
3841 }
3842 #else
3843 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3844 {
3845 	return cfs_rq->avg.last_update_time;
3846 }
3847 #endif
3848 
3849 /*
3850  * Synchronize entity load avg of dequeued entity without locking
3851  * the previous rq.
3852  */
3853 static void sync_entity_load_avg(struct sched_entity *se)
3854 {
3855 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3856 	u64 last_update_time;
3857 
3858 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3859 	__update_load_avg_blocked_se(last_update_time, se);
3860 }
3861 
3862 /*
3863  * Task first catches up with cfs_rq, and then subtract
3864  * itself from the cfs_rq (task must be off the queue now).
3865  */
3866 static void remove_entity_load_avg(struct sched_entity *se)
3867 {
3868 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3869 	unsigned long flags;
3870 
3871 	/*
3872 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3873 	 * post_init_entity_util_avg() which will have added things to the
3874 	 * cfs_rq, so we can remove unconditionally.
3875 	 */
3876 
3877 	sync_entity_load_avg(se);
3878 
3879 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3880 	++cfs_rq->removed.nr;
3881 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3882 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3883 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
3884 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3885 }
3886 
3887 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3888 {
3889 	return cfs_rq->avg.runnable_avg;
3890 }
3891 
3892 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3893 {
3894 	return cfs_rq->avg.load_avg;
3895 }
3896 
3897 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3898 
3899 static inline unsigned long task_util(struct task_struct *p)
3900 {
3901 	return READ_ONCE(p->se.avg.util_avg);
3902 }
3903 
3904 static inline unsigned long _task_util_est(struct task_struct *p)
3905 {
3906 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3907 
3908 	return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3909 }
3910 
3911 static inline unsigned long task_util_est(struct task_struct *p)
3912 {
3913 	return max(task_util(p), _task_util_est(p));
3914 }
3915 
3916 #ifdef CONFIG_UCLAMP_TASK
3917 static inline unsigned long uclamp_task_util(struct task_struct *p)
3918 {
3919 	return clamp(task_util_est(p),
3920 		     uclamp_eff_value(p, UCLAMP_MIN),
3921 		     uclamp_eff_value(p, UCLAMP_MAX));
3922 }
3923 #else
3924 static inline unsigned long uclamp_task_util(struct task_struct *p)
3925 {
3926 	return task_util_est(p);
3927 }
3928 #endif
3929 
3930 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3931 				    struct task_struct *p)
3932 {
3933 	unsigned int enqueued;
3934 
3935 	if (!sched_feat(UTIL_EST))
3936 		return;
3937 
3938 	/* Update root cfs_rq's estimated utilization */
3939 	enqueued  = cfs_rq->avg.util_est.enqueued;
3940 	enqueued += _task_util_est(p);
3941 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3942 
3943 	trace_sched_util_est_cfs_tp(cfs_rq);
3944 }
3945 
3946 /*
3947  * Check if a (signed) value is within a specified (unsigned) margin,
3948  * based on the observation that:
3949  *
3950  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3951  *
3952  * NOTE: this only works when value + maring < INT_MAX.
3953  */
3954 static inline bool within_margin(int value, int margin)
3955 {
3956 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3957 }
3958 
3959 static void
3960 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3961 {
3962 	long last_ewma_diff;
3963 	struct util_est ue;
3964 	int cpu;
3965 
3966 	if (!sched_feat(UTIL_EST))
3967 		return;
3968 
3969 	/* Update root cfs_rq's estimated utilization */
3970 	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3971 	ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3972 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3973 
3974 	trace_sched_util_est_cfs_tp(cfs_rq);
3975 
3976 	/*
3977 	 * Skip update of task's estimated utilization when the task has not
3978 	 * yet completed an activation, e.g. being migrated.
3979 	 */
3980 	if (!task_sleep)
3981 		return;
3982 
3983 	/*
3984 	 * If the PELT values haven't changed since enqueue time,
3985 	 * skip the util_est update.
3986 	 */
3987 	ue = p->se.avg.util_est;
3988 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
3989 		return;
3990 
3991 	/*
3992 	 * Reset EWMA on utilization increases, the moving average is used only
3993 	 * to smooth utilization decreases.
3994 	 */
3995 	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3996 	if (sched_feat(UTIL_EST_FASTUP)) {
3997 		if (ue.ewma < ue.enqueued) {
3998 			ue.ewma = ue.enqueued;
3999 			goto done;
4000 		}
4001 	}
4002 
4003 	/*
4004 	 * Skip update of task's estimated utilization when its EWMA is
4005 	 * already ~1% close to its last activation value.
4006 	 */
4007 	last_ewma_diff = ue.enqueued - ue.ewma;
4008 	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
4009 		return;
4010 
4011 	/*
4012 	 * To avoid overestimation of actual task utilization, skip updates if
4013 	 * we cannot grant there is idle time in this CPU.
4014 	 */
4015 	cpu = cpu_of(rq_of(cfs_rq));
4016 	if (task_util(p) > capacity_orig_of(cpu))
4017 		return;
4018 
4019 	/*
4020 	 * Update Task's estimated utilization
4021 	 *
4022 	 * When *p completes an activation we can consolidate another sample
4023 	 * of the task size. This is done by storing the current PELT value
4024 	 * as ue.enqueued and by using this value to update the Exponential
4025 	 * Weighted Moving Average (EWMA):
4026 	 *
4027 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4028 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4029 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4030 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4031 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4032 	 *
4033 	 * Where 'w' is the weight of new samples, which is configured to be
4034 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4035 	 */
4036 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4037 	ue.ewma  += last_ewma_diff;
4038 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4039 done:
4040 	WRITE_ONCE(p->se.avg.util_est, ue);
4041 
4042 	trace_sched_util_est_se_tp(&p->se);
4043 }
4044 
4045 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4046 {
4047 	return fits_capacity(uclamp_task_util(p), capacity);
4048 }
4049 
4050 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4051 {
4052 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
4053 		return;
4054 
4055 	if (!p) {
4056 		rq->misfit_task_load = 0;
4057 		return;
4058 	}
4059 
4060 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4061 		rq->misfit_task_load = 0;
4062 		return;
4063 	}
4064 
4065 	/*
4066 	 * Make sure that misfit_task_load will not be null even if
4067 	 * task_h_load() returns 0.
4068 	 */
4069 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4070 }
4071 
4072 #else /* CONFIG_SMP */
4073 
4074 #define UPDATE_TG	0x0
4075 #define SKIP_AGE_LOAD	0x0
4076 #define DO_ATTACH	0x0
4077 
4078 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4079 {
4080 	cfs_rq_util_change(cfs_rq, 0);
4081 }
4082 
4083 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4084 
4085 static inline void
4086 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4087 static inline void
4088 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4089 
4090 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4091 {
4092 	return 0;
4093 }
4094 
4095 static inline void
4096 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4097 
4098 static inline void
4099 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
4100 		 bool task_sleep) {}
4101 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4102 
4103 #endif /* CONFIG_SMP */
4104 
4105 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4106 {
4107 #ifdef CONFIG_SCHED_DEBUG
4108 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4109 
4110 	if (d < 0)
4111 		d = -d;
4112 
4113 	if (d > 3*sysctl_sched_latency)
4114 		schedstat_inc(cfs_rq->nr_spread_over);
4115 #endif
4116 }
4117 
4118 static void
4119 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4120 {
4121 	u64 vruntime = cfs_rq->min_vruntime;
4122 
4123 	/*
4124 	 * The 'current' period is already promised to the current tasks,
4125 	 * however the extra weight of the new task will slow them down a
4126 	 * little, place the new task so that it fits in the slot that
4127 	 * stays open at the end.
4128 	 */
4129 	if (initial && sched_feat(START_DEBIT))
4130 		vruntime += sched_vslice(cfs_rq, se);
4131 
4132 	/* sleeps up to a single latency don't count. */
4133 	if (!initial) {
4134 		unsigned long thresh = sysctl_sched_latency;
4135 
4136 		/*
4137 		 * Halve their sleep time's effect, to allow
4138 		 * for a gentler effect of sleepers:
4139 		 */
4140 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4141 			thresh >>= 1;
4142 
4143 		vruntime -= thresh;
4144 	}
4145 
4146 	/* ensure we never gain time by being placed backwards. */
4147 	se->vruntime = max_vruntime(se->vruntime, vruntime);
4148 }
4149 
4150 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4151 
4152 static inline void check_schedstat_required(void)
4153 {
4154 #ifdef CONFIG_SCHEDSTATS
4155 	if (schedstat_enabled())
4156 		return;
4157 
4158 	/* Force schedstat enabled if a dependent tracepoint is active */
4159 	if (trace_sched_stat_wait_enabled()    ||
4160 			trace_sched_stat_sleep_enabled()   ||
4161 			trace_sched_stat_iowait_enabled()  ||
4162 			trace_sched_stat_blocked_enabled() ||
4163 			trace_sched_stat_runtime_enabled())  {
4164 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4165 			     "stat_blocked and stat_runtime require the "
4166 			     "kernel parameter schedstats=enable or "
4167 			     "kernel.sched_schedstats=1\n");
4168 	}
4169 #endif
4170 }
4171 
4172 static inline bool cfs_bandwidth_used(void);
4173 
4174 /*
4175  * MIGRATION
4176  *
4177  *	dequeue
4178  *	  update_curr()
4179  *	    update_min_vruntime()
4180  *	  vruntime -= min_vruntime
4181  *
4182  *	enqueue
4183  *	  update_curr()
4184  *	    update_min_vruntime()
4185  *	  vruntime += min_vruntime
4186  *
4187  * this way the vruntime transition between RQs is done when both
4188  * min_vruntime are up-to-date.
4189  *
4190  * WAKEUP (remote)
4191  *
4192  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4193  *	  vruntime -= min_vruntime
4194  *
4195  *	enqueue
4196  *	  update_curr()
4197  *	    update_min_vruntime()
4198  *	  vruntime += min_vruntime
4199  *
4200  * this way we don't have the most up-to-date min_vruntime on the originating
4201  * CPU and an up-to-date min_vruntime on the destination CPU.
4202  */
4203 
4204 static void
4205 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4206 {
4207 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4208 	bool curr = cfs_rq->curr == se;
4209 
4210 	/*
4211 	 * If we're the current task, we must renormalise before calling
4212 	 * update_curr().
4213 	 */
4214 	if (renorm && curr)
4215 		se->vruntime += cfs_rq->min_vruntime;
4216 
4217 	update_curr(cfs_rq);
4218 
4219 	/*
4220 	 * Otherwise, renormalise after, such that we're placed at the current
4221 	 * moment in time, instead of some random moment in the past. Being
4222 	 * placed in the past could significantly boost this task to the
4223 	 * fairness detriment of existing tasks.
4224 	 */
4225 	if (renorm && !curr)
4226 		se->vruntime += cfs_rq->min_vruntime;
4227 
4228 	/*
4229 	 * When enqueuing a sched_entity, we must:
4230 	 *   - Update loads to have both entity and cfs_rq synced with now.
4231 	 *   - Add its load to cfs_rq->runnable_avg
4232 	 *   - For group_entity, update its weight to reflect the new share of
4233 	 *     its group cfs_rq
4234 	 *   - Add its new weight to cfs_rq->load.weight
4235 	 */
4236 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4237 	se_update_runnable(se);
4238 	update_cfs_group(se);
4239 	account_entity_enqueue(cfs_rq, se);
4240 
4241 	if (flags & ENQUEUE_WAKEUP)
4242 		place_entity(cfs_rq, se, 0);
4243 
4244 	check_schedstat_required();
4245 	update_stats_enqueue(cfs_rq, se, flags);
4246 	check_spread(cfs_rq, se);
4247 	if (!curr)
4248 		__enqueue_entity(cfs_rq, se);
4249 	se->on_rq = 1;
4250 
4251 	/*
4252 	 * When bandwidth control is enabled, cfs might have been removed
4253 	 * because of a parent been throttled but cfs->nr_running > 1. Try to
4254 	 * add it unconditionnally.
4255 	 */
4256 	if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4257 		list_add_leaf_cfs_rq(cfs_rq);
4258 
4259 	if (cfs_rq->nr_running == 1)
4260 		check_enqueue_throttle(cfs_rq);
4261 }
4262 
4263 static void __clear_buddies_last(struct sched_entity *se)
4264 {
4265 	for_each_sched_entity(se) {
4266 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4267 		if (cfs_rq->last != se)
4268 			break;
4269 
4270 		cfs_rq->last = NULL;
4271 	}
4272 }
4273 
4274 static void __clear_buddies_next(struct sched_entity *se)
4275 {
4276 	for_each_sched_entity(se) {
4277 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4278 		if (cfs_rq->next != se)
4279 			break;
4280 
4281 		cfs_rq->next = NULL;
4282 	}
4283 }
4284 
4285 static void __clear_buddies_skip(struct sched_entity *se)
4286 {
4287 	for_each_sched_entity(se) {
4288 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4289 		if (cfs_rq->skip != se)
4290 			break;
4291 
4292 		cfs_rq->skip = NULL;
4293 	}
4294 }
4295 
4296 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4297 {
4298 	if (cfs_rq->last == se)
4299 		__clear_buddies_last(se);
4300 
4301 	if (cfs_rq->next == se)
4302 		__clear_buddies_next(se);
4303 
4304 	if (cfs_rq->skip == se)
4305 		__clear_buddies_skip(se);
4306 }
4307 
4308 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4309 
4310 static void
4311 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4312 {
4313 	/*
4314 	 * Update run-time statistics of the 'current'.
4315 	 */
4316 	update_curr(cfs_rq);
4317 
4318 	/*
4319 	 * When dequeuing a sched_entity, we must:
4320 	 *   - Update loads to have both entity and cfs_rq synced with now.
4321 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4322 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4323 	 *   - For group entity, update its weight to reflect the new share
4324 	 *     of its group cfs_rq.
4325 	 */
4326 	update_load_avg(cfs_rq, se, UPDATE_TG);
4327 	se_update_runnable(se);
4328 
4329 	update_stats_dequeue(cfs_rq, se, flags);
4330 
4331 	clear_buddies(cfs_rq, se);
4332 
4333 	if (se != cfs_rq->curr)
4334 		__dequeue_entity(cfs_rq, se);
4335 	se->on_rq = 0;
4336 	account_entity_dequeue(cfs_rq, se);
4337 
4338 	/*
4339 	 * Normalize after update_curr(); which will also have moved
4340 	 * min_vruntime if @se is the one holding it back. But before doing
4341 	 * update_min_vruntime() again, which will discount @se's position and
4342 	 * can move min_vruntime forward still more.
4343 	 */
4344 	if (!(flags & DEQUEUE_SLEEP))
4345 		se->vruntime -= cfs_rq->min_vruntime;
4346 
4347 	/* return excess runtime on last dequeue */
4348 	return_cfs_rq_runtime(cfs_rq);
4349 
4350 	update_cfs_group(se);
4351 
4352 	/*
4353 	 * Now advance min_vruntime if @se was the entity holding it back,
4354 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4355 	 * put back on, and if we advance min_vruntime, we'll be placed back
4356 	 * further than we started -- ie. we'll be penalized.
4357 	 */
4358 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4359 		update_min_vruntime(cfs_rq);
4360 }
4361 
4362 /*
4363  * Preempt the current task with a newly woken task if needed:
4364  */
4365 static void
4366 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4367 {
4368 	unsigned long ideal_runtime, delta_exec;
4369 	struct sched_entity *se;
4370 	s64 delta;
4371 
4372 	ideal_runtime = sched_slice(cfs_rq, curr);
4373 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4374 	if (delta_exec > ideal_runtime) {
4375 		resched_curr(rq_of(cfs_rq));
4376 		/*
4377 		 * The current task ran long enough, ensure it doesn't get
4378 		 * re-elected due to buddy favours.
4379 		 */
4380 		clear_buddies(cfs_rq, curr);
4381 		return;
4382 	}
4383 
4384 	/*
4385 	 * Ensure that a task that missed wakeup preemption by a
4386 	 * narrow margin doesn't have to wait for a full slice.
4387 	 * This also mitigates buddy induced latencies under load.
4388 	 */
4389 	if (delta_exec < sysctl_sched_min_granularity)
4390 		return;
4391 
4392 	se = __pick_first_entity(cfs_rq);
4393 	delta = curr->vruntime - se->vruntime;
4394 
4395 	if (delta < 0)
4396 		return;
4397 
4398 	if (delta > ideal_runtime)
4399 		resched_curr(rq_of(cfs_rq));
4400 }
4401 
4402 static void
4403 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4404 {
4405 	/* 'current' is not kept within the tree. */
4406 	if (se->on_rq) {
4407 		/*
4408 		 * Any task has to be enqueued before it get to execute on
4409 		 * a CPU. So account for the time it spent waiting on the
4410 		 * runqueue.
4411 		 */
4412 		update_stats_wait_end(cfs_rq, se);
4413 		__dequeue_entity(cfs_rq, se);
4414 		update_load_avg(cfs_rq, se, UPDATE_TG);
4415 	}
4416 
4417 	update_stats_curr_start(cfs_rq, se);
4418 	cfs_rq->curr = se;
4419 
4420 	/*
4421 	 * Track our maximum slice length, if the CPU's load is at
4422 	 * least twice that of our own weight (i.e. dont track it
4423 	 * when there are only lesser-weight tasks around):
4424 	 */
4425 	if (schedstat_enabled() &&
4426 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4427 		schedstat_set(se->statistics.slice_max,
4428 			max((u64)schedstat_val(se->statistics.slice_max),
4429 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4430 	}
4431 
4432 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4433 }
4434 
4435 static int
4436 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4437 
4438 /*
4439  * Pick the next process, keeping these things in mind, in this order:
4440  * 1) keep things fair between processes/task groups
4441  * 2) pick the "next" process, since someone really wants that to run
4442  * 3) pick the "last" process, for cache locality
4443  * 4) do not run the "skip" process, if something else is available
4444  */
4445 static struct sched_entity *
4446 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4447 {
4448 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4449 	struct sched_entity *se;
4450 
4451 	/*
4452 	 * If curr is set we have to see if its left of the leftmost entity
4453 	 * still in the tree, provided there was anything in the tree at all.
4454 	 */
4455 	if (!left || (curr && entity_before(curr, left)))
4456 		left = curr;
4457 
4458 	se = left; /* ideally we run the leftmost entity */
4459 
4460 	/*
4461 	 * Avoid running the skip buddy, if running something else can
4462 	 * be done without getting too unfair.
4463 	 */
4464 	if (cfs_rq->skip == se) {
4465 		struct sched_entity *second;
4466 
4467 		if (se == curr) {
4468 			second = __pick_first_entity(cfs_rq);
4469 		} else {
4470 			second = __pick_next_entity(se);
4471 			if (!second || (curr && entity_before(curr, second)))
4472 				second = curr;
4473 		}
4474 
4475 		if (second && wakeup_preempt_entity(second, left) < 1)
4476 			se = second;
4477 	}
4478 
4479 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4480 		/*
4481 		 * Someone really wants this to run. If it's not unfair, run it.
4482 		 */
4483 		se = cfs_rq->next;
4484 	} else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4485 		/*
4486 		 * Prefer last buddy, try to return the CPU to a preempted task.
4487 		 */
4488 		se = cfs_rq->last;
4489 	}
4490 
4491 	clear_buddies(cfs_rq, se);
4492 
4493 	return se;
4494 }
4495 
4496 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4497 
4498 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4499 {
4500 	/*
4501 	 * If still on the runqueue then deactivate_task()
4502 	 * was not called and update_curr() has to be done:
4503 	 */
4504 	if (prev->on_rq)
4505 		update_curr(cfs_rq);
4506 
4507 	/* throttle cfs_rqs exceeding runtime */
4508 	check_cfs_rq_runtime(cfs_rq);
4509 
4510 	check_spread(cfs_rq, prev);
4511 
4512 	if (prev->on_rq) {
4513 		update_stats_wait_start(cfs_rq, prev);
4514 		/* Put 'current' back into the tree. */
4515 		__enqueue_entity(cfs_rq, prev);
4516 		/* in !on_rq case, update occurred at dequeue */
4517 		update_load_avg(cfs_rq, prev, 0);
4518 	}
4519 	cfs_rq->curr = NULL;
4520 }
4521 
4522 static void
4523 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4524 {
4525 	/*
4526 	 * Update run-time statistics of the 'current'.
4527 	 */
4528 	update_curr(cfs_rq);
4529 
4530 	/*
4531 	 * Ensure that runnable average is periodically updated.
4532 	 */
4533 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4534 	update_cfs_group(curr);
4535 
4536 #ifdef CONFIG_SCHED_HRTICK
4537 	/*
4538 	 * queued ticks are scheduled to match the slice, so don't bother
4539 	 * validating it and just reschedule.
4540 	 */
4541 	if (queued) {
4542 		resched_curr(rq_of(cfs_rq));
4543 		return;
4544 	}
4545 	/*
4546 	 * don't let the period tick interfere with the hrtick preemption
4547 	 */
4548 	if (!sched_feat(DOUBLE_TICK) &&
4549 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4550 		return;
4551 #endif
4552 
4553 	if (cfs_rq->nr_running > 1)
4554 		check_preempt_tick(cfs_rq, curr);
4555 }
4556 
4557 
4558 /**************************************************
4559  * CFS bandwidth control machinery
4560  */
4561 
4562 #ifdef CONFIG_CFS_BANDWIDTH
4563 
4564 #ifdef CONFIG_JUMP_LABEL
4565 static struct static_key __cfs_bandwidth_used;
4566 
4567 static inline bool cfs_bandwidth_used(void)
4568 {
4569 	return static_key_false(&__cfs_bandwidth_used);
4570 }
4571 
4572 void cfs_bandwidth_usage_inc(void)
4573 {
4574 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4575 }
4576 
4577 void cfs_bandwidth_usage_dec(void)
4578 {
4579 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4580 }
4581 #else /* CONFIG_JUMP_LABEL */
4582 static bool cfs_bandwidth_used(void)
4583 {
4584 	return true;
4585 }
4586 
4587 void cfs_bandwidth_usage_inc(void) {}
4588 void cfs_bandwidth_usage_dec(void) {}
4589 #endif /* CONFIG_JUMP_LABEL */
4590 
4591 /*
4592  * default period for cfs group bandwidth.
4593  * default: 0.1s, units: nanoseconds
4594  */
4595 static inline u64 default_cfs_period(void)
4596 {
4597 	return 100000000ULL;
4598 }
4599 
4600 static inline u64 sched_cfs_bandwidth_slice(void)
4601 {
4602 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4603 }
4604 
4605 /*
4606  * Replenish runtime according to assigned quota. We use sched_clock_cpu
4607  * directly instead of rq->clock to avoid adding additional synchronization
4608  * around rq->lock.
4609  *
4610  * requires cfs_b->lock
4611  */
4612 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4613 {
4614 	if (cfs_b->quota != RUNTIME_INF)
4615 		cfs_b->runtime = cfs_b->quota;
4616 }
4617 
4618 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4619 {
4620 	return &tg->cfs_bandwidth;
4621 }
4622 
4623 /* returns 0 on failure to allocate runtime */
4624 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4625 				   struct cfs_rq *cfs_rq, u64 target_runtime)
4626 {
4627 	u64 min_amount, amount = 0;
4628 
4629 	lockdep_assert_held(&cfs_b->lock);
4630 
4631 	/* note: this is a positive sum as runtime_remaining <= 0 */
4632 	min_amount = target_runtime - cfs_rq->runtime_remaining;
4633 
4634 	if (cfs_b->quota == RUNTIME_INF)
4635 		amount = min_amount;
4636 	else {
4637 		start_cfs_bandwidth(cfs_b);
4638 
4639 		if (cfs_b->runtime > 0) {
4640 			amount = min(cfs_b->runtime, min_amount);
4641 			cfs_b->runtime -= amount;
4642 			cfs_b->idle = 0;
4643 		}
4644 	}
4645 
4646 	cfs_rq->runtime_remaining += amount;
4647 
4648 	return cfs_rq->runtime_remaining > 0;
4649 }
4650 
4651 /* returns 0 on failure to allocate runtime */
4652 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4653 {
4654 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4655 	int ret;
4656 
4657 	raw_spin_lock(&cfs_b->lock);
4658 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4659 	raw_spin_unlock(&cfs_b->lock);
4660 
4661 	return ret;
4662 }
4663 
4664 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4665 {
4666 	/* dock delta_exec before expiring quota (as it could span periods) */
4667 	cfs_rq->runtime_remaining -= delta_exec;
4668 
4669 	if (likely(cfs_rq->runtime_remaining > 0))
4670 		return;
4671 
4672 	if (cfs_rq->throttled)
4673 		return;
4674 	/*
4675 	 * if we're unable to extend our runtime we resched so that the active
4676 	 * hierarchy can be throttled
4677 	 */
4678 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4679 		resched_curr(rq_of(cfs_rq));
4680 }
4681 
4682 static __always_inline
4683 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4684 {
4685 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4686 		return;
4687 
4688 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4689 }
4690 
4691 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4692 {
4693 	return cfs_bandwidth_used() && cfs_rq->throttled;
4694 }
4695 
4696 /* check whether cfs_rq, or any parent, is throttled */
4697 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4698 {
4699 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4700 }
4701 
4702 /*
4703  * Ensure that neither of the group entities corresponding to src_cpu or
4704  * dest_cpu are members of a throttled hierarchy when performing group
4705  * load-balance operations.
4706  */
4707 static inline int throttled_lb_pair(struct task_group *tg,
4708 				    int src_cpu, int dest_cpu)
4709 {
4710 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4711 
4712 	src_cfs_rq = tg->cfs_rq[src_cpu];
4713 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4714 
4715 	return throttled_hierarchy(src_cfs_rq) ||
4716 	       throttled_hierarchy(dest_cfs_rq);
4717 }
4718 
4719 static int tg_unthrottle_up(struct task_group *tg, void *data)
4720 {
4721 	struct rq *rq = data;
4722 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4723 
4724 	cfs_rq->throttle_count--;
4725 	if (!cfs_rq->throttle_count) {
4726 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4727 					     cfs_rq->throttled_clock_task;
4728 
4729 		/* Add cfs_rq with already running entity in the list */
4730 		if (cfs_rq->nr_running >= 1)
4731 			list_add_leaf_cfs_rq(cfs_rq);
4732 	}
4733 
4734 	return 0;
4735 }
4736 
4737 static int tg_throttle_down(struct task_group *tg, void *data)
4738 {
4739 	struct rq *rq = data;
4740 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4741 
4742 	/* group is entering throttled state, stop time */
4743 	if (!cfs_rq->throttle_count) {
4744 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4745 		list_del_leaf_cfs_rq(cfs_rq);
4746 	}
4747 	cfs_rq->throttle_count++;
4748 
4749 	return 0;
4750 }
4751 
4752 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4753 {
4754 	struct rq *rq = rq_of(cfs_rq);
4755 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4756 	struct sched_entity *se;
4757 	long task_delta, idle_task_delta, dequeue = 1;
4758 
4759 	raw_spin_lock(&cfs_b->lock);
4760 	/* This will start the period timer if necessary */
4761 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4762 		/*
4763 		 * We have raced with bandwidth becoming available, and if we
4764 		 * actually throttled the timer might not unthrottle us for an
4765 		 * entire period. We additionally needed to make sure that any
4766 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
4767 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4768 		 * for 1ns of runtime rather than just check cfs_b.
4769 		 */
4770 		dequeue = 0;
4771 	} else {
4772 		list_add_tail_rcu(&cfs_rq->throttled_list,
4773 				  &cfs_b->throttled_cfs_rq);
4774 	}
4775 	raw_spin_unlock(&cfs_b->lock);
4776 
4777 	if (!dequeue)
4778 		return false;  /* Throttle no longer required. */
4779 
4780 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4781 
4782 	/* freeze hierarchy runnable averages while throttled */
4783 	rcu_read_lock();
4784 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4785 	rcu_read_unlock();
4786 
4787 	task_delta = cfs_rq->h_nr_running;
4788 	idle_task_delta = cfs_rq->idle_h_nr_running;
4789 	for_each_sched_entity(se) {
4790 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4791 		/* throttled entity or throttle-on-deactivate */
4792 		if (!se->on_rq)
4793 			goto done;
4794 
4795 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4796 
4797 		qcfs_rq->h_nr_running -= task_delta;
4798 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4799 
4800 		if (qcfs_rq->load.weight) {
4801 			/* Avoid re-evaluating load for this entity: */
4802 			se = parent_entity(se);
4803 			break;
4804 		}
4805 	}
4806 
4807 	for_each_sched_entity(se) {
4808 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4809 		/* throttled entity or throttle-on-deactivate */
4810 		if (!se->on_rq)
4811 			goto done;
4812 
4813 		update_load_avg(qcfs_rq, se, 0);
4814 		se_update_runnable(se);
4815 
4816 		qcfs_rq->h_nr_running -= task_delta;
4817 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4818 	}
4819 
4820 	/* At this point se is NULL and we are at root level*/
4821 	sub_nr_running(rq, task_delta);
4822 
4823 done:
4824 	/*
4825 	 * Note: distribution will already see us throttled via the
4826 	 * throttled-list.  rq->lock protects completion.
4827 	 */
4828 	cfs_rq->throttled = 1;
4829 	cfs_rq->throttled_clock = rq_clock(rq);
4830 	return true;
4831 }
4832 
4833 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4834 {
4835 	struct rq *rq = rq_of(cfs_rq);
4836 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4837 	struct sched_entity *se;
4838 	long task_delta, idle_task_delta;
4839 
4840 	se = cfs_rq->tg->se[cpu_of(rq)];
4841 
4842 	cfs_rq->throttled = 0;
4843 
4844 	update_rq_clock(rq);
4845 
4846 	raw_spin_lock(&cfs_b->lock);
4847 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4848 	list_del_rcu(&cfs_rq->throttled_list);
4849 	raw_spin_unlock(&cfs_b->lock);
4850 
4851 	/* update hierarchical throttle state */
4852 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4853 
4854 	if (!cfs_rq->load.weight)
4855 		return;
4856 
4857 	task_delta = cfs_rq->h_nr_running;
4858 	idle_task_delta = cfs_rq->idle_h_nr_running;
4859 	for_each_sched_entity(se) {
4860 		if (se->on_rq)
4861 			break;
4862 		cfs_rq = cfs_rq_of(se);
4863 		enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4864 
4865 		cfs_rq->h_nr_running += task_delta;
4866 		cfs_rq->idle_h_nr_running += idle_task_delta;
4867 
4868 		/* end evaluation on encountering a throttled cfs_rq */
4869 		if (cfs_rq_throttled(cfs_rq))
4870 			goto unthrottle_throttle;
4871 	}
4872 
4873 	for_each_sched_entity(se) {
4874 		cfs_rq = cfs_rq_of(se);
4875 
4876 		update_load_avg(cfs_rq, se, UPDATE_TG);
4877 		se_update_runnable(se);
4878 
4879 		cfs_rq->h_nr_running += task_delta;
4880 		cfs_rq->idle_h_nr_running += idle_task_delta;
4881 
4882 
4883 		/* end evaluation on encountering a throttled cfs_rq */
4884 		if (cfs_rq_throttled(cfs_rq))
4885 			goto unthrottle_throttle;
4886 
4887 		/*
4888 		 * One parent has been throttled and cfs_rq removed from the
4889 		 * list. Add it back to not break the leaf list.
4890 		 */
4891 		if (throttled_hierarchy(cfs_rq))
4892 			list_add_leaf_cfs_rq(cfs_rq);
4893 	}
4894 
4895 	/* At this point se is NULL and we are at root level*/
4896 	add_nr_running(rq, task_delta);
4897 
4898 unthrottle_throttle:
4899 	/*
4900 	 * The cfs_rq_throttled() breaks in the above iteration can result in
4901 	 * incomplete leaf list maintenance, resulting in triggering the
4902 	 * assertion below.
4903 	 */
4904 	for_each_sched_entity(se) {
4905 		cfs_rq = cfs_rq_of(se);
4906 
4907 		if (list_add_leaf_cfs_rq(cfs_rq))
4908 			break;
4909 	}
4910 
4911 	assert_list_leaf_cfs_rq(rq);
4912 
4913 	/* Determine whether we need to wake up potentially idle CPU: */
4914 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4915 		resched_curr(rq);
4916 }
4917 
4918 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
4919 {
4920 	struct cfs_rq *cfs_rq;
4921 	u64 runtime, remaining = 1;
4922 
4923 	rcu_read_lock();
4924 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4925 				throttled_list) {
4926 		struct rq *rq = rq_of(cfs_rq);
4927 		struct rq_flags rf;
4928 
4929 		rq_lock_irqsave(rq, &rf);
4930 		if (!cfs_rq_throttled(cfs_rq))
4931 			goto next;
4932 
4933 		/* By the above check, this should never be true */
4934 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4935 
4936 		raw_spin_lock(&cfs_b->lock);
4937 		runtime = -cfs_rq->runtime_remaining + 1;
4938 		if (runtime > cfs_b->runtime)
4939 			runtime = cfs_b->runtime;
4940 		cfs_b->runtime -= runtime;
4941 		remaining = cfs_b->runtime;
4942 		raw_spin_unlock(&cfs_b->lock);
4943 
4944 		cfs_rq->runtime_remaining += runtime;
4945 
4946 		/* we check whether we're throttled above */
4947 		if (cfs_rq->runtime_remaining > 0)
4948 			unthrottle_cfs_rq(cfs_rq);
4949 
4950 next:
4951 		rq_unlock_irqrestore(rq, &rf);
4952 
4953 		if (!remaining)
4954 			break;
4955 	}
4956 	rcu_read_unlock();
4957 }
4958 
4959 /*
4960  * Responsible for refilling a task_group's bandwidth and unthrottling its
4961  * cfs_rqs as appropriate. If there has been no activity within the last
4962  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4963  * used to track this state.
4964  */
4965 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4966 {
4967 	int throttled;
4968 
4969 	/* no need to continue the timer with no bandwidth constraint */
4970 	if (cfs_b->quota == RUNTIME_INF)
4971 		goto out_deactivate;
4972 
4973 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4974 	cfs_b->nr_periods += overrun;
4975 
4976 	/*
4977 	 * idle depends on !throttled (for the case of a large deficit), and if
4978 	 * we're going inactive then everything else can be deferred
4979 	 */
4980 	if (cfs_b->idle && !throttled)
4981 		goto out_deactivate;
4982 
4983 	__refill_cfs_bandwidth_runtime(cfs_b);
4984 
4985 	if (!throttled) {
4986 		/* mark as potentially idle for the upcoming period */
4987 		cfs_b->idle = 1;
4988 		return 0;
4989 	}
4990 
4991 	/* account preceding periods in which throttling occurred */
4992 	cfs_b->nr_throttled += overrun;
4993 
4994 	/*
4995 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
4996 	 */
4997 	while (throttled && cfs_b->runtime > 0) {
4998 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4999 		/* we can't nest cfs_b->lock while distributing bandwidth */
5000 		distribute_cfs_runtime(cfs_b);
5001 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
5002 
5003 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5004 	}
5005 
5006 	/*
5007 	 * While we are ensured activity in the period following an
5008 	 * unthrottle, this also covers the case in which the new bandwidth is
5009 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
5010 	 * timer to remain active while there are any throttled entities.)
5011 	 */
5012 	cfs_b->idle = 0;
5013 
5014 	return 0;
5015 
5016 out_deactivate:
5017 	return 1;
5018 }
5019 
5020 /* a cfs_rq won't donate quota below this amount */
5021 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5022 /* minimum remaining period time to redistribute slack quota */
5023 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5024 /* how long we wait to gather additional slack before distributing */
5025 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5026 
5027 /*
5028  * Are we near the end of the current quota period?
5029  *
5030  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5031  * hrtimer base being cleared by hrtimer_start. In the case of
5032  * migrate_hrtimers, base is never cleared, so we are fine.
5033  */
5034 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5035 {
5036 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
5037 	u64 remaining;
5038 
5039 	/* if the call-back is running a quota refresh is already occurring */
5040 	if (hrtimer_callback_running(refresh_timer))
5041 		return 1;
5042 
5043 	/* is a quota refresh about to occur? */
5044 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5045 	if (remaining < min_expire)
5046 		return 1;
5047 
5048 	return 0;
5049 }
5050 
5051 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5052 {
5053 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5054 
5055 	/* if there's a quota refresh soon don't bother with slack */
5056 	if (runtime_refresh_within(cfs_b, min_left))
5057 		return;
5058 
5059 	/* don't push forwards an existing deferred unthrottle */
5060 	if (cfs_b->slack_started)
5061 		return;
5062 	cfs_b->slack_started = true;
5063 
5064 	hrtimer_start(&cfs_b->slack_timer,
5065 			ns_to_ktime(cfs_bandwidth_slack_period),
5066 			HRTIMER_MODE_REL);
5067 }
5068 
5069 /* we know any runtime found here is valid as update_curr() precedes return */
5070 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5071 {
5072 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5073 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5074 
5075 	if (slack_runtime <= 0)
5076 		return;
5077 
5078 	raw_spin_lock(&cfs_b->lock);
5079 	if (cfs_b->quota != RUNTIME_INF) {
5080 		cfs_b->runtime += slack_runtime;
5081 
5082 		/* we are under rq->lock, defer unthrottling using a timer */
5083 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5084 		    !list_empty(&cfs_b->throttled_cfs_rq))
5085 			start_cfs_slack_bandwidth(cfs_b);
5086 	}
5087 	raw_spin_unlock(&cfs_b->lock);
5088 
5089 	/* even if it's not valid for return we don't want to try again */
5090 	cfs_rq->runtime_remaining -= slack_runtime;
5091 }
5092 
5093 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5094 {
5095 	if (!cfs_bandwidth_used())
5096 		return;
5097 
5098 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5099 		return;
5100 
5101 	__return_cfs_rq_runtime(cfs_rq);
5102 }
5103 
5104 /*
5105  * This is done with a timer (instead of inline with bandwidth return) since
5106  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5107  */
5108 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5109 {
5110 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5111 	unsigned long flags;
5112 
5113 	/* confirm we're still not at a refresh boundary */
5114 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5115 	cfs_b->slack_started = false;
5116 
5117 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5118 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5119 		return;
5120 	}
5121 
5122 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5123 		runtime = cfs_b->runtime;
5124 
5125 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5126 
5127 	if (!runtime)
5128 		return;
5129 
5130 	distribute_cfs_runtime(cfs_b);
5131 }
5132 
5133 /*
5134  * When a group wakes up we want to make sure that its quota is not already
5135  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5136  * runtime as update_curr() throttling can not not trigger until it's on-rq.
5137  */
5138 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5139 {
5140 	if (!cfs_bandwidth_used())
5141 		return;
5142 
5143 	/* an active group must be handled by the update_curr()->put() path */
5144 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5145 		return;
5146 
5147 	/* ensure the group is not already throttled */
5148 	if (cfs_rq_throttled(cfs_rq))
5149 		return;
5150 
5151 	/* update runtime allocation */
5152 	account_cfs_rq_runtime(cfs_rq, 0);
5153 	if (cfs_rq->runtime_remaining <= 0)
5154 		throttle_cfs_rq(cfs_rq);
5155 }
5156 
5157 static void sync_throttle(struct task_group *tg, int cpu)
5158 {
5159 	struct cfs_rq *pcfs_rq, *cfs_rq;
5160 
5161 	if (!cfs_bandwidth_used())
5162 		return;
5163 
5164 	if (!tg->parent)
5165 		return;
5166 
5167 	cfs_rq = tg->cfs_rq[cpu];
5168 	pcfs_rq = tg->parent->cfs_rq[cpu];
5169 
5170 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5171 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5172 }
5173 
5174 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5175 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5176 {
5177 	if (!cfs_bandwidth_used())
5178 		return false;
5179 
5180 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5181 		return false;
5182 
5183 	/*
5184 	 * it's possible for a throttled entity to be forced into a running
5185 	 * state (e.g. set_curr_task), in this case we're finished.
5186 	 */
5187 	if (cfs_rq_throttled(cfs_rq))
5188 		return true;
5189 
5190 	return throttle_cfs_rq(cfs_rq);
5191 }
5192 
5193 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5194 {
5195 	struct cfs_bandwidth *cfs_b =
5196 		container_of(timer, struct cfs_bandwidth, slack_timer);
5197 
5198 	do_sched_cfs_slack_timer(cfs_b);
5199 
5200 	return HRTIMER_NORESTART;
5201 }
5202 
5203 extern const u64 max_cfs_quota_period;
5204 
5205 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5206 {
5207 	struct cfs_bandwidth *cfs_b =
5208 		container_of(timer, struct cfs_bandwidth, period_timer);
5209 	unsigned long flags;
5210 	int overrun;
5211 	int idle = 0;
5212 	int count = 0;
5213 
5214 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5215 	for (;;) {
5216 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5217 		if (!overrun)
5218 			break;
5219 
5220 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5221 
5222 		if (++count > 3) {
5223 			u64 new, old = ktime_to_ns(cfs_b->period);
5224 
5225 			/*
5226 			 * Grow period by a factor of 2 to avoid losing precision.
5227 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5228 			 * to fail.
5229 			 */
5230 			new = old * 2;
5231 			if (new < max_cfs_quota_period) {
5232 				cfs_b->period = ns_to_ktime(new);
5233 				cfs_b->quota *= 2;
5234 
5235 				pr_warn_ratelimited(
5236 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5237 					smp_processor_id(),
5238 					div_u64(new, NSEC_PER_USEC),
5239 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5240 			} else {
5241 				pr_warn_ratelimited(
5242 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5243 					smp_processor_id(),
5244 					div_u64(old, NSEC_PER_USEC),
5245 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5246 			}
5247 
5248 			/* reset count so we don't come right back in here */
5249 			count = 0;
5250 		}
5251 	}
5252 	if (idle)
5253 		cfs_b->period_active = 0;
5254 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5255 
5256 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5257 }
5258 
5259 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5260 {
5261 	raw_spin_lock_init(&cfs_b->lock);
5262 	cfs_b->runtime = 0;
5263 	cfs_b->quota = RUNTIME_INF;
5264 	cfs_b->period = ns_to_ktime(default_cfs_period());
5265 
5266 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5267 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5268 	cfs_b->period_timer.function = sched_cfs_period_timer;
5269 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5270 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5271 	cfs_b->slack_started = false;
5272 }
5273 
5274 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5275 {
5276 	cfs_rq->runtime_enabled = 0;
5277 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5278 }
5279 
5280 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5281 {
5282 	lockdep_assert_held(&cfs_b->lock);
5283 
5284 	if (cfs_b->period_active)
5285 		return;
5286 
5287 	cfs_b->period_active = 1;
5288 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5289 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5290 }
5291 
5292 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5293 {
5294 	/* init_cfs_bandwidth() was not called */
5295 	if (!cfs_b->throttled_cfs_rq.next)
5296 		return;
5297 
5298 	hrtimer_cancel(&cfs_b->period_timer);
5299 	hrtimer_cancel(&cfs_b->slack_timer);
5300 }
5301 
5302 /*
5303  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5304  *
5305  * The race is harmless, since modifying bandwidth settings of unhooked group
5306  * bits doesn't do much.
5307  */
5308 
5309 /* cpu online calback */
5310 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5311 {
5312 	struct task_group *tg;
5313 
5314 	lockdep_assert_held(&rq->lock);
5315 
5316 	rcu_read_lock();
5317 	list_for_each_entry_rcu(tg, &task_groups, list) {
5318 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5319 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5320 
5321 		raw_spin_lock(&cfs_b->lock);
5322 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5323 		raw_spin_unlock(&cfs_b->lock);
5324 	}
5325 	rcu_read_unlock();
5326 }
5327 
5328 /* cpu offline callback */
5329 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5330 {
5331 	struct task_group *tg;
5332 
5333 	lockdep_assert_held(&rq->lock);
5334 
5335 	rcu_read_lock();
5336 	list_for_each_entry_rcu(tg, &task_groups, list) {
5337 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5338 
5339 		if (!cfs_rq->runtime_enabled)
5340 			continue;
5341 
5342 		/*
5343 		 * clock_task is not advancing so we just need to make sure
5344 		 * there's some valid quota amount
5345 		 */
5346 		cfs_rq->runtime_remaining = 1;
5347 		/*
5348 		 * Offline rq is schedulable till CPU is completely disabled
5349 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5350 		 */
5351 		cfs_rq->runtime_enabled = 0;
5352 
5353 		if (cfs_rq_throttled(cfs_rq))
5354 			unthrottle_cfs_rq(cfs_rq);
5355 	}
5356 	rcu_read_unlock();
5357 }
5358 
5359 #else /* CONFIG_CFS_BANDWIDTH */
5360 
5361 static inline bool cfs_bandwidth_used(void)
5362 {
5363 	return false;
5364 }
5365 
5366 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5367 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5368 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5369 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5370 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5371 
5372 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5373 {
5374 	return 0;
5375 }
5376 
5377 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5378 {
5379 	return 0;
5380 }
5381 
5382 static inline int throttled_lb_pair(struct task_group *tg,
5383 				    int src_cpu, int dest_cpu)
5384 {
5385 	return 0;
5386 }
5387 
5388 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5389 
5390 #ifdef CONFIG_FAIR_GROUP_SCHED
5391 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5392 #endif
5393 
5394 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5395 {
5396 	return NULL;
5397 }
5398 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5399 static inline void update_runtime_enabled(struct rq *rq) {}
5400 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5401 
5402 #endif /* CONFIG_CFS_BANDWIDTH */
5403 
5404 /**************************************************
5405  * CFS operations on tasks:
5406  */
5407 
5408 #ifdef CONFIG_SCHED_HRTICK
5409 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5410 {
5411 	struct sched_entity *se = &p->se;
5412 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5413 
5414 	SCHED_WARN_ON(task_rq(p) != rq);
5415 
5416 	if (rq->cfs.h_nr_running > 1) {
5417 		u64 slice = sched_slice(cfs_rq, se);
5418 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5419 		s64 delta = slice - ran;
5420 
5421 		if (delta < 0) {
5422 			if (rq->curr == p)
5423 				resched_curr(rq);
5424 			return;
5425 		}
5426 		hrtick_start(rq, delta);
5427 	}
5428 }
5429 
5430 /*
5431  * called from enqueue/dequeue and updates the hrtick when the
5432  * current task is from our class and nr_running is low enough
5433  * to matter.
5434  */
5435 static void hrtick_update(struct rq *rq)
5436 {
5437 	struct task_struct *curr = rq->curr;
5438 
5439 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5440 		return;
5441 
5442 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5443 		hrtick_start_fair(rq, curr);
5444 }
5445 #else /* !CONFIG_SCHED_HRTICK */
5446 static inline void
5447 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5448 {
5449 }
5450 
5451 static inline void hrtick_update(struct rq *rq)
5452 {
5453 }
5454 #endif
5455 
5456 #ifdef CONFIG_SMP
5457 static inline unsigned long cpu_util(int cpu);
5458 
5459 static inline bool cpu_overutilized(int cpu)
5460 {
5461 	return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5462 }
5463 
5464 static inline void update_overutilized_status(struct rq *rq)
5465 {
5466 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5467 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5468 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5469 	}
5470 }
5471 #else
5472 static inline void update_overutilized_status(struct rq *rq) { }
5473 #endif
5474 
5475 /* Runqueue only has SCHED_IDLE tasks enqueued */
5476 static int sched_idle_rq(struct rq *rq)
5477 {
5478 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5479 			rq->nr_running);
5480 }
5481 
5482 #ifdef CONFIG_SMP
5483 static int sched_idle_cpu(int cpu)
5484 {
5485 	return sched_idle_rq(cpu_rq(cpu));
5486 }
5487 #endif
5488 
5489 /*
5490  * The enqueue_task method is called before nr_running is
5491  * increased. Here we update the fair scheduling stats and
5492  * then put the task into the rbtree:
5493  */
5494 static void
5495 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5496 {
5497 	struct cfs_rq *cfs_rq;
5498 	struct sched_entity *se = &p->se;
5499 	int idle_h_nr_running = task_has_idle_policy(p);
5500 	int task_new = !(flags & ENQUEUE_WAKEUP);
5501 
5502 	/*
5503 	 * The code below (indirectly) updates schedutil which looks at
5504 	 * the cfs_rq utilization to select a frequency.
5505 	 * Let's add the task's estimated utilization to the cfs_rq's
5506 	 * estimated utilization, before we update schedutil.
5507 	 */
5508 	util_est_enqueue(&rq->cfs, p);
5509 
5510 	/*
5511 	 * If in_iowait is set, the code below may not trigger any cpufreq
5512 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5513 	 * passed.
5514 	 */
5515 	if (p->in_iowait)
5516 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5517 
5518 	for_each_sched_entity(se) {
5519 		if (se->on_rq)
5520 			break;
5521 		cfs_rq = cfs_rq_of(se);
5522 		enqueue_entity(cfs_rq, se, flags);
5523 
5524 		cfs_rq->h_nr_running++;
5525 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5526 
5527 		/* end evaluation on encountering a throttled cfs_rq */
5528 		if (cfs_rq_throttled(cfs_rq))
5529 			goto enqueue_throttle;
5530 
5531 		flags = ENQUEUE_WAKEUP;
5532 	}
5533 
5534 	for_each_sched_entity(se) {
5535 		cfs_rq = cfs_rq_of(se);
5536 
5537 		update_load_avg(cfs_rq, se, UPDATE_TG);
5538 		se_update_runnable(se);
5539 		update_cfs_group(se);
5540 
5541 		cfs_rq->h_nr_running++;
5542 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5543 
5544 		/* end evaluation on encountering a throttled cfs_rq */
5545 		if (cfs_rq_throttled(cfs_rq))
5546 			goto enqueue_throttle;
5547 
5548                /*
5549                 * One parent has been throttled and cfs_rq removed from the
5550                 * list. Add it back to not break the leaf list.
5551                 */
5552                if (throttled_hierarchy(cfs_rq))
5553                        list_add_leaf_cfs_rq(cfs_rq);
5554 	}
5555 
5556 	/* At this point se is NULL and we are at root level*/
5557 	add_nr_running(rq, 1);
5558 
5559 	/*
5560 	 * Since new tasks are assigned an initial util_avg equal to
5561 	 * half of the spare capacity of their CPU, tiny tasks have the
5562 	 * ability to cross the overutilized threshold, which will
5563 	 * result in the load balancer ruining all the task placement
5564 	 * done by EAS. As a way to mitigate that effect, do not account
5565 	 * for the first enqueue operation of new tasks during the
5566 	 * overutilized flag detection.
5567 	 *
5568 	 * A better way of solving this problem would be to wait for
5569 	 * the PELT signals of tasks to converge before taking them
5570 	 * into account, but that is not straightforward to implement,
5571 	 * and the following generally works well enough in practice.
5572 	 */
5573 	if (!task_new)
5574 		update_overutilized_status(rq);
5575 
5576 enqueue_throttle:
5577 	if (cfs_bandwidth_used()) {
5578 		/*
5579 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5580 		 * breaks in the above iteration can result in incomplete
5581 		 * leaf list maintenance, resulting in triggering the assertion
5582 		 * below.
5583 		 */
5584 		for_each_sched_entity(se) {
5585 			cfs_rq = cfs_rq_of(se);
5586 
5587 			if (list_add_leaf_cfs_rq(cfs_rq))
5588 				break;
5589 		}
5590 	}
5591 
5592 	assert_list_leaf_cfs_rq(rq);
5593 
5594 	hrtick_update(rq);
5595 }
5596 
5597 static void set_next_buddy(struct sched_entity *se);
5598 
5599 /*
5600  * The dequeue_task method is called before nr_running is
5601  * decreased. We remove the task from the rbtree and
5602  * update the fair scheduling stats:
5603  */
5604 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5605 {
5606 	struct cfs_rq *cfs_rq;
5607 	struct sched_entity *se = &p->se;
5608 	int task_sleep = flags & DEQUEUE_SLEEP;
5609 	int idle_h_nr_running = task_has_idle_policy(p);
5610 	bool was_sched_idle = sched_idle_rq(rq);
5611 
5612 	for_each_sched_entity(se) {
5613 		cfs_rq = cfs_rq_of(se);
5614 		dequeue_entity(cfs_rq, se, flags);
5615 
5616 		cfs_rq->h_nr_running--;
5617 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5618 
5619 		/* end evaluation on encountering a throttled cfs_rq */
5620 		if (cfs_rq_throttled(cfs_rq))
5621 			goto dequeue_throttle;
5622 
5623 		/* Don't dequeue parent if it has other entities besides us */
5624 		if (cfs_rq->load.weight) {
5625 			/* Avoid re-evaluating load for this entity: */
5626 			se = parent_entity(se);
5627 			/*
5628 			 * Bias pick_next to pick a task from this cfs_rq, as
5629 			 * p is sleeping when it is within its sched_slice.
5630 			 */
5631 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5632 				set_next_buddy(se);
5633 			break;
5634 		}
5635 		flags |= DEQUEUE_SLEEP;
5636 	}
5637 
5638 	for_each_sched_entity(se) {
5639 		cfs_rq = cfs_rq_of(se);
5640 
5641 		update_load_avg(cfs_rq, se, UPDATE_TG);
5642 		se_update_runnable(se);
5643 		update_cfs_group(se);
5644 
5645 		cfs_rq->h_nr_running--;
5646 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5647 
5648 		/* end evaluation on encountering a throttled cfs_rq */
5649 		if (cfs_rq_throttled(cfs_rq))
5650 			goto dequeue_throttle;
5651 
5652 	}
5653 
5654 	/* At this point se is NULL and we are at root level*/
5655 	sub_nr_running(rq, 1);
5656 
5657 	/* balance early to pull high priority tasks */
5658 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5659 		rq->next_balance = jiffies;
5660 
5661 dequeue_throttle:
5662 	util_est_dequeue(&rq->cfs, p, task_sleep);
5663 	hrtick_update(rq);
5664 }
5665 
5666 #ifdef CONFIG_SMP
5667 
5668 /* Working cpumask for: load_balance, load_balance_newidle. */
5669 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5670 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5671 
5672 #ifdef CONFIG_NO_HZ_COMMON
5673 
5674 static struct {
5675 	cpumask_var_t idle_cpus_mask;
5676 	atomic_t nr_cpus;
5677 	int has_blocked;		/* Idle CPUS has blocked load */
5678 	unsigned long next_balance;     /* in jiffy units */
5679 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5680 } nohz ____cacheline_aligned;
5681 
5682 #endif /* CONFIG_NO_HZ_COMMON */
5683 
5684 static unsigned long cpu_load(struct rq *rq)
5685 {
5686 	return cfs_rq_load_avg(&rq->cfs);
5687 }
5688 
5689 /*
5690  * cpu_load_without - compute CPU load without any contributions from *p
5691  * @cpu: the CPU which load is requested
5692  * @p: the task which load should be discounted
5693  *
5694  * The load of a CPU is defined by the load of tasks currently enqueued on that
5695  * CPU as well as tasks which are currently sleeping after an execution on that
5696  * CPU.
5697  *
5698  * This method returns the load of the specified CPU by discounting the load of
5699  * the specified task, whenever the task is currently contributing to the CPU
5700  * load.
5701  */
5702 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5703 {
5704 	struct cfs_rq *cfs_rq;
5705 	unsigned int load;
5706 
5707 	/* Task has no contribution or is new */
5708 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5709 		return cpu_load(rq);
5710 
5711 	cfs_rq = &rq->cfs;
5712 	load = READ_ONCE(cfs_rq->avg.load_avg);
5713 
5714 	/* Discount task's util from CPU's util */
5715 	lsub_positive(&load, task_h_load(p));
5716 
5717 	return load;
5718 }
5719 
5720 static unsigned long cpu_runnable(struct rq *rq)
5721 {
5722 	return cfs_rq_runnable_avg(&rq->cfs);
5723 }
5724 
5725 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5726 {
5727 	struct cfs_rq *cfs_rq;
5728 	unsigned int runnable;
5729 
5730 	/* Task has no contribution or is new */
5731 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5732 		return cpu_runnable(rq);
5733 
5734 	cfs_rq = &rq->cfs;
5735 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5736 
5737 	/* Discount task's runnable from CPU's runnable */
5738 	lsub_positive(&runnable, p->se.avg.runnable_avg);
5739 
5740 	return runnable;
5741 }
5742 
5743 static unsigned long capacity_of(int cpu)
5744 {
5745 	return cpu_rq(cpu)->cpu_capacity;
5746 }
5747 
5748 static void record_wakee(struct task_struct *p)
5749 {
5750 	/*
5751 	 * Only decay a single time; tasks that have less then 1 wakeup per
5752 	 * jiffy will not have built up many flips.
5753 	 */
5754 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5755 		current->wakee_flips >>= 1;
5756 		current->wakee_flip_decay_ts = jiffies;
5757 	}
5758 
5759 	if (current->last_wakee != p) {
5760 		current->last_wakee = p;
5761 		current->wakee_flips++;
5762 	}
5763 }
5764 
5765 /*
5766  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5767  *
5768  * A waker of many should wake a different task than the one last awakened
5769  * at a frequency roughly N times higher than one of its wakees.
5770  *
5771  * In order to determine whether we should let the load spread vs consolidating
5772  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5773  * partner, and a factor of lls_size higher frequency in the other.
5774  *
5775  * With both conditions met, we can be relatively sure that the relationship is
5776  * non-monogamous, with partner count exceeding socket size.
5777  *
5778  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5779  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5780  * socket size.
5781  */
5782 static int wake_wide(struct task_struct *p)
5783 {
5784 	unsigned int master = current->wakee_flips;
5785 	unsigned int slave = p->wakee_flips;
5786 	int factor = __this_cpu_read(sd_llc_size);
5787 
5788 	if (master < slave)
5789 		swap(master, slave);
5790 	if (slave < factor || master < slave * factor)
5791 		return 0;
5792 	return 1;
5793 }
5794 
5795 /*
5796  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5797  * soonest. For the purpose of speed we only consider the waking and previous
5798  * CPU.
5799  *
5800  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5801  *			cache-affine and is (or	will be) idle.
5802  *
5803  * wake_affine_weight() - considers the weight to reflect the average
5804  *			  scheduling latency of the CPUs. This seems to work
5805  *			  for the overloaded case.
5806  */
5807 static int
5808 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5809 {
5810 	/*
5811 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5812 	 * context. Only allow the move if cache is shared. Otherwise an
5813 	 * interrupt intensive workload could force all tasks onto one
5814 	 * node depending on the IO topology or IRQ affinity settings.
5815 	 *
5816 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5817 	 * There is no guarantee that the cache hot data from an interrupt
5818 	 * is more important than cache hot data on the prev_cpu and from
5819 	 * a cpufreq perspective, it's better to have higher utilisation
5820 	 * on one CPU.
5821 	 */
5822 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5823 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5824 
5825 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5826 		return this_cpu;
5827 
5828 	if (available_idle_cpu(prev_cpu))
5829 		return prev_cpu;
5830 
5831 	return nr_cpumask_bits;
5832 }
5833 
5834 static int
5835 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5836 		   int this_cpu, int prev_cpu, int sync)
5837 {
5838 	s64 this_eff_load, prev_eff_load;
5839 	unsigned long task_load;
5840 
5841 	this_eff_load = cpu_load(cpu_rq(this_cpu));
5842 
5843 	if (sync) {
5844 		unsigned long current_load = task_h_load(current);
5845 
5846 		if (current_load > this_eff_load)
5847 			return this_cpu;
5848 
5849 		this_eff_load -= current_load;
5850 	}
5851 
5852 	task_load = task_h_load(p);
5853 
5854 	this_eff_load += task_load;
5855 	if (sched_feat(WA_BIAS))
5856 		this_eff_load *= 100;
5857 	this_eff_load *= capacity_of(prev_cpu);
5858 
5859 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5860 	prev_eff_load -= task_load;
5861 	if (sched_feat(WA_BIAS))
5862 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5863 	prev_eff_load *= capacity_of(this_cpu);
5864 
5865 	/*
5866 	 * If sync, adjust the weight of prev_eff_load such that if
5867 	 * prev_eff == this_eff that select_idle_sibling() will consider
5868 	 * stacking the wakee on top of the waker if no other CPU is
5869 	 * idle.
5870 	 */
5871 	if (sync)
5872 		prev_eff_load += 1;
5873 
5874 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5875 }
5876 
5877 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5878 		       int this_cpu, int prev_cpu, int sync)
5879 {
5880 	int target = nr_cpumask_bits;
5881 
5882 	if (sched_feat(WA_IDLE))
5883 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5884 
5885 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5886 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5887 
5888 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5889 	if (target == nr_cpumask_bits)
5890 		return prev_cpu;
5891 
5892 	schedstat_inc(sd->ttwu_move_affine);
5893 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5894 	return target;
5895 }
5896 
5897 static struct sched_group *
5898 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
5899 
5900 /*
5901  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5902  */
5903 static int
5904 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5905 {
5906 	unsigned long load, min_load = ULONG_MAX;
5907 	unsigned int min_exit_latency = UINT_MAX;
5908 	u64 latest_idle_timestamp = 0;
5909 	int least_loaded_cpu = this_cpu;
5910 	int shallowest_idle_cpu = -1;
5911 	int i;
5912 
5913 	/* Check if we have any choice: */
5914 	if (group->group_weight == 1)
5915 		return cpumask_first(sched_group_span(group));
5916 
5917 	/* Traverse only the allowed CPUs */
5918 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5919 		if (sched_idle_cpu(i))
5920 			return i;
5921 
5922 		if (available_idle_cpu(i)) {
5923 			struct rq *rq = cpu_rq(i);
5924 			struct cpuidle_state *idle = idle_get_state(rq);
5925 			if (idle && idle->exit_latency < min_exit_latency) {
5926 				/*
5927 				 * We give priority to a CPU whose idle state
5928 				 * has the smallest exit latency irrespective
5929 				 * of any idle timestamp.
5930 				 */
5931 				min_exit_latency = idle->exit_latency;
5932 				latest_idle_timestamp = rq->idle_stamp;
5933 				shallowest_idle_cpu = i;
5934 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5935 				   rq->idle_stamp > latest_idle_timestamp) {
5936 				/*
5937 				 * If equal or no active idle state, then
5938 				 * the most recently idled CPU might have
5939 				 * a warmer cache.
5940 				 */
5941 				latest_idle_timestamp = rq->idle_stamp;
5942 				shallowest_idle_cpu = i;
5943 			}
5944 		} else if (shallowest_idle_cpu == -1) {
5945 			load = cpu_load(cpu_rq(i));
5946 			if (load < min_load) {
5947 				min_load = load;
5948 				least_loaded_cpu = i;
5949 			}
5950 		}
5951 	}
5952 
5953 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5954 }
5955 
5956 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5957 				  int cpu, int prev_cpu, int sd_flag)
5958 {
5959 	int new_cpu = cpu;
5960 
5961 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
5962 		return prev_cpu;
5963 
5964 	/*
5965 	 * We need task's util for cpu_util_without, sync it up to
5966 	 * prev_cpu's last_update_time.
5967 	 */
5968 	if (!(sd_flag & SD_BALANCE_FORK))
5969 		sync_entity_load_avg(&p->se);
5970 
5971 	while (sd) {
5972 		struct sched_group *group;
5973 		struct sched_domain *tmp;
5974 		int weight;
5975 
5976 		if (!(sd->flags & sd_flag)) {
5977 			sd = sd->child;
5978 			continue;
5979 		}
5980 
5981 		group = find_idlest_group(sd, p, cpu);
5982 		if (!group) {
5983 			sd = sd->child;
5984 			continue;
5985 		}
5986 
5987 		new_cpu = find_idlest_group_cpu(group, p, cpu);
5988 		if (new_cpu == cpu) {
5989 			/* Now try balancing at a lower domain level of 'cpu': */
5990 			sd = sd->child;
5991 			continue;
5992 		}
5993 
5994 		/* Now try balancing at a lower domain level of 'new_cpu': */
5995 		cpu = new_cpu;
5996 		weight = sd->span_weight;
5997 		sd = NULL;
5998 		for_each_domain(cpu, tmp) {
5999 			if (weight <= tmp->span_weight)
6000 				break;
6001 			if (tmp->flags & sd_flag)
6002 				sd = tmp;
6003 		}
6004 	}
6005 
6006 	return new_cpu;
6007 }
6008 
6009 #ifdef CONFIG_SCHED_SMT
6010 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6011 EXPORT_SYMBOL_GPL(sched_smt_present);
6012 
6013 static inline void set_idle_cores(int cpu, int val)
6014 {
6015 	struct sched_domain_shared *sds;
6016 
6017 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6018 	if (sds)
6019 		WRITE_ONCE(sds->has_idle_cores, val);
6020 }
6021 
6022 static inline bool test_idle_cores(int cpu, bool def)
6023 {
6024 	struct sched_domain_shared *sds;
6025 
6026 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6027 	if (sds)
6028 		return READ_ONCE(sds->has_idle_cores);
6029 
6030 	return def;
6031 }
6032 
6033 /*
6034  * Scans the local SMT mask to see if the entire core is idle, and records this
6035  * information in sd_llc_shared->has_idle_cores.
6036  *
6037  * Since SMT siblings share all cache levels, inspecting this limited remote
6038  * state should be fairly cheap.
6039  */
6040 void __update_idle_core(struct rq *rq)
6041 {
6042 	int core = cpu_of(rq);
6043 	int cpu;
6044 
6045 	rcu_read_lock();
6046 	if (test_idle_cores(core, true))
6047 		goto unlock;
6048 
6049 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6050 		if (cpu == core)
6051 			continue;
6052 
6053 		if (!available_idle_cpu(cpu))
6054 			goto unlock;
6055 	}
6056 
6057 	set_idle_cores(core, 1);
6058 unlock:
6059 	rcu_read_unlock();
6060 }
6061 
6062 /*
6063  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6064  * there are no idle cores left in the system; tracked through
6065  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6066  */
6067 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6068 {
6069 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6070 	int core, cpu;
6071 
6072 	if (!static_branch_likely(&sched_smt_present))
6073 		return -1;
6074 
6075 	if (!test_idle_cores(target, false))
6076 		return -1;
6077 
6078 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6079 
6080 	for_each_cpu_wrap(core, cpus, target) {
6081 		bool idle = true;
6082 
6083 		for_each_cpu(cpu, cpu_smt_mask(core)) {
6084 			if (!available_idle_cpu(cpu)) {
6085 				idle = false;
6086 				break;
6087 			}
6088 		}
6089 
6090 		if (idle)
6091 			return core;
6092 
6093 		cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6094 	}
6095 
6096 	/*
6097 	 * Failed to find an idle core; stop looking for one.
6098 	 */
6099 	set_idle_cores(target, 0);
6100 
6101 	return -1;
6102 }
6103 
6104 /*
6105  * Scan the local SMT mask for idle CPUs.
6106  */
6107 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6108 {
6109 	int cpu;
6110 
6111 	if (!static_branch_likely(&sched_smt_present))
6112 		return -1;
6113 
6114 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6115 		if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6116 		    !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6117 			continue;
6118 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6119 			return cpu;
6120 	}
6121 
6122 	return -1;
6123 }
6124 
6125 #else /* CONFIG_SCHED_SMT */
6126 
6127 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6128 {
6129 	return -1;
6130 }
6131 
6132 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6133 {
6134 	return -1;
6135 }
6136 
6137 #endif /* CONFIG_SCHED_SMT */
6138 
6139 /*
6140  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6141  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6142  * average idle time for this rq (as found in rq->avg_idle).
6143  */
6144 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6145 {
6146 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6147 	struct sched_domain *this_sd;
6148 	u64 avg_cost, avg_idle;
6149 	u64 time;
6150 	int this = smp_processor_id();
6151 	int cpu, nr = INT_MAX;
6152 
6153 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6154 	if (!this_sd)
6155 		return -1;
6156 
6157 	/*
6158 	 * Due to large variance we need a large fuzz factor; hackbench in
6159 	 * particularly is sensitive here.
6160 	 */
6161 	avg_idle = this_rq()->avg_idle / 512;
6162 	avg_cost = this_sd->avg_scan_cost + 1;
6163 
6164 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6165 		return -1;
6166 
6167 	if (sched_feat(SIS_PROP)) {
6168 		u64 span_avg = sd->span_weight * avg_idle;
6169 		if (span_avg > 4*avg_cost)
6170 			nr = div_u64(span_avg, avg_cost);
6171 		else
6172 			nr = 4;
6173 	}
6174 
6175 	time = cpu_clock(this);
6176 
6177 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6178 
6179 	for_each_cpu_wrap(cpu, cpus, target) {
6180 		if (!--nr)
6181 			return -1;
6182 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6183 			break;
6184 	}
6185 
6186 	time = cpu_clock(this) - time;
6187 	update_avg(&this_sd->avg_scan_cost, time);
6188 
6189 	return cpu;
6190 }
6191 
6192 /*
6193  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6194  * the task fits. If no CPU is big enough, but there are idle ones, try to
6195  * maximize capacity.
6196  */
6197 static int
6198 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6199 {
6200 	unsigned long task_util, best_cap = 0;
6201 	int cpu, best_cpu = -1;
6202 	struct cpumask *cpus;
6203 
6204 	cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6205 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6206 
6207 	task_util = uclamp_task_util(p);
6208 
6209 	for_each_cpu_wrap(cpu, cpus, target) {
6210 		unsigned long cpu_cap = capacity_of(cpu);
6211 
6212 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6213 			continue;
6214 		if (fits_capacity(task_util, cpu_cap))
6215 			return cpu;
6216 
6217 		if (cpu_cap > best_cap) {
6218 			best_cap = cpu_cap;
6219 			best_cpu = cpu;
6220 		}
6221 	}
6222 
6223 	return best_cpu;
6224 }
6225 
6226 static inline bool asym_fits_capacity(int task_util, int cpu)
6227 {
6228 	if (static_branch_unlikely(&sched_asym_cpucapacity))
6229 		return fits_capacity(task_util, capacity_of(cpu));
6230 
6231 	return true;
6232 }
6233 
6234 /*
6235  * Try and locate an idle core/thread in the LLC cache domain.
6236  */
6237 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6238 {
6239 	struct sched_domain *sd;
6240 	unsigned long task_util;
6241 	int i, recent_used_cpu;
6242 
6243 	/*
6244 	 * On asymmetric system, update task utilization because we will check
6245 	 * that the task fits with cpu's capacity.
6246 	 */
6247 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6248 		sync_entity_load_avg(&p->se);
6249 		task_util = uclamp_task_util(p);
6250 	}
6251 
6252 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6253 	    asym_fits_capacity(task_util, target))
6254 		return target;
6255 
6256 	/*
6257 	 * If the previous CPU is cache affine and idle, don't be stupid:
6258 	 */
6259 	if (prev != target && cpus_share_cache(prev, target) &&
6260 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6261 	    asym_fits_capacity(task_util, prev))
6262 		return prev;
6263 
6264 	/*
6265 	 * Allow a per-cpu kthread to stack with the wakee if the
6266 	 * kworker thread and the tasks previous CPUs are the same.
6267 	 * The assumption is that the wakee queued work for the
6268 	 * per-cpu kthread that is now complete and the wakeup is
6269 	 * essentially a sync wakeup. An obvious example of this
6270 	 * pattern is IO completions.
6271 	 */
6272 	if (is_per_cpu_kthread(current) &&
6273 	    prev == smp_processor_id() &&
6274 	    this_rq()->nr_running <= 1) {
6275 		return prev;
6276 	}
6277 
6278 	/* Check a recently used CPU as a potential idle candidate: */
6279 	recent_used_cpu = p->recent_used_cpu;
6280 	if (recent_used_cpu != prev &&
6281 	    recent_used_cpu != target &&
6282 	    cpus_share_cache(recent_used_cpu, target) &&
6283 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6284 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6285 	    asym_fits_capacity(task_util, recent_used_cpu)) {
6286 		/*
6287 		 * Replace recent_used_cpu with prev as it is a potential
6288 		 * candidate for the next wake:
6289 		 */
6290 		p->recent_used_cpu = prev;
6291 		return recent_used_cpu;
6292 	}
6293 
6294 	/*
6295 	 * For asymmetric CPU capacity systems, our domain of interest is
6296 	 * sd_asym_cpucapacity rather than sd_llc.
6297 	 */
6298 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6299 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6300 		/*
6301 		 * On an asymmetric CPU capacity system where an exclusive
6302 		 * cpuset defines a symmetric island (i.e. one unique
6303 		 * capacity_orig value through the cpuset), the key will be set
6304 		 * but the CPUs within that cpuset will not have a domain with
6305 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6306 		 * capacity path.
6307 		 */
6308 		if (sd) {
6309 			i = select_idle_capacity(p, sd, target);
6310 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
6311 		}
6312 	}
6313 
6314 	sd = rcu_dereference(per_cpu(sd_llc, target));
6315 	if (!sd)
6316 		return target;
6317 
6318 	i = select_idle_core(p, sd, target);
6319 	if ((unsigned)i < nr_cpumask_bits)
6320 		return i;
6321 
6322 	i = select_idle_cpu(p, sd, target);
6323 	if ((unsigned)i < nr_cpumask_bits)
6324 		return i;
6325 
6326 	i = select_idle_smt(p, sd, target);
6327 	if ((unsigned)i < nr_cpumask_bits)
6328 		return i;
6329 
6330 	return target;
6331 }
6332 
6333 /**
6334  * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
6335  * @cpu: the CPU to get the utilization of
6336  *
6337  * The unit of the return value must be the one of capacity so we can compare
6338  * the utilization with the capacity of the CPU that is available for CFS task
6339  * (ie cpu_capacity).
6340  *
6341  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6342  * recent utilization of currently non-runnable tasks on a CPU. It represents
6343  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6344  * capacity_orig is the cpu_capacity available at the highest frequency
6345  * (arch_scale_freq_capacity()).
6346  * The utilization of a CPU converges towards a sum equal to or less than the
6347  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6348  * the running time on this CPU scaled by capacity_curr.
6349  *
6350  * The estimated utilization of a CPU is defined to be the maximum between its
6351  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6352  * currently RUNNABLE on that CPU.
6353  * This allows to properly represent the expected utilization of a CPU which
6354  * has just got a big task running since a long sleep period. At the same time
6355  * however it preserves the benefits of the "blocked utilization" in
6356  * describing the potential for other tasks waking up on the same CPU.
6357  *
6358  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6359  * higher than capacity_orig because of unfortunate rounding in
6360  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6361  * the average stabilizes with the new running time. We need to check that the
6362  * utilization stays within the range of [0..capacity_orig] and cap it if
6363  * necessary. Without utilization capping, a group could be seen as overloaded
6364  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6365  * available capacity. We allow utilization to overshoot capacity_curr (but not
6366  * capacity_orig) as it useful for predicting the capacity required after task
6367  * migrations (scheduler-driven DVFS).
6368  *
6369  * Return: the (estimated) utilization for the specified CPU
6370  */
6371 static inline unsigned long cpu_util(int cpu)
6372 {
6373 	struct cfs_rq *cfs_rq;
6374 	unsigned int util;
6375 
6376 	cfs_rq = &cpu_rq(cpu)->cfs;
6377 	util = READ_ONCE(cfs_rq->avg.util_avg);
6378 
6379 	if (sched_feat(UTIL_EST))
6380 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6381 
6382 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6383 }
6384 
6385 /*
6386  * cpu_util_without: compute cpu utilization without any contributions from *p
6387  * @cpu: the CPU which utilization is requested
6388  * @p: the task which utilization should be discounted
6389  *
6390  * The utilization of a CPU is defined by the utilization of tasks currently
6391  * enqueued on that CPU as well as tasks which are currently sleeping after an
6392  * execution on that CPU.
6393  *
6394  * This method returns the utilization of the specified CPU by discounting the
6395  * utilization of the specified task, whenever the task is currently
6396  * contributing to the CPU utilization.
6397  */
6398 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6399 {
6400 	struct cfs_rq *cfs_rq;
6401 	unsigned int util;
6402 
6403 	/* Task has no contribution or is new */
6404 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6405 		return cpu_util(cpu);
6406 
6407 	cfs_rq = &cpu_rq(cpu)->cfs;
6408 	util = READ_ONCE(cfs_rq->avg.util_avg);
6409 
6410 	/* Discount task's util from CPU's util */
6411 	lsub_positive(&util, task_util(p));
6412 
6413 	/*
6414 	 * Covered cases:
6415 	 *
6416 	 * a) if *p is the only task sleeping on this CPU, then:
6417 	 *      cpu_util (== task_util) > util_est (== 0)
6418 	 *    and thus we return:
6419 	 *      cpu_util_without = (cpu_util - task_util) = 0
6420 	 *
6421 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6422 	 *    IDLE, then:
6423 	 *      cpu_util >= task_util
6424 	 *      cpu_util > util_est (== 0)
6425 	 *    and thus we discount *p's blocked utilization to return:
6426 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6427 	 *
6428 	 * c) if other tasks are RUNNABLE on that CPU and
6429 	 *      util_est > cpu_util
6430 	 *    then we use util_est since it returns a more restrictive
6431 	 *    estimation of the spare capacity on that CPU, by just
6432 	 *    considering the expected utilization of tasks already
6433 	 *    runnable on that CPU.
6434 	 *
6435 	 * Cases a) and b) are covered by the above code, while case c) is
6436 	 * covered by the following code when estimated utilization is
6437 	 * enabled.
6438 	 */
6439 	if (sched_feat(UTIL_EST)) {
6440 		unsigned int estimated =
6441 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6442 
6443 		/*
6444 		 * Despite the following checks we still have a small window
6445 		 * for a possible race, when an execl's select_task_rq_fair()
6446 		 * races with LB's detach_task():
6447 		 *
6448 		 *   detach_task()
6449 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6450 		 *     ---------------------------------- A
6451 		 *     deactivate_task()                   \
6452 		 *       dequeue_task()                     + RaceTime
6453 		 *         util_est_dequeue()              /
6454 		 *     ---------------------------------- B
6455 		 *
6456 		 * The additional check on "current == p" it's required to
6457 		 * properly fix the execl regression and it helps in further
6458 		 * reducing the chances for the above race.
6459 		 */
6460 		if (unlikely(task_on_rq_queued(p) || current == p))
6461 			lsub_positive(&estimated, _task_util_est(p));
6462 
6463 		util = max(util, estimated);
6464 	}
6465 
6466 	/*
6467 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6468 	 * clamp to the maximum CPU capacity to ensure consistency with
6469 	 * the cpu_util call.
6470 	 */
6471 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6472 }
6473 
6474 /*
6475  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6476  * to @dst_cpu.
6477  */
6478 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6479 {
6480 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6481 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6482 
6483 	/*
6484 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6485 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6486 	 * the other cases, @cpu is not impacted by the migration, so the
6487 	 * util_avg should already be correct.
6488 	 */
6489 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6490 		sub_positive(&util, task_util(p));
6491 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6492 		util += task_util(p);
6493 
6494 	if (sched_feat(UTIL_EST)) {
6495 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6496 
6497 		/*
6498 		 * During wake-up, the task isn't enqueued yet and doesn't
6499 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6500 		 * so just add it (if needed) to "simulate" what will be
6501 		 * cpu_util() after the task has been enqueued.
6502 		 */
6503 		if (dst_cpu == cpu)
6504 			util_est += _task_util_est(p);
6505 
6506 		util = max(util, util_est);
6507 	}
6508 
6509 	return min(util, capacity_orig_of(cpu));
6510 }
6511 
6512 /*
6513  * compute_energy(): Estimates the energy that @pd would consume if @p was
6514  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6515  * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6516  * to compute what would be the energy if we decided to actually migrate that
6517  * task.
6518  */
6519 static long
6520 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6521 {
6522 	struct cpumask *pd_mask = perf_domain_span(pd);
6523 	unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6524 	unsigned long max_util = 0, sum_util = 0;
6525 	int cpu;
6526 
6527 	/*
6528 	 * The capacity state of CPUs of the current rd can be driven by CPUs
6529 	 * of another rd if they belong to the same pd. So, account for the
6530 	 * utilization of these CPUs too by masking pd with cpu_online_mask
6531 	 * instead of the rd span.
6532 	 *
6533 	 * If an entire pd is outside of the current rd, it will not appear in
6534 	 * its pd list and will not be accounted by compute_energy().
6535 	 */
6536 	for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6537 		unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6538 		struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
6539 
6540 		/*
6541 		 * Busy time computation: utilization clamping is not
6542 		 * required since the ratio (sum_util / cpu_capacity)
6543 		 * is already enough to scale the EM reported power
6544 		 * consumption at the (eventually clamped) cpu_capacity.
6545 		 */
6546 		sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6547 					       ENERGY_UTIL, NULL);
6548 
6549 		/*
6550 		 * Performance domain frequency: utilization clamping
6551 		 * must be considered since it affects the selection
6552 		 * of the performance domain frequency.
6553 		 * NOTE: in case RT tasks are running, by default the
6554 		 * FREQUENCY_UTIL's utilization can be max OPP.
6555 		 */
6556 		cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6557 					      FREQUENCY_UTIL, tsk);
6558 		max_util = max(max_util, cpu_util);
6559 	}
6560 
6561 	return em_cpu_energy(pd->em_pd, max_util, sum_util);
6562 }
6563 
6564 /*
6565  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6566  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6567  * spare capacity in each performance domain and uses it as a potential
6568  * candidate to execute the task. Then, it uses the Energy Model to figure
6569  * out which of the CPU candidates is the most energy-efficient.
6570  *
6571  * The rationale for this heuristic is as follows. In a performance domain,
6572  * all the most energy efficient CPU candidates (according to the Energy
6573  * Model) are those for which we'll request a low frequency. When there are
6574  * several CPUs for which the frequency request will be the same, we don't
6575  * have enough data to break the tie between them, because the Energy Model
6576  * only includes active power costs. With this model, if we assume that
6577  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6578  * the maximum spare capacity in a performance domain is guaranteed to be among
6579  * the best candidates of the performance domain.
6580  *
6581  * In practice, it could be preferable from an energy standpoint to pack
6582  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6583  * but that could also hurt our chances to go cluster idle, and we have no
6584  * ways to tell with the current Energy Model if this is actually a good
6585  * idea or not. So, find_energy_efficient_cpu() basically favors
6586  * cluster-packing, and spreading inside a cluster. That should at least be
6587  * a good thing for latency, and this is consistent with the idea that most
6588  * of the energy savings of EAS come from the asymmetry of the system, and
6589  * not so much from breaking the tie between identical CPUs. That's also the
6590  * reason why EAS is enabled in the topology code only for systems where
6591  * SD_ASYM_CPUCAPACITY is set.
6592  *
6593  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6594  * they don't have any useful utilization data yet and it's not possible to
6595  * forecast their impact on energy consumption. Consequently, they will be
6596  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6597  * to be energy-inefficient in some use-cases. The alternative would be to
6598  * bias new tasks towards specific types of CPUs first, or to try to infer
6599  * their util_avg from the parent task, but those heuristics could hurt
6600  * other use-cases too. So, until someone finds a better way to solve this,
6601  * let's keep things simple by re-using the existing slow path.
6602  */
6603 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6604 {
6605 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6606 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6607 	unsigned long cpu_cap, util, base_energy = 0;
6608 	int cpu, best_energy_cpu = prev_cpu;
6609 	struct sched_domain *sd;
6610 	struct perf_domain *pd;
6611 
6612 	rcu_read_lock();
6613 	pd = rcu_dereference(rd->pd);
6614 	if (!pd || READ_ONCE(rd->overutilized))
6615 		goto fail;
6616 
6617 	/*
6618 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6619 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6620 	 */
6621 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6622 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6623 		sd = sd->parent;
6624 	if (!sd)
6625 		goto fail;
6626 
6627 	sync_entity_load_avg(&p->se);
6628 	if (!task_util_est(p))
6629 		goto unlock;
6630 
6631 	for (; pd; pd = pd->next) {
6632 		unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6633 		unsigned long base_energy_pd;
6634 		int max_spare_cap_cpu = -1;
6635 
6636 		/* Compute the 'base' energy of the pd, without @p */
6637 		base_energy_pd = compute_energy(p, -1, pd);
6638 		base_energy += base_energy_pd;
6639 
6640 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6641 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6642 				continue;
6643 
6644 			util = cpu_util_next(cpu, p, cpu);
6645 			cpu_cap = capacity_of(cpu);
6646 			spare_cap = cpu_cap;
6647 			lsub_positive(&spare_cap, util);
6648 
6649 			/*
6650 			 * Skip CPUs that cannot satisfy the capacity request.
6651 			 * IOW, placing the task there would make the CPU
6652 			 * overutilized. Take uclamp into account to see how
6653 			 * much capacity we can get out of the CPU; this is
6654 			 * aligned with schedutil_cpu_util().
6655 			 */
6656 			util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6657 			if (!fits_capacity(util, cpu_cap))
6658 				continue;
6659 
6660 			/* Always use prev_cpu as a candidate. */
6661 			if (cpu == prev_cpu) {
6662 				prev_delta = compute_energy(p, prev_cpu, pd);
6663 				prev_delta -= base_energy_pd;
6664 				best_delta = min(best_delta, prev_delta);
6665 			}
6666 
6667 			/*
6668 			 * Find the CPU with the maximum spare capacity in
6669 			 * the performance domain
6670 			 */
6671 			if (spare_cap > max_spare_cap) {
6672 				max_spare_cap = spare_cap;
6673 				max_spare_cap_cpu = cpu;
6674 			}
6675 		}
6676 
6677 		/* Evaluate the energy impact of using this CPU. */
6678 		if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
6679 			cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6680 			cur_delta -= base_energy_pd;
6681 			if (cur_delta < best_delta) {
6682 				best_delta = cur_delta;
6683 				best_energy_cpu = max_spare_cap_cpu;
6684 			}
6685 		}
6686 	}
6687 unlock:
6688 	rcu_read_unlock();
6689 
6690 	/*
6691 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6692 	 * least 6% of the energy used by prev_cpu.
6693 	 */
6694 	if (prev_delta == ULONG_MAX)
6695 		return best_energy_cpu;
6696 
6697 	if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6698 		return best_energy_cpu;
6699 
6700 	return prev_cpu;
6701 
6702 fail:
6703 	rcu_read_unlock();
6704 
6705 	return -1;
6706 }
6707 
6708 /*
6709  * select_task_rq_fair: Select target runqueue for the waking task in domains
6710  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
6711  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6712  *
6713  * Balances load by selecting the idlest CPU in the idlest group, or under
6714  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6715  *
6716  * Returns the target CPU number.
6717  *
6718  * preempt must be disabled.
6719  */
6720 static int
6721 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
6722 {
6723 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6724 	struct sched_domain *tmp, *sd = NULL;
6725 	int cpu = smp_processor_id();
6726 	int new_cpu = prev_cpu;
6727 	int want_affine = 0;
6728 	/* SD_flags and WF_flags share the first nibble */
6729 	int sd_flag = wake_flags & 0xF;
6730 
6731 	if (wake_flags & WF_TTWU) {
6732 		record_wakee(p);
6733 
6734 		if (sched_energy_enabled()) {
6735 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6736 			if (new_cpu >= 0)
6737 				return new_cpu;
6738 			new_cpu = prev_cpu;
6739 		}
6740 
6741 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6742 	}
6743 
6744 	rcu_read_lock();
6745 	for_each_domain(cpu, tmp) {
6746 		/*
6747 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6748 		 * cpu is a valid SD_WAKE_AFFINE target.
6749 		 */
6750 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6751 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6752 			if (cpu != prev_cpu)
6753 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6754 
6755 			sd = NULL; /* Prefer wake_affine over balance flags */
6756 			break;
6757 		}
6758 
6759 		if (tmp->flags & sd_flag)
6760 			sd = tmp;
6761 		else if (!want_affine)
6762 			break;
6763 	}
6764 
6765 	if (unlikely(sd)) {
6766 		/* Slow path */
6767 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6768 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
6769 		/* Fast path */
6770 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6771 
6772 		if (want_affine)
6773 			current->recent_used_cpu = cpu;
6774 	}
6775 	rcu_read_unlock();
6776 
6777 	return new_cpu;
6778 }
6779 
6780 static void detach_entity_cfs_rq(struct sched_entity *se);
6781 
6782 /*
6783  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6784  * cfs_rq_of(p) references at time of call are still valid and identify the
6785  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6786  */
6787 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6788 {
6789 	/*
6790 	 * As blocked tasks retain absolute vruntime the migration needs to
6791 	 * deal with this by subtracting the old and adding the new
6792 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6793 	 * the task on the new runqueue.
6794 	 */
6795 	if (p->state == TASK_WAKING) {
6796 		struct sched_entity *se = &p->se;
6797 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6798 		u64 min_vruntime;
6799 
6800 #ifndef CONFIG_64BIT
6801 		u64 min_vruntime_copy;
6802 
6803 		do {
6804 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6805 			smp_rmb();
6806 			min_vruntime = cfs_rq->min_vruntime;
6807 		} while (min_vruntime != min_vruntime_copy);
6808 #else
6809 		min_vruntime = cfs_rq->min_vruntime;
6810 #endif
6811 
6812 		se->vruntime -= min_vruntime;
6813 	}
6814 
6815 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6816 		/*
6817 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6818 		 * rq->lock and can modify state directly.
6819 		 */
6820 		lockdep_assert_held(&task_rq(p)->lock);
6821 		detach_entity_cfs_rq(&p->se);
6822 
6823 	} else {
6824 		/*
6825 		 * We are supposed to update the task to "current" time, then
6826 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6827 		 * have difficulty in getting what current time is, so simply
6828 		 * throw away the out-of-date time. This will result in the
6829 		 * wakee task is less decayed, but giving the wakee more load
6830 		 * sounds not bad.
6831 		 */
6832 		remove_entity_load_avg(&p->se);
6833 	}
6834 
6835 	/* Tell new CPU we are migrated */
6836 	p->se.avg.last_update_time = 0;
6837 
6838 	/* We have migrated, no longer consider this task hot */
6839 	p->se.exec_start = 0;
6840 
6841 	update_scan_period(p, new_cpu);
6842 }
6843 
6844 static void task_dead_fair(struct task_struct *p)
6845 {
6846 	remove_entity_load_avg(&p->se);
6847 }
6848 
6849 static int
6850 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6851 {
6852 	if (rq->nr_running)
6853 		return 1;
6854 
6855 	return newidle_balance(rq, rf) != 0;
6856 }
6857 #endif /* CONFIG_SMP */
6858 
6859 static unsigned long wakeup_gran(struct sched_entity *se)
6860 {
6861 	unsigned long gran = sysctl_sched_wakeup_granularity;
6862 
6863 	/*
6864 	 * Since its curr running now, convert the gran from real-time
6865 	 * to virtual-time in his units.
6866 	 *
6867 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6868 	 * they get preempted easier. That is, if 'se' < 'curr' then
6869 	 * the resulting gran will be larger, therefore penalizing the
6870 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6871 	 * be smaller, again penalizing the lighter task.
6872 	 *
6873 	 * This is especially important for buddies when the leftmost
6874 	 * task is higher priority than the buddy.
6875 	 */
6876 	return calc_delta_fair(gran, se);
6877 }
6878 
6879 /*
6880  * Should 'se' preempt 'curr'.
6881  *
6882  *             |s1
6883  *        |s2
6884  *   |s3
6885  *         g
6886  *      |<--->|c
6887  *
6888  *  w(c, s1) = -1
6889  *  w(c, s2) =  0
6890  *  w(c, s3) =  1
6891  *
6892  */
6893 static int
6894 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6895 {
6896 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6897 
6898 	if (vdiff <= 0)
6899 		return -1;
6900 
6901 	gran = wakeup_gran(se);
6902 	if (vdiff > gran)
6903 		return 1;
6904 
6905 	return 0;
6906 }
6907 
6908 static void set_last_buddy(struct sched_entity *se)
6909 {
6910 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6911 		return;
6912 
6913 	for_each_sched_entity(se) {
6914 		if (SCHED_WARN_ON(!se->on_rq))
6915 			return;
6916 		cfs_rq_of(se)->last = se;
6917 	}
6918 }
6919 
6920 static void set_next_buddy(struct sched_entity *se)
6921 {
6922 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6923 		return;
6924 
6925 	for_each_sched_entity(se) {
6926 		if (SCHED_WARN_ON(!se->on_rq))
6927 			return;
6928 		cfs_rq_of(se)->next = se;
6929 	}
6930 }
6931 
6932 static void set_skip_buddy(struct sched_entity *se)
6933 {
6934 	for_each_sched_entity(se)
6935 		cfs_rq_of(se)->skip = se;
6936 }
6937 
6938 /*
6939  * Preempt the current task with a newly woken task if needed:
6940  */
6941 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6942 {
6943 	struct task_struct *curr = rq->curr;
6944 	struct sched_entity *se = &curr->se, *pse = &p->se;
6945 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6946 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6947 	int next_buddy_marked = 0;
6948 
6949 	if (unlikely(se == pse))
6950 		return;
6951 
6952 	/*
6953 	 * This is possible from callers such as attach_tasks(), in which we
6954 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6955 	 * lead to a throttle).  This both saves work and prevents false
6956 	 * next-buddy nomination below.
6957 	 */
6958 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6959 		return;
6960 
6961 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6962 		set_next_buddy(pse);
6963 		next_buddy_marked = 1;
6964 	}
6965 
6966 	/*
6967 	 * We can come here with TIF_NEED_RESCHED already set from new task
6968 	 * wake up path.
6969 	 *
6970 	 * Note: this also catches the edge-case of curr being in a throttled
6971 	 * group (e.g. via set_curr_task), since update_curr() (in the
6972 	 * enqueue of curr) will have resulted in resched being set.  This
6973 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6974 	 * below.
6975 	 */
6976 	if (test_tsk_need_resched(curr))
6977 		return;
6978 
6979 	/* Idle tasks are by definition preempted by non-idle tasks. */
6980 	if (unlikely(task_has_idle_policy(curr)) &&
6981 	    likely(!task_has_idle_policy(p)))
6982 		goto preempt;
6983 
6984 	/*
6985 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6986 	 * is driven by the tick):
6987 	 */
6988 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6989 		return;
6990 
6991 	find_matching_se(&se, &pse);
6992 	update_curr(cfs_rq_of(se));
6993 	BUG_ON(!pse);
6994 	if (wakeup_preempt_entity(se, pse) == 1) {
6995 		/*
6996 		 * Bias pick_next to pick the sched entity that is
6997 		 * triggering this preemption.
6998 		 */
6999 		if (!next_buddy_marked)
7000 			set_next_buddy(pse);
7001 		goto preempt;
7002 	}
7003 
7004 	return;
7005 
7006 preempt:
7007 	resched_curr(rq);
7008 	/*
7009 	 * Only set the backward buddy when the current task is still
7010 	 * on the rq. This can happen when a wakeup gets interleaved
7011 	 * with schedule on the ->pre_schedule() or idle_balance()
7012 	 * point, either of which can * drop the rq lock.
7013 	 *
7014 	 * Also, during early boot the idle thread is in the fair class,
7015 	 * for obvious reasons its a bad idea to schedule back to it.
7016 	 */
7017 	if (unlikely(!se->on_rq || curr == rq->idle))
7018 		return;
7019 
7020 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7021 		set_last_buddy(se);
7022 }
7023 
7024 struct task_struct *
7025 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7026 {
7027 	struct cfs_rq *cfs_rq = &rq->cfs;
7028 	struct sched_entity *se;
7029 	struct task_struct *p;
7030 	int new_tasks;
7031 
7032 again:
7033 	if (!sched_fair_runnable(rq))
7034 		goto idle;
7035 
7036 #ifdef CONFIG_FAIR_GROUP_SCHED
7037 	if (!prev || prev->sched_class != &fair_sched_class)
7038 		goto simple;
7039 
7040 	/*
7041 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7042 	 * likely that a next task is from the same cgroup as the current.
7043 	 *
7044 	 * Therefore attempt to avoid putting and setting the entire cgroup
7045 	 * hierarchy, only change the part that actually changes.
7046 	 */
7047 
7048 	do {
7049 		struct sched_entity *curr = cfs_rq->curr;
7050 
7051 		/*
7052 		 * Since we got here without doing put_prev_entity() we also
7053 		 * have to consider cfs_rq->curr. If it is still a runnable
7054 		 * entity, update_curr() will update its vruntime, otherwise
7055 		 * forget we've ever seen it.
7056 		 */
7057 		if (curr) {
7058 			if (curr->on_rq)
7059 				update_curr(cfs_rq);
7060 			else
7061 				curr = NULL;
7062 
7063 			/*
7064 			 * This call to check_cfs_rq_runtime() will do the
7065 			 * throttle and dequeue its entity in the parent(s).
7066 			 * Therefore the nr_running test will indeed
7067 			 * be correct.
7068 			 */
7069 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7070 				cfs_rq = &rq->cfs;
7071 
7072 				if (!cfs_rq->nr_running)
7073 					goto idle;
7074 
7075 				goto simple;
7076 			}
7077 		}
7078 
7079 		se = pick_next_entity(cfs_rq, curr);
7080 		cfs_rq = group_cfs_rq(se);
7081 	} while (cfs_rq);
7082 
7083 	p = task_of(se);
7084 
7085 	/*
7086 	 * Since we haven't yet done put_prev_entity and if the selected task
7087 	 * is a different task than we started out with, try and touch the
7088 	 * least amount of cfs_rqs.
7089 	 */
7090 	if (prev != p) {
7091 		struct sched_entity *pse = &prev->se;
7092 
7093 		while (!(cfs_rq = is_same_group(se, pse))) {
7094 			int se_depth = se->depth;
7095 			int pse_depth = pse->depth;
7096 
7097 			if (se_depth <= pse_depth) {
7098 				put_prev_entity(cfs_rq_of(pse), pse);
7099 				pse = parent_entity(pse);
7100 			}
7101 			if (se_depth >= pse_depth) {
7102 				set_next_entity(cfs_rq_of(se), se);
7103 				se = parent_entity(se);
7104 			}
7105 		}
7106 
7107 		put_prev_entity(cfs_rq, pse);
7108 		set_next_entity(cfs_rq, se);
7109 	}
7110 
7111 	goto done;
7112 simple:
7113 #endif
7114 	if (prev)
7115 		put_prev_task(rq, prev);
7116 
7117 	do {
7118 		se = pick_next_entity(cfs_rq, NULL);
7119 		set_next_entity(cfs_rq, se);
7120 		cfs_rq = group_cfs_rq(se);
7121 	} while (cfs_rq);
7122 
7123 	p = task_of(se);
7124 
7125 done: __maybe_unused;
7126 #ifdef CONFIG_SMP
7127 	/*
7128 	 * Move the next running task to the front of
7129 	 * the list, so our cfs_tasks list becomes MRU
7130 	 * one.
7131 	 */
7132 	list_move(&p->se.group_node, &rq->cfs_tasks);
7133 #endif
7134 
7135 	if (hrtick_enabled(rq))
7136 		hrtick_start_fair(rq, p);
7137 
7138 	update_misfit_status(p, rq);
7139 
7140 	return p;
7141 
7142 idle:
7143 	if (!rf)
7144 		return NULL;
7145 
7146 	new_tasks = newidle_balance(rq, rf);
7147 
7148 	/*
7149 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7150 	 * possible for any higher priority task to appear. In that case we
7151 	 * must re-start the pick_next_entity() loop.
7152 	 */
7153 	if (new_tasks < 0)
7154 		return RETRY_TASK;
7155 
7156 	if (new_tasks > 0)
7157 		goto again;
7158 
7159 	/*
7160 	 * rq is about to be idle, check if we need to update the
7161 	 * lost_idle_time of clock_pelt
7162 	 */
7163 	update_idle_rq_clock_pelt(rq);
7164 
7165 	return NULL;
7166 }
7167 
7168 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7169 {
7170 	return pick_next_task_fair(rq, NULL, NULL);
7171 }
7172 
7173 /*
7174  * Account for a descheduled task:
7175  */
7176 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7177 {
7178 	struct sched_entity *se = &prev->se;
7179 	struct cfs_rq *cfs_rq;
7180 
7181 	for_each_sched_entity(se) {
7182 		cfs_rq = cfs_rq_of(se);
7183 		put_prev_entity(cfs_rq, se);
7184 	}
7185 }
7186 
7187 /*
7188  * sched_yield() is very simple
7189  *
7190  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7191  */
7192 static void yield_task_fair(struct rq *rq)
7193 {
7194 	struct task_struct *curr = rq->curr;
7195 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7196 	struct sched_entity *se = &curr->se;
7197 
7198 	/*
7199 	 * Are we the only task in the tree?
7200 	 */
7201 	if (unlikely(rq->nr_running == 1))
7202 		return;
7203 
7204 	clear_buddies(cfs_rq, se);
7205 
7206 	if (curr->policy != SCHED_BATCH) {
7207 		update_rq_clock(rq);
7208 		/*
7209 		 * Update run-time statistics of the 'current'.
7210 		 */
7211 		update_curr(cfs_rq);
7212 		/*
7213 		 * Tell update_rq_clock() that we've just updated,
7214 		 * so we don't do microscopic update in schedule()
7215 		 * and double the fastpath cost.
7216 		 */
7217 		rq_clock_skip_update(rq);
7218 	}
7219 
7220 	set_skip_buddy(se);
7221 }
7222 
7223 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7224 {
7225 	struct sched_entity *se = &p->se;
7226 
7227 	/* throttled hierarchies are not runnable */
7228 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7229 		return false;
7230 
7231 	/* Tell the scheduler that we'd really like pse to run next. */
7232 	set_next_buddy(se);
7233 
7234 	yield_task_fair(rq);
7235 
7236 	return true;
7237 }
7238 
7239 #ifdef CONFIG_SMP
7240 /**************************************************
7241  * Fair scheduling class load-balancing methods.
7242  *
7243  * BASICS
7244  *
7245  * The purpose of load-balancing is to achieve the same basic fairness the
7246  * per-CPU scheduler provides, namely provide a proportional amount of compute
7247  * time to each task. This is expressed in the following equation:
7248  *
7249  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7250  *
7251  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7252  * W_i,0 is defined as:
7253  *
7254  *   W_i,0 = \Sum_j w_i,j                                             (2)
7255  *
7256  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7257  * is derived from the nice value as per sched_prio_to_weight[].
7258  *
7259  * The weight average is an exponential decay average of the instantaneous
7260  * weight:
7261  *
7262  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7263  *
7264  * C_i is the compute capacity of CPU i, typically it is the
7265  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7266  * can also include other factors [XXX].
7267  *
7268  * To achieve this balance we define a measure of imbalance which follows
7269  * directly from (1):
7270  *
7271  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7272  *
7273  * We them move tasks around to minimize the imbalance. In the continuous
7274  * function space it is obvious this converges, in the discrete case we get
7275  * a few fun cases generally called infeasible weight scenarios.
7276  *
7277  * [XXX expand on:
7278  *     - infeasible weights;
7279  *     - local vs global optima in the discrete case. ]
7280  *
7281  *
7282  * SCHED DOMAINS
7283  *
7284  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7285  * for all i,j solution, we create a tree of CPUs that follows the hardware
7286  * topology where each level pairs two lower groups (or better). This results
7287  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7288  * tree to only the first of the previous level and we decrease the frequency
7289  * of load-balance at each level inv. proportional to the number of CPUs in
7290  * the groups.
7291  *
7292  * This yields:
7293  *
7294  *     log_2 n     1     n
7295  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7296  *     i = 0      2^i   2^i
7297  *                               `- size of each group
7298  *         |         |     `- number of CPUs doing load-balance
7299  *         |         `- freq
7300  *         `- sum over all levels
7301  *
7302  * Coupled with a limit on how many tasks we can migrate every balance pass,
7303  * this makes (5) the runtime complexity of the balancer.
7304  *
7305  * An important property here is that each CPU is still (indirectly) connected
7306  * to every other CPU in at most O(log n) steps:
7307  *
7308  * The adjacency matrix of the resulting graph is given by:
7309  *
7310  *             log_2 n
7311  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7312  *             k = 0
7313  *
7314  * And you'll find that:
7315  *
7316  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7317  *
7318  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7319  * The task movement gives a factor of O(m), giving a convergence complexity
7320  * of:
7321  *
7322  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7323  *
7324  *
7325  * WORK CONSERVING
7326  *
7327  * In order to avoid CPUs going idle while there's still work to do, new idle
7328  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7329  * tree itself instead of relying on other CPUs to bring it work.
7330  *
7331  * This adds some complexity to both (5) and (8) but it reduces the total idle
7332  * time.
7333  *
7334  * [XXX more?]
7335  *
7336  *
7337  * CGROUPS
7338  *
7339  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7340  *
7341  *                                s_k,i
7342  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7343  *                                 S_k
7344  *
7345  * Where
7346  *
7347  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7348  *
7349  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7350  *
7351  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7352  * property.
7353  *
7354  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7355  *      rewrite all of this once again.]
7356  */
7357 
7358 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7359 
7360 enum fbq_type { regular, remote, all };
7361 
7362 /*
7363  * 'group_type' describes the group of CPUs at the moment of load balancing.
7364  *
7365  * The enum is ordered by pulling priority, with the group with lowest priority
7366  * first so the group_type can simply be compared when selecting the busiest
7367  * group. See update_sd_pick_busiest().
7368  */
7369 enum group_type {
7370 	/* The group has spare capacity that can be used to run more tasks.  */
7371 	group_has_spare = 0,
7372 	/*
7373 	 * The group is fully used and the tasks don't compete for more CPU
7374 	 * cycles. Nevertheless, some tasks might wait before running.
7375 	 */
7376 	group_fully_busy,
7377 	/*
7378 	 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7379 	 * and must be migrated to a more powerful CPU.
7380 	 */
7381 	group_misfit_task,
7382 	/*
7383 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7384 	 * and the task should be migrated to it instead of running on the
7385 	 * current CPU.
7386 	 */
7387 	group_asym_packing,
7388 	/*
7389 	 * The tasks' affinity constraints previously prevented the scheduler
7390 	 * from balancing the load across the system.
7391 	 */
7392 	group_imbalanced,
7393 	/*
7394 	 * The CPU is overloaded and can't provide expected CPU cycles to all
7395 	 * tasks.
7396 	 */
7397 	group_overloaded
7398 };
7399 
7400 enum migration_type {
7401 	migrate_load = 0,
7402 	migrate_util,
7403 	migrate_task,
7404 	migrate_misfit
7405 };
7406 
7407 #define LBF_ALL_PINNED	0x01
7408 #define LBF_NEED_BREAK	0x02
7409 #define LBF_DST_PINNED  0x04
7410 #define LBF_SOME_PINNED	0x08
7411 #define LBF_NOHZ_STATS	0x10
7412 #define LBF_NOHZ_AGAIN	0x20
7413 
7414 struct lb_env {
7415 	struct sched_domain	*sd;
7416 
7417 	struct rq		*src_rq;
7418 	int			src_cpu;
7419 
7420 	int			dst_cpu;
7421 	struct rq		*dst_rq;
7422 
7423 	struct cpumask		*dst_grpmask;
7424 	int			new_dst_cpu;
7425 	enum cpu_idle_type	idle;
7426 	long			imbalance;
7427 	/* The set of CPUs under consideration for load-balancing */
7428 	struct cpumask		*cpus;
7429 
7430 	unsigned int		flags;
7431 
7432 	unsigned int		loop;
7433 	unsigned int		loop_break;
7434 	unsigned int		loop_max;
7435 
7436 	enum fbq_type		fbq_type;
7437 	enum migration_type	migration_type;
7438 	struct list_head	tasks;
7439 };
7440 
7441 /*
7442  * Is this task likely cache-hot:
7443  */
7444 static int task_hot(struct task_struct *p, struct lb_env *env)
7445 {
7446 	s64 delta;
7447 
7448 	lockdep_assert_held(&env->src_rq->lock);
7449 
7450 	if (p->sched_class != &fair_sched_class)
7451 		return 0;
7452 
7453 	if (unlikely(task_has_idle_policy(p)))
7454 		return 0;
7455 
7456 	/* SMT siblings share cache */
7457 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7458 		return 0;
7459 
7460 	/*
7461 	 * Buddy candidates are cache hot:
7462 	 */
7463 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7464 			(&p->se == cfs_rq_of(&p->se)->next ||
7465 			 &p->se == cfs_rq_of(&p->se)->last))
7466 		return 1;
7467 
7468 	if (sysctl_sched_migration_cost == -1)
7469 		return 1;
7470 	if (sysctl_sched_migration_cost == 0)
7471 		return 0;
7472 
7473 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7474 
7475 	return delta < (s64)sysctl_sched_migration_cost;
7476 }
7477 
7478 #ifdef CONFIG_NUMA_BALANCING
7479 /*
7480  * Returns 1, if task migration degrades locality
7481  * Returns 0, if task migration improves locality i.e migration preferred.
7482  * Returns -1, if task migration is not affected by locality.
7483  */
7484 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7485 {
7486 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7487 	unsigned long src_weight, dst_weight;
7488 	int src_nid, dst_nid, dist;
7489 
7490 	if (!static_branch_likely(&sched_numa_balancing))
7491 		return -1;
7492 
7493 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7494 		return -1;
7495 
7496 	src_nid = cpu_to_node(env->src_cpu);
7497 	dst_nid = cpu_to_node(env->dst_cpu);
7498 
7499 	if (src_nid == dst_nid)
7500 		return -1;
7501 
7502 	/* Migrating away from the preferred node is always bad. */
7503 	if (src_nid == p->numa_preferred_nid) {
7504 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7505 			return 1;
7506 		else
7507 			return -1;
7508 	}
7509 
7510 	/* Encourage migration to the preferred node. */
7511 	if (dst_nid == p->numa_preferred_nid)
7512 		return 0;
7513 
7514 	/* Leaving a core idle is often worse than degrading locality. */
7515 	if (env->idle == CPU_IDLE)
7516 		return -1;
7517 
7518 	dist = node_distance(src_nid, dst_nid);
7519 	if (numa_group) {
7520 		src_weight = group_weight(p, src_nid, dist);
7521 		dst_weight = group_weight(p, dst_nid, dist);
7522 	} else {
7523 		src_weight = task_weight(p, src_nid, dist);
7524 		dst_weight = task_weight(p, dst_nid, dist);
7525 	}
7526 
7527 	return dst_weight < src_weight;
7528 }
7529 
7530 #else
7531 static inline int migrate_degrades_locality(struct task_struct *p,
7532 					     struct lb_env *env)
7533 {
7534 	return -1;
7535 }
7536 #endif
7537 
7538 /*
7539  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7540  */
7541 static
7542 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7543 {
7544 	int tsk_cache_hot;
7545 
7546 	lockdep_assert_held(&env->src_rq->lock);
7547 
7548 	/*
7549 	 * We do not migrate tasks that are:
7550 	 * 1) throttled_lb_pair, or
7551 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7552 	 * 3) running (obviously), or
7553 	 * 4) are cache-hot on their current CPU.
7554 	 */
7555 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7556 		return 0;
7557 
7558 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7559 		int cpu;
7560 
7561 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7562 
7563 		env->flags |= LBF_SOME_PINNED;
7564 
7565 		/*
7566 		 * Remember if this task can be migrated to any other CPU in
7567 		 * our sched_group. We may want to revisit it if we couldn't
7568 		 * meet load balance goals by pulling other tasks on src_cpu.
7569 		 *
7570 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7571 		 * already computed one in current iteration.
7572 		 */
7573 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7574 			return 0;
7575 
7576 		/* Prevent to re-select dst_cpu via env's CPUs: */
7577 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7578 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7579 				env->flags |= LBF_DST_PINNED;
7580 				env->new_dst_cpu = cpu;
7581 				break;
7582 			}
7583 		}
7584 
7585 		return 0;
7586 	}
7587 
7588 	/* Record that we found atleast one task that could run on dst_cpu */
7589 	env->flags &= ~LBF_ALL_PINNED;
7590 
7591 	if (task_running(env->src_rq, p)) {
7592 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7593 		return 0;
7594 	}
7595 
7596 	/*
7597 	 * Aggressive migration if:
7598 	 * 1) destination numa is preferred
7599 	 * 2) task is cache cold, or
7600 	 * 3) too many balance attempts have failed.
7601 	 */
7602 	tsk_cache_hot = migrate_degrades_locality(p, env);
7603 	if (tsk_cache_hot == -1)
7604 		tsk_cache_hot = task_hot(p, env);
7605 
7606 	if (tsk_cache_hot <= 0 ||
7607 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7608 		if (tsk_cache_hot == 1) {
7609 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7610 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7611 		}
7612 		return 1;
7613 	}
7614 
7615 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7616 	return 0;
7617 }
7618 
7619 /*
7620  * detach_task() -- detach the task for the migration specified in env
7621  */
7622 static void detach_task(struct task_struct *p, struct lb_env *env)
7623 {
7624 	lockdep_assert_held(&env->src_rq->lock);
7625 
7626 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7627 	set_task_cpu(p, env->dst_cpu);
7628 }
7629 
7630 /*
7631  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7632  * part of active balancing operations within "domain".
7633  *
7634  * Returns a task if successful and NULL otherwise.
7635  */
7636 static struct task_struct *detach_one_task(struct lb_env *env)
7637 {
7638 	struct task_struct *p;
7639 
7640 	lockdep_assert_held(&env->src_rq->lock);
7641 
7642 	list_for_each_entry_reverse(p,
7643 			&env->src_rq->cfs_tasks, se.group_node) {
7644 		if (!can_migrate_task(p, env))
7645 			continue;
7646 
7647 		detach_task(p, env);
7648 
7649 		/*
7650 		 * Right now, this is only the second place where
7651 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7652 		 * so we can safely collect stats here rather than
7653 		 * inside detach_tasks().
7654 		 */
7655 		schedstat_inc(env->sd->lb_gained[env->idle]);
7656 		return p;
7657 	}
7658 	return NULL;
7659 }
7660 
7661 static const unsigned int sched_nr_migrate_break = 32;
7662 
7663 /*
7664  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7665  * busiest_rq, as part of a balancing operation within domain "sd".
7666  *
7667  * Returns number of detached tasks if successful and 0 otherwise.
7668  */
7669 static int detach_tasks(struct lb_env *env)
7670 {
7671 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7672 	unsigned long util, load;
7673 	struct task_struct *p;
7674 	int detached = 0;
7675 
7676 	lockdep_assert_held(&env->src_rq->lock);
7677 
7678 	if (env->imbalance <= 0)
7679 		return 0;
7680 
7681 	while (!list_empty(tasks)) {
7682 		/*
7683 		 * We don't want to steal all, otherwise we may be treated likewise,
7684 		 * which could at worst lead to a livelock crash.
7685 		 */
7686 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7687 			break;
7688 
7689 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7690 
7691 		env->loop++;
7692 		/* We've more or less seen every task there is, call it quits */
7693 		if (env->loop > env->loop_max)
7694 			break;
7695 
7696 		/* take a breather every nr_migrate tasks */
7697 		if (env->loop > env->loop_break) {
7698 			env->loop_break += sched_nr_migrate_break;
7699 			env->flags |= LBF_NEED_BREAK;
7700 			break;
7701 		}
7702 
7703 		if (!can_migrate_task(p, env))
7704 			goto next;
7705 
7706 		switch (env->migration_type) {
7707 		case migrate_load:
7708 			/*
7709 			 * Depending of the number of CPUs and tasks and the
7710 			 * cgroup hierarchy, task_h_load() can return a null
7711 			 * value. Make sure that env->imbalance decreases
7712 			 * otherwise detach_tasks() will stop only after
7713 			 * detaching up to loop_max tasks.
7714 			 */
7715 			load = max_t(unsigned long, task_h_load(p), 1);
7716 
7717 			if (sched_feat(LB_MIN) &&
7718 			    load < 16 && !env->sd->nr_balance_failed)
7719 				goto next;
7720 
7721 			/*
7722 			 * Make sure that we don't migrate too much load.
7723 			 * Nevertheless, let relax the constraint if
7724 			 * scheduler fails to find a good waiting task to
7725 			 * migrate.
7726 			 */
7727 
7728 			if ((load >> env->sd->nr_balance_failed) > env->imbalance)
7729 				goto next;
7730 
7731 			env->imbalance -= load;
7732 			break;
7733 
7734 		case migrate_util:
7735 			util = task_util_est(p);
7736 
7737 			if (util > env->imbalance)
7738 				goto next;
7739 
7740 			env->imbalance -= util;
7741 			break;
7742 
7743 		case migrate_task:
7744 			env->imbalance--;
7745 			break;
7746 
7747 		case migrate_misfit:
7748 			/* This is not a misfit task */
7749 			if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7750 				goto next;
7751 
7752 			env->imbalance = 0;
7753 			break;
7754 		}
7755 
7756 		detach_task(p, env);
7757 		list_add(&p->se.group_node, &env->tasks);
7758 
7759 		detached++;
7760 
7761 #ifdef CONFIG_PREEMPTION
7762 		/*
7763 		 * NEWIDLE balancing is a source of latency, so preemptible
7764 		 * kernels will stop after the first task is detached to minimize
7765 		 * the critical section.
7766 		 */
7767 		if (env->idle == CPU_NEWLY_IDLE)
7768 			break;
7769 #endif
7770 
7771 		/*
7772 		 * We only want to steal up to the prescribed amount of
7773 		 * load/util/tasks.
7774 		 */
7775 		if (env->imbalance <= 0)
7776 			break;
7777 
7778 		continue;
7779 next:
7780 		list_move(&p->se.group_node, tasks);
7781 	}
7782 
7783 	/*
7784 	 * Right now, this is one of only two places we collect this stat
7785 	 * so we can safely collect detach_one_task() stats here rather
7786 	 * than inside detach_one_task().
7787 	 */
7788 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7789 
7790 	return detached;
7791 }
7792 
7793 /*
7794  * attach_task() -- attach the task detached by detach_task() to its new rq.
7795  */
7796 static void attach_task(struct rq *rq, struct task_struct *p)
7797 {
7798 	lockdep_assert_held(&rq->lock);
7799 
7800 	BUG_ON(task_rq(p) != rq);
7801 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7802 	check_preempt_curr(rq, p, 0);
7803 }
7804 
7805 /*
7806  * attach_one_task() -- attaches the task returned from detach_one_task() to
7807  * its new rq.
7808  */
7809 static void attach_one_task(struct rq *rq, struct task_struct *p)
7810 {
7811 	struct rq_flags rf;
7812 
7813 	rq_lock(rq, &rf);
7814 	update_rq_clock(rq);
7815 	attach_task(rq, p);
7816 	rq_unlock(rq, &rf);
7817 }
7818 
7819 /*
7820  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7821  * new rq.
7822  */
7823 static void attach_tasks(struct lb_env *env)
7824 {
7825 	struct list_head *tasks = &env->tasks;
7826 	struct task_struct *p;
7827 	struct rq_flags rf;
7828 
7829 	rq_lock(env->dst_rq, &rf);
7830 	update_rq_clock(env->dst_rq);
7831 
7832 	while (!list_empty(tasks)) {
7833 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7834 		list_del_init(&p->se.group_node);
7835 
7836 		attach_task(env->dst_rq, p);
7837 	}
7838 
7839 	rq_unlock(env->dst_rq, &rf);
7840 }
7841 
7842 #ifdef CONFIG_NO_HZ_COMMON
7843 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7844 {
7845 	if (cfs_rq->avg.load_avg)
7846 		return true;
7847 
7848 	if (cfs_rq->avg.util_avg)
7849 		return true;
7850 
7851 	return false;
7852 }
7853 
7854 static inline bool others_have_blocked(struct rq *rq)
7855 {
7856 	if (READ_ONCE(rq->avg_rt.util_avg))
7857 		return true;
7858 
7859 	if (READ_ONCE(rq->avg_dl.util_avg))
7860 		return true;
7861 
7862 	if (thermal_load_avg(rq))
7863 		return true;
7864 
7865 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7866 	if (READ_ONCE(rq->avg_irq.util_avg))
7867 		return true;
7868 #endif
7869 
7870 	return false;
7871 }
7872 
7873 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7874 {
7875 	rq->last_blocked_load_update_tick = jiffies;
7876 
7877 	if (!has_blocked)
7878 		rq->has_blocked_load = 0;
7879 }
7880 #else
7881 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7882 static inline bool others_have_blocked(struct rq *rq) { return false; }
7883 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7884 #endif
7885 
7886 static bool __update_blocked_others(struct rq *rq, bool *done)
7887 {
7888 	const struct sched_class *curr_class;
7889 	u64 now = rq_clock_pelt(rq);
7890 	unsigned long thermal_pressure;
7891 	bool decayed;
7892 
7893 	/*
7894 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7895 	 * DL and IRQ signals have been updated before updating CFS.
7896 	 */
7897 	curr_class = rq->curr->sched_class;
7898 
7899 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
7900 
7901 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7902 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
7903 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
7904 		  update_irq_load_avg(rq, 0);
7905 
7906 	if (others_have_blocked(rq))
7907 		*done = false;
7908 
7909 	return decayed;
7910 }
7911 
7912 #ifdef CONFIG_FAIR_GROUP_SCHED
7913 
7914 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7915 {
7916 	if (cfs_rq->load.weight)
7917 		return false;
7918 
7919 	if (cfs_rq->avg.load_sum)
7920 		return false;
7921 
7922 	if (cfs_rq->avg.util_sum)
7923 		return false;
7924 
7925 	if (cfs_rq->avg.runnable_sum)
7926 		return false;
7927 
7928 	return true;
7929 }
7930 
7931 static bool __update_blocked_fair(struct rq *rq, bool *done)
7932 {
7933 	struct cfs_rq *cfs_rq, *pos;
7934 	bool decayed = false;
7935 	int cpu = cpu_of(rq);
7936 
7937 	/*
7938 	 * Iterates the task_group tree in a bottom up fashion, see
7939 	 * list_add_leaf_cfs_rq() for details.
7940 	 */
7941 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7942 		struct sched_entity *se;
7943 
7944 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
7945 			update_tg_load_avg(cfs_rq);
7946 
7947 			if (cfs_rq == &rq->cfs)
7948 				decayed = true;
7949 		}
7950 
7951 		/* Propagate pending load changes to the parent, if any: */
7952 		se = cfs_rq->tg->se[cpu];
7953 		if (se && !skip_blocked_update(se))
7954 			update_load_avg(cfs_rq_of(se), se, 0);
7955 
7956 		/*
7957 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7958 		 * decayed cfs_rqs linger on the list.
7959 		 */
7960 		if (cfs_rq_is_decayed(cfs_rq))
7961 			list_del_leaf_cfs_rq(cfs_rq);
7962 
7963 		/* Don't need periodic decay once load/util_avg are null */
7964 		if (cfs_rq_has_blocked(cfs_rq))
7965 			*done = false;
7966 	}
7967 
7968 	return decayed;
7969 }
7970 
7971 /*
7972  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7973  * This needs to be done in a top-down fashion because the load of a child
7974  * group is a fraction of its parents load.
7975  */
7976 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7977 {
7978 	struct rq *rq = rq_of(cfs_rq);
7979 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7980 	unsigned long now = jiffies;
7981 	unsigned long load;
7982 
7983 	if (cfs_rq->last_h_load_update == now)
7984 		return;
7985 
7986 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
7987 	for_each_sched_entity(se) {
7988 		cfs_rq = cfs_rq_of(se);
7989 		WRITE_ONCE(cfs_rq->h_load_next, se);
7990 		if (cfs_rq->last_h_load_update == now)
7991 			break;
7992 	}
7993 
7994 	if (!se) {
7995 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7996 		cfs_rq->last_h_load_update = now;
7997 	}
7998 
7999 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8000 		load = cfs_rq->h_load;
8001 		load = div64_ul(load * se->avg.load_avg,
8002 			cfs_rq_load_avg(cfs_rq) + 1);
8003 		cfs_rq = group_cfs_rq(se);
8004 		cfs_rq->h_load = load;
8005 		cfs_rq->last_h_load_update = now;
8006 	}
8007 }
8008 
8009 static unsigned long task_h_load(struct task_struct *p)
8010 {
8011 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
8012 
8013 	update_cfs_rq_h_load(cfs_rq);
8014 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8015 			cfs_rq_load_avg(cfs_rq) + 1);
8016 }
8017 #else
8018 static bool __update_blocked_fair(struct rq *rq, bool *done)
8019 {
8020 	struct cfs_rq *cfs_rq = &rq->cfs;
8021 	bool decayed;
8022 
8023 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8024 	if (cfs_rq_has_blocked(cfs_rq))
8025 		*done = false;
8026 
8027 	return decayed;
8028 }
8029 
8030 static unsigned long task_h_load(struct task_struct *p)
8031 {
8032 	return p->se.avg.load_avg;
8033 }
8034 #endif
8035 
8036 static void update_blocked_averages(int cpu)
8037 {
8038 	bool decayed = false, done = true;
8039 	struct rq *rq = cpu_rq(cpu);
8040 	struct rq_flags rf;
8041 
8042 	rq_lock_irqsave(rq, &rf);
8043 	update_rq_clock(rq);
8044 
8045 	decayed |= __update_blocked_others(rq, &done);
8046 	decayed |= __update_blocked_fair(rq, &done);
8047 
8048 	update_blocked_load_status(rq, !done);
8049 	if (decayed)
8050 		cpufreq_update_util(rq, 0);
8051 	rq_unlock_irqrestore(rq, &rf);
8052 }
8053 
8054 /********** Helpers for find_busiest_group ************************/
8055 
8056 /*
8057  * sg_lb_stats - stats of a sched_group required for load_balancing
8058  */
8059 struct sg_lb_stats {
8060 	unsigned long avg_load; /*Avg load across the CPUs of the group */
8061 	unsigned long group_load; /* Total load over the CPUs of the group */
8062 	unsigned long group_capacity;
8063 	unsigned long group_util; /* Total utilization over the CPUs of the group */
8064 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8065 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
8066 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8067 	unsigned int idle_cpus;
8068 	unsigned int group_weight;
8069 	enum group_type group_type;
8070 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8071 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8072 #ifdef CONFIG_NUMA_BALANCING
8073 	unsigned int nr_numa_running;
8074 	unsigned int nr_preferred_running;
8075 #endif
8076 };
8077 
8078 /*
8079  * sd_lb_stats - Structure to store the statistics of a sched_domain
8080  *		 during load balancing.
8081  */
8082 struct sd_lb_stats {
8083 	struct sched_group *busiest;	/* Busiest group in this sd */
8084 	struct sched_group *local;	/* Local group in this sd */
8085 	unsigned long total_load;	/* Total load of all groups in sd */
8086 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
8087 	unsigned long avg_load;	/* Average load across all groups in sd */
8088 	unsigned int prefer_sibling; /* tasks should go to sibling first */
8089 
8090 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8091 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
8092 };
8093 
8094 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8095 {
8096 	/*
8097 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8098 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8099 	 * We must however set busiest_stat::group_type and
8100 	 * busiest_stat::idle_cpus to the worst busiest group because
8101 	 * update_sd_pick_busiest() reads these before assignment.
8102 	 */
8103 	*sds = (struct sd_lb_stats){
8104 		.busiest = NULL,
8105 		.local = NULL,
8106 		.total_load = 0UL,
8107 		.total_capacity = 0UL,
8108 		.busiest_stat = {
8109 			.idle_cpus = UINT_MAX,
8110 			.group_type = group_has_spare,
8111 		},
8112 	};
8113 }
8114 
8115 static unsigned long scale_rt_capacity(int cpu)
8116 {
8117 	struct rq *rq = cpu_rq(cpu);
8118 	unsigned long max = arch_scale_cpu_capacity(cpu);
8119 	unsigned long used, free;
8120 	unsigned long irq;
8121 
8122 	irq = cpu_util_irq(rq);
8123 
8124 	if (unlikely(irq >= max))
8125 		return 1;
8126 
8127 	/*
8128 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8129 	 * (running and not running) with weights 0 and 1024 respectively.
8130 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
8131 	 * average uses the actual delta max capacity(load).
8132 	 */
8133 	used = READ_ONCE(rq->avg_rt.util_avg);
8134 	used += READ_ONCE(rq->avg_dl.util_avg);
8135 	used += thermal_load_avg(rq);
8136 
8137 	if (unlikely(used >= max))
8138 		return 1;
8139 
8140 	free = max - used;
8141 
8142 	return scale_irq_capacity(free, irq, max);
8143 }
8144 
8145 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8146 {
8147 	unsigned long capacity = scale_rt_capacity(cpu);
8148 	struct sched_group *sdg = sd->groups;
8149 
8150 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8151 
8152 	if (!capacity)
8153 		capacity = 1;
8154 
8155 	cpu_rq(cpu)->cpu_capacity = capacity;
8156 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8157 
8158 	sdg->sgc->capacity = capacity;
8159 	sdg->sgc->min_capacity = capacity;
8160 	sdg->sgc->max_capacity = capacity;
8161 }
8162 
8163 void update_group_capacity(struct sched_domain *sd, int cpu)
8164 {
8165 	struct sched_domain *child = sd->child;
8166 	struct sched_group *group, *sdg = sd->groups;
8167 	unsigned long capacity, min_capacity, max_capacity;
8168 	unsigned long interval;
8169 
8170 	interval = msecs_to_jiffies(sd->balance_interval);
8171 	interval = clamp(interval, 1UL, max_load_balance_interval);
8172 	sdg->sgc->next_update = jiffies + interval;
8173 
8174 	if (!child) {
8175 		update_cpu_capacity(sd, cpu);
8176 		return;
8177 	}
8178 
8179 	capacity = 0;
8180 	min_capacity = ULONG_MAX;
8181 	max_capacity = 0;
8182 
8183 	if (child->flags & SD_OVERLAP) {
8184 		/*
8185 		 * SD_OVERLAP domains cannot assume that child groups
8186 		 * span the current group.
8187 		 */
8188 
8189 		for_each_cpu(cpu, sched_group_span(sdg)) {
8190 			unsigned long cpu_cap = capacity_of(cpu);
8191 
8192 			capacity += cpu_cap;
8193 			min_capacity = min(cpu_cap, min_capacity);
8194 			max_capacity = max(cpu_cap, max_capacity);
8195 		}
8196 	} else  {
8197 		/*
8198 		 * !SD_OVERLAP domains can assume that child groups
8199 		 * span the current group.
8200 		 */
8201 
8202 		group = child->groups;
8203 		do {
8204 			struct sched_group_capacity *sgc = group->sgc;
8205 
8206 			capacity += sgc->capacity;
8207 			min_capacity = min(sgc->min_capacity, min_capacity);
8208 			max_capacity = max(sgc->max_capacity, max_capacity);
8209 			group = group->next;
8210 		} while (group != child->groups);
8211 	}
8212 
8213 	sdg->sgc->capacity = capacity;
8214 	sdg->sgc->min_capacity = min_capacity;
8215 	sdg->sgc->max_capacity = max_capacity;
8216 }
8217 
8218 /*
8219  * Check whether the capacity of the rq has been noticeably reduced by side
8220  * activity. The imbalance_pct is used for the threshold.
8221  * Return true is the capacity is reduced
8222  */
8223 static inline int
8224 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8225 {
8226 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8227 				(rq->cpu_capacity_orig * 100));
8228 }
8229 
8230 /*
8231  * Check whether a rq has a misfit task and if it looks like we can actually
8232  * help that task: we can migrate the task to a CPU of higher capacity, or
8233  * the task's current CPU is heavily pressured.
8234  */
8235 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8236 {
8237 	return rq->misfit_task_load &&
8238 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8239 		 check_cpu_capacity(rq, sd));
8240 }
8241 
8242 /*
8243  * Group imbalance indicates (and tries to solve) the problem where balancing
8244  * groups is inadequate due to ->cpus_ptr constraints.
8245  *
8246  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8247  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8248  * Something like:
8249  *
8250  *	{ 0 1 2 3 } { 4 5 6 7 }
8251  *	        *     * * *
8252  *
8253  * If we were to balance group-wise we'd place two tasks in the first group and
8254  * two tasks in the second group. Clearly this is undesired as it will overload
8255  * cpu 3 and leave one of the CPUs in the second group unused.
8256  *
8257  * The current solution to this issue is detecting the skew in the first group
8258  * by noticing the lower domain failed to reach balance and had difficulty
8259  * moving tasks due to affinity constraints.
8260  *
8261  * When this is so detected; this group becomes a candidate for busiest; see
8262  * update_sd_pick_busiest(). And calculate_imbalance() and
8263  * find_busiest_group() avoid some of the usual balance conditions to allow it
8264  * to create an effective group imbalance.
8265  *
8266  * This is a somewhat tricky proposition since the next run might not find the
8267  * group imbalance and decide the groups need to be balanced again. A most
8268  * subtle and fragile situation.
8269  */
8270 
8271 static inline int sg_imbalanced(struct sched_group *group)
8272 {
8273 	return group->sgc->imbalance;
8274 }
8275 
8276 /*
8277  * group_has_capacity returns true if the group has spare capacity that could
8278  * be used by some tasks.
8279  * We consider that a group has spare capacity if the  * number of task is
8280  * smaller than the number of CPUs or if the utilization is lower than the
8281  * available capacity for CFS tasks.
8282  * For the latter, we use a threshold to stabilize the state, to take into
8283  * account the variance of the tasks' load and to return true if the available
8284  * capacity in meaningful for the load balancer.
8285  * As an example, an available capacity of 1% can appear but it doesn't make
8286  * any benefit for the load balance.
8287  */
8288 static inline bool
8289 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8290 {
8291 	if (sgs->sum_nr_running < sgs->group_weight)
8292 		return true;
8293 
8294 	if ((sgs->group_capacity * imbalance_pct) <
8295 			(sgs->group_runnable * 100))
8296 		return false;
8297 
8298 	if ((sgs->group_capacity * 100) >
8299 			(sgs->group_util * imbalance_pct))
8300 		return true;
8301 
8302 	return false;
8303 }
8304 
8305 /*
8306  *  group_is_overloaded returns true if the group has more tasks than it can
8307  *  handle.
8308  *  group_is_overloaded is not equals to !group_has_capacity because a group
8309  *  with the exact right number of tasks, has no more spare capacity but is not
8310  *  overloaded so both group_has_capacity and group_is_overloaded return
8311  *  false.
8312  */
8313 static inline bool
8314 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8315 {
8316 	if (sgs->sum_nr_running <= sgs->group_weight)
8317 		return false;
8318 
8319 	if ((sgs->group_capacity * 100) <
8320 			(sgs->group_util * imbalance_pct))
8321 		return true;
8322 
8323 	if ((sgs->group_capacity * imbalance_pct) <
8324 			(sgs->group_runnable * 100))
8325 		return true;
8326 
8327 	return false;
8328 }
8329 
8330 /*
8331  * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8332  * per-CPU capacity than sched_group ref.
8333  */
8334 static inline bool
8335 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8336 {
8337 	return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
8338 }
8339 
8340 /*
8341  * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8342  * per-CPU capacity_orig than sched_group ref.
8343  */
8344 static inline bool
8345 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8346 {
8347 	return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
8348 }
8349 
8350 static inline enum
8351 group_type group_classify(unsigned int imbalance_pct,
8352 			  struct sched_group *group,
8353 			  struct sg_lb_stats *sgs)
8354 {
8355 	if (group_is_overloaded(imbalance_pct, sgs))
8356 		return group_overloaded;
8357 
8358 	if (sg_imbalanced(group))
8359 		return group_imbalanced;
8360 
8361 	if (sgs->group_asym_packing)
8362 		return group_asym_packing;
8363 
8364 	if (sgs->group_misfit_task_load)
8365 		return group_misfit_task;
8366 
8367 	if (!group_has_capacity(imbalance_pct, sgs))
8368 		return group_fully_busy;
8369 
8370 	return group_has_spare;
8371 }
8372 
8373 static bool update_nohz_stats(struct rq *rq, bool force)
8374 {
8375 #ifdef CONFIG_NO_HZ_COMMON
8376 	unsigned int cpu = rq->cpu;
8377 
8378 	if (!rq->has_blocked_load)
8379 		return false;
8380 
8381 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8382 		return false;
8383 
8384 	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8385 		return true;
8386 
8387 	update_blocked_averages(cpu);
8388 
8389 	return rq->has_blocked_load;
8390 #else
8391 	return false;
8392 #endif
8393 }
8394 
8395 /**
8396  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8397  * @env: The load balancing environment.
8398  * @group: sched_group whose statistics are to be updated.
8399  * @sgs: variable to hold the statistics for this group.
8400  * @sg_status: Holds flag indicating the status of the sched_group
8401  */
8402 static inline void update_sg_lb_stats(struct lb_env *env,
8403 				      struct sched_group *group,
8404 				      struct sg_lb_stats *sgs,
8405 				      int *sg_status)
8406 {
8407 	int i, nr_running, local_group;
8408 
8409 	memset(sgs, 0, sizeof(*sgs));
8410 
8411 	local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8412 
8413 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8414 		struct rq *rq = cpu_rq(i);
8415 
8416 		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8417 			env->flags |= LBF_NOHZ_AGAIN;
8418 
8419 		sgs->group_load += cpu_load(rq);
8420 		sgs->group_util += cpu_util(i);
8421 		sgs->group_runnable += cpu_runnable(rq);
8422 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8423 
8424 		nr_running = rq->nr_running;
8425 		sgs->sum_nr_running += nr_running;
8426 
8427 		if (nr_running > 1)
8428 			*sg_status |= SG_OVERLOAD;
8429 
8430 		if (cpu_overutilized(i))
8431 			*sg_status |= SG_OVERUTILIZED;
8432 
8433 #ifdef CONFIG_NUMA_BALANCING
8434 		sgs->nr_numa_running += rq->nr_numa_running;
8435 		sgs->nr_preferred_running += rq->nr_preferred_running;
8436 #endif
8437 		/*
8438 		 * No need to call idle_cpu() if nr_running is not 0
8439 		 */
8440 		if (!nr_running && idle_cpu(i)) {
8441 			sgs->idle_cpus++;
8442 			/* Idle cpu can't have misfit task */
8443 			continue;
8444 		}
8445 
8446 		if (local_group)
8447 			continue;
8448 
8449 		/* Check for a misfit task on the cpu */
8450 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8451 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8452 			sgs->group_misfit_task_load = rq->misfit_task_load;
8453 			*sg_status |= SG_OVERLOAD;
8454 		}
8455 	}
8456 
8457 	/* Check if dst CPU is idle and preferred to this group */
8458 	if (env->sd->flags & SD_ASYM_PACKING &&
8459 	    env->idle != CPU_NOT_IDLE &&
8460 	    sgs->sum_h_nr_running &&
8461 	    sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8462 		sgs->group_asym_packing = 1;
8463 	}
8464 
8465 	sgs->group_capacity = group->sgc->capacity;
8466 
8467 	sgs->group_weight = group->group_weight;
8468 
8469 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8470 
8471 	/* Computing avg_load makes sense only when group is overloaded */
8472 	if (sgs->group_type == group_overloaded)
8473 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8474 				sgs->group_capacity;
8475 }
8476 
8477 /**
8478  * update_sd_pick_busiest - return 1 on busiest group
8479  * @env: The load balancing environment.
8480  * @sds: sched_domain statistics
8481  * @sg: sched_group candidate to be checked for being the busiest
8482  * @sgs: sched_group statistics
8483  *
8484  * Determine if @sg is a busier group than the previously selected
8485  * busiest group.
8486  *
8487  * Return: %true if @sg is a busier group than the previously selected
8488  * busiest group. %false otherwise.
8489  */
8490 static bool update_sd_pick_busiest(struct lb_env *env,
8491 				   struct sd_lb_stats *sds,
8492 				   struct sched_group *sg,
8493 				   struct sg_lb_stats *sgs)
8494 {
8495 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8496 
8497 	/* Make sure that there is at least one task to pull */
8498 	if (!sgs->sum_h_nr_running)
8499 		return false;
8500 
8501 	/*
8502 	 * Don't try to pull misfit tasks we can't help.
8503 	 * We can use max_capacity here as reduction in capacity on some
8504 	 * CPUs in the group should either be possible to resolve
8505 	 * internally or be covered by avg_load imbalance (eventually).
8506 	 */
8507 	if (sgs->group_type == group_misfit_task &&
8508 	    (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8509 	     sds->local_stat.group_type != group_has_spare))
8510 		return false;
8511 
8512 	if (sgs->group_type > busiest->group_type)
8513 		return true;
8514 
8515 	if (sgs->group_type < busiest->group_type)
8516 		return false;
8517 
8518 	/*
8519 	 * The candidate and the current busiest group are the same type of
8520 	 * group. Let check which one is the busiest according to the type.
8521 	 */
8522 
8523 	switch (sgs->group_type) {
8524 	case group_overloaded:
8525 		/* Select the overloaded group with highest avg_load. */
8526 		if (sgs->avg_load <= busiest->avg_load)
8527 			return false;
8528 		break;
8529 
8530 	case group_imbalanced:
8531 		/*
8532 		 * Select the 1st imbalanced group as we don't have any way to
8533 		 * choose one more than another.
8534 		 */
8535 		return false;
8536 
8537 	case group_asym_packing:
8538 		/* Prefer to move from lowest priority CPU's work */
8539 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8540 			return false;
8541 		break;
8542 
8543 	case group_misfit_task:
8544 		/*
8545 		 * If we have more than one misfit sg go with the biggest
8546 		 * misfit.
8547 		 */
8548 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8549 			return false;
8550 		break;
8551 
8552 	case group_fully_busy:
8553 		/*
8554 		 * Select the fully busy group with highest avg_load. In
8555 		 * theory, there is no need to pull task from such kind of
8556 		 * group because tasks have all compute capacity that they need
8557 		 * but we can still improve the overall throughput by reducing
8558 		 * contention when accessing shared HW resources.
8559 		 *
8560 		 * XXX for now avg_load is not computed and always 0 so we
8561 		 * select the 1st one.
8562 		 */
8563 		if (sgs->avg_load <= busiest->avg_load)
8564 			return false;
8565 		break;
8566 
8567 	case group_has_spare:
8568 		/*
8569 		 * Select not overloaded group with lowest number of idle cpus
8570 		 * and highest number of running tasks. We could also compare
8571 		 * the spare capacity which is more stable but it can end up
8572 		 * that the group has less spare capacity but finally more idle
8573 		 * CPUs which means less opportunity to pull tasks.
8574 		 */
8575 		if (sgs->idle_cpus > busiest->idle_cpus)
8576 			return false;
8577 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8578 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
8579 			return false;
8580 
8581 		break;
8582 	}
8583 
8584 	/*
8585 	 * Candidate sg has no more than one task per CPU and has higher
8586 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8587 	 * throughput. Maximize throughput, power/energy consequences are not
8588 	 * considered.
8589 	 */
8590 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8591 	    (sgs->group_type <= group_fully_busy) &&
8592 	    (group_smaller_min_cpu_capacity(sds->local, sg)))
8593 		return false;
8594 
8595 	return true;
8596 }
8597 
8598 #ifdef CONFIG_NUMA_BALANCING
8599 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8600 {
8601 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8602 		return regular;
8603 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8604 		return remote;
8605 	return all;
8606 }
8607 
8608 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8609 {
8610 	if (rq->nr_running > rq->nr_numa_running)
8611 		return regular;
8612 	if (rq->nr_running > rq->nr_preferred_running)
8613 		return remote;
8614 	return all;
8615 }
8616 #else
8617 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8618 {
8619 	return all;
8620 }
8621 
8622 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8623 {
8624 	return regular;
8625 }
8626 #endif /* CONFIG_NUMA_BALANCING */
8627 
8628 
8629 struct sg_lb_stats;
8630 
8631 /*
8632  * task_running_on_cpu - return 1 if @p is running on @cpu.
8633  */
8634 
8635 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8636 {
8637 	/* Task has no contribution or is new */
8638 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8639 		return 0;
8640 
8641 	if (task_on_rq_queued(p))
8642 		return 1;
8643 
8644 	return 0;
8645 }
8646 
8647 /**
8648  * idle_cpu_without - would a given CPU be idle without p ?
8649  * @cpu: the processor on which idleness is tested.
8650  * @p: task which should be ignored.
8651  *
8652  * Return: 1 if the CPU would be idle. 0 otherwise.
8653  */
8654 static int idle_cpu_without(int cpu, struct task_struct *p)
8655 {
8656 	struct rq *rq = cpu_rq(cpu);
8657 
8658 	if (rq->curr != rq->idle && rq->curr != p)
8659 		return 0;
8660 
8661 	/*
8662 	 * rq->nr_running can't be used but an updated version without the
8663 	 * impact of p on cpu must be used instead. The updated nr_running
8664 	 * be computed and tested before calling idle_cpu_without().
8665 	 */
8666 
8667 #ifdef CONFIG_SMP
8668 	if (rq->ttwu_pending)
8669 		return 0;
8670 #endif
8671 
8672 	return 1;
8673 }
8674 
8675 /*
8676  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8677  * @sd: The sched_domain level to look for idlest group.
8678  * @group: sched_group whose statistics are to be updated.
8679  * @sgs: variable to hold the statistics for this group.
8680  * @p: The task for which we look for the idlest group/CPU.
8681  */
8682 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8683 					  struct sched_group *group,
8684 					  struct sg_lb_stats *sgs,
8685 					  struct task_struct *p)
8686 {
8687 	int i, nr_running;
8688 
8689 	memset(sgs, 0, sizeof(*sgs));
8690 
8691 	for_each_cpu(i, sched_group_span(group)) {
8692 		struct rq *rq = cpu_rq(i);
8693 		unsigned int local;
8694 
8695 		sgs->group_load += cpu_load_without(rq, p);
8696 		sgs->group_util += cpu_util_without(i, p);
8697 		sgs->group_runnable += cpu_runnable_without(rq, p);
8698 		local = task_running_on_cpu(i, p);
8699 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8700 
8701 		nr_running = rq->nr_running - local;
8702 		sgs->sum_nr_running += nr_running;
8703 
8704 		/*
8705 		 * No need to call idle_cpu_without() if nr_running is not 0
8706 		 */
8707 		if (!nr_running && idle_cpu_without(i, p))
8708 			sgs->idle_cpus++;
8709 
8710 	}
8711 
8712 	/* Check if task fits in the group */
8713 	if (sd->flags & SD_ASYM_CPUCAPACITY &&
8714 	    !task_fits_capacity(p, group->sgc->max_capacity)) {
8715 		sgs->group_misfit_task_load = 1;
8716 	}
8717 
8718 	sgs->group_capacity = group->sgc->capacity;
8719 
8720 	sgs->group_weight = group->group_weight;
8721 
8722 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8723 
8724 	/*
8725 	 * Computing avg_load makes sense only when group is fully busy or
8726 	 * overloaded
8727 	 */
8728 	if (sgs->group_type == group_fully_busy ||
8729 		sgs->group_type == group_overloaded)
8730 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8731 				sgs->group_capacity;
8732 }
8733 
8734 static bool update_pick_idlest(struct sched_group *idlest,
8735 			       struct sg_lb_stats *idlest_sgs,
8736 			       struct sched_group *group,
8737 			       struct sg_lb_stats *sgs)
8738 {
8739 	if (sgs->group_type < idlest_sgs->group_type)
8740 		return true;
8741 
8742 	if (sgs->group_type > idlest_sgs->group_type)
8743 		return false;
8744 
8745 	/*
8746 	 * The candidate and the current idlest group are the same type of
8747 	 * group. Let check which one is the idlest according to the type.
8748 	 */
8749 
8750 	switch (sgs->group_type) {
8751 	case group_overloaded:
8752 	case group_fully_busy:
8753 		/* Select the group with lowest avg_load. */
8754 		if (idlest_sgs->avg_load <= sgs->avg_load)
8755 			return false;
8756 		break;
8757 
8758 	case group_imbalanced:
8759 	case group_asym_packing:
8760 		/* Those types are not used in the slow wakeup path */
8761 		return false;
8762 
8763 	case group_misfit_task:
8764 		/* Select group with the highest max capacity */
8765 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8766 			return false;
8767 		break;
8768 
8769 	case group_has_spare:
8770 		/* Select group with most idle CPUs */
8771 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
8772 			return false;
8773 
8774 		/* Select group with lowest group_util */
8775 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8776 			idlest_sgs->group_util <= sgs->group_util)
8777 			return false;
8778 
8779 		break;
8780 	}
8781 
8782 	return true;
8783 }
8784 
8785 /*
8786  * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
8787  * This is an approximation as the number of running tasks may not be
8788  * related to the number of busy CPUs due to sched_setaffinity.
8789  */
8790 static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
8791 {
8792 	return (dst_running < (dst_weight >> 2));
8793 }
8794 
8795 /*
8796  * find_idlest_group() finds and returns the least busy CPU group within the
8797  * domain.
8798  *
8799  * Assumes p is allowed on at least one CPU in sd.
8800  */
8801 static struct sched_group *
8802 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
8803 {
8804 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8805 	struct sg_lb_stats local_sgs, tmp_sgs;
8806 	struct sg_lb_stats *sgs;
8807 	unsigned long imbalance;
8808 	struct sg_lb_stats idlest_sgs = {
8809 			.avg_load = UINT_MAX,
8810 			.group_type = group_overloaded,
8811 	};
8812 
8813 	do {
8814 		int local_group;
8815 
8816 		/* Skip over this group if it has no CPUs allowed */
8817 		if (!cpumask_intersects(sched_group_span(group),
8818 					p->cpus_ptr))
8819 			continue;
8820 
8821 		local_group = cpumask_test_cpu(this_cpu,
8822 					       sched_group_span(group));
8823 
8824 		if (local_group) {
8825 			sgs = &local_sgs;
8826 			local = group;
8827 		} else {
8828 			sgs = &tmp_sgs;
8829 		}
8830 
8831 		update_sg_wakeup_stats(sd, group, sgs, p);
8832 
8833 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8834 			idlest = group;
8835 			idlest_sgs = *sgs;
8836 		}
8837 
8838 	} while (group = group->next, group != sd->groups);
8839 
8840 
8841 	/* There is no idlest group to push tasks to */
8842 	if (!idlest)
8843 		return NULL;
8844 
8845 	/* The local group has been skipped because of CPU affinity */
8846 	if (!local)
8847 		return idlest;
8848 
8849 	/*
8850 	 * If the local group is idler than the selected idlest group
8851 	 * don't try and push the task.
8852 	 */
8853 	if (local_sgs.group_type < idlest_sgs.group_type)
8854 		return NULL;
8855 
8856 	/*
8857 	 * If the local group is busier than the selected idlest group
8858 	 * try and push the task.
8859 	 */
8860 	if (local_sgs.group_type > idlest_sgs.group_type)
8861 		return idlest;
8862 
8863 	switch (local_sgs.group_type) {
8864 	case group_overloaded:
8865 	case group_fully_busy:
8866 
8867 		/* Calculate allowed imbalance based on load */
8868 		imbalance = scale_load_down(NICE_0_LOAD) *
8869 				(sd->imbalance_pct-100) / 100;
8870 
8871 		/*
8872 		 * When comparing groups across NUMA domains, it's possible for
8873 		 * the local domain to be very lightly loaded relative to the
8874 		 * remote domains but "imbalance" skews the comparison making
8875 		 * remote CPUs look much more favourable. When considering
8876 		 * cross-domain, add imbalance to the load on the remote node
8877 		 * and consider staying local.
8878 		 */
8879 
8880 		if ((sd->flags & SD_NUMA) &&
8881 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8882 			return NULL;
8883 
8884 		/*
8885 		 * If the local group is less loaded than the selected
8886 		 * idlest group don't try and push any tasks.
8887 		 */
8888 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8889 			return NULL;
8890 
8891 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8892 			return NULL;
8893 		break;
8894 
8895 	case group_imbalanced:
8896 	case group_asym_packing:
8897 		/* Those type are not used in the slow wakeup path */
8898 		return NULL;
8899 
8900 	case group_misfit_task:
8901 		/* Select group with the highest max capacity */
8902 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8903 			return NULL;
8904 		break;
8905 
8906 	case group_has_spare:
8907 		if (sd->flags & SD_NUMA) {
8908 #ifdef CONFIG_NUMA_BALANCING
8909 			int idlest_cpu;
8910 			/*
8911 			 * If there is spare capacity at NUMA, try to select
8912 			 * the preferred node
8913 			 */
8914 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8915 				return NULL;
8916 
8917 			idlest_cpu = cpumask_first(sched_group_span(idlest));
8918 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8919 				return idlest;
8920 #endif
8921 			/*
8922 			 * Otherwise, keep the task on this node to stay close
8923 			 * its wakeup source and improve locality. If there is
8924 			 * a real need of migration, periodic load balance will
8925 			 * take care of it.
8926 			 */
8927 			if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
8928 				return NULL;
8929 		}
8930 
8931 		/*
8932 		 * Select group with highest number of idle CPUs. We could also
8933 		 * compare the utilization which is more stable but it can end
8934 		 * up that the group has less spare capacity but finally more
8935 		 * idle CPUs which means more opportunity to run task.
8936 		 */
8937 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8938 			return NULL;
8939 		break;
8940 	}
8941 
8942 	return idlest;
8943 }
8944 
8945 /**
8946  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8947  * @env: The load balancing environment.
8948  * @sds: variable to hold the statistics for this sched_domain.
8949  */
8950 
8951 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8952 {
8953 	struct sched_domain *child = env->sd->child;
8954 	struct sched_group *sg = env->sd->groups;
8955 	struct sg_lb_stats *local = &sds->local_stat;
8956 	struct sg_lb_stats tmp_sgs;
8957 	int sg_status = 0;
8958 
8959 #ifdef CONFIG_NO_HZ_COMMON
8960 	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8961 		env->flags |= LBF_NOHZ_STATS;
8962 #endif
8963 
8964 	do {
8965 		struct sg_lb_stats *sgs = &tmp_sgs;
8966 		int local_group;
8967 
8968 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8969 		if (local_group) {
8970 			sds->local = sg;
8971 			sgs = local;
8972 
8973 			if (env->idle != CPU_NEWLY_IDLE ||
8974 			    time_after_eq(jiffies, sg->sgc->next_update))
8975 				update_group_capacity(env->sd, env->dst_cpu);
8976 		}
8977 
8978 		update_sg_lb_stats(env, sg, sgs, &sg_status);
8979 
8980 		if (local_group)
8981 			goto next_group;
8982 
8983 
8984 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8985 			sds->busiest = sg;
8986 			sds->busiest_stat = *sgs;
8987 		}
8988 
8989 next_group:
8990 		/* Now, start updating sd_lb_stats */
8991 		sds->total_load += sgs->group_load;
8992 		sds->total_capacity += sgs->group_capacity;
8993 
8994 		sg = sg->next;
8995 	} while (sg != env->sd->groups);
8996 
8997 	/* Tag domain that child domain prefers tasks go to siblings first */
8998 	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8999 
9000 #ifdef CONFIG_NO_HZ_COMMON
9001 	if ((env->flags & LBF_NOHZ_AGAIN) &&
9002 	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
9003 
9004 		WRITE_ONCE(nohz.next_blocked,
9005 			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
9006 	}
9007 #endif
9008 
9009 	if (env->sd->flags & SD_NUMA)
9010 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9011 
9012 	if (!env->sd->parent) {
9013 		struct root_domain *rd = env->dst_rq->rd;
9014 
9015 		/* update overload indicator if we are at root domain */
9016 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9017 
9018 		/* Update over-utilization (tipping point, U >= 0) indicator */
9019 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9020 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9021 	} else if (sg_status & SG_OVERUTILIZED) {
9022 		struct root_domain *rd = env->dst_rq->rd;
9023 
9024 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9025 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9026 	}
9027 }
9028 
9029 #define NUMA_IMBALANCE_MIN 2
9030 
9031 static inline long adjust_numa_imbalance(int imbalance,
9032 				int dst_running, int dst_weight)
9033 {
9034 	if (!allow_numa_imbalance(dst_running, dst_weight))
9035 		return imbalance;
9036 
9037 	/*
9038 	 * Allow a small imbalance based on a simple pair of communicating
9039 	 * tasks that remain local when the destination is lightly loaded.
9040 	 */
9041 	if (imbalance <= NUMA_IMBALANCE_MIN)
9042 		return 0;
9043 
9044 	return imbalance;
9045 }
9046 
9047 /**
9048  * calculate_imbalance - Calculate the amount of imbalance present within the
9049  *			 groups of a given sched_domain during load balance.
9050  * @env: load balance environment
9051  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9052  */
9053 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9054 {
9055 	struct sg_lb_stats *local, *busiest;
9056 
9057 	local = &sds->local_stat;
9058 	busiest = &sds->busiest_stat;
9059 
9060 	if (busiest->group_type == group_misfit_task) {
9061 		/* Set imbalance to allow misfit tasks to be balanced. */
9062 		env->migration_type = migrate_misfit;
9063 		env->imbalance = 1;
9064 		return;
9065 	}
9066 
9067 	if (busiest->group_type == group_asym_packing) {
9068 		/*
9069 		 * In case of asym capacity, we will try to migrate all load to
9070 		 * the preferred CPU.
9071 		 */
9072 		env->migration_type = migrate_task;
9073 		env->imbalance = busiest->sum_h_nr_running;
9074 		return;
9075 	}
9076 
9077 	if (busiest->group_type == group_imbalanced) {
9078 		/*
9079 		 * In the group_imb case we cannot rely on group-wide averages
9080 		 * to ensure CPU-load equilibrium, try to move any task to fix
9081 		 * the imbalance. The next load balance will take care of
9082 		 * balancing back the system.
9083 		 */
9084 		env->migration_type = migrate_task;
9085 		env->imbalance = 1;
9086 		return;
9087 	}
9088 
9089 	/*
9090 	 * Try to use spare capacity of local group without overloading it or
9091 	 * emptying busiest.
9092 	 */
9093 	if (local->group_type == group_has_spare) {
9094 		if ((busiest->group_type > group_fully_busy) &&
9095 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9096 			/*
9097 			 * If busiest is overloaded, try to fill spare
9098 			 * capacity. This might end up creating spare capacity
9099 			 * in busiest or busiest still being overloaded but
9100 			 * there is no simple way to directly compute the
9101 			 * amount of load to migrate in order to balance the
9102 			 * system.
9103 			 */
9104 			env->migration_type = migrate_util;
9105 			env->imbalance = max(local->group_capacity, local->group_util) -
9106 					 local->group_util;
9107 
9108 			/*
9109 			 * In some cases, the group's utilization is max or even
9110 			 * higher than capacity because of migrations but the
9111 			 * local CPU is (newly) idle. There is at least one
9112 			 * waiting task in this overloaded busiest group. Let's
9113 			 * try to pull it.
9114 			 */
9115 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9116 				env->migration_type = migrate_task;
9117 				env->imbalance = 1;
9118 			}
9119 
9120 			return;
9121 		}
9122 
9123 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
9124 			unsigned int nr_diff = busiest->sum_nr_running;
9125 			/*
9126 			 * When prefer sibling, evenly spread running tasks on
9127 			 * groups.
9128 			 */
9129 			env->migration_type = migrate_task;
9130 			lsub_positive(&nr_diff, local->sum_nr_running);
9131 			env->imbalance = nr_diff >> 1;
9132 		} else {
9133 
9134 			/*
9135 			 * If there is no overload, we just want to even the number of
9136 			 * idle cpus.
9137 			 */
9138 			env->migration_type = migrate_task;
9139 			env->imbalance = max_t(long, 0, (local->idle_cpus -
9140 						 busiest->idle_cpus) >> 1);
9141 		}
9142 
9143 		/* Consider allowing a small imbalance between NUMA groups */
9144 		if (env->sd->flags & SD_NUMA) {
9145 			env->imbalance = adjust_numa_imbalance(env->imbalance,
9146 				busiest->sum_nr_running, busiest->group_weight);
9147 		}
9148 
9149 		return;
9150 	}
9151 
9152 	/*
9153 	 * Local is fully busy but has to take more load to relieve the
9154 	 * busiest group
9155 	 */
9156 	if (local->group_type < group_overloaded) {
9157 		/*
9158 		 * Local will become overloaded so the avg_load metrics are
9159 		 * finally needed.
9160 		 */
9161 
9162 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9163 				  local->group_capacity;
9164 
9165 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9166 				sds->total_capacity;
9167 		/*
9168 		 * If the local group is more loaded than the selected
9169 		 * busiest group don't try to pull any tasks.
9170 		 */
9171 		if (local->avg_load >= busiest->avg_load) {
9172 			env->imbalance = 0;
9173 			return;
9174 		}
9175 	}
9176 
9177 	/*
9178 	 * Both group are or will become overloaded and we're trying to get all
9179 	 * the CPUs to the average_load, so we don't want to push ourselves
9180 	 * above the average load, nor do we wish to reduce the max loaded CPU
9181 	 * below the average load. At the same time, we also don't want to
9182 	 * reduce the group load below the group capacity. Thus we look for
9183 	 * the minimum possible imbalance.
9184 	 */
9185 	env->migration_type = migrate_load;
9186 	env->imbalance = min(
9187 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9188 		(sds->avg_load - local->avg_load) * local->group_capacity
9189 	) / SCHED_CAPACITY_SCALE;
9190 }
9191 
9192 /******* find_busiest_group() helpers end here *********************/
9193 
9194 /*
9195  * Decision matrix according to the local and busiest group type:
9196  *
9197  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9198  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
9199  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
9200  * misfit_task      force     N/A        N/A    N/A  force      force
9201  * asym_packing     force     force      N/A    N/A  force      force
9202  * imbalanced       force     force      N/A    N/A  force      force
9203  * overloaded       force     force      N/A    N/A  force      avg_load
9204  *
9205  * N/A :      Not Applicable because already filtered while updating
9206  *            statistics.
9207  * balanced : The system is balanced for these 2 groups.
9208  * force :    Calculate the imbalance as load migration is probably needed.
9209  * avg_load : Only if imbalance is significant enough.
9210  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
9211  *            different in groups.
9212  */
9213 
9214 /**
9215  * find_busiest_group - Returns the busiest group within the sched_domain
9216  * if there is an imbalance.
9217  *
9218  * Also calculates the amount of runnable load which should be moved
9219  * to restore balance.
9220  *
9221  * @env: The load balancing environment.
9222  *
9223  * Return:	- The busiest group if imbalance exists.
9224  */
9225 static struct sched_group *find_busiest_group(struct lb_env *env)
9226 {
9227 	struct sg_lb_stats *local, *busiest;
9228 	struct sd_lb_stats sds;
9229 
9230 	init_sd_lb_stats(&sds);
9231 
9232 	/*
9233 	 * Compute the various statistics relevant for load balancing at
9234 	 * this level.
9235 	 */
9236 	update_sd_lb_stats(env, &sds);
9237 
9238 	if (sched_energy_enabled()) {
9239 		struct root_domain *rd = env->dst_rq->rd;
9240 
9241 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9242 			goto out_balanced;
9243 	}
9244 
9245 	local = &sds.local_stat;
9246 	busiest = &sds.busiest_stat;
9247 
9248 	/* There is no busy sibling group to pull tasks from */
9249 	if (!sds.busiest)
9250 		goto out_balanced;
9251 
9252 	/* Misfit tasks should be dealt with regardless of the avg load */
9253 	if (busiest->group_type == group_misfit_task)
9254 		goto force_balance;
9255 
9256 	/* ASYM feature bypasses nice load balance check */
9257 	if (busiest->group_type == group_asym_packing)
9258 		goto force_balance;
9259 
9260 	/*
9261 	 * If the busiest group is imbalanced the below checks don't
9262 	 * work because they assume all things are equal, which typically
9263 	 * isn't true due to cpus_ptr constraints and the like.
9264 	 */
9265 	if (busiest->group_type == group_imbalanced)
9266 		goto force_balance;
9267 
9268 	/*
9269 	 * If the local group is busier than the selected busiest group
9270 	 * don't try and pull any tasks.
9271 	 */
9272 	if (local->group_type > busiest->group_type)
9273 		goto out_balanced;
9274 
9275 	/*
9276 	 * When groups are overloaded, use the avg_load to ensure fairness
9277 	 * between tasks.
9278 	 */
9279 	if (local->group_type == group_overloaded) {
9280 		/*
9281 		 * If the local group is more loaded than the selected
9282 		 * busiest group don't try to pull any tasks.
9283 		 */
9284 		if (local->avg_load >= busiest->avg_load)
9285 			goto out_balanced;
9286 
9287 		/* XXX broken for overlapping NUMA groups */
9288 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9289 				sds.total_capacity;
9290 
9291 		/*
9292 		 * Don't pull any tasks if this group is already above the
9293 		 * domain average load.
9294 		 */
9295 		if (local->avg_load >= sds.avg_load)
9296 			goto out_balanced;
9297 
9298 		/*
9299 		 * If the busiest group is more loaded, use imbalance_pct to be
9300 		 * conservative.
9301 		 */
9302 		if (100 * busiest->avg_load <=
9303 				env->sd->imbalance_pct * local->avg_load)
9304 			goto out_balanced;
9305 	}
9306 
9307 	/* Try to move all excess tasks to child's sibling domain */
9308 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
9309 	    busiest->sum_nr_running > local->sum_nr_running + 1)
9310 		goto force_balance;
9311 
9312 	if (busiest->group_type != group_overloaded) {
9313 		if (env->idle == CPU_NOT_IDLE)
9314 			/*
9315 			 * If the busiest group is not overloaded (and as a
9316 			 * result the local one too) but this CPU is already
9317 			 * busy, let another idle CPU try to pull task.
9318 			 */
9319 			goto out_balanced;
9320 
9321 		if (busiest->group_weight > 1 &&
9322 		    local->idle_cpus <= (busiest->idle_cpus + 1))
9323 			/*
9324 			 * If the busiest group is not overloaded
9325 			 * and there is no imbalance between this and busiest
9326 			 * group wrt idle CPUs, it is balanced. The imbalance
9327 			 * becomes significant if the diff is greater than 1
9328 			 * otherwise we might end up to just move the imbalance
9329 			 * on another group. Of course this applies only if
9330 			 * there is more than 1 CPU per group.
9331 			 */
9332 			goto out_balanced;
9333 
9334 		if (busiest->sum_h_nr_running == 1)
9335 			/*
9336 			 * busiest doesn't have any tasks waiting to run
9337 			 */
9338 			goto out_balanced;
9339 	}
9340 
9341 force_balance:
9342 	/* Looks like there is an imbalance. Compute it */
9343 	calculate_imbalance(env, &sds);
9344 	return env->imbalance ? sds.busiest : NULL;
9345 
9346 out_balanced:
9347 	env->imbalance = 0;
9348 	return NULL;
9349 }
9350 
9351 /*
9352  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9353  */
9354 static struct rq *find_busiest_queue(struct lb_env *env,
9355 				     struct sched_group *group)
9356 {
9357 	struct rq *busiest = NULL, *rq;
9358 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9359 	unsigned int busiest_nr = 0;
9360 	int i;
9361 
9362 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9363 		unsigned long capacity, load, util;
9364 		unsigned int nr_running;
9365 		enum fbq_type rt;
9366 
9367 		rq = cpu_rq(i);
9368 		rt = fbq_classify_rq(rq);
9369 
9370 		/*
9371 		 * We classify groups/runqueues into three groups:
9372 		 *  - regular: there are !numa tasks
9373 		 *  - remote:  there are numa tasks that run on the 'wrong' node
9374 		 *  - all:     there is no distinction
9375 		 *
9376 		 * In order to avoid migrating ideally placed numa tasks,
9377 		 * ignore those when there's better options.
9378 		 *
9379 		 * If we ignore the actual busiest queue to migrate another
9380 		 * task, the next balance pass can still reduce the busiest
9381 		 * queue by moving tasks around inside the node.
9382 		 *
9383 		 * If we cannot move enough load due to this classification
9384 		 * the next pass will adjust the group classification and
9385 		 * allow migration of more tasks.
9386 		 *
9387 		 * Both cases only affect the total convergence complexity.
9388 		 */
9389 		if (rt > env->fbq_type)
9390 			continue;
9391 
9392 		capacity = capacity_of(i);
9393 		nr_running = rq->cfs.h_nr_running;
9394 
9395 		/*
9396 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9397 		 * eventually lead to active_balancing high->low capacity.
9398 		 * Higher per-CPU capacity is considered better than balancing
9399 		 * average load.
9400 		 */
9401 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9402 		    capacity_of(env->dst_cpu) < capacity &&
9403 		    nr_running == 1)
9404 			continue;
9405 
9406 		switch (env->migration_type) {
9407 		case migrate_load:
9408 			/*
9409 			 * When comparing with load imbalance, use cpu_load()
9410 			 * which is not scaled with the CPU capacity.
9411 			 */
9412 			load = cpu_load(rq);
9413 
9414 			if (nr_running == 1 && load > env->imbalance &&
9415 			    !check_cpu_capacity(rq, env->sd))
9416 				break;
9417 
9418 			/*
9419 			 * For the load comparisons with the other CPUs,
9420 			 * consider the cpu_load() scaled with the CPU
9421 			 * capacity, so that the load can be moved away
9422 			 * from the CPU that is potentially running at a
9423 			 * lower capacity.
9424 			 *
9425 			 * Thus we're looking for max(load_i / capacity_i),
9426 			 * crosswise multiplication to rid ourselves of the
9427 			 * division works out to:
9428 			 * load_i * capacity_j > load_j * capacity_i;
9429 			 * where j is our previous maximum.
9430 			 */
9431 			if (load * busiest_capacity > busiest_load * capacity) {
9432 				busiest_load = load;
9433 				busiest_capacity = capacity;
9434 				busiest = rq;
9435 			}
9436 			break;
9437 
9438 		case migrate_util:
9439 			util = cpu_util(cpu_of(rq));
9440 
9441 			/*
9442 			 * Don't try to pull utilization from a CPU with one
9443 			 * running task. Whatever its utilization, we will fail
9444 			 * detach the task.
9445 			 */
9446 			if (nr_running <= 1)
9447 				continue;
9448 
9449 			if (busiest_util < util) {
9450 				busiest_util = util;
9451 				busiest = rq;
9452 			}
9453 			break;
9454 
9455 		case migrate_task:
9456 			if (busiest_nr < nr_running) {
9457 				busiest_nr = nr_running;
9458 				busiest = rq;
9459 			}
9460 			break;
9461 
9462 		case migrate_misfit:
9463 			/*
9464 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
9465 			 * simply seek the "biggest" misfit task.
9466 			 */
9467 			if (rq->misfit_task_load > busiest_load) {
9468 				busiest_load = rq->misfit_task_load;
9469 				busiest = rq;
9470 			}
9471 
9472 			break;
9473 
9474 		}
9475 	}
9476 
9477 	return busiest;
9478 }
9479 
9480 /*
9481  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9482  * so long as it is large enough.
9483  */
9484 #define MAX_PINNED_INTERVAL	512
9485 
9486 static inline bool
9487 asym_active_balance(struct lb_env *env)
9488 {
9489 	/*
9490 	 * ASYM_PACKING needs to force migrate tasks from busy but
9491 	 * lower priority CPUs in order to pack all tasks in the
9492 	 * highest priority CPUs.
9493 	 */
9494 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9495 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
9496 }
9497 
9498 static inline bool
9499 voluntary_active_balance(struct lb_env *env)
9500 {
9501 	struct sched_domain *sd = env->sd;
9502 
9503 	if (asym_active_balance(env))
9504 		return 1;
9505 
9506 	/*
9507 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9508 	 * It's worth migrating the task if the src_cpu's capacity is reduced
9509 	 * because of other sched_class or IRQs if more capacity stays
9510 	 * available on dst_cpu.
9511 	 */
9512 	if ((env->idle != CPU_NOT_IDLE) &&
9513 	    (env->src_rq->cfs.h_nr_running == 1)) {
9514 		if ((check_cpu_capacity(env->src_rq, sd)) &&
9515 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9516 			return 1;
9517 	}
9518 
9519 	if (env->migration_type == migrate_misfit)
9520 		return 1;
9521 
9522 	return 0;
9523 }
9524 
9525 static int need_active_balance(struct lb_env *env)
9526 {
9527 	struct sched_domain *sd = env->sd;
9528 
9529 	if (voluntary_active_balance(env))
9530 		return 1;
9531 
9532 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9533 }
9534 
9535 static int active_load_balance_cpu_stop(void *data);
9536 
9537 static int should_we_balance(struct lb_env *env)
9538 {
9539 	struct sched_group *sg = env->sd->groups;
9540 	int cpu;
9541 
9542 	/*
9543 	 * Ensure the balancing environment is consistent; can happen
9544 	 * when the softirq triggers 'during' hotplug.
9545 	 */
9546 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9547 		return 0;
9548 
9549 	/*
9550 	 * In the newly idle case, we will allow all the CPUs
9551 	 * to do the newly idle load balance.
9552 	 */
9553 	if (env->idle == CPU_NEWLY_IDLE)
9554 		return 1;
9555 
9556 	/* Try to find first idle CPU */
9557 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9558 		if (!idle_cpu(cpu))
9559 			continue;
9560 
9561 		/* Are we the first idle CPU? */
9562 		return cpu == env->dst_cpu;
9563 	}
9564 
9565 	/* Are we the first CPU of this group ? */
9566 	return group_balance_cpu(sg) == env->dst_cpu;
9567 }
9568 
9569 /*
9570  * Check this_cpu to ensure it is balanced within domain. Attempt to move
9571  * tasks if there is an imbalance.
9572  */
9573 static int load_balance(int this_cpu, struct rq *this_rq,
9574 			struct sched_domain *sd, enum cpu_idle_type idle,
9575 			int *continue_balancing)
9576 {
9577 	int ld_moved, cur_ld_moved, active_balance = 0;
9578 	struct sched_domain *sd_parent = sd->parent;
9579 	struct sched_group *group;
9580 	struct rq *busiest;
9581 	struct rq_flags rf;
9582 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9583 
9584 	struct lb_env env = {
9585 		.sd		= sd,
9586 		.dst_cpu	= this_cpu,
9587 		.dst_rq		= this_rq,
9588 		.dst_grpmask    = sched_group_span(sd->groups),
9589 		.idle		= idle,
9590 		.loop_break	= sched_nr_migrate_break,
9591 		.cpus		= cpus,
9592 		.fbq_type	= all,
9593 		.tasks		= LIST_HEAD_INIT(env.tasks),
9594 	};
9595 
9596 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9597 
9598 	schedstat_inc(sd->lb_count[idle]);
9599 
9600 redo:
9601 	if (!should_we_balance(&env)) {
9602 		*continue_balancing = 0;
9603 		goto out_balanced;
9604 	}
9605 
9606 	group = find_busiest_group(&env);
9607 	if (!group) {
9608 		schedstat_inc(sd->lb_nobusyg[idle]);
9609 		goto out_balanced;
9610 	}
9611 
9612 	busiest = find_busiest_queue(&env, group);
9613 	if (!busiest) {
9614 		schedstat_inc(sd->lb_nobusyq[idle]);
9615 		goto out_balanced;
9616 	}
9617 
9618 	BUG_ON(busiest == env.dst_rq);
9619 
9620 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9621 
9622 	env.src_cpu = busiest->cpu;
9623 	env.src_rq = busiest;
9624 
9625 	ld_moved = 0;
9626 	if (busiest->nr_running > 1) {
9627 		/*
9628 		 * Attempt to move tasks. If find_busiest_group has found
9629 		 * an imbalance but busiest->nr_running <= 1, the group is
9630 		 * still unbalanced. ld_moved simply stays zero, so it is
9631 		 * correctly treated as an imbalance.
9632 		 */
9633 		env.flags |= LBF_ALL_PINNED;
9634 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
9635 
9636 more_balance:
9637 		rq_lock_irqsave(busiest, &rf);
9638 		update_rq_clock(busiest);
9639 
9640 		/*
9641 		 * cur_ld_moved - load moved in current iteration
9642 		 * ld_moved     - cumulative load moved across iterations
9643 		 */
9644 		cur_ld_moved = detach_tasks(&env);
9645 
9646 		/*
9647 		 * We've detached some tasks from busiest_rq. Every
9648 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9649 		 * unlock busiest->lock, and we are able to be sure
9650 		 * that nobody can manipulate the tasks in parallel.
9651 		 * See task_rq_lock() family for the details.
9652 		 */
9653 
9654 		rq_unlock(busiest, &rf);
9655 
9656 		if (cur_ld_moved) {
9657 			attach_tasks(&env);
9658 			ld_moved += cur_ld_moved;
9659 		}
9660 
9661 		local_irq_restore(rf.flags);
9662 
9663 		if (env.flags & LBF_NEED_BREAK) {
9664 			env.flags &= ~LBF_NEED_BREAK;
9665 			goto more_balance;
9666 		}
9667 
9668 		/*
9669 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9670 		 * us and move them to an alternate dst_cpu in our sched_group
9671 		 * where they can run. The upper limit on how many times we
9672 		 * iterate on same src_cpu is dependent on number of CPUs in our
9673 		 * sched_group.
9674 		 *
9675 		 * This changes load balance semantics a bit on who can move
9676 		 * load to a given_cpu. In addition to the given_cpu itself
9677 		 * (or a ilb_cpu acting on its behalf where given_cpu is
9678 		 * nohz-idle), we now have balance_cpu in a position to move
9679 		 * load to given_cpu. In rare situations, this may cause
9680 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9681 		 * _independently_ and at _same_ time to move some load to
9682 		 * given_cpu) causing exceess load to be moved to given_cpu.
9683 		 * This however should not happen so much in practice and
9684 		 * moreover subsequent load balance cycles should correct the
9685 		 * excess load moved.
9686 		 */
9687 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9688 
9689 			/* Prevent to re-select dst_cpu via env's CPUs */
9690 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
9691 
9692 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
9693 			env.dst_cpu	 = env.new_dst_cpu;
9694 			env.flags	&= ~LBF_DST_PINNED;
9695 			env.loop	 = 0;
9696 			env.loop_break	 = sched_nr_migrate_break;
9697 
9698 			/*
9699 			 * Go back to "more_balance" rather than "redo" since we
9700 			 * need to continue with same src_cpu.
9701 			 */
9702 			goto more_balance;
9703 		}
9704 
9705 		/*
9706 		 * We failed to reach balance because of affinity.
9707 		 */
9708 		if (sd_parent) {
9709 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9710 
9711 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9712 				*group_imbalance = 1;
9713 		}
9714 
9715 		/* All tasks on this runqueue were pinned by CPU affinity */
9716 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
9717 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
9718 			/*
9719 			 * Attempting to continue load balancing at the current
9720 			 * sched_domain level only makes sense if there are
9721 			 * active CPUs remaining as possible busiest CPUs to
9722 			 * pull load from which are not contained within the
9723 			 * destination group that is receiving any migrated
9724 			 * load.
9725 			 */
9726 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
9727 				env.loop = 0;
9728 				env.loop_break = sched_nr_migrate_break;
9729 				goto redo;
9730 			}
9731 			goto out_all_pinned;
9732 		}
9733 	}
9734 
9735 	if (!ld_moved) {
9736 		schedstat_inc(sd->lb_failed[idle]);
9737 		/*
9738 		 * Increment the failure counter only on periodic balance.
9739 		 * We do not want newidle balance, which can be very
9740 		 * frequent, pollute the failure counter causing
9741 		 * excessive cache_hot migrations and active balances.
9742 		 */
9743 		if (idle != CPU_NEWLY_IDLE)
9744 			sd->nr_balance_failed++;
9745 
9746 		if (need_active_balance(&env)) {
9747 			unsigned long flags;
9748 
9749 			raw_spin_lock_irqsave(&busiest->lock, flags);
9750 
9751 			/*
9752 			 * Don't kick the active_load_balance_cpu_stop,
9753 			 * if the curr task on busiest CPU can't be
9754 			 * moved to this_cpu:
9755 			 */
9756 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9757 				raw_spin_unlock_irqrestore(&busiest->lock,
9758 							    flags);
9759 				env.flags |= LBF_ALL_PINNED;
9760 				goto out_one_pinned;
9761 			}
9762 
9763 			/*
9764 			 * ->active_balance synchronizes accesses to
9765 			 * ->active_balance_work.  Once set, it's cleared
9766 			 * only after active load balance is finished.
9767 			 */
9768 			if (!busiest->active_balance) {
9769 				busiest->active_balance = 1;
9770 				busiest->push_cpu = this_cpu;
9771 				active_balance = 1;
9772 			}
9773 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
9774 
9775 			if (active_balance) {
9776 				stop_one_cpu_nowait(cpu_of(busiest),
9777 					active_load_balance_cpu_stop, busiest,
9778 					&busiest->active_balance_work);
9779 			}
9780 
9781 			/* We've kicked active balancing, force task migration. */
9782 			sd->nr_balance_failed = sd->cache_nice_tries+1;
9783 		}
9784 	} else
9785 		sd->nr_balance_failed = 0;
9786 
9787 	if (likely(!active_balance) || voluntary_active_balance(&env)) {
9788 		/* We were unbalanced, so reset the balancing interval */
9789 		sd->balance_interval = sd->min_interval;
9790 	} else {
9791 		/*
9792 		 * If we've begun active balancing, start to back off. This
9793 		 * case may not be covered by the all_pinned logic if there
9794 		 * is only 1 task on the busy runqueue (because we don't call
9795 		 * detach_tasks).
9796 		 */
9797 		if (sd->balance_interval < sd->max_interval)
9798 			sd->balance_interval *= 2;
9799 	}
9800 
9801 	goto out;
9802 
9803 out_balanced:
9804 	/*
9805 	 * We reach balance although we may have faced some affinity
9806 	 * constraints. Clear the imbalance flag only if other tasks got
9807 	 * a chance to move and fix the imbalance.
9808 	 */
9809 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9810 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9811 
9812 		if (*group_imbalance)
9813 			*group_imbalance = 0;
9814 	}
9815 
9816 out_all_pinned:
9817 	/*
9818 	 * We reach balance because all tasks are pinned at this level so
9819 	 * we can't migrate them. Let the imbalance flag set so parent level
9820 	 * can try to migrate them.
9821 	 */
9822 	schedstat_inc(sd->lb_balanced[idle]);
9823 
9824 	sd->nr_balance_failed = 0;
9825 
9826 out_one_pinned:
9827 	ld_moved = 0;
9828 
9829 	/*
9830 	 * newidle_balance() disregards balance intervals, so we could
9831 	 * repeatedly reach this code, which would lead to balance_interval
9832 	 * skyrocketting in a short amount of time. Skip the balance_interval
9833 	 * increase logic to avoid that.
9834 	 */
9835 	if (env.idle == CPU_NEWLY_IDLE)
9836 		goto out;
9837 
9838 	/* tune up the balancing interval */
9839 	if ((env.flags & LBF_ALL_PINNED &&
9840 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
9841 	    sd->balance_interval < sd->max_interval)
9842 		sd->balance_interval *= 2;
9843 out:
9844 	return ld_moved;
9845 }
9846 
9847 static inline unsigned long
9848 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9849 {
9850 	unsigned long interval = sd->balance_interval;
9851 
9852 	if (cpu_busy)
9853 		interval *= sd->busy_factor;
9854 
9855 	/* scale ms to jiffies */
9856 	interval = msecs_to_jiffies(interval);
9857 
9858 	/*
9859 	 * Reduce likelihood of busy balancing at higher domains racing with
9860 	 * balancing at lower domains by preventing their balancing periods
9861 	 * from being multiples of each other.
9862 	 */
9863 	if (cpu_busy)
9864 		interval -= 1;
9865 
9866 	interval = clamp(interval, 1UL, max_load_balance_interval);
9867 
9868 	return interval;
9869 }
9870 
9871 static inline void
9872 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9873 {
9874 	unsigned long interval, next;
9875 
9876 	/* used by idle balance, so cpu_busy = 0 */
9877 	interval = get_sd_balance_interval(sd, 0);
9878 	next = sd->last_balance + interval;
9879 
9880 	if (time_after(*next_balance, next))
9881 		*next_balance = next;
9882 }
9883 
9884 /*
9885  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9886  * running tasks off the busiest CPU onto idle CPUs. It requires at
9887  * least 1 task to be running on each physical CPU where possible, and
9888  * avoids physical / logical imbalances.
9889  */
9890 static int active_load_balance_cpu_stop(void *data)
9891 {
9892 	struct rq *busiest_rq = data;
9893 	int busiest_cpu = cpu_of(busiest_rq);
9894 	int target_cpu = busiest_rq->push_cpu;
9895 	struct rq *target_rq = cpu_rq(target_cpu);
9896 	struct sched_domain *sd;
9897 	struct task_struct *p = NULL;
9898 	struct rq_flags rf;
9899 
9900 	rq_lock_irq(busiest_rq, &rf);
9901 	/*
9902 	 * Between queueing the stop-work and running it is a hole in which
9903 	 * CPUs can become inactive. We should not move tasks from or to
9904 	 * inactive CPUs.
9905 	 */
9906 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9907 		goto out_unlock;
9908 
9909 	/* Make sure the requested CPU hasn't gone down in the meantime: */
9910 	if (unlikely(busiest_cpu != smp_processor_id() ||
9911 		     !busiest_rq->active_balance))
9912 		goto out_unlock;
9913 
9914 	/* Is there any task to move? */
9915 	if (busiest_rq->nr_running <= 1)
9916 		goto out_unlock;
9917 
9918 	/*
9919 	 * This condition is "impossible", if it occurs
9920 	 * we need to fix it. Originally reported by
9921 	 * Bjorn Helgaas on a 128-CPU setup.
9922 	 */
9923 	BUG_ON(busiest_rq == target_rq);
9924 
9925 	/* Search for an sd spanning us and the target CPU. */
9926 	rcu_read_lock();
9927 	for_each_domain(target_cpu, sd) {
9928 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9929 			break;
9930 	}
9931 
9932 	if (likely(sd)) {
9933 		struct lb_env env = {
9934 			.sd		= sd,
9935 			.dst_cpu	= target_cpu,
9936 			.dst_rq		= target_rq,
9937 			.src_cpu	= busiest_rq->cpu,
9938 			.src_rq		= busiest_rq,
9939 			.idle		= CPU_IDLE,
9940 			/*
9941 			 * can_migrate_task() doesn't need to compute new_dst_cpu
9942 			 * for active balancing. Since we have CPU_IDLE, but no
9943 			 * @dst_grpmask we need to make that test go away with lying
9944 			 * about DST_PINNED.
9945 			 */
9946 			.flags		= LBF_DST_PINNED,
9947 		};
9948 
9949 		schedstat_inc(sd->alb_count);
9950 		update_rq_clock(busiest_rq);
9951 
9952 		p = detach_one_task(&env);
9953 		if (p) {
9954 			schedstat_inc(sd->alb_pushed);
9955 			/* Active balancing done, reset the failure counter. */
9956 			sd->nr_balance_failed = 0;
9957 		} else {
9958 			schedstat_inc(sd->alb_failed);
9959 		}
9960 	}
9961 	rcu_read_unlock();
9962 out_unlock:
9963 	busiest_rq->active_balance = 0;
9964 	rq_unlock(busiest_rq, &rf);
9965 
9966 	if (p)
9967 		attach_one_task(target_rq, p);
9968 
9969 	local_irq_enable();
9970 
9971 	return 0;
9972 }
9973 
9974 static DEFINE_SPINLOCK(balancing);
9975 
9976 /*
9977  * Scale the max load_balance interval with the number of CPUs in the system.
9978  * This trades load-balance latency on larger machines for less cross talk.
9979  */
9980 void update_max_interval(void)
9981 {
9982 	max_load_balance_interval = HZ*num_online_cpus()/10;
9983 }
9984 
9985 /*
9986  * It checks each scheduling domain to see if it is due to be balanced,
9987  * and initiates a balancing operation if so.
9988  *
9989  * Balancing parameters are set up in init_sched_domains.
9990  */
9991 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9992 {
9993 	int continue_balancing = 1;
9994 	int cpu = rq->cpu;
9995 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
9996 	unsigned long interval;
9997 	struct sched_domain *sd;
9998 	/* Earliest time when we have to do rebalance again */
9999 	unsigned long next_balance = jiffies + 60*HZ;
10000 	int update_next_balance = 0;
10001 	int need_serialize, need_decay = 0;
10002 	u64 max_cost = 0;
10003 
10004 	rcu_read_lock();
10005 	for_each_domain(cpu, sd) {
10006 		/*
10007 		 * Decay the newidle max times here because this is a regular
10008 		 * visit to all the domains. Decay ~1% per second.
10009 		 */
10010 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10011 			sd->max_newidle_lb_cost =
10012 				(sd->max_newidle_lb_cost * 253) / 256;
10013 			sd->next_decay_max_lb_cost = jiffies + HZ;
10014 			need_decay = 1;
10015 		}
10016 		max_cost += sd->max_newidle_lb_cost;
10017 
10018 		/*
10019 		 * Stop the load balance at this level. There is another
10020 		 * CPU in our sched group which is doing load balancing more
10021 		 * actively.
10022 		 */
10023 		if (!continue_balancing) {
10024 			if (need_decay)
10025 				continue;
10026 			break;
10027 		}
10028 
10029 		interval = get_sd_balance_interval(sd, busy);
10030 
10031 		need_serialize = sd->flags & SD_SERIALIZE;
10032 		if (need_serialize) {
10033 			if (!spin_trylock(&balancing))
10034 				goto out;
10035 		}
10036 
10037 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
10038 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10039 				/*
10040 				 * The LBF_DST_PINNED logic could have changed
10041 				 * env->dst_cpu, so we can't know our idle
10042 				 * state even if we migrated tasks. Update it.
10043 				 */
10044 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10045 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10046 			}
10047 			sd->last_balance = jiffies;
10048 			interval = get_sd_balance_interval(sd, busy);
10049 		}
10050 		if (need_serialize)
10051 			spin_unlock(&balancing);
10052 out:
10053 		if (time_after(next_balance, sd->last_balance + interval)) {
10054 			next_balance = sd->last_balance + interval;
10055 			update_next_balance = 1;
10056 		}
10057 	}
10058 	if (need_decay) {
10059 		/*
10060 		 * Ensure the rq-wide value also decays but keep it at a
10061 		 * reasonable floor to avoid funnies with rq->avg_idle.
10062 		 */
10063 		rq->max_idle_balance_cost =
10064 			max((u64)sysctl_sched_migration_cost, max_cost);
10065 	}
10066 	rcu_read_unlock();
10067 
10068 	/*
10069 	 * next_balance will be updated only when there is a need.
10070 	 * When the cpu is attached to null domain for ex, it will not be
10071 	 * updated.
10072 	 */
10073 	if (likely(update_next_balance)) {
10074 		rq->next_balance = next_balance;
10075 
10076 #ifdef CONFIG_NO_HZ_COMMON
10077 		/*
10078 		 * If this CPU has been elected to perform the nohz idle
10079 		 * balance. Other idle CPUs have already rebalanced with
10080 		 * nohz_idle_balance() and nohz.next_balance has been
10081 		 * updated accordingly. This CPU is now running the idle load
10082 		 * balance for itself and we need to update the
10083 		 * nohz.next_balance accordingly.
10084 		 */
10085 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
10086 			nohz.next_balance = rq->next_balance;
10087 #endif
10088 	}
10089 }
10090 
10091 static inline int on_null_domain(struct rq *rq)
10092 {
10093 	return unlikely(!rcu_dereference_sched(rq->sd));
10094 }
10095 
10096 #ifdef CONFIG_NO_HZ_COMMON
10097 /*
10098  * idle load balancing details
10099  * - When one of the busy CPUs notice that there may be an idle rebalancing
10100  *   needed, they will kick the idle load balancer, which then does idle
10101  *   load balancing for all the idle CPUs.
10102  * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10103  *   anywhere yet.
10104  */
10105 
10106 static inline int find_new_ilb(void)
10107 {
10108 	int ilb;
10109 
10110 	for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10111 			      housekeeping_cpumask(HK_FLAG_MISC)) {
10112 
10113 		if (ilb == smp_processor_id())
10114 			continue;
10115 
10116 		if (idle_cpu(ilb))
10117 			return ilb;
10118 	}
10119 
10120 	return nr_cpu_ids;
10121 }
10122 
10123 /*
10124  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10125  * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10126  */
10127 static void kick_ilb(unsigned int flags)
10128 {
10129 	int ilb_cpu;
10130 
10131 	/*
10132 	 * Increase nohz.next_balance only when if full ilb is triggered but
10133 	 * not if we only update stats.
10134 	 */
10135 	if (flags & NOHZ_BALANCE_KICK)
10136 		nohz.next_balance = jiffies+1;
10137 
10138 	ilb_cpu = find_new_ilb();
10139 
10140 	if (ilb_cpu >= nr_cpu_ids)
10141 		return;
10142 
10143 	/*
10144 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10145 	 * the first flag owns it; cleared by nohz_csd_func().
10146 	 */
10147 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10148 	if (flags & NOHZ_KICK_MASK)
10149 		return;
10150 
10151 	/*
10152 	 * This way we generate an IPI on the target CPU which
10153 	 * is idle. And the softirq performing nohz idle load balance
10154 	 * will be run before returning from the IPI.
10155 	 */
10156 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10157 }
10158 
10159 /*
10160  * Current decision point for kicking the idle load balancer in the presence
10161  * of idle CPUs in the system.
10162  */
10163 static void nohz_balancer_kick(struct rq *rq)
10164 {
10165 	unsigned long now = jiffies;
10166 	struct sched_domain_shared *sds;
10167 	struct sched_domain *sd;
10168 	int nr_busy, i, cpu = rq->cpu;
10169 	unsigned int flags = 0;
10170 
10171 	if (unlikely(rq->idle_balance))
10172 		return;
10173 
10174 	/*
10175 	 * We may be recently in ticked or tickless idle mode. At the first
10176 	 * busy tick after returning from idle, we will update the busy stats.
10177 	 */
10178 	nohz_balance_exit_idle(rq);
10179 
10180 	/*
10181 	 * None are in tickless mode and hence no need for NOHZ idle load
10182 	 * balancing.
10183 	 */
10184 	if (likely(!atomic_read(&nohz.nr_cpus)))
10185 		return;
10186 
10187 	if (READ_ONCE(nohz.has_blocked) &&
10188 	    time_after(now, READ_ONCE(nohz.next_blocked)))
10189 		flags = NOHZ_STATS_KICK;
10190 
10191 	if (time_before(now, nohz.next_balance))
10192 		goto out;
10193 
10194 	if (rq->nr_running >= 2) {
10195 		flags = NOHZ_KICK_MASK;
10196 		goto out;
10197 	}
10198 
10199 	rcu_read_lock();
10200 
10201 	sd = rcu_dereference(rq->sd);
10202 	if (sd) {
10203 		/*
10204 		 * If there's a CFS task and the current CPU has reduced
10205 		 * capacity; kick the ILB to see if there's a better CPU to run
10206 		 * on.
10207 		 */
10208 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10209 			flags = NOHZ_KICK_MASK;
10210 			goto unlock;
10211 		}
10212 	}
10213 
10214 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10215 	if (sd) {
10216 		/*
10217 		 * When ASYM_PACKING; see if there's a more preferred CPU
10218 		 * currently idle; in which case, kick the ILB to move tasks
10219 		 * around.
10220 		 */
10221 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10222 			if (sched_asym_prefer(i, cpu)) {
10223 				flags = NOHZ_KICK_MASK;
10224 				goto unlock;
10225 			}
10226 		}
10227 	}
10228 
10229 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10230 	if (sd) {
10231 		/*
10232 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10233 		 * to run the misfit task on.
10234 		 */
10235 		if (check_misfit_status(rq, sd)) {
10236 			flags = NOHZ_KICK_MASK;
10237 			goto unlock;
10238 		}
10239 
10240 		/*
10241 		 * For asymmetric systems, we do not want to nicely balance
10242 		 * cache use, instead we want to embrace asymmetry and only
10243 		 * ensure tasks have enough CPU capacity.
10244 		 *
10245 		 * Skip the LLC logic because it's not relevant in that case.
10246 		 */
10247 		goto unlock;
10248 	}
10249 
10250 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10251 	if (sds) {
10252 		/*
10253 		 * If there is an imbalance between LLC domains (IOW we could
10254 		 * increase the overall cache use), we need some less-loaded LLC
10255 		 * domain to pull some load. Likewise, we may need to spread
10256 		 * load within the current LLC domain (e.g. packed SMT cores but
10257 		 * other CPUs are idle). We can't really know from here how busy
10258 		 * the others are - so just get a nohz balance going if it looks
10259 		 * like this LLC domain has tasks we could move.
10260 		 */
10261 		nr_busy = atomic_read(&sds->nr_busy_cpus);
10262 		if (nr_busy > 1) {
10263 			flags = NOHZ_KICK_MASK;
10264 			goto unlock;
10265 		}
10266 	}
10267 unlock:
10268 	rcu_read_unlock();
10269 out:
10270 	if (flags)
10271 		kick_ilb(flags);
10272 }
10273 
10274 static void set_cpu_sd_state_busy(int cpu)
10275 {
10276 	struct sched_domain *sd;
10277 
10278 	rcu_read_lock();
10279 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10280 
10281 	if (!sd || !sd->nohz_idle)
10282 		goto unlock;
10283 	sd->nohz_idle = 0;
10284 
10285 	atomic_inc(&sd->shared->nr_busy_cpus);
10286 unlock:
10287 	rcu_read_unlock();
10288 }
10289 
10290 void nohz_balance_exit_idle(struct rq *rq)
10291 {
10292 	SCHED_WARN_ON(rq != this_rq());
10293 
10294 	if (likely(!rq->nohz_tick_stopped))
10295 		return;
10296 
10297 	rq->nohz_tick_stopped = 0;
10298 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10299 	atomic_dec(&nohz.nr_cpus);
10300 
10301 	set_cpu_sd_state_busy(rq->cpu);
10302 }
10303 
10304 static void set_cpu_sd_state_idle(int cpu)
10305 {
10306 	struct sched_domain *sd;
10307 
10308 	rcu_read_lock();
10309 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10310 
10311 	if (!sd || sd->nohz_idle)
10312 		goto unlock;
10313 	sd->nohz_idle = 1;
10314 
10315 	atomic_dec(&sd->shared->nr_busy_cpus);
10316 unlock:
10317 	rcu_read_unlock();
10318 }
10319 
10320 /*
10321  * This routine will record that the CPU is going idle with tick stopped.
10322  * This info will be used in performing idle load balancing in the future.
10323  */
10324 void nohz_balance_enter_idle(int cpu)
10325 {
10326 	struct rq *rq = cpu_rq(cpu);
10327 
10328 	SCHED_WARN_ON(cpu != smp_processor_id());
10329 
10330 	/* If this CPU is going down, then nothing needs to be done: */
10331 	if (!cpu_active(cpu))
10332 		return;
10333 
10334 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
10335 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10336 		return;
10337 
10338 	/*
10339 	 * Can be set safely without rq->lock held
10340 	 * If a clear happens, it will have evaluated last additions because
10341 	 * rq->lock is held during the check and the clear
10342 	 */
10343 	rq->has_blocked_load = 1;
10344 
10345 	/*
10346 	 * The tick is still stopped but load could have been added in the
10347 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
10348 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10349 	 * of nohz.has_blocked can only happen after checking the new load
10350 	 */
10351 	if (rq->nohz_tick_stopped)
10352 		goto out;
10353 
10354 	/* If we're a completely isolated CPU, we don't play: */
10355 	if (on_null_domain(rq))
10356 		return;
10357 
10358 	rq->nohz_tick_stopped = 1;
10359 
10360 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10361 	atomic_inc(&nohz.nr_cpus);
10362 
10363 	/*
10364 	 * Ensures that if nohz_idle_balance() fails to observe our
10365 	 * @idle_cpus_mask store, it must observe the @has_blocked
10366 	 * store.
10367 	 */
10368 	smp_mb__after_atomic();
10369 
10370 	set_cpu_sd_state_idle(cpu);
10371 
10372 out:
10373 	/*
10374 	 * Each time a cpu enter idle, we assume that it has blocked load and
10375 	 * enable the periodic update of the load of idle cpus
10376 	 */
10377 	WRITE_ONCE(nohz.has_blocked, 1);
10378 }
10379 
10380 /*
10381  * Internal function that runs load balance for all idle cpus. The load balance
10382  * can be a simple update of blocked load or a complete load balance with
10383  * tasks movement depending of flags.
10384  * The function returns false if the loop has stopped before running
10385  * through all idle CPUs.
10386  */
10387 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10388 			       enum cpu_idle_type idle)
10389 {
10390 	/* Earliest time when we have to do rebalance again */
10391 	unsigned long now = jiffies;
10392 	unsigned long next_balance = now + 60*HZ;
10393 	bool has_blocked_load = false;
10394 	int update_next_balance = 0;
10395 	int this_cpu = this_rq->cpu;
10396 	int balance_cpu;
10397 	int ret = false;
10398 	struct rq *rq;
10399 
10400 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10401 
10402 	/*
10403 	 * We assume there will be no idle load after this update and clear
10404 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10405 	 * set the has_blocked flag and trig another update of idle load.
10406 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10407 	 * setting the flag, we are sure to not clear the state and not
10408 	 * check the load of an idle cpu.
10409 	 */
10410 	WRITE_ONCE(nohz.has_blocked, 0);
10411 
10412 	/*
10413 	 * Ensures that if we miss the CPU, we must see the has_blocked
10414 	 * store from nohz_balance_enter_idle().
10415 	 */
10416 	smp_mb();
10417 
10418 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
10419 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
10420 			continue;
10421 
10422 		/*
10423 		 * If this CPU gets work to do, stop the load balancing
10424 		 * work being done for other CPUs. Next load
10425 		 * balancing owner will pick it up.
10426 		 */
10427 		if (need_resched()) {
10428 			has_blocked_load = true;
10429 			goto abort;
10430 		}
10431 
10432 		rq = cpu_rq(balance_cpu);
10433 
10434 		has_blocked_load |= update_nohz_stats(rq, true);
10435 
10436 		/*
10437 		 * If time for next balance is due,
10438 		 * do the balance.
10439 		 */
10440 		if (time_after_eq(jiffies, rq->next_balance)) {
10441 			struct rq_flags rf;
10442 
10443 			rq_lock_irqsave(rq, &rf);
10444 			update_rq_clock(rq);
10445 			rq_unlock_irqrestore(rq, &rf);
10446 
10447 			if (flags & NOHZ_BALANCE_KICK)
10448 				rebalance_domains(rq, CPU_IDLE);
10449 		}
10450 
10451 		if (time_after(next_balance, rq->next_balance)) {
10452 			next_balance = rq->next_balance;
10453 			update_next_balance = 1;
10454 		}
10455 	}
10456 
10457 	/*
10458 	 * next_balance will be updated only when there is a need.
10459 	 * When the CPU is attached to null domain for ex, it will not be
10460 	 * updated.
10461 	 */
10462 	if (likely(update_next_balance))
10463 		nohz.next_balance = next_balance;
10464 
10465 	/* Newly idle CPU doesn't need an update */
10466 	if (idle != CPU_NEWLY_IDLE) {
10467 		update_blocked_averages(this_cpu);
10468 		has_blocked_load |= this_rq->has_blocked_load;
10469 	}
10470 
10471 	if (flags & NOHZ_BALANCE_KICK)
10472 		rebalance_domains(this_rq, CPU_IDLE);
10473 
10474 	WRITE_ONCE(nohz.next_blocked,
10475 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10476 
10477 	/* The full idle balance loop has been done */
10478 	ret = true;
10479 
10480 abort:
10481 	/* There is still blocked load, enable periodic update */
10482 	if (has_blocked_load)
10483 		WRITE_ONCE(nohz.has_blocked, 1);
10484 
10485 	return ret;
10486 }
10487 
10488 /*
10489  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10490  * rebalancing for all the cpus for whom scheduler ticks are stopped.
10491  */
10492 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10493 {
10494 	unsigned int flags = this_rq->nohz_idle_balance;
10495 
10496 	if (!flags)
10497 		return false;
10498 
10499 	this_rq->nohz_idle_balance = 0;
10500 
10501 	if (idle != CPU_IDLE)
10502 		return false;
10503 
10504 	_nohz_idle_balance(this_rq, flags, idle);
10505 
10506 	return true;
10507 }
10508 
10509 static void nohz_newidle_balance(struct rq *this_rq)
10510 {
10511 	int this_cpu = this_rq->cpu;
10512 
10513 	/*
10514 	 * This CPU doesn't want to be disturbed by scheduler
10515 	 * housekeeping
10516 	 */
10517 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10518 		return;
10519 
10520 	/* Will wake up very soon. No time for doing anything else*/
10521 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
10522 		return;
10523 
10524 	/* Don't need to update blocked load of idle CPUs*/
10525 	if (!READ_ONCE(nohz.has_blocked) ||
10526 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10527 		return;
10528 
10529 	raw_spin_unlock(&this_rq->lock);
10530 	/*
10531 	 * This CPU is going to be idle and blocked load of idle CPUs
10532 	 * need to be updated. Run the ilb locally as it is a good
10533 	 * candidate for ilb instead of waking up another idle CPU.
10534 	 * Kick an normal ilb if we failed to do the update.
10535 	 */
10536 	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10537 		kick_ilb(NOHZ_STATS_KICK);
10538 	raw_spin_lock(&this_rq->lock);
10539 }
10540 
10541 #else /* !CONFIG_NO_HZ_COMMON */
10542 static inline void nohz_balancer_kick(struct rq *rq) { }
10543 
10544 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10545 {
10546 	return false;
10547 }
10548 
10549 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10550 #endif /* CONFIG_NO_HZ_COMMON */
10551 
10552 /*
10553  * newidle_balance is called by schedule() if this_cpu is about to become
10554  * idle. Attempts to pull tasks from other CPUs.
10555  *
10556  * Returns:
10557  *   < 0 - we released the lock and there are !fair tasks present
10558  *     0 - failed, no new tasks
10559  *   > 0 - success, new (fair) tasks present
10560  */
10561 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10562 {
10563 	unsigned long next_balance = jiffies + HZ;
10564 	int this_cpu = this_rq->cpu;
10565 	struct sched_domain *sd;
10566 	int pulled_task = 0;
10567 	u64 curr_cost = 0;
10568 
10569 	update_misfit_status(NULL, this_rq);
10570 	/*
10571 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
10572 	 * measure the duration of idle_balance() as idle time.
10573 	 */
10574 	this_rq->idle_stamp = rq_clock(this_rq);
10575 
10576 	/*
10577 	 * Do not pull tasks towards !active CPUs...
10578 	 */
10579 	if (!cpu_active(this_cpu))
10580 		return 0;
10581 
10582 	/*
10583 	 * This is OK, because current is on_cpu, which avoids it being picked
10584 	 * for load-balance and preemption/IRQs are still disabled avoiding
10585 	 * further scheduler activity on it and we're being very careful to
10586 	 * re-start the picking loop.
10587 	 */
10588 	rq_unpin_lock(this_rq, rf);
10589 
10590 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10591 	    !READ_ONCE(this_rq->rd->overload)) {
10592 
10593 		rcu_read_lock();
10594 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
10595 		if (sd)
10596 			update_next_balance(sd, &next_balance);
10597 		rcu_read_unlock();
10598 
10599 		nohz_newidle_balance(this_rq);
10600 
10601 		goto out;
10602 	}
10603 
10604 	raw_spin_unlock(&this_rq->lock);
10605 
10606 	update_blocked_averages(this_cpu);
10607 	rcu_read_lock();
10608 	for_each_domain(this_cpu, sd) {
10609 		int continue_balancing = 1;
10610 		u64 t0, domain_cost;
10611 
10612 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10613 			update_next_balance(sd, &next_balance);
10614 			break;
10615 		}
10616 
10617 		if (sd->flags & SD_BALANCE_NEWIDLE) {
10618 			t0 = sched_clock_cpu(this_cpu);
10619 
10620 			pulled_task = load_balance(this_cpu, this_rq,
10621 						   sd, CPU_NEWLY_IDLE,
10622 						   &continue_balancing);
10623 
10624 			domain_cost = sched_clock_cpu(this_cpu) - t0;
10625 			if (domain_cost > sd->max_newidle_lb_cost)
10626 				sd->max_newidle_lb_cost = domain_cost;
10627 
10628 			curr_cost += domain_cost;
10629 		}
10630 
10631 		update_next_balance(sd, &next_balance);
10632 
10633 		/*
10634 		 * Stop searching for tasks to pull if there are
10635 		 * now runnable tasks on this rq.
10636 		 */
10637 		if (pulled_task || this_rq->nr_running > 0)
10638 			break;
10639 	}
10640 	rcu_read_unlock();
10641 
10642 	raw_spin_lock(&this_rq->lock);
10643 
10644 	if (curr_cost > this_rq->max_idle_balance_cost)
10645 		this_rq->max_idle_balance_cost = curr_cost;
10646 
10647 out:
10648 	/*
10649 	 * While browsing the domains, we released the rq lock, a task could
10650 	 * have been enqueued in the meantime. Since we're not going idle,
10651 	 * pretend we pulled a task.
10652 	 */
10653 	if (this_rq->cfs.h_nr_running && !pulled_task)
10654 		pulled_task = 1;
10655 
10656 	/* Move the next balance forward */
10657 	if (time_after(this_rq->next_balance, next_balance))
10658 		this_rq->next_balance = next_balance;
10659 
10660 	/* Is there a task of a high priority class? */
10661 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10662 		pulled_task = -1;
10663 
10664 	if (pulled_task)
10665 		this_rq->idle_stamp = 0;
10666 
10667 	rq_repin_lock(this_rq, rf);
10668 
10669 	return pulled_task;
10670 }
10671 
10672 /*
10673  * run_rebalance_domains is triggered when needed from the scheduler tick.
10674  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10675  */
10676 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10677 {
10678 	struct rq *this_rq = this_rq();
10679 	enum cpu_idle_type idle = this_rq->idle_balance ?
10680 						CPU_IDLE : CPU_NOT_IDLE;
10681 
10682 	/*
10683 	 * If this CPU has a pending nohz_balance_kick, then do the
10684 	 * balancing on behalf of the other idle CPUs whose ticks are
10685 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10686 	 * give the idle CPUs a chance to load balance. Else we may
10687 	 * load balance only within the local sched_domain hierarchy
10688 	 * and abort nohz_idle_balance altogether if we pull some load.
10689 	 */
10690 	if (nohz_idle_balance(this_rq, idle))
10691 		return;
10692 
10693 	/* normal load balance */
10694 	update_blocked_averages(this_rq->cpu);
10695 	rebalance_domains(this_rq, idle);
10696 }
10697 
10698 /*
10699  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10700  */
10701 void trigger_load_balance(struct rq *rq)
10702 {
10703 	/* Don't need to rebalance while attached to NULL domain */
10704 	if (unlikely(on_null_domain(rq)))
10705 		return;
10706 
10707 	if (time_after_eq(jiffies, rq->next_balance))
10708 		raise_softirq(SCHED_SOFTIRQ);
10709 
10710 	nohz_balancer_kick(rq);
10711 }
10712 
10713 static void rq_online_fair(struct rq *rq)
10714 {
10715 	update_sysctl();
10716 
10717 	update_runtime_enabled(rq);
10718 }
10719 
10720 static void rq_offline_fair(struct rq *rq)
10721 {
10722 	update_sysctl();
10723 
10724 	/* Ensure any throttled groups are reachable by pick_next_task */
10725 	unthrottle_offline_cfs_rqs(rq);
10726 }
10727 
10728 #endif /* CONFIG_SMP */
10729 
10730 /*
10731  * scheduler tick hitting a task of our scheduling class.
10732  *
10733  * NOTE: This function can be called remotely by the tick offload that
10734  * goes along full dynticks. Therefore no local assumption can be made
10735  * and everything must be accessed through the @rq and @curr passed in
10736  * parameters.
10737  */
10738 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10739 {
10740 	struct cfs_rq *cfs_rq;
10741 	struct sched_entity *se = &curr->se;
10742 
10743 	for_each_sched_entity(se) {
10744 		cfs_rq = cfs_rq_of(se);
10745 		entity_tick(cfs_rq, se, queued);
10746 	}
10747 
10748 	if (static_branch_unlikely(&sched_numa_balancing))
10749 		task_tick_numa(rq, curr);
10750 
10751 	update_misfit_status(curr, rq);
10752 	update_overutilized_status(task_rq(curr));
10753 }
10754 
10755 /*
10756  * called on fork with the child task as argument from the parent's context
10757  *  - child not yet on the tasklist
10758  *  - preemption disabled
10759  */
10760 static void task_fork_fair(struct task_struct *p)
10761 {
10762 	struct cfs_rq *cfs_rq;
10763 	struct sched_entity *se = &p->se, *curr;
10764 	struct rq *rq = this_rq();
10765 	struct rq_flags rf;
10766 
10767 	rq_lock(rq, &rf);
10768 	update_rq_clock(rq);
10769 
10770 	cfs_rq = task_cfs_rq(current);
10771 	curr = cfs_rq->curr;
10772 	if (curr) {
10773 		update_curr(cfs_rq);
10774 		se->vruntime = curr->vruntime;
10775 	}
10776 	place_entity(cfs_rq, se, 1);
10777 
10778 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10779 		/*
10780 		 * Upon rescheduling, sched_class::put_prev_task() will place
10781 		 * 'current' within the tree based on its new key value.
10782 		 */
10783 		swap(curr->vruntime, se->vruntime);
10784 		resched_curr(rq);
10785 	}
10786 
10787 	se->vruntime -= cfs_rq->min_vruntime;
10788 	rq_unlock(rq, &rf);
10789 }
10790 
10791 /*
10792  * Priority of the task has changed. Check to see if we preempt
10793  * the current task.
10794  */
10795 static void
10796 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10797 {
10798 	if (!task_on_rq_queued(p))
10799 		return;
10800 
10801 	if (rq->cfs.nr_running == 1)
10802 		return;
10803 
10804 	/*
10805 	 * Reschedule if we are currently running on this runqueue and
10806 	 * our priority decreased, or if we are not currently running on
10807 	 * this runqueue and our priority is higher than the current's
10808 	 */
10809 	if (rq->curr == p) {
10810 		if (p->prio > oldprio)
10811 			resched_curr(rq);
10812 	} else
10813 		check_preempt_curr(rq, p, 0);
10814 }
10815 
10816 static inline bool vruntime_normalized(struct task_struct *p)
10817 {
10818 	struct sched_entity *se = &p->se;
10819 
10820 	/*
10821 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10822 	 * the dequeue_entity(.flags=0) will already have normalized the
10823 	 * vruntime.
10824 	 */
10825 	if (p->on_rq)
10826 		return true;
10827 
10828 	/*
10829 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
10830 	 * But there are some cases where it has already been normalized:
10831 	 *
10832 	 * - A forked child which is waiting for being woken up by
10833 	 *   wake_up_new_task().
10834 	 * - A task which has been woken up by try_to_wake_up() and
10835 	 *   waiting for actually being woken up by sched_ttwu_pending().
10836 	 */
10837 	if (!se->sum_exec_runtime ||
10838 	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
10839 		return true;
10840 
10841 	return false;
10842 }
10843 
10844 #ifdef CONFIG_FAIR_GROUP_SCHED
10845 /*
10846  * Propagate the changes of the sched_entity across the tg tree to make it
10847  * visible to the root
10848  */
10849 static void propagate_entity_cfs_rq(struct sched_entity *se)
10850 {
10851 	struct cfs_rq *cfs_rq;
10852 
10853 	/* Start to propagate at parent */
10854 	se = se->parent;
10855 
10856 	for_each_sched_entity(se) {
10857 		cfs_rq = cfs_rq_of(se);
10858 
10859 		if (cfs_rq_throttled(cfs_rq))
10860 			break;
10861 
10862 		update_load_avg(cfs_rq, se, UPDATE_TG);
10863 	}
10864 }
10865 #else
10866 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10867 #endif
10868 
10869 static void detach_entity_cfs_rq(struct sched_entity *se)
10870 {
10871 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10872 
10873 	/* Catch up with the cfs_rq and remove our load when we leave */
10874 	update_load_avg(cfs_rq, se, 0);
10875 	detach_entity_load_avg(cfs_rq, se);
10876 	update_tg_load_avg(cfs_rq);
10877 	propagate_entity_cfs_rq(se);
10878 }
10879 
10880 static void attach_entity_cfs_rq(struct sched_entity *se)
10881 {
10882 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10883 
10884 #ifdef CONFIG_FAIR_GROUP_SCHED
10885 	/*
10886 	 * Since the real-depth could have been changed (only FAIR
10887 	 * class maintain depth value), reset depth properly.
10888 	 */
10889 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10890 #endif
10891 
10892 	/* Synchronize entity with its cfs_rq */
10893 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10894 	attach_entity_load_avg(cfs_rq, se);
10895 	update_tg_load_avg(cfs_rq);
10896 	propagate_entity_cfs_rq(se);
10897 }
10898 
10899 static void detach_task_cfs_rq(struct task_struct *p)
10900 {
10901 	struct sched_entity *se = &p->se;
10902 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10903 
10904 	if (!vruntime_normalized(p)) {
10905 		/*
10906 		 * Fix up our vruntime so that the current sleep doesn't
10907 		 * cause 'unlimited' sleep bonus.
10908 		 */
10909 		place_entity(cfs_rq, se, 0);
10910 		se->vruntime -= cfs_rq->min_vruntime;
10911 	}
10912 
10913 	detach_entity_cfs_rq(se);
10914 }
10915 
10916 static void attach_task_cfs_rq(struct task_struct *p)
10917 {
10918 	struct sched_entity *se = &p->se;
10919 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10920 
10921 	attach_entity_cfs_rq(se);
10922 
10923 	if (!vruntime_normalized(p))
10924 		se->vruntime += cfs_rq->min_vruntime;
10925 }
10926 
10927 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10928 {
10929 	detach_task_cfs_rq(p);
10930 }
10931 
10932 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10933 {
10934 	attach_task_cfs_rq(p);
10935 
10936 	if (task_on_rq_queued(p)) {
10937 		/*
10938 		 * We were most likely switched from sched_rt, so
10939 		 * kick off the schedule if running, otherwise just see
10940 		 * if we can still preempt the current task.
10941 		 */
10942 		if (rq->curr == p)
10943 			resched_curr(rq);
10944 		else
10945 			check_preempt_curr(rq, p, 0);
10946 	}
10947 }
10948 
10949 /* Account for a task changing its policy or group.
10950  *
10951  * This routine is mostly called to set cfs_rq->curr field when a task
10952  * migrates between groups/classes.
10953  */
10954 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
10955 {
10956 	struct sched_entity *se = &p->se;
10957 
10958 #ifdef CONFIG_SMP
10959 	if (task_on_rq_queued(p)) {
10960 		/*
10961 		 * Move the next running task to the front of the list, so our
10962 		 * cfs_tasks list becomes MRU one.
10963 		 */
10964 		list_move(&se->group_node, &rq->cfs_tasks);
10965 	}
10966 #endif
10967 
10968 	for_each_sched_entity(se) {
10969 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
10970 
10971 		set_next_entity(cfs_rq, se);
10972 		/* ensure bandwidth has been allocated on our new cfs_rq */
10973 		account_cfs_rq_runtime(cfs_rq, 0);
10974 	}
10975 }
10976 
10977 void init_cfs_rq(struct cfs_rq *cfs_rq)
10978 {
10979 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10980 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10981 #ifndef CONFIG_64BIT
10982 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10983 #endif
10984 #ifdef CONFIG_SMP
10985 	raw_spin_lock_init(&cfs_rq->removed.lock);
10986 #endif
10987 }
10988 
10989 #ifdef CONFIG_FAIR_GROUP_SCHED
10990 static void task_set_group_fair(struct task_struct *p)
10991 {
10992 	struct sched_entity *se = &p->se;
10993 
10994 	set_task_rq(p, task_cpu(p));
10995 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10996 }
10997 
10998 static void task_move_group_fair(struct task_struct *p)
10999 {
11000 	detach_task_cfs_rq(p);
11001 	set_task_rq(p, task_cpu(p));
11002 
11003 #ifdef CONFIG_SMP
11004 	/* Tell se's cfs_rq has been changed -- migrated */
11005 	p->se.avg.last_update_time = 0;
11006 #endif
11007 	attach_task_cfs_rq(p);
11008 }
11009 
11010 static void task_change_group_fair(struct task_struct *p, int type)
11011 {
11012 	switch (type) {
11013 	case TASK_SET_GROUP:
11014 		task_set_group_fair(p);
11015 		break;
11016 
11017 	case TASK_MOVE_GROUP:
11018 		task_move_group_fair(p);
11019 		break;
11020 	}
11021 }
11022 
11023 void free_fair_sched_group(struct task_group *tg)
11024 {
11025 	int i;
11026 
11027 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11028 
11029 	for_each_possible_cpu(i) {
11030 		if (tg->cfs_rq)
11031 			kfree(tg->cfs_rq[i]);
11032 		if (tg->se)
11033 			kfree(tg->se[i]);
11034 	}
11035 
11036 	kfree(tg->cfs_rq);
11037 	kfree(tg->se);
11038 }
11039 
11040 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11041 {
11042 	struct sched_entity *se;
11043 	struct cfs_rq *cfs_rq;
11044 	int i;
11045 
11046 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11047 	if (!tg->cfs_rq)
11048 		goto err;
11049 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11050 	if (!tg->se)
11051 		goto err;
11052 
11053 	tg->shares = NICE_0_LOAD;
11054 
11055 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11056 
11057 	for_each_possible_cpu(i) {
11058 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11059 				      GFP_KERNEL, cpu_to_node(i));
11060 		if (!cfs_rq)
11061 			goto err;
11062 
11063 		se = kzalloc_node(sizeof(struct sched_entity),
11064 				  GFP_KERNEL, cpu_to_node(i));
11065 		if (!se)
11066 			goto err_free_rq;
11067 
11068 		init_cfs_rq(cfs_rq);
11069 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11070 		init_entity_runnable_average(se);
11071 	}
11072 
11073 	return 1;
11074 
11075 err_free_rq:
11076 	kfree(cfs_rq);
11077 err:
11078 	return 0;
11079 }
11080 
11081 void online_fair_sched_group(struct task_group *tg)
11082 {
11083 	struct sched_entity *se;
11084 	struct rq_flags rf;
11085 	struct rq *rq;
11086 	int i;
11087 
11088 	for_each_possible_cpu(i) {
11089 		rq = cpu_rq(i);
11090 		se = tg->se[i];
11091 		rq_lock_irq(rq, &rf);
11092 		update_rq_clock(rq);
11093 		attach_entity_cfs_rq(se);
11094 		sync_throttle(tg, i);
11095 		rq_unlock_irq(rq, &rf);
11096 	}
11097 }
11098 
11099 void unregister_fair_sched_group(struct task_group *tg)
11100 {
11101 	unsigned long flags;
11102 	struct rq *rq;
11103 	int cpu;
11104 
11105 	for_each_possible_cpu(cpu) {
11106 		if (tg->se[cpu])
11107 			remove_entity_load_avg(tg->se[cpu]);
11108 
11109 		/*
11110 		 * Only empty task groups can be destroyed; so we can speculatively
11111 		 * check on_list without danger of it being re-added.
11112 		 */
11113 		if (!tg->cfs_rq[cpu]->on_list)
11114 			continue;
11115 
11116 		rq = cpu_rq(cpu);
11117 
11118 		raw_spin_lock_irqsave(&rq->lock, flags);
11119 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11120 		raw_spin_unlock_irqrestore(&rq->lock, flags);
11121 	}
11122 }
11123 
11124 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11125 			struct sched_entity *se, int cpu,
11126 			struct sched_entity *parent)
11127 {
11128 	struct rq *rq = cpu_rq(cpu);
11129 
11130 	cfs_rq->tg = tg;
11131 	cfs_rq->rq = rq;
11132 	init_cfs_rq_runtime(cfs_rq);
11133 
11134 	tg->cfs_rq[cpu] = cfs_rq;
11135 	tg->se[cpu] = se;
11136 
11137 	/* se could be NULL for root_task_group */
11138 	if (!se)
11139 		return;
11140 
11141 	if (!parent) {
11142 		se->cfs_rq = &rq->cfs;
11143 		se->depth = 0;
11144 	} else {
11145 		se->cfs_rq = parent->my_q;
11146 		se->depth = parent->depth + 1;
11147 	}
11148 
11149 	se->my_q = cfs_rq;
11150 	/* guarantee group entities always have weight */
11151 	update_load_set(&se->load, NICE_0_LOAD);
11152 	se->parent = parent;
11153 }
11154 
11155 static DEFINE_MUTEX(shares_mutex);
11156 
11157 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11158 {
11159 	int i;
11160 
11161 	/*
11162 	 * We can't change the weight of the root cgroup.
11163 	 */
11164 	if (!tg->se[0])
11165 		return -EINVAL;
11166 
11167 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11168 
11169 	mutex_lock(&shares_mutex);
11170 	if (tg->shares == shares)
11171 		goto done;
11172 
11173 	tg->shares = shares;
11174 	for_each_possible_cpu(i) {
11175 		struct rq *rq = cpu_rq(i);
11176 		struct sched_entity *se = tg->se[i];
11177 		struct rq_flags rf;
11178 
11179 		/* Propagate contribution to hierarchy */
11180 		rq_lock_irqsave(rq, &rf);
11181 		update_rq_clock(rq);
11182 		for_each_sched_entity(se) {
11183 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11184 			update_cfs_group(se);
11185 		}
11186 		rq_unlock_irqrestore(rq, &rf);
11187 	}
11188 
11189 done:
11190 	mutex_unlock(&shares_mutex);
11191 	return 0;
11192 }
11193 #else /* CONFIG_FAIR_GROUP_SCHED */
11194 
11195 void free_fair_sched_group(struct task_group *tg) { }
11196 
11197 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11198 {
11199 	return 1;
11200 }
11201 
11202 void online_fair_sched_group(struct task_group *tg) { }
11203 
11204 void unregister_fair_sched_group(struct task_group *tg) { }
11205 
11206 #endif /* CONFIG_FAIR_GROUP_SCHED */
11207 
11208 
11209 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11210 {
11211 	struct sched_entity *se = &task->se;
11212 	unsigned int rr_interval = 0;
11213 
11214 	/*
11215 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11216 	 * idle runqueue:
11217 	 */
11218 	if (rq->cfs.load.weight)
11219 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11220 
11221 	return rr_interval;
11222 }
11223 
11224 /*
11225  * All the scheduling class methods:
11226  */
11227 DEFINE_SCHED_CLASS(fair) = {
11228 
11229 	.enqueue_task		= enqueue_task_fair,
11230 	.dequeue_task		= dequeue_task_fair,
11231 	.yield_task		= yield_task_fair,
11232 	.yield_to_task		= yield_to_task_fair,
11233 
11234 	.check_preempt_curr	= check_preempt_wakeup,
11235 
11236 	.pick_next_task		= __pick_next_task_fair,
11237 	.put_prev_task		= put_prev_task_fair,
11238 	.set_next_task          = set_next_task_fair,
11239 
11240 #ifdef CONFIG_SMP
11241 	.balance		= balance_fair,
11242 	.select_task_rq		= select_task_rq_fair,
11243 	.migrate_task_rq	= migrate_task_rq_fair,
11244 
11245 	.rq_online		= rq_online_fair,
11246 	.rq_offline		= rq_offline_fair,
11247 
11248 	.task_dead		= task_dead_fair,
11249 	.set_cpus_allowed	= set_cpus_allowed_common,
11250 #endif
11251 
11252 	.task_tick		= task_tick_fair,
11253 	.task_fork		= task_fork_fair,
11254 
11255 	.prio_changed		= prio_changed_fair,
11256 	.switched_from		= switched_from_fair,
11257 	.switched_to		= switched_to_fair,
11258 
11259 	.get_rr_interval	= get_rr_interval_fair,
11260 
11261 	.update_curr		= update_curr_fair,
11262 
11263 #ifdef CONFIG_FAIR_GROUP_SCHED
11264 	.task_change_group	= task_change_group_fair,
11265 #endif
11266 
11267 #ifdef CONFIG_UCLAMP_TASK
11268 	.uclamp_enabled		= 1,
11269 #endif
11270 };
11271 
11272 #ifdef CONFIG_SCHED_DEBUG
11273 void print_cfs_stats(struct seq_file *m, int cpu)
11274 {
11275 	struct cfs_rq *cfs_rq, *pos;
11276 
11277 	rcu_read_lock();
11278 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11279 		print_cfs_rq(m, cpu, cfs_rq);
11280 	rcu_read_unlock();
11281 }
11282 
11283 #ifdef CONFIG_NUMA_BALANCING
11284 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11285 {
11286 	int node;
11287 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11288 	struct numa_group *ng;
11289 
11290 	rcu_read_lock();
11291 	ng = rcu_dereference(p->numa_group);
11292 	for_each_online_node(node) {
11293 		if (p->numa_faults) {
11294 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11295 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11296 		}
11297 		if (ng) {
11298 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11299 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11300 		}
11301 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11302 	}
11303 	rcu_read_unlock();
11304 }
11305 #endif /* CONFIG_NUMA_BALANCING */
11306 #endif /* CONFIG_SCHED_DEBUG */
11307 
11308 __init void init_sched_fair_class(void)
11309 {
11310 #ifdef CONFIG_SMP
11311 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11312 
11313 #ifdef CONFIG_NO_HZ_COMMON
11314 	nohz.next_balance = jiffies;
11315 	nohz.next_blocked = jiffies;
11316 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11317 #endif
11318 #endif /* SMP */
11319 
11320 }
11321 
11322 /*
11323  * Helper functions to facilitate extracting info from tracepoints.
11324  */
11325 
11326 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11327 {
11328 #ifdef CONFIG_SMP
11329 	return cfs_rq ? &cfs_rq->avg : NULL;
11330 #else
11331 	return NULL;
11332 #endif
11333 }
11334 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11335 
11336 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11337 {
11338 	if (!cfs_rq) {
11339 		if (str)
11340 			strlcpy(str, "(null)", len);
11341 		else
11342 			return NULL;
11343 	}
11344 
11345 	cfs_rq_tg_path(cfs_rq, str, len);
11346 	return str;
11347 }
11348 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11349 
11350 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11351 {
11352 	return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11353 }
11354 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11355 
11356 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11357 {
11358 #ifdef CONFIG_SMP
11359 	return rq ? &rq->avg_rt : NULL;
11360 #else
11361 	return NULL;
11362 #endif
11363 }
11364 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11365 
11366 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11367 {
11368 #ifdef CONFIG_SMP
11369 	return rq ? &rq->avg_dl : NULL;
11370 #else
11371 	return NULL;
11372 #endif
11373 }
11374 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11375 
11376 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11377 {
11378 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11379 	return rq ? &rq->avg_irq : NULL;
11380 #else
11381 	return NULL;
11382 #endif
11383 }
11384 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11385 
11386 int sched_trace_rq_cpu(struct rq *rq)
11387 {
11388 	return rq ? cpu_of(rq) : -1;
11389 }
11390 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11391 
11392 int sched_trace_rq_cpu_capacity(struct rq *rq)
11393 {
11394 	return rq ?
11395 #ifdef CONFIG_SMP
11396 		rq->cpu_capacity
11397 #else
11398 		SCHED_CAPACITY_SCALE
11399 #endif
11400 		: -1;
11401 }
11402 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11403 
11404 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11405 {
11406 #ifdef CONFIG_SMP
11407 	return rd ? rd->span : NULL;
11408 #else
11409 	return NULL;
11410 #endif
11411 }
11412 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11413 
11414 int sched_trace_rq_nr_running(struct rq *rq)
11415 {
11416         return rq ? rq->nr_running : -1;
11417 }
11418 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);
11419