1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 21 */ 22 23 #include <linux/latencytop.h> 24 #include <linux/sched.h> 25 #include <linux/cpumask.h> 26 #include <linux/slab.h> 27 #include <linux/profile.h> 28 #include <linux/interrupt.h> 29 #include <linux/mempolicy.h> 30 #include <linux/migrate.h> 31 #include <linux/task_work.h> 32 33 #include <trace/events/sched.h> 34 35 #include "sched.h" 36 37 /* 38 * Targeted preemption latency for CPU-bound tasks: 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 40 * 41 * NOTE: this latency value is not the same as the concept of 42 * 'timeslice length' - timeslices in CFS are of variable length 43 * and have no persistent notion like in traditional, time-slice 44 * based scheduling concepts. 45 * 46 * (to see the precise effective timeslice length of your workload, 47 * run vmstat and monitor the context-switches (cs) field) 48 */ 49 unsigned int sysctl_sched_latency = 6000000ULL; 50 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 51 52 /* 53 * The initial- and re-scaling of tunables is configurable 54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 55 * 56 * Options are: 57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 60 */ 61 enum sched_tunable_scaling sysctl_sched_tunable_scaling 62 = SCHED_TUNABLESCALING_LOG; 63 64 /* 65 * Minimal preemption granularity for CPU-bound tasks: 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 67 */ 68 unsigned int sysctl_sched_min_granularity = 750000ULL; 69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 70 71 /* 72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 73 */ 74 static unsigned int sched_nr_latency = 8; 75 76 /* 77 * After fork, child runs first. If set to 0 (default) then 78 * parent will (try to) run first. 79 */ 80 unsigned int sysctl_sched_child_runs_first __read_mostly; 81 82 /* 83 * SCHED_OTHER wake-up granularity. 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 85 * 86 * This option delays the preemption effects of decoupled workloads 87 * and reduces their over-scheduling. Synchronous workloads will still 88 * have immediate wakeup/sleep latencies. 89 */ 90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 92 93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 94 95 /* 96 * The exponential sliding window over which load is averaged for shares 97 * distribution. 98 * (default: 10msec) 99 */ 100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; 101 102 #ifdef CONFIG_CFS_BANDWIDTH 103 /* 104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 105 * each time a cfs_rq requests quota. 106 * 107 * Note: in the case that the slice exceeds the runtime remaining (either due 108 * to consumption or the quota being specified to be smaller than the slice) 109 * we will always only issue the remaining available time. 110 * 111 * default: 5 msec, units: microseconds 112 */ 113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 114 #endif 115 116 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 117 { 118 lw->weight += inc; 119 lw->inv_weight = 0; 120 } 121 122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 123 { 124 lw->weight -= dec; 125 lw->inv_weight = 0; 126 } 127 128 static inline void update_load_set(struct load_weight *lw, unsigned long w) 129 { 130 lw->weight = w; 131 lw->inv_weight = 0; 132 } 133 134 /* 135 * Increase the granularity value when there are more CPUs, 136 * because with more CPUs the 'effective latency' as visible 137 * to users decreases. But the relationship is not linear, 138 * so pick a second-best guess by going with the log2 of the 139 * number of CPUs. 140 * 141 * This idea comes from the SD scheduler of Con Kolivas: 142 */ 143 static int get_update_sysctl_factor(void) 144 { 145 unsigned int cpus = min_t(int, num_online_cpus(), 8); 146 unsigned int factor; 147 148 switch (sysctl_sched_tunable_scaling) { 149 case SCHED_TUNABLESCALING_NONE: 150 factor = 1; 151 break; 152 case SCHED_TUNABLESCALING_LINEAR: 153 factor = cpus; 154 break; 155 case SCHED_TUNABLESCALING_LOG: 156 default: 157 factor = 1 + ilog2(cpus); 158 break; 159 } 160 161 return factor; 162 } 163 164 static void update_sysctl(void) 165 { 166 unsigned int factor = get_update_sysctl_factor(); 167 168 #define SET_SYSCTL(name) \ 169 (sysctl_##name = (factor) * normalized_sysctl_##name) 170 SET_SYSCTL(sched_min_granularity); 171 SET_SYSCTL(sched_latency); 172 SET_SYSCTL(sched_wakeup_granularity); 173 #undef SET_SYSCTL 174 } 175 176 void sched_init_granularity(void) 177 { 178 update_sysctl(); 179 } 180 181 #if BITS_PER_LONG == 32 182 # define WMULT_CONST (~0UL) 183 #else 184 # define WMULT_CONST (1UL << 32) 185 #endif 186 187 #define WMULT_SHIFT 32 188 189 /* 190 * Shift right and round: 191 */ 192 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) 193 194 /* 195 * delta *= weight / lw 196 */ 197 static unsigned long 198 calc_delta_mine(unsigned long delta_exec, unsigned long weight, 199 struct load_weight *lw) 200 { 201 u64 tmp; 202 203 /* 204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched 205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than 206 * 2^SCHED_LOAD_RESOLUTION. 207 */ 208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION))) 209 tmp = (u64)delta_exec * scale_load_down(weight); 210 else 211 tmp = (u64)delta_exec; 212 213 if (!lw->inv_weight) { 214 unsigned long w = scale_load_down(lw->weight); 215 216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 217 lw->inv_weight = 1; 218 else if (unlikely(!w)) 219 lw->inv_weight = WMULT_CONST; 220 else 221 lw->inv_weight = WMULT_CONST / w; 222 } 223 224 /* 225 * Check whether we'd overflow the 64-bit multiplication: 226 */ 227 if (unlikely(tmp > WMULT_CONST)) 228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, 229 WMULT_SHIFT/2); 230 else 231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); 232 233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); 234 } 235 236 237 const struct sched_class fair_sched_class; 238 239 /************************************************************** 240 * CFS operations on generic schedulable entities: 241 */ 242 243 #ifdef CONFIG_FAIR_GROUP_SCHED 244 245 /* cpu runqueue to which this cfs_rq is attached */ 246 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 247 { 248 return cfs_rq->rq; 249 } 250 251 /* An entity is a task if it doesn't "own" a runqueue */ 252 #define entity_is_task(se) (!se->my_q) 253 254 static inline struct task_struct *task_of(struct sched_entity *se) 255 { 256 #ifdef CONFIG_SCHED_DEBUG 257 WARN_ON_ONCE(!entity_is_task(se)); 258 #endif 259 return container_of(se, struct task_struct, se); 260 } 261 262 /* Walk up scheduling entities hierarchy */ 263 #define for_each_sched_entity(se) \ 264 for (; se; se = se->parent) 265 266 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 267 { 268 return p->se.cfs_rq; 269 } 270 271 /* runqueue on which this entity is (to be) queued */ 272 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 273 { 274 return se->cfs_rq; 275 } 276 277 /* runqueue "owned" by this group */ 278 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 279 { 280 return grp->my_q; 281 } 282 283 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 284 int force_update); 285 286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 287 { 288 if (!cfs_rq->on_list) { 289 /* 290 * Ensure we either appear before our parent (if already 291 * enqueued) or force our parent to appear after us when it is 292 * enqueued. The fact that we always enqueue bottom-up 293 * reduces this to two cases. 294 */ 295 if (cfs_rq->tg->parent && 296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { 297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 298 &rq_of(cfs_rq)->leaf_cfs_rq_list); 299 } else { 300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 301 &rq_of(cfs_rq)->leaf_cfs_rq_list); 302 } 303 304 cfs_rq->on_list = 1; 305 /* We should have no load, but we need to update last_decay. */ 306 update_cfs_rq_blocked_load(cfs_rq, 0); 307 } 308 } 309 310 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 311 { 312 if (cfs_rq->on_list) { 313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 314 cfs_rq->on_list = 0; 315 } 316 } 317 318 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 319 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 321 322 /* Do the two (enqueued) entities belong to the same group ? */ 323 static inline int 324 is_same_group(struct sched_entity *se, struct sched_entity *pse) 325 { 326 if (se->cfs_rq == pse->cfs_rq) 327 return 1; 328 329 return 0; 330 } 331 332 static inline struct sched_entity *parent_entity(struct sched_entity *se) 333 { 334 return se->parent; 335 } 336 337 /* return depth at which a sched entity is present in the hierarchy */ 338 static inline int depth_se(struct sched_entity *se) 339 { 340 int depth = 0; 341 342 for_each_sched_entity(se) 343 depth++; 344 345 return depth; 346 } 347 348 static void 349 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 350 { 351 int se_depth, pse_depth; 352 353 /* 354 * preemption test can be made between sibling entities who are in the 355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 356 * both tasks until we find their ancestors who are siblings of common 357 * parent. 358 */ 359 360 /* First walk up until both entities are at same depth */ 361 se_depth = depth_se(*se); 362 pse_depth = depth_se(*pse); 363 364 while (se_depth > pse_depth) { 365 se_depth--; 366 *se = parent_entity(*se); 367 } 368 369 while (pse_depth > se_depth) { 370 pse_depth--; 371 *pse = parent_entity(*pse); 372 } 373 374 while (!is_same_group(*se, *pse)) { 375 *se = parent_entity(*se); 376 *pse = parent_entity(*pse); 377 } 378 } 379 380 #else /* !CONFIG_FAIR_GROUP_SCHED */ 381 382 static inline struct task_struct *task_of(struct sched_entity *se) 383 { 384 return container_of(se, struct task_struct, se); 385 } 386 387 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 388 { 389 return container_of(cfs_rq, struct rq, cfs); 390 } 391 392 #define entity_is_task(se) 1 393 394 #define for_each_sched_entity(se) \ 395 for (; se; se = NULL) 396 397 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 398 { 399 return &task_rq(p)->cfs; 400 } 401 402 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 403 { 404 struct task_struct *p = task_of(se); 405 struct rq *rq = task_rq(p); 406 407 return &rq->cfs; 408 } 409 410 /* runqueue "owned" by this group */ 411 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 412 { 413 return NULL; 414 } 415 416 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 417 { 418 } 419 420 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 421 { 422 } 423 424 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 426 427 static inline int 428 is_same_group(struct sched_entity *se, struct sched_entity *pse) 429 { 430 return 1; 431 } 432 433 static inline struct sched_entity *parent_entity(struct sched_entity *se) 434 { 435 return NULL; 436 } 437 438 static inline void 439 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 440 { 441 } 442 443 #endif /* CONFIG_FAIR_GROUP_SCHED */ 444 445 static __always_inline 446 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec); 447 448 /************************************************************** 449 * Scheduling class tree data structure manipulation methods: 450 */ 451 452 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 453 { 454 s64 delta = (s64)(vruntime - max_vruntime); 455 if (delta > 0) 456 max_vruntime = vruntime; 457 458 return max_vruntime; 459 } 460 461 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 462 { 463 s64 delta = (s64)(vruntime - min_vruntime); 464 if (delta < 0) 465 min_vruntime = vruntime; 466 467 return min_vruntime; 468 } 469 470 static inline int entity_before(struct sched_entity *a, 471 struct sched_entity *b) 472 { 473 return (s64)(a->vruntime - b->vruntime) < 0; 474 } 475 476 static void update_min_vruntime(struct cfs_rq *cfs_rq) 477 { 478 u64 vruntime = cfs_rq->min_vruntime; 479 480 if (cfs_rq->curr) 481 vruntime = cfs_rq->curr->vruntime; 482 483 if (cfs_rq->rb_leftmost) { 484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 485 struct sched_entity, 486 run_node); 487 488 if (!cfs_rq->curr) 489 vruntime = se->vruntime; 490 else 491 vruntime = min_vruntime(vruntime, se->vruntime); 492 } 493 494 /* ensure we never gain time by being placed backwards. */ 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 496 #ifndef CONFIG_64BIT 497 smp_wmb(); 498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 499 #endif 500 } 501 502 /* 503 * Enqueue an entity into the rb-tree: 504 */ 505 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 506 { 507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 508 struct rb_node *parent = NULL; 509 struct sched_entity *entry; 510 int leftmost = 1; 511 512 /* 513 * Find the right place in the rbtree: 514 */ 515 while (*link) { 516 parent = *link; 517 entry = rb_entry(parent, struct sched_entity, run_node); 518 /* 519 * We dont care about collisions. Nodes with 520 * the same key stay together. 521 */ 522 if (entity_before(se, entry)) { 523 link = &parent->rb_left; 524 } else { 525 link = &parent->rb_right; 526 leftmost = 0; 527 } 528 } 529 530 /* 531 * Maintain a cache of leftmost tree entries (it is frequently 532 * used): 533 */ 534 if (leftmost) 535 cfs_rq->rb_leftmost = &se->run_node; 536 537 rb_link_node(&se->run_node, parent, link); 538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 539 } 540 541 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 542 { 543 if (cfs_rq->rb_leftmost == &se->run_node) { 544 struct rb_node *next_node; 545 546 next_node = rb_next(&se->run_node); 547 cfs_rq->rb_leftmost = next_node; 548 } 549 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 551 } 552 553 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 554 { 555 struct rb_node *left = cfs_rq->rb_leftmost; 556 557 if (!left) 558 return NULL; 559 560 return rb_entry(left, struct sched_entity, run_node); 561 } 562 563 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 564 { 565 struct rb_node *next = rb_next(&se->run_node); 566 567 if (!next) 568 return NULL; 569 570 return rb_entry(next, struct sched_entity, run_node); 571 } 572 573 #ifdef CONFIG_SCHED_DEBUG 574 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 575 { 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 577 578 if (!last) 579 return NULL; 580 581 return rb_entry(last, struct sched_entity, run_node); 582 } 583 584 /************************************************************** 585 * Scheduling class statistics methods: 586 */ 587 588 int sched_proc_update_handler(struct ctl_table *table, int write, 589 void __user *buffer, size_t *lenp, 590 loff_t *ppos) 591 { 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 593 int factor = get_update_sysctl_factor(); 594 595 if (ret || !write) 596 return ret; 597 598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 599 sysctl_sched_min_granularity); 600 601 #define WRT_SYSCTL(name) \ 602 (normalized_sysctl_##name = sysctl_##name / (factor)) 603 WRT_SYSCTL(sched_min_granularity); 604 WRT_SYSCTL(sched_latency); 605 WRT_SYSCTL(sched_wakeup_granularity); 606 #undef WRT_SYSCTL 607 608 return 0; 609 } 610 #endif 611 612 /* 613 * delta /= w 614 */ 615 static inline unsigned long 616 calc_delta_fair(unsigned long delta, struct sched_entity *se) 617 { 618 if (unlikely(se->load.weight != NICE_0_LOAD)) 619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load); 620 621 return delta; 622 } 623 624 /* 625 * The idea is to set a period in which each task runs once. 626 * 627 * When there are too many tasks (sched_nr_latency) we have to stretch 628 * this period because otherwise the slices get too small. 629 * 630 * p = (nr <= nl) ? l : l*nr/nl 631 */ 632 static u64 __sched_period(unsigned long nr_running) 633 { 634 u64 period = sysctl_sched_latency; 635 unsigned long nr_latency = sched_nr_latency; 636 637 if (unlikely(nr_running > nr_latency)) { 638 period = sysctl_sched_min_granularity; 639 period *= nr_running; 640 } 641 642 return period; 643 } 644 645 /* 646 * We calculate the wall-time slice from the period by taking a part 647 * proportional to the weight. 648 * 649 * s = p*P[w/rw] 650 */ 651 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 652 { 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 654 655 for_each_sched_entity(se) { 656 struct load_weight *load; 657 struct load_weight lw; 658 659 cfs_rq = cfs_rq_of(se); 660 load = &cfs_rq->load; 661 662 if (unlikely(!se->on_rq)) { 663 lw = cfs_rq->load; 664 665 update_load_add(&lw, se->load.weight); 666 load = &lw; 667 } 668 slice = calc_delta_mine(slice, se->load.weight, load); 669 } 670 return slice; 671 } 672 673 /* 674 * We calculate the vruntime slice of a to-be-inserted task. 675 * 676 * vs = s/w 677 */ 678 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 679 { 680 return calc_delta_fair(sched_slice(cfs_rq, se), se); 681 } 682 683 #ifdef CONFIG_SMP 684 static inline void __update_task_entity_contrib(struct sched_entity *se); 685 686 /* Give new task start runnable values to heavy its load in infant time */ 687 void init_task_runnable_average(struct task_struct *p) 688 { 689 u32 slice; 690 691 p->se.avg.decay_count = 0; 692 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10; 693 p->se.avg.runnable_avg_sum = slice; 694 p->se.avg.runnable_avg_period = slice; 695 __update_task_entity_contrib(&p->se); 696 } 697 #else 698 void init_task_runnable_average(struct task_struct *p) 699 { 700 } 701 #endif 702 703 /* 704 * Update the current task's runtime statistics. Skip current tasks that 705 * are not in our scheduling class. 706 */ 707 static inline void 708 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, 709 unsigned long delta_exec) 710 { 711 unsigned long delta_exec_weighted; 712 713 schedstat_set(curr->statistics.exec_max, 714 max((u64)delta_exec, curr->statistics.exec_max)); 715 716 curr->sum_exec_runtime += delta_exec; 717 schedstat_add(cfs_rq, exec_clock, delta_exec); 718 delta_exec_weighted = calc_delta_fair(delta_exec, curr); 719 720 curr->vruntime += delta_exec_weighted; 721 update_min_vruntime(cfs_rq); 722 } 723 724 static void update_curr(struct cfs_rq *cfs_rq) 725 { 726 struct sched_entity *curr = cfs_rq->curr; 727 u64 now = rq_clock_task(rq_of(cfs_rq)); 728 unsigned long delta_exec; 729 730 if (unlikely(!curr)) 731 return; 732 733 /* 734 * Get the amount of time the current task was running 735 * since the last time we changed load (this cannot 736 * overflow on 32 bits): 737 */ 738 delta_exec = (unsigned long)(now - curr->exec_start); 739 if (!delta_exec) 740 return; 741 742 __update_curr(cfs_rq, curr, delta_exec); 743 curr->exec_start = now; 744 745 if (entity_is_task(curr)) { 746 struct task_struct *curtask = task_of(curr); 747 748 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 749 cpuacct_charge(curtask, delta_exec); 750 account_group_exec_runtime(curtask, delta_exec); 751 } 752 753 account_cfs_rq_runtime(cfs_rq, delta_exec); 754 } 755 756 static inline void 757 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 758 { 759 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq))); 760 } 761 762 /* 763 * Task is being enqueued - update stats: 764 */ 765 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 766 { 767 /* 768 * Are we enqueueing a waiting task? (for current tasks 769 * a dequeue/enqueue event is a NOP) 770 */ 771 if (se != cfs_rq->curr) 772 update_stats_wait_start(cfs_rq, se); 773 } 774 775 static void 776 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 777 { 778 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, 779 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start)); 780 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); 781 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + 782 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 783 #ifdef CONFIG_SCHEDSTATS 784 if (entity_is_task(se)) { 785 trace_sched_stat_wait(task_of(se), 786 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 787 } 788 #endif 789 schedstat_set(se->statistics.wait_start, 0); 790 } 791 792 static inline void 793 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 794 { 795 /* 796 * Mark the end of the wait period if dequeueing a 797 * waiting task: 798 */ 799 if (se != cfs_rq->curr) 800 update_stats_wait_end(cfs_rq, se); 801 } 802 803 /* 804 * We are picking a new current task - update its stats: 805 */ 806 static inline void 807 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 808 { 809 /* 810 * We are starting a new run period: 811 */ 812 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 813 } 814 815 /************************************************** 816 * Scheduling class queueing methods: 817 */ 818 819 #ifdef CONFIG_NUMA_BALANCING 820 /* 821 * numa task sample period in ms 822 */ 823 unsigned int sysctl_numa_balancing_scan_period_min = 100; 824 unsigned int sysctl_numa_balancing_scan_period_max = 100*50; 825 unsigned int sysctl_numa_balancing_scan_period_reset = 100*600; 826 827 /* Portion of address space to scan in MB */ 828 unsigned int sysctl_numa_balancing_scan_size = 256; 829 830 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 831 unsigned int sysctl_numa_balancing_scan_delay = 1000; 832 833 static void task_numa_placement(struct task_struct *p) 834 { 835 int seq; 836 837 if (!p->mm) /* for example, ksmd faulting in a user's mm */ 838 return; 839 seq = ACCESS_ONCE(p->mm->numa_scan_seq); 840 if (p->numa_scan_seq == seq) 841 return; 842 p->numa_scan_seq = seq; 843 844 /* FIXME: Scheduling placement policy hints go here */ 845 } 846 847 /* 848 * Got a PROT_NONE fault for a page on @node. 849 */ 850 void task_numa_fault(int node, int pages, bool migrated) 851 { 852 struct task_struct *p = current; 853 854 if (!numabalancing_enabled) 855 return; 856 857 /* FIXME: Allocate task-specific structure for placement policy here */ 858 859 /* 860 * If pages are properly placed (did not migrate) then scan slower. 861 * This is reset periodically in case of phase changes 862 */ 863 if (!migrated) 864 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max, 865 p->numa_scan_period + jiffies_to_msecs(10)); 866 867 task_numa_placement(p); 868 } 869 870 static void reset_ptenuma_scan(struct task_struct *p) 871 { 872 ACCESS_ONCE(p->mm->numa_scan_seq)++; 873 p->mm->numa_scan_offset = 0; 874 } 875 876 /* 877 * The expensive part of numa migration is done from task_work context. 878 * Triggered from task_tick_numa(). 879 */ 880 void task_numa_work(struct callback_head *work) 881 { 882 unsigned long migrate, next_scan, now = jiffies; 883 struct task_struct *p = current; 884 struct mm_struct *mm = p->mm; 885 struct vm_area_struct *vma; 886 unsigned long start, end; 887 long pages; 888 889 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 890 891 work->next = work; /* protect against double add */ 892 /* 893 * Who cares about NUMA placement when they're dying. 894 * 895 * NOTE: make sure not to dereference p->mm before this check, 896 * exit_task_work() happens _after_ exit_mm() so we could be called 897 * without p->mm even though we still had it when we enqueued this 898 * work. 899 */ 900 if (p->flags & PF_EXITING) 901 return; 902 903 /* 904 * We do not care about task placement until a task runs on a node 905 * other than the first one used by the address space. This is 906 * largely because migrations are driven by what CPU the task 907 * is running on. If it's never scheduled on another node, it'll 908 * not migrate so why bother trapping the fault. 909 */ 910 if (mm->first_nid == NUMA_PTE_SCAN_INIT) 911 mm->first_nid = numa_node_id(); 912 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) { 913 /* Are we running on a new node yet? */ 914 if (numa_node_id() == mm->first_nid && 915 !sched_feat_numa(NUMA_FORCE)) 916 return; 917 918 mm->first_nid = NUMA_PTE_SCAN_ACTIVE; 919 } 920 921 /* 922 * Reset the scan period if enough time has gone by. Objective is that 923 * scanning will be reduced if pages are properly placed. As tasks 924 * can enter different phases this needs to be re-examined. Lacking 925 * proper tracking of reference behaviour, this blunt hammer is used. 926 */ 927 migrate = mm->numa_next_reset; 928 if (time_after(now, migrate)) { 929 p->numa_scan_period = sysctl_numa_balancing_scan_period_min; 930 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset); 931 xchg(&mm->numa_next_reset, next_scan); 932 } 933 934 /* 935 * Enforce maximal scan/migration frequency.. 936 */ 937 migrate = mm->numa_next_scan; 938 if (time_before(now, migrate)) 939 return; 940 941 if (p->numa_scan_period == 0) 942 p->numa_scan_period = sysctl_numa_balancing_scan_period_min; 943 944 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 945 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 946 return; 947 948 /* 949 * Do not set pte_numa if the current running node is rate-limited. 950 * This loses statistics on the fault but if we are unwilling to 951 * migrate to this node, it is less likely we can do useful work 952 */ 953 if (migrate_ratelimited(numa_node_id())) 954 return; 955 956 start = mm->numa_scan_offset; 957 pages = sysctl_numa_balancing_scan_size; 958 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 959 if (!pages) 960 return; 961 962 down_read(&mm->mmap_sem); 963 vma = find_vma(mm, start); 964 if (!vma) { 965 reset_ptenuma_scan(p); 966 start = 0; 967 vma = mm->mmap; 968 } 969 for (; vma; vma = vma->vm_next) { 970 if (!vma_migratable(vma)) 971 continue; 972 973 /* Skip small VMAs. They are not likely to be of relevance */ 974 if (vma->vm_end - vma->vm_start < HPAGE_SIZE) 975 continue; 976 977 do { 978 start = max(start, vma->vm_start); 979 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 980 end = min(end, vma->vm_end); 981 pages -= change_prot_numa(vma, start, end); 982 983 start = end; 984 if (pages <= 0) 985 goto out; 986 } while (end != vma->vm_end); 987 } 988 989 out: 990 /* 991 * It is possible to reach the end of the VMA list but the last few VMAs are 992 * not guaranteed to the vma_migratable. If they are not, we would find the 993 * !migratable VMA on the next scan but not reset the scanner to the start 994 * so check it now. 995 */ 996 if (vma) 997 mm->numa_scan_offset = start; 998 else 999 reset_ptenuma_scan(p); 1000 up_read(&mm->mmap_sem); 1001 } 1002 1003 /* 1004 * Drive the periodic memory faults.. 1005 */ 1006 void task_tick_numa(struct rq *rq, struct task_struct *curr) 1007 { 1008 struct callback_head *work = &curr->numa_work; 1009 u64 period, now; 1010 1011 /* 1012 * We don't care about NUMA placement if we don't have memory. 1013 */ 1014 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 1015 return; 1016 1017 /* 1018 * Using runtime rather than walltime has the dual advantage that 1019 * we (mostly) drive the selection from busy threads and that the 1020 * task needs to have done some actual work before we bother with 1021 * NUMA placement. 1022 */ 1023 now = curr->se.sum_exec_runtime; 1024 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 1025 1026 if (now - curr->node_stamp > period) { 1027 if (!curr->node_stamp) 1028 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min; 1029 curr->node_stamp = now; 1030 1031 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 1032 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 1033 task_work_add(curr, work, true); 1034 } 1035 } 1036 } 1037 #else 1038 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 1039 { 1040 } 1041 #endif /* CONFIG_NUMA_BALANCING */ 1042 1043 static void 1044 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 1045 { 1046 update_load_add(&cfs_rq->load, se->load.weight); 1047 if (!parent_entity(se)) 1048 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 1049 #ifdef CONFIG_SMP 1050 if (entity_is_task(se)) 1051 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks); 1052 #endif 1053 cfs_rq->nr_running++; 1054 } 1055 1056 static void 1057 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 1058 { 1059 update_load_sub(&cfs_rq->load, se->load.weight); 1060 if (!parent_entity(se)) 1061 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 1062 if (entity_is_task(se)) 1063 list_del_init(&se->group_node); 1064 cfs_rq->nr_running--; 1065 } 1066 1067 #ifdef CONFIG_FAIR_GROUP_SCHED 1068 # ifdef CONFIG_SMP 1069 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) 1070 { 1071 long tg_weight; 1072 1073 /* 1074 * Use this CPU's actual weight instead of the last load_contribution 1075 * to gain a more accurate current total weight. See 1076 * update_cfs_rq_load_contribution(). 1077 */ 1078 tg_weight = atomic_long_read(&tg->load_avg); 1079 tg_weight -= cfs_rq->tg_load_contrib; 1080 tg_weight += cfs_rq->load.weight; 1081 1082 return tg_weight; 1083 } 1084 1085 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 1086 { 1087 long tg_weight, load, shares; 1088 1089 tg_weight = calc_tg_weight(tg, cfs_rq); 1090 load = cfs_rq->load.weight; 1091 1092 shares = (tg->shares * load); 1093 if (tg_weight) 1094 shares /= tg_weight; 1095 1096 if (shares < MIN_SHARES) 1097 shares = MIN_SHARES; 1098 if (shares > tg->shares) 1099 shares = tg->shares; 1100 1101 return shares; 1102 } 1103 # else /* CONFIG_SMP */ 1104 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 1105 { 1106 return tg->shares; 1107 } 1108 # endif /* CONFIG_SMP */ 1109 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 1110 unsigned long weight) 1111 { 1112 if (se->on_rq) { 1113 /* commit outstanding execution time */ 1114 if (cfs_rq->curr == se) 1115 update_curr(cfs_rq); 1116 account_entity_dequeue(cfs_rq, se); 1117 } 1118 1119 update_load_set(&se->load, weight); 1120 1121 if (se->on_rq) 1122 account_entity_enqueue(cfs_rq, se); 1123 } 1124 1125 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 1126 1127 static void update_cfs_shares(struct cfs_rq *cfs_rq) 1128 { 1129 struct task_group *tg; 1130 struct sched_entity *se; 1131 long shares; 1132 1133 tg = cfs_rq->tg; 1134 se = tg->se[cpu_of(rq_of(cfs_rq))]; 1135 if (!se || throttled_hierarchy(cfs_rq)) 1136 return; 1137 #ifndef CONFIG_SMP 1138 if (likely(se->load.weight == tg->shares)) 1139 return; 1140 #endif 1141 shares = calc_cfs_shares(cfs_rq, tg); 1142 1143 reweight_entity(cfs_rq_of(se), se, shares); 1144 } 1145 #else /* CONFIG_FAIR_GROUP_SCHED */ 1146 static inline void update_cfs_shares(struct cfs_rq *cfs_rq) 1147 { 1148 } 1149 #endif /* CONFIG_FAIR_GROUP_SCHED */ 1150 1151 #ifdef CONFIG_SMP 1152 /* 1153 * We choose a half-life close to 1 scheduling period. 1154 * Note: The tables below are dependent on this value. 1155 */ 1156 #define LOAD_AVG_PERIOD 32 1157 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ 1158 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */ 1159 1160 /* Precomputed fixed inverse multiplies for multiplication by y^n */ 1161 static const u32 runnable_avg_yN_inv[] = { 1162 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, 1163 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, 1164 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, 1165 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, 1166 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, 1167 0x85aac367, 0x82cd8698, 1168 }; 1169 1170 /* 1171 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent 1172 * over-estimates when re-combining. 1173 */ 1174 static const u32 runnable_avg_yN_sum[] = { 1175 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, 1176 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, 1177 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, 1178 }; 1179 1180 /* 1181 * Approximate: 1182 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 1183 */ 1184 static __always_inline u64 decay_load(u64 val, u64 n) 1185 { 1186 unsigned int local_n; 1187 1188 if (!n) 1189 return val; 1190 else if (unlikely(n > LOAD_AVG_PERIOD * 63)) 1191 return 0; 1192 1193 /* after bounds checking we can collapse to 32-bit */ 1194 local_n = n; 1195 1196 /* 1197 * As y^PERIOD = 1/2, we can combine 1198 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD) 1199 * With a look-up table which covers k^n (n<PERIOD) 1200 * 1201 * To achieve constant time decay_load. 1202 */ 1203 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 1204 val >>= local_n / LOAD_AVG_PERIOD; 1205 local_n %= LOAD_AVG_PERIOD; 1206 } 1207 1208 val *= runnable_avg_yN_inv[local_n]; 1209 /* We don't use SRR here since we always want to round down. */ 1210 return val >> 32; 1211 } 1212 1213 /* 1214 * For updates fully spanning n periods, the contribution to runnable 1215 * average will be: \Sum 1024*y^n 1216 * 1217 * We can compute this reasonably efficiently by combining: 1218 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD} 1219 */ 1220 static u32 __compute_runnable_contrib(u64 n) 1221 { 1222 u32 contrib = 0; 1223 1224 if (likely(n <= LOAD_AVG_PERIOD)) 1225 return runnable_avg_yN_sum[n]; 1226 else if (unlikely(n >= LOAD_AVG_MAX_N)) 1227 return LOAD_AVG_MAX; 1228 1229 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */ 1230 do { 1231 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */ 1232 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD]; 1233 1234 n -= LOAD_AVG_PERIOD; 1235 } while (n > LOAD_AVG_PERIOD); 1236 1237 contrib = decay_load(contrib, n); 1238 return contrib + runnable_avg_yN_sum[n]; 1239 } 1240 1241 /* 1242 * We can represent the historical contribution to runnable average as the 1243 * coefficients of a geometric series. To do this we sub-divide our runnable 1244 * history into segments of approximately 1ms (1024us); label the segment that 1245 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 1246 * 1247 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 1248 * p0 p1 p2 1249 * (now) (~1ms ago) (~2ms ago) 1250 * 1251 * Let u_i denote the fraction of p_i that the entity was runnable. 1252 * 1253 * We then designate the fractions u_i as our co-efficients, yielding the 1254 * following representation of historical load: 1255 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 1256 * 1257 * We choose y based on the with of a reasonably scheduling period, fixing: 1258 * y^32 = 0.5 1259 * 1260 * This means that the contribution to load ~32ms ago (u_32) will be weighted 1261 * approximately half as much as the contribution to load within the last ms 1262 * (u_0). 1263 * 1264 * When a period "rolls over" and we have new u_0`, multiplying the previous 1265 * sum again by y is sufficient to update: 1266 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 1267 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 1268 */ 1269 static __always_inline int __update_entity_runnable_avg(u64 now, 1270 struct sched_avg *sa, 1271 int runnable) 1272 { 1273 u64 delta, periods; 1274 u32 runnable_contrib; 1275 int delta_w, decayed = 0; 1276 1277 delta = now - sa->last_runnable_update; 1278 /* 1279 * This should only happen when time goes backwards, which it 1280 * unfortunately does during sched clock init when we swap over to TSC. 1281 */ 1282 if ((s64)delta < 0) { 1283 sa->last_runnable_update = now; 1284 return 0; 1285 } 1286 1287 /* 1288 * Use 1024ns as the unit of measurement since it's a reasonable 1289 * approximation of 1us and fast to compute. 1290 */ 1291 delta >>= 10; 1292 if (!delta) 1293 return 0; 1294 sa->last_runnable_update = now; 1295 1296 /* delta_w is the amount already accumulated against our next period */ 1297 delta_w = sa->runnable_avg_period % 1024; 1298 if (delta + delta_w >= 1024) { 1299 /* period roll-over */ 1300 decayed = 1; 1301 1302 /* 1303 * Now that we know we're crossing a period boundary, figure 1304 * out how much from delta we need to complete the current 1305 * period and accrue it. 1306 */ 1307 delta_w = 1024 - delta_w; 1308 if (runnable) 1309 sa->runnable_avg_sum += delta_w; 1310 sa->runnable_avg_period += delta_w; 1311 1312 delta -= delta_w; 1313 1314 /* Figure out how many additional periods this update spans */ 1315 periods = delta / 1024; 1316 delta %= 1024; 1317 1318 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum, 1319 periods + 1); 1320 sa->runnable_avg_period = decay_load(sa->runnable_avg_period, 1321 periods + 1); 1322 1323 /* Efficiently calculate \sum (1..n_period) 1024*y^i */ 1324 runnable_contrib = __compute_runnable_contrib(periods); 1325 if (runnable) 1326 sa->runnable_avg_sum += runnable_contrib; 1327 sa->runnable_avg_period += runnable_contrib; 1328 } 1329 1330 /* Remainder of delta accrued against u_0` */ 1331 if (runnable) 1332 sa->runnable_avg_sum += delta; 1333 sa->runnable_avg_period += delta; 1334 1335 return decayed; 1336 } 1337 1338 /* Synchronize an entity's decay with its parenting cfs_rq.*/ 1339 static inline u64 __synchronize_entity_decay(struct sched_entity *se) 1340 { 1341 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1342 u64 decays = atomic64_read(&cfs_rq->decay_counter); 1343 1344 decays -= se->avg.decay_count; 1345 if (!decays) 1346 return 0; 1347 1348 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays); 1349 se->avg.decay_count = 0; 1350 1351 return decays; 1352 } 1353 1354 #ifdef CONFIG_FAIR_GROUP_SCHED 1355 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 1356 int force_update) 1357 { 1358 struct task_group *tg = cfs_rq->tg; 1359 long tg_contrib; 1360 1361 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg; 1362 tg_contrib -= cfs_rq->tg_load_contrib; 1363 1364 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) { 1365 atomic_long_add(tg_contrib, &tg->load_avg); 1366 cfs_rq->tg_load_contrib += tg_contrib; 1367 } 1368 } 1369 1370 /* 1371 * Aggregate cfs_rq runnable averages into an equivalent task_group 1372 * representation for computing load contributions. 1373 */ 1374 static inline void __update_tg_runnable_avg(struct sched_avg *sa, 1375 struct cfs_rq *cfs_rq) 1376 { 1377 struct task_group *tg = cfs_rq->tg; 1378 long contrib; 1379 1380 /* The fraction of a cpu used by this cfs_rq */ 1381 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT, 1382 sa->runnable_avg_period + 1); 1383 contrib -= cfs_rq->tg_runnable_contrib; 1384 1385 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) { 1386 atomic_add(contrib, &tg->runnable_avg); 1387 cfs_rq->tg_runnable_contrib += contrib; 1388 } 1389 } 1390 1391 static inline void __update_group_entity_contrib(struct sched_entity *se) 1392 { 1393 struct cfs_rq *cfs_rq = group_cfs_rq(se); 1394 struct task_group *tg = cfs_rq->tg; 1395 int runnable_avg; 1396 1397 u64 contrib; 1398 1399 contrib = cfs_rq->tg_load_contrib * tg->shares; 1400 se->avg.load_avg_contrib = div_u64(contrib, 1401 atomic_long_read(&tg->load_avg) + 1); 1402 1403 /* 1404 * For group entities we need to compute a correction term in the case 1405 * that they are consuming <1 cpu so that we would contribute the same 1406 * load as a task of equal weight. 1407 * 1408 * Explicitly co-ordinating this measurement would be expensive, but 1409 * fortunately the sum of each cpus contribution forms a usable 1410 * lower-bound on the true value. 1411 * 1412 * Consider the aggregate of 2 contributions. Either they are disjoint 1413 * (and the sum represents true value) or they are disjoint and we are 1414 * understating by the aggregate of their overlap. 1415 * 1416 * Extending this to N cpus, for a given overlap, the maximum amount we 1417 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of 1418 * cpus that overlap for this interval and w_i is the interval width. 1419 * 1420 * On a small machine; the first term is well-bounded which bounds the 1421 * total error since w_i is a subset of the period. Whereas on a 1422 * larger machine, while this first term can be larger, if w_i is the 1423 * of consequential size guaranteed to see n_i*w_i quickly converge to 1424 * our upper bound of 1-cpu. 1425 */ 1426 runnable_avg = atomic_read(&tg->runnable_avg); 1427 if (runnable_avg < NICE_0_LOAD) { 1428 se->avg.load_avg_contrib *= runnable_avg; 1429 se->avg.load_avg_contrib >>= NICE_0_SHIFT; 1430 } 1431 } 1432 #else 1433 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 1434 int force_update) {} 1435 static inline void __update_tg_runnable_avg(struct sched_avg *sa, 1436 struct cfs_rq *cfs_rq) {} 1437 static inline void __update_group_entity_contrib(struct sched_entity *se) {} 1438 #endif 1439 1440 static inline void __update_task_entity_contrib(struct sched_entity *se) 1441 { 1442 u32 contrib; 1443 1444 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */ 1445 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight); 1446 contrib /= (se->avg.runnable_avg_period + 1); 1447 se->avg.load_avg_contrib = scale_load(contrib); 1448 } 1449 1450 /* Compute the current contribution to load_avg by se, return any delta */ 1451 static long __update_entity_load_avg_contrib(struct sched_entity *se) 1452 { 1453 long old_contrib = se->avg.load_avg_contrib; 1454 1455 if (entity_is_task(se)) { 1456 __update_task_entity_contrib(se); 1457 } else { 1458 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se)); 1459 __update_group_entity_contrib(se); 1460 } 1461 1462 return se->avg.load_avg_contrib - old_contrib; 1463 } 1464 1465 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq, 1466 long load_contrib) 1467 { 1468 if (likely(load_contrib < cfs_rq->blocked_load_avg)) 1469 cfs_rq->blocked_load_avg -= load_contrib; 1470 else 1471 cfs_rq->blocked_load_avg = 0; 1472 } 1473 1474 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 1475 1476 /* Update a sched_entity's runnable average */ 1477 static inline void update_entity_load_avg(struct sched_entity *se, 1478 int update_cfs_rq) 1479 { 1480 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1481 long contrib_delta; 1482 u64 now; 1483 1484 /* 1485 * For a group entity we need to use their owned cfs_rq_clock_task() in 1486 * case they are the parent of a throttled hierarchy. 1487 */ 1488 if (entity_is_task(se)) 1489 now = cfs_rq_clock_task(cfs_rq); 1490 else 1491 now = cfs_rq_clock_task(group_cfs_rq(se)); 1492 1493 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq)) 1494 return; 1495 1496 contrib_delta = __update_entity_load_avg_contrib(se); 1497 1498 if (!update_cfs_rq) 1499 return; 1500 1501 if (se->on_rq) 1502 cfs_rq->runnable_load_avg += contrib_delta; 1503 else 1504 subtract_blocked_load_contrib(cfs_rq, -contrib_delta); 1505 } 1506 1507 /* 1508 * Decay the load contributed by all blocked children and account this so that 1509 * their contribution may appropriately discounted when they wake up. 1510 */ 1511 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update) 1512 { 1513 u64 now = cfs_rq_clock_task(cfs_rq) >> 20; 1514 u64 decays; 1515 1516 decays = now - cfs_rq->last_decay; 1517 if (!decays && !force_update) 1518 return; 1519 1520 if (atomic_long_read(&cfs_rq->removed_load)) { 1521 unsigned long removed_load; 1522 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0); 1523 subtract_blocked_load_contrib(cfs_rq, removed_load); 1524 } 1525 1526 if (decays) { 1527 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg, 1528 decays); 1529 atomic64_add(decays, &cfs_rq->decay_counter); 1530 cfs_rq->last_decay = now; 1531 } 1532 1533 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update); 1534 } 1535 1536 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) 1537 { 1538 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable); 1539 __update_tg_runnable_avg(&rq->avg, &rq->cfs); 1540 } 1541 1542 /* Add the load generated by se into cfs_rq's child load-average */ 1543 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 1544 struct sched_entity *se, 1545 int wakeup) 1546 { 1547 /* 1548 * We track migrations using entity decay_count <= 0, on a wake-up 1549 * migration we use a negative decay count to track the remote decays 1550 * accumulated while sleeping. 1551 * 1552 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they 1553 * are seen by enqueue_entity_load_avg() as a migration with an already 1554 * constructed load_avg_contrib. 1555 */ 1556 if (unlikely(se->avg.decay_count <= 0)) { 1557 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq)); 1558 if (se->avg.decay_count) { 1559 /* 1560 * In a wake-up migration we have to approximate the 1561 * time sleeping. This is because we can't synchronize 1562 * clock_task between the two cpus, and it is not 1563 * guaranteed to be read-safe. Instead, we can 1564 * approximate this using our carried decays, which are 1565 * explicitly atomically readable. 1566 */ 1567 se->avg.last_runnable_update -= (-se->avg.decay_count) 1568 << 20; 1569 update_entity_load_avg(se, 0); 1570 /* Indicate that we're now synchronized and on-rq */ 1571 se->avg.decay_count = 0; 1572 } 1573 wakeup = 0; 1574 } else { 1575 /* 1576 * Task re-woke on same cpu (or else migrate_task_rq_fair() 1577 * would have made count negative); we must be careful to avoid 1578 * double-accounting blocked time after synchronizing decays. 1579 */ 1580 se->avg.last_runnable_update += __synchronize_entity_decay(se) 1581 << 20; 1582 } 1583 1584 /* migrated tasks did not contribute to our blocked load */ 1585 if (wakeup) { 1586 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); 1587 update_entity_load_avg(se, 0); 1588 } 1589 1590 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib; 1591 /* we force update consideration on load-balancer moves */ 1592 update_cfs_rq_blocked_load(cfs_rq, !wakeup); 1593 } 1594 1595 /* 1596 * Remove se's load from this cfs_rq child load-average, if the entity is 1597 * transitioning to a blocked state we track its projected decay using 1598 * blocked_load_avg. 1599 */ 1600 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 1601 struct sched_entity *se, 1602 int sleep) 1603 { 1604 update_entity_load_avg(se, 1); 1605 /* we force update consideration on load-balancer moves */ 1606 update_cfs_rq_blocked_load(cfs_rq, !sleep); 1607 1608 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib; 1609 if (sleep) { 1610 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; 1611 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 1612 } /* migrations, e.g. sleep=0 leave decay_count == 0 */ 1613 } 1614 1615 /* 1616 * Update the rq's load with the elapsed running time before entering 1617 * idle. if the last scheduled task is not a CFS task, idle_enter will 1618 * be the only way to update the runnable statistic. 1619 */ 1620 void idle_enter_fair(struct rq *this_rq) 1621 { 1622 update_rq_runnable_avg(this_rq, 1); 1623 } 1624 1625 /* 1626 * Update the rq's load with the elapsed idle time before a task is 1627 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will 1628 * be the only way to update the runnable statistic. 1629 */ 1630 void idle_exit_fair(struct rq *this_rq) 1631 { 1632 update_rq_runnable_avg(this_rq, 0); 1633 } 1634 1635 #else 1636 static inline void update_entity_load_avg(struct sched_entity *se, 1637 int update_cfs_rq) {} 1638 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} 1639 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 1640 struct sched_entity *se, 1641 int wakeup) {} 1642 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 1643 struct sched_entity *se, 1644 int sleep) {} 1645 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 1646 int force_update) {} 1647 #endif 1648 1649 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 1650 { 1651 #ifdef CONFIG_SCHEDSTATS 1652 struct task_struct *tsk = NULL; 1653 1654 if (entity_is_task(se)) 1655 tsk = task_of(se); 1656 1657 if (se->statistics.sleep_start) { 1658 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start; 1659 1660 if ((s64)delta < 0) 1661 delta = 0; 1662 1663 if (unlikely(delta > se->statistics.sleep_max)) 1664 se->statistics.sleep_max = delta; 1665 1666 se->statistics.sleep_start = 0; 1667 se->statistics.sum_sleep_runtime += delta; 1668 1669 if (tsk) { 1670 account_scheduler_latency(tsk, delta >> 10, 1); 1671 trace_sched_stat_sleep(tsk, delta); 1672 } 1673 } 1674 if (se->statistics.block_start) { 1675 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start; 1676 1677 if ((s64)delta < 0) 1678 delta = 0; 1679 1680 if (unlikely(delta > se->statistics.block_max)) 1681 se->statistics.block_max = delta; 1682 1683 se->statistics.block_start = 0; 1684 se->statistics.sum_sleep_runtime += delta; 1685 1686 if (tsk) { 1687 if (tsk->in_iowait) { 1688 se->statistics.iowait_sum += delta; 1689 se->statistics.iowait_count++; 1690 trace_sched_stat_iowait(tsk, delta); 1691 } 1692 1693 trace_sched_stat_blocked(tsk, delta); 1694 1695 /* 1696 * Blocking time is in units of nanosecs, so shift by 1697 * 20 to get a milliseconds-range estimation of the 1698 * amount of time that the task spent sleeping: 1699 */ 1700 if (unlikely(prof_on == SLEEP_PROFILING)) { 1701 profile_hits(SLEEP_PROFILING, 1702 (void *)get_wchan(tsk), 1703 delta >> 20); 1704 } 1705 account_scheduler_latency(tsk, delta >> 10, 0); 1706 } 1707 } 1708 #endif 1709 } 1710 1711 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 1712 { 1713 #ifdef CONFIG_SCHED_DEBUG 1714 s64 d = se->vruntime - cfs_rq->min_vruntime; 1715 1716 if (d < 0) 1717 d = -d; 1718 1719 if (d > 3*sysctl_sched_latency) 1720 schedstat_inc(cfs_rq, nr_spread_over); 1721 #endif 1722 } 1723 1724 static void 1725 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 1726 { 1727 u64 vruntime = cfs_rq->min_vruntime; 1728 1729 /* 1730 * The 'current' period is already promised to the current tasks, 1731 * however the extra weight of the new task will slow them down a 1732 * little, place the new task so that it fits in the slot that 1733 * stays open at the end. 1734 */ 1735 if (initial && sched_feat(START_DEBIT)) 1736 vruntime += sched_vslice(cfs_rq, se); 1737 1738 /* sleeps up to a single latency don't count. */ 1739 if (!initial) { 1740 unsigned long thresh = sysctl_sched_latency; 1741 1742 /* 1743 * Halve their sleep time's effect, to allow 1744 * for a gentler effect of sleepers: 1745 */ 1746 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 1747 thresh >>= 1; 1748 1749 vruntime -= thresh; 1750 } 1751 1752 /* ensure we never gain time by being placed backwards. */ 1753 se->vruntime = max_vruntime(se->vruntime, vruntime); 1754 } 1755 1756 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 1757 1758 static void 1759 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1760 { 1761 /* 1762 * Update the normalized vruntime before updating min_vruntime 1763 * through calling update_curr(). 1764 */ 1765 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) 1766 se->vruntime += cfs_rq->min_vruntime; 1767 1768 /* 1769 * Update run-time statistics of the 'current'. 1770 */ 1771 update_curr(cfs_rq); 1772 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP); 1773 account_entity_enqueue(cfs_rq, se); 1774 update_cfs_shares(cfs_rq); 1775 1776 if (flags & ENQUEUE_WAKEUP) { 1777 place_entity(cfs_rq, se, 0); 1778 enqueue_sleeper(cfs_rq, se); 1779 } 1780 1781 update_stats_enqueue(cfs_rq, se); 1782 check_spread(cfs_rq, se); 1783 if (se != cfs_rq->curr) 1784 __enqueue_entity(cfs_rq, se); 1785 se->on_rq = 1; 1786 1787 if (cfs_rq->nr_running == 1) { 1788 list_add_leaf_cfs_rq(cfs_rq); 1789 check_enqueue_throttle(cfs_rq); 1790 } 1791 } 1792 1793 static void __clear_buddies_last(struct sched_entity *se) 1794 { 1795 for_each_sched_entity(se) { 1796 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1797 if (cfs_rq->last == se) 1798 cfs_rq->last = NULL; 1799 else 1800 break; 1801 } 1802 } 1803 1804 static void __clear_buddies_next(struct sched_entity *se) 1805 { 1806 for_each_sched_entity(se) { 1807 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1808 if (cfs_rq->next == se) 1809 cfs_rq->next = NULL; 1810 else 1811 break; 1812 } 1813 } 1814 1815 static void __clear_buddies_skip(struct sched_entity *se) 1816 { 1817 for_each_sched_entity(se) { 1818 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1819 if (cfs_rq->skip == se) 1820 cfs_rq->skip = NULL; 1821 else 1822 break; 1823 } 1824 } 1825 1826 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 1827 { 1828 if (cfs_rq->last == se) 1829 __clear_buddies_last(se); 1830 1831 if (cfs_rq->next == se) 1832 __clear_buddies_next(se); 1833 1834 if (cfs_rq->skip == se) 1835 __clear_buddies_skip(se); 1836 } 1837 1838 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 1839 1840 static void 1841 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1842 { 1843 /* 1844 * Update run-time statistics of the 'current'. 1845 */ 1846 update_curr(cfs_rq); 1847 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP); 1848 1849 update_stats_dequeue(cfs_rq, se); 1850 if (flags & DEQUEUE_SLEEP) { 1851 #ifdef CONFIG_SCHEDSTATS 1852 if (entity_is_task(se)) { 1853 struct task_struct *tsk = task_of(se); 1854 1855 if (tsk->state & TASK_INTERRUPTIBLE) 1856 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq)); 1857 if (tsk->state & TASK_UNINTERRUPTIBLE) 1858 se->statistics.block_start = rq_clock(rq_of(cfs_rq)); 1859 } 1860 #endif 1861 } 1862 1863 clear_buddies(cfs_rq, se); 1864 1865 if (se != cfs_rq->curr) 1866 __dequeue_entity(cfs_rq, se); 1867 se->on_rq = 0; 1868 account_entity_dequeue(cfs_rq, se); 1869 1870 /* 1871 * Normalize the entity after updating the min_vruntime because the 1872 * update can refer to the ->curr item and we need to reflect this 1873 * movement in our normalized position. 1874 */ 1875 if (!(flags & DEQUEUE_SLEEP)) 1876 se->vruntime -= cfs_rq->min_vruntime; 1877 1878 /* return excess runtime on last dequeue */ 1879 return_cfs_rq_runtime(cfs_rq); 1880 1881 update_min_vruntime(cfs_rq); 1882 update_cfs_shares(cfs_rq); 1883 } 1884 1885 /* 1886 * Preempt the current task with a newly woken task if needed: 1887 */ 1888 static void 1889 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 1890 { 1891 unsigned long ideal_runtime, delta_exec; 1892 struct sched_entity *se; 1893 s64 delta; 1894 1895 ideal_runtime = sched_slice(cfs_rq, curr); 1896 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 1897 if (delta_exec > ideal_runtime) { 1898 resched_task(rq_of(cfs_rq)->curr); 1899 /* 1900 * The current task ran long enough, ensure it doesn't get 1901 * re-elected due to buddy favours. 1902 */ 1903 clear_buddies(cfs_rq, curr); 1904 return; 1905 } 1906 1907 /* 1908 * Ensure that a task that missed wakeup preemption by a 1909 * narrow margin doesn't have to wait for a full slice. 1910 * This also mitigates buddy induced latencies under load. 1911 */ 1912 if (delta_exec < sysctl_sched_min_granularity) 1913 return; 1914 1915 se = __pick_first_entity(cfs_rq); 1916 delta = curr->vruntime - se->vruntime; 1917 1918 if (delta < 0) 1919 return; 1920 1921 if (delta > ideal_runtime) 1922 resched_task(rq_of(cfs_rq)->curr); 1923 } 1924 1925 static void 1926 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 1927 { 1928 /* 'current' is not kept within the tree. */ 1929 if (se->on_rq) { 1930 /* 1931 * Any task has to be enqueued before it get to execute on 1932 * a CPU. So account for the time it spent waiting on the 1933 * runqueue. 1934 */ 1935 update_stats_wait_end(cfs_rq, se); 1936 __dequeue_entity(cfs_rq, se); 1937 } 1938 1939 update_stats_curr_start(cfs_rq, se); 1940 cfs_rq->curr = se; 1941 #ifdef CONFIG_SCHEDSTATS 1942 /* 1943 * Track our maximum slice length, if the CPU's load is at 1944 * least twice that of our own weight (i.e. dont track it 1945 * when there are only lesser-weight tasks around): 1946 */ 1947 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 1948 se->statistics.slice_max = max(se->statistics.slice_max, 1949 se->sum_exec_runtime - se->prev_sum_exec_runtime); 1950 } 1951 #endif 1952 se->prev_sum_exec_runtime = se->sum_exec_runtime; 1953 } 1954 1955 static int 1956 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 1957 1958 /* 1959 * Pick the next process, keeping these things in mind, in this order: 1960 * 1) keep things fair between processes/task groups 1961 * 2) pick the "next" process, since someone really wants that to run 1962 * 3) pick the "last" process, for cache locality 1963 * 4) do not run the "skip" process, if something else is available 1964 */ 1965 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) 1966 { 1967 struct sched_entity *se = __pick_first_entity(cfs_rq); 1968 struct sched_entity *left = se; 1969 1970 /* 1971 * Avoid running the skip buddy, if running something else can 1972 * be done without getting too unfair. 1973 */ 1974 if (cfs_rq->skip == se) { 1975 struct sched_entity *second = __pick_next_entity(se); 1976 if (second && wakeup_preempt_entity(second, left) < 1) 1977 se = second; 1978 } 1979 1980 /* 1981 * Prefer last buddy, try to return the CPU to a preempted task. 1982 */ 1983 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 1984 se = cfs_rq->last; 1985 1986 /* 1987 * Someone really wants this to run. If it's not unfair, run it. 1988 */ 1989 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 1990 se = cfs_rq->next; 1991 1992 clear_buddies(cfs_rq, se); 1993 1994 return se; 1995 } 1996 1997 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 1998 1999 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 2000 { 2001 /* 2002 * If still on the runqueue then deactivate_task() 2003 * was not called and update_curr() has to be done: 2004 */ 2005 if (prev->on_rq) 2006 update_curr(cfs_rq); 2007 2008 /* throttle cfs_rqs exceeding runtime */ 2009 check_cfs_rq_runtime(cfs_rq); 2010 2011 check_spread(cfs_rq, prev); 2012 if (prev->on_rq) { 2013 update_stats_wait_start(cfs_rq, prev); 2014 /* Put 'current' back into the tree. */ 2015 __enqueue_entity(cfs_rq, prev); 2016 /* in !on_rq case, update occurred at dequeue */ 2017 update_entity_load_avg(prev, 1); 2018 } 2019 cfs_rq->curr = NULL; 2020 } 2021 2022 static void 2023 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 2024 { 2025 /* 2026 * Update run-time statistics of the 'current'. 2027 */ 2028 update_curr(cfs_rq); 2029 2030 /* 2031 * Ensure that runnable average is periodically updated. 2032 */ 2033 update_entity_load_avg(curr, 1); 2034 update_cfs_rq_blocked_load(cfs_rq, 1); 2035 update_cfs_shares(cfs_rq); 2036 2037 #ifdef CONFIG_SCHED_HRTICK 2038 /* 2039 * queued ticks are scheduled to match the slice, so don't bother 2040 * validating it and just reschedule. 2041 */ 2042 if (queued) { 2043 resched_task(rq_of(cfs_rq)->curr); 2044 return; 2045 } 2046 /* 2047 * don't let the period tick interfere with the hrtick preemption 2048 */ 2049 if (!sched_feat(DOUBLE_TICK) && 2050 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 2051 return; 2052 #endif 2053 2054 if (cfs_rq->nr_running > 1) 2055 check_preempt_tick(cfs_rq, curr); 2056 } 2057 2058 2059 /************************************************** 2060 * CFS bandwidth control machinery 2061 */ 2062 2063 #ifdef CONFIG_CFS_BANDWIDTH 2064 2065 #ifdef HAVE_JUMP_LABEL 2066 static struct static_key __cfs_bandwidth_used; 2067 2068 static inline bool cfs_bandwidth_used(void) 2069 { 2070 return static_key_false(&__cfs_bandwidth_used); 2071 } 2072 2073 void account_cfs_bandwidth_used(int enabled, int was_enabled) 2074 { 2075 /* only need to count groups transitioning between enabled/!enabled */ 2076 if (enabled && !was_enabled) 2077 static_key_slow_inc(&__cfs_bandwidth_used); 2078 else if (!enabled && was_enabled) 2079 static_key_slow_dec(&__cfs_bandwidth_used); 2080 } 2081 #else /* HAVE_JUMP_LABEL */ 2082 static bool cfs_bandwidth_used(void) 2083 { 2084 return true; 2085 } 2086 2087 void account_cfs_bandwidth_used(int enabled, int was_enabled) {} 2088 #endif /* HAVE_JUMP_LABEL */ 2089 2090 /* 2091 * default period for cfs group bandwidth. 2092 * default: 0.1s, units: nanoseconds 2093 */ 2094 static inline u64 default_cfs_period(void) 2095 { 2096 return 100000000ULL; 2097 } 2098 2099 static inline u64 sched_cfs_bandwidth_slice(void) 2100 { 2101 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 2102 } 2103 2104 /* 2105 * Replenish runtime according to assigned quota and update expiration time. 2106 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 2107 * additional synchronization around rq->lock. 2108 * 2109 * requires cfs_b->lock 2110 */ 2111 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 2112 { 2113 u64 now; 2114 2115 if (cfs_b->quota == RUNTIME_INF) 2116 return; 2117 2118 now = sched_clock_cpu(smp_processor_id()); 2119 cfs_b->runtime = cfs_b->quota; 2120 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 2121 } 2122 2123 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 2124 { 2125 return &tg->cfs_bandwidth; 2126 } 2127 2128 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 2129 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 2130 { 2131 if (unlikely(cfs_rq->throttle_count)) 2132 return cfs_rq->throttled_clock_task; 2133 2134 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 2135 } 2136 2137 /* returns 0 on failure to allocate runtime */ 2138 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2139 { 2140 struct task_group *tg = cfs_rq->tg; 2141 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 2142 u64 amount = 0, min_amount, expires; 2143 2144 /* note: this is a positive sum as runtime_remaining <= 0 */ 2145 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 2146 2147 raw_spin_lock(&cfs_b->lock); 2148 if (cfs_b->quota == RUNTIME_INF) 2149 amount = min_amount; 2150 else { 2151 /* 2152 * If the bandwidth pool has become inactive, then at least one 2153 * period must have elapsed since the last consumption. 2154 * Refresh the global state and ensure bandwidth timer becomes 2155 * active. 2156 */ 2157 if (!cfs_b->timer_active) { 2158 __refill_cfs_bandwidth_runtime(cfs_b); 2159 __start_cfs_bandwidth(cfs_b); 2160 } 2161 2162 if (cfs_b->runtime > 0) { 2163 amount = min(cfs_b->runtime, min_amount); 2164 cfs_b->runtime -= amount; 2165 cfs_b->idle = 0; 2166 } 2167 } 2168 expires = cfs_b->runtime_expires; 2169 raw_spin_unlock(&cfs_b->lock); 2170 2171 cfs_rq->runtime_remaining += amount; 2172 /* 2173 * we may have advanced our local expiration to account for allowed 2174 * spread between our sched_clock and the one on which runtime was 2175 * issued. 2176 */ 2177 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 2178 cfs_rq->runtime_expires = expires; 2179 2180 return cfs_rq->runtime_remaining > 0; 2181 } 2182 2183 /* 2184 * Note: This depends on the synchronization provided by sched_clock and the 2185 * fact that rq->clock snapshots this value. 2186 */ 2187 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2188 { 2189 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2190 2191 /* if the deadline is ahead of our clock, nothing to do */ 2192 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 2193 return; 2194 2195 if (cfs_rq->runtime_remaining < 0) 2196 return; 2197 2198 /* 2199 * If the local deadline has passed we have to consider the 2200 * possibility that our sched_clock is 'fast' and the global deadline 2201 * has not truly expired. 2202 * 2203 * Fortunately we can check determine whether this the case by checking 2204 * whether the global deadline has advanced. 2205 */ 2206 2207 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) { 2208 /* extend local deadline, drift is bounded above by 2 ticks */ 2209 cfs_rq->runtime_expires += TICK_NSEC; 2210 } else { 2211 /* global deadline is ahead, expiration has passed */ 2212 cfs_rq->runtime_remaining = 0; 2213 } 2214 } 2215 2216 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, 2217 unsigned long delta_exec) 2218 { 2219 /* dock delta_exec before expiring quota (as it could span periods) */ 2220 cfs_rq->runtime_remaining -= delta_exec; 2221 expire_cfs_rq_runtime(cfs_rq); 2222 2223 if (likely(cfs_rq->runtime_remaining > 0)) 2224 return; 2225 2226 /* 2227 * if we're unable to extend our runtime we resched so that the active 2228 * hierarchy can be throttled 2229 */ 2230 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 2231 resched_task(rq_of(cfs_rq)->curr); 2232 } 2233 2234 static __always_inline 2235 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) 2236 { 2237 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 2238 return; 2239 2240 __account_cfs_rq_runtime(cfs_rq, delta_exec); 2241 } 2242 2243 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 2244 { 2245 return cfs_bandwidth_used() && cfs_rq->throttled; 2246 } 2247 2248 /* check whether cfs_rq, or any parent, is throttled */ 2249 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 2250 { 2251 return cfs_bandwidth_used() && cfs_rq->throttle_count; 2252 } 2253 2254 /* 2255 * Ensure that neither of the group entities corresponding to src_cpu or 2256 * dest_cpu are members of a throttled hierarchy when performing group 2257 * load-balance operations. 2258 */ 2259 static inline int throttled_lb_pair(struct task_group *tg, 2260 int src_cpu, int dest_cpu) 2261 { 2262 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 2263 2264 src_cfs_rq = tg->cfs_rq[src_cpu]; 2265 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 2266 2267 return throttled_hierarchy(src_cfs_rq) || 2268 throttled_hierarchy(dest_cfs_rq); 2269 } 2270 2271 /* updated child weight may affect parent so we have to do this bottom up */ 2272 static int tg_unthrottle_up(struct task_group *tg, void *data) 2273 { 2274 struct rq *rq = data; 2275 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 2276 2277 cfs_rq->throttle_count--; 2278 #ifdef CONFIG_SMP 2279 if (!cfs_rq->throttle_count) { 2280 /* adjust cfs_rq_clock_task() */ 2281 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 2282 cfs_rq->throttled_clock_task; 2283 } 2284 #endif 2285 2286 return 0; 2287 } 2288 2289 static int tg_throttle_down(struct task_group *tg, void *data) 2290 { 2291 struct rq *rq = data; 2292 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 2293 2294 /* group is entering throttled state, stop time */ 2295 if (!cfs_rq->throttle_count) 2296 cfs_rq->throttled_clock_task = rq_clock_task(rq); 2297 cfs_rq->throttle_count++; 2298 2299 return 0; 2300 } 2301 2302 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 2303 { 2304 struct rq *rq = rq_of(cfs_rq); 2305 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2306 struct sched_entity *se; 2307 long task_delta, dequeue = 1; 2308 2309 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 2310 2311 /* freeze hierarchy runnable averages while throttled */ 2312 rcu_read_lock(); 2313 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 2314 rcu_read_unlock(); 2315 2316 task_delta = cfs_rq->h_nr_running; 2317 for_each_sched_entity(se) { 2318 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 2319 /* throttled entity or throttle-on-deactivate */ 2320 if (!se->on_rq) 2321 break; 2322 2323 if (dequeue) 2324 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 2325 qcfs_rq->h_nr_running -= task_delta; 2326 2327 if (qcfs_rq->load.weight) 2328 dequeue = 0; 2329 } 2330 2331 if (!se) 2332 rq->nr_running -= task_delta; 2333 2334 cfs_rq->throttled = 1; 2335 cfs_rq->throttled_clock = rq_clock(rq); 2336 raw_spin_lock(&cfs_b->lock); 2337 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 2338 raw_spin_unlock(&cfs_b->lock); 2339 } 2340 2341 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 2342 { 2343 struct rq *rq = rq_of(cfs_rq); 2344 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2345 struct sched_entity *se; 2346 int enqueue = 1; 2347 long task_delta; 2348 2349 se = cfs_rq->tg->se[cpu_of(rq)]; 2350 2351 cfs_rq->throttled = 0; 2352 2353 update_rq_clock(rq); 2354 2355 raw_spin_lock(&cfs_b->lock); 2356 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 2357 list_del_rcu(&cfs_rq->throttled_list); 2358 raw_spin_unlock(&cfs_b->lock); 2359 2360 /* update hierarchical throttle state */ 2361 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 2362 2363 if (!cfs_rq->load.weight) 2364 return; 2365 2366 task_delta = cfs_rq->h_nr_running; 2367 for_each_sched_entity(se) { 2368 if (se->on_rq) 2369 enqueue = 0; 2370 2371 cfs_rq = cfs_rq_of(se); 2372 if (enqueue) 2373 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 2374 cfs_rq->h_nr_running += task_delta; 2375 2376 if (cfs_rq_throttled(cfs_rq)) 2377 break; 2378 } 2379 2380 if (!se) 2381 rq->nr_running += task_delta; 2382 2383 /* determine whether we need to wake up potentially idle cpu */ 2384 if (rq->curr == rq->idle && rq->cfs.nr_running) 2385 resched_task(rq->curr); 2386 } 2387 2388 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 2389 u64 remaining, u64 expires) 2390 { 2391 struct cfs_rq *cfs_rq; 2392 u64 runtime = remaining; 2393 2394 rcu_read_lock(); 2395 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 2396 throttled_list) { 2397 struct rq *rq = rq_of(cfs_rq); 2398 2399 raw_spin_lock(&rq->lock); 2400 if (!cfs_rq_throttled(cfs_rq)) 2401 goto next; 2402 2403 runtime = -cfs_rq->runtime_remaining + 1; 2404 if (runtime > remaining) 2405 runtime = remaining; 2406 remaining -= runtime; 2407 2408 cfs_rq->runtime_remaining += runtime; 2409 cfs_rq->runtime_expires = expires; 2410 2411 /* we check whether we're throttled above */ 2412 if (cfs_rq->runtime_remaining > 0) 2413 unthrottle_cfs_rq(cfs_rq); 2414 2415 next: 2416 raw_spin_unlock(&rq->lock); 2417 2418 if (!remaining) 2419 break; 2420 } 2421 rcu_read_unlock(); 2422 2423 return remaining; 2424 } 2425 2426 /* 2427 * Responsible for refilling a task_group's bandwidth and unthrottling its 2428 * cfs_rqs as appropriate. If there has been no activity within the last 2429 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 2430 * used to track this state. 2431 */ 2432 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 2433 { 2434 u64 runtime, runtime_expires; 2435 int idle = 1, throttled; 2436 2437 raw_spin_lock(&cfs_b->lock); 2438 /* no need to continue the timer with no bandwidth constraint */ 2439 if (cfs_b->quota == RUNTIME_INF) 2440 goto out_unlock; 2441 2442 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 2443 /* idle depends on !throttled (for the case of a large deficit) */ 2444 idle = cfs_b->idle && !throttled; 2445 cfs_b->nr_periods += overrun; 2446 2447 /* if we're going inactive then everything else can be deferred */ 2448 if (idle) 2449 goto out_unlock; 2450 2451 __refill_cfs_bandwidth_runtime(cfs_b); 2452 2453 if (!throttled) { 2454 /* mark as potentially idle for the upcoming period */ 2455 cfs_b->idle = 1; 2456 goto out_unlock; 2457 } 2458 2459 /* account preceding periods in which throttling occurred */ 2460 cfs_b->nr_throttled += overrun; 2461 2462 /* 2463 * There are throttled entities so we must first use the new bandwidth 2464 * to unthrottle them before making it generally available. This 2465 * ensures that all existing debts will be paid before a new cfs_rq is 2466 * allowed to run. 2467 */ 2468 runtime = cfs_b->runtime; 2469 runtime_expires = cfs_b->runtime_expires; 2470 cfs_b->runtime = 0; 2471 2472 /* 2473 * This check is repeated as we are holding onto the new bandwidth 2474 * while we unthrottle. This can potentially race with an unthrottled 2475 * group trying to acquire new bandwidth from the global pool. 2476 */ 2477 while (throttled && runtime > 0) { 2478 raw_spin_unlock(&cfs_b->lock); 2479 /* we can't nest cfs_b->lock while distributing bandwidth */ 2480 runtime = distribute_cfs_runtime(cfs_b, runtime, 2481 runtime_expires); 2482 raw_spin_lock(&cfs_b->lock); 2483 2484 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 2485 } 2486 2487 /* return (any) remaining runtime */ 2488 cfs_b->runtime = runtime; 2489 /* 2490 * While we are ensured activity in the period following an 2491 * unthrottle, this also covers the case in which the new bandwidth is 2492 * insufficient to cover the existing bandwidth deficit. (Forcing the 2493 * timer to remain active while there are any throttled entities.) 2494 */ 2495 cfs_b->idle = 0; 2496 out_unlock: 2497 if (idle) 2498 cfs_b->timer_active = 0; 2499 raw_spin_unlock(&cfs_b->lock); 2500 2501 return idle; 2502 } 2503 2504 /* a cfs_rq won't donate quota below this amount */ 2505 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 2506 /* minimum remaining period time to redistribute slack quota */ 2507 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 2508 /* how long we wait to gather additional slack before distributing */ 2509 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 2510 2511 /* are we near the end of the current quota period? */ 2512 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 2513 { 2514 struct hrtimer *refresh_timer = &cfs_b->period_timer; 2515 u64 remaining; 2516 2517 /* if the call-back is running a quota refresh is already occurring */ 2518 if (hrtimer_callback_running(refresh_timer)) 2519 return 1; 2520 2521 /* is a quota refresh about to occur? */ 2522 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 2523 if (remaining < min_expire) 2524 return 1; 2525 2526 return 0; 2527 } 2528 2529 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 2530 { 2531 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 2532 2533 /* if there's a quota refresh soon don't bother with slack */ 2534 if (runtime_refresh_within(cfs_b, min_left)) 2535 return; 2536 2537 start_bandwidth_timer(&cfs_b->slack_timer, 2538 ns_to_ktime(cfs_bandwidth_slack_period)); 2539 } 2540 2541 /* we know any runtime found here is valid as update_curr() precedes return */ 2542 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2543 { 2544 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2545 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 2546 2547 if (slack_runtime <= 0) 2548 return; 2549 2550 raw_spin_lock(&cfs_b->lock); 2551 if (cfs_b->quota != RUNTIME_INF && 2552 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 2553 cfs_b->runtime += slack_runtime; 2554 2555 /* we are under rq->lock, defer unthrottling using a timer */ 2556 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 2557 !list_empty(&cfs_b->throttled_cfs_rq)) 2558 start_cfs_slack_bandwidth(cfs_b); 2559 } 2560 raw_spin_unlock(&cfs_b->lock); 2561 2562 /* even if it's not valid for return we don't want to try again */ 2563 cfs_rq->runtime_remaining -= slack_runtime; 2564 } 2565 2566 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2567 { 2568 if (!cfs_bandwidth_used()) 2569 return; 2570 2571 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 2572 return; 2573 2574 __return_cfs_rq_runtime(cfs_rq); 2575 } 2576 2577 /* 2578 * This is done with a timer (instead of inline with bandwidth return) since 2579 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 2580 */ 2581 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 2582 { 2583 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 2584 u64 expires; 2585 2586 /* confirm we're still not at a refresh boundary */ 2587 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) 2588 return; 2589 2590 raw_spin_lock(&cfs_b->lock); 2591 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) { 2592 runtime = cfs_b->runtime; 2593 cfs_b->runtime = 0; 2594 } 2595 expires = cfs_b->runtime_expires; 2596 raw_spin_unlock(&cfs_b->lock); 2597 2598 if (!runtime) 2599 return; 2600 2601 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 2602 2603 raw_spin_lock(&cfs_b->lock); 2604 if (expires == cfs_b->runtime_expires) 2605 cfs_b->runtime = runtime; 2606 raw_spin_unlock(&cfs_b->lock); 2607 } 2608 2609 /* 2610 * When a group wakes up we want to make sure that its quota is not already 2611 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 2612 * runtime as update_curr() throttling can not not trigger until it's on-rq. 2613 */ 2614 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 2615 { 2616 if (!cfs_bandwidth_used()) 2617 return; 2618 2619 /* an active group must be handled by the update_curr()->put() path */ 2620 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 2621 return; 2622 2623 /* ensure the group is not already throttled */ 2624 if (cfs_rq_throttled(cfs_rq)) 2625 return; 2626 2627 /* update runtime allocation */ 2628 account_cfs_rq_runtime(cfs_rq, 0); 2629 if (cfs_rq->runtime_remaining <= 0) 2630 throttle_cfs_rq(cfs_rq); 2631 } 2632 2633 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 2634 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2635 { 2636 if (!cfs_bandwidth_used()) 2637 return; 2638 2639 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 2640 return; 2641 2642 /* 2643 * it's possible for a throttled entity to be forced into a running 2644 * state (e.g. set_curr_task), in this case we're finished. 2645 */ 2646 if (cfs_rq_throttled(cfs_rq)) 2647 return; 2648 2649 throttle_cfs_rq(cfs_rq); 2650 } 2651 2652 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 2653 { 2654 struct cfs_bandwidth *cfs_b = 2655 container_of(timer, struct cfs_bandwidth, slack_timer); 2656 do_sched_cfs_slack_timer(cfs_b); 2657 2658 return HRTIMER_NORESTART; 2659 } 2660 2661 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 2662 { 2663 struct cfs_bandwidth *cfs_b = 2664 container_of(timer, struct cfs_bandwidth, period_timer); 2665 ktime_t now; 2666 int overrun; 2667 int idle = 0; 2668 2669 for (;;) { 2670 now = hrtimer_cb_get_time(timer); 2671 overrun = hrtimer_forward(timer, now, cfs_b->period); 2672 2673 if (!overrun) 2674 break; 2675 2676 idle = do_sched_cfs_period_timer(cfs_b, overrun); 2677 } 2678 2679 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 2680 } 2681 2682 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 2683 { 2684 raw_spin_lock_init(&cfs_b->lock); 2685 cfs_b->runtime = 0; 2686 cfs_b->quota = RUNTIME_INF; 2687 cfs_b->period = ns_to_ktime(default_cfs_period()); 2688 2689 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 2690 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2691 cfs_b->period_timer.function = sched_cfs_period_timer; 2692 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2693 cfs_b->slack_timer.function = sched_cfs_slack_timer; 2694 } 2695 2696 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2697 { 2698 cfs_rq->runtime_enabled = 0; 2699 INIT_LIST_HEAD(&cfs_rq->throttled_list); 2700 } 2701 2702 /* requires cfs_b->lock, may release to reprogram timer */ 2703 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 2704 { 2705 /* 2706 * The timer may be active because we're trying to set a new bandwidth 2707 * period or because we're racing with the tear-down path 2708 * (timer_active==0 becomes visible before the hrtimer call-back 2709 * terminates). In either case we ensure that it's re-programmed 2710 */ 2711 while (unlikely(hrtimer_active(&cfs_b->period_timer))) { 2712 raw_spin_unlock(&cfs_b->lock); 2713 /* ensure cfs_b->lock is available while we wait */ 2714 hrtimer_cancel(&cfs_b->period_timer); 2715 2716 raw_spin_lock(&cfs_b->lock); 2717 /* if someone else restarted the timer then we're done */ 2718 if (cfs_b->timer_active) 2719 return; 2720 } 2721 2722 cfs_b->timer_active = 1; 2723 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); 2724 } 2725 2726 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 2727 { 2728 hrtimer_cancel(&cfs_b->period_timer); 2729 hrtimer_cancel(&cfs_b->slack_timer); 2730 } 2731 2732 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 2733 { 2734 struct cfs_rq *cfs_rq; 2735 2736 for_each_leaf_cfs_rq(rq, cfs_rq) { 2737 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2738 2739 if (!cfs_rq->runtime_enabled) 2740 continue; 2741 2742 /* 2743 * clock_task is not advancing so we just need to make sure 2744 * there's some valid quota amount 2745 */ 2746 cfs_rq->runtime_remaining = cfs_b->quota; 2747 if (cfs_rq_throttled(cfs_rq)) 2748 unthrottle_cfs_rq(cfs_rq); 2749 } 2750 } 2751 2752 #else /* CONFIG_CFS_BANDWIDTH */ 2753 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 2754 { 2755 return rq_clock_task(rq_of(cfs_rq)); 2756 } 2757 2758 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, 2759 unsigned long delta_exec) {} 2760 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 2761 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 2762 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 2763 2764 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 2765 { 2766 return 0; 2767 } 2768 2769 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 2770 { 2771 return 0; 2772 } 2773 2774 static inline int throttled_lb_pair(struct task_group *tg, 2775 int src_cpu, int dest_cpu) 2776 { 2777 return 0; 2778 } 2779 2780 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 2781 2782 #ifdef CONFIG_FAIR_GROUP_SCHED 2783 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 2784 #endif 2785 2786 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 2787 { 2788 return NULL; 2789 } 2790 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 2791 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 2792 2793 #endif /* CONFIG_CFS_BANDWIDTH */ 2794 2795 /************************************************** 2796 * CFS operations on tasks: 2797 */ 2798 2799 #ifdef CONFIG_SCHED_HRTICK 2800 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 2801 { 2802 struct sched_entity *se = &p->se; 2803 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2804 2805 WARN_ON(task_rq(p) != rq); 2806 2807 if (cfs_rq->nr_running > 1) { 2808 u64 slice = sched_slice(cfs_rq, se); 2809 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 2810 s64 delta = slice - ran; 2811 2812 if (delta < 0) { 2813 if (rq->curr == p) 2814 resched_task(p); 2815 return; 2816 } 2817 2818 /* 2819 * Don't schedule slices shorter than 10000ns, that just 2820 * doesn't make sense. Rely on vruntime for fairness. 2821 */ 2822 if (rq->curr != p) 2823 delta = max_t(s64, 10000LL, delta); 2824 2825 hrtick_start(rq, delta); 2826 } 2827 } 2828 2829 /* 2830 * called from enqueue/dequeue and updates the hrtick when the 2831 * current task is from our class and nr_running is low enough 2832 * to matter. 2833 */ 2834 static void hrtick_update(struct rq *rq) 2835 { 2836 struct task_struct *curr = rq->curr; 2837 2838 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 2839 return; 2840 2841 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 2842 hrtick_start_fair(rq, curr); 2843 } 2844 #else /* !CONFIG_SCHED_HRTICK */ 2845 static inline void 2846 hrtick_start_fair(struct rq *rq, struct task_struct *p) 2847 { 2848 } 2849 2850 static inline void hrtick_update(struct rq *rq) 2851 { 2852 } 2853 #endif 2854 2855 /* 2856 * The enqueue_task method is called before nr_running is 2857 * increased. Here we update the fair scheduling stats and 2858 * then put the task into the rbtree: 2859 */ 2860 static void 2861 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 2862 { 2863 struct cfs_rq *cfs_rq; 2864 struct sched_entity *se = &p->se; 2865 2866 for_each_sched_entity(se) { 2867 if (se->on_rq) 2868 break; 2869 cfs_rq = cfs_rq_of(se); 2870 enqueue_entity(cfs_rq, se, flags); 2871 2872 /* 2873 * end evaluation on encountering a throttled cfs_rq 2874 * 2875 * note: in the case of encountering a throttled cfs_rq we will 2876 * post the final h_nr_running increment below. 2877 */ 2878 if (cfs_rq_throttled(cfs_rq)) 2879 break; 2880 cfs_rq->h_nr_running++; 2881 2882 flags = ENQUEUE_WAKEUP; 2883 } 2884 2885 for_each_sched_entity(se) { 2886 cfs_rq = cfs_rq_of(se); 2887 cfs_rq->h_nr_running++; 2888 2889 if (cfs_rq_throttled(cfs_rq)) 2890 break; 2891 2892 update_cfs_shares(cfs_rq); 2893 update_entity_load_avg(se, 1); 2894 } 2895 2896 if (!se) { 2897 update_rq_runnable_avg(rq, rq->nr_running); 2898 inc_nr_running(rq); 2899 } 2900 hrtick_update(rq); 2901 } 2902 2903 static void set_next_buddy(struct sched_entity *se); 2904 2905 /* 2906 * The dequeue_task method is called before nr_running is 2907 * decreased. We remove the task from the rbtree and 2908 * update the fair scheduling stats: 2909 */ 2910 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 2911 { 2912 struct cfs_rq *cfs_rq; 2913 struct sched_entity *se = &p->se; 2914 int task_sleep = flags & DEQUEUE_SLEEP; 2915 2916 for_each_sched_entity(se) { 2917 cfs_rq = cfs_rq_of(se); 2918 dequeue_entity(cfs_rq, se, flags); 2919 2920 /* 2921 * end evaluation on encountering a throttled cfs_rq 2922 * 2923 * note: in the case of encountering a throttled cfs_rq we will 2924 * post the final h_nr_running decrement below. 2925 */ 2926 if (cfs_rq_throttled(cfs_rq)) 2927 break; 2928 cfs_rq->h_nr_running--; 2929 2930 /* Don't dequeue parent if it has other entities besides us */ 2931 if (cfs_rq->load.weight) { 2932 /* 2933 * Bias pick_next to pick a task from this cfs_rq, as 2934 * p is sleeping when it is within its sched_slice. 2935 */ 2936 if (task_sleep && parent_entity(se)) 2937 set_next_buddy(parent_entity(se)); 2938 2939 /* avoid re-evaluating load for this entity */ 2940 se = parent_entity(se); 2941 break; 2942 } 2943 flags |= DEQUEUE_SLEEP; 2944 } 2945 2946 for_each_sched_entity(se) { 2947 cfs_rq = cfs_rq_of(se); 2948 cfs_rq->h_nr_running--; 2949 2950 if (cfs_rq_throttled(cfs_rq)) 2951 break; 2952 2953 update_cfs_shares(cfs_rq); 2954 update_entity_load_avg(se, 1); 2955 } 2956 2957 if (!se) { 2958 dec_nr_running(rq); 2959 update_rq_runnable_avg(rq, 1); 2960 } 2961 hrtick_update(rq); 2962 } 2963 2964 #ifdef CONFIG_SMP 2965 /* Used instead of source_load when we know the type == 0 */ 2966 static unsigned long weighted_cpuload(const int cpu) 2967 { 2968 return cpu_rq(cpu)->cfs.runnable_load_avg; 2969 } 2970 2971 /* 2972 * Return a low guess at the load of a migration-source cpu weighted 2973 * according to the scheduling class and "nice" value. 2974 * 2975 * We want to under-estimate the load of migration sources, to 2976 * balance conservatively. 2977 */ 2978 static unsigned long source_load(int cpu, int type) 2979 { 2980 struct rq *rq = cpu_rq(cpu); 2981 unsigned long total = weighted_cpuload(cpu); 2982 2983 if (type == 0 || !sched_feat(LB_BIAS)) 2984 return total; 2985 2986 return min(rq->cpu_load[type-1], total); 2987 } 2988 2989 /* 2990 * Return a high guess at the load of a migration-target cpu weighted 2991 * according to the scheduling class and "nice" value. 2992 */ 2993 static unsigned long target_load(int cpu, int type) 2994 { 2995 struct rq *rq = cpu_rq(cpu); 2996 unsigned long total = weighted_cpuload(cpu); 2997 2998 if (type == 0 || !sched_feat(LB_BIAS)) 2999 return total; 3000 3001 return max(rq->cpu_load[type-1], total); 3002 } 3003 3004 static unsigned long power_of(int cpu) 3005 { 3006 return cpu_rq(cpu)->cpu_power; 3007 } 3008 3009 static unsigned long cpu_avg_load_per_task(int cpu) 3010 { 3011 struct rq *rq = cpu_rq(cpu); 3012 unsigned long nr_running = ACCESS_ONCE(rq->nr_running); 3013 unsigned long load_avg = rq->cfs.runnable_load_avg; 3014 3015 if (nr_running) 3016 return load_avg / nr_running; 3017 3018 return 0; 3019 } 3020 3021 static void record_wakee(struct task_struct *p) 3022 { 3023 /* 3024 * Rough decay (wiping) for cost saving, don't worry 3025 * about the boundary, really active task won't care 3026 * about the loss. 3027 */ 3028 if (jiffies > current->wakee_flip_decay_ts + HZ) { 3029 current->wakee_flips = 0; 3030 current->wakee_flip_decay_ts = jiffies; 3031 } 3032 3033 if (current->last_wakee != p) { 3034 current->last_wakee = p; 3035 current->wakee_flips++; 3036 } 3037 } 3038 3039 static void task_waking_fair(struct task_struct *p) 3040 { 3041 struct sched_entity *se = &p->se; 3042 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3043 u64 min_vruntime; 3044 3045 #ifndef CONFIG_64BIT 3046 u64 min_vruntime_copy; 3047 3048 do { 3049 min_vruntime_copy = cfs_rq->min_vruntime_copy; 3050 smp_rmb(); 3051 min_vruntime = cfs_rq->min_vruntime; 3052 } while (min_vruntime != min_vruntime_copy); 3053 #else 3054 min_vruntime = cfs_rq->min_vruntime; 3055 #endif 3056 3057 se->vruntime -= min_vruntime; 3058 record_wakee(p); 3059 } 3060 3061 #ifdef CONFIG_FAIR_GROUP_SCHED 3062 /* 3063 * effective_load() calculates the load change as seen from the root_task_group 3064 * 3065 * Adding load to a group doesn't make a group heavier, but can cause movement 3066 * of group shares between cpus. Assuming the shares were perfectly aligned one 3067 * can calculate the shift in shares. 3068 * 3069 * Calculate the effective load difference if @wl is added (subtracted) to @tg 3070 * on this @cpu and results in a total addition (subtraction) of @wg to the 3071 * total group weight. 3072 * 3073 * Given a runqueue weight distribution (rw_i) we can compute a shares 3074 * distribution (s_i) using: 3075 * 3076 * s_i = rw_i / \Sum rw_j (1) 3077 * 3078 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 3079 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 3080 * shares distribution (s_i): 3081 * 3082 * rw_i = { 2, 4, 1, 0 } 3083 * s_i = { 2/7, 4/7, 1/7, 0 } 3084 * 3085 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 3086 * task used to run on and the CPU the waker is running on), we need to 3087 * compute the effect of waking a task on either CPU and, in case of a sync 3088 * wakeup, compute the effect of the current task going to sleep. 3089 * 3090 * So for a change of @wl to the local @cpu with an overall group weight change 3091 * of @wl we can compute the new shares distribution (s'_i) using: 3092 * 3093 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 3094 * 3095 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 3096 * differences in waking a task to CPU 0. The additional task changes the 3097 * weight and shares distributions like: 3098 * 3099 * rw'_i = { 3, 4, 1, 0 } 3100 * s'_i = { 3/8, 4/8, 1/8, 0 } 3101 * 3102 * We can then compute the difference in effective weight by using: 3103 * 3104 * dw_i = S * (s'_i - s_i) (3) 3105 * 3106 * Where 'S' is the group weight as seen by its parent. 3107 * 3108 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 3109 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 3110 * 4/7) times the weight of the group. 3111 */ 3112 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 3113 { 3114 struct sched_entity *se = tg->se[cpu]; 3115 3116 if (!tg->parent) /* the trivial, non-cgroup case */ 3117 return wl; 3118 3119 for_each_sched_entity(se) { 3120 long w, W; 3121 3122 tg = se->my_q->tg; 3123 3124 /* 3125 * W = @wg + \Sum rw_j 3126 */ 3127 W = wg + calc_tg_weight(tg, se->my_q); 3128 3129 /* 3130 * w = rw_i + @wl 3131 */ 3132 w = se->my_q->load.weight + wl; 3133 3134 /* 3135 * wl = S * s'_i; see (2) 3136 */ 3137 if (W > 0 && w < W) 3138 wl = (w * tg->shares) / W; 3139 else 3140 wl = tg->shares; 3141 3142 /* 3143 * Per the above, wl is the new se->load.weight value; since 3144 * those are clipped to [MIN_SHARES, ...) do so now. See 3145 * calc_cfs_shares(). 3146 */ 3147 if (wl < MIN_SHARES) 3148 wl = MIN_SHARES; 3149 3150 /* 3151 * wl = dw_i = S * (s'_i - s_i); see (3) 3152 */ 3153 wl -= se->load.weight; 3154 3155 /* 3156 * Recursively apply this logic to all parent groups to compute 3157 * the final effective load change on the root group. Since 3158 * only the @tg group gets extra weight, all parent groups can 3159 * only redistribute existing shares. @wl is the shift in shares 3160 * resulting from this level per the above. 3161 */ 3162 wg = 0; 3163 } 3164 3165 return wl; 3166 } 3167 #else 3168 3169 static inline unsigned long effective_load(struct task_group *tg, int cpu, 3170 unsigned long wl, unsigned long wg) 3171 { 3172 return wl; 3173 } 3174 3175 #endif 3176 3177 static int wake_wide(struct task_struct *p) 3178 { 3179 int factor = this_cpu_read(sd_llc_size); 3180 3181 /* 3182 * Yeah, it's the switching-frequency, could means many wakee or 3183 * rapidly switch, use factor here will just help to automatically 3184 * adjust the loose-degree, so bigger node will lead to more pull. 3185 */ 3186 if (p->wakee_flips > factor) { 3187 /* 3188 * wakee is somewhat hot, it needs certain amount of cpu 3189 * resource, so if waker is far more hot, prefer to leave 3190 * it alone. 3191 */ 3192 if (current->wakee_flips > (factor * p->wakee_flips)) 3193 return 1; 3194 } 3195 3196 return 0; 3197 } 3198 3199 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 3200 { 3201 s64 this_load, load; 3202 int idx, this_cpu, prev_cpu; 3203 unsigned long tl_per_task; 3204 struct task_group *tg; 3205 unsigned long weight; 3206 int balanced; 3207 3208 /* 3209 * If we wake multiple tasks be careful to not bounce 3210 * ourselves around too much. 3211 */ 3212 if (wake_wide(p)) 3213 return 0; 3214 3215 idx = sd->wake_idx; 3216 this_cpu = smp_processor_id(); 3217 prev_cpu = task_cpu(p); 3218 load = source_load(prev_cpu, idx); 3219 this_load = target_load(this_cpu, idx); 3220 3221 /* 3222 * If sync wakeup then subtract the (maximum possible) 3223 * effect of the currently running task from the load 3224 * of the current CPU: 3225 */ 3226 if (sync) { 3227 tg = task_group(current); 3228 weight = current->se.load.weight; 3229 3230 this_load += effective_load(tg, this_cpu, -weight, -weight); 3231 load += effective_load(tg, prev_cpu, 0, -weight); 3232 } 3233 3234 tg = task_group(p); 3235 weight = p->se.load.weight; 3236 3237 /* 3238 * In low-load situations, where prev_cpu is idle and this_cpu is idle 3239 * due to the sync cause above having dropped this_load to 0, we'll 3240 * always have an imbalance, but there's really nothing you can do 3241 * about that, so that's good too. 3242 * 3243 * Otherwise check if either cpus are near enough in load to allow this 3244 * task to be woken on this_cpu. 3245 */ 3246 if (this_load > 0) { 3247 s64 this_eff_load, prev_eff_load; 3248 3249 this_eff_load = 100; 3250 this_eff_load *= power_of(prev_cpu); 3251 this_eff_load *= this_load + 3252 effective_load(tg, this_cpu, weight, weight); 3253 3254 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 3255 prev_eff_load *= power_of(this_cpu); 3256 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 3257 3258 balanced = this_eff_load <= prev_eff_load; 3259 } else 3260 balanced = true; 3261 3262 /* 3263 * If the currently running task will sleep within 3264 * a reasonable amount of time then attract this newly 3265 * woken task: 3266 */ 3267 if (sync && balanced) 3268 return 1; 3269 3270 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); 3271 tl_per_task = cpu_avg_load_per_task(this_cpu); 3272 3273 if (balanced || 3274 (this_load <= load && 3275 this_load + target_load(prev_cpu, idx) <= tl_per_task)) { 3276 /* 3277 * This domain has SD_WAKE_AFFINE and 3278 * p is cache cold in this domain, and 3279 * there is no bad imbalance. 3280 */ 3281 schedstat_inc(sd, ttwu_move_affine); 3282 schedstat_inc(p, se.statistics.nr_wakeups_affine); 3283 3284 return 1; 3285 } 3286 return 0; 3287 } 3288 3289 /* 3290 * find_idlest_group finds and returns the least busy CPU group within the 3291 * domain. 3292 */ 3293 static struct sched_group * 3294 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 3295 int this_cpu, int load_idx) 3296 { 3297 struct sched_group *idlest = NULL, *group = sd->groups; 3298 unsigned long min_load = ULONG_MAX, this_load = 0; 3299 int imbalance = 100 + (sd->imbalance_pct-100)/2; 3300 3301 do { 3302 unsigned long load, avg_load; 3303 int local_group; 3304 int i; 3305 3306 /* Skip over this group if it has no CPUs allowed */ 3307 if (!cpumask_intersects(sched_group_cpus(group), 3308 tsk_cpus_allowed(p))) 3309 continue; 3310 3311 local_group = cpumask_test_cpu(this_cpu, 3312 sched_group_cpus(group)); 3313 3314 /* Tally up the load of all CPUs in the group */ 3315 avg_load = 0; 3316 3317 for_each_cpu(i, sched_group_cpus(group)) { 3318 /* Bias balancing toward cpus of our domain */ 3319 if (local_group) 3320 load = source_load(i, load_idx); 3321 else 3322 load = target_load(i, load_idx); 3323 3324 avg_load += load; 3325 } 3326 3327 /* Adjust by relative CPU power of the group */ 3328 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power; 3329 3330 if (local_group) { 3331 this_load = avg_load; 3332 } else if (avg_load < min_load) { 3333 min_load = avg_load; 3334 idlest = group; 3335 } 3336 } while (group = group->next, group != sd->groups); 3337 3338 if (!idlest || 100*this_load < imbalance*min_load) 3339 return NULL; 3340 return idlest; 3341 } 3342 3343 /* 3344 * find_idlest_cpu - find the idlest cpu among the cpus in group. 3345 */ 3346 static int 3347 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 3348 { 3349 unsigned long load, min_load = ULONG_MAX; 3350 int idlest = -1; 3351 int i; 3352 3353 /* Traverse only the allowed CPUs */ 3354 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 3355 load = weighted_cpuload(i); 3356 3357 if (load < min_load || (load == min_load && i == this_cpu)) { 3358 min_load = load; 3359 idlest = i; 3360 } 3361 } 3362 3363 return idlest; 3364 } 3365 3366 /* 3367 * Try and locate an idle CPU in the sched_domain. 3368 */ 3369 static int select_idle_sibling(struct task_struct *p, int target) 3370 { 3371 struct sched_domain *sd; 3372 struct sched_group *sg; 3373 int i = task_cpu(p); 3374 3375 if (idle_cpu(target)) 3376 return target; 3377 3378 /* 3379 * If the prevous cpu is cache affine and idle, don't be stupid. 3380 */ 3381 if (i != target && cpus_share_cache(i, target) && idle_cpu(i)) 3382 return i; 3383 3384 /* 3385 * Otherwise, iterate the domains and find an elegible idle cpu. 3386 */ 3387 sd = rcu_dereference(per_cpu(sd_llc, target)); 3388 for_each_lower_domain(sd) { 3389 sg = sd->groups; 3390 do { 3391 if (!cpumask_intersects(sched_group_cpus(sg), 3392 tsk_cpus_allowed(p))) 3393 goto next; 3394 3395 for_each_cpu(i, sched_group_cpus(sg)) { 3396 if (i == target || !idle_cpu(i)) 3397 goto next; 3398 } 3399 3400 target = cpumask_first_and(sched_group_cpus(sg), 3401 tsk_cpus_allowed(p)); 3402 goto done; 3403 next: 3404 sg = sg->next; 3405 } while (sg != sd->groups); 3406 } 3407 done: 3408 return target; 3409 } 3410 3411 /* 3412 * sched_balance_self: balance the current task (running on cpu) in domains 3413 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and 3414 * SD_BALANCE_EXEC. 3415 * 3416 * Balance, ie. select the least loaded group. 3417 * 3418 * Returns the target CPU number, or the same CPU if no balancing is needed. 3419 * 3420 * preempt must be disabled. 3421 */ 3422 static int 3423 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) 3424 { 3425 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 3426 int cpu = smp_processor_id(); 3427 int prev_cpu = task_cpu(p); 3428 int new_cpu = cpu; 3429 int want_affine = 0; 3430 int sync = wake_flags & WF_SYNC; 3431 3432 if (p->nr_cpus_allowed == 1) 3433 return prev_cpu; 3434 3435 if (sd_flag & SD_BALANCE_WAKE) { 3436 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 3437 want_affine = 1; 3438 new_cpu = prev_cpu; 3439 } 3440 3441 rcu_read_lock(); 3442 for_each_domain(cpu, tmp) { 3443 if (!(tmp->flags & SD_LOAD_BALANCE)) 3444 continue; 3445 3446 /* 3447 * If both cpu and prev_cpu are part of this domain, 3448 * cpu is a valid SD_WAKE_AFFINE target. 3449 */ 3450 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 3451 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 3452 affine_sd = tmp; 3453 break; 3454 } 3455 3456 if (tmp->flags & sd_flag) 3457 sd = tmp; 3458 } 3459 3460 if (affine_sd) { 3461 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync)) 3462 prev_cpu = cpu; 3463 3464 new_cpu = select_idle_sibling(p, prev_cpu); 3465 goto unlock; 3466 } 3467 3468 while (sd) { 3469 int load_idx = sd->forkexec_idx; 3470 struct sched_group *group; 3471 int weight; 3472 3473 if (!(sd->flags & sd_flag)) { 3474 sd = sd->child; 3475 continue; 3476 } 3477 3478 if (sd_flag & SD_BALANCE_WAKE) 3479 load_idx = sd->wake_idx; 3480 3481 group = find_idlest_group(sd, p, cpu, load_idx); 3482 if (!group) { 3483 sd = sd->child; 3484 continue; 3485 } 3486 3487 new_cpu = find_idlest_cpu(group, p, cpu); 3488 if (new_cpu == -1 || new_cpu == cpu) { 3489 /* Now try balancing at a lower domain level of cpu */ 3490 sd = sd->child; 3491 continue; 3492 } 3493 3494 /* Now try balancing at a lower domain level of new_cpu */ 3495 cpu = new_cpu; 3496 weight = sd->span_weight; 3497 sd = NULL; 3498 for_each_domain(cpu, tmp) { 3499 if (weight <= tmp->span_weight) 3500 break; 3501 if (tmp->flags & sd_flag) 3502 sd = tmp; 3503 } 3504 /* while loop will break here if sd == NULL */ 3505 } 3506 unlock: 3507 rcu_read_unlock(); 3508 3509 return new_cpu; 3510 } 3511 3512 /* 3513 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 3514 * cfs_rq_of(p) references at time of call are still valid and identify the 3515 * previous cpu. However, the caller only guarantees p->pi_lock is held; no 3516 * other assumptions, including the state of rq->lock, should be made. 3517 */ 3518 static void 3519 migrate_task_rq_fair(struct task_struct *p, int next_cpu) 3520 { 3521 struct sched_entity *se = &p->se; 3522 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3523 3524 /* 3525 * Load tracking: accumulate removed load so that it can be processed 3526 * when we next update owning cfs_rq under rq->lock. Tasks contribute 3527 * to blocked load iff they have a positive decay-count. It can never 3528 * be negative here since on-rq tasks have decay-count == 0. 3529 */ 3530 if (se->avg.decay_count) { 3531 se->avg.decay_count = -__synchronize_entity_decay(se); 3532 atomic_long_add(se->avg.load_avg_contrib, 3533 &cfs_rq->removed_load); 3534 } 3535 } 3536 #endif /* CONFIG_SMP */ 3537 3538 static unsigned long 3539 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 3540 { 3541 unsigned long gran = sysctl_sched_wakeup_granularity; 3542 3543 /* 3544 * Since its curr running now, convert the gran from real-time 3545 * to virtual-time in his units. 3546 * 3547 * By using 'se' instead of 'curr' we penalize light tasks, so 3548 * they get preempted easier. That is, if 'se' < 'curr' then 3549 * the resulting gran will be larger, therefore penalizing the 3550 * lighter, if otoh 'se' > 'curr' then the resulting gran will 3551 * be smaller, again penalizing the lighter task. 3552 * 3553 * This is especially important for buddies when the leftmost 3554 * task is higher priority than the buddy. 3555 */ 3556 return calc_delta_fair(gran, se); 3557 } 3558 3559 /* 3560 * Should 'se' preempt 'curr'. 3561 * 3562 * |s1 3563 * |s2 3564 * |s3 3565 * g 3566 * |<--->|c 3567 * 3568 * w(c, s1) = -1 3569 * w(c, s2) = 0 3570 * w(c, s3) = 1 3571 * 3572 */ 3573 static int 3574 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 3575 { 3576 s64 gran, vdiff = curr->vruntime - se->vruntime; 3577 3578 if (vdiff <= 0) 3579 return -1; 3580 3581 gran = wakeup_gran(curr, se); 3582 if (vdiff > gran) 3583 return 1; 3584 3585 return 0; 3586 } 3587 3588 static void set_last_buddy(struct sched_entity *se) 3589 { 3590 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 3591 return; 3592 3593 for_each_sched_entity(se) 3594 cfs_rq_of(se)->last = se; 3595 } 3596 3597 static void set_next_buddy(struct sched_entity *se) 3598 { 3599 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 3600 return; 3601 3602 for_each_sched_entity(se) 3603 cfs_rq_of(se)->next = se; 3604 } 3605 3606 static void set_skip_buddy(struct sched_entity *se) 3607 { 3608 for_each_sched_entity(se) 3609 cfs_rq_of(se)->skip = se; 3610 } 3611 3612 /* 3613 * Preempt the current task with a newly woken task if needed: 3614 */ 3615 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 3616 { 3617 struct task_struct *curr = rq->curr; 3618 struct sched_entity *se = &curr->se, *pse = &p->se; 3619 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 3620 int scale = cfs_rq->nr_running >= sched_nr_latency; 3621 int next_buddy_marked = 0; 3622 3623 if (unlikely(se == pse)) 3624 return; 3625 3626 /* 3627 * This is possible from callers such as move_task(), in which we 3628 * unconditionally check_prempt_curr() after an enqueue (which may have 3629 * lead to a throttle). This both saves work and prevents false 3630 * next-buddy nomination below. 3631 */ 3632 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 3633 return; 3634 3635 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 3636 set_next_buddy(pse); 3637 next_buddy_marked = 1; 3638 } 3639 3640 /* 3641 * We can come here with TIF_NEED_RESCHED already set from new task 3642 * wake up path. 3643 * 3644 * Note: this also catches the edge-case of curr being in a throttled 3645 * group (e.g. via set_curr_task), since update_curr() (in the 3646 * enqueue of curr) will have resulted in resched being set. This 3647 * prevents us from potentially nominating it as a false LAST_BUDDY 3648 * below. 3649 */ 3650 if (test_tsk_need_resched(curr)) 3651 return; 3652 3653 /* Idle tasks are by definition preempted by non-idle tasks. */ 3654 if (unlikely(curr->policy == SCHED_IDLE) && 3655 likely(p->policy != SCHED_IDLE)) 3656 goto preempt; 3657 3658 /* 3659 * Batch and idle tasks do not preempt non-idle tasks (their preemption 3660 * is driven by the tick): 3661 */ 3662 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 3663 return; 3664 3665 find_matching_se(&se, &pse); 3666 update_curr(cfs_rq_of(se)); 3667 BUG_ON(!pse); 3668 if (wakeup_preempt_entity(se, pse) == 1) { 3669 /* 3670 * Bias pick_next to pick the sched entity that is 3671 * triggering this preemption. 3672 */ 3673 if (!next_buddy_marked) 3674 set_next_buddy(pse); 3675 goto preempt; 3676 } 3677 3678 return; 3679 3680 preempt: 3681 resched_task(curr); 3682 /* 3683 * Only set the backward buddy when the current task is still 3684 * on the rq. This can happen when a wakeup gets interleaved 3685 * with schedule on the ->pre_schedule() or idle_balance() 3686 * point, either of which can * drop the rq lock. 3687 * 3688 * Also, during early boot the idle thread is in the fair class, 3689 * for obvious reasons its a bad idea to schedule back to it. 3690 */ 3691 if (unlikely(!se->on_rq || curr == rq->idle)) 3692 return; 3693 3694 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 3695 set_last_buddy(se); 3696 } 3697 3698 static struct task_struct *pick_next_task_fair(struct rq *rq) 3699 { 3700 struct task_struct *p; 3701 struct cfs_rq *cfs_rq = &rq->cfs; 3702 struct sched_entity *se; 3703 3704 if (!cfs_rq->nr_running) 3705 return NULL; 3706 3707 do { 3708 se = pick_next_entity(cfs_rq); 3709 set_next_entity(cfs_rq, se); 3710 cfs_rq = group_cfs_rq(se); 3711 } while (cfs_rq); 3712 3713 p = task_of(se); 3714 if (hrtick_enabled(rq)) 3715 hrtick_start_fair(rq, p); 3716 3717 return p; 3718 } 3719 3720 /* 3721 * Account for a descheduled task: 3722 */ 3723 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 3724 { 3725 struct sched_entity *se = &prev->se; 3726 struct cfs_rq *cfs_rq; 3727 3728 for_each_sched_entity(se) { 3729 cfs_rq = cfs_rq_of(se); 3730 put_prev_entity(cfs_rq, se); 3731 } 3732 } 3733 3734 /* 3735 * sched_yield() is very simple 3736 * 3737 * The magic of dealing with the ->skip buddy is in pick_next_entity. 3738 */ 3739 static void yield_task_fair(struct rq *rq) 3740 { 3741 struct task_struct *curr = rq->curr; 3742 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 3743 struct sched_entity *se = &curr->se; 3744 3745 /* 3746 * Are we the only task in the tree? 3747 */ 3748 if (unlikely(rq->nr_running == 1)) 3749 return; 3750 3751 clear_buddies(cfs_rq, se); 3752 3753 if (curr->policy != SCHED_BATCH) { 3754 update_rq_clock(rq); 3755 /* 3756 * Update run-time statistics of the 'current'. 3757 */ 3758 update_curr(cfs_rq); 3759 /* 3760 * Tell update_rq_clock() that we've just updated, 3761 * so we don't do microscopic update in schedule() 3762 * and double the fastpath cost. 3763 */ 3764 rq->skip_clock_update = 1; 3765 } 3766 3767 set_skip_buddy(se); 3768 } 3769 3770 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 3771 { 3772 struct sched_entity *se = &p->se; 3773 3774 /* throttled hierarchies are not runnable */ 3775 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 3776 return false; 3777 3778 /* Tell the scheduler that we'd really like pse to run next. */ 3779 set_next_buddy(se); 3780 3781 yield_task_fair(rq); 3782 3783 return true; 3784 } 3785 3786 #ifdef CONFIG_SMP 3787 /************************************************** 3788 * Fair scheduling class load-balancing methods. 3789 * 3790 * BASICS 3791 * 3792 * The purpose of load-balancing is to achieve the same basic fairness the 3793 * per-cpu scheduler provides, namely provide a proportional amount of compute 3794 * time to each task. This is expressed in the following equation: 3795 * 3796 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 3797 * 3798 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 3799 * W_i,0 is defined as: 3800 * 3801 * W_i,0 = \Sum_j w_i,j (2) 3802 * 3803 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 3804 * is derived from the nice value as per prio_to_weight[]. 3805 * 3806 * The weight average is an exponential decay average of the instantaneous 3807 * weight: 3808 * 3809 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 3810 * 3811 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the 3812 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 3813 * can also include other factors [XXX]. 3814 * 3815 * To achieve this balance we define a measure of imbalance which follows 3816 * directly from (1): 3817 * 3818 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4) 3819 * 3820 * We them move tasks around to minimize the imbalance. In the continuous 3821 * function space it is obvious this converges, in the discrete case we get 3822 * a few fun cases generally called infeasible weight scenarios. 3823 * 3824 * [XXX expand on: 3825 * - infeasible weights; 3826 * - local vs global optima in the discrete case. ] 3827 * 3828 * 3829 * SCHED DOMAINS 3830 * 3831 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 3832 * for all i,j solution, we create a tree of cpus that follows the hardware 3833 * topology where each level pairs two lower groups (or better). This results 3834 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 3835 * tree to only the first of the previous level and we decrease the frequency 3836 * of load-balance at each level inv. proportional to the number of cpus in 3837 * the groups. 3838 * 3839 * This yields: 3840 * 3841 * log_2 n 1 n 3842 * \Sum { --- * --- * 2^i } = O(n) (5) 3843 * i = 0 2^i 2^i 3844 * `- size of each group 3845 * | | `- number of cpus doing load-balance 3846 * | `- freq 3847 * `- sum over all levels 3848 * 3849 * Coupled with a limit on how many tasks we can migrate every balance pass, 3850 * this makes (5) the runtime complexity of the balancer. 3851 * 3852 * An important property here is that each CPU is still (indirectly) connected 3853 * to every other cpu in at most O(log n) steps: 3854 * 3855 * The adjacency matrix of the resulting graph is given by: 3856 * 3857 * log_2 n 3858 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 3859 * k = 0 3860 * 3861 * And you'll find that: 3862 * 3863 * A^(log_2 n)_i,j != 0 for all i,j (7) 3864 * 3865 * Showing there's indeed a path between every cpu in at most O(log n) steps. 3866 * The task movement gives a factor of O(m), giving a convergence complexity 3867 * of: 3868 * 3869 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 3870 * 3871 * 3872 * WORK CONSERVING 3873 * 3874 * In order to avoid CPUs going idle while there's still work to do, new idle 3875 * balancing is more aggressive and has the newly idle cpu iterate up the domain 3876 * tree itself instead of relying on other CPUs to bring it work. 3877 * 3878 * This adds some complexity to both (5) and (8) but it reduces the total idle 3879 * time. 3880 * 3881 * [XXX more?] 3882 * 3883 * 3884 * CGROUPS 3885 * 3886 * Cgroups make a horror show out of (2), instead of a simple sum we get: 3887 * 3888 * s_k,i 3889 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 3890 * S_k 3891 * 3892 * Where 3893 * 3894 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 3895 * 3896 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 3897 * 3898 * The big problem is S_k, its a global sum needed to compute a local (W_i) 3899 * property. 3900 * 3901 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 3902 * rewrite all of this once again.] 3903 */ 3904 3905 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 3906 3907 #define LBF_ALL_PINNED 0x01 3908 #define LBF_NEED_BREAK 0x02 3909 #define LBF_SOME_PINNED 0x04 3910 3911 struct lb_env { 3912 struct sched_domain *sd; 3913 3914 struct rq *src_rq; 3915 int src_cpu; 3916 3917 int dst_cpu; 3918 struct rq *dst_rq; 3919 3920 struct cpumask *dst_grpmask; 3921 int new_dst_cpu; 3922 enum cpu_idle_type idle; 3923 long imbalance; 3924 /* The set of CPUs under consideration for load-balancing */ 3925 struct cpumask *cpus; 3926 3927 unsigned int flags; 3928 3929 unsigned int loop; 3930 unsigned int loop_break; 3931 unsigned int loop_max; 3932 }; 3933 3934 /* 3935 * move_task - move a task from one runqueue to another runqueue. 3936 * Both runqueues must be locked. 3937 */ 3938 static void move_task(struct task_struct *p, struct lb_env *env) 3939 { 3940 deactivate_task(env->src_rq, p, 0); 3941 set_task_cpu(p, env->dst_cpu); 3942 activate_task(env->dst_rq, p, 0); 3943 check_preempt_curr(env->dst_rq, p, 0); 3944 } 3945 3946 /* 3947 * Is this task likely cache-hot: 3948 */ 3949 static int 3950 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) 3951 { 3952 s64 delta; 3953 3954 if (p->sched_class != &fair_sched_class) 3955 return 0; 3956 3957 if (unlikely(p->policy == SCHED_IDLE)) 3958 return 0; 3959 3960 /* 3961 * Buddy candidates are cache hot: 3962 */ 3963 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && 3964 (&p->se == cfs_rq_of(&p->se)->next || 3965 &p->se == cfs_rq_of(&p->se)->last)) 3966 return 1; 3967 3968 if (sysctl_sched_migration_cost == -1) 3969 return 1; 3970 if (sysctl_sched_migration_cost == 0) 3971 return 0; 3972 3973 delta = now - p->se.exec_start; 3974 3975 return delta < (s64)sysctl_sched_migration_cost; 3976 } 3977 3978 /* 3979 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 3980 */ 3981 static 3982 int can_migrate_task(struct task_struct *p, struct lb_env *env) 3983 { 3984 int tsk_cache_hot = 0; 3985 /* 3986 * We do not migrate tasks that are: 3987 * 1) throttled_lb_pair, or 3988 * 2) cannot be migrated to this CPU due to cpus_allowed, or 3989 * 3) running (obviously), or 3990 * 4) are cache-hot on their current CPU. 3991 */ 3992 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 3993 return 0; 3994 3995 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { 3996 int cpu; 3997 3998 schedstat_inc(p, se.statistics.nr_failed_migrations_affine); 3999 4000 /* 4001 * Remember if this task can be migrated to any other cpu in 4002 * our sched_group. We may want to revisit it if we couldn't 4003 * meet load balance goals by pulling other tasks on src_cpu. 4004 * 4005 * Also avoid computing new_dst_cpu if we have already computed 4006 * one in current iteration. 4007 */ 4008 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED)) 4009 return 0; 4010 4011 /* Prevent to re-select dst_cpu via env's cpus */ 4012 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 4013 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { 4014 env->flags |= LBF_SOME_PINNED; 4015 env->new_dst_cpu = cpu; 4016 break; 4017 } 4018 } 4019 4020 return 0; 4021 } 4022 4023 /* Record that we found atleast one task that could run on dst_cpu */ 4024 env->flags &= ~LBF_ALL_PINNED; 4025 4026 if (task_running(env->src_rq, p)) { 4027 schedstat_inc(p, se.statistics.nr_failed_migrations_running); 4028 return 0; 4029 } 4030 4031 /* 4032 * Aggressive migration if: 4033 * 1) task is cache cold, or 4034 * 2) too many balance attempts have failed. 4035 */ 4036 4037 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd); 4038 if (!tsk_cache_hot || 4039 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 4040 4041 if (tsk_cache_hot) { 4042 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 4043 schedstat_inc(p, se.statistics.nr_forced_migrations); 4044 } 4045 4046 return 1; 4047 } 4048 4049 schedstat_inc(p, se.statistics.nr_failed_migrations_hot); 4050 return 0; 4051 } 4052 4053 /* 4054 * move_one_task tries to move exactly one task from busiest to this_rq, as 4055 * part of active balancing operations within "domain". 4056 * Returns 1 if successful and 0 otherwise. 4057 * 4058 * Called with both runqueues locked. 4059 */ 4060 static int move_one_task(struct lb_env *env) 4061 { 4062 struct task_struct *p, *n; 4063 4064 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 4065 if (!can_migrate_task(p, env)) 4066 continue; 4067 4068 move_task(p, env); 4069 /* 4070 * Right now, this is only the second place move_task() 4071 * is called, so we can safely collect move_task() 4072 * stats here rather than inside move_task(). 4073 */ 4074 schedstat_inc(env->sd, lb_gained[env->idle]); 4075 return 1; 4076 } 4077 return 0; 4078 } 4079 4080 static unsigned long task_h_load(struct task_struct *p); 4081 4082 static const unsigned int sched_nr_migrate_break = 32; 4083 4084 /* 4085 * move_tasks tries to move up to imbalance weighted load from busiest to 4086 * this_rq, as part of a balancing operation within domain "sd". 4087 * Returns 1 if successful and 0 otherwise. 4088 * 4089 * Called with both runqueues locked. 4090 */ 4091 static int move_tasks(struct lb_env *env) 4092 { 4093 struct list_head *tasks = &env->src_rq->cfs_tasks; 4094 struct task_struct *p; 4095 unsigned long load; 4096 int pulled = 0; 4097 4098 if (env->imbalance <= 0) 4099 return 0; 4100 4101 while (!list_empty(tasks)) { 4102 p = list_first_entry(tasks, struct task_struct, se.group_node); 4103 4104 env->loop++; 4105 /* We've more or less seen every task there is, call it quits */ 4106 if (env->loop > env->loop_max) 4107 break; 4108 4109 /* take a breather every nr_migrate tasks */ 4110 if (env->loop > env->loop_break) { 4111 env->loop_break += sched_nr_migrate_break; 4112 env->flags |= LBF_NEED_BREAK; 4113 break; 4114 } 4115 4116 if (!can_migrate_task(p, env)) 4117 goto next; 4118 4119 load = task_h_load(p); 4120 4121 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 4122 goto next; 4123 4124 if ((load / 2) > env->imbalance) 4125 goto next; 4126 4127 move_task(p, env); 4128 pulled++; 4129 env->imbalance -= load; 4130 4131 #ifdef CONFIG_PREEMPT 4132 /* 4133 * NEWIDLE balancing is a source of latency, so preemptible 4134 * kernels will stop after the first task is pulled to minimize 4135 * the critical section. 4136 */ 4137 if (env->idle == CPU_NEWLY_IDLE) 4138 break; 4139 #endif 4140 4141 /* 4142 * We only want to steal up to the prescribed amount of 4143 * weighted load. 4144 */ 4145 if (env->imbalance <= 0) 4146 break; 4147 4148 continue; 4149 next: 4150 list_move_tail(&p->se.group_node, tasks); 4151 } 4152 4153 /* 4154 * Right now, this is one of only two places move_task() is called, 4155 * so we can safely collect move_task() stats here rather than 4156 * inside move_task(). 4157 */ 4158 schedstat_add(env->sd, lb_gained[env->idle], pulled); 4159 4160 return pulled; 4161 } 4162 4163 #ifdef CONFIG_FAIR_GROUP_SCHED 4164 /* 4165 * update tg->load_weight by folding this cpu's load_avg 4166 */ 4167 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu) 4168 { 4169 struct sched_entity *se = tg->se[cpu]; 4170 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 4171 4172 /* throttled entities do not contribute to load */ 4173 if (throttled_hierarchy(cfs_rq)) 4174 return; 4175 4176 update_cfs_rq_blocked_load(cfs_rq, 1); 4177 4178 if (se) { 4179 update_entity_load_avg(se, 1); 4180 /* 4181 * We pivot on our runnable average having decayed to zero for 4182 * list removal. This generally implies that all our children 4183 * have also been removed (modulo rounding error or bandwidth 4184 * control); however, such cases are rare and we can fix these 4185 * at enqueue. 4186 * 4187 * TODO: fix up out-of-order children on enqueue. 4188 */ 4189 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running) 4190 list_del_leaf_cfs_rq(cfs_rq); 4191 } else { 4192 struct rq *rq = rq_of(cfs_rq); 4193 update_rq_runnable_avg(rq, rq->nr_running); 4194 } 4195 } 4196 4197 static void update_blocked_averages(int cpu) 4198 { 4199 struct rq *rq = cpu_rq(cpu); 4200 struct cfs_rq *cfs_rq; 4201 unsigned long flags; 4202 4203 raw_spin_lock_irqsave(&rq->lock, flags); 4204 update_rq_clock(rq); 4205 /* 4206 * Iterates the task_group tree in a bottom up fashion, see 4207 * list_add_leaf_cfs_rq() for details. 4208 */ 4209 for_each_leaf_cfs_rq(rq, cfs_rq) { 4210 /* 4211 * Note: We may want to consider periodically releasing 4212 * rq->lock about these updates so that creating many task 4213 * groups does not result in continually extending hold time. 4214 */ 4215 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu); 4216 } 4217 4218 raw_spin_unlock_irqrestore(&rq->lock, flags); 4219 } 4220 4221 /* 4222 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 4223 * This needs to be done in a top-down fashion because the load of a child 4224 * group is a fraction of its parents load. 4225 */ 4226 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 4227 { 4228 struct rq *rq = rq_of(cfs_rq); 4229 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 4230 unsigned long now = jiffies; 4231 unsigned long load; 4232 4233 if (cfs_rq->last_h_load_update == now) 4234 return; 4235 4236 cfs_rq->h_load_next = NULL; 4237 for_each_sched_entity(se) { 4238 cfs_rq = cfs_rq_of(se); 4239 cfs_rq->h_load_next = se; 4240 if (cfs_rq->last_h_load_update == now) 4241 break; 4242 } 4243 4244 if (!se) { 4245 cfs_rq->h_load = cfs_rq->runnable_load_avg; 4246 cfs_rq->last_h_load_update = now; 4247 } 4248 4249 while ((se = cfs_rq->h_load_next) != NULL) { 4250 load = cfs_rq->h_load; 4251 load = div64_ul(load * se->avg.load_avg_contrib, 4252 cfs_rq->runnable_load_avg + 1); 4253 cfs_rq = group_cfs_rq(se); 4254 cfs_rq->h_load = load; 4255 cfs_rq->last_h_load_update = now; 4256 } 4257 } 4258 4259 static unsigned long task_h_load(struct task_struct *p) 4260 { 4261 struct cfs_rq *cfs_rq = task_cfs_rq(p); 4262 4263 update_cfs_rq_h_load(cfs_rq); 4264 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load, 4265 cfs_rq->runnable_load_avg + 1); 4266 } 4267 #else 4268 static inline void update_blocked_averages(int cpu) 4269 { 4270 } 4271 4272 static unsigned long task_h_load(struct task_struct *p) 4273 { 4274 return p->se.avg.load_avg_contrib; 4275 } 4276 #endif 4277 4278 /********** Helpers for find_busiest_group ************************/ 4279 /* 4280 * sg_lb_stats - stats of a sched_group required for load_balancing 4281 */ 4282 struct sg_lb_stats { 4283 unsigned long avg_load; /*Avg load across the CPUs of the group */ 4284 unsigned long group_load; /* Total load over the CPUs of the group */ 4285 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 4286 unsigned long load_per_task; 4287 unsigned long group_power; 4288 unsigned int sum_nr_running; /* Nr tasks running in the group */ 4289 unsigned int group_capacity; 4290 unsigned int idle_cpus; 4291 unsigned int group_weight; 4292 int group_imb; /* Is there an imbalance in the group ? */ 4293 int group_has_capacity; /* Is there extra capacity in the group? */ 4294 }; 4295 4296 /* 4297 * sd_lb_stats - Structure to store the statistics of a sched_domain 4298 * during load balancing. 4299 */ 4300 struct sd_lb_stats { 4301 struct sched_group *busiest; /* Busiest group in this sd */ 4302 struct sched_group *local; /* Local group in this sd */ 4303 unsigned long total_load; /* Total load of all groups in sd */ 4304 unsigned long total_pwr; /* Total power of all groups in sd */ 4305 unsigned long avg_load; /* Average load across all groups in sd */ 4306 4307 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 4308 struct sg_lb_stats local_stat; /* Statistics of the local group */ 4309 }; 4310 4311 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 4312 { 4313 /* 4314 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 4315 * local_stat because update_sg_lb_stats() does a full clear/assignment. 4316 * We must however clear busiest_stat::avg_load because 4317 * update_sd_pick_busiest() reads this before assignment. 4318 */ 4319 *sds = (struct sd_lb_stats){ 4320 .busiest = NULL, 4321 .local = NULL, 4322 .total_load = 0UL, 4323 .total_pwr = 0UL, 4324 .busiest_stat = { 4325 .avg_load = 0UL, 4326 }, 4327 }; 4328 } 4329 4330 /** 4331 * get_sd_load_idx - Obtain the load index for a given sched domain. 4332 * @sd: The sched_domain whose load_idx is to be obtained. 4333 * @idle: The Idle status of the CPU for whose sd load_icx is obtained. 4334 * 4335 * Return: The load index. 4336 */ 4337 static inline int get_sd_load_idx(struct sched_domain *sd, 4338 enum cpu_idle_type idle) 4339 { 4340 int load_idx; 4341 4342 switch (idle) { 4343 case CPU_NOT_IDLE: 4344 load_idx = sd->busy_idx; 4345 break; 4346 4347 case CPU_NEWLY_IDLE: 4348 load_idx = sd->newidle_idx; 4349 break; 4350 default: 4351 load_idx = sd->idle_idx; 4352 break; 4353 } 4354 4355 return load_idx; 4356 } 4357 4358 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) 4359 { 4360 return SCHED_POWER_SCALE; 4361 } 4362 4363 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) 4364 { 4365 return default_scale_freq_power(sd, cpu); 4366 } 4367 4368 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) 4369 { 4370 unsigned long weight = sd->span_weight; 4371 unsigned long smt_gain = sd->smt_gain; 4372 4373 smt_gain /= weight; 4374 4375 return smt_gain; 4376 } 4377 4378 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) 4379 { 4380 return default_scale_smt_power(sd, cpu); 4381 } 4382 4383 static unsigned long scale_rt_power(int cpu) 4384 { 4385 struct rq *rq = cpu_rq(cpu); 4386 u64 total, available, age_stamp, avg; 4387 4388 /* 4389 * Since we're reading these variables without serialization make sure 4390 * we read them once before doing sanity checks on them. 4391 */ 4392 age_stamp = ACCESS_ONCE(rq->age_stamp); 4393 avg = ACCESS_ONCE(rq->rt_avg); 4394 4395 total = sched_avg_period() + (rq_clock(rq) - age_stamp); 4396 4397 if (unlikely(total < avg)) { 4398 /* Ensures that power won't end up being negative */ 4399 available = 0; 4400 } else { 4401 available = total - avg; 4402 } 4403 4404 if (unlikely((s64)total < SCHED_POWER_SCALE)) 4405 total = SCHED_POWER_SCALE; 4406 4407 total >>= SCHED_POWER_SHIFT; 4408 4409 return div_u64(available, total); 4410 } 4411 4412 static void update_cpu_power(struct sched_domain *sd, int cpu) 4413 { 4414 unsigned long weight = sd->span_weight; 4415 unsigned long power = SCHED_POWER_SCALE; 4416 struct sched_group *sdg = sd->groups; 4417 4418 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { 4419 if (sched_feat(ARCH_POWER)) 4420 power *= arch_scale_smt_power(sd, cpu); 4421 else 4422 power *= default_scale_smt_power(sd, cpu); 4423 4424 power >>= SCHED_POWER_SHIFT; 4425 } 4426 4427 sdg->sgp->power_orig = power; 4428 4429 if (sched_feat(ARCH_POWER)) 4430 power *= arch_scale_freq_power(sd, cpu); 4431 else 4432 power *= default_scale_freq_power(sd, cpu); 4433 4434 power >>= SCHED_POWER_SHIFT; 4435 4436 power *= scale_rt_power(cpu); 4437 power >>= SCHED_POWER_SHIFT; 4438 4439 if (!power) 4440 power = 1; 4441 4442 cpu_rq(cpu)->cpu_power = power; 4443 sdg->sgp->power = power; 4444 } 4445 4446 void update_group_power(struct sched_domain *sd, int cpu) 4447 { 4448 struct sched_domain *child = sd->child; 4449 struct sched_group *group, *sdg = sd->groups; 4450 unsigned long power; 4451 unsigned long interval; 4452 4453 interval = msecs_to_jiffies(sd->balance_interval); 4454 interval = clamp(interval, 1UL, max_load_balance_interval); 4455 sdg->sgp->next_update = jiffies + interval; 4456 4457 if (!child) { 4458 update_cpu_power(sd, cpu); 4459 return; 4460 } 4461 4462 power = 0; 4463 4464 if (child->flags & SD_OVERLAP) { 4465 /* 4466 * SD_OVERLAP domains cannot assume that child groups 4467 * span the current group. 4468 */ 4469 4470 for_each_cpu(cpu, sched_group_cpus(sdg)) 4471 power += power_of(cpu); 4472 } else { 4473 /* 4474 * !SD_OVERLAP domains can assume that child groups 4475 * span the current group. 4476 */ 4477 4478 group = child->groups; 4479 do { 4480 power += group->sgp->power; 4481 group = group->next; 4482 } while (group != child->groups); 4483 } 4484 4485 sdg->sgp->power_orig = sdg->sgp->power = power; 4486 } 4487 4488 /* 4489 * Try and fix up capacity for tiny siblings, this is needed when 4490 * things like SD_ASYM_PACKING need f_b_g to select another sibling 4491 * which on its own isn't powerful enough. 4492 * 4493 * See update_sd_pick_busiest() and check_asym_packing(). 4494 */ 4495 static inline int 4496 fix_small_capacity(struct sched_domain *sd, struct sched_group *group) 4497 { 4498 /* 4499 * Only siblings can have significantly less than SCHED_POWER_SCALE 4500 */ 4501 if (!(sd->flags & SD_SHARE_CPUPOWER)) 4502 return 0; 4503 4504 /* 4505 * If ~90% of the cpu_power is still there, we're good. 4506 */ 4507 if (group->sgp->power * 32 > group->sgp->power_orig * 29) 4508 return 1; 4509 4510 return 0; 4511 } 4512 4513 /* 4514 * Group imbalance indicates (and tries to solve) the problem where balancing 4515 * groups is inadequate due to tsk_cpus_allowed() constraints. 4516 * 4517 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 4518 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 4519 * Something like: 4520 * 4521 * { 0 1 2 3 } { 4 5 6 7 } 4522 * * * * * 4523 * 4524 * If we were to balance group-wise we'd place two tasks in the first group and 4525 * two tasks in the second group. Clearly this is undesired as it will overload 4526 * cpu 3 and leave one of the cpus in the second group unused. 4527 * 4528 * The current solution to this issue is detecting the skew in the first group 4529 * by noticing it has a cpu that is overloaded while the remaining cpus are 4530 * idle -- or rather, there's a distinct imbalance in the cpus; see 4531 * sg_imbalanced(). 4532 * 4533 * When this is so detected; this group becomes a candidate for busiest; see 4534 * update_sd_pick_busiest(). And calculcate_imbalance() and 4535 * find_busiest_group() avoid some of the usual balance conditional to allow it 4536 * to create an effective group imbalance. 4537 * 4538 * This is a somewhat tricky proposition since the next run might not find the 4539 * group imbalance and decide the groups need to be balanced again. A most 4540 * subtle and fragile situation. 4541 */ 4542 4543 struct sg_imb_stats { 4544 unsigned long max_nr_running, min_nr_running; 4545 unsigned long max_cpu_load, min_cpu_load; 4546 }; 4547 4548 static inline void init_sg_imb_stats(struct sg_imb_stats *sgi) 4549 { 4550 sgi->max_cpu_load = sgi->max_nr_running = 0UL; 4551 sgi->min_cpu_load = sgi->min_nr_running = ~0UL; 4552 } 4553 4554 static inline void 4555 update_sg_imb_stats(struct sg_imb_stats *sgi, 4556 unsigned long load, unsigned long nr_running) 4557 { 4558 if (load > sgi->max_cpu_load) 4559 sgi->max_cpu_load = load; 4560 if (sgi->min_cpu_load > load) 4561 sgi->min_cpu_load = load; 4562 4563 if (nr_running > sgi->max_nr_running) 4564 sgi->max_nr_running = nr_running; 4565 if (sgi->min_nr_running > nr_running) 4566 sgi->min_nr_running = nr_running; 4567 } 4568 4569 static inline int 4570 sg_imbalanced(struct sg_lb_stats *sgs, struct sg_imb_stats *sgi) 4571 { 4572 /* 4573 * Consider the group unbalanced when the imbalance is larger 4574 * than the average weight of a task. 4575 * 4576 * APZ: with cgroup the avg task weight can vary wildly and 4577 * might not be a suitable number - should we keep a 4578 * normalized nr_running number somewhere that negates 4579 * the hierarchy? 4580 */ 4581 if ((sgi->max_cpu_load - sgi->min_cpu_load) >= sgs->load_per_task && 4582 (sgi->max_nr_running - sgi->min_nr_running) > 1) 4583 return 1; 4584 4585 return 0; 4586 } 4587 4588 /** 4589 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 4590 * @env: The load balancing environment. 4591 * @group: sched_group whose statistics are to be updated. 4592 * @load_idx: Load index of sched_domain of this_cpu for load calc. 4593 * @local_group: Does group contain this_cpu. 4594 * @sgs: variable to hold the statistics for this group. 4595 */ 4596 static inline void update_sg_lb_stats(struct lb_env *env, 4597 struct sched_group *group, int load_idx, 4598 int local_group, struct sg_lb_stats *sgs) 4599 { 4600 struct sg_imb_stats sgi; 4601 unsigned long nr_running; 4602 unsigned long load; 4603 int i; 4604 4605 init_sg_imb_stats(&sgi); 4606 4607 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 4608 struct rq *rq = cpu_rq(i); 4609 4610 nr_running = rq->nr_running; 4611 4612 /* Bias balancing toward cpus of our domain */ 4613 if (local_group) { 4614 load = target_load(i, load_idx); 4615 } else { 4616 load = source_load(i, load_idx); 4617 update_sg_imb_stats(&sgi, load, nr_running); 4618 } 4619 4620 sgs->group_load += load; 4621 sgs->sum_nr_running += nr_running; 4622 sgs->sum_weighted_load += weighted_cpuload(i); 4623 if (idle_cpu(i)) 4624 sgs->idle_cpus++; 4625 } 4626 4627 if (local_group && (env->idle != CPU_NEWLY_IDLE || 4628 time_after_eq(jiffies, group->sgp->next_update))) 4629 update_group_power(env->sd, env->dst_cpu); 4630 4631 /* Adjust by relative CPU power of the group */ 4632 sgs->group_power = group->sgp->power; 4633 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power; 4634 4635 if (sgs->sum_nr_running) 4636 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 4637 4638 sgs->group_imb = sg_imbalanced(sgs, &sgi); 4639 4640 sgs->group_capacity = 4641 DIV_ROUND_CLOSEST(sgs->group_power, SCHED_POWER_SCALE); 4642 4643 if (!sgs->group_capacity) 4644 sgs->group_capacity = fix_small_capacity(env->sd, group); 4645 4646 sgs->group_weight = group->group_weight; 4647 4648 if (sgs->group_capacity > sgs->sum_nr_running) 4649 sgs->group_has_capacity = 1; 4650 } 4651 4652 /** 4653 * update_sd_pick_busiest - return 1 on busiest group 4654 * @env: The load balancing environment. 4655 * @sds: sched_domain statistics 4656 * @sg: sched_group candidate to be checked for being the busiest 4657 * @sgs: sched_group statistics 4658 * 4659 * Determine if @sg is a busier group than the previously selected 4660 * busiest group. 4661 * 4662 * Return: %true if @sg is a busier group than the previously selected 4663 * busiest group. %false otherwise. 4664 */ 4665 static bool update_sd_pick_busiest(struct lb_env *env, 4666 struct sd_lb_stats *sds, 4667 struct sched_group *sg, 4668 struct sg_lb_stats *sgs) 4669 { 4670 if (sgs->avg_load <= sds->busiest_stat.avg_load) 4671 return false; 4672 4673 if (sgs->sum_nr_running > sgs->group_capacity) 4674 return true; 4675 4676 if (sgs->group_imb) 4677 return true; 4678 4679 /* 4680 * ASYM_PACKING needs to move all the work to the lowest 4681 * numbered CPUs in the group, therefore mark all groups 4682 * higher than ourself as busy. 4683 */ 4684 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running && 4685 env->dst_cpu < group_first_cpu(sg)) { 4686 if (!sds->busiest) 4687 return true; 4688 4689 if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) 4690 return true; 4691 } 4692 4693 return false; 4694 } 4695 4696 /** 4697 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 4698 * @env: The load balancing environment. 4699 * @balance: Should we balance. 4700 * @sds: variable to hold the statistics for this sched_domain. 4701 */ 4702 static inline void update_sd_lb_stats(struct lb_env *env, 4703 struct sd_lb_stats *sds) 4704 { 4705 struct sched_domain *child = env->sd->child; 4706 struct sched_group *sg = env->sd->groups; 4707 struct sg_lb_stats tmp_sgs; 4708 int load_idx, prefer_sibling = 0; 4709 4710 if (child && child->flags & SD_PREFER_SIBLING) 4711 prefer_sibling = 1; 4712 4713 load_idx = get_sd_load_idx(env->sd, env->idle); 4714 4715 do { 4716 struct sg_lb_stats *sgs = &tmp_sgs; 4717 int local_group; 4718 4719 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 4720 if (local_group) { 4721 sds->local = sg; 4722 sgs = &sds->local_stat; 4723 } 4724 4725 memset(sgs, 0, sizeof(*sgs)); 4726 update_sg_lb_stats(env, sg, load_idx, local_group, sgs); 4727 4728 /* 4729 * In case the child domain prefers tasks go to siblings 4730 * first, lower the sg capacity to one so that we'll try 4731 * and move all the excess tasks away. We lower the capacity 4732 * of a group only if the local group has the capacity to fit 4733 * these excess tasks, i.e. nr_running < group_capacity. The 4734 * extra check prevents the case where you always pull from the 4735 * heaviest group when it is already under-utilized (possible 4736 * with a large weight task outweighs the tasks on the system). 4737 */ 4738 if (prefer_sibling && !local_group && 4739 sds->local && sds->local_stat.group_has_capacity) 4740 sgs->group_capacity = min(sgs->group_capacity, 1U); 4741 4742 /* Now, start updating sd_lb_stats */ 4743 sds->total_load += sgs->group_load; 4744 sds->total_pwr += sgs->group_power; 4745 4746 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 4747 sds->busiest = sg; 4748 sds->busiest_stat = *sgs; 4749 } 4750 4751 sg = sg->next; 4752 } while (sg != env->sd->groups); 4753 } 4754 4755 /** 4756 * check_asym_packing - Check to see if the group is packed into the 4757 * sched doman. 4758 * 4759 * This is primarily intended to used at the sibling level. Some 4760 * cores like POWER7 prefer to use lower numbered SMT threads. In the 4761 * case of POWER7, it can move to lower SMT modes only when higher 4762 * threads are idle. When in lower SMT modes, the threads will 4763 * perform better since they share less core resources. Hence when we 4764 * have idle threads, we want them to be the higher ones. 4765 * 4766 * This packing function is run on idle threads. It checks to see if 4767 * the busiest CPU in this domain (core in the P7 case) has a higher 4768 * CPU number than the packing function is being run on. Here we are 4769 * assuming lower CPU number will be equivalent to lower a SMT thread 4770 * number. 4771 * 4772 * Return: 1 when packing is required and a task should be moved to 4773 * this CPU. The amount of the imbalance is returned in *imbalance. 4774 * 4775 * @env: The load balancing environment. 4776 * @sds: Statistics of the sched_domain which is to be packed 4777 */ 4778 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 4779 { 4780 int busiest_cpu; 4781 4782 if (!(env->sd->flags & SD_ASYM_PACKING)) 4783 return 0; 4784 4785 if (!sds->busiest) 4786 return 0; 4787 4788 busiest_cpu = group_first_cpu(sds->busiest); 4789 if (env->dst_cpu > busiest_cpu) 4790 return 0; 4791 4792 env->imbalance = DIV_ROUND_CLOSEST( 4793 sds->busiest_stat.avg_load * sds->busiest_stat.group_power, 4794 SCHED_POWER_SCALE); 4795 4796 return 1; 4797 } 4798 4799 /** 4800 * fix_small_imbalance - Calculate the minor imbalance that exists 4801 * amongst the groups of a sched_domain, during 4802 * load balancing. 4803 * @env: The load balancing environment. 4804 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 4805 */ 4806 static inline 4807 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 4808 { 4809 unsigned long tmp, pwr_now = 0, pwr_move = 0; 4810 unsigned int imbn = 2; 4811 unsigned long scaled_busy_load_per_task; 4812 struct sg_lb_stats *local, *busiest; 4813 4814 local = &sds->local_stat; 4815 busiest = &sds->busiest_stat; 4816 4817 if (!local->sum_nr_running) 4818 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 4819 else if (busiest->load_per_task > local->load_per_task) 4820 imbn = 1; 4821 4822 scaled_busy_load_per_task = 4823 (busiest->load_per_task * SCHED_POWER_SCALE) / 4824 busiest->group_power; 4825 4826 if (busiest->avg_load + scaled_busy_load_per_task >= 4827 local->avg_load + (scaled_busy_load_per_task * imbn)) { 4828 env->imbalance = busiest->load_per_task; 4829 return; 4830 } 4831 4832 /* 4833 * OK, we don't have enough imbalance to justify moving tasks, 4834 * however we may be able to increase total CPU power used by 4835 * moving them. 4836 */ 4837 4838 pwr_now += busiest->group_power * 4839 min(busiest->load_per_task, busiest->avg_load); 4840 pwr_now += local->group_power * 4841 min(local->load_per_task, local->avg_load); 4842 pwr_now /= SCHED_POWER_SCALE; 4843 4844 /* Amount of load we'd subtract */ 4845 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) / 4846 busiest->group_power; 4847 if (busiest->avg_load > tmp) { 4848 pwr_move += busiest->group_power * 4849 min(busiest->load_per_task, 4850 busiest->avg_load - tmp); 4851 } 4852 4853 /* Amount of load we'd add */ 4854 if (busiest->avg_load * busiest->group_power < 4855 busiest->load_per_task * SCHED_POWER_SCALE) { 4856 tmp = (busiest->avg_load * busiest->group_power) / 4857 local->group_power; 4858 } else { 4859 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) / 4860 local->group_power; 4861 } 4862 pwr_move += local->group_power * 4863 min(local->load_per_task, local->avg_load + tmp); 4864 pwr_move /= SCHED_POWER_SCALE; 4865 4866 /* Move if we gain throughput */ 4867 if (pwr_move > pwr_now) 4868 env->imbalance = busiest->load_per_task; 4869 } 4870 4871 /** 4872 * calculate_imbalance - Calculate the amount of imbalance present within the 4873 * groups of a given sched_domain during load balance. 4874 * @env: load balance environment 4875 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 4876 */ 4877 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 4878 { 4879 unsigned long max_pull, load_above_capacity = ~0UL; 4880 struct sg_lb_stats *local, *busiest; 4881 4882 local = &sds->local_stat; 4883 busiest = &sds->busiest_stat; 4884 4885 if (busiest->group_imb) { 4886 /* 4887 * In the group_imb case we cannot rely on group-wide averages 4888 * to ensure cpu-load equilibrium, look at wider averages. XXX 4889 */ 4890 busiest->load_per_task = 4891 min(busiest->load_per_task, sds->avg_load); 4892 } 4893 4894 /* 4895 * In the presence of smp nice balancing, certain scenarios can have 4896 * max load less than avg load(as we skip the groups at or below 4897 * its cpu_power, while calculating max_load..) 4898 */ 4899 if (busiest->avg_load <= sds->avg_load || 4900 local->avg_load >= sds->avg_load) { 4901 env->imbalance = 0; 4902 return fix_small_imbalance(env, sds); 4903 } 4904 4905 if (!busiest->group_imb) { 4906 /* 4907 * Don't want to pull so many tasks that a group would go idle. 4908 * Except of course for the group_imb case, since then we might 4909 * have to drop below capacity to reach cpu-load equilibrium. 4910 */ 4911 load_above_capacity = 4912 (busiest->sum_nr_running - busiest->group_capacity); 4913 4914 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE); 4915 load_above_capacity /= busiest->group_power; 4916 } 4917 4918 /* 4919 * We're trying to get all the cpus to the average_load, so we don't 4920 * want to push ourselves above the average load, nor do we wish to 4921 * reduce the max loaded cpu below the average load. At the same time, 4922 * we also don't want to reduce the group load below the group capacity 4923 * (so that we can implement power-savings policies etc). Thus we look 4924 * for the minimum possible imbalance. 4925 */ 4926 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 4927 4928 /* How much load to actually move to equalise the imbalance */ 4929 env->imbalance = min( 4930 max_pull * busiest->group_power, 4931 (sds->avg_load - local->avg_load) * local->group_power 4932 ) / SCHED_POWER_SCALE; 4933 4934 /* 4935 * if *imbalance is less than the average load per runnable task 4936 * there is no guarantee that any tasks will be moved so we'll have 4937 * a think about bumping its value to force at least one task to be 4938 * moved 4939 */ 4940 if (env->imbalance < busiest->load_per_task) 4941 return fix_small_imbalance(env, sds); 4942 } 4943 4944 /******* find_busiest_group() helpers end here *********************/ 4945 4946 /** 4947 * find_busiest_group - Returns the busiest group within the sched_domain 4948 * if there is an imbalance. If there isn't an imbalance, and 4949 * the user has opted for power-savings, it returns a group whose 4950 * CPUs can be put to idle by rebalancing those tasks elsewhere, if 4951 * such a group exists. 4952 * 4953 * Also calculates the amount of weighted load which should be moved 4954 * to restore balance. 4955 * 4956 * @env: The load balancing environment. 4957 * 4958 * Return: - The busiest group if imbalance exists. 4959 * - If no imbalance and user has opted for power-savings balance, 4960 * return the least loaded group whose CPUs can be 4961 * put to idle by rebalancing its tasks onto our group. 4962 */ 4963 static struct sched_group *find_busiest_group(struct lb_env *env) 4964 { 4965 struct sg_lb_stats *local, *busiest; 4966 struct sd_lb_stats sds; 4967 4968 init_sd_lb_stats(&sds); 4969 4970 /* 4971 * Compute the various statistics relavent for load balancing at 4972 * this level. 4973 */ 4974 update_sd_lb_stats(env, &sds); 4975 local = &sds.local_stat; 4976 busiest = &sds.busiest_stat; 4977 4978 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) && 4979 check_asym_packing(env, &sds)) 4980 return sds.busiest; 4981 4982 /* There is no busy sibling group to pull tasks from */ 4983 if (!sds.busiest || busiest->sum_nr_running == 0) 4984 goto out_balanced; 4985 4986 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr; 4987 4988 /* 4989 * If the busiest group is imbalanced the below checks don't 4990 * work because they assume all things are equal, which typically 4991 * isn't true due to cpus_allowed constraints and the like. 4992 */ 4993 if (busiest->group_imb) 4994 goto force_balance; 4995 4996 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 4997 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity && 4998 !busiest->group_has_capacity) 4999 goto force_balance; 5000 5001 /* 5002 * If the local group is more busy than the selected busiest group 5003 * don't try and pull any tasks. 5004 */ 5005 if (local->avg_load >= busiest->avg_load) 5006 goto out_balanced; 5007 5008 /* 5009 * Don't pull any tasks if this group is already above the domain 5010 * average load. 5011 */ 5012 if (local->avg_load >= sds.avg_load) 5013 goto out_balanced; 5014 5015 if (env->idle == CPU_IDLE) { 5016 /* 5017 * This cpu is idle. If the busiest group load doesn't 5018 * have more tasks than the number of available cpu's and 5019 * there is no imbalance between this and busiest group 5020 * wrt to idle cpu's, it is balanced. 5021 */ 5022 if ((local->idle_cpus < busiest->idle_cpus) && 5023 busiest->sum_nr_running <= busiest->group_weight) 5024 goto out_balanced; 5025 } else { 5026 /* 5027 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 5028 * imbalance_pct to be conservative. 5029 */ 5030 if (100 * busiest->avg_load <= 5031 env->sd->imbalance_pct * local->avg_load) 5032 goto out_balanced; 5033 } 5034 5035 force_balance: 5036 /* Looks like there is an imbalance. Compute it */ 5037 calculate_imbalance(env, &sds); 5038 return sds.busiest; 5039 5040 out_balanced: 5041 env->imbalance = 0; 5042 return NULL; 5043 } 5044 5045 /* 5046 * find_busiest_queue - find the busiest runqueue among the cpus in group. 5047 */ 5048 static struct rq *find_busiest_queue(struct lb_env *env, 5049 struct sched_group *group) 5050 { 5051 struct rq *busiest = NULL, *rq; 5052 unsigned long busiest_load = 0, busiest_power = 1; 5053 int i; 5054 5055 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 5056 unsigned long power = power_of(i); 5057 unsigned long capacity = DIV_ROUND_CLOSEST(power, 5058 SCHED_POWER_SCALE); 5059 unsigned long wl; 5060 5061 if (!capacity) 5062 capacity = fix_small_capacity(env->sd, group); 5063 5064 rq = cpu_rq(i); 5065 wl = weighted_cpuload(i); 5066 5067 /* 5068 * When comparing with imbalance, use weighted_cpuload() 5069 * which is not scaled with the cpu power. 5070 */ 5071 if (capacity && rq->nr_running == 1 && wl > env->imbalance) 5072 continue; 5073 5074 /* 5075 * For the load comparisons with the other cpu's, consider 5076 * the weighted_cpuload() scaled with the cpu power, so that 5077 * the load can be moved away from the cpu that is potentially 5078 * running at a lower capacity. 5079 * 5080 * Thus we're looking for max(wl_i / power_i), crosswise 5081 * multiplication to rid ourselves of the division works out 5082 * to: wl_i * power_j > wl_j * power_i; where j is our 5083 * previous maximum. 5084 */ 5085 if (wl * busiest_power > busiest_load * power) { 5086 busiest_load = wl; 5087 busiest_power = power; 5088 busiest = rq; 5089 } 5090 } 5091 5092 return busiest; 5093 } 5094 5095 /* 5096 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 5097 * so long as it is large enough. 5098 */ 5099 #define MAX_PINNED_INTERVAL 512 5100 5101 /* Working cpumask for load_balance and load_balance_newidle. */ 5102 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5103 5104 static int need_active_balance(struct lb_env *env) 5105 { 5106 struct sched_domain *sd = env->sd; 5107 5108 if (env->idle == CPU_NEWLY_IDLE) { 5109 5110 /* 5111 * ASYM_PACKING needs to force migrate tasks from busy but 5112 * higher numbered CPUs in order to pack all tasks in the 5113 * lowest numbered CPUs. 5114 */ 5115 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) 5116 return 1; 5117 } 5118 5119 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 5120 } 5121 5122 static int active_load_balance_cpu_stop(void *data); 5123 5124 static int should_we_balance(struct lb_env *env) 5125 { 5126 struct sched_group *sg = env->sd->groups; 5127 struct cpumask *sg_cpus, *sg_mask; 5128 int cpu, balance_cpu = -1; 5129 5130 /* 5131 * In the newly idle case, we will allow all the cpu's 5132 * to do the newly idle load balance. 5133 */ 5134 if (env->idle == CPU_NEWLY_IDLE) 5135 return 1; 5136 5137 sg_cpus = sched_group_cpus(sg); 5138 sg_mask = sched_group_mask(sg); 5139 /* Try to find first idle cpu */ 5140 for_each_cpu_and(cpu, sg_cpus, env->cpus) { 5141 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) 5142 continue; 5143 5144 balance_cpu = cpu; 5145 break; 5146 } 5147 5148 if (balance_cpu == -1) 5149 balance_cpu = group_balance_cpu(sg); 5150 5151 /* 5152 * First idle cpu or the first cpu(busiest) in this sched group 5153 * is eligible for doing load balancing at this and above domains. 5154 */ 5155 return balance_cpu == env->dst_cpu; 5156 } 5157 5158 /* 5159 * Check this_cpu to ensure it is balanced within domain. Attempt to move 5160 * tasks if there is an imbalance. 5161 */ 5162 static int load_balance(int this_cpu, struct rq *this_rq, 5163 struct sched_domain *sd, enum cpu_idle_type idle, 5164 int *continue_balancing) 5165 { 5166 int ld_moved, cur_ld_moved, active_balance = 0; 5167 struct sched_group *group; 5168 struct rq *busiest; 5169 unsigned long flags; 5170 struct cpumask *cpus = __get_cpu_var(load_balance_mask); 5171 5172 struct lb_env env = { 5173 .sd = sd, 5174 .dst_cpu = this_cpu, 5175 .dst_rq = this_rq, 5176 .dst_grpmask = sched_group_cpus(sd->groups), 5177 .idle = idle, 5178 .loop_break = sched_nr_migrate_break, 5179 .cpus = cpus, 5180 }; 5181 5182 /* 5183 * For NEWLY_IDLE load_balancing, we don't need to consider 5184 * other cpus in our group 5185 */ 5186 if (idle == CPU_NEWLY_IDLE) 5187 env.dst_grpmask = NULL; 5188 5189 cpumask_copy(cpus, cpu_active_mask); 5190 5191 schedstat_inc(sd, lb_count[idle]); 5192 5193 redo: 5194 if (!should_we_balance(&env)) { 5195 *continue_balancing = 0; 5196 goto out_balanced; 5197 } 5198 5199 group = find_busiest_group(&env); 5200 if (!group) { 5201 schedstat_inc(sd, lb_nobusyg[idle]); 5202 goto out_balanced; 5203 } 5204 5205 busiest = find_busiest_queue(&env, group); 5206 if (!busiest) { 5207 schedstat_inc(sd, lb_nobusyq[idle]); 5208 goto out_balanced; 5209 } 5210 5211 BUG_ON(busiest == env.dst_rq); 5212 5213 schedstat_add(sd, lb_imbalance[idle], env.imbalance); 5214 5215 ld_moved = 0; 5216 if (busiest->nr_running > 1) { 5217 /* 5218 * Attempt to move tasks. If find_busiest_group has found 5219 * an imbalance but busiest->nr_running <= 1, the group is 5220 * still unbalanced. ld_moved simply stays zero, so it is 5221 * correctly treated as an imbalance. 5222 */ 5223 env.flags |= LBF_ALL_PINNED; 5224 env.src_cpu = busiest->cpu; 5225 env.src_rq = busiest; 5226 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 5227 5228 more_balance: 5229 local_irq_save(flags); 5230 double_rq_lock(env.dst_rq, busiest); 5231 5232 /* 5233 * cur_ld_moved - load moved in current iteration 5234 * ld_moved - cumulative load moved across iterations 5235 */ 5236 cur_ld_moved = move_tasks(&env); 5237 ld_moved += cur_ld_moved; 5238 double_rq_unlock(env.dst_rq, busiest); 5239 local_irq_restore(flags); 5240 5241 /* 5242 * some other cpu did the load balance for us. 5243 */ 5244 if (cur_ld_moved && env.dst_cpu != smp_processor_id()) 5245 resched_cpu(env.dst_cpu); 5246 5247 if (env.flags & LBF_NEED_BREAK) { 5248 env.flags &= ~LBF_NEED_BREAK; 5249 goto more_balance; 5250 } 5251 5252 /* 5253 * Revisit (affine) tasks on src_cpu that couldn't be moved to 5254 * us and move them to an alternate dst_cpu in our sched_group 5255 * where they can run. The upper limit on how many times we 5256 * iterate on same src_cpu is dependent on number of cpus in our 5257 * sched_group. 5258 * 5259 * This changes load balance semantics a bit on who can move 5260 * load to a given_cpu. In addition to the given_cpu itself 5261 * (or a ilb_cpu acting on its behalf where given_cpu is 5262 * nohz-idle), we now have balance_cpu in a position to move 5263 * load to given_cpu. In rare situations, this may cause 5264 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 5265 * _independently_ and at _same_ time to move some load to 5266 * given_cpu) causing exceess load to be moved to given_cpu. 5267 * This however should not happen so much in practice and 5268 * moreover subsequent load balance cycles should correct the 5269 * excess load moved. 5270 */ 5271 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) { 5272 5273 env.dst_rq = cpu_rq(env.new_dst_cpu); 5274 env.dst_cpu = env.new_dst_cpu; 5275 env.flags &= ~LBF_SOME_PINNED; 5276 env.loop = 0; 5277 env.loop_break = sched_nr_migrate_break; 5278 5279 /* Prevent to re-select dst_cpu via env's cpus */ 5280 cpumask_clear_cpu(env.dst_cpu, env.cpus); 5281 5282 /* 5283 * Go back to "more_balance" rather than "redo" since we 5284 * need to continue with same src_cpu. 5285 */ 5286 goto more_balance; 5287 } 5288 5289 /* All tasks on this runqueue were pinned by CPU affinity */ 5290 if (unlikely(env.flags & LBF_ALL_PINNED)) { 5291 cpumask_clear_cpu(cpu_of(busiest), cpus); 5292 if (!cpumask_empty(cpus)) { 5293 env.loop = 0; 5294 env.loop_break = sched_nr_migrate_break; 5295 goto redo; 5296 } 5297 goto out_balanced; 5298 } 5299 } 5300 5301 if (!ld_moved) { 5302 schedstat_inc(sd, lb_failed[idle]); 5303 /* 5304 * Increment the failure counter only on periodic balance. 5305 * We do not want newidle balance, which can be very 5306 * frequent, pollute the failure counter causing 5307 * excessive cache_hot migrations and active balances. 5308 */ 5309 if (idle != CPU_NEWLY_IDLE) 5310 sd->nr_balance_failed++; 5311 5312 if (need_active_balance(&env)) { 5313 raw_spin_lock_irqsave(&busiest->lock, flags); 5314 5315 /* don't kick the active_load_balance_cpu_stop, 5316 * if the curr task on busiest cpu can't be 5317 * moved to this_cpu 5318 */ 5319 if (!cpumask_test_cpu(this_cpu, 5320 tsk_cpus_allowed(busiest->curr))) { 5321 raw_spin_unlock_irqrestore(&busiest->lock, 5322 flags); 5323 env.flags |= LBF_ALL_PINNED; 5324 goto out_one_pinned; 5325 } 5326 5327 /* 5328 * ->active_balance synchronizes accesses to 5329 * ->active_balance_work. Once set, it's cleared 5330 * only after active load balance is finished. 5331 */ 5332 if (!busiest->active_balance) { 5333 busiest->active_balance = 1; 5334 busiest->push_cpu = this_cpu; 5335 active_balance = 1; 5336 } 5337 raw_spin_unlock_irqrestore(&busiest->lock, flags); 5338 5339 if (active_balance) { 5340 stop_one_cpu_nowait(cpu_of(busiest), 5341 active_load_balance_cpu_stop, busiest, 5342 &busiest->active_balance_work); 5343 } 5344 5345 /* 5346 * We've kicked active balancing, reset the failure 5347 * counter. 5348 */ 5349 sd->nr_balance_failed = sd->cache_nice_tries+1; 5350 } 5351 } else 5352 sd->nr_balance_failed = 0; 5353 5354 if (likely(!active_balance)) { 5355 /* We were unbalanced, so reset the balancing interval */ 5356 sd->balance_interval = sd->min_interval; 5357 } else { 5358 /* 5359 * If we've begun active balancing, start to back off. This 5360 * case may not be covered by the all_pinned logic if there 5361 * is only 1 task on the busy runqueue (because we don't call 5362 * move_tasks). 5363 */ 5364 if (sd->balance_interval < sd->max_interval) 5365 sd->balance_interval *= 2; 5366 } 5367 5368 goto out; 5369 5370 out_balanced: 5371 schedstat_inc(sd, lb_balanced[idle]); 5372 5373 sd->nr_balance_failed = 0; 5374 5375 out_one_pinned: 5376 /* tune up the balancing interval */ 5377 if (((env.flags & LBF_ALL_PINNED) && 5378 sd->balance_interval < MAX_PINNED_INTERVAL) || 5379 (sd->balance_interval < sd->max_interval)) 5380 sd->balance_interval *= 2; 5381 5382 ld_moved = 0; 5383 out: 5384 return ld_moved; 5385 } 5386 5387 /* 5388 * idle_balance is called by schedule() if this_cpu is about to become 5389 * idle. Attempts to pull tasks from other CPUs. 5390 */ 5391 void idle_balance(int this_cpu, struct rq *this_rq) 5392 { 5393 struct sched_domain *sd; 5394 int pulled_task = 0; 5395 unsigned long next_balance = jiffies + HZ; 5396 5397 this_rq->idle_stamp = rq_clock(this_rq); 5398 5399 if (this_rq->avg_idle < sysctl_sched_migration_cost) 5400 return; 5401 5402 /* 5403 * Drop the rq->lock, but keep IRQ/preempt disabled. 5404 */ 5405 raw_spin_unlock(&this_rq->lock); 5406 5407 update_blocked_averages(this_cpu); 5408 rcu_read_lock(); 5409 for_each_domain(this_cpu, sd) { 5410 unsigned long interval; 5411 int continue_balancing = 1; 5412 5413 if (!(sd->flags & SD_LOAD_BALANCE)) 5414 continue; 5415 5416 if (sd->flags & SD_BALANCE_NEWIDLE) { 5417 /* If we've pulled tasks over stop searching: */ 5418 pulled_task = load_balance(this_cpu, this_rq, 5419 sd, CPU_NEWLY_IDLE, 5420 &continue_balancing); 5421 } 5422 5423 interval = msecs_to_jiffies(sd->balance_interval); 5424 if (time_after(next_balance, sd->last_balance + interval)) 5425 next_balance = sd->last_balance + interval; 5426 if (pulled_task) { 5427 this_rq->idle_stamp = 0; 5428 break; 5429 } 5430 } 5431 rcu_read_unlock(); 5432 5433 raw_spin_lock(&this_rq->lock); 5434 5435 if (pulled_task || time_after(jiffies, this_rq->next_balance)) { 5436 /* 5437 * We are going idle. next_balance may be set based on 5438 * a busy processor. So reset next_balance. 5439 */ 5440 this_rq->next_balance = next_balance; 5441 } 5442 } 5443 5444 /* 5445 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 5446 * running tasks off the busiest CPU onto idle CPUs. It requires at 5447 * least 1 task to be running on each physical CPU where possible, and 5448 * avoids physical / logical imbalances. 5449 */ 5450 static int active_load_balance_cpu_stop(void *data) 5451 { 5452 struct rq *busiest_rq = data; 5453 int busiest_cpu = cpu_of(busiest_rq); 5454 int target_cpu = busiest_rq->push_cpu; 5455 struct rq *target_rq = cpu_rq(target_cpu); 5456 struct sched_domain *sd; 5457 5458 raw_spin_lock_irq(&busiest_rq->lock); 5459 5460 /* make sure the requested cpu hasn't gone down in the meantime */ 5461 if (unlikely(busiest_cpu != smp_processor_id() || 5462 !busiest_rq->active_balance)) 5463 goto out_unlock; 5464 5465 /* Is there any task to move? */ 5466 if (busiest_rq->nr_running <= 1) 5467 goto out_unlock; 5468 5469 /* 5470 * This condition is "impossible", if it occurs 5471 * we need to fix it. Originally reported by 5472 * Bjorn Helgaas on a 128-cpu setup. 5473 */ 5474 BUG_ON(busiest_rq == target_rq); 5475 5476 /* move a task from busiest_rq to target_rq */ 5477 double_lock_balance(busiest_rq, target_rq); 5478 5479 /* Search for an sd spanning us and the target CPU. */ 5480 rcu_read_lock(); 5481 for_each_domain(target_cpu, sd) { 5482 if ((sd->flags & SD_LOAD_BALANCE) && 5483 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 5484 break; 5485 } 5486 5487 if (likely(sd)) { 5488 struct lb_env env = { 5489 .sd = sd, 5490 .dst_cpu = target_cpu, 5491 .dst_rq = target_rq, 5492 .src_cpu = busiest_rq->cpu, 5493 .src_rq = busiest_rq, 5494 .idle = CPU_IDLE, 5495 }; 5496 5497 schedstat_inc(sd, alb_count); 5498 5499 if (move_one_task(&env)) 5500 schedstat_inc(sd, alb_pushed); 5501 else 5502 schedstat_inc(sd, alb_failed); 5503 } 5504 rcu_read_unlock(); 5505 double_unlock_balance(busiest_rq, target_rq); 5506 out_unlock: 5507 busiest_rq->active_balance = 0; 5508 raw_spin_unlock_irq(&busiest_rq->lock); 5509 return 0; 5510 } 5511 5512 #ifdef CONFIG_NO_HZ_COMMON 5513 /* 5514 * idle load balancing details 5515 * - When one of the busy CPUs notice that there may be an idle rebalancing 5516 * needed, they will kick the idle load balancer, which then does idle 5517 * load balancing for all the idle CPUs. 5518 */ 5519 static struct { 5520 cpumask_var_t idle_cpus_mask; 5521 atomic_t nr_cpus; 5522 unsigned long next_balance; /* in jiffy units */ 5523 } nohz ____cacheline_aligned; 5524 5525 static inline int find_new_ilb(int call_cpu) 5526 { 5527 int ilb = cpumask_first(nohz.idle_cpus_mask); 5528 5529 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 5530 return ilb; 5531 5532 return nr_cpu_ids; 5533 } 5534 5535 /* 5536 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 5537 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 5538 * CPU (if there is one). 5539 */ 5540 static void nohz_balancer_kick(int cpu) 5541 { 5542 int ilb_cpu; 5543 5544 nohz.next_balance++; 5545 5546 ilb_cpu = find_new_ilb(cpu); 5547 5548 if (ilb_cpu >= nr_cpu_ids) 5549 return; 5550 5551 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 5552 return; 5553 /* 5554 * Use smp_send_reschedule() instead of resched_cpu(). 5555 * This way we generate a sched IPI on the target cpu which 5556 * is idle. And the softirq performing nohz idle load balance 5557 * will be run before returning from the IPI. 5558 */ 5559 smp_send_reschedule(ilb_cpu); 5560 return; 5561 } 5562 5563 static inline void nohz_balance_exit_idle(int cpu) 5564 { 5565 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 5566 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 5567 atomic_dec(&nohz.nr_cpus); 5568 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 5569 } 5570 } 5571 5572 static inline void set_cpu_sd_state_busy(void) 5573 { 5574 struct sched_domain *sd; 5575 5576 rcu_read_lock(); 5577 sd = rcu_dereference_check_sched_domain(this_rq()->sd); 5578 5579 if (!sd || !sd->nohz_idle) 5580 goto unlock; 5581 sd->nohz_idle = 0; 5582 5583 for (; sd; sd = sd->parent) 5584 atomic_inc(&sd->groups->sgp->nr_busy_cpus); 5585 unlock: 5586 rcu_read_unlock(); 5587 } 5588 5589 void set_cpu_sd_state_idle(void) 5590 { 5591 struct sched_domain *sd; 5592 5593 rcu_read_lock(); 5594 sd = rcu_dereference_check_sched_domain(this_rq()->sd); 5595 5596 if (!sd || sd->nohz_idle) 5597 goto unlock; 5598 sd->nohz_idle = 1; 5599 5600 for (; sd; sd = sd->parent) 5601 atomic_dec(&sd->groups->sgp->nr_busy_cpus); 5602 unlock: 5603 rcu_read_unlock(); 5604 } 5605 5606 /* 5607 * This routine will record that the cpu is going idle with tick stopped. 5608 * This info will be used in performing idle load balancing in the future. 5609 */ 5610 void nohz_balance_enter_idle(int cpu) 5611 { 5612 /* 5613 * If this cpu is going down, then nothing needs to be done. 5614 */ 5615 if (!cpu_active(cpu)) 5616 return; 5617 5618 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 5619 return; 5620 5621 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 5622 atomic_inc(&nohz.nr_cpus); 5623 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 5624 } 5625 5626 static int sched_ilb_notifier(struct notifier_block *nfb, 5627 unsigned long action, void *hcpu) 5628 { 5629 switch (action & ~CPU_TASKS_FROZEN) { 5630 case CPU_DYING: 5631 nohz_balance_exit_idle(smp_processor_id()); 5632 return NOTIFY_OK; 5633 default: 5634 return NOTIFY_DONE; 5635 } 5636 } 5637 #endif 5638 5639 static DEFINE_SPINLOCK(balancing); 5640 5641 /* 5642 * Scale the max load_balance interval with the number of CPUs in the system. 5643 * This trades load-balance latency on larger machines for less cross talk. 5644 */ 5645 void update_max_interval(void) 5646 { 5647 max_load_balance_interval = HZ*num_online_cpus()/10; 5648 } 5649 5650 /* 5651 * It checks each scheduling domain to see if it is due to be balanced, 5652 * and initiates a balancing operation if so. 5653 * 5654 * Balancing parameters are set up in init_sched_domains. 5655 */ 5656 static void rebalance_domains(int cpu, enum cpu_idle_type idle) 5657 { 5658 int continue_balancing = 1; 5659 struct rq *rq = cpu_rq(cpu); 5660 unsigned long interval; 5661 struct sched_domain *sd; 5662 /* Earliest time when we have to do rebalance again */ 5663 unsigned long next_balance = jiffies + 60*HZ; 5664 int update_next_balance = 0; 5665 int need_serialize; 5666 5667 update_blocked_averages(cpu); 5668 5669 rcu_read_lock(); 5670 for_each_domain(cpu, sd) { 5671 if (!(sd->flags & SD_LOAD_BALANCE)) 5672 continue; 5673 5674 interval = sd->balance_interval; 5675 if (idle != CPU_IDLE) 5676 interval *= sd->busy_factor; 5677 5678 /* scale ms to jiffies */ 5679 interval = msecs_to_jiffies(interval); 5680 interval = clamp(interval, 1UL, max_load_balance_interval); 5681 5682 need_serialize = sd->flags & SD_SERIALIZE; 5683 5684 if (need_serialize) { 5685 if (!spin_trylock(&balancing)) 5686 goto out; 5687 } 5688 5689 if (time_after_eq(jiffies, sd->last_balance + interval)) { 5690 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 5691 /* 5692 * The LBF_SOME_PINNED logic could have changed 5693 * env->dst_cpu, so we can't know our idle 5694 * state even if we migrated tasks. Update it. 5695 */ 5696 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 5697 } 5698 sd->last_balance = jiffies; 5699 } 5700 if (need_serialize) 5701 spin_unlock(&balancing); 5702 out: 5703 if (time_after(next_balance, sd->last_balance + interval)) { 5704 next_balance = sd->last_balance + interval; 5705 update_next_balance = 1; 5706 } 5707 5708 /* 5709 * Stop the load balance at this level. There is another 5710 * CPU in our sched group which is doing load balancing more 5711 * actively. 5712 */ 5713 if (!continue_balancing) 5714 break; 5715 } 5716 rcu_read_unlock(); 5717 5718 /* 5719 * next_balance will be updated only when there is a need. 5720 * When the cpu is attached to null domain for ex, it will not be 5721 * updated. 5722 */ 5723 if (likely(update_next_balance)) 5724 rq->next_balance = next_balance; 5725 } 5726 5727 #ifdef CONFIG_NO_HZ_COMMON 5728 /* 5729 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 5730 * rebalancing for all the cpus for whom scheduler ticks are stopped. 5731 */ 5732 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) 5733 { 5734 struct rq *this_rq = cpu_rq(this_cpu); 5735 struct rq *rq; 5736 int balance_cpu; 5737 5738 if (idle != CPU_IDLE || 5739 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 5740 goto end; 5741 5742 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 5743 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 5744 continue; 5745 5746 /* 5747 * If this cpu gets work to do, stop the load balancing 5748 * work being done for other cpus. Next load 5749 * balancing owner will pick it up. 5750 */ 5751 if (need_resched()) 5752 break; 5753 5754 rq = cpu_rq(balance_cpu); 5755 5756 raw_spin_lock_irq(&rq->lock); 5757 update_rq_clock(rq); 5758 update_idle_cpu_load(rq); 5759 raw_spin_unlock_irq(&rq->lock); 5760 5761 rebalance_domains(balance_cpu, CPU_IDLE); 5762 5763 if (time_after(this_rq->next_balance, rq->next_balance)) 5764 this_rq->next_balance = rq->next_balance; 5765 } 5766 nohz.next_balance = this_rq->next_balance; 5767 end: 5768 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 5769 } 5770 5771 /* 5772 * Current heuristic for kicking the idle load balancer in the presence 5773 * of an idle cpu is the system. 5774 * - This rq has more than one task. 5775 * - At any scheduler domain level, this cpu's scheduler group has multiple 5776 * busy cpu's exceeding the group's power. 5777 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 5778 * domain span are idle. 5779 */ 5780 static inline int nohz_kick_needed(struct rq *rq, int cpu) 5781 { 5782 unsigned long now = jiffies; 5783 struct sched_domain *sd; 5784 5785 if (unlikely(idle_cpu(cpu))) 5786 return 0; 5787 5788 /* 5789 * We may be recently in ticked or tickless idle mode. At the first 5790 * busy tick after returning from idle, we will update the busy stats. 5791 */ 5792 set_cpu_sd_state_busy(); 5793 nohz_balance_exit_idle(cpu); 5794 5795 /* 5796 * None are in tickless mode and hence no need for NOHZ idle load 5797 * balancing. 5798 */ 5799 if (likely(!atomic_read(&nohz.nr_cpus))) 5800 return 0; 5801 5802 if (time_before(now, nohz.next_balance)) 5803 return 0; 5804 5805 if (rq->nr_running >= 2) 5806 goto need_kick; 5807 5808 rcu_read_lock(); 5809 for_each_domain(cpu, sd) { 5810 struct sched_group *sg = sd->groups; 5811 struct sched_group_power *sgp = sg->sgp; 5812 int nr_busy = atomic_read(&sgp->nr_busy_cpus); 5813 5814 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1) 5815 goto need_kick_unlock; 5816 5817 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight 5818 && (cpumask_first_and(nohz.idle_cpus_mask, 5819 sched_domain_span(sd)) < cpu)) 5820 goto need_kick_unlock; 5821 5822 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING))) 5823 break; 5824 } 5825 rcu_read_unlock(); 5826 return 0; 5827 5828 need_kick_unlock: 5829 rcu_read_unlock(); 5830 need_kick: 5831 return 1; 5832 } 5833 #else 5834 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { } 5835 #endif 5836 5837 /* 5838 * run_rebalance_domains is triggered when needed from the scheduler tick. 5839 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 5840 */ 5841 static void run_rebalance_domains(struct softirq_action *h) 5842 { 5843 int this_cpu = smp_processor_id(); 5844 struct rq *this_rq = cpu_rq(this_cpu); 5845 enum cpu_idle_type idle = this_rq->idle_balance ? 5846 CPU_IDLE : CPU_NOT_IDLE; 5847 5848 rebalance_domains(this_cpu, idle); 5849 5850 /* 5851 * If this cpu has a pending nohz_balance_kick, then do the 5852 * balancing on behalf of the other idle cpus whose ticks are 5853 * stopped. 5854 */ 5855 nohz_idle_balance(this_cpu, idle); 5856 } 5857 5858 static inline int on_null_domain(int cpu) 5859 { 5860 return !rcu_dereference_sched(cpu_rq(cpu)->sd); 5861 } 5862 5863 /* 5864 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 5865 */ 5866 void trigger_load_balance(struct rq *rq, int cpu) 5867 { 5868 /* Don't need to rebalance while attached to NULL domain */ 5869 if (time_after_eq(jiffies, rq->next_balance) && 5870 likely(!on_null_domain(cpu))) 5871 raise_softirq(SCHED_SOFTIRQ); 5872 #ifdef CONFIG_NO_HZ_COMMON 5873 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu))) 5874 nohz_balancer_kick(cpu); 5875 #endif 5876 } 5877 5878 static void rq_online_fair(struct rq *rq) 5879 { 5880 update_sysctl(); 5881 } 5882 5883 static void rq_offline_fair(struct rq *rq) 5884 { 5885 update_sysctl(); 5886 5887 /* Ensure any throttled groups are reachable by pick_next_task */ 5888 unthrottle_offline_cfs_rqs(rq); 5889 } 5890 5891 #endif /* CONFIG_SMP */ 5892 5893 /* 5894 * scheduler tick hitting a task of our scheduling class: 5895 */ 5896 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 5897 { 5898 struct cfs_rq *cfs_rq; 5899 struct sched_entity *se = &curr->se; 5900 5901 for_each_sched_entity(se) { 5902 cfs_rq = cfs_rq_of(se); 5903 entity_tick(cfs_rq, se, queued); 5904 } 5905 5906 if (numabalancing_enabled) 5907 task_tick_numa(rq, curr); 5908 5909 update_rq_runnable_avg(rq, 1); 5910 } 5911 5912 /* 5913 * called on fork with the child task as argument from the parent's context 5914 * - child not yet on the tasklist 5915 * - preemption disabled 5916 */ 5917 static void task_fork_fair(struct task_struct *p) 5918 { 5919 struct cfs_rq *cfs_rq; 5920 struct sched_entity *se = &p->se, *curr; 5921 int this_cpu = smp_processor_id(); 5922 struct rq *rq = this_rq(); 5923 unsigned long flags; 5924 5925 raw_spin_lock_irqsave(&rq->lock, flags); 5926 5927 update_rq_clock(rq); 5928 5929 cfs_rq = task_cfs_rq(current); 5930 curr = cfs_rq->curr; 5931 5932 /* 5933 * Not only the cpu but also the task_group of the parent might have 5934 * been changed after parent->se.parent,cfs_rq were copied to 5935 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those 5936 * of child point to valid ones. 5937 */ 5938 rcu_read_lock(); 5939 __set_task_cpu(p, this_cpu); 5940 rcu_read_unlock(); 5941 5942 update_curr(cfs_rq); 5943 5944 if (curr) 5945 se->vruntime = curr->vruntime; 5946 place_entity(cfs_rq, se, 1); 5947 5948 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 5949 /* 5950 * Upon rescheduling, sched_class::put_prev_task() will place 5951 * 'current' within the tree based on its new key value. 5952 */ 5953 swap(curr->vruntime, se->vruntime); 5954 resched_task(rq->curr); 5955 } 5956 5957 se->vruntime -= cfs_rq->min_vruntime; 5958 5959 raw_spin_unlock_irqrestore(&rq->lock, flags); 5960 } 5961 5962 /* 5963 * Priority of the task has changed. Check to see if we preempt 5964 * the current task. 5965 */ 5966 static void 5967 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 5968 { 5969 if (!p->se.on_rq) 5970 return; 5971 5972 /* 5973 * Reschedule if we are currently running on this runqueue and 5974 * our priority decreased, or if we are not currently running on 5975 * this runqueue and our priority is higher than the current's 5976 */ 5977 if (rq->curr == p) { 5978 if (p->prio > oldprio) 5979 resched_task(rq->curr); 5980 } else 5981 check_preempt_curr(rq, p, 0); 5982 } 5983 5984 static void switched_from_fair(struct rq *rq, struct task_struct *p) 5985 { 5986 struct sched_entity *se = &p->se; 5987 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5988 5989 /* 5990 * Ensure the task's vruntime is normalized, so that when its 5991 * switched back to the fair class the enqueue_entity(.flags=0) will 5992 * do the right thing. 5993 * 5994 * If it was on_rq, then the dequeue_entity(.flags=0) will already 5995 * have normalized the vruntime, if it was !on_rq, then only when 5996 * the task is sleeping will it still have non-normalized vruntime. 5997 */ 5998 if (!se->on_rq && p->state != TASK_RUNNING) { 5999 /* 6000 * Fix up our vruntime so that the current sleep doesn't 6001 * cause 'unlimited' sleep bonus. 6002 */ 6003 place_entity(cfs_rq, se, 0); 6004 se->vruntime -= cfs_rq->min_vruntime; 6005 } 6006 6007 #ifdef CONFIG_SMP 6008 /* 6009 * Remove our load from contribution when we leave sched_fair 6010 * and ensure we don't carry in an old decay_count if we 6011 * switch back. 6012 */ 6013 if (se->avg.decay_count) { 6014 __synchronize_entity_decay(se); 6015 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); 6016 } 6017 #endif 6018 } 6019 6020 /* 6021 * We switched to the sched_fair class. 6022 */ 6023 static void switched_to_fair(struct rq *rq, struct task_struct *p) 6024 { 6025 if (!p->se.on_rq) 6026 return; 6027 6028 /* 6029 * We were most likely switched from sched_rt, so 6030 * kick off the schedule if running, otherwise just see 6031 * if we can still preempt the current task. 6032 */ 6033 if (rq->curr == p) 6034 resched_task(rq->curr); 6035 else 6036 check_preempt_curr(rq, p, 0); 6037 } 6038 6039 /* Account for a task changing its policy or group. 6040 * 6041 * This routine is mostly called to set cfs_rq->curr field when a task 6042 * migrates between groups/classes. 6043 */ 6044 static void set_curr_task_fair(struct rq *rq) 6045 { 6046 struct sched_entity *se = &rq->curr->se; 6047 6048 for_each_sched_entity(se) { 6049 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6050 6051 set_next_entity(cfs_rq, se); 6052 /* ensure bandwidth has been allocated on our new cfs_rq */ 6053 account_cfs_rq_runtime(cfs_rq, 0); 6054 } 6055 } 6056 6057 void init_cfs_rq(struct cfs_rq *cfs_rq) 6058 { 6059 cfs_rq->tasks_timeline = RB_ROOT; 6060 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 6061 #ifndef CONFIG_64BIT 6062 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 6063 #endif 6064 #ifdef CONFIG_SMP 6065 atomic64_set(&cfs_rq->decay_counter, 1); 6066 atomic_long_set(&cfs_rq->removed_load, 0); 6067 #endif 6068 } 6069 6070 #ifdef CONFIG_FAIR_GROUP_SCHED 6071 static void task_move_group_fair(struct task_struct *p, int on_rq) 6072 { 6073 struct cfs_rq *cfs_rq; 6074 /* 6075 * If the task was not on the rq at the time of this cgroup movement 6076 * it must have been asleep, sleeping tasks keep their ->vruntime 6077 * absolute on their old rq until wakeup (needed for the fair sleeper 6078 * bonus in place_entity()). 6079 * 6080 * If it was on the rq, we've just 'preempted' it, which does convert 6081 * ->vruntime to a relative base. 6082 * 6083 * Make sure both cases convert their relative position when migrating 6084 * to another cgroup's rq. This does somewhat interfere with the 6085 * fair sleeper stuff for the first placement, but who cares. 6086 */ 6087 /* 6088 * When !on_rq, vruntime of the task has usually NOT been normalized. 6089 * But there are some cases where it has already been normalized: 6090 * 6091 * - Moving a forked child which is waiting for being woken up by 6092 * wake_up_new_task(). 6093 * - Moving a task which has been woken up by try_to_wake_up() and 6094 * waiting for actually being woken up by sched_ttwu_pending(). 6095 * 6096 * To prevent boost or penalty in the new cfs_rq caused by delta 6097 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. 6098 */ 6099 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING)) 6100 on_rq = 1; 6101 6102 if (!on_rq) 6103 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime; 6104 set_task_rq(p, task_cpu(p)); 6105 if (!on_rq) { 6106 cfs_rq = cfs_rq_of(&p->se); 6107 p->se.vruntime += cfs_rq->min_vruntime; 6108 #ifdef CONFIG_SMP 6109 /* 6110 * migrate_task_rq_fair() will have removed our previous 6111 * contribution, but we must synchronize for ongoing future 6112 * decay. 6113 */ 6114 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 6115 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib; 6116 #endif 6117 } 6118 } 6119 6120 void free_fair_sched_group(struct task_group *tg) 6121 { 6122 int i; 6123 6124 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 6125 6126 for_each_possible_cpu(i) { 6127 if (tg->cfs_rq) 6128 kfree(tg->cfs_rq[i]); 6129 if (tg->se) 6130 kfree(tg->se[i]); 6131 } 6132 6133 kfree(tg->cfs_rq); 6134 kfree(tg->se); 6135 } 6136 6137 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 6138 { 6139 struct cfs_rq *cfs_rq; 6140 struct sched_entity *se; 6141 int i; 6142 6143 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 6144 if (!tg->cfs_rq) 6145 goto err; 6146 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 6147 if (!tg->se) 6148 goto err; 6149 6150 tg->shares = NICE_0_LOAD; 6151 6152 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 6153 6154 for_each_possible_cpu(i) { 6155 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 6156 GFP_KERNEL, cpu_to_node(i)); 6157 if (!cfs_rq) 6158 goto err; 6159 6160 se = kzalloc_node(sizeof(struct sched_entity), 6161 GFP_KERNEL, cpu_to_node(i)); 6162 if (!se) 6163 goto err_free_rq; 6164 6165 init_cfs_rq(cfs_rq); 6166 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 6167 } 6168 6169 return 1; 6170 6171 err_free_rq: 6172 kfree(cfs_rq); 6173 err: 6174 return 0; 6175 } 6176 6177 void unregister_fair_sched_group(struct task_group *tg, int cpu) 6178 { 6179 struct rq *rq = cpu_rq(cpu); 6180 unsigned long flags; 6181 6182 /* 6183 * Only empty task groups can be destroyed; so we can speculatively 6184 * check on_list without danger of it being re-added. 6185 */ 6186 if (!tg->cfs_rq[cpu]->on_list) 6187 return; 6188 6189 raw_spin_lock_irqsave(&rq->lock, flags); 6190 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 6191 raw_spin_unlock_irqrestore(&rq->lock, flags); 6192 } 6193 6194 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 6195 struct sched_entity *se, int cpu, 6196 struct sched_entity *parent) 6197 { 6198 struct rq *rq = cpu_rq(cpu); 6199 6200 cfs_rq->tg = tg; 6201 cfs_rq->rq = rq; 6202 init_cfs_rq_runtime(cfs_rq); 6203 6204 tg->cfs_rq[cpu] = cfs_rq; 6205 tg->se[cpu] = se; 6206 6207 /* se could be NULL for root_task_group */ 6208 if (!se) 6209 return; 6210 6211 if (!parent) 6212 se->cfs_rq = &rq->cfs; 6213 else 6214 se->cfs_rq = parent->my_q; 6215 6216 se->my_q = cfs_rq; 6217 update_load_set(&se->load, 0); 6218 se->parent = parent; 6219 } 6220 6221 static DEFINE_MUTEX(shares_mutex); 6222 6223 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 6224 { 6225 int i; 6226 unsigned long flags; 6227 6228 /* 6229 * We can't change the weight of the root cgroup. 6230 */ 6231 if (!tg->se[0]) 6232 return -EINVAL; 6233 6234 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 6235 6236 mutex_lock(&shares_mutex); 6237 if (tg->shares == shares) 6238 goto done; 6239 6240 tg->shares = shares; 6241 for_each_possible_cpu(i) { 6242 struct rq *rq = cpu_rq(i); 6243 struct sched_entity *se; 6244 6245 se = tg->se[i]; 6246 /* Propagate contribution to hierarchy */ 6247 raw_spin_lock_irqsave(&rq->lock, flags); 6248 6249 /* Possible calls to update_curr() need rq clock */ 6250 update_rq_clock(rq); 6251 for_each_sched_entity(se) 6252 update_cfs_shares(group_cfs_rq(se)); 6253 raw_spin_unlock_irqrestore(&rq->lock, flags); 6254 } 6255 6256 done: 6257 mutex_unlock(&shares_mutex); 6258 return 0; 6259 } 6260 #else /* CONFIG_FAIR_GROUP_SCHED */ 6261 6262 void free_fair_sched_group(struct task_group *tg) { } 6263 6264 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 6265 { 6266 return 1; 6267 } 6268 6269 void unregister_fair_sched_group(struct task_group *tg, int cpu) { } 6270 6271 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6272 6273 6274 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 6275 { 6276 struct sched_entity *se = &task->se; 6277 unsigned int rr_interval = 0; 6278 6279 /* 6280 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 6281 * idle runqueue: 6282 */ 6283 if (rq->cfs.load.weight) 6284 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 6285 6286 return rr_interval; 6287 } 6288 6289 /* 6290 * All the scheduling class methods: 6291 */ 6292 const struct sched_class fair_sched_class = { 6293 .next = &idle_sched_class, 6294 .enqueue_task = enqueue_task_fair, 6295 .dequeue_task = dequeue_task_fair, 6296 .yield_task = yield_task_fair, 6297 .yield_to_task = yield_to_task_fair, 6298 6299 .check_preempt_curr = check_preempt_wakeup, 6300 6301 .pick_next_task = pick_next_task_fair, 6302 .put_prev_task = put_prev_task_fair, 6303 6304 #ifdef CONFIG_SMP 6305 .select_task_rq = select_task_rq_fair, 6306 .migrate_task_rq = migrate_task_rq_fair, 6307 6308 .rq_online = rq_online_fair, 6309 .rq_offline = rq_offline_fair, 6310 6311 .task_waking = task_waking_fair, 6312 #endif 6313 6314 .set_curr_task = set_curr_task_fair, 6315 .task_tick = task_tick_fair, 6316 .task_fork = task_fork_fair, 6317 6318 .prio_changed = prio_changed_fair, 6319 .switched_from = switched_from_fair, 6320 .switched_to = switched_to_fair, 6321 6322 .get_rr_interval = get_rr_interval_fair, 6323 6324 #ifdef CONFIG_FAIR_GROUP_SCHED 6325 .task_move_group = task_move_group_fair, 6326 #endif 6327 }; 6328 6329 #ifdef CONFIG_SCHED_DEBUG 6330 void print_cfs_stats(struct seq_file *m, int cpu) 6331 { 6332 struct cfs_rq *cfs_rq; 6333 6334 rcu_read_lock(); 6335 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 6336 print_cfs_rq(m, cpu, cfs_rq); 6337 rcu_read_unlock(); 6338 } 6339 #endif 6340 6341 __init void init_sched_fair_class(void) 6342 { 6343 #ifdef CONFIG_SMP 6344 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 6345 6346 #ifdef CONFIG_NO_HZ_COMMON 6347 nohz.next_balance = jiffies; 6348 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 6349 cpu_notifier(sched_ilb_notifier, 0); 6350 #endif 6351 #endif /* SMP */ 6352 6353 } 6354