xref: /openbmc/linux/kernel/sched/fair.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 #include <trace/events/sched.h>
26 
27 /*
28  * Targeted preemption latency for CPU-bound tasks:
29  *
30  * NOTE: this latency value is not the same as the concept of
31  * 'timeslice length' - timeslices in CFS are of variable length
32  * and have no persistent notion like in traditional, time-slice
33  * based scheduling concepts.
34  *
35  * (to see the precise effective timeslice length of your workload,
36  *  run vmstat and monitor the context-switches (cs) field)
37  *
38  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39  */
40 unsigned int sysctl_sched_latency			= 6000000ULL;
41 unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
42 
43 /*
44  * The initial- and re-scaling of tunables is configurable
45  *
46  * Options are:
47  *
48  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
49  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51  *
52  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53  */
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55 
56 /*
57  * Minimal preemption granularity for CPU-bound tasks:
58  *
59  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60  */
61 unsigned int sysctl_sched_min_granularity		= 750000ULL;
62 unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 
64 /*
65  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66  */
67 static unsigned int sched_nr_latency = 8;
68 
69 /*
70  * After fork, child runs first. If set to 0 (default) then
71  * parent will (try to) run first.
72  */
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
74 
75 /*
76  * SCHED_OTHER wake-up granularity.
77  *
78  * This option delays the preemption effects of decoupled workloads
79  * and reduces their over-scheduling. Synchronous workloads will still
80  * have immediate wakeup/sleep latencies.
81  *
82  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83  */
84 unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
85 unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 #ifdef CONFIG_SMP
90 /*
91  * For asym packing, by default the lower numbered CPU has higher priority.
92  */
93 int __weak arch_asym_cpu_priority(int cpu)
94 {
95 	return -cpu;
96 }
97 #endif
98 
99 #ifdef CONFIG_CFS_BANDWIDTH
100 /*
101  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102  * each time a cfs_rq requests quota.
103  *
104  * Note: in the case that the slice exceeds the runtime remaining (either due
105  * to consumption or the quota being specified to be smaller than the slice)
106  * we will always only issue the remaining available time.
107  *
108  * (default: 5 msec, units: microseconds)
109  */
110 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
111 #endif
112 
113 /*
114  * The margin used when comparing utilization with CPU capacity:
115  * util * margin < capacity * 1024
116  *
117  * (default: ~20%)
118  */
119 unsigned int capacity_margin				= 1280;
120 
121 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 {
123 	lw->weight += inc;
124 	lw->inv_weight = 0;
125 }
126 
127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 {
129 	lw->weight -= dec;
130 	lw->inv_weight = 0;
131 }
132 
133 static inline void update_load_set(struct load_weight *lw, unsigned long w)
134 {
135 	lw->weight = w;
136 	lw->inv_weight = 0;
137 }
138 
139 /*
140  * Increase the granularity value when there are more CPUs,
141  * because with more CPUs the 'effective latency' as visible
142  * to users decreases. But the relationship is not linear,
143  * so pick a second-best guess by going with the log2 of the
144  * number of CPUs.
145  *
146  * This idea comes from the SD scheduler of Con Kolivas:
147  */
148 static unsigned int get_update_sysctl_factor(void)
149 {
150 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 	unsigned int factor;
152 
153 	switch (sysctl_sched_tunable_scaling) {
154 	case SCHED_TUNABLESCALING_NONE:
155 		factor = 1;
156 		break;
157 	case SCHED_TUNABLESCALING_LINEAR:
158 		factor = cpus;
159 		break;
160 	case SCHED_TUNABLESCALING_LOG:
161 	default:
162 		factor = 1 + ilog2(cpus);
163 		break;
164 	}
165 
166 	return factor;
167 }
168 
169 static void update_sysctl(void)
170 {
171 	unsigned int factor = get_update_sysctl_factor();
172 
173 #define SET_SYSCTL(name) \
174 	(sysctl_##name = (factor) * normalized_sysctl_##name)
175 	SET_SYSCTL(sched_min_granularity);
176 	SET_SYSCTL(sched_latency);
177 	SET_SYSCTL(sched_wakeup_granularity);
178 #undef SET_SYSCTL
179 }
180 
181 void sched_init_granularity(void)
182 {
183 	update_sysctl();
184 }
185 
186 #define WMULT_CONST	(~0U)
187 #define WMULT_SHIFT	32
188 
189 static void __update_inv_weight(struct load_weight *lw)
190 {
191 	unsigned long w;
192 
193 	if (likely(lw->inv_weight))
194 		return;
195 
196 	w = scale_load_down(lw->weight);
197 
198 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 		lw->inv_weight = 1;
200 	else if (unlikely(!w))
201 		lw->inv_weight = WMULT_CONST;
202 	else
203 		lw->inv_weight = WMULT_CONST / w;
204 }
205 
206 /*
207  * delta_exec * weight / lw.weight
208  *   OR
209  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210  *
211  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212  * we're guaranteed shift stays positive because inv_weight is guaranteed to
213  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214  *
215  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216  * weight/lw.weight <= 1, and therefore our shift will also be positive.
217  */
218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219 {
220 	u64 fact = scale_load_down(weight);
221 	int shift = WMULT_SHIFT;
222 
223 	__update_inv_weight(lw);
224 
225 	if (unlikely(fact >> 32)) {
226 		while (fact >> 32) {
227 			fact >>= 1;
228 			shift--;
229 		}
230 	}
231 
232 	/* hint to use a 32x32->64 mul */
233 	fact = (u64)(u32)fact * lw->inv_weight;
234 
235 	while (fact >> 32) {
236 		fact >>= 1;
237 		shift--;
238 	}
239 
240 	return mul_u64_u32_shr(delta_exec, fact, shift);
241 }
242 
243 
244 const struct sched_class fair_sched_class;
245 
246 /**************************************************************
247  * CFS operations on generic schedulable entities:
248  */
249 
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 
252 /* cpu runqueue to which this cfs_rq is attached */
253 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
254 {
255 	return cfs_rq->rq;
256 }
257 
258 static inline struct task_struct *task_of(struct sched_entity *se)
259 {
260 	SCHED_WARN_ON(!entity_is_task(se));
261 	return container_of(se, struct task_struct, se);
262 }
263 
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 		for (; se; se = se->parent)
267 
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269 {
270 	return p->se.cfs_rq;
271 }
272 
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275 {
276 	return se->cfs_rq;
277 }
278 
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281 {
282 	return grp->my_q;
283 }
284 
285 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
286 {
287 	if (!cfs_rq->on_list) {
288 		struct rq *rq = rq_of(cfs_rq);
289 		int cpu = cpu_of(rq);
290 		/*
291 		 * Ensure we either appear before our parent (if already
292 		 * enqueued) or force our parent to appear after us when it is
293 		 * enqueued. The fact that we always enqueue bottom-up
294 		 * reduces this to two cases and a special case for the root
295 		 * cfs_rq. Furthermore, it also means that we will always reset
296 		 * tmp_alone_branch either when the branch is connected
297 		 * to a tree or when we reach the beg of the tree
298 		 */
299 		if (cfs_rq->tg->parent &&
300 		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
301 			/*
302 			 * If parent is already on the list, we add the child
303 			 * just before. Thanks to circular linked property of
304 			 * the list, this means to put the child at the tail
305 			 * of the list that starts by parent.
306 			 */
307 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
308 				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
309 			/*
310 			 * The branch is now connected to its tree so we can
311 			 * reset tmp_alone_branch to the beginning of the
312 			 * list.
313 			 */
314 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
315 		} else if (!cfs_rq->tg->parent) {
316 			/*
317 			 * cfs rq without parent should be put
318 			 * at the tail of the list.
319 			 */
320 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
321 				&rq->leaf_cfs_rq_list);
322 			/*
323 			 * We have reach the beg of a tree so we can reset
324 			 * tmp_alone_branch to the beginning of the list.
325 			 */
326 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
327 		} else {
328 			/*
329 			 * The parent has not already been added so we want to
330 			 * make sure that it will be put after us.
331 			 * tmp_alone_branch points to the beg of the branch
332 			 * where we will add parent.
333 			 */
334 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
335 				rq->tmp_alone_branch);
336 			/*
337 			 * update tmp_alone_branch to points to the new beg
338 			 * of the branch
339 			 */
340 			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
341 		}
342 
343 		cfs_rq->on_list = 1;
344 	}
345 }
346 
347 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
348 {
349 	if (cfs_rq->on_list) {
350 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
351 		cfs_rq->on_list = 0;
352 	}
353 }
354 
355 /* Iterate thr' all leaf cfs_rq's on a runqueue */
356 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
357 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
358 				 leaf_cfs_rq_list)
359 
360 /* Do the two (enqueued) entities belong to the same group ? */
361 static inline struct cfs_rq *
362 is_same_group(struct sched_entity *se, struct sched_entity *pse)
363 {
364 	if (se->cfs_rq == pse->cfs_rq)
365 		return se->cfs_rq;
366 
367 	return NULL;
368 }
369 
370 static inline struct sched_entity *parent_entity(struct sched_entity *se)
371 {
372 	return se->parent;
373 }
374 
375 static void
376 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
377 {
378 	int se_depth, pse_depth;
379 
380 	/*
381 	 * preemption test can be made between sibling entities who are in the
382 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
383 	 * both tasks until we find their ancestors who are siblings of common
384 	 * parent.
385 	 */
386 
387 	/* First walk up until both entities are at same depth */
388 	se_depth = (*se)->depth;
389 	pse_depth = (*pse)->depth;
390 
391 	while (se_depth > pse_depth) {
392 		se_depth--;
393 		*se = parent_entity(*se);
394 	}
395 
396 	while (pse_depth > se_depth) {
397 		pse_depth--;
398 		*pse = parent_entity(*pse);
399 	}
400 
401 	while (!is_same_group(*se, *pse)) {
402 		*se = parent_entity(*se);
403 		*pse = parent_entity(*pse);
404 	}
405 }
406 
407 #else	/* !CONFIG_FAIR_GROUP_SCHED */
408 
409 static inline struct task_struct *task_of(struct sched_entity *se)
410 {
411 	return container_of(se, struct task_struct, se);
412 }
413 
414 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
415 {
416 	return container_of(cfs_rq, struct rq, cfs);
417 }
418 
419 
420 #define for_each_sched_entity(se) \
421 		for (; se; se = NULL)
422 
423 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
424 {
425 	return &task_rq(p)->cfs;
426 }
427 
428 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
429 {
430 	struct task_struct *p = task_of(se);
431 	struct rq *rq = task_rq(p);
432 
433 	return &rq->cfs;
434 }
435 
436 /* runqueue "owned" by this group */
437 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
438 {
439 	return NULL;
440 }
441 
442 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
443 {
444 }
445 
446 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
447 {
448 }
449 
450 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
451 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
452 
453 static inline struct sched_entity *parent_entity(struct sched_entity *se)
454 {
455 	return NULL;
456 }
457 
458 static inline void
459 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
460 {
461 }
462 
463 #endif	/* CONFIG_FAIR_GROUP_SCHED */
464 
465 static __always_inline
466 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
467 
468 /**************************************************************
469  * Scheduling class tree data structure manipulation methods:
470  */
471 
472 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
473 {
474 	s64 delta = (s64)(vruntime - max_vruntime);
475 	if (delta > 0)
476 		max_vruntime = vruntime;
477 
478 	return max_vruntime;
479 }
480 
481 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
482 {
483 	s64 delta = (s64)(vruntime - min_vruntime);
484 	if (delta < 0)
485 		min_vruntime = vruntime;
486 
487 	return min_vruntime;
488 }
489 
490 static inline int entity_before(struct sched_entity *a,
491 				struct sched_entity *b)
492 {
493 	return (s64)(a->vruntime - b->vruntime) < 0;
494 }
495 
496 static void update_min_vruntime(struct cfs_rq *cfs_rq)
497 {
498 	struct sched_entity *curr = cfs_rq->curr;
499 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
500 
501 	u64 vruntime = cfs_rq->min_vruntime;
502 
503 	if (curr) {
504 		if (curr->on_rq)
505 			vruntime = curr->vruntime;
506 		else
507 			curr = NULL;
508 	}
509 
510 	if (leftmost) { /* non-empty tree */
511 		struct sched_entity *se;
512 		se = rb_entry(leftmost, struct sched_entity, run_node);
513 
514 		if (!curr)
515 			vruntime = se->vruntime;
516 		else
517 			vruntime = min_vruntime(vruntime, se->vruntime);
518 	}
519 
520 	/* ensure we never gain time by being placed backwards. */
521 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
522 #ifndef CONFIG_64BIT
523 	smp_wmb();
524 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
525 #endif
526 }
527 
528 /*
529  * Enqueue an entity into the rb-tree:
530  */
531 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
532 {
533 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
534 	struct rb_node *parent = NULL;
535 	struct sched_entity *entry;
536 	bool leftmost = true;
537 
538 	/*
539 	 * Find the right place in the rbtree:
540 	 */
541 	while (*link) {
542 		parent = *link;
543 		entry = rb_entry(parent, struct sched_entity, run_node);
544 		/*
545 		 * We dont care about collisions. Nodes with
546 		 * the same key stay together.
547 		 */
548 		if (entity_before(se, entry)) {
549 			link = &parent->rb_left;
550 		} else {
551 			link = &parent->rb_right;
552 			leftmost = false;
553 		}
554 	}
555 
556 	rb_link_node(&se->run_node, parent, link);
557 	rb_insert_color_cached(&se->run_node,
558 			       &cfs_rq->tasks_timeline, leftmost);
559 }
560 
561 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
562 {
563 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
564 }
565 
566 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
567 {
568 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
569 
570 	if (!left)
571 		return NULL;
572 
573 	return rb_entry(left, struct sched_entity, run_node);
574 }
575 
576 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
577 {
578 	struct rb_node *next = rb_next(&se->run_node);
579 
580 	if (!next)
581 		return NULL;
582 
583 	return rb_entry(next, struct sched_entity, run_node);
584 }
585 
586 #ifdef CONFIG_SCHED_DEBUG
587 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
588 {
589 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
590 
591 	if (!last)
592 		return NULL;
593 
594 	return rb_entry(last, struct sched_entity, run_node);
595 }
596 
597 /**************************************************************
598  * Scheduling class statistics methods:
599  */
600 
601 int sched_proc_update_handler(struct ctl_table *table, int write,
602 		void __user *buffer, size_t *lenp,
603 		loff_t *ppos)
604 {
605 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
606 	unsigned int factor = get_update_sysctl_factor();
607 
608 	if (ret || !write)
609 		return ret;
610 
611 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
612 					sysctl_sched_min_granularity);
613 
614 #define WRT_SYSCTL(name) \
615 	(normalized_sysctl_##name = sysctl_##name / (factor))
616 	WRT_SYSCTL(sched_min_granularity);
617 	WRT_SYSCTL(sched_latency);
618 	WRT_SYSCTL(sched_wakeup_granularity);
619 #undef WRT_SYSCTL
620 
621 	return 0;
622 }
623 #endif
624 
625 /*
626  * delta /= w
627  */
628 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
629 {
630 	if (unlikely(se->load.weight != NICE_0_LOAD))
631 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
632 
633 	return delta;
634 }
635 
636 /*
637  * The idea is to set a period in which each task runs once.
638  *
639  * When there are too many tasks (sched_nr_latency) we have to stretch
640  * this period because otherwise the slices get too small.
641  *
642  * p = (nr <= nl) ? l : l*nr/nl
643  */
644 static u64 __sched_period(unsigned long nr_running)
645 {
646 	if (unlikely(nr_running > sched_nr_latency))
647 		return nr_running * sysctl_sched_min_granularity;
648 	else
649 		return sysctl_sched_latency;
650 }
651 
652 /*
653  * We calculate the wall-time slice from the period by taking a part
654  * proportional to the weight.
655  *
656  * s = p*P[w/rw]
657  */
658 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
659 {
660 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
661 
662 	for_each_sched_entity(se) {
663 		struct load_weight *load;
664 		struct load_weight lw;
665 
666 		cfs_rq = cfs_rq_of(se);
667 		load = &cfs_rq->load;
668 
669 		if (unlikely(!se->on_rq)) {
670 			lw = cfs_rq->load;
671 
672 			update_load_add(&lw, se->load.weight);
673 			load = &lw;
674 		}
675 		slice = __calc_delta(slice, se->load.weight, load);
676 	}
677 	return slice;
678 }
679 
680 /*
681  * We calculate the vruntime slice of a to-be-inserted task.
682  *
683  * vs = s/w
684  */
685 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
686 {
687 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
688 }
689 
690 #ifdef CONFIG_SMP
691 #include "pelt.h"
692 #include "sched-pelt.h"
693 
694 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
695 static unsigned long task_h_load(struct task_struct *p);
696 static unsigned long capacity_of(int cpu);
697 
698 /* Give new sched_entity start runnable values to heavy its load in infant time */
699 void init_entity_runnable_average(struct sched_entity *se)
700 {
701 	struct sched_avg *sa = &se->avg;
702 
703 	memset(sa, 0, sizeof(*sa));
704 
705 	/*
706 	 * Tasks are intialized with full load to be seen as heavy tasks until
707 	 * they get a chance to stabilize to their real load level.
708 	 * Group entities are intialized with zero load to reflect the fact that
709 	 * nothing has been attached to the task group yet.
710 	 */
711 	if (entity_is_task(se))
712 		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
713 
714 	se->runnable_weight = se->load.weight;
715 
716 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
717 }
718 
719 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
720 static void attach_entity_cfs_rq(struct sched_entity *se);
721 
722 /*
723  * With new tasks being created, their initial util_avgs are extrapolated
724  * based on the cfs_rq's current util_avg:
725  *
726  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
727  *
728  * However, in many cases, the above util_avg does not give a desired
729  * value. Moreover, the sum of the util_avgs may be divergent, such
730  * as when the series is a harmonic series.
731  *
732  * To solve this problem, we also cap the util_avg of successive tasks to
733  * only 1/2 of the left utilization budget:
734  *
735  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
736  *
737  * where n denotes the nth task and cpu_scale the CPU capacity.
738  *
739  * For example, for a CPU with 1024 of capacity, a simplest series from
740  * the beginning would be like:
741  *
742  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
743  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
744  *
745  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
746  * if util_avg > util_avg_cap.
747  */
748 void post_init_entity_util_avg(struct sched_entity *se)
749 {
750 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
751 	struct sched_avg *sa = &se->avg;
752 	long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
753 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
754 
755 	if (cap > 0) {
756 		if (cfs_rq->avg.util_avg != 0) {
757 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
758 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
759 
760 			if (sa->util_avg > cap)
761 				sa->util_avg = cap;
762 		} else {
763 			sa->util_avg = cap;
764 		}
765 	}
766 
767 	if (entity_is_task(se)) {
768 		struct task_struct *p = task_of(se);
769 		if (p->sched_class != &fair_sched_class) {
770 			/*
771 			 * For !fair tasks do:
772 			 *
773 			update_cfs_rq_load_avg(now, cfs_rq);
774 			attach_entity_load_avg(cfs_rq, se, 0);
775 			switched_from_fair(rq, p);
776 			 *
777 			 * such that the next switched_to_fair() has the
778 			 * expected state.
779 			 */
780 			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
781 			return;
782 		}
783 	}
784 
785 	attach_entity_cfs_rq(se);
786 }
787 
788 #else /* !CONFIG_SMP */
789 void init_entity_runnable_average(struct sched_entity *se)
790 {
791 }
792 void post_init_entity_util_avg(struct sched_entity *se)
793 {
794 }
795 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
796 {
797 }
798 #endif /* CONFIG_SMP */
799 
800 /*
801  * Update the current task's runtime statistics.
802  */
803 static void update_curr(struct cfs_rq *cfs_rq)
804 {
805 	struct sched_entity *curr = cfs_rq->curr;
806 	u64 now = rq_clock_task(rq_of(cfs_rq));
807 	u64 delta_exec;
808 
809 	if (unlikely(!curr))
810 		return;
811 
812 	delta_exec = now - curr->exec_start;
813 	if (unlikely((s64)delta_exec <= 0))
814 		return;
815 
816 	curr->exec_start = now;
817 
818 	schedstat_set(curr->statistics.exec_max,
819 		      max(delta_exec, curr->statistics.exec_max));
820 
821 	curr->sum_exec_runtime += delta_exec;
822 	schedstat_add(cfs_rq->exec_clock, delta_exec);
823 
824 	curr->vruntime += calc_delta_fair(delta_exec, curr);
825 	update_min_vruntime(cfs_rq);
826 
827 	if (entity_is_task(curr)) {
828 		struct task_struct *curtask = task_of(curr);
829 
830 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
831 		cgroup_account_cputime(curtask, delta_exec);
832 		account_group_exec_runtime(curtask, delta_exec);
833 	}
834 
835 	account_cfs_rq_runtime(cfs_rq, delta_exec);
836 }
837 
838 static void update_curr_fair(struct rq *rq)
839 {
840 	update_curr(cfs_rq_of(&rq->curr->se));
841 }
842 
843 static inline void
844 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
845 {
846 	u64 wait_start, prev_wait_start;
847 
848 	if (!schedstat_enabled())
849 		return;
850 
851 	wait_start = rq_clock(rq_of(cfs_rq));
852 	prev_wait_start = schedstat_val(se->statistics.wait_start);
853 
854 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
855 	    likely(wait_start > prev_wait_start))
856 		wait_start -= prev_wait_start;
857 
858 	__schedstat_set(se->statistics.wait_start, wait_start);
859 }
860 
861 static inline void
862 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
863 {
864 	struct task_struct *p;
865 	u64 delta;
866 
867 	if (!schedstat_enabled())
868 		return;
869 
870 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
871 
872 	if (entity_is_task(se)) {
873 		p = task_of(se);
874 		if (task_on_rq_migrating(p)) {
875 			/*
876 			 * Preserve migrating task's wait time so wait_start
877 			 * time stamp can be adjusted to accumulate wait time
878 			 * prior to migration.
879 			 */
880 			__schedstat_set(se->statistics.wait_start, delta);
881 			return;
882 		}
883 		trace_sched_stat_wait(p, delta);
884 	}
885 
886 	__schedstat_set(se->statistics.wait_max,
887 		      max(schedstat_val(se->statistics.wait_max), delta));
888 	__schedstat_inc(se->statistics.wait_count);
889 	__schedstat_add(se->statistics.wait_sum, delta);
890 	__schedstat_set(se->statistics.wait_start, 0);
891 }
892 
893 static inline void
894 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
895 {
896 	struct task_struct *tsk = NULL;
897 	u64 sleep_start, block_start;
898 
899 	if (!schedstat_enabled())
900 		return;
901 
902 	sleep_start = schedstat_val(se->statistics.sleep_start);
903 	block_start = schedstat_val(se->statistics.block_start);
904 
905 	if (entity_is_task(se))
906 		tsk = task_of(se);
907 
908 	if (sleep_start) {
909 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
910 
911 		if ((s64)delta < 0)
912 			delta = 0;
913 
914 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
915 			__schedstat_set(se->statistics.sleep_max, delta);
916 
917 		__schedstat_set(se->statistics.sleep_start, 0);
918 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
919 
920 		if (tsk) {
921 			account_scheduler_latency(tsk, delta >> 10, 1);
922 			trace_sched_stat_sleep(tsk, delta);
923 		}
924 	}
925 	if (block_start) {
926 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
927 
928 		if ((s64)delta < 0)
929 			delta = 0;
930 
931 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
932 			__schedstat_set(se->statistics.block_max, delta);
933 
934 		__schedstat_set(se->statistics.block_start, 0);
935 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
936 
937 		if (tsk) {
938 			if (tsk->in_iowait) {
939 				__schedstat_add(se->statistics.iowait_sum, delta);
940 				__schedstat_inc(se->statistics.iowait_count);
941 				trace_sched_stat_iowait(tsk, delta);
942 			}
943 
944 			trace_sched_stat_blocked(tsk, delta);
945 
946 			/*
947 			 * Blocking time is in units of nanosecs, so shift by
948 			 * 20 to get a milliseconds-range estimation of the
949 			 * amount of time that the task spent sleeping:
950 			 */
951 			if (unlikely(prof_on == SLEEP_PROFILING)) {
952 				profile_hits(SLEEP_PROFILING,
953 						(void *)get_wchan(tsk),
954 						delta >> 20);
955 			}
956 			account_scheduler_latency(tsk, delta >> 10, 0);
957 		}
958 	}
959 }
960 
961 /*
962  * Task is being enqueued - update stats:
963  */
964 static inline void
965 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
966 {
967 	if (!schedstat_enabled())
968 		return;
969 
970 	/*
971 	 * Are we enqueueing a waiting task? (for current tasks
972 	 * a dequeue/enqueue event is a NOP)
973 	 */
974 	if (se != cfs_rq->curr)
975 		update_stats_wait_start(cfs_rq, se);
976 
977 	if (flags & ENQUEUE_WAKEUP)
978 		update_stats_enqueue_sleeper(cfs_rq, se);
979 }
980 
981 static inline void
982 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
983 {
984 
985 	if (!schedstat_enabled())
986 		return;
987 
988 	/*
989 	 * Mark the end of the wait period if dequeueing a
990 	 * waiting task:
991 	 */
992 	if (se != cfs_rq->curr)
993 		update_stats_wait_end(cfs_rq, se);
994 
995 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
996 		struct task_struct *tsk = task_of(se);
997 
998 		if (tsk->state & TASK_INTERRUPTIBLE)
999 			__schedstat_set(se->statistics.sleep_start,
1000 				      rq_clock(rq_of(cfs_rq)));
1001 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1002 			__schedstat_set(se->statistics.block_start,
1003 				      rq_clock(rq_of(cfs_rq)));
1004 	}
1005 }
1006 
1007 /*
1008  * We are picking a new current task - update its stats:
1009  */
1010 static inline void
1011 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1012 {
1013 	/*
1014 	 * We are starting a new run period:
1015 	 */
1016 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1017 }
1018 
1019 /**************************************************
1020  * Scheduling class queueing methods:
1021  */
1022 
1023 #ifdef CONFIG_NUMA_BALANCING
1024 /*
1025  * Approximate time to scan a full NUMA task in ms. The task scan period is
1026  * calculated based on the tasks virtual memory size and
1027  * numa_balancing_scan_size.
1028  */
1029 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1030 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1031 
1032 /* Portion of address space to scan in MB */
1033 unsigned int sysctl_numa_balancing_scan_size = 256;
1034 
1035 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1036 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1037 
1038 struct numa_group {
1039 	atomic_t refcount;
1040 
1041 	spinlock_t lock; /* nr_tasks, tasks */
1042 	int nr_tasks;
1043 	pid_t gid;
1044 	int active_nodes;
1045 
1046 	struct rcu_head rcu;
1047 	unsigned long total_faults;
1048 	unsigned long max_faults_cpu;
1049 	/*
1050 	 * Faults_cpu is used to decide whether memory should move
1051 	 * towards the CPU. As a consequence, these stats are weighted
1052 	 * more by CPU use than by memory faults.
1053 	 */
1054 	unsigned long *faults_cpu;
1055 	unsigned long faults[0];
1056 };
1057 
1058 static inline unsigned long group_faults_priv(struct numa_group *ng);
1059 static inline unsigned long group_faults_shared(struct numa_group *ng);
1060 
1061 static unsigned int task_nr_scan_windows(struct task_struct *p)
1062 {
1063 	unsigned long rss = 0;
1064 	unsigned long nr_scan_pages;
1065 
1066 	/*
1067 	 * Calculations based on RSS as non-present and empty pages are skipped
1068 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1069 	 * on resident pages
1070 	 */
1071 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1072 	rss = get_mm_rss(p->mm);
1073 	if (!rss)
1074 		rss = nr_scan_pages;
1075 
1076 	rss = round_up(rss, nr_scan_pages);
1077 	return rss / nr_scan_pages;
1078 }
1079 
1080 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1081 #define MAX_SCAN_WINDOW 2560
1082 
1083 static unsigned int task_scan_min(struct task_struct *p)
1084 {
1085 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1086 	unsigned int scan, floor;
1087 	unsigned int windows = 1;
1088 
1089 	if (scan_size < MAX_SCAN_WINDOW)
1090 		windows = MAX_SCAN_WINDOW / scan_size;
1091 	floor = 1000 / windows;
1092 
1093 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1094 	return max_t(unsigned int, floor, scan);
1095 }
1096 
1097 static unsigned int task_scan_start(struct task_struct *p)
1098 {
1099 	unsigned long smin = task_scan_min(p);
1100 	unsigned long period = smin;
1101 
1102 	/* Scale the maximum scan period with the amount of shared memory. */
1103 	if (p->numa_group) {
1104 		struct numa_group *ng = p->numa_group;
1105 		unsigned long shared = group_faults_shared(ng);
1106 		unsigned long private = group_faults_priv(ng);
1107 
1108 		period *= atomic_read(&ng->refcount);
1109 		period *= shared + 1;
1110 		period /= private + shared + 1;
1111 	}
1112 
1113 	return max(smin, period);
1114 }
1115 
1116 static unsigned int task_scan_max(struct task_struct *p)
1117 {
1118 	unsigned long smin = task_scan_min(p);
1119 	unsigned long smax;
1120 
1121 	/* Watch for min being lower than max due to floor calculations */
1122 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1123 
1124 	/* Scale the maximum scan period with the amount of shared memory. */
1125 	if (p->numa_group) {
1126 		struct numa_group *ng = p->numa_group;
1127 		unsigned long shared = group_faults_shared(ng);
1128 		unsigned long private = group_faults_priv(ng);
1129 		unsigned long period = smax;
1130 
1131 		period *= atomic_read(&ng->refcount);
1132 		period *= shared + 1;
1133 		period /= private + shared + 1;
1134 
1135 		smax = max(smax, period);
1136 	}
1137 
1138 	return max(smin, smax);
1139 }
1140 
1141 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1142 {
1143 	int mm_users = 0;
1144 	struct mm_struct *mm = p->mm;
1145 
1146 	if (mm) {
1147 		mm_users = atomic_read(&mm->mm_users);
1148 		if (mm_users == 1) {
1149 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1150 			mm->numa_scan_seq = 0;
1151 		}
1152 	}
1153 	p->node_stamp			= 0;
1154 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
1155 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
1156 	p->numa_work.next		= &p->numa_work;
1157 	p->numa_faults			= NULL;
1158 	p->numa_group			= NULL;
1159 	p->last_task_numa_placement	= 0;
1160 	p->last_sum_exec_runtime	= 0;
1161 
1162 	/* New address space, reset the preferred nid */
1163 	if (!(clone_flags & CLONE_VM)) {
1164 		p->numa_preferred_nid = -1;
1165 		return;
1166 	}
1167 
1168 	/*
1169 	 * New thread, keep existing numa_preferred_nid which should be copied
1170 	 * already by arch_dup_task_struct but stagger when scans start.
1171 	 */
1172 	if (mm) {
1173 		unsigned int delay;
1174 
1175 		delay = min_t(unsigned int, task_scan_max(current),
1176 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1177 		delay += 2 * TICK_NSEC;
1178 		p->node_stamp = delay;
1179 	}
1180 }
1181 
1182 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1183 {
1184 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
1185 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1186 }
1187 
1188 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1189 {
1190 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1191 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1192 }
1193 
1194 /* Shared or private faults. */
1195 #define NR_NUMA_HINT_FAULT_TYPES 2
1196 
1197 /* Memory and CPU locality */
1198 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1199 
1200 /* Averaged statistics, and temporary buffers. */
1201 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1202 
1203 pid_t task_numa_group_id(struct task_struct *p)
1204 {
1205 	return p->numa_group ? p->numa_group->gid : 0;
1206 }
1207 
1208 /*
1209  * The averaged statistics, shared & private, memory & CPU,
1210  * occupy the first half of the array. The second half of the
1211  * array is for current counters, which are averaged into the
1212  * first set by task_numa_placement.
1213  */
1214 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1215 {
1216 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1217 }
1218 
1219 static inline unsigned long task_faults(struct task_struct *p, int nid)
1220 {
1221 	if (!p->numa_faults)
1222 		return 0;
1223 
1224 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1225 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1226 }
1227 
1228 static inline unsigned long group_faults(struct task_struct *p, int nid)
1229 {
1230 	if (!p->numa_group)
1231 		return 0;
1232 
1233 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1234 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1235 }
1236 
1237 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1238 {
1239 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1240 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1241 }
1242 
1243 static inline unsigned long group_faults_priv(struct numa_group *ng)
1244 {
1245 	unsigned long faults = 0;
1246 	int node;
1247 
1248 	for_each_online_node(node) {
1249 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1250 	}
1251 
1252 	return faults;
1253 }
1254 
1255 static inline unsigned long group_faults_shared(struct numa_group *ng)
1256 {
1257 	unsigned long faults = 0;
1258 	int node;
1259 
1260 	for_each_online_node(node) {
1261 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1262 	}
1263 
1264 	return faults;
1265 }
1266 
1267 /*
1268  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1269  * considered part of a numa group's pseudo-interleaving set. Migrations
1270  * between these nodes are slowed down, to allow things to settle down.
1271  */
1272 #define ACTIVE_NODE_FRACTION 3
1273 
1274 static bool numa_is_active_node(int nid, struct numa_group *ng)
1275 {
1276 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1277 }
1278 
1279 /* Handle placement on systems where not all nodes are directly connected. */
1280 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1281 					int maxdist, bool task)
1282 {
1283 	unsigned long score = 0;
1284 	int node;
1285 
1286 	/*
1287 	 * All nodes are directly connected, and the same distance
1288 	 * from each other. No need for fancy placement algorithms.
1289 	 */
1290 	if (sched_numa_topology_type == NUMA_DIRECT)
1291 		return 0;
1292 
1293 	/*
1294 	 * This code is called for each node, introducing N^2 complexity,
1295 	 * which should be ok given the number of nodes rarely exceeds 8.
1296 	 */
1297 	for_each_online_node(node) {
1298 		unsigned long faults;
1299 		int dist = node_distance(nid, node);
1300 
1301 		/*
1302 		 * The furthest away nodes in the system are not interesting
1303 		 * for placement; nid was already counted.
1304 		 */
1305 		if (dist == sched_max_numa_distance || node == nid)
1306 			continue;
1307 
1308 		/*
1309 		 * On systems with a backplane NUMA topology, compare groups
1310 		 * of nodes, and move tasks towards the group with the most
1311 		 * memory accesses. When comparing two nodes at distance
1312 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1313 		 * of each group. Skip other nodes.
1314 		 */
1315 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1316 					dist >= maxdist)
1317 			continue;
1318 
1319 		/* Add up the faults from nearby nodes. */
1320 		if (task)
1321 			faults = task_faults(p, node);
1322 		else
1323 			faults = group_faults(p, node);
1324 
1325 		/*
1326 		 * On systems with a glueless mesh NUMA topology, there are
1327 		 * no fixed "groups of nodes". Instead, nodes that are not
1328 		 * directly connected bounce traffic through intermediate
1329 		 * nodes; a numa_group can occupy any set of nodes.
1330 		 * The further away a node is, the less the faults count.
1331 		 * This seems to result in good task placement.
1332 		 */
1333 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1334 			faults *= (sched_max_numa_distance - dist);
1335 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1336 		}
1337 
1338 		score += faults;
1339 	}
1340 
1341 	return score;
1342 }
1343 
1344 /*
1345  * These return the fraction of accesses done by a particular task, or
1346  * task group, on a particular numa node.  The group weight is given a
1347  * larger multiplier, in order to group tasks together that are almost
1348  * evenly spread out between numa nodes.
1349  */
1350 static inline unsigned long task_weight(struct task_struct *p, int nid,
1351 					int dist)
1352 {
1353 	unsigned long faults, total_faults;
1354 
1355 	if (!p->numa_faults)
1356 		return 0;
1357 
1358 	total_faults = p->total_numa_faults;
1359 
1360 	if (!total_faults)
1361 		return 0;
1362 
1363 	faults = task_faults(p, nid);
1364 	faults += score_nearby_nodes(p, nid, dist, true);
1365 
1366 	return 1000 * faults / total_faults;
1367 }
1368 
1369 static inline unsigned long group_weight(struct task_struct *p, int nid,
1370 					 int dist)
1371 {
1372 	unsigned long faults, total_faults;
1373 
1374 	if (!p->numa_group)
1375 		return 0;
1376 
1377 	total_faults = p->numa_group->total_faults;
1378 
1379 	if (!total_faults)
1380 		return 0;
1381 
1382 	faults = group_faults(p, nid);
1383 	faults += score_nearby_nodes(p, nid, dist, false);
1384 
1385 	return 1000 * faults / total_faults;
1386 }
1387 
1388 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1389 				int src_nid, int dst_cpu)
1390 {
1391 	struct numa_group *ng = p->numa_group;
1392 	int dst_nid = cpu_to_node(dst_cpu);
1393 	int last_cpupid, this_cpupid;
1394 
1395 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1396 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1397 
1398 	/*
1399 	 * Allow first faults or private faults to migrate immediately early in
1400 	 * the lifetime of a task. The magic number 4 is based on waiting for
1401 	 * two full passes of the "multi-stage node selection" test that is
1402 	 * executed below.
1403 	 */
1404 	if ((p->numa_preferred_nid == -1 || p->numa_scan_seq <= 4) &&
1405 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1406 		return true;
1407 
1408 	/*
1409 	 * Multi-stage node selection is used in conjunction with a periodic
1410 	 * migration fault to build a temporal task<->page relation. By using
1411 	 * a two-stage filter we remove short/unlikely relations.
1412 	 *
1413 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1414 	 * a task's usage of a particular page (n_p) per total usage of this
1415 	 * page (n_t) (in a given time-span) to a probability.
1416 	 *
1417 	 * Our periodic faults will sample this probability and getting the
1418 	 * same result twice in a row, given these samples are fully
1419 	 * independent, is then given by P(n)^2, provided our sample period
1420 	 * is sufficiently short compared to the usage pattern.
1421 	 *
1422 	 * This quadric squishes small probabilities, making it less likely we
1423 	 * act on an unlikely task<->page relation.
1424 	 */
1425 	if (!cpupid_pid_unset(last_cpupid) &&
1426 				cpupid_to_nid(last_cpupid) != dst_nid)
1427 		return false;
1428 
1429 	/* Always allow migrate on private faults */
1430 	if (cpupid_match_pid(p, last_cpupid))
1431 		return true;
1432 
1433 	/* A shared fault, but p->numa_group has not been set up yet. */
1434 	if (!ng)
1435 		return true;
1436 
1437 	/*
1438 	 * Destination node is much more heavily used than the source
1439 	 * node? Allow migration.
1440 	 */
1441 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1442 					ACTIVE_NODE_FRACTION)
1443 		return true;
1444 
1445 	/*
1446 	 * Distribute memory according to CPU & memory use on each node,
1447 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1448 	 *
1449 	 * faults_cpu(dst)   3   faults_cpu(src)
1450 	 * --------------- * - > ---------------
1451 	 * faults_mem(dst)   4   faults_mem(src)
1452 	 */
1453 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1454 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1455 }
1456 
1457 static unsigned long weighted_cpuload(struct rq *rq);
1458 static unsigned long source_load(int cpu, int type);
1459 static unsigned long target_load(int cpu, int type);
1460 
1461 /* Cached statistics for all CPUs within a node */
1462 struct numa_stats {
1463 	unsigned long load;
1464 
1465 	/* Total compute capacity of CPUs on a node */
1466 	unsigned long compute_capacity;
1467 };
1468 
1469 /*
1470  * XXX borrowed from update_sg_lb_stats
1471  */
1472 static void update_numa_stats(struct numa_stats *ns, int nid)
1473 {
1474 	int cpu;
1475 
1476 	memset(ns, 0, sizeof(*ns));
1477 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1478 		struct rq *rq = cpu_rq(cpu);
1479 
1480 		ns->load += weighted_cpuload(rq);
1481 		ns->compute_capacity += capacity_of(cpu);
1482 	}
1483 
1484 }
1485 
1486 struct task_numa_env {
1487 	struct task_struct *p;
1488 
1489 	int src_cpu, src_nid;
1490 	int dst_cpu, dst_nid;
1491 
1492 	struct numa_stats src_stats, dst_stats;
1493 
1494 	int imbalance_pct;
1495 	int dist;
1496 
1497 	struct task_struct *best_task;
1498 	long best_imp;
1499 	int best_cpu;
1500 };
1501 
1502 static void task_numa_assign(struct task_numa_env *env,
1503 			     struct task_struct *p, long imp)
1504 {
1505 	struct rq *rq = cpu_rq(env->dst_cpu);
1506 
1507 	/* Bail out if run-queue part of active NUMA balance. */
1508 	if (xchg(&rq->numa_migrate_on, 1))
1509 		return;
1510 
1511 	/*
1512 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1513 	 * found a better CPU to move/swap.
1514 	 */
1515 	if (env->best_cpu != -1) {
1516 		rq = cpu_rq(env->best_cpu);
1517 		WRITE_ONCE(rq->numa_migrate_on, 0);
1518 	}
1519 
1520 	if (env->best_task)
1521 		put_task_struct(env->best_task);
1522 	if (p)
1523 		get_task_struct(p);
1524 
1525 	env->best_task = p;
1526 	env->best_imp = imp;
1527 	env->best_cpu = env->dst_cpu;
1528 }
1529 
1530 static bool load_too_imbalanced(long src_load, long dst_load,
1531 				struct task_numa_env *env)
1532 {
1533 	long imb, old_imb;
1534 	long orig_src_load, orig_dst_load;
1535 	long src_capacity, dst_capacity;
1536 
1537 	/*
1538 	 * The load is corrected for the CPU capacity available on each node.
1539 	 *
1540 	 * src_load        dst_load
1541 	 * ------------ vs ---------
1542 	 * src_capacity    dst_capacity
1543 	 */
1544 	src_capacity = env->src_stats.compute_capacity;
1545 	dst_capacity = env->dst_stats.compute_capacity;
1546 
1547 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1548 
1549 	orig_src_load = env->src_stats.load;
1550 	orig_dst_load = env->dst_stats.load;
1551 
1552 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1553 
1554 	/* Would this change make things worse? */
1555 	return (imb > old_imb);
1556 }
1557 
1558 /*
1559  * Maximum NUMA importance can be 1998 (2*999);
1560  * SMALLIMP @ 30 would be close to 1998/64.
1561  * Used to deter task migration.
1562  */
1563 #define SMALLIMP	30
1564 
1565 /*
1566  * This checks if the overall compute and NUMA accesses of the system would
1567  * be improved if the source tasks was migrated to the target dst_cpu taking
1568  * into account that it might be best if task running on the dst_cpu should
1569  * be exchanged with the source task
1570  */
1571 static void task_numa_compare(struct task_numa_env *env,
1572 			      long taskimp, long groupimp, bool maymove)
1573 {
1574 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1575 	struct task_struct *cur;
1576 	long src_load, dst_load;
1577 	long load;
1578 	long imp = env->p->numa_group ? groupimp : taskimp;
1579 	long moveimp = imp;
1580 	int dist = env->dist;
1581 
1582 	if (READ_ONCE(dst_rq->numa_migrate_on))
1583 		return;
1584 
1585 	rcu_read_lock();
1586 	cur = task_rcu_dereference(&dst_rq->curr);
1587 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1588 		cur = NULL;
1589 
1590 	/*
1591 	 * Because we have preemption enabled we can get migrated around and
1592 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1593 	 */
1594 	if (cur == env->p)
1595 		goto unlock;
1596 
1597 	if (!cur) {
1598 		if (maymove && moveimp >= env->best_imp)
1599 			goto assign;
1600 		else
1601 			goto unlock;
1602 	}
1603 
1604 	/*
1605 	 * "imp" is the fault differential for the source task between the
1606 	 * source and destination node. Calculate the total differential for
1607 	 * the source task and potential destination task. The more negative
1608 	 * the value is, the more remote accesses that would be expected to
1609 	 * be incurred if the tasks were swapped.
1610 	 */
1611 	/* Skip this swap candidate if cannot move to the source cpu */
1612 	if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1613 		goto unlock;
1614 
1615 	/*
1616 	 * If dst and source tasks are in the same NUMA group, or not
1617 	 * in any group then look only at task weights.
1618 	 */
1619 	if (cur->numa_group == env->p->numa_group) {
1620 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1621 		      task_weight(cur, env->dst_nid, dist);
1622 		/*
1623 		 * Add some hysteresis to prevent swapping the
1624 		 * tasks within a group over tiny differences.
1625 		 */
1626 		if (cur->numa_group)
1627 			imp -= imp / 16;
1628 	} else {
1629 		/*
1630 		 * Compare the group weights. If a task is all by itself
1631 		 * (not part of a group), use the task weight instead.
1632 		 */
1633 		if (cur->numa_group && env->p->numa_group)
1634 			imp += group_weight(cur, env->src_nid, dist) -
1635 			       group_weight(cur, env->dst_nid, dist);
1636 		else
1637 			imp += task_weight(cur, env->src_nid, dist) -
1638 			       task_weight(cur, env->dst_nid, dist);
1639 	}
1640 
1641 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1642 		imp = moveimp;
1643 		cur = NULL;
1644 		goto assign;
1645 	}
1646 
1647 	/*
1648 	 * If the NUMA importance is less than SMALLIMP,
1649 	 * task migration might only result in ping pong
1650 	 * of tasks and also hurt performance due to cache
1651 	 * misses.
1652 	 */
1653 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1654 		goto unlock;
1655 
1656 	/*
1657 	 * In the overloaded case, try and keep the load balanced.
1658 	 */
1659 	load = task_h_load(env->p) - task_h_load(cur);
1660 	if (!load)
1661 		goto assign;
1662 
1663 	dst_load = env->dst_stats.load + load;
1664 	src_load = env->src_stats.load - load;
1665 
1666 	if (load_too_imbalanced(src_load, dst_load, env))
1667 		goto unlock;
1668 
1669 assign:
1670 	/*
1671 	 * One idle CPU per node is evaluated for a task numa move.
1672 	 * Call select_idle_sibling to maybe find a better one.
1673 	 */
1674 	if (!cur) {
1675 		/*
1676 		 * select_idle_siblings() uses an per-CPU cpumask that
1677 		 * can be used from IRQ context.
1678 		 */
1679 		local_irq_disable();
1680 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1681 						   env->dst_cpu);
1682 		local_irq_enable();
1683 	}
1684 
1685 	task_numa_assign(env, cur, imp);
1686 unlock:
1687 	rcu_read_unlock();
1688 }
1689 
1690 static void task_numa_find_cpu(struct task_numa_env *env,
1691 				long taskimp, long groupimp)
1692 {
1693 	long src_load, dst_load, load;
1694 	bool maymove = false;
1695 	int cpu;
1696 
1697 	load = task_h_load(env->p);
1698 	dst_load = env->dst_stats.load + load;
1699 	src_load = env->src_stats.load - load;
1700 
1701 	/*
1702 	 * If the improvement from just moving env->p direction is better
1703 	 * than swapping tasks around, check if a move is possible.
1704 	 */
1705 	maymove = !load_too_imbalanced(src_load, dst_load, env);
1706 
1707 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1708 		/* Skip this CPU if the source task cannot migrate */
1709 		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1710 			continue;
1711 
1712 		env->dst_cpu = cpu;
1713 		task_numa_compare(env, taskimp, groupimp, maymove);
1714 	}
1715 }
1716 
1717 static int task_numa_migrate(struct task_struct *p)
1718 {
1719 	struct task_numa_env env = {
1720 		.p = p,
1721 
1722 		.src_cpu = task_cpu(p),
1723 		.src_nid = task_node(p),
1724 
1725 		.imbalance_pct = 112,
1726 
1727 		.best_task = NULL,
1728 		.best_imp = 0,
1729 		.best_cpu = -1,
1730 	};
1731 	struct sched_domain *sd;
1732 	struct rq *best_rq;
1733 	unsigned long taskweight, groupweight;
1734 	int nid, ret, dist;
1735 	long taskimp, groupimp;
1736 
1737 	/*
1738 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1739 	 * imbalance and would be the first to start moving tasks about.
1740 	 *
1741 	 * And we want to avoid any moving of tasks about, as that would create
1742 	 * random movement of tasks -- counter the numa conditions we're trying
1743 	 * to satisfy here.
1744 	 */
1745 	rcu_read_lock();
1746 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1747 	if (sd)
1748 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1749 	rcu_read_unlock();
1750 
1751 	/*
1752 	 * Cpusets can break the scheduler domain tree into smaller
1753 	 * balance domains, some of which do not cross NUMA boundaries.
1754 	 * Tasks that are "trapped" in such domains cannot be migrated
1755 	 * elsewhere, so there is no point in (re)trying.
1756 	 */
1757 	if (unlikely(!sd)) {
1758 		sched_setnuma(p, task_node(p));
1759 		return -EINVAL;
1760 	}
1761 
1762 	env.dst_nid = p->numa_preferred_nid;
1763 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1764 	taskweight = task_weight(p, env.src_nid, dist);
1765 	groupweight = group_weight(p, env.src_nid, dist);
1766 	update_numa_stats(&env.src_stats, env.src_nid);
1767 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1768 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1769 	update_numa_stats(&env.dst_stats, env.dst_nid);
1770 
1771 	/* Try to find a spot on the preferred nid. */
1772 	task_numa_find_cpu(&env, taskimp, groupimp);
1773 
1774 	/*
1775 	 * Look at other nodes in these cases:
1776 	 * - there is no space available on the preferred_nid
1777 	 * - the task is part of a numa_group that is interleaved across
1778 	 *   multiple NUMA nodes; in order to better consolidate the group,
1779 	 *   we need to check other locations.
1780 	 */
1781 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1782 		for_each_online_node(nid) {
1783 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1784 				continue;
1785 
1786 			dist = node_distance(env.src_nid, env.dst_nid);
1787 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1788 						dist != env.dist) {
1789 				taskweight = task_weight(p, env.src_nid, dist);
1790 				groupweight = group_weight(p, env.src_nid, dist);
1791 			}
1792 
1793 			/* Only consider nodes where both task and groups benefit */
1794 			taskimp = task_weight(p, nid, dist) - taskweight;
1795 			groupimp = group_weight(p, nid, dist) - groupweight;
1796 			if (taskimp < 0 && groupimp < 0)
1797 				continue;
1798 
1799 			env.dist = dist;
1800 			env.dst_nid = nid;
1801 			update_numa_stats(&env.dst_stats, env.dst_nid);
1802 			task_numa_find_cpu(&env, taskimp, groupimp);
1803 		}
1804 	}
1805 
1806 	/*
1807 	 * If the task is part of a workload that spans multiple NUMA nodes,
1808 	 * and is migrating into one of the workload's active nodes, remember
1809 	 * this node as the task's preferred numa node, so the workload can
1810 	 * settle down.
1811 	 * A task that migrated to a second choice node will be better off
1812 	 * trying for a better one later. Do not set the preferred node here.
1813 	 */
1814 	if (p->numa_group) {
1815 		if (env.best_cpu == -1)
1816 			nid = env.src_nid;
1817 		else
1818 			nid = cpu_to_node(env.best_cpu);
1819 
1820 		if (nid != p->numa_preferred_nid)
1821 			sched_setnuma(p, nid);
1822 	}
1823 
1824 	/* No better CPU than the current one was found. */
1825 	if (env.best_cpu == -1)
1826 		return -EAGAIN;
1827 
1828 	best_rq = cpu_rq(env.best_cpu);
1829 	if (env.best_task == NULL) {
1830 		ret = migrate_task_to(p, env.best_cpu);
1831 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
1832 		if (ret != 0)
1833 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1834 		return ret;
1835 	}
1836 
1837 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1838 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
1839 
1840 	if (ret != 0)
1841 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1842 	put_task_struct(env.best_task);
1843 	return ret;
1844 }
1845 
1846 /* Attempt to migrate a task to a CPU on the preferred node. */
1847 static void numa_migrate_preferred(struct task_struct *p)
1848 {
1849 	unsigned long interval = HZ;
1850 
1851 	/* This task has no NUMA fault statistics yet */
1852 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1853 		return;
1854 
1855 	/* Periodically retry migrating the task to the preferred node */
1856 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1857 	p->numa_migrate_retry = jiffies + interval;
1858 
1859 	/* Success if task is already running on preferred CPU */
1860 	if (task_node(p) == p->numa_preferred_nid)
1861 		return;
1862 
1863 	/* Otherwise, try migrate to a CPU on the preferred node */
1864 	task_numa_migrate(p);
1865 }
1866 
1867 /*
1868  * Find out how many nodes on the workload is actively running on. Do this by
1869  * tracking the nodes from which NUMA hinting faults are triggered. This can
1870  * be different from the set of nodes where the workload's memory is currently
1871  * located.
1872  */
1873 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1874 {
1875 	unsigned long faults, max_faults = 0;
1876 	int nid, active_nodes = 0;
1877 
1878 	for_each_online_node(nid) {
1879 		faults = group_faults_cpu(numa_group, nid);
1880 		if (faults > max_faults)
1881 			max_faults = faults;
1882 	}
1883 
1884 	for_each_online_node(nid) {
1885 		faults = group_faults_cpu(numa_group, nid);
1886 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1887 			active_nodes++;
1888 	}
1889 
1890 	numa_group->max_faults_cpu = max_faults;
1891 	numa_group->active_nodes = active_nodes;
1892 }
1893 
1894 /*
1895  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1896  * increments. The more local the fault statistics are, the higher the scan
1897  * period will be for the next scan window. If local/(local+remote) ratio is
1898  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1899  * the scan period will decrease. Aim for 70% local accesses.
1900  */
1901 #define NUMA_PERIOD_SLOTS 10
1902 #define NUMA_PERIOD_THRESHOLD 7
1903 
1904 /*
1905  * Increase the scan period (slow down scanning) if the majority of
1906  * our memory is already on our local node, or if the majority of
1907  * the page accesses are shared with other processes.
1908  * Otherwise, decrease the scan period.
1909  */
1910 static void update_task_scan_period(struct task_struct *p,
1911 			unsigned long shared, unsigned long private)
1912 {
1913 	unsigned int period_slot;
1914 	int lr_ratio, ps_ratio;
1915 	int diff;
1916 
1917 	unsigned long remote = p->numa_faults_locality[0];
1918 	unsigned long local = p->numa_faults_locality[1];
1919 
1920 	/*
1921 	 * If there were no record hinting faults then either the task is
1922 	 * completely idle or all activity is areas that are not of interest
1923 	 * to automatic numa balancing. Related to that, if there were failed
1924 	 * migration then it implies we are migrating too quickly or the local
1925 	 * node is overloaded. In either case, scan slower
1926 	 */
1927 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1928 		p->numa_scan_period = min(p->numa_scan_period_max,
1929 			p->numa_scan_period << 1);
1930 
1931 		p->mm->numa_next_scan = jiffies +
1932 			msecs_to_jiffies(p->numa_scan_period);
1933 
1934 		return;
1935 	}
1936 
1937 	/*
1938 	 * Prepare to scale scan period relative to the current period.
1939 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1940 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1941 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1942 	 */
1943 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1944 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1945 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1946 
1947 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1948 		/*
1949 		 * Most memory accesses are local. There is no need to
1950 		 * do fast NUMA scanning, since memory is already local.
1951 		 */
1952 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1953 		if (!slot)
1954 			slot = 1;
1955 		diff = slot * period_slot;
1956 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1957 		/*
1958 		 * Most memory accesses are shared with other tasks.
1959 		 * There is no point in continuing fast NUMA scanning,
1960 		 * since other tasks may just move the memory elsewhere.
1961 		 */
1962 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1963 		if (!slot)
1964 			slot = 1;
1965 		diff = slot * period_slot;
1966 	} else {
1967 		/*
1968 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1969 		 * yet they are not on the local NUMA node. Speed up
1970 		 * NUMA scanning to get the memory moved over.
1971 		 */
1972 		int ratio = max(lr_ratio, ps_ratio);
1973 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1974 	}
1975 
1976 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1977 			task_scan_min(p), task_scan_max(p));
1978 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1979 }
1980 
1981 /*
1982  * Get the fraction of time the task has been running since the last
1983  * NUMA placement cycle. The scheduler keeps similar statistics, but
1984  * decays those on a 32ms period, which is orders of magnitude off
1985  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1986  * stats only if the task is so new there are no NUMA statistics yet.
1987  */
1988 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1989 {
1990 	u64 runtime, delta, now;
1991 	/* Use the start of this time slice to avoid calculations. */
1992 	now = p->se.exec_start;
1993 	runtime = p->se.sum_exec_runtime;
1994 
1995 	if (p->last_task_numa_placement) {
1996 		delta = runtime - p->last_sum_exec_runtime;
1997 		*period = now - p->last_task_numa_placement;
1998 	} else {
1999 		delta = p->se.avg.load_sum;
2000 		*period = LOAD_AVG_MAX;
2001 	}
2002 
2003 	p->last_sum_exec_runtime = runtime;
2004 	p->last_task_numa_placement = now;
2005 
2006 	return delta;
2007 }
2008 
2009 /*
2010  * Determine the preferred nid for a task in a numa_group. This needs to
2011  * be done in a way that produces consistent results with group_weight,
2012  * otherwise workloads might not converge.
2013  */
2014 static int preferred_group_nid(struct task_struct *p, int nid)
2015 {
2016 	nodemask_t nodes;
2017 	int dist;
2018 
2019 	/* Direct connections between all NUMA nodes. */
2020 	if (sched_numa_topology_type == NUMA_DIRECT)
2021 		return nid;
2022 
2023 	/*
2024 	 * On a system with glueless mesh NUMA topology, group_weight
2025 	 * scores nodes according to the number of NUMA hinting faults on
2026 	 * both the node itself, and on nearby nodes.
2027 	 */
2028 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2029 		unsigned long score, max_score = 0;
2030 		int node, max_node = nid;
2031 
2032 		dist = sched_max_numa_distance;
2033 
2034 		for_each_online_node(node) {
2035 			score = group_weight(p, node, dist);
2036 			if (score > max_score) {
2037 				max_score = score;
2038 				max_node = node;
2039 			}
2040 		}
2041 		return max_node;
2042 	}
2043 
2044 	/*
2045 	 * Finding the preferred nid in a system with NUMA backplane
2046 	 * interconnect topology is more involved. The goal is to locate
2047 	 * tasks from numa_groups near each other in the system, and
2048 	 * untangle workloads from different sides of the system. This requires
2049 	 * searching down the hierarchy of node groups, recursively searching
2050 	 * inside the highest scoring group of nodes. The nodemask tricks
2051 	 * keep the complexity of the search down.
2052 	 */
2053 	nodes = node_online_map;
2054 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2055 		unsigned long max_faults = 0;
2056 		nodemask_t max_group = NODE_MASK_NONE;
2057 		int a, b;
2058 
2059 		/* Are there nodes at this distance from each other? */
2060 		if (!find_numa_distance(dist))
2061 			continue;
2062 
2063 		for_each_node_mask(a, nodes) {
2064 			unsigned long faults = 0;
2065 			nodemask_t this_group;
2066 			nodes_clear(this_group);
2067 
2068 			/* Sum group's NUMA faults; includes a==b case. */
2069 			for_each_node_mask(b, nodes) {
2070 				if (node_distance(a, b) < dist) {
2071 					faults += group_faults(p, b);
2072 					node_set(b, this_group);
2073 					node_clear(b, nodes);
2074 				}
2075 			}
2076 
2077 			/* Remember the top group. */
2078 			if (faults > max_faults) {
2079 				max_faults = faults;
2080 				max_group = this_group;
2081 				/*
2082 				 * subtle: at the smallest distance there is
2083 				 * just one node left in each "group", the
2084 				 * winner is the preferred nid.
2085 				 */
2086 				nid = a;
2087 			}
2088 		}
2089 		/* Next round, evaluate the nodes within max_group. */
2090 		if (!max_faults)
2091 			break;
2092 		nodes = max_group;
2093 	}
2094 	return nid;
2095 }
2096 
2097 static void task_numa_placement(struct task_struct *p)
2098 {
2099 	int seq, nid, max_nid = -1;
2100 	unsigned long max_faults = 0;
2101 	unsigned long fault_types[2] = { 0, 0 };
2102 	unsigned long total_faults;
2103 	u64 runtime, period;
2104 	spinlock_t *group_lock = NULL;
2105 
2106 	/*
2107 	 * The p->mm->numa_scan_seq field gets updated without
2108 	 * exclusive access. Use READ_ONCE() here to ensure
2109 	 * that the field is read in a single access:
2110 	 */
2111 	seq = READ_ONCE(p->mm->numa_scan_seq);
2112 	if (p->numa_scan_seq == seq)
2113 		return;
2114 	p->numa_scan_seq = seq;
2115 	p->numa_scan_period_max = task_scan_max(p);
2116 
2117 	total_faults = p->numa_faults_locality[0] +
2118 		       p->numa_faults_locality[1];
2119 	runtime = numa_get_avg_runtime(p, &period);
2120 
2121 	/* If the task is part of a group prevent parallel updates to group stats */
2122 	if (p->numa_group) {
2123 		group_lock = &p->numa_group->lock;
2124 		spin_lock_irq(group_lock);
2125 	}
2126 
2127 	/* Find the node with the highest number of faults */
2128 	for_each_online_node(nid) {
2129 		/* Keep track of the offsets in numa_faults array */
2130 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2131 		unsigned long faults = 0, group_faults = 0;
2132 		int priv;
2133 
2134 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2135 			long diff, f_diff, f_weight;
2136 
2137 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2138 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2139 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2140 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2141 
2142 			/* Decay existing window, copy faults since last scan */
2143 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2144 			fault_types[priv] += p->numa_faults[membuf_idx];
2145 			p->numa_faults[membuf_idx] = 0;
2146 
2147 			/*
2148 			 * Normalize the faults_from, so all tasks in a group
2149 			 * count according to CPU use, instead of by the raw
2150 			 * number of faults. Tasks with little runtime have
2151 			 * little over-all impact on throughput, and thus their
2152 			 * faults are less important.
2153 			 */
2154 			f_weight = div64_u64(runtime << 16, period + 1);
2155 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2156 				   (total_faults + 1);
2157 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2158 			p->numa_faults[cpubuf_idx] = 0;
2159 
2160 			p->numa_faults[mem_idx] += diff;
2161 			p->numa_faults[cpu_idx] += f_diff;
2162 			faults += p->numa_faults[mem_idx];
2163 			p->total_numa_faults += diff;
2164 			if (p->numa_group) {
2165 				/*
2166 				 * safe because we can only change our own group
2167 				 *
2168 				 * mem_idx represents the offset for a given
2169 				 * nid and priv in a specific region because it
2170 				 * is at the beginning of the numa_faults array.
2171 				 */
2172 				p->numa_group->faults[mem_idx] += diff;
2173 				p->numa_group->faults_cpu[mem_idx] += f_diff;
2174 				p->numa_group->total_faults += diff;
2175 				group_faults += p->numa_group->faults[mem_idx];
2176 			}
2177 		}
2178 
2179 		if (!p->numa_group) {
2180 			if (faults > max_faults) {
2181 				max_faults = faults;
2182 				max_nid = nid;
2183 			}
2184 		} else if (group_faults > max_faults) {
2185 			max_faults = group_faults;
2186 			max_nid = nid;
2187 		}
2188 	}
2189 
2190 	if (p->numa_group) {
2191 		numa_group_count_active_nodes(p->numa_group);
2192 		spin_unlock_irq(group_lock);
2193 		max_nid = preferred_group_nid(p, max_nid);
2194 	}
2195 
2196 	if (max_faults) {
2197 		/* Set the new preferred node */
2198 		if (max_nid != p->numa_preferred_nid)
2199 			sched_setnuma(p, max_nid);
2200 	}
2201 
2202 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2203 }
2204 
2205 static inline int get_numa_group(struct numa_group *grp)
2206 {
2207 	return atomic_inc_not_zero(&grp->refcount);
2208 }
2209 
2210 static inline void put_numa_group(struct numa_group *grp)
2211 {
2212 	if (atomic_dec_and_test(&grp->refcount))
2213 		kfree_rcu(grp, rcu);
2214 }
2215 
2216 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2217 			int *priv)
2218 {
2219 	struct numa_group *grp, *my_grp;
2220 	struct task_struct *tsk;
2221 	bool join = false;
2222 	int cpu = cpupid_to_cpu(cpupid);
2223 	int i;
2224 
2225 	if (unlikely(!p->numa_group)) {
2226 		unsigned int size = sizeof(struct numa_group) +
2227 				    4*nr_node_ids*sizeof(unsigned long);
2228 
2229 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2230 		if (!grp)
2231 			return;
2232 
2233 		atomic_set(&grp->refcount, 1);
2234 		grp->active_nodes = 1;
2235 		grp->max_faults_cpu = 0;
2236 		spin_lock_init(&grp->lock);
2237 		grp->gid = p->pid;
2238 		/* Second half of the array tracks nids where faults happen */
2239 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2240 						nr_node_ids;
2241 
2242 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2243 			grp->faults[i] = p->numa_faults[i];
2244 
2245 		grp->total_faults = p->total_numa_faults;
2246 
2247 		grp->nr_tasks++;
2248 		rcu_assign_pointer(p->numa_group, grp);
2249 	}
2250 
2251 	rcu_read_lock();
2252 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2253 
2254 	if (!cpupid_match_pid(tsk, cpupid))
2255 		goto no_join;
2256 
2257 	grp = rcu_dereference(tsk->numa_group);
2258 	if (!grp)
2259 		goto no_join;
2260 
2261 	my_grp = p->numa_group;
2262 	if (grp == my_grp)
2263 		goto no_join;
2264 
2265 	/*
2266 	 * Only join the other group if its bigger; if we're the bigger group,
2267 	 * the other task will join us.
2268 	 */
2269 	if (my_grp->nr_tasks > grp->nr_tasks)
2270 		goto no_join;
2271 
2272 	/*
2273 	 * Tie-break on the grp address.
2274 	 */
2275 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2276 		goto no_join;
2277 
2278 	/* Always join threads in the same process. */
2279 	if (tsk->mm == current->mm)
2280 		join = true;
2281 
2282 	/* Simple filter to avoid false positives due to PID collisions */
2283 	if (flags & TNF_SHARED)
2284 		join = true;
2285 
2286 	/* Update priv based on whether false sharing was detected */
2287 	*priv = !join;
2288 
2289 	if (join && !get_numa_group(grp))
2290 		goto no_join;
2291 
2292 	rcu_read_unlock();
2293 
2294 	if (!join)
2295 		return;
2296 
2297 	BUG_ON(irqs_disabled());
2298 	double_lock_irq(&my_grp->lock, &grp->lock);
2299 
2300 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2301 		my_grp->faults[i] -= p->numa_faults[i];
2302 		grp->faults[i] += p->numa_faults[i];
2303 	}
2304 	my_grp->total_faults -= p->total_numa_faults;
2305 	grp->total_faults += p->total_numa_faults;
2306 
2307 	my_grp->nr_tasks--;
2308 	grp->nr_tasks++;
2309 
2310 	spin_unlock(&my_grp->lock);
2311 	spin_unlock_irq(&grp->lock);
2312 
2313 	rcu_assign_pointer(p->numa_group, grp);
2314 
2315 	put_numa_group(my_grp);
2316 	return;
2317 
2318 no_join:
2319 	rcu_read_unlock();
2320 	return;
2321 }
2322 
2323 void task_numa_free(struct task_struct *p)
2324 {
2325 	struct numa_group *grp = p->numa_group;
2326 	void *numa_faults = p->numa_faults;
2327 	unsigned long flags;
2328 	int i;
2329 
2330 	if (grp) {
2331 		spin_lock_irqsave(&grp->lock, flags);
2332 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2333 			grp->faults[i] -= p->numa_faults[i];
2334 		grp->total_faults -= p->total_numa_faults;
2335 
2336 		grp->nr_tasks--;
2337 		spin_unlock_irqrestore(&grp->lock, flags);
2338 		RCU_INIT_POINTER(p->numa_group, NULL);
2339 		put_numa_group(grp);
2340 	}
2341 
2342 	p->numa_faults = NULL;
2343 	kfree(numa_faults);
2344 }
2345 
2346 /*
2347  * Got a PROT_NONE fault for a page on @node.
2348  */
2349 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2350 {
2351 	struct task_struct *p = current;
2352 	bool migrated = flags & TNF_MIGRATED;
2353 	int cpu_node = task_node(current);
2354 	int local = !!(flags & TNF_FAULT_LOCAL);
2355 	struct numa_group *ng;
2356 	int priv;
2357 
2358 	if (!static_branch_likely(&sched_numa_balancing))
2359 		return;
2360 
2361 	/* for example, ksmd faulting in a user's mm */
2362 	if (!p->mm)
2363 		return;
2364 
2365 	/* Allocate buffer to track faults on a per-node basis */
2366 	if (unlikely(!p->numa_faults)) {
2367 		int size = sizeof(*p->numa_faults) *
2368 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2369 
2370 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2371 		if (!p->numa_faults)
2372 			return;
2373 
2374 		p->total_numa_faults = 0;
2375 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2376 	}
2377 
2378 	/*
2379 	 * First accesses are treated as private, otherwise consider accesses
2380 	 * to be private if the accessing pid has not changed
2381 	 */
2382 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2383 		priv = 1;
2384 	} else {
2385 		priv = cpupid_match_pid(p, last_cpupid);
2386 		if (!priv && !(flags & TNF_NO_GROUP))
2387 			task_numa_group(p, last_cpupid, flags, &priv);
2388 	}
2389 
2390 	/*
2391 	 * If a workload spans multiple NUMA nodes, a shared fault that
2392 	 * occurs wholly within the set of nodes that the workload is
2393 	 * actively using should be counted as local. This allows the
2394 	 * scan rate to slow down when a workload has settled down.
2395 	 */
2396 	ng = p->numa_group;
2397 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2398 				numa_is_active_node(cpu_node, ng) &&
2399 				numa_is_active_node(mem_node, ng))
2400 		local = 1;
2401 
2402 	/*
2403 	 * Retry to migrate task to preferred node periodically, in case it
2404 	 * previously failed, or the scheduler moved us.
2405 	 */
2406 	if (time_after(jiffies, p->numa_migrate_retry)) {
2407 		task_numa_placement(p);
2408 		numa_migrate_preferred(p);
2409 	}
2410 
2411 	if (migrated)
2412 		p->numa_pages_migrated += pages;
2413 	if (flags & TNF_MIGRATE_FAIL)
2414 		p->numa_faults_locality[2] += pages;
2415 
2416 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2417 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2418 	p->numa_faults_locality[local] += pages;
2419 }
2420 
2421 static void reset_ptenuma_scan(struct task_struct *p)
2422 {
2423 	/*
2424 	 * We only did a read acquisition of the mmap sem, so
2425 	 * p->mm->numa_scan_seq is written to without exclusive access
2426 	 * and the update is not guaranteed to be atomic. That's not
2427 	 * much of an issue though, since this is just used for
2428 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2429 	 * expensive, to avoid any form of compiler optimizations:
2430 	 */
2431 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2432 	p->mm->numa_scan_offset = 0;
2433 }
2434 
2435 /*
2436  * The expensive part of numa migration is done from task_work context.
2437  * Triggered from task_tick_numa().
2438  */
2439 void task_numa_work(struct callback_head *work)
2440 {
2441 	unsigned long migrate, next_scan, now = jiffies;
2442 	struct task_struct *p = current;
2443 	struct mm_struct *mm = p->mm;
2444 	u64 runtime = p->se.sum_exec_runtime;
2445 	struct vm_area_struct *vma;
2446 	unsigned long start, end;
2447 	unsigned long nr_pte_updates = 0;
2448 	long pages, virtpages;
2449 
2450 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2451 
2452 	work->next = work; /* protect against double add */
2453 	/*
2454 	 * Who cares about NUMA placement when they're dying.
2455 	 *
2456 	 * NOTE: make sure not to dereference p->mm before this check,
2457 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2458 	 * without p->mm even though we still had it when we enqueued this
2459 	 * work.
2460 	 */
2461 	if (p->flags & PF_EXITING)
2462 		return;
2463 
2464 	if (!mm->numa_next_scan) {
2465 		mm->numa_next_scan = now +
2466 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2467 	}
2468 
2469 	/*
2470 	 * Enforce maximal scan/migration frequency..
2471 	 */
2472 	migrate = mm->numa_next_scan;
2473 	if (time_before(now, migrate))
2474 		return;
2475 
2476 	if (p->numa_scan_period == 0) {
2477 		p->numa_scan_period_max = task_scan_max(p);
2478 		p->numa_scan_period = task_scan_start(p);
2479 	}
2480 
2481 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2482 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2483 		return;
2484 
2485 	/*
2486 	 * Delay this task enough that another task of this mm will likely win
2487 	 * the next time around.
2488 	 */
2489 	p->node_stamp += 2 * TICK_NSEC;
2490 
2491 	start = mm->numa_scan_offset;
2492 	pages = sysctl_numa_balancing_scan_size;
2493 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2494 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2495 	if (!pages)
2496 		return;
2497 
2498 
2499 	if (!down_read_trylock(&mm->mmap_sem))
2500 		return;
2501 	vma = find_vma(mm, start);
2502 	if (!vma) {
2503 		reset_ptenuma_scan(p);
2504 		start = 0;
2505 		vma = mm->mmap;
2506 	}
2507 	for (; vma; vma = vma->vm_next) {
2508 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2509 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2510 			continue;
2511 		}
2512 
2513 		/*
2514 		 * Shared library pages mapped by multiple processes are not
2515 		 * migrated as it is expected they are cache replicated. Avoid
2516 		 * hinting faults in read-only file-backed mappings or the vdso
2517 		 * as migrating the pages will be of marginal benefit.
2518 		 */
2519 		if (!vma->vm_mm ||
2520 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2521 			continue;
2522 
2523 		/*
2524 		 * Skip inaccessible VMAs to avoid any confusion between
2525 		 * PROT_NONE and NUMA hinting ptes
2526 		 */
2527 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2528 			continue;
2529 
2530 		do {
2531 			start = max(start, vma->vm_start);
2532 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2533 			end = min(end, vma->vm_end);
2534 			nr_pte_updates = change_prot_numa(vma, start, end);
2535 
2536 			/*
2537 			 * Try to scan sysctl_numa_balancing_size worth of
2538 			 * hpages that have at least one present PTE that
2539 			 * is not already pte-numa. If the VMA contains
2540 			 * areas that are unused or already full of prot_numa
2541 			 * PTEs, scan up to virtpages, to skip through those
2542 			 * areas faster.
2543 			 */
2544 			if (nr_pte_updates)
2545 				pages -= (end - start) >> PAGE_SHIFT;
2546 			virtpages -= (end - start) >> PAGE_SHIFT;
2547 
2548 			start = end;
2549 			if (pages <= 0 || virtpages <= 0)
2550 				goto out;
2551 
2552 			cond_resched();
2553 		} while (end != vma->vm_end);
2554 	}
2555 
2556 out:
2557 	/*
2558 	 * It is possible to reach the end of the VMA list but the last few
2559 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2560 	 * would find the !migratable VMA on the next scan but not reset the
2561 	 * scanner to the start so check it now.
2562 	 */
2563 	if (vma)
2564 		mm->numa_scan_offset = start;
2565 	else
2566 		reset_ptenuma_scan(p);
2567 	up_read(&mm->mmap_sem);
2568 
2569 	/*
2570 	 * Make sure tasks use at least 32x as much time to run other code
2571 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2572 	 * Usually update_task_scan_period slows down scanning enough; on an
2573 	 * overloaded system we need to limit overhead on a per task basis.
2574 	 */
2575 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2576 		u64 diff = p->se.sum_exec_runtime - runtime;
2577 		p->node_stamp += 32 * diff;
2578 	}
2579 }
2580 
2581 /*
2582  * Drive the periodic memory faults..
2583  */
2584 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2585 {
2586 	struct callback_head *work = &curr->numa_work;
2587 	u64 period, now;
2588 
2589 	/*
2590 	 * We don't care about NUMA placement if we don't have memory.
2591 	 */
2592 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2593 		return;
2594 
2595 	/*
2596 	 * Using runtime rather than walltime has the dual advantage that
2597 	 * we (mostly) drive the selection from busy threads and that the
2598 	 * task needs to have done some actual work before we bother with
2599 	 * NUMA placement.
2600 	 */
2601 	now = curr->se.sum_exec_runtime;
2602 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2603 
2604 	if (now > curr->node_stamp + period) {
2605 		if (!curr->node_stamp)
2606 			curr->numa_scan_period = task_scan_start(curr);
2607 		curr->node_stamp += period;
2608 
2609 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2610 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2611 			task_work_add(curr, work, true);
2612 		}
2613 	}
2614 }
2615 
2616 static void update_scan_period(struct task_struct *p, int new_cpu)
2617 {
2618 	int src_nid = cpu_to_node(task_cpu(p));
2619 	int dst_nid = cpu_to_node(new_cpu);
2620 
2621 	if (!static_branch_likely(&sched_numa_balancing))
2622 		return;
2623 
2624 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2625 		return;
2626 
2627 	if (src_nid == dst_nid)
2628 		return;
2629 
2630 	/*
2631 	 * Allow resets if faults have been trapped before one scan
2632 	 * has completed. This is most likely due to a new task that
2633 	 * is pulled cross-node due to wakeups or load balancing.
2634 	 */
2635 	if (p->numa_scan_seq) {
2636 		/*
2637 		 * Avoid scan adjustments if moving to the preferred
2638 		 * node or if the task was not previously running on
2639 		 * the preferred node.
2640 		 */
2641 		if (dst_nid == p->numa_preferred_nid ||
2642 		    (p->numa_preferred_nid != -1 && src_nid != p->numa_preferred_nid))
2643 			return;
2644 	}
2645 
2646 	p->numa_scan_period = task_scan_start(p);
2647 }
2648 
2649 #else
2650 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2651 {
2652 }
2653 
2654 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2655 {
2656 }
2657 
2658 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2659 {
2660 }
2661 
2662 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2663 {
2664 }
2665 
2666 #endif /* CONFIG_NUMA_BALANCING */
2667 
2668 static void
2669 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2670 {
2671 	update_load_add(&cfs_rq->load, se->load.weight);
2672 	if (!parent_entity(se))
2673 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2674 #ifdef CONFIG_SMP
2675 	if (entity_is_task(se)) {
2676 		struct rq *rq = rq_of(cfs_rq);
2677 
2678 		account_numa_enqueue(rq, task_of(se));
2679 		list_add(&se->group_node, &rq->cfs_tasks);
2680 	}
2681 #endif
2682 	cfs_rq->nr_running++;
2683 }
2684 
2685 static void
2686 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2687 {
2688 	update_load_sub(&cfs_rq->load, se->load.weight);
2689 	if (!parent_entity(se))
2690 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2691 #ifdef CONFIG_SMP
2692 	if (entity_is_task(se)) {
2693 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2694 		list_del_init(&se->group_node);
2695 	}
2696 #endif
2697 	cfs_rq->nr_running--;
2698 }
2699 
2700 /*
2701  * Signed add and clamp on underflow.
2702  *
2703  * Explicitly do a load-store to ensure the intermediate value never hits
2704  * memory. This allows lockless observations without ever seeing the negative
2705  * values.
2706  */
2707 #define add_positive(_ptr, _val) do {                           \
2708 	typeof(_ptr) ptr = (_ptr);                              \
2709 	typeof(_val) val = (_val);                              \
2710 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2711 								\
2712 	res = var + val;                                        \
2713 								\
2714 	if (val < 0 && res > var)                               \
2715 		res = 0;                                        \
2716 								\
2717 	WRITE_ONCE(*ptr, res);                                  \
2718 } while (0)
2719 
2720 /*
2721  * Unsigned subtract and clamp on underflow.
2722  *
2723  * Explicitly do a load-store to ensure the intermediate value never hits
2724  * memory. This allows lockless observations without ever seeing the negative
2725  * values.
2726  */
2727 #define sub_positive(_ptr, _val) do {				\
2728 	typeof(_ptr) ptr = (_ptr);				\
2729 	typeof(*ptr) val = (_val);				\
2730 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
2731 	res = var - val;					\
2732 	if (res > var)						\
2733 		res = 0;					\
2734 	WRITE_ONCE(*ptr, res);					\
2735 } while (0)
2736 
2737 #ifdef CONFIG_SMP
2738 static inline void
2739 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2740 {
2741 	cfs_rq->runnable_weight += se->runnable_weight;
2742 
2743 	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2744 	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2745 }
2746 
2747 static inline void
2748 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2749 {
2750 	cfs_rq->runnable_weight -= se->runnable_weight;
2751 
2752 	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2753 	sub_positive(&cfs_rq->avg.runnable_load_sum,
2754 		     se_runnable(se) * se->avg.runnable_load_sum);
2755 }
2756 
2757 static inline void
2758 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2759 {
2760 	cfs_rq->avg.load_avg += se->avg.load_avg;
2761 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2762 }
2763 
2764 static inline void
2765 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2766 {
2767 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2768 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2769 }
2770 #else
2771 static inline void
2772 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2773 static inline void
2774 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2775 static inline void
2776 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2777 static inline void
2778 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2779 #endif
2780 
2781 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2782 			    unsigned long weight, unsigned long runnable)
2783 {
2784 	if (se->on_rq) {
2785 		/* commit outstanding execution time */
2786 		if (cfs_rq->curr == se)
2787 			update_curr(cfs_rq);
2788 		account_entity_dequeue(cfs_rq, se);
2789 		dequeue_runnable_load_avg(cfs_rq, se);
2790 	}
2791 	dequeue_load_avg(cfs_rq, se);
2792 
2793 	se->runnable_weight = runnable;
2794 	update_load_set(&se->load, weight);
2795 
2796 #ifdef CONFIG_SMP
2797 	do {
2798 		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2799 
2800 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2801 		se->avg.runnable_load_avg =
2802 			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2803 	} while (0);
2804 #endif
2805 
2806 	enqueue_load_avg(cfs_rq, se);
2807 	if (se->on_rq) {
2808 		account_entity_enqueue(cfs_rq, se);
2809 		enqueue_runnable_load_avg(cfs_rq, se);
2810 	}
2811 }
2812 
2813 void reweight_task(struct task_struct *p, int prio)
2814 {
2815 	struct sched_entity *se = &p->se;
2816 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2817 	struct load_weight *load = &se->load;
2818 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2819 
2820 	reweight_entity(cfs_rq, se, weight, weight);
2821 	load->inv_weight = sched_prio_to_wmult[prio];
2822 }
2823 
2824 #ifdef CONFIG_FAIR_GROUP_SCHED
2825 #ifdef CONFIG_SMP
2826 /*
2827  * All this does is approximate the hierarchical proportion which includes that
2828  * global sum we all love to hate.
2829  *
2830  * That is, the weight of a group entity, is the proportional share of the
2831  * group weight based on the group runqueue weights. That is:
2832  *
2833  *                     tg->weight * grq->load.weight
2834  *   ge->load.weight = -----------------------------               (1)
2835  *			  \Sum grq->load.weight
2836  *
2837  * Now, because computing that sum is prohibitively expensive to compute (been
2838  * there, done that) we approximate it with this average stuff. The average
2839  * moves slower and therefore the approximation is cheaper and more stable.
2840  *
2841  * So instead of the above, we substitute:
2842  *
2843  *   grq->load.weight -> grq->avg.load_avg                         (2)
2844  *
2845  * which yields the following:
2846  *
2847  *                     tg->weight * grq->avg.load_avg
2848  *   ge->load.weight = ------------------------------              (3)
2849  *				tg->load_avg
2850  *
2851  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2852  *
2853  * That is shares_avg, and it is right (given the approximation (2)).
2854  *
2855  * The problem with it is that because the average is slow -- it was designed
2856  * to be exactly that of course -- this leads to transients in boundary
2857  * conditions. In specific, the case where the group was idle and we start the
2858  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2859  * yielding bad latency etc..
2860  *
2861  * Now, in that special case (1) reduces to:
2862  *
2863  *                     tg->weight * grq->load.weight
2864  *   ge->load.weight = ----------------------------- = tg->weight   (4)
2865  *			    grp->load.weight
2866  *
2867  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2868  *
2869  * So what we do is modify our approximation (3) to approach (4) in the (near)
2870  * UP case, like:
2871  *
2872  *   ge->load.weight =
2873  *
2874  *              tg->weight * grq->load.weight
2875  *     ---------------------------------------------------         (5)
2876  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
2877  *
2878  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2879  * we need to use grq->avg.load_avg as its lower bound, which then gives:
2880  *
2881  *
2882  *                     tg->weight * grq->load.weight
2883  *   ge->load.weight = -----------------------------		   (6)
2884  *				tg_load_avg'
2885  *
2886  * Where:
2887  *
2888  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2889  *                  max(grq->load.weight, grq->avg.load_avg)
2890  *
2891  * And that is shares_weight and is icky. In the (near) UP case it approaches
2892  * (4) while in the normal case it approaches (3). It consistently
2893  * overestimates the ge->load.weight and therefore:
2894  *
2895  *   \Sum ge->load.weight >= tg->weight
2896  *
2897  * hence icky!
2898  */
2899 static long calc_group_shares(struct cfs_rq *cfs_rq)
2900 {
2901 	long tg_weight, tg_shares, load, shares;
2902 	struct task_group *tg = cfs_rq->tg;
2903 
2904 	tg_shares = READ_ONCE(tg->shares);
2905 
2906 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2907 
2908 	tg_weight = atomic_long_read(&tg->load_avg);
2909 
2910 	/* Ensure tg_weight >= load */
2911 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2912 	tg_weight += load;
2913 
2914 	shares = (tg_shares * load);
2915 	if (tg_weight)
2916 		shares /= tg_weight;
2917 
2918 	/*
2919 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2920 	 * of a group with small tg->shares value. It is a floor value which is
2921 	 * assigned as a minimum load.weight to the sched_entity representing
2922 	 * the group on a CPU.
2923 	 *
2924 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2925 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2926 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2927 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2928 	 * instead of 0.
2929 	 */
2930 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
2931 }
2932 
2933 /*
2934  * This calculates the effective runnable weight for a group entity based on
2935  * the group entity weight calculated above.
2936  *
2937  * Because of the above approximation (2), our group entity weight is
2938  * an load_avg based ratio (3). This means that it includes blocked load and
2939  * does not represent the runnable weight.
2940  *
2941  * Approximate the group entity's runnable weight per ratio from the group
2942  * runqueue:
2943  *
2944  *					     grq->avg.runnable_load_avg
2945  *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
2946  *						 grq->avg.load_avg
2947  *
2948  * However, analogous to above, since the avg numbers are slow, this leads to
2949  * transients in the from-idle case. Instead we use:
2950  *
2951  *   ge->runnable_weight = ge->load.weight *
2952  *
2953  *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
2954  *		-----------------------------------------------------	(8)
2955  *		      max(grq->avg.load_avg, grq->load.weight)
2956  *
2957  * Where these max() serve both to use the 'instant' values to fix the slow
2958  * from-idle and avoid the /0 on to-idle, similar to (6).
2959  */
2960 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2961 {
2962 	long runnable, load_avg;
2963 
2964 	load_avg = max(cfs_rq->avg.load_avg,
2965 		       scale_load_down(cfs_rq->load.weight));
2966 
2967 	runnable = max(cfs_rq->avg.runnable_load_avg,
2968 		       scale_load_down(cfs_rq->runnable_weight));
2969 
2970 	runnable *= shares;
2971 	if (load_avg)
2972 		runnable /= load_avg;
2973 
2974 	return clamp_t(long, runnable, MIN_SHARES, shares);
2975 }
2976 #endif /* CONFIG_SMP */
2977 
2978 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2979 
2980 /*
2981  * Recomputes the group entity based on the current state of its group
2982  * runqueue.
2983  */
2984 static void update_cfs_group(struct sched_entity *se)
2985 {
2986 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
2987 	long shares, runnable;
2988 
2989 	if (!gcfs_rq)
2990 		return;
2991 
2992 	if (throttled_hierarchy(gcfs_rq))
2993 		return;
2994 
2995 #ifndef CONFIG_SMP
2996 	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
2997 
2998 	if (likely(se->load.weight == shares))
2999 		return;
3000 #else
3001 	shares   = calc_group_shares(gcfs_rq);
3002 	runnable = calc_group_runnable(gcfs_rq, shares);
3003 #endif
3004 
3005 	reweight_entity(cfs_rq_of(se), se, shares, runnable);
3006 }
3007 
3008 #else /* CONFIG_FAIR_GROUP_SCHED */
3009 static inline void update_cfs_group(struct sched_entity *se)
3010 {
3011 }
3012 #endif /* CONFIG_FAIR_GROUP_SCHED */
3013 
3014 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3015 {
3016 	struct rq *rq = rq_of(cfs_rq);
3017 
3018 	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3019 		/*
3020 		 * There are a few boundary cases this might miss but it should
3021 		 * get called often enough that that should (hopefully) not be
3022 		 * a real problem.
3023 		 *
3024 		 * It will not get called when we go idle, because the idle
3025 		 * thread is a different class (!fair), nor will the utilization
3026 		 * number include things like RT tasks.
3027 		 *
3028 		 * As is, the util number is not freq-invariant (we'd have to
3029 		 * implement arch_scale_freq_capacity() for that).
3030 		 *
3031 		 * See cpu_util().
3032 		 */
3033 		cpufreq_update_util(rq, flags);
3034 	}
3035 }
3036 
3037 #ifdef CONFIG_SMP
3038 #ifdef CONFIG_FAIR_GROUP_SCHED
3039 /**
3040  * update_tg_load_avg - update the tg's load avg
3041  * @cfs_rq: the cfs_rq whose avg changed
3042  * @force: update regardless of how small the difference
3043  *
3044  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3045  * However, because tg->load_avg is a global value there are performance
3046  * considerations.
3047  *
3048  * In order to avoid having to look at the other cfs_rq's, we use a
3049  * differential update where we store the last value we propagated. This in
3050  * turn allows skipping updates if the differential is 'small'.
3051  *
3052  * Updating tg's load_avg is necessary before update_cfs_share().
3053  */
3054 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3055 {
3056 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3057 
3058 	/*
3059 	 * No need to update load_avg for root_task_group as it is not used.
3060 	 */
3061 	if (cfs_rq->tg == &root_task_group)
3062 		return;
3063 
3064 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3065 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3066 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3067 	}
3068 }
3069 
3070 /*
3071  * Called within set_task_rq() right before setting a task's CPU. The
3072  * caller only guarantees p->pi_lock is held; no other assumptions,
3073  * including the state of rq->lock, should be made.
3074  */
3075 void set_task_rq_fair(struct sched_entity *se,
3076 		      struct cfs_rq *prev, struct cfs_rq *next)
3077 {
3078 	u64 p_last_update_time;
3079 	u64 n_last_update_time;
3080 
3081 	if (!sched_feat(ATTACH_AGE_LOAD))
3082 		return;
3083 
3084 	/*
3085 	 * We are supposed to update the task to "current" time, then its up to
3086 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3087 	 * getting what current time is, so simply throw away the out-of-date
3088 	 * time. This will result in the wakee task is less decayed, but giving
3089 	 * the wakee more load sounds not bad.
3090 	 */
3091 	if (!(se->avg.last_update_time && prev))
3092 		return;
3093 
3094 #ifndef CONFIG_64BIT
3095 	{
3096 		u64 p_last_update_time_copy;
3097 		u64 n_last_update_time_copy;
3098 
3099 		do {
3100 			p_last_update_time_copy = prev->load_last_update_time_copy;
3101 			n_last_update_time_copy = next->load_last_update_time_copy;
3102 
3103 			smp_rmb();
3104 
3105 			p_last_update_time = prev->avg.last_update_time;
3106 			n_last_update_time = next->avg.last_update_time;
3107 
3108 		} while (p_last_update_time != p_last_update_time_copy ||
3109 			 n_last_update_time != n_last_update_time_copy);
3110 	}
3111 #else
3112 	p_last_update_time = prev->avg.last_update_time;
3113 	n_last_update_time = next->avg.last_update_time;
3114 #endif
3115 	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3116 	se->avg.last_update_time = n_last_update_time;
3117 }
3118 
3119 
3120 /*
3121  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3122  * propagate its contribution. The key to this propagation is the invariant
3123  * that for each group:
3124  *
3125  *   ge->avg == grq->avg						(1)
3126  *
3127  * _IFF_ we look at the pure running and runnable sums. Because they
3128  * represent the very same entity, just at different points in the hierarchy.
3129  *
3130  * Per the above update_tg_cfs_util() is trivial and simply copies the running
3131  * sum over (but still wrong, because the group entity and group rq do not have
3132  * their PELT windows aligned).
3133  *
3134  * However, update_tg_cfs_runnable() is more complex. So we have:
3135  *
3136  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3137  *
3138  * And since, like util, the runnable part should be directly transferable,
3139  * the following would _appear_ to be the straight forward approach:
3140  *
3141  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3142  *
3143  * And per (1) we have:
3144  *
3145  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3146  *
3147  * Which gives:
3148  *
3149  *                      ge->load.weight * grq->avg.load_avg
3150  *   ge->avg.load_avg = -----------------------------------		(4)
3151  *                               grq->load.weight
3152  *
3153  * Except that is wrong!
3154  *
3155  * Because while for entities historical weight is not important and we
3156  * really only care about our future and therefore can consider a pure
3157  * runnable sum, runqueues can NOT do this.
3158  *
3159  * We specifically want runqueues to have a load_avg that includes
3160  * historical weights. Those represent the blocked load, the load we expect
3161  * to (shortly) return to us. This only works by keeping the weights as
3162  * integral part of the sum. We therefore cannot decompose as per (3).
3163  *
3164  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3165  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3166  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3167  * runnable section of these tasks overlap (or not). If they were to perfectly
3168  * align the rq as a whole would be runnable 2/3 of the time. If however we
3169  * always have at least 1 runnable task, the rq as a whole is always runnable.
3170  *
3171  * So we'll have to approximate.. :/
3172  *
3173  * Given the constraint:
3174  *
3175  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3176  *
3177  * We can construct a rule that adds runnable to a rq by assuming minimal
3178  * overlap.
3179  *
3180  * On removal, we'll assume each task is equally runnable; which yields:
3181  *
3182  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3183  *
3184  * XXX: only do this for the part of runnable > running ?
3185  *
3186  */
3187 
3188 static inline void
3189 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3190 {
3191 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3192 
3193 	/* Nothing to update */
3194 	if (!delta)
3195 		return;
3196 
3197 	/*
3198 	 * The relation between sum and avg is:
3199 	 *
3200 	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
3201 	 *
3202 	 * however, the PELT windows are not aligned between grq and gse.
3203 	 */
3204 
3205 	/* Set new sched_entity's utilization */
3206 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3207 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3208 
3209 	/* Update parent cfs_rq utilization */
3210 	add_positive(&cfs_rq->avg.util_avg, delta);
3211 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3212 }
3213 
3214 static inline void
3215 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3216 {
3217 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3218 	unsigned long runnable_load_avg, load_avg;
3219 	u64 runnable_load_sum, load_sum = 0;
3220 	s64 delta_sum;
3221 
3222 	if (!runnable_sum)
3223 		return;
3224 
3225 	gcfs_rq->prop_runnable_sum = 0;
3226 
3227 	if (runnable_sum >= 0) {
3228 		/*
3229 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3230 		 * the CPU is saturated running == runnable.
3231 		 */
3232 		runnable_sum += se->avg.load_sum;
3233 		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3234 	} else {
3235 		/*
3236 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3237 		 * assuming all tasks are equally runnable.
3238 		 */
3239 		if (scale_load_down(gcfs_rq->load.weight)) {
3240 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3241 				scale_load_down(gcfs_rq->load.weight));
3242 		}
3243 
3244 		/* But make sure to not inflate se's runnable */
3245 		runnable_sum = min(se->avg.load_sum, load_sum);
3246 	}
3247 
3248 	/*
3249 	 * runnable_sum can't be lower than running_sum
3250 	 * As running sum is scale with CPU capacity wehreas the runnable sum
3251 	 * is not we rescale running_sum 1st
3252 	 */
3253 	running_sum = se->avg.util_sum /
3254 		arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
3255 	runnable_sum = max(runnable_sum, running_sum);
3256 
3257 	load_sum = (s64)se_weight(se) * runnable_sum;
3258 	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3259 
3260 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3261 	delta_avg = load_avg - se->avg.load_avg;
3262 
3263 	se->avg.load_sum = runnable_sum;
3264 	se->avg.load_avg = load_avg;
3265 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3266 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3267 
3268 	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3269 	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3270 	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3271 	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3272 
3273 	se->avg.runnable_load_sum = runnable_sum;
3274 	se->avg.runnable_load_avg = runnable_load_avg;
3275 
3276 	if (se->on_rq) {
3277 		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3278 		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3279 	}
3280 }
3281 
3282 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3283 {
3284 	cfs_rq->propagate = 1;
3285 	cfs_rq->prop_runnable_sum += runnable_sum;
3286 }
3287 
3288 /* Update task and its cfs_rq load average */
3289 static inline int propagate_entity_load_avg(struct sched_entity *se)
3290 {
3291 	struct cfs_rq *cfs_rq, *gcfs_rq;
3292 
3293 	if (entity_is_task(se))
3294 		return 0;
3295 
3296 	gcfs_rq = group_cfs_rq(se);
3297 	if (!gcfs_rq->propagate)
3298 		return 0;
3299 
3300 	gcfs_rq->propagate = 0;
3301 
3302 	cfs_rq = cfs_rq_of(se);
3303 
3304 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3305 
3306 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3307 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3308 
3309 	return 1;
3310 }
3311 
3312 /*
3313  * Check if we need to update the load and the utilization of a blocked
3314  * group_entity:
3315  */
3316 static inline bool skip_blocked_update(struct sched_entity *se)
3317 {
3318 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3319 
3320 	/*
3321 	 * If sched_entity still have not zero load or utilization, we have to
3322 	 * decay it:
3323 	 */
3324 	if (se->avg.load_avg || se->avg.util_avg)
3325 		return false;
3326 
3327 	/*
3328 	 * If there is a pending propagation, we have to update the load and
3329 	 * the utilization of the sched_entity:
3330 	 */
3331 	if (gcfs_rq->propagate)
3332 		return false;
3333 
3334 	/*
3335 	 * Otherwise, the load and the utilization of the sched_entity is
3336 	 * already zero and there is no pending propagation, so it will be a
3337 	 * waste of time to try to decay it:
3338 	 */
3339 	return true;
3340 }
3341 
3342 #else /* CONFIG_FAIR_GROUP_SCHED */
3343 
3344 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3345 
3346 static inline int propagate_entity_load_avg(struct sched_entity *se)
3347 {
3348 	return 0;
3349 }
3350 
3351 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3352 
3353 #endif /* CONFIG_FAIR_GROUP_SCHED */
3354 
3355 /**
3356  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3357  * @now: current time, as per cfs_rq_clock_task()
3358  * @cfs_rq: cfs_rq to update
3359  *
3360  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3361  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3362  * post_init_entity_util_avg().
3363  *
3364  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3365  *
3366  * Returns true if the load decayed or we removed load.
3367  *
3368  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3369  * call update_tg_load_avg() when this function returns true.
3370  */
3371 static inline int
3372 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3373 {
3374 	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3375 	struct sched_avg *sa = &cfs_rq->avg;
3376 	int decayed = 0;
3377 
3378 	if (cfs_rq->removed.nr) {
3379 		unsigned long r;
3380 		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3381 
3382 		raw_spin_lock(&cfs_rq->removed.lock);
3383 		swap(cfs_rq->removed.util_avg, removed_util);
3384 		swap(cfs_rq->removed.load_avg, removed_load);
3385 		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3386 		cfs_rq->removed.nr = 0;
3387 		raw_spin_unlock(&cfs_rq->removed.lock);
3388 
3389 		r = removed_load;
3390 		sub_positive(&sa->load_avg, r);
3391 		sub_positive(&sa->load_sum, r * divider);
3392 
3393 		r = removed_util;
3394 		sub_positive(&sa->util_avg, r);
3395 		sub_positive(&sa->util_sum, r * divider);
3396 
3397 		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3398 
3399 		decayed = 1;
3400 	}
3401 
3402 	decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3403 
3404 #ifndef CONFIG_64BIT
3405 	smp_wmb();
3406 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3407 #endif
3408 
3409 	if (decayed)
3410 		cfs_rq_util_change(cfs_rq, 0);
3411 
3412 	return decayed;
3413 }
3414 
3415 /**
3416  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3417  * @cfs_rq: cfs_rq to attach to
3418  * @se: sched_entity to attach
3419  * @flags: migration hints
3420  *
3421  * Must call update_cfs_rq_load_avg() before this, since we rely on
3422  * cfs_rq->avg.last_update_time being current.
3423  */
3424 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3425 {
3426 	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3427 
3428 	/*
3429 	 * When we attach the @se to the @cfs_rq, we must align the decay
3430 	 * window because without that, really weird and wonderful things can
3431 	 * happen.
3432 	 *
3433 	 * XXX illustrate
3434 	 */
3435 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3436 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3437 
3438 	/*
3439 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3440 	 * period_contrib. This isn't strictly correct, but since we're
3441 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3442 	 * _sum a little.
3443 	 */
3444 	se->avg.util_sum = se->avg.util_avg * divider;
3445 
3446 	se->avg.load_sum = divider;
3447 	if (se_weight(se)) {
3448 		se->avg.load_sum =
3449 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3450 	}
3451 
3452 	se->avg.runnable_load_sum = se->avg.load_sum;
3453 
3454 	enqueue_load_avg(cfs_rq, se);
3455 	cfs_rq->avg.util_avg += se->avg.util_avg;
3456 	cfs_rq->avg.util_sum += se->avg.util_sum;
3457 
3458 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3459 
3460 	cfs_rq_util_change(cfs_rq, flags);
3461 }
3462 
3463 /**
3464  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3465  * @cfs_rq: cfs_rq to detach from
3466  * @se: sched_entity to detach
3467  *
3468  * Must call update_cfs_rq_load_avg() before this, since we rely on
3469  * cfs_rq->avg.last_update_time being current.
3470  */
3471 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3472 {
3473 	dequeue_load_avg(cfs_rq, se);
3474 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3475 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3476 
3477 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3478 
3479 	cfs_rq_util_change(cfs_rq, 0);
3480 }
3481 
3482 /*
3483  * Optional action to be done while updating the load average
3484  */
3485 #define UPDATE_TG	0x1
3486 #define SKIP_AGE_LOAD	0x2
3487 #define DO_ATTACH	0x4
3488 
3489 /* Update task and its cfs_rq load average */
3490 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3491 {
3492 	u64 now = cfs_rq_clock_task(cfs_rq);
3493 	struct rq *rq = rq_of(cfs_rq);
3494 	int cpu = cpu_of(rq);
3495 	int decayed;
3496 
3497 	/*
3498 	 * Track task load average for carrying it to new CPU after migrated, and
3499 	 * track group sched_entity load average for task_h_load calc in migration
3500 	 */
3501 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3502 		__update_load_avg_se(now, cpu, cfs_rq, se);
3503 
3504 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3505 	decayed |= propagate_entity_load_avg(se);
3506 
3507 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3508 
3509 		/*
3510 		 * DO_ATTACH means we're here from enqueue_entity().
3511 		 * !last_update_time means we've passed through
3512 		 * migrate_task_rq_fair() indicating we migrated.
3513 		 *
3514 		 * IOW we're enqueueing a task on a new CPU.
3515 		 */
3516 		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3517 		update_tg_load_avg(cfs_rq, 0);
3518 
3519 	} else if (decayed && (flags & UPDATE_TG))
3520 		update_tg_load_avg(cfs_rq, 0);
3521 }
3522 
3523 #ifndef CONFIG_64BIT
3524 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3525 {
3526 	u64 last_update_time_copy;
3527 	u64 last_update_time;
3528 
3529 	do {
3530 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3531 		smp_rmb();
3532 		last_update_time = cfs_rq->avg.last_update_time;
3533 	} while (last_update_time != last_update_time_copy);
3534 
3535 	return last_update_time;
3536 }
3537 #else
3538 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3539 {
3540 	return cfs_rq->avg.last_update_time;
3541 }
3542 #endif
3543 
3544 /*
3545  * Synchronize entity load avg of dequeued entity without locking
3546  * the previous rq.
3547  */
3548 void sync_entity_load_avg(struct sched_entity *se)
3549 {
3550 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3551 	u64 last_update_time;
3552 
3553 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3554 	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3555 }
3556 
3557 /*
3558  * Task first catches up with cfs_rq, and then subtract
3559  * itself from the cfs_rq (task must be off the queue now).
3560  */
3561 void remove_entity_load_avg(struct sched_entity *se)
3562 {
3563 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3564 	unsigned long flags;
3565 
3566 	/*
3567 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3568 	 * post_init_entity_util_avg() which will have added things to the
3569 	 * cfs_rq, so we can remove unconditionally.
3570 	 *
3571 	 * Similarly for groups, they will have passed through
3572 	 * post_init_entity_util_avg() before unregister_sched_fair_group()
3573 	 * calls this.
3574 	 */
3575 
3576 	sync_entity_load_avg(se);
3577 
3578 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3579 	++cfs_rq->removed.nr;
3580 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3581 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3582 	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3583 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3584 }
3585 
3586 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3587 {
3588 	return cfs_rq->avg.runnable_load_avg;
3589 }
3590 
3591 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3592 {
3593 	return cfs_rq->avg.load_avg;
3594 }
3595 
3596 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3597 
3598 static inline unsigned long task_util(struct task_struct *p)
3599 {
3600 	return READ_ONCE(p->se.avg.util_avg);
3601 }
3602 
3603 static inline unsigned long _task_util_est(struct task_struct *p)
3604 {
3605 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3606 
3607 	return max(ue.ewma, ue.enqueued);
3608 }
3609 
3610 static inline unsigned long task_util_est(struct task_struct *p)
3611 {
3612 	return max(task_util(p), _task_util_est(p));
3613 }
3614 
3615 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3616 				    struct task_struct *p)
3617 {
3618 	unsigned int enqueued;
3619 
3620 	if (!sched_feat(UTIL_EST))
3621 		return;
3622 
3623 	/* Update root cfs_rq's estimated utilization */
3624 	enqueued  = cfs_rq->avg.util_est.enqueued;
3625 	enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED);
3626 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3627 }
3628 
3629 /*
3630  * Check if a (signed) value is within a specified (unsigned) margin,
3631  * based on the observation that:
3632  *
3633  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3634  *
3635  * NOTE: this only works when value + maring < INT_MAX.
3636  */
3637 static inline bool within_margin(int value, int margin)
3638 {
3639 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3640 }
3641 
3642 static void
3643 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3644 {
3645 	long last_ewma_diff;
3646 	struct util_est ue;
3647 
3648 	if (!sched_feat(UTIL_EST))
3649 		return;
3650 
3651 	/* Update root cfs_rq's estimated utilization */
3652 	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3653 	ue.enqueued -= min_t(unsigned int, ue.enqueued,
3654 			     (_task_util_est(p) | UTIL_AVG_UNCHANGED));
3655 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3656 
3657 	/*
3658 	 * Skip update of task's estimated utilization when the task has not
3659 	 * yet completed an activation, e.g. being migrated.
3660 	 */
3661 	if (!task_sleep)
3662 		return;
3663 
3664 	/*
3665 	 * If the PELT values haven't changed since enqueue time,
3666 	 * skip the util_est update.
3667 	 */
3668 	ue = p->se.avg.util_est;
3669 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
3670 		return;
3671 
3672 	/*
3673 	 * Skip update of task's estimated utilization when its EWMA is
3674 	 * already ~1% close to its last activation value.
3675 	 */
3676 	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3677 	last_ewma_diff = ue.enqueued - ue.ewma;
3678 	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3679 		return;
3680 
3681 	/*
3682 	 * Update Task's estimated utilization
3683 	 *
3684 	 * When *p completes an activation we can consolidate another sample
3685 	 * of the task size. This is done by storing the current PELT value
3686 	 * as ue.enqueued and by using this value to update the Exponential
3687 	 * Weighted Moving Average (EWMA):
3688 	 *
3689 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
3690 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
3691 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
3692 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
3693 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
3694 	 *
3695 	 * Where 'w' is the weight of new samples, which is configured to be
3696 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3697 	 */
3698 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3699 	ue.ewma  += last_ewma_diff;
3700 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3701 	WRITE_ONCE(p->se.avg.util_est, ue);
3702 }
3703 
3704 static inline int task_fits_capacity(struct task_struct *p, long capacity)
3705 {
3706 	return capacity * 1024 > task_util_est(p) * capacity_margin;
3707 }
3708 
3709 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3710 {
3711 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
3712 		return;
3713 
3714 	if (!p) {
3715 		rq->misfit_task_load = 0;
3716 		return;
3717 	}
3718 
3719 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3720 		rq->misfit_task_load = 0;
3721 		return;
3722 	}
3723 
3724 	rq->misfit_task_load = task_h_load(p);
3725 }
3726 
3727 #else /* CONFIG_SMP */
3728 
3729 #define UPDATE_TG	0x0
3730 #define SKIP_AGE_LOAD	0x0
3731 #define DO_ATTACH	0x0
3732 
3733 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3734 {
3735 	cfs_rq_util_change(cfs_rq, 0);
3736 }
3737 
3738 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3739 
3740 static inline void
3741 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3742 static inline void
3743 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3744 
3745 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3746 {
3747 	return 0;
3748 }
3749 
3750 static inline void
3751 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3752 
3753 static inline void
3754 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3755 		 bool task_sleep) {}
3756 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
3757 
3758 #endif /* CONFIG_SMP */
3759 
3760 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3761 {
3762 #ifdef CONFIG_SCHED_DEBUG
3763 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3764 
3765 	if (d < 0)
3766 		d = -d;
3767 
3768 	if (d > 3*sysctl_sched_latency)
3769 		schedstat_inc(cfs_rq->nr_spread_over);
3770 #endif
3771 }
3772 
3773 static void
3774 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3775 {
3776 	u64 vruntime = cfs_rq->min_vruntime;
3777 
3778 	/*
3779 	 * The 'current' period is already promised to the current tasks,
3780 	 * however the extra weight of the new task will slow them down a
3781 	 * little, place the new task so that it fits in the slot that
3782 	 * stays open at the end.
3783 	 */
3784 	if (initial && sched_feat(START_DEBIT))
3785 		vruntime += sched_vslice(cfs_rq, se);
3786 
3787 	/* sleeps up to a single latency don't count. */
3788 	if (!initial) {
3789 		unsigned long thresh = sysctl_sched_latency;
3790 
3791 		/*
3792 		 * Halve their sleep time's effect, to allow
3793 		 * for a gentler effect of sleepers:
3794 		 */
3795 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3796 			thresh >>= 1;
3797 
3798 		vruntime -= thresh;
3799 	}
3800 
3801 	/* ensure we never gain time by being placed backwards. */
3802 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3803 }
3804 
3805 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3806 
3807 static inline void check_schedstat_required(void)
3808 {
3809 #ifdef CONFIG_SCHEDSTATS
3810 	if (schedstat_enabled())
3811 		return;
3812 
3813 	/* Force schedstat enabled if a dependent tracepoint is active */
3814 	if (trace_sched_stat_wait_enabled()    ||
3815 			trace_sched_stat_sleep_enabled()   ||
3816 			trace_sched_stat_iowait_enabled()  ||
3817 			trace_sched_stat_blocked_enabled() ||
3818 			trace_sched_stat_runtime_enabled())  {
3819 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3820 			     "stat_blocked and stat_runtime require the "
3821 			     "kernel parameter schedstats=enable or "
3822 			     "kernel.sched_schedstats=1\n");
3823 	}
3824 #endif
3825 }
3826 
3827 
3828 /*
3829  * MIGRATION
3830  *
3831  *	dequeue
3832  *	  update_curr()
3833  *	    update_min_vruntime()
3834  *	  vruntime -= min_vruntime
3835  *
3836  *	enqueue
3837  *	  update_curr()
3838  *	    update_min_vruntime()
3839  *	  vruntime += min_vruntime
3840  *
3841  * this way the vruntime transition between RQs is done when both
3842  * min_vruntime are up-to-date.
3843  *
3844  * WAKEUP (remote)
3845  *
3846  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3847  *	  vruntime -= min_vruntime
3848  *
3849  *	enqueue
3850  *	  update_curr()
3851  *	    update_min_vruntime()
3852  *	  vruntime += min_vruntime
3853  *
3854  * this way we don't have the most up-to-date min_vruntime on the originating
3855  * CPU and an up-to-date min_vruntime on the destination CPU.
3856  */
3857 
3858 static void
3859 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3860 {
3861 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3862 	bool curr = cfs_rq->curr == se;
3863 
3864 	/*
3865 	 * If we're the current task, we must renormalise before calling
3866 	 * update_curr().
3867 	 */
3868 	if (renorm && curr)
3869 		se->vruntime += cfs_rq->min_vruntime;
3870 
3871 	update_curr(cfs_rq);
3872 
3873 	/*
3874 	 * Otherwise, renormalise after, such that we're placed at the current
3875 	 * moment in time, instead of some random moment in the past. Being
3876 	 * placed in the past could significantly boost this task to the
3877 	 * fairness detriment of existing tasks.
3878 	 */
3879 	if (renorm && !curr)
3880 		se->vruntime += cfs_rq->min_vruntime;
3881 
3882 	/*
3883 	 * When enqueuing a sched_entity, we must:
3884 	 *   - Update loads to have both entity and cfs_rq synced with now.
3885 	 *   - Add its load to cfs_rq->runnable_avg
3886 	 *   - For group_entity, update its weight to reflect the new share of
3887 	 *     its group cfs_rq
3888 	 *   - Add its new weight to cfs_rq->load.weight
3889 	 */
3890 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3891 	update_cfs_group(se);
3892 	enqueue_runnable_load_avg(cfs_rq, se);
3893 	account_entity_enqueue(cfs_rq, se);
3894 
3895 	if (flags & ENQUEUE_WAKEUP)
3896 		place_entity(cfs_rq, se, 0);
3897 
3898 	check_schedstat_required();
3899 	update_stats_enqueue(cfs_rq, se, flags);
3900 	check_spread(cfs_rq, se);
3901 	if (!curr)
3902 		__enqueue_entity(cfs_rq, se);
3903 	se->on_rq = 1;
3904 
3905 	if (cfs_rq->nr_running == 1) {
3906 		list_add_leaf_cfs_rq(cfs_rq);
3907 		check_enqueue_throttle(cfs_rq);
3908 	}
3909 }
3910 
3911 static void __clear_buddies_last(struct sched_entity *se)
3912 {
3913 	for_each_sched_entity(se) {
3914 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3915 		if (cfs_rq->last != se)
3916 			break;
3917 
3918 		cfs_rq->last = NULL;
3919 	}
3920 }
3921 
3922 static void __clear_buddies_next(struct sched_entity *se)
3923 {
3924 	for_each_sched_entity(se) {
3925 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3926 		if (cfs_rq->next != se)
3927 			break;
3928 
3929 		cfs_rq->next = NULL;
3930 	}
3931 }
3932 
3933 static void __clear_buddies_skip(struct sched_entity *se)
3934 {
3935 	for_each_sched_entity(se) {
3936 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3937 		if (cfs_rq->skip != se)
3938 			break;
3939 
3940 		cfs_rq->skip = NULL;
3941 	}
3942 }
3943 
3944 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3945 {
3946 	if (cfs_rq->last == se)
3947 		__clear_buddies_last(se);
3948 
3949 	if (cfs_rq->next == se)
3950 		__clear_buddies_next(se);
3951 
3952 	if (cfs_rq->skip == se)
3953 		__clear_buddies_skip(se);
3954 }
3955 
3956 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3957 
3958 static void
3959 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3960 {
3961 	/*
3962 	 * Update run-time statistics of the 'current'.
3963 	 */
3964 	update_curr(cfs_rq);
3965 
3966 	/*
3967 	 * When dequeuing a sched_entity, we must:
3968 	 *   - Update loads to have both entity and cfs_rq synced with now.
3969 	 *   - Substract its load from the cfs_rq->runnable_avg.
3970 	 *   - Substract its previous weight from cfs_rq->load.weight.
3971 	 *   - For group entity, update its weight to reflect the new share
3972 	 *     of its group cfs_rq.
3973 	 */
3974 	update_load_avg(cfs_rq, se, UPDATE_TG);
3975 	dequeue_runnable_load_avg(cfs_rq, se);
3976 
3977 	update_stats_dequeue(cfs_rq, se, flags);
3978 
3979 	clear_buddies(cfs_rq, se);
3980 
3981 	if (se != cfs_rq->curr)
3982 		__dequeue_entity(cfs_rq, se);
3983 	se->on_rq = 0;
3984 	account_entity_dequeue(cfs_rq, se);
3985 
3986 	/*
3987 	 * Normalize after update_curr(); which will also have moved
3988 	 * min_vruntime if @se is the one holding it back. But before doing
3989 	 * update_min_vruntime() again, which will discount @se's position and
3990 	 * can move min_vruntime forward still more.
3991 	 */
3992 	if (!(flags & DEQUEUE_SLEEP))
3993 		se->vruntime -= cfs_rq->min_vruntime;
3994 
3995 	/* return excess runtime on last dequeue */
3996 	return_cfs_rq_runtime(cfs_rq);
3997 
3998 	update_cfs_group(se);
3999 
4000 	/*
4001 	 * Now advance min_vruntime if @se was the entity holding it back,
4002 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4003 	 * put back on, and if we advance min_vruntime, we'll be placed back
4004 	 * further than we started -- ie. we'll be penalized.
4005 	 */
4006 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4007 		update_min_vruntime(cfs_rq);
4008 }
4009 
4010 /*
4011  * Preempt the current task with a newly woken task if needed:
4012  */
4013 static void
4014 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4015 {
4016 	unsigned long ideal_runtime, delta_exec;
4017 	struct sched_entity *se;
4018 	s64 delta;
4019 
4020 	ideal_runtime = sched_slice(cfs_rq, curr);
4021 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4022 	if (delta_exec > ideal_runtime) {
4023 		resched_curr(rq_of(cfs_rq));
4024 		/*
4025 		 * The current task ran long enough, ensure it doesn't get
4026 		 * re-elected due to buddy favours.
4027 		 */
4028 		clear_buddies(cfs_rq, curr);
4029 		return;
4030 	}
4031 
4032 	/*
4033 	 * Ensure that a task that missed wakeup preemption by a
4034 	 * narrow margin doesn't have to wait for a full slice.
4035 	 * This also mitigates buddy induced latencies under load.
4036 	 */
4037 	if (delta_exec < sysctl_sched_min_granularity)
4038 		return;
4039 
4040 	se = __pick_first_entity(cfs_rq);
4041 	delta = curr->vruntime - se->vruntime;
4042 
4043 	if (delta < 0)
4044 		return;
4045 
4046 	if (delta > ideal_runtime)
4047 		resched_curr(rq_of(cfs_rq));
4048 }
4049 
4050 static void
4051 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4052 {
4053 	/* 'current' is not kept within the tree. */
4054 	if (se->on_rq) {
4055 		/*
4056 		 * Any task has to be enqueued before it get to execute on
4057 		 * a CPU. So account for the time it spent waiting on the
4058 		 * runqueue.
4059 		 */
4060 		update_stats_wait_end(cfs_rq, se);
4061 		__dequeue_entity(cfs_rq, se);
4062 		update_load_avg(cfs_rq, se, UPDATE_TG);
4063 	}
4064 
4065 	update_stats_curr_start(cfs_rq, se);
4066 	cfs_rq->curr = se;
4067 
4068 	/*
4069 	 * Track our maximum slice length, if the CPU's load is at
4070 	 * least twice that of our own weight (i.e. dont track it
4071 	 * when there are only lesser-weight tasks around):
4072 	 */
4073 	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4074 		schedstat_set(se->statistics.slice_max,
4075 			max((u64)schedstat_val(se->statistics.slice_max),
4076 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4077 	}
4078 
4079 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4080 }
4081 
4082 static int
4083 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4084 
4085 /*
4086  * Pick the next process, keeping these things in mind, in this order:
4087  * 1) keep things fair between processes/task groups
4088  * 2) pick the "next" process, since someone really wants that to run
4089  * 3) pick the "last" process, for cache locality
4090  * 4) do not run the "skip" process, if something else is available
4091  */
4092 static struct sched_entity *
4093 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4094 {
4095 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4096 	struct sched_entity *se;
4097 
4098 	/*
4099 	 * If curr is set we have to see if its left of the leftmost entity
4100 	 * still in the tree, provided there was anything in the tree at all.
4101 	 */
4102 	if (!left || (curr && entity_before(curr, left)))
4103 		left = curr;
4104 
4105 	se = left; /* ideally we run the leftmost entity */
4106 
4107 	/*
4108 	 * Avoid running the skip buddy, if running something else can
4109 	 * be done without getting too unfair.
4110 	 */
4111 	if (cfs_rq->skip == se) {
4112 		struct sched_entity *second;
4113 
4114 		if (se == curr) {
4115 			second = __pick_first_entity(cfs_rq);
4116 		} else {
4117 			second = __pick_next_entity(se);
4118 			if (!second || (curr && entity_before(curr, second)))
4119 				second = curr;
4120 		}
4121 
4122 		if (second && wakeup_preempt_entity(second, left) < 1)
4123 			se = second;
4124 	}
4125 
4126 	/*
4127 	 * Prefer last buddy, try to return the CPU to a preempted task.
4128 	 */
4129 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4130 		se = cfs_rq->last;
4131 
4132 	/*
4133 	 * Someone really wants this to run. If it's not unfair, run it.
4134 	 */
4135 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4136 		se = cfs_rq->next;
4137 
4138 	clear_buddies(cfs_rq, se);
4139 
4140 	return se;
4141 }
4142 
4143 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4144 
4145 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4146 {
4147 	/*
4148 	 * If still on the runqueue then deactivate_task()
4149 	 * was not called and update_curr() has to be done:
4150 	 */
4151 	if (prev->on_rq)
4152 		update_curr(cfs_rq);
4153 
4154 	/* throttle cfs_rqs exceeding runtime */
4155 	check_cfs_rq_runtime(cfs_rq);
4156 
4157 	check_spread(cfs_rq, prev);
4158 
4159 	if (prev->on_rq) {
4160 		update_stats_wait_start(cfs_rq, prev);
4161 		/* Put 'current' back into the tree. */
4162 		__enqueue_entity(cfs_rq, prev);
4163 		/* in !on_rq case, update occurred at dequeue */
4164 		update_load_avg(cfs_rq, prev, 0);
4165 	}
4166 	cfs_rq->curr = NULL;
4167 }
4168 
4169 static void
4170 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4171 {
4172 	/*
4173 	 * Update run-time statistics of the 'current'.
4174 	 */
4175 	update_curr(cfs_rq);
4176 
4177 	/*
4178 	 * Ensure that runnable average is periodically updated.
4179 	 */
4180 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4181 	update_cfs_group(curr);
4182 
4183 #ifdef CONFIG_SCHED_HRTICK
4184 	/*
4185 	 * queued ticks are scheduled to match the slice, so don't bother
4186 	 * validating it and just reschedule.
4187 	 */
4188 	if (queued) {
4189 		resched_curr(rq_of(cfs_rq));
4190 		return;
4191 	}
4192 	/*
4193 	 * don't let the period tick interfere with the hrtick preemption
4194 	 */
4195 	if (!sched_feat(DOUBLE_TICK) &&
4196 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4197 		return;
4198 #endif
4199 
4200 	if (cfs_rq->nr_running > 1)
4201 		check_preempt_tick(cfs_rq, curr);
4202 }
4203 
4204 
4205 /**************************************************
4206  * CFS bandwidth control machinery
4207  */
4208 
4209 #ifdef CONFIG_CFS_BANDWIDTH
4210 
4211 #ifdef HAVE_JUMP_LABEL
4212 static struct static_key __cfs_bandwidth_used;
4213 
4214 static inline bool cfs_bandwidth_used(void)
4215 {
4216 	return static_key_false(&__cfs_bandwidth_used);
4217 }
4218 
4219 void cfs_bandwidth_usage_inc(void)
4220 {
4221 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4222 }
4223 
4224 void cfs_bandwidth_usage_dec(void)
4225 {
4226 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4227 }
4228 #else /* HAVE_JUMP_LABEL */
4229 static bool cfs_bandwidth_used(void)
4230 {
4231 	return true;
4232 }
4233 
4234 void cfs_bandwidth_usage_inc(void) {}
4235 void cfs_bandwidth_usage_dec(void) {}
4236 #endif /* HAVE_JUMP_LABEL */
4237 
4238 /*
4239  * default period for cfs group bandwidth.
4240  * default: 0.1s, units: nanoseconds
4241  */
4242 static inline u64 default_cfs_period(void)
4243 {
4244 	return 100000000ULL;
4245 }
4246 
4247 static inline u64 sched_cfs_bandwidth_slice(void)
4248 {
4249 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4250 }
4251 
4252 /*
4253  * Replenish runtime according to assigned quota and update expiration time.
4254  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4255  * additional synchronization around rq->lock.
4256  *
4257  * requires cfs_b->lock
4258  */
4259 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4260 {
4261 	u64 now;
4262 
4263 	if (cfs_b->quota == RUNTIME_INF)
4264 		return;
4265 
4266 	now = sched_clock_cpu(smp_processor_id());
4267 	cfs_b->runtime = cfs_b->quota;
4268 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4269 	cfs_b->expires_seq++;
4270 }
4271 
4272 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4273 {
4274 	return &tg->cfs_bandwidth;
4275 }
4276 
4277 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4278 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4279 {
4280 	if (unlikely(cfs_rq->throttle_count))
4281 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4282 
4283 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4284 }
4285 
4286 /* returns 0 on failure to allocate runtime */
4287 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4288 {
4289 	struct task_group *tg = cfs_rq->tg;
4290 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4291 	u64 amount = 0, min_amount, expires;
4292 	int expires_seq;
4293 
4294 	/* note: this is a positive sum as runtime_remaining <= 0 */
4295 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4296 
4297 	raw_spin_lock(&cfs_b->lock);
4298 	if (cfs_b->quota == RUNTIME_INF)
4299 		amount = min_amount;
4300 	else {
4301 		start_cfs_bandwidth(cfs_b);
4302 
4303 		if (cfs_b->runtime > 0) {
4304 			amount = min(cfs_b->runtime, min_amount);
4305 			cfs_b->runtime -= amount;
4306 			cfs_b->idle = 0;
4307 		}
4308 	}
4309 	expires_seq = cfs_b->expires_seq;
4310 	expires = cfs_b->runtime_expires;
4311 	raw_spin_unlock(&cfs_b->lock);
4312 
4313 	cfs_rq->runtime_remaining += amount;
4314 	/*
4315 	 * we may have advanced our local expiration to account for allowed
4316 	 * spread between our sched_clock and the one on which runtime was
4317 	 * issued.
4318 	 */
4319 	if (cfs_rq->expires_seq != expires_seq) {
4320 		cfs_rq->expires_seq = expires_seq;
4321 		cfs_rq->runtime_expires = expires;
4322 	}
4323 
4324 	return cfs_rq->runtime_remaining > 0;
4325 }
4326 
4327 /*
4328  * Note: This depends on the synchronization provided by sched_clock and the
4329  * fact that rq->clock snapshots this value.
4330  */
4331 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4332 {
4333 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4334 
4335 	/* if the deadline is ahead of our clock, nothing to do */
4336 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4337 		return;
4338 
4339 	if (cfs_rq->runtime_remaining < 0)
4340 		return;
4341 
4342 	/*
4343 	 * If the local deadline has passed we have to consider the
4344 	 * possibility that our sched_clock is 'fast' and the global deadline
4345 	 * has not truly expired.
4346 	 *
4347 	 * Fortunately we can check determine whether this the case by checking
4348 	 * whether the global deadline(cfs_b->expires_seq) has advanced.
4349 	 */
4350 	if (cfs_rq->expires_seq == cfs_b->expires_seq) {
4351 		/* extend local deadline, drift is bounded above by 2 ticks */
4352 		cfs_rq->runtime_expires += TICK_NSEC;
4353 	} else {
4354 		/* global deadline is ahead, expiration has passed */
4355 		cfs_rq->runtime_remaining = 0;
4356 	}
4357 }
4358 
4359 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4360 {
4361 	/* dock delta_exec before expiring quota (as it could span periods) */
4362 	cfs_rq->runtime_remaining -= delta_exec;
4363 	expire_cfs_rq_runtime(cfs_rq);
4364 
4365 	if (likely(cfs_rq->runtime_remaining > 0))
4366 		return;
4367 
4368 	/*
4369 	 * if we're unable to extend our runtime we resched so that the active
4370 	 * hierarchy can be throttled
4371 	 */
4372 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4373 		resched_curr(rq_of(cfs_rq));
4374 }
4375 
4376 static __always_inline
4377 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4378 {
4379 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4380 		return;
4381 
4382 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4383 }
4384 
4385 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4386 {
4387 	return cfs_bandwidth_used() && cfs_rq->throttled;
4388 }
4389 
4390 /* check whether cfs_rq, or any parent, is throttled */
4391 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4392 {
4393 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4394 }
4395 
4396 /*
4397  * Ensure that neither of the group entities corresponding to src_cpu or
4398  * dest_cpu are members of a throttled hierarchy when performing group
4399  * load-balance operations.
4400  */
4401 static inline int throttled_lb_pair(struct task_group *tg,
4402 				    int src_cpu, int dest_cpu)
4403 {
4404 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4405 
4406 	src_cfs_rq = tg->cfs_rq[src_cpu];
4407 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4408 
4409 	return throttled_hierarchy(src_cfs_rq) ||
4410 	       throttled_hierarchy(dest_cfs_rq);
4411 }
4412 
4413 static int tg_unthrottle_up(struct task_group *tg, void *data)
4414 {
4415 	struct rq *rq = data;
4416 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4417 
4418 	cfs_rq->throttle_count--;
4419 	if (!cfs_rq->throttle_count) {
4420 		/* adjust cfs_rq_clock_task() */
4421 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4422 					     cfs_rq->throttled_clock_task;
4423 	}
4424 
4425 	return 0;
4426 }
4427 
4428 static int tg_throttle_down(struct task_group *tg, void *data)
4429 {
4430 	struct rq *rq = data;
4431 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4432 
4433 	/* group is entering throttled state, stop time */
4434 	if (!cfs_rq->throttle_count)
4435 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4436 	cfs_rq->throttle_count++;
4437 
4438 	return 0;
4439 }
4440 
4441 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4442 {
4443 	struct rq *rq = rq_of(cfs_rq);
4444 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4445 	struct sched_entity *se;
4446 	long task_delta, dequeue = 1;
4447 	bool empty;
4448 
4449 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4450 
4451 	/* freeze hierarchy runnable averages while throttled */
4452 	rcu_read_lock();
4453 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4454 	rcu_read_unlock();
4455 
4456 	task_delta = cfs_rq->h_nr_running;
4457 	for_each_sched_entity(se) {
4458 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4459 		/* throttled entity or throttle-on-deactivate */
4460 		if (!se->on_rq)
4461 			break;
4462 
4463 		if (dequeue)
4464 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4465 		qcfs_rq->h_nr_running -= task_delta;
4466 
4467 		if (qcfs_rq->load.weight)
4468 			dequeue = 0;
4469 	}
4470 
4471 	if (!se)
4472 		sub_nr_running(rq, task_delta);
4473 
4474 	cfs_rq->throttled = 1;
4475 	cfs_rq->throttled_clock = rq_clock(rq);
4476 	raw_spin_lock(&cfs_b->lock);
4477 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4478 
4479 	/*
4480 	 * Add to the _head_ of the list, so that an already-started
4481 	 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4482 	 * not running add to the tail so that later runqueues don't get starved.
4483 	 */
4484 	if (cfs_b->distribute_running)
4485 		list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4486 	else
4487 		list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4488 
4489 	/*
4490 	 * If we're the first throttled task, make sure the bandwidth
4491 	 * timer is running.
4492 	 */
4493 	if (empty)
4494 		start_cfs_bandwidth(cfs_b);
4495 
4496 	raw_spin_unlock(&cfs_b->lock);
4497 }
4498 
4499 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4500 {
4501 	struct rq *rq = rq_of(cfs_rq);
4502 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4503 	struct sched_entity *se;
4504 	int enqueue = 1;
4505 	long task_delta;
4506 
4507 	se = cfs_rq->tg->se[cpu_of(rq)];
4508 
4509 	cfs_rq->throttled = 0;
4510 
4511 	update_rq_clock(rq);
4512 
4513 	raw_spin_lock(&cfs_b->lock);
4514 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4515 	list_del_rcu(&cfs_rq->throttled_list);
4516 	raw_spin_unlock(&cfs_b->lock);
4517 
4518 	/* update hierarchical throttle state */
4519 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4520 
4521 	if (!cfs_rq->load.weight)
4522 		return;
4523 
4524 	task_delta = cfs_rq->h_nr_running;
4525 	for_each_sched_entity(se) {
4526 		if (se->on_rq)
4527 			enqueue = 0;
4528 
4529 		cfs_rq = cfs_rq_of(se);
4530 		if (enqueue)
4531 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4532 		cfs_rq->h_nr_running += task_delta;
4533 
4534 		if (cfs_rq_throttled(cfs_rq))
4535 			break;
4536 	}
4537 
4538 	if (!se)
4539 		add_nr_running(rq, task_delta);
4540 
4541 	/* Determine whether we need to wake up potentially idle CPU: */
4542 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4543 		resched_curr(rq);
4544 }
4545 
4546 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4547 		u64 remaining, u64 expires)
4548 {
4549 	struct cfs_rq *cfs_rq;
4550 	u64 runtime;
4551 	u64 starting_runtime = remaining;
4552 
4553 	rcu_read_lock();
4554 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4555 				throttled_list) {
4556 		struct rq *rq = rq_of(cfs_rq);
4557 		struct rq_flags rf;
4558 
4559 		rq_lock(rq, &rf);
4560 		if (!cfs_rq_throttled(cfs_rq))
4561 			goto next;
4562 
4563 		runtime = -cfs_rq->runtime_remaining + 1;
4564 		if (runtime > remaining)
4565 			runtime = remaining;
4566 		remaining -= runtime;
4567 
4568 		cfs_rq->runtime_remaining += runtime;
4569 		cfs_rq->runtime_expires = expires;
4570 
4571 		/* we check whether we're throttled above */
4572 		if (cfs_rq->runtime_remaining > 0)
4573 			unthrottle_cfs_rq(cfs_rq);
4574 
4575 next:
4576 		rq_unlock(rq, &rf);
4577 
4578 		if (!remaining)
4579 			break;
4580 	}
4581 	rcu_read_unlock();
4582 
4583 	return starting_runtime - remaining;
4584 }
4585 
4586 /*
4587  * Responsible for refilling a task_group's bandwidth and unthrottling its
4588  * cfs_rqs as appropriate. If there has been no activity within the last
4589  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4590  * used to track this state.
4591  */
4592 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4593 {
4594 	u64 runtime, runtime_expires;
4595 	int throttled;
4596 
4597 	/* no need to continue the timer with no bandwidth constraint */
4598 	if (cfs_b->quota == RUNTIME_INF)
4599 		goto out_deactivate;
4600 
4601 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4602 	cfs_b->nr_periods += overrun;
4603 
4604 	/*
4605 	 * idle depends on !throttled (for the case of a large deficit), and if
4606 	 * we're going inactive then everything else can be deferred
4607 	 */
4608 	if (cfs_b->idle && !throttled)
4609 		goto out_deactivate;
4610 
4611 	__refill_cfs_bandwidth_runtime(cfs_b);
4612 
4613 	if (!throttled) {
4614 		/* mark as potentially idle for the upcoming period */
4615 		cfs_b->idle = 1;
4616 		return 0;
4617 	}
4618 
4619 	/* account preceding periods in which throttling occurred */
4620 	cfs_b->nr_throttled += overrun;
4621 
4622 	runtime_expires = cfs_b->runtime_expires;
4623 
4624 	/*
4625 	 * This check is repeated as we are holding onto the new bandwidth while
4626 	 * we unthrottle. This can potentially race with an unthrottled group
4627 	 * trying to acquire new bandwidth from the global pool. This can result
4628 	 * in us over-using our runtime if it is all used during this loop, but
4629 	 * only by limited amounts in that extreme case.
4630 	 */
4631 	while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4632 		runtime = cfs_b->runtime;
4633 		cfs_b->distribute_running = 1;
4634 		raw_spin_unlock(&cfs_b->lock);
4635 		/* we can't nest cfs_b->lock while distributing bandwidth */
4636 		runtime = distribute_cfs_runtime(cfs_b, runtime,
4637 						 runtime_expires);
4638 		raw_spin_lock(&cfs_b->lock);
4639 
4640 		cfs_b->distribute_running = 0;
4641 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4642 
4643 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4644 	}
4645 
4646 	/*
4647 	 * While we are ensured activity in the period following an
4648 	 * unthrottle, this also covers the case in which the new bandwidth is
4649 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4650 	 * timer to remain active while there are any throttled entities.)
4651 	 */
4652 	cfs_b->idle = 0;
4653 
4654 	return 0;
4655 
4656 out_deactivate:
4657 	return 1;
4658 }
4659 
4660 /* a cfs_rq won't donate quota below this amount */
4661 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4662 /* minimum remaining period time to redistribute slack quota */
4663 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4664 /* how long we wait to gather additional slack before distributing */
4665 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4666 
4667 /*
4668  * Are we near the end of the current quota period?
4669  *
4670  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4671  * hrtimer base being cleared by hrtimer_start. In the case of
4672  * migrate_hrtimers, base is never cleared, so we are fine.
4673  */
4674 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4675 {
4676 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4677 	u64 remaining;
4678 
4679 	/* if the call-back is running a quota refresh is already occurring */
4680 	if (hrtimer_callback_running(refresh_timer))
4681 		return 1;
4682 
4683 	/* is a quota refresh about to occur? */
4684 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4685 	if (remaining < min_expire)
4686 		return 1;
4687 
4688 	return 0;
4689 }
4690 
4691 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4692 {
4693 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4694 
4695 	/* if there's a quota refresh soon don't bother with slack */
4696 	if (runtime_refresh_within(cfs_b, min_left))
4697 		return;
4698 
4699 	hrtimer_start(&cfs_b->slack_timer,
4700 			ns_to_ktime(cfs_bandwidth_slack_period),
4701 			HRTIMER_MODE_REL);
4702 }
4703 
4704 /* we know any runtime found here is valid as update_curr() precedes return */
4705 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4706 {
4707 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4708 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4709 
4710 	if (slack_runtime <= 0)
4711 		return;
4712 
4713 	raw_spin_lock(&cfs_b->lock);
4714 	if (cfs_b->quota != RUNTIME_INF &&
4715 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4716 		cfs_b->runtime += slack_runtime;
4717 
4718 		/* we are under rq->lock, defer unthrottling using a timer */
4719 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4720 		    !list_empty(&cfs_b->throttled_cfs_rq))
4721 			start_cfs_slack_bandwidth(cfs_b);
4722 	}
4723 	raw_spin_unlock(&cfs_b->lock);
4724 
4725 	/* even if it's not valid for return we don't want to try again */
4726 	cfs_rq->runtime_remaining -= slack_runtime;
4727 }
4728 
4729 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4730 {
4731 	if (!cfs_bandwidth_used())
4732 		return;
4733 
4734 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4735 		return;
4736 
4737 	__return_cfs_rq_runtime(cfs_rq);
4738 }
4739 
4740 /*
4741  * This is done with a timer (instead of inline with bandwidth return) since
4742  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4743  */
4744 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4745 {
4746 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4747 	u64 expires;
4748 
4749 	/* confirm we're still not at a refresh boundary */
4750 	raw_spin_lock(&cfs_b->lock);
4751 	if (cfs_b->distribute_running) {
4752 		raw_spin_unlock(&cfs_b->lock);
4753 		return;
4754 	}
4755 
4756 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4757 		raw_spin_unlock(&cfs_b->lock);
4758 		return;
4759 	}
4760 
4761 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4762 		runtime = cfs_b->runtime;
4763 
4764 	expires = cfs_b->runtime_expires;
4765 	if (runtime)
4766 		cfs_b->distribute_running = 1;
4767 
4768 	raw_spin_unlock(&cfs_b->lock);
4769 
4770 	if (!runtime)
4771 		return;
4772 
4773 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4774 
4775 	raw_spin_lock(&cfs_b->lock);
4776 	if (expires == cfs_b->runtime_expires)
4777 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4778 	cfs_b->distribute_running = 0;
4779 	raw_spin_unlock(&cfs_b->lock);
4780 }
4781 
4782 /*
4783  * When a group wakes up we want to make sure that its quota is not already
4784  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4785  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4786  */
4787 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4788 {
4789 	if (!cfs_bandwidth_used())
4790 		return;
4791 
4792 	/* an active group must be handled by the update_curr()->put() path */
4793 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4794 		return;
4795 
4796 	/* ensure the group is not already throttled */
4797 	if (cfs_rq_throttled(cfs_rq))
4798 		return;
4799 
4800 	/* update runtime allocation */
4801 	account_cfs_rq_runtime(cfs_rq, 0);
4802 	if (cfs_rq->runtime_remaining <= 0)
4803 		throttle_cfs_rq(cfs_rq);
4804 }
4805 
4806 static void sync_throttle(struct task_group *tg, int cpu)
4807 {
4808 	struct cfs_rq *pcfs_rq, *cfs_rq;
4809 
4810 	if (!cfs_bandwidth_used())
4811 		return;
4812 
4813 	if (!tg->parent)
4814 		return;
4815 
4816 	cfs_rq = tg->cfs_rq[cpu];
4817 	pcfs_rq = tg->parent->cfs_rq[cpu];
4818 
4819 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4820 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4821 }
4822 
4823 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4824 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4825 {
4826 	if (!cfs_bandwidth_used())
4827 		return false;
4828 
4829 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4830 		return false;
4831 
4832 	/*
4833 	 * it's possible for a throttled entity to be forced into a running
4834 	 * state (e.g. set_curr_task), in this case we're finished.
4835 	 */
4836 	if (cfs_rq_throttled(cfs_rq))
4837 		return true;
4838 
4839 	throttle_cfs_rq(cfs_rq);
4840 	return true;
4841 }
4842 
4843 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4844 {
4845 	struct cfs_bandwidth *cfs_b =
4846 		container_of(timer, struct cfs_bandwidth, slack_timer);
4847 
4848 	do_sched_cfs_slack_timer(cfs_b);
4849 
4850 	return HRTIMER_NORESTART;
4851 }
4852 
4853 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4854 {
4855 	struct cfs_bandwidth *cfs_b =
4856 		container_of(timer, struct cfs_bandwidth, period_timer);
4857 	int overrun;
4858 	int idle = 0;
4859 
4860 	raw_spin_lock(&cfs_b->lock);
4861 	for (;;) {
4862 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4863 		if (!overrun)
4864 			break;
4865 
4866 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
4867 	}
4868 	if (idle)
4869 		cfs_b->period_active = 0;
4870 	raw_spin_unlock(&cfs_b->lock);
4871 
4872 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4873 }
4874 
4875 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4876 {
4877 	raw_spin_lock_init(&cfs_b->lock);
4878 	cfs_b->runtime = 0;
4879 	cfs_b->quota = RUNTIME_INF;
4880 	cfs_b->period = ns_to_ktime(default_cfs_period());
4881 
4882 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4883 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4884 	cfs_b->period_timer.function = sched_cfs_period_timer;
4885 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4886 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4887 	cfs_b->distribute_running = 0;
4888 }
4889 
4890 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4891 {
4892 	cfs_rq->runtime_enabled = 0;
4893 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4894 }
4895 
4896 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4897 {
4898 	u64 overrun;
4899 
4900 	lockdep_assert_held(&cfs_b->lock);
4901 
4902 	if (cfs_b->period_active)
4903 		return;
4904 
4905 	cfs_b->period_active = 1;
4906 	overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4907 	cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
4908 	cfs_b->expires_seq++;
4909 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4910 }
4911 
4912 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4913 {
4914 	/* init_cfs_bandwidth() was not called */
4915 	if (!cfs_b->throttled_cfs_rq.next)
4916 		return;
4917 
4918 	hrtimer_cancel(&cfs_b->period_timer);
4919 	hrtimer_cancel(&cfs_b->slack_timer);
4920 }
4921 
4922 /*
4923  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
4924  *
4925  * The race is harmless, since modifying bandwidth settings of unhooked group
4926  * bits doesn't do much.
4927  */
4928 
4929 /* cpu online calback */
4930 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4931 {
4932 	struct task_group *tg;
4933 
4934 	lockdep_assert_held(&rq->lock);
4935 
4936 	rcu_read_lock();
4937 	list_for_each_entry_rcu(tg, &task_groups, list) {
4938 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4939 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4940 
4941 		raw_spin_lock(&cfs_b->lock);
4942 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4943 		raw_spin_unlock(&cfs_b->lock);
4944 	}
4945 	rcu_read_unlock();
4946 }
4947 
4948 /* cpu offline callback */
4949 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4950 {
4951 	struct task_group *tg;
4952 
4953 	lockdep_assert_held(&rq->lock);
4954 
4955 	rcu_read_lock();
4956 	list_for_each_entry_rcu(tg, &task_groups, list) {
4957 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4958 
4959 		if (!cfs_rq->runtime_enabled)
4960 			continue;
4961 
4962 		/*
4963 		 * clock_task is not advancing so we just need to make sure
4964 		 * there's some valid quota amount
4965 		 */
4966 		cfs_rq->runtime_remaining = 1;
4967 		/*
4968 		 * Offline rq is schedulable till CPU is completely disabled
4969 		 * in take_cpu_down(), so we prevent new cfs throttling here.
4970 		 */
4971 		cfs_rq->runtime_enabled = 0;
4972 
4973 		if (cfs_rq_throttled(cfs_rq))
4974 			unthrottle_cfs_rq(cfs_rq);
4975 	}
4976 	rcu_read_unlock();
4977 }
4978 
4979 #else /* CONFIG_CFS_BANDWIDTH */
4980 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4981 {
4982 	return rq_clock_task(rq_of(cfs_rq));
4983 }
4984 
4985 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4986 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4987 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4988 static inline void sync_throttle(struct task_group *tg, int cpu) {}
4989 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4990 
4991 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4992 {
4993 	return 0;
4994 }
4995 
4996 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4997 {
4998 	return 0;
4999 }
5000 
5001 static inline int throttled_lb_pair(struct task_group *tg,
5002 				    int src_cpu, int dest_cpu)
5003 {
5004 	return 0;
5005 }
5006 
5007 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5008 
5009 #ifdef CONFIG_FAIR_GROUP_SCHED
5010 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5011 #endif
5012 
5013 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5014 {
5015 	return NULL;
5016 }
5017 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5018 static inline void update_runtime_enabled(struct rq *rq) {}
5019 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5020 
5021 #endif /* CONFIG_CFS_BANDWIDTH */
5022 
5023 /**************************************************
5024  * CFS operations on tasks:
5025  */
5026 
5027 #ifdef CONFIG_SCHED_HRTICK
5028 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5029 {
5030 	struct sched_entity *se = &p->se;
5031 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5032 
5033 	SCHED_WARN_ON(task_rq(p) != rq);
5034 
5035 	if (rq->cfs.h_nr_running > 1) {
5036 		u64 slice = sched_slice(cfs_rq, se);
5037 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5038 		s64 delta = slice - ran;
5039 
5040 		if (delta < 0) {
5041 			if (rq->curr == p)
5042 				resched_curr(rq);
5043 			return;
5044 		}
5045 		hrtick_start(rq, delta);
5046 	}
5047 }
5048 
5049 /*
5050  * called from enqueue/dequeue and updates the hrtick when the
5051  * current task is from our class and nr_running is low enough
5052  * to matter.
5053  */
5054 static void hrtick_update(struct rq *rq)
5055 {
5056 	struct task_struct *curr = rq->curr;
5057 
5058 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5059 		return;
5060 
5061 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5062 		hrtick_start_fair(rq, curr);
5063 }
5064 #else /* !CONFIG_SCHED_HRTICK */
5065 static inline void
5066 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5067 {
5068 }
5069 
5070 static inline void hrtick_update(struct rq *rq)
5071 {
5072 }
5073 #endif
5074 
5075 /*
5076  * The enqueue_task method is called before nr_running is
5077  * increased. Here we update the fair scheduling stats and
5078  * then put the task into the rbtree:
5079  */
5080 static void
5081 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5082 {
5083 	struct cfs_rq *cfs_rq;
5084 	struct sched_entity *se = &p->se;
5085 
5086 	/*
5087 	 * The code below (indirectly) updates schedutil which looks at
5088 	 * the cfs_rq utilization to select a frequency.
5089 	 * Let's add the task's estimated utilization to the cfs_rq's
5090 	 * estimated utilization, before we update schedutil.
5091 	 */
5092 	util_est_enqueue(&rq->cfs, p);
5093 
5094 	/*
5095 	 * If in_iowait is set, the code below may not trigger any cpufreq
5096 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5097 	 * passed.
5098 	 */
5099 	if (p->in_iowait)
5100 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5101 
5102 	for_each_sched_entity(se) {
5103 		if (se->on_rq)
5104 			break;
5105 		cfs_rq = cfs_rq_of(se);
5106 		enqueue_entity(cfs_rq, se, flags);
5107 
5108 		/*
5109 		 * end evaluation on encountering a throttled cfs_rq
5110 		 *
5111 		 * note: in the case of encountering a throttled cfs_rq we will
5112 		 * post the final h_nr_running increment below.
5113 		 */
5114 		if (cfs_rq_throttled(cfs_rq))
5115 			break;
5116 		cfs_rq->h_nr_running++;
5117 
5118 		flags = ENQUEUE_WAKEUP;
5119 	}
5120 
5121 	for_each_sched_entity(se) {
5122 		cfs_rq = cfs_rq_of(se);
5123 		cfs_rq->h_nr_running++;
5124 
5125 		if (cfs_rq_throttled(cfs_rq))
5126 			break;
5127 
5128 		update_load_avg(cfs_rq, se, UPDATE_TG);
5129 		update_cfs_group(se);
5130 	}
5131 
5132 	if (!se)
5133 		add_nr_running(rq, 1);
5134 
5135 	hrtick_update(rq);
5136 }
5137 
5138 static void set_next_buddy(struct sched_entity *se);
5139 
5140 /*
5141  * The dequeue_task method is called before nr_running is
5142  * decreased. We remove the task from the rbtree and
5143  * update the fair scheduling stats:
5144  */
5145 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5146 {
5147 	struct cfs_rq *cfs_rq;
5148 	struct sched_entity *se = &p->se;
5149 	int task_sleep = flags & DEQUEUE_SLEEP;
5150 
5151 	for_each_sched_entity(se) {
5152 		cfs_rq = cfs_rq_of(se);
5153 		dequeue_entity(cfs_rq, se, flags);
5154 
5155 		/*
5156 		 * end evaluation on encountering a throttled cfs_rq
5157 		 *
5158 		 * note: in the case of encountering a throttled cfs_rq we will
5159 		 * post the final h_nr_running decrement below.
5160 		*/
5161 		if (cfs_rq_throttled(cfs_rq))
5162 			break;
5163 		cfs_rq->h_nr_running--;
5164 
5165 		/* Don't dequeue parent if it has other entities besides us */
5166 		if (cfs_rq->load.weight) {
5167 			/* Avoid re-evaluating load for this entity: */
5168 			se = parent_entity(se);
5169 			/*
5170 			 * Bias pick_next to pick a task from this cfs_rq, as
5171 			 * p is sleeping when it is within its sched_slice.
5172 			 */
5173 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5174 				set_next_buddy(se);
5175 			break;
5176 		}
5177 		flags |= DEQUEUE_SLEEP;
5178 	}
5179 
5180 	for_each_sched_entity(se) {
5181 		cfs_rq = cfs_rq_of(se);
5182 		cfs_rq->h_nr_running--;
5183 
5184 		if (cfs_rq_throttled(cfs_rq))
5185 			break;
5186 
5187 		update_load_avg(cfs_rq, se, UPDATE_TG);
5188 		update_cfs_group(se);
5189 	}
5190 
5191 	if (!se)
5192 		sub_nr_running(rq, 1);
5193 
5194 	util_est_dequeue(&rq->cfs, p, task_sleep);
5195 	hrtick_update(rq);
5196 }
5197 
5198 #ifdef CONFIG_SMP
5199 
5200 /* Working cpumask for: load_balance, load_balance_newidle. */
5201 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5202 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5203 
5204 #ifdef CONFIG_NO_HZ_COMMON
5205 /*
5206  * per rq 'load' arrray crap; XXX kill this.
5207  */
5208 
5209 /*
5210  * The exact cpuload calculated at every tick would be:
5211  *
5212  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5213  *
5214  * If a CPU misses updates for n ticks (as it was idle) and update gets
5215  * called on the n+1-th tick when CPU may be busy, then we have:
5216  *
5217  *   load_n   = (1 - 1/2^i)^n * load_0
5218  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5219  *
5220  * decay_load_missed() below does efficient calculation of
5221  *
5222  *   load' = (1 - 1/2^i)^n * load
5223  *
5224  * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5225  * This allows us to precompute the above in said factors, thereby allowing the
5226  * reduction of an arbitrary n in O(log_2 n) steps. (See also
5227  * fixed_power_int())
5228  *
5229  * The calculation is approximated on a 128 point scale.
5230  */
5231 #define DEGRADE_SHIFT		7
5232 
5233 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5234 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5235 	{   0,   0,  0,  0,  0,  0, 0, 0 },
5236 	{  64,  32,  8,  0,  0,  0, 0, 0 },
5237 	{  96,  72, 40, 12,  1,  0, 0, 0 },
5238 	{ 112,  98, 75, 43, 15,  1, 0, 0 },
5239 	{ 120, 112, 98, 76, 45, 16, 2, 0 }
5240 };
5241 
5242 /*
5243  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5244  * would be when CPU is idle and so we just decay the old load without
5245  * adding any new load.
5246  */
5247 static unsigned long
5248 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5249 {
5250 	int j = 0;
5251 
5252 	if (!missed_updates)
5253 		return load;
5254 
5255 	if (missed_updates >= degrade_zero_ticks[idx])
5256 		return 0;
5257 
5258 	if (idx == 1)
5259 		return load >> missed_updates;
5260 
5261 	while (missed_updates) {
5262 		if (missed_updates % 2)
5263 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5264 
5265 		missed_updates >>= 1;
5266 		j++;
5267 	}
5268 	return load;
5269 }
5270 
5271 static struct {
5272 	cpumask_var_t idle_cpus_mask;
5273 	atomic_t nr_cpus;
5274 	int has_blocked;		/* Idle CPUS has blocked load */
5275 	unsigned long next_balance;     /* in jiffy units */
5276 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5277 } nohz ____cacheline_aligned;
5278 
5279 #endif /* CONFIG_NO_HZ_COMMON */
5280 
5281 /**
5282  * __cpu_load_update - update the rq->cpu_load[] statistics
5283  * @this_rq: The rq to update statistics for
5284  * @this_load: The current load
5285  * @pending_updates: The number of missed updates
5286  *
5287  * Update rq->cpu_load[] statistics. This function is usually called every
5288  * scheduler tick (TICK_NSEC).
5289  *
5290  * This function computes a decaying average:
5291  *
5292  *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5293  *
5294  * Because of NOHZ it might not get called on every tick which gives need for
5295  * the @pending_updates argument.
5296  *
5297  *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5298  *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5299  *             = A * (A * load[i]_n-2 + B) + B
5300  *             = A * (A * (A * load[i]_n-3 + B) + B) + B
5301  *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5302  *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5303  *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5304  *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5305  *
5306  * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5307  * any change in load would have resulted in the tick being turned back on.
5308  *
5309  * For regular NOHZ, this reduces to:
5310  *
5311  *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
5312  *
5313  * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5314  * term.
5315  */
5316 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5317 			    unsigned long pending_updates)
5318 {
5319 	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5320 	int i, scale;
5321 
5322 	this_rq->nr_load_updates++;
5323 
5324 	/* Update our load: */
5325 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5326 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5327 		unsigned long old_load, new_load;
5328 
5329 		/* scale is effectively 1 << i now, and >> i divides by scale */
5330 
5331 		old_load = this_rq->cpu_load[i];
5332 #ifdef CONFIG_NO_HZ_COMMON
5333 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5334 		if (tickless_load) {
5335 			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5336 			/*
5337 			 * old_load can never be a negative value because a
5338 			 * decayed tickless_load cannot be greater than the
5339 			 * original tickless_load.
5340 			 */
5341 			old_load += tickless_load;
5342 		}
5343 #endif
5344 		new_load = this_load;
5345 		/*
5346 		 * Round up the averaging division if load is increasing. This
5347 		 * prevents us from getting stuck on 9 if the load is 10, for
5348 		 * example.
5349 		 */
5350 		if (new_load > old_load)
5351 			new_load += scale - 1;
5352 
5353 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5354 	}
5355 }
5356 
5357 /* Used instead of source_load when we know the type == 0 */
5358 static unsigned long weighted_cpuload(struct rq *rq)
5359 {
5360 	return cfs_rq_runnable_load_avg(&rq->cfs);
5361 }
5362 
5363 #ifdef CONFIG_NO_HZ_COMMON
5364 /*
5365  * There is no sane way to deal with nohz on smp when using jiffies because the
5366  * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5367  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5368  *
5369  * Therefore we need to avoid the delta approach from the regular tick when
5370  * possible since that would seriously skew the load calculation. This is why we
5371  * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5372  * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5373  * loop exit, nohz_idle_balance, nohz full exit...)
5374  *
5375  * This means we might still be one tick off for nohz periods.
5376  */
5377 
5378 static void cpu_load_update_nohz(struct rq *this_rq,
5379 				 unsigned long curr_jiffies,
5380 				 unsigned long load)
5381 {
5382 	unsigned long pending_updates;
5383 
5384 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5385 	if (pending_updates) {
5386 		this_rq->last_load_update_tick = curr_jiffies;
5387 		/*
5388 		 * In the regular NOHZ case, we were idle, this means load 0.
5389 		 * In the NOHZ_FULL case, we were non-idle, we should consider
5390 		 * its weighted load.
5391 		 */
5392 		cpu_load_update(this_rq, load, pending_updates);
5393 	}
5394 }
5395 
5396 /*
5397  * Called from nohz_idle_balance() to update the load ratings before doing the
5398  * idle balance.
5399  */
5400 static void cpu_load_update_idle(struct rq *this_rq)
5401 {
5402 	/*
5403 	 * bail if there's load or we're actually up-to-date.
5404 	 */
5405 	if (weighted_cpuload(this_rq))
5406 		return;
5407 
5408 	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5409 }
5410 
5411 /*
5412  * Record CPU load on nohz entry so we know the tickless load to account
5413  * on nohz exit. cpu_load[0] happens then to be updated more frequently
5414  * than other cpu_load[idx] but it should be fine as cpu_load readers
5415  * shouldn't rely into synchronized cpu_load[*] updates.
5416  */
5417 void cpu_load_update_nohz_start(void)
5418 {
5419 	struct rq *this_rq = this_rq();
5420 
5421 	/*
5422 	 * This is all lockless but should be fine. If weighted_cpuload changes
5423 	 * concurrently we'll exit nohz. And cpu_load write can race with
5424 	 * cpu_load_update_idle() but both updater would be writing the same.
5425 	 */
5426 	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5427 }
5428 
5429 /*
5430  * Account the tickless load in the end of a nohz frame.
5431  */
5432 void cpu_load_update_nohz_stop(void)
5433 {
5434 	unsigned long curr_jiffies = READ_ONCE(jiffies);
5435 	struct rq *this_rq = this_rq();
5436 	unsigned long load;
5437 	struct rq_flags rf;
5438 
5439 	if (curr_jiffies == this_rq->last_load_update_tick)
5440 		return;
5441 
5442 	load = weighted_cpuload(this_rq);
5443 	rq_lock(this_rq, &rf);
5444 	update_rq_clock(this_rq);
5445 	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5446 	rq_unlock(this_rq, &rf);
5447 }
5448 #else /* !CONFIG_NO_HZ_COMMON */
5449 static inline void cpu_load_update_nohz(struct rq *this_rq,
5450 					unsigned long curr_jiffies,
5451 					unsigned long load) { }
5452 #endif /* CONFIG_NO_HZ_COMMON */
5453 
5454 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5455 {
5456 #ifdef CONFIG_NO_HZ_COMMON
5457 	/* See the mess around cpu_load_update_nohz(). */
5458 	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5459 #endif
5460 	cpu_load_update(this_rq, load, 1);
5461 }
5462 
5463 /*
5464  * Called from scheduler_tick()
5465  */
5466 void cpu_load_update_active(struct rq *this_rq)
5467 {
5468 	unsigned long load = weighted_cpuload(this_rq);
5469 
5470 	if (tick_nohz_tick_stopped())
5471 		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5472 	else
5473 		cpu_load_update_periodic(this_rq, load);
5474 }
5475 
5476 /*
5477  * Return a low guess at the load of a migration-source CPU weighted
5478  * according to the scheduling class and "nice" value.
5479  *
5480  * We want to under-estimate the load of migration sources, to
5481  * balance conservatively.
5482  */
5483 static unsigned long source_load(int cpu, int type)
5484 {
5485 	struct rq *rq = cpu_rq(cpu);
5486 	unsigned long total = weighted_cpuload(rq);
5487 
5488 	if (type == 0 || !sched_feat(LB_BIAS))
5489 		return total;
5490 
5491 	return min(rq->cpu_load[type-1], total);
5492 }
5493 
5494 /*
5495  * Return a high guess at the load of a migration-target CPU weighted
5496  * according to the scheduling class and "nice" value.
5497  */
5498 static unsigned long target_load(int cpu, int type)
5499 {
5500 	struct rq *rq = cpu_rq(cpu);
5501 	unsigned long total = weighted_cpuload(rq);
5502 
5503 	if (type == 0 || !sched_feat(LB_BIAS))
5504 		return total;
5505 
5506 	return max(rq->cpu_load[type-1], total);
5507 }
5508 
5509 static unsigned long capacity_of(int cpu)
5510 {
5511 	return cpu_rq(cpu)->cpu_capacity;
5512 }
5513 
5514 static unsigned long capacity_orig_of(int cpu)
5515 {
5516 	return cpu_rq(cpu)->cpu_capacity_orig;
5517 }
5518 
5519 static unsigned long cpu_avg_load_per_task(int cpu)
5520 {
5521 	struct rq *rq = cpu_rq(cpu);
5522 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5523 	unsigned long load_avg = weighted_cpuload(rq);
5524 
5525 	if (nr_running)
5526 		return load_avg / nr_running;
5527 
5528 	return 0;
5529 }
5530 
5531 static void record_wakee(struct task_struct *p)
5532 {
5533 	/*
5534 	 * Only decay a single time; tasks that have less then 1 wakeup per
5535 	 * jiffy will not have built up many flips.
5536 	 */
5537 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5538 		current->wakee_flips >>= 1;
5539 		current->wakee_flip_decay_ts = jiffies;
5540 	}
5541 
5542 	if (current->last_wakee != p) {
5543 		current->last_wakee = p;
5544 		current->wakee_flips++;
5545 	}
5546 }
5547 
5548 /*
5549  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5550  *
5551  * A waker of many should wake a different task than the one last awakened
5552  * at a frequency roughly N times higher than one of its wakees.
5553  *
5554  * In order to determine whether we should let the load spread vs consolidating
5555  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5556  * partner, and a factor of lls_size higher frequency in the other.
5557  *
5558  * With both conditions met, we can be relatively sure that the relationship is
5559  * non-monogamous, with partner count exceeding socket size.
5560  *
5561  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5562  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5563  * socket size.
5564  */
5565 static int wake_wide(struct task_struct *p)
5566 {
5567 	unsigned int master = current->wakee_flips;
5568 	unsigned int slave = p->wakee_flips;
5569 	int factor = this_cpu_read(sd_llc_size);
5570 
5571 	if (master < slave)
5572 		swap(master, slave);
5573 	if (slave < factor || master < slave * factor)
5574 		return 0;
5575 	return 1;
5576 }
5577 
5578 /*
5579  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5580  * soonest. For the purpose of speed we only consider the waking and previous
5581  * CPU.
5582  *
5583  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5584  *			cache-affine and is (or	will be) idle.
5585  *
5586  * wake_affine_weight() - considers the weight to reflect the average
5587  *			  scheduling latency of the CPUs. This seems to work
5588  *			  for the overloaded case.
5589  */
5590 static int
5591 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5592 {
5593 	/*
5594 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5595 	 * context. Only allow the move if cache is shared. Otherwise an
5596 	 * interrupt intensive workload could force all tasks onto one
5597 	 * node depending on the IO topology or IRQ affinity settings.
5598 	 *
5599 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5600 	 * There is no guarantee that the cache hot data from an interrupt
5601 	 * is more important than cache hot data on the prev_cpu and from
5602 	 * a cpufreq perspective, it's better to have higher utilisation
5603 	 * on one CPU.
5604 	 */
5605 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5606 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5607 
5608 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5609 		return this_cpu;
5610 
5611 	return nr_cpumask_bits;
5612 }
5613 
5614 static int
5615 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5616 		   int this_cpu, int prev_cpu, int sync)
5617 {
5618 	s64 this_eff_load, prev_eff_load;
5619 	unsigned long task_load;
5620 
5621 	this_eff_load = target_load(this_cpu, sd->wake_idx);
5622 
5623 	if (sync) {
5624 		unsigned long current_load = task_h_load(current);
5625 
5626 		if (current_load > this_eff_load)
5627 			return this_cpu;
5628 
5629 		this_eff_load -= current_load;
5630 	}
5631 
5632 	task_load = task_h_load(p);
5633 
5634 	this_eff_load += task_load;
5635 	if (sched_feat(WA_BIAS))
5636 		this_eff_load *= 100;
5637 	this_eff_load *= capacity_of(prev_cpu);
5638 
5639 	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5640 	prev_eff_load -= task_load;
5641 	if (sched_feat(WA_BIAS))
5642 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5643 	prev_eff_load *= capacity_of(this_cpu);
5644 
5645 	/*
5646 	 * If sync, adjust the weight of prev_eff_load such that if
5647 	 * prev_eff == this_eff that select_idle_sibling() will consider
5648 	 * stacking the wakee on top of the waker if no other CPU is
5649 	 * idle.
5650 	 */
5651 	if (sync)
5652 		prev_eff_load += 1;
5653 
5654 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5655 }
5656 
5657 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5658 		       int this_cpu, int prev_cpu, int sync)
5659 {
5660 	int target = nr_cpumask_bits;
5661 
5662 	if (sched_feat(WA_IDLE))
5663 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5664 
5665 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5666 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5667 
5668 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5669 	if (target == nr_cpumask_bits)
5670 		return prev_cpu;
5671 
5672 	schedstat_inc(sd->ttwu_move_affine);
5673 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5674 	return target;
5675 }
5676 
5677 static unsigned long cpu_util_without(int cpu, struct task_struct *p);
5678 
5679 static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
5680 {
5681 	return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
5682 }
5683 
5684 /*
5685  * find_idlest_group finds and returns the least busy CPU group within the
5686  * domain.
5687  *
5688  * Assumes p is allowed on at least one CPU in sd.
5689  */
5690 static struct sched_group *
5691 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5692 		  int this_cpu, int sd_flag)
5693 {
5694 	struct sched_group *idlest = NULL, *group = sd->groups;
5695 	struct sched_group *most_spare_sg = NULL;
5696 	unsigned long min_runnable_load = ULONG_MAX;
5697 	unsigned long this_runnable_load = ULONG_MAX;
5698 	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5699 	unsigned long most_spare = 0, this_spare = 0;
5700 	int load_idx = sd->forkexec_idx;
5701 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5702 	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5703 				(sd->imbalance_pct-100) / 100;
5704 
5705 	if (sd_flag & SD_BALANCE_WAKE)
5706 		load_idx = sd->wake_idx;
5707 
5708 	do {
5709 		unsigned long load, avg_load, runnable_load;
5710 		unsigned long spare_cap, max_spare_cap;
5711 		int local_group;
5712 		int i;
5713 
5714 		/* Skip over this group if it has no CPUs allowed */
5715 		if (!cpumask_intersects(sched_group_span(group),
5716 					&p->cpus_allowed))
5717 			continue;
5718 
5719 		local_group = cpumask_test_cpu(this_cpu,
5720 					       sched_group_span(group));
5721 
5722 		/*
5723 		 * Tally up the load of all CPUs in the group and find
5724 		 * the group containing the CPU with most spare capacity.
5725 		 */
5726 		avg_load = 0;
5727 		runnable_load = 0;
5728 		max_spare_cap = 0;
5729 
5730 		for_each_cpu(i, sched_group_span(group)) {
5731 			/* Bias balancing toward CPUs of our domain */
5732 			if (local_group)
5733 				load = source_load(i, load_idx);
5734 			else
5735 				load = target_load(i, load_idx);
5736 
5737 			runnable_load += load;
5738 
5739 			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5740 
5741 			spare_cap = capacity_spare_without(i, p);
5742 
5743 			if (spare_cap > max_spare_cap)
5744 				max_spare_cap = spare_cap;
5745 		}
5746 
5747 		/* Adjust by relative CPU capacity of the group */
5748 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5749 					group->sgc->capacity;
5750 		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5751 					group->sgc->capacity;
5752 
5753 		if (local_group) {
5754 			this_runnable_load = runnable_load;
5755 			this_avg_load = avg_load;
5756 			this_spare = max_spare_cap;
5757 		} else {
5758 			if (min_runnable_load > (runnable_load + imbalance)) {
5759 				/*
5760 				 * The runnable load is significantly smaller
5761 				 * so we can pick this new CPU:
5762 				 */
5763 				min_runnable_load = runnable_load;
5764 				min_avg_load = avg_load;
5765 				idlest = group;
5766 			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
5767 				   (100*min_avg_load > imbalance_scale*avg_load)) {
5768 				/*
5769 				 * The runnable loads are close so take the
5770 				 * blocked load into account through avg_load:
5771 				 */
5772 				min_avg_load = avg_load;
5773 				idlest = group;
5774 			}
5775 
5776 			if (most_spare < max_spare_cap) {
5777 				most_spare = max_spare_cap;
5778 				most_spare_sg = group;
5779 			}
5780 		}
5781 	} while (group = group->next, group != sd->groups);
5782 
5783 	/*
5784 	 * The cross-over point between using spare capacity or least load
5785 	 * is too conservative for high utilization tasks on partially
5786 	 * utilized systems if we require spare_capacity > task_util(p),
5787 	 * so we allow for some task stuffing by using
5788 	 * spare_capacity > task_util(p)/2.
5789 	 *
5790 	 * Spare capacity can't be used for fork because the utilization has
5791 	 * not been set yet, we must first select a rq to compute the initial
5792 	 * utilization.
5793 	 */
5794 	if (sd_flag & SD_BALANCE_FORK)
5795 		goto skip_spare;
5796 
5797 	if (this_spare > task_util(p) / 2 &&
5798 	    imbalance_scale*this_spare > 100*most_spare)
5799 		return NULL;
5800 
5801 	if (most_spare > task_util(p) / 2)
5802 		return most_spare_sg;
5803 
5804 skip_spare:
5805 	if (!idlest)
5806 		return NULL;
5807 
5808 	/*
5809 	 * When comparing groups across NUMA domains, it's possible for the
5810 	 * local domain to be very lightly loaded relative to the remote
5811 	 * domains but "imbalance" skews the comparison making remote CPUs
5812 	 * look much more favourable. When considering cross-domain, add
5813 	 * imbalance to the runnable load on the remote node and consider
5814 	 * staying local.
5815 	 */
5816 	if ((sd->flags & SD_NUMA) &&
5817 	    min_runnable_load + imbalance >= this_runnable_load)
5818 		return NULL;
5819 
5820 	if (min_runnable_load > (this_runnable_load + imbalance))
5821 		return NULL;
5822 
5823 	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5824 	     (100*this_avg_load < imbalance_scale*min_avg_load))
5825 		return NULL;
5826 
5827 	return idlest;
5828 }
5829 
5830 /*
5831  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5832  */
5833 static int
5834 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5835 {
5836 	unsigned long load, min_load = ULONG_MAX;
5837 	unsigned int min_exit_latency = UINT_MAX;
5838 	u64 latest_idle_timestamp = 0;
5839 	int least_loaded_cpu = this_cpu;
5840 	int shallowest_idle_cpu = -1;
5841 	int i;
5842 
5843 	/* Check if we have any choice: */
5844 	if (group->group_weight == 1)
5845 		return cpumask_first(sched_group_span(group));
5846 
5847 	/* Traverse only the allowed CPUs */
5848 	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5849 		if (available_idle_cpu(i)) {
5850 			struct rq *rq = cpu_rq(i);
5851 			struct cpuidle_state *idle = idle_get_state(rq);
5852 			if (idle && idle->exit_latency < min_exit_latency) {
5853 				/*
5854 				 * We give priority to a CPU whose idle state
5855 				 * has the smallest exit latency irrespective
5856 				 * of any idle timestamp.
5857 				 */
5858 				min_exit_latency = idle->exit_latency;
5859 				latest_idle_timestamp = rq->idle_stamp;
5860 				shallowest_idle_cpu = i;
5861 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5862 				   rq->idle_stamp > latest_idle_timestamp) {
5863 				/*
5864 				 * If equal or no active idle state, then
5865 				 * the most recently idled CPU might have
5866 				 * a warmer cache.
5867 				 */
5868 				latest_idle_timestamp = rq->idle_stamp;
5869 				shallowest_idle_cpu = i;
5870 			}
5871 		} else if (shallowest_idle_cpu == -1) {
5872 			load = weighted_cpuload(cpu_rq(i));
5873 			if (load < min_load) {
5874 				min_load = load;
5875 				least_loaded_cpu = i;
5876 			}
5877 		}
5878 	}
5879 
5880 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5881 }
5882 
5883 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5884 				  int cpu, int prev_cpu, int sd_flag)
5885 {
5886 	int new_cpu = cpu;
5887 
5888 	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
5889 		return prev_cpu;
5890 
5891 	/*
5892 	 * We need task's util for capacity_spare_without, sync it up to
5893 	 * prev_cpu's last_update_time.
5894 	 */
5895 	if (!(sd_flag & SD_BALANCE_FORK))
5896 		sync_entity_load_avg(&p->se);
5897 
5898 	while (sd) {
5899 		struct sched_group *group;
5900 		struct sched_domain *tmp;
5901 		int weight;
5902 
5903 		if (!(sd->flags & sd_flag)) {
5904 			sd = sd->child;
5905 			continue;
5906 		}
5907 
5908 		group = find_idlest_group(sd, p, cpu, sd_flag);
5909 		if (!group) {
5910 			sd = sd->child;
5911 			continue;
5912 		}
5913 
5914 		new_cpu = find_idlest_group_cpu(group, p, cpu);
5915 		if (new_cpu == cpu) {
5916 			/* Now try balancing at a lower domain level of 'cpu': */
5917 			sd = sd->child;
5918 			continue;
5919 		}
5920 
5921 		/* Now try balancing at a lower domain level of 'new_cpu': */
5922 		cpu = new_cpu;
5923 		weight = sd->span_weight;
5924 		sd = NULL;
5925 		for_each_domain(cpu, tmp) {
5926 			if (weight <= tmp->span_weight)
5927 				break;
5928 			if (tmp->flags & sd_flag)
5929 				sd = tmp;
5930 		}
5931 	}
5932 
5933 	return new_cpu;
5934 }
5935 
5936 #ifdef CONFIG_SCHED_SMT
5937 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5938 
5939 static inline void set_idle_cores(int cpu, int val)
5940 {
5941 	struct sched_domain_shared *sds;
5942 
5943 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5944 	if (sds)
5945 		WRITE_ONCE(sds->has_idle_cores, val);
5946 }
5947 
5948 static inline bool test_idle_cores(int cpu, bool def)
5949 {
5950 	struct sched_domain_shared *sds;
5951 
5952 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5953 	if (sds)
5954 		return READ_ONCE(sds->has_idle_cores);
5955 
5956 	return def;
5957 }
5958 
5959 /*
5960  * Scans the local SMT mask to see if the entire core is idle, and records this
5961  * information in sd_llc_shared->has_idle_cores.
5962  *
5963  * Since SMT siblings share all cache levels, inspecting this limited remote
5964  * state should be fairly cheap.
5965  */
5966 void __update_idle_core(struct rq *rq)
5967 {
5968 	int core = cpu_of(rq);
5969 	int cpu;
5970 
5971 	rcu_read_lock();
5972 	if (test_idle_cores(core, true))
5973 		goto unlock;
5974 
5975 	for_each_cpu(cpu, cpu_smt_mask(core)) {
5976 		if (cpu == core)
5977 			continue;
5978 
5979 		if (!available_idle_cpu(cpu))
5980 			goto unlock;
5981 	}
5982 
5983 	set_idle_cores(core, 1);
5984 unlock:
5985 	rcu_read_unlock();
5986 }
5987 
5988 /*
5989  * Scan the entire LLC domain for idle cores; this dynamically switches off if
5990  * there are no idle cores left in the system; tracked through
5991  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5992  */
5993 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5994 {
5995 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5996 	int core, cpu;
5997 
5998 	if (!static_branch_likely(&sched_smt_present))
5999 		return -1;
6000 
6001 	if (!test_idle_cores(target, false))
6002 		return -1;
6003 
6004 	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
6005 
6006 	for_each_cpu_wrap(core, cpus, target) {
6007 		bool idle = true;
6008 
6009 		for_each_cpu(cpu, cpu_smt_mask(core)) {
6010 			cpumask_clear_cpu(cpu, cpus);
6011 			if (!available_idle_cpu(cpu))
6012 				idle = false;
6013 		}
6014 
6015 		if (idle)
6016 			return core;
6017 	}
6018 
6019 	/*
6020 	 * Failed to find an idle core; stop looking for one.
6021 	 */
6022 	set_idle_cores(target, 0);
6023 
6024 	return -1;
6025 }
6026 
6027 /*
6028  * Scan the local SMT mask for idle CPUs.
6029  */
6030 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6031 {
6032 	int cpu;
6033 
6034 	if (!static_branch_likely(&sched_smt_present))
6035 		return -1;
6036 
6037 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6038 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6039 			continue;
6040 		if (available_idle_cpu(cpu))
6041 			return cpu;
6042 	}
6043 
6044 	return -1;
6045 }
6046 
6047 #else /* CONFIG_SCHED_SMT */
6048 
6049 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6050 {
6051 	return -1;
6052 }
6053 
6054 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6055 {
6056 	return -1;
6057 }
6058 
6059 #endif /* CONFIG_SCHED_SMT */
6060 
6061 /*
6062  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6063  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6064  * average idle time for this rq (as found in rq->avg_idle).
6065  */
6066 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6067 {
6068 	struct sched_domain *this_sd;
6069 	u64 avg_cost, avg_idle;
6070 	u64 time, cost;
6071 	s64 delta;
6072 	int cpu, nr = INT_MAX;
6073 
6074 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6075 	if (!this_sd)
6076 		return -1;
6077 
6078 	/*
6079 	 * Due to large variance we need a large fuzz factor; hackbench in
6080 	 * particularly is sensitive here.
6081 	 */
6082 	avg_idle = this_rq()->avg_idle / 512;
6083 	avg_cost = this_sd->avg_scan_cost + 1;
6084 
6085 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6086 		return -1;
6087 
6088 	if (sched_feat(SIS_PROP)) {
6089 		u64 span_avg = sd->span_weight * avg_idle;
6090 		if (span_avg > 4*avg_cost)
6091 			nr = div_u64(span_avg, avg_cost);
6092 		else
6093 			nr = 4;
6094 	}
6095 
6096 	time = local_clock();
6097 
6098 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6099 		if (!--nr)
6100 			return -1;
6101 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6102 			continue;
6103 		if (available_idle_cpu(cpu))
6104 			break;
6105 	}
6106 
6107 	time = local_clock() - time;
6108 	cost = this_sd->avg_scan_cost;
6109 	delta = (s64)(time - cost) / 8;
6110 	this_sd->avg_scan_cost += delta;
6111 
6112 	return cpu;
6113 }
6114 
6115 /*
6116  * Try and locate an idle core/thread in the LLC cache domain.
6117  */
6118 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6119 {
6120 	struct sched_domain *sd;
6121 	int i, recent_used_cpu;
6122 
6123 	if (available_idle_cpu(target))
6124 		return target;
6125 
6126 	/*
6127 	 * If the previous CPU is cache affine and idle, don't be stupid:
6128 	 */
6129 	if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
6130 		return prev;
6131 
6132 	/* Check a recently used CPU as a potential idle candidate: */
6133 	recent_used_cpu = p->recent_used_cpu;
6134 	if (recent_used_cpu != prev &&
6135 	    recent_used_cpu != target &&
6136 	    cpus_share_cache(recent_used_cpu, target) &&
6137 	    available_idle_cpu(recent_used_cpu) &&
6138 	    cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6139 		/*
6140 		 * Replace recent_used_cpu with prev as it is a potential
6141 		 * candidate for the next wake:
6142 		 */
6143 		p->recent_used_cpu = prev;
6144 		return recent_used_cpu;
6145 	}
6146 
6147 	sd = rcu_dereference(per_cpu(sd_llc, target));
6148 	if (!sd)
6149 		return target;
6150 
6151 	i = select_idle_core(p, sd, target);
6152 	if ((unsigned)i < nr_cpumask_bits)
6153 		return i;
6154 
6155 	i = select_idle_cpu(p, sd, target);
6156 	if ((unsigned)i < nr_cpumask_bits)
6157 		return i;
6158 
6159 	i = select_idle_smt(p, sd, target);
6160 	if ((unsigned)i < nr_cpumask_bits)
6161 		return i;
6162 
6163 	return target;
6164 }
6165 
6166 /**
6167  * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6168  * @cpu: the CPU to get the utilization of
6169  *
6170  * The unit of the return value must be the one of capacity so we can compare
6171  * the utilization with the capacity of the CPU that is available for CFS task
6172  * (ie cpu_capacity).
6173  *
6174  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6175  * recent utilization of currently non-runnable tasks on a CPU. It represents
6176  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6177  * capacity_orig is the cpu_capacity available at the highest frequency
6178  * (arch_scale_freq_capacity()).
6179  * The utilization of a CPU converges towards a sum equal to or less than the
6180  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6181  * the running time on this CPU scaled by capacity_curr.
6182  *
6183  * The estimated utilization of a CPU is defined to be the maximum between its
6184  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6185  * currently RUNNABLE on that CPU.
6186  * This allows to properly represent the expected utilization of a CPU which
6187  * has just got a big task running since a long sleep period. At the same time
6188  * however it preserves the benefits of the "blocked utilization" in
6189  * describing the potential for other tasks waking up on the same CPU.
6190  *
6191  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6192  * higher than capacity_orig because of unfortunate rounding in
6193  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6194  * the average stabilizes with the new running time. We need to check that the
6195  * utilization stays within the range of [0..capacity_orig] and cap it if
6196  * necessary. Without utilization capping, a group could be seen as overloaded
6197  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6198  * available capacity. We allow utilization to overshoot capacity_curr (but not
6199  * capacity_orig) as it useful for predicting the capacity required after task
6200  * migrations (scheduler-driven DVFS).
6201  *
6202  * Return: the (estimated) utilization for the specified CPU
6203  */
6204 static inline unsigned long cpu_util(int cpu)
6205 {
6206 	struct cfs_rq *cfs_rq;
6207 	unsigned int util;
6208 
6209 	cfs_rq = &cpu_rq(cpu)->cfs;
6210 	util = READ_ONCE(cfs_rq->avg.util_avg);
6211 
6212 	if (sched_feat(UTIL_EST))
6213 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6214 
6215 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6216 }
6217 
6218 /*
6219  * cpu_util_without: compute cpu utilization without any contributions from *p
6220  * @cpu: the CPU which utilization is requested
6221  * @p: the task which utilization should be discounted
6222  *
6223  * The utilization of a CPU is defined by the utilization of tasks currently
6224  * enqueued on that CPU as well as tasks which are currently sleeping after an
6225  * execution on that CPU.
6226  *
6227  * This method returns the utilization of the specified CPU by discounting the
6228  * utilization of the specified task, whenever the task is currently
6229  * contributing to the CPU utilization.
6230  */
6231 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6232 {
6233 	struct cfs_rq *cfs_rq;
6234 	unsigned int util;
6235 
6236 	/* Task has no contribution or is new */
6237 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6238 		return cpu_util(cpu);
6239 
6240 	cfs_rq = &cpu_rq(cpu)->cfs;
6241 	util = READ_ONCE(cfs_rq->avg.util_avg);
6242 
6243 	/* Discount task's util from CPU's util */
6244 	util -= min_t(unsigned int, util, task_util(p));
6245 
6246 	/*
6247 	 * Covered cases:
6248 	 *
6249 	 * a) if *p is the only task sleeping on this CPU, then:
6250 	 *      cpu_util (== task_util) > util_est (== 0)
6251 	 *    and thus we return:
6252 	 *      cpu_util_without = (cpu_util - task_util) = 0
6253 	 *
6254 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6255 	 *    IDLE, then:
6256 	 *      cpu_util >= task_util
6257 	 *      cpu_util > util_est (== 0)
6258 	 *    and thus we discount *p's blocked utilization to return:
6259 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6260 	 *
6261 	 * c) if other tasks are RUNNABLE on that CPU and
6262 	 *      util_est > cpu_util
6263 	 *    then we use util_est since it returns a more restrictive
6264 	 *    estimation of the spare capacity on that CPU, by just
6265 	 *    considering the expected utilization of tasks already
6266 	 *    runnable on that CPU.
6267 	 *
6268 	 * Cases a) and b) are covered by the above code, while case c) is
6269 	 * covered by the following code when estimated utilization is
6270 	 * enabled.
6271 	 */
6272 	if (sched_feat(UTIL_EST)) {
6273 		unsigned int estimated =
6274 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6275 
6276 		/*
6277 		 * Despite the following checks we still have a small window
6278 		 * for a possible race, when an execl's select_task_rq_fair()
6279 		 * races with LB's detach_task():
6280 		 *
6281 		 *   detach_task()
6282 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6283 		 *     ---------------------------------- A
6284 		 *     deactivate_task()                   \
6285 		 *       dequeue_task()                     + RaceTime
6286 		 *         util_est_dequeue()              /
6287 		 *     ---------------------------------- B
6288 		 *
6289 		 * The additional check on "current == p" it's required to
6290 		 * properly fix the execl regression and it helps in further
6291 		 * reducing the chances for the above race.
6292 		 */
6293 		if (unlikely(task_on_rq_queued(p) || current == p)) {
6294 			estimated -= min_t(unsigned int, estimated,
6295 					   (_task_util_est(p) | UTIL_AVG_UNCHANGED));
6296 		}
6297 		util = max(util, estimated);
6298 	}
6299 
6300 	/*
6301 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6302 	 * clamp to the maximum CPU capacity to ensure consistency with
6303 	 * the cpu_util call.
6304 	 */
6305 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6306 }
6307 
6308 /*
6309  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6310  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6311  *
6312  * In that case WAKE_AFFINE doesn't make sense and we'll let
6313  * BALANCE_WAKE sort things out.
6314  */
6315 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6316 {
6317 	long min_cap, max_cap;
6318 
6319 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
6320 		return 0;
6321 
6322 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6323 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6324 
6325 	/* Minimum capacity is close to max, no need to abort wake_affine */
6326 	if (max_cap - min_cap < max_cap >> 3)
6327 		return 0;
6328 
6329 	/* Bring task utilization in sync with prev_cpu */
6330 	sync_entity_load_avg(&p->se);
6331 
6332 	return !task_fits_capacity(p, min_cap);
6333 }
6334 
6335 /*
6336  * select_task_rq_fair: Select target runqueue for the waking task in domains
6337  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6338  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6339  *
6340  * Balances load by selecting the idlest CPU in the idlest group, or under
6341  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6342  *
6343  * Returns the target CPU number.
6344  *
6345  * preempt must be disabled.
6346  */
6347 static int
6348 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6349 {
6350 	struct sched_domain *tmp, *sd = NULL;
6351 	int cpu = smp_processor_id();
6352 	int new_cpu = prev_cpu;
6353 	int want_affine = 0;
6354 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6355 
6356 	if (sd_flag & SD_BALANCE_WAKE) {
6357 		record_wakee(p);
6358 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6359 			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
6360 	}
6361 
6362 	rcu_read_lock();
6363 	for_each_domain(cpu, tmp) {
6364 		if (!(tmp->flags & SD_LOAD_BALANCE))
6365 			break;
6366 
6367 		/*
6368 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6369 		 * cpu is a valid SD_WAKE_AFFINE target.
6370 		 */
6371 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6372 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6373 			if (cpu != prev_cpu)
6374 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6375 
6376 			sd = NULL; /* Prefer wake_affine over balance flags */
6377 			break;
6378 		}
6379 
6380 		if (tmp->flags & sd_flag)
6381 			sd = tmp;
6382 		else if (!want_affine)
6383 			break;
6384 	}
6385 
6386 	if (unlikely(sd)) {
6387 		/* Slow path */
6388 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6389 	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6390 		/* Fast path */
6391 
6392 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6393 
6394 		if (want_affine)
6395 			current->recent_used_cpu = cpu;
6396 	}
6397 	rcu_read_unlock();
6398 
6399 	return new_cpu;
6400 }
6401 
6402 static void detach_entity_cfs_rq(struct sched_entity *se);
6403 
6404 /*
6405  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6406  * cfs_rq_of(p) references at time of call are still valid and identify the
6407  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6408  */
6409 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6410 {
6411 	/*
6412 	 * As blocked tasks retain absolute vruntime the migration needs to
6413 	 * deal with this by subtracting the old and adding the new
6414 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6415 	 * the task on the new runqueue.
6416 	 */
6417 	if (p->state == TASK_WAKING) {
6418 		struct sched_entity *se = &p->se;
6419 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6420 		u64 min_vruntime;
6421 
6422 #ifndef CONFIG_64BIT
6423 		u64 min_vruntime_copy;
6424 
6425 		do {
6426 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6427 			smp_rmb();
6428 			min_vruntime = cfs_rq->min_vruntime;
6429 		} while (min_vruntime != min_vruntime_copy);
6430 #else
6431 		min_vruntime = cfs_rq->min_vruntime;
6432 #endif
6433 
6434 		se->vruntime -= min_vruntime;
6435 	}
6436 
6437 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6438 		/*
6439 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6440 		 * rq->lock and can modify state directly.
6441 		 */
6442 		lockdep_assert_held(&task_rq(p)->lock);
6443 		detach_entity_cfs_rq(&p->se);
6444 
6445 	} else {
6446 		/*
6447 		 * We are supposed to update the task to "current" time, then
6448 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6449 		 * have difficulty in getting what current time is, so simply
6450 		 * throw away the out-of-date time. This will result in the
6451 		 * wakee task is less decayed, but giving the wakee more load
6452 		 * sounds not bad.
6453 		 */
6454 		remove_entity_load_avg(&p->se);
6455 	}
6456 
6457 	/* Tell new CPU we are migrated */
6458 	p->se.avg.last_update_time = 0;
6459 
6460 	/* We have migrated, no longer consider this task hot */
6461 	p->se.exec_start = 0;
6462 
6463 	update_scan_period(p, new_cpu);
6464 }
6465 
6466 static void task_dead_fair(struct task_struct *p)
6467 {
6468 	remove_entity_load_avg(&p->se);
6469 }
6470 #endif /* CONFIG_SMP */
6471 
6472 static unsigned long wakeup_gran(struct sched_entity *se)
6473 {
6474 	unsigned long gran = sysctl_sched_wakeup_granularity;
6475 
6476 	/*
6477 	 * Since its curr running now, convert the gran from real-time
6478 	 * to virtual-time in his units.
6479 	 *
6480 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6481 	 * they get preempted easier. That is, if 'se' < 'curr' then
6482 	 * the resulting gran will be larger, therefore penalizing the
6483 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6484 	 * be smaller, again penalizing the lighter task.
6485 	 *
6486 	 * This is especially important for buddies when the leftmost
6487 	 * task is higher priority than the buddy.
6488 	 */
6489 	return calc_delta_fair(gran, se);
6490 }
6491 
6492 /*
6493  * Should 'se' preempt 'curr'.
6494  *
6495  *             |s1
6496  *        |s2
6497  *   |s3
6498  *         g
6499  *      |<--->|c
6500  *
6501  *  w(c, s1) = -1
6502  *  w(c, s2) =  0
6503  *  w(c, s3) =  1
6504  *
6505  */
6506 static int
6507 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6508 {
6509 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6510 
6511 	if (vdiff <= 0)
6512 		return -1;
6513 
6514 	gran = wakeup_gran(se);
6515 	if (vdiff > gran)
6516 		return 1;
6517 
6518 	return 0;
6519 }
6520 
6521 static void set_last_buddy(struct sched_entity *se)
6522 {
6523 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6524 		return;
6525 
6526 	for_each_sched_entity(se) {
6527 		if (SCHED_WARN_ON(!se->on_rq))
6528 			return;
6529 		cfs_rq_of(se)->last = se;
6530 	}
6531 }
6532 
6533 static void set_next_buddy(struct sched_entity *se)
6534 {
6535 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6536 		return;
6537 
6538 	for_each_sched_entity(se) {
6539 		if (SCHED_WARN_ON(!se->on_rq))
6540 			return;
6541 		cfs_rq_of(se)->next = se;
6542 	}
6543 }
6544 
6545 static void set_skip_buddy(struct sched_entity *se)
6546 {
6547 	for_each_sched_entity(se)
6548 		cfs_rq_of(se)->skip = se;
6549 }
6550 
6551 /*
6552  * Preempt the current task with a newly woken task if needed:
6553  */
6554 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6555 {
6556 	struct task_struct *curr = rq->curr;
6557 	struct sched_entity *se = &curr->se, *pse = &p->se;
6558 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6559 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6560 	int next_buddy_marked = 0;
6561 
6562 	if (unlikely(se == pse))
6563 		return;
6564 
6565 	/*
6566 	 * This is possible from callers such as attach_tasks(), in which we
6567 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6568 	 * lead to a throttle).  This both saves work and prevents false
6569 	 * next-buddy nomination below.
6570 	 */
6571 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6572 		return;
6573 
6574 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6575 		set_next_buddy(pse);
6576 		next_buddy_marked = 1;
6577 	}
6578 
6579 	/*
6580 	 * We can come here with TIF_NEED_RESCHED already set from new task
6581 	 * wake up path.
6582 	 *
6583 	 * Note: this also catches the edge-case of curr being in a throttled
6584 	 * group (e.g. via set_curr_task), since update_curr() (in the
6585 	 * enqueue of curr) will have resulted in resched being set.  This
6586 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6587 	 * below.
6588 	 */
6589 	if (test_tsk_need_resched(curr))
6590 		return;
6591 
6592 	/* Idle tasks are by definition preempted by non-idle tasks. */
6593 	if (unlikely(curr->policy == SCHED_IDLE) &&
6594 	    likely(p->policy != SCHED_IDLE))
6595 		goto preempt;
6596 
6597 	/*
6598 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6599 	 * is driven by the tick):
6600 	 */
6601 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6602 		return;
6603 
6604 	find_matching_se(&se, &pse);
6605 	update_curr(cfs_rq_of(se));
6606 	BUG_ON(!pse);
6607 	if (wakeup_preempt_entity(se, pse) == 1) {
6608 		/*
6609 		 * Bias pick_next to pick the sched entity that is
6610 		 * triggering this preemption.
6611 		 */
6612 		if (!next_buddy_marked)
6613 			set_next_buddy(pse);
6614 		goto preempt;
6615 	}
6616 
6617 	return;
6618 
6619 preempt:
6620 	resched_curr(rq);
6621 	/*
6622 	 * Only set the backward buddy when the current task is still
6623 	 * on the rq. This can happen when a wakeup gets interleaved
6624 	 * with schedule on the ->pre_schedule() or idle_balance()
6625 	 * point, either of which can * drop the rq lock.
6626 	 *
6627 	 * Also, during early boot the idle thread is in the fair class,
6628 	 * for obvious reasons its a bad idea to schedule back to it.
6629 	 */
6630 	if (unlikely(!se->on_rq || curr == rq->idle))
6631 		return;
6632 
6633 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6634 		set_last_buddy(se);
6635 }
6636 
6637 static struct task_struct *
6638 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6639 {
6640 	struct cfs_rq *cfs_rq = &rq->cfs;
6641 	struct sched_entity *se;
6642 	struct task_struct *p;
6643 	int new_tasks;
6644 
6645 again:
6646 	if (!cfs_rq->nr_running)
6647 		goto idle;
6648 
6649 #ifdef CONFIG_FAIR_GROUP_SCHED
6650 	if (prev->sched_class != &fair_sched_class)
6651 		goto simple;
6652 
6653 	/*
6654 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6655 	 * likely that a next task is from the same cgroup as the current.
6656 	 *
6657 	 * Therefore attempt to avoid putting and setting the entire cgroup
6658 	 * hierarchy, only change the part that actually changes.
6659 	 */
6660 
6661 	do {
6662 		struct sched_entity *curr = cfs_rq->curr;
6663 
6664 		/*
6665 		 * Since we got here without doing put_prev_entity() we also
6666 		 * have to consider cfs_rq->curr. If it is still a runnable
6667 		 * entity, update_curr() will update its vruntime, otherwise
6668 		 * forget we've ever seen it.
6669 		 */
6670 		if (curr) {
6671 			if (curr->on_rq)
6672 				update_curr(cfs_rq);
6673 			else
6674 				curr = NULL;
6675 
6676 			/*
6677 			 * This call to check_cfs_rq_runtime() will do the
6678 			 * throttle and dequeue its entity in the parent(s).
6679 			 * Therefore the nr_running test will indeed
6680 			 * be correct.
6681 			 */
6682 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6683 				cfs_rq = &rq->cfs;
6684 
6685 				if (!cfs_rq->nr_running)
6686 					goto idle;
6687 
6688 				goto simple;
6689 			}
6690 		}
6691 
6692 		se = pick_next_entity(cfs_rq, curr);
6693 		cfs_rq = group_cfs_rq(se);
6694 	} while (cfs_rq);
6695 
6696 	p = task_of(se);
6697 
6698 	/*
6699 	 * Since we haven't yet done put_prev_entity and if the selected task
6700 	 * is a different task than we started out with, try and touch the
6701 	 * least amount of cfs_rqs.
6702 	 */
6703 	if (prev != p) {
6704 		struct sched_entity *pse = &prev->se;
6705 
6706 		while (!(cfs_rq = is_same_group(se, pse))) {
6707 			int se_depth = se->depth;
6708 			int pse_depth = pse->depth;
6709 
6710 			if (se_depth <= pse_depth) {
6711 				put_prev_entity(cfs_rq_of(pse), pse);
6712 				pse = parent_entity(pse);
6713 			}
6714 			if (se_depth >= pse_depth) {
6715 				set_next_entity(cfs_rq_of(se), se);
6716 				se = parent_entity(se);
6717 			}
6718 		}
6719 
6720 		put_prev_entity(cfs_rq, pse);
6721 		set_next_entity(cfs_rq, se);
6722 	}
6723 
6724 	goto done;
6725 simple:
6726 #endif
6727 
6728 	put_prev_task(rq, prev);
6729 
6730 	do {
6731 		se = pick_next_entity(cfs_rq, NULL);
6732 		set_next_entity(cfs_rq, se);
6733 		cfs_rq = group_cfs_rq(se);
6734 	} while (cfs_rq);
6735 
6736 	p = task_of(se);
6737 
6738 done: __maybe_unused;
6739 #ifdef CONFIG_SMP
6740 	/*
6741 	 * Move the next running task to the front of
6742 	 * the list, so our cfs_tasks list becomes MRU
6743 	 * one.
6744 	 */
6745 	list_move(&p->se.group_node, &rq->cfs_tasks);
6746 #endif
6747 
6748 	if (hrtick_enabled(rq))
6749 		hrtick_start_fair(rq, p);
6750 
6751 	update_misfit_status(p, rq);
6752 
6753 	return p;
6754 
6755 idle:
6756 	update_misfit_status(NULL, rq);
6757 	new_tasks = idle_balance(rq, rf);
6758 
6759 	/*
6760 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6761 	 * possible for any higher priority task to appear. In that case we
6762 	 * must re-start the pick_next_entity() loop.
6763 	 */
6764 	if (new_tasks < 0)
6765 		return RETRY_TASK;
6766 
6767 	if (new_tasks > 0)
6768 		goto again;
6769 
6770 	return NULL;
6771 }
6772 
6773 /*
6774  * Account for a descheduled task:
6775  */
6776 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6777 {
6778 	struct sched_entity *se = &prev->se;
6779 	struct cfs_rq *cfs_rq;
6780 
6781 	for_each_sched_entity(se) {
6782 		cfs_rq = cfs_rq_of(se);
6783 		put_prev_entity(cfs_rq, se);
6784 	}
6785 }
6786 
6787 /*
6788  * sched_yield() is very simple
6789  *
6790  * The magic of dealing with the ->skip buddy is in pick_next_entity.
6791  */
6792 static void yield_task_fair(struct rq *rq)
6793 {
6794 	struct task_struct *curr = rq->curr;
6795 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6796 	struct sched_entity *se = &curr->se;
6797 
6798 	/*
6799 	 * Are we the only task in the tree?
6800 	 */
6801 	if (unlikely(rq->nr_running == 1))
6802 		return;
6803 
6804 	clear_buddies(cfs_rq, se);
6805 
6806 	if (curr->policy != SCHED_BATCH) {
6807 		update_rq_clock(rq);
6808 		/*
6809 		 * Update run-time statistics of the 'current'.
6810 		 */
6811 		update_curr(cfs_rq);
6812 		/*
6813 		 * Tell update_rq_clock() that we've just updated,
6814 		 * so we don't do microscopic update in schedule()
6815 		 * and double the fastpath cost.
6816 		 */
6817 		rq_clock_skip_update(rq);
6818 	}
6819 
6820 	set_skip_buddy(se);
6821 }
6822 
6823 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6824 {
6825 	struct sched_entity *se = &p->se;
6826 
6827 	/* throttled hierarchies are not runnable */
6828 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6829 		return false;
6830 
6831 	/* Tell the scheduler that we'd really like pse to run next. */
6832 	set_next_buddy(se);
6833 
6834 	yield_task_fair(rq);
6835 
6836 	return true;
6837 }
6838 
6839 #ifdef CONFIG_SMP
6840 /**************************************************
6841  * Fair scheduling class load-balancing methods.
6842  *
6843  * BASICS
6844  *
6845  * The purpose of load-balancing is to achieve the same basic fairness the
6846  * per-CPU scheduler provides, namely provide a proportional amount of compute
6847  * time to each task. This is expressed in the following equation:
6848  *
6849  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
6850  *
6851  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
6852  * W_i,0 is defined as:
6853  *
6854  *   W_i,0 = \Sum_j w_i,j                                             (2)
6855  *
6856  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
6857  * is derived from the nice value as per sched_prio_to_weight[].
6858  *
6859  * The weight average is an exponential decay average of the instantaneous
6860  * weight:
6861  *
6862  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
6863  *
6864  * C_i is the compute capacity of CPU i, typically it is the
6865  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6866  * can also include other factors [XXX].
6867  *
6868  * To achieve this balance we define a measure of imbalance which follows
6869  * directly from (1):
6870  *
6871  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
6872  *
6873  * We them move tasks around to minimize the imbalance. In the continuous
6874  * function space it is obvious this converges, in the discrete case we get
6875  * a few fun cases generally called infeasible weight scenarios.
6876  *
6877  * [XXX expand on:
6878  *     - infeasible weights;
6879  *     - local vs global optima in the discrete case. ]
6880  *
6881  *
6882  * SCHED DOMAINS
6883  *
6884  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6885  * for all i,j solution, we create a tree of CPUs that follows the hardware
6886  * topology where each level pairs two lower groups (or better). This results
6887  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
6888  * tree to only the first of the previous level and we decrease the frequency
6889  * of load-balance at each level inv. proportional to the number of CPUs in
6890  * the groups.
6891  *
6892  * This yields:
6893  *
6894  *     log_2 n     1     n
6895  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
6896  *     i = 0      2^i   2^i
6897  *                               `- size of each group
6898  *         |         |     `- number of CPUs doing load-balance
6899  *         |         `- freq
6900  *         `- sum over all levels
6901  *
6902  * Coupled with a limit on how many tasks we can migrate every balance pass,
6903  * this makes (5) the runtime complexity of the balancer.
6904  *
6905  * An important property here is that each CPU is still (indirectly) connected
6906  * to every other CPU in at most O(log n) steps:
6907  *
6908  * The adjacency matrix of the resulting graph is given by:
6909  *
6910  *             log_2 n
6911  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
6912  *             k = 0
6913  *
6914  * And you'll find that:
6915  *
6916  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
6917  *
6918  * Showing there's indeed a path between every CPU in at most O(log n) steps.
6919  * The task movement gives a factor of O(m), giving a convergence complexity
6920  * of:
6921  *
6922  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
6923  *
6924  *
6925  * WORK CONSERVING
6926  *
6927  * In order to avoid CPUs going idle while there's still work to do, new idle
6928  * balancing is more aggressive and has the newly idle CPU iterate up the domain
6929  * tree itself instead of relying on other CPUs to bring it work.
6930  *
6931  * This adds some complexity to both (5) and (8) but it reduces the total idle
6932  * time.
6933  *
6934  * [XXX more?]
6935  *
6936  *
6937  * CGROUPS
6938  *
6939  * Cgroups make a horror show out of (2), instead of a simple sum we get:
6940  *
6941  *                                s_k,i
6942  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
6943  *                                 S_k
6944  *
6945  * Where
6946  *
6947  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
6948  *
6949  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
6950  *
6951  * The big problem is S_k, its a global sum needed to compute a local (W_i)
6952  * property.
6953  *
6954  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6955  *      rewrite all of this once again.]
6956  */
6957 
6958 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6959 
6960 enum fbq_type { regular, remote, all };
6961 
6962 enum group_type {
6963 	group_other = 0,
6964 	group_misfit_task,
6965 	group_imbalanced,
6966 	group_overloaded,
6967 };
6968 
6969 #define LBF_ALL_PINNED	0x01
6970 #define LBF_NEED_BREAK	0x02
6971 #define LBF_DST_PINNED  0x04
6972 #define LBF_SOME_PINNED	0x08
6973 #define LBF_NOHZ_STATS	0x10
6974 #define LBF_NOHZ_AGAIN	0x20
6975 
6976 struct lb_env {
6977 	struct sched_domain	*sd;
6978 
6979 	struct rq		*src_rq;
6980 	int			src_cpu;
6981 
6982 	int			dst_cpu;
6983 	struct rq		*dst_rq;
6984 
6985 	struct cpumask		*dst_grpmask;
6986 	int			new_dst_cpu;
6987 	enum cpu_idle_type	idle;
6988 	long			imbalance;
6989 	/* The set of CPUs under consideration for load-balancing */
6990 	struct cpumask		*cpus;
6991 
6992 	unsigned int		flags;
6993 
6994 	unsigned int		loop;
6995 	unsigned int		loop_break;
6996 	unsigned int		loop_max;
6997 
6998 	enum fbq_type		fbq_type;
6999 	enum group_type		src_grp_type;
7000 	struct list_head	tasks;
7001 };
7002 
7003 /*
7004  * Is this task likely cache-hot:
7005  */
7006 static int task_hot(struct task_struct *p, struct lb_env *env)
7007 {
7008 	s64 delta;
7009 
7010 	lockdep_assert_held(&env->src_rq->lock);
7011 
7012 	if (p->sched_class != &fair_sched_class)
7013 		return 0;
7014 
7015 	if (unlikely(p->policy == SCHED_IDLE))
7016 		return 0;
7017 
7018 	/*
7019 	 * Buddy candidates are cache hot:
7020 	 */
7021 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7022 			(&p->se == cfs_rq_of(&p->se)->next ||
7023 			 &p->se == cfs_rq_of(&p->se)->last))
7024 		return 1;
7025 
7026 	if (sysctl_sched_migration_cost == -1)
7027 		return 1;
7028 	if (sysctl_sched_migration_cost == 0)
7029 		return 0;
7030 
7031 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7032 
7033 	return delta < (s64)sysctl_sched_migration_cost;
7034 }
7035 
7036 #ifdef CONFIG_NUMA_BALANCING
7037 /*
7038  * Returns 1, if task migration degrades locality
7039  * Returns 0, if task migration improves locality i.e migration preferred.
7040  * Returns -1, if task migration is not affected by locality.
7041  */
7042 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7043 {
7044 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7045 	unsigned long src_weight, dst_weight;
7046 	int src_nid, dst_nid, dist;
7047 
7048 	if (!static_branch_likely(&sched_numa_balancing))
7049 		return -1;
7050 
7051 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7052 		return -1;
7053 
7054 	src_nid = cpu_to_node(env->src_cpu);
7055 	dst_nid = cpu_to_node(env->dst_cpu);
7056 
7057 	if (src_nid == dst_nid)
7058 		return -1;
7059 
7060 	/* Migrating away from the preferred node is always bad. */
7061 	if (src_nid == p->numa_preferred_nid) {
7062 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7063 			return 1;
7064 		else
7065 			return -1;
7066 	}
7067 
7068 	/* Encourage migration to the preferred node. */
7069 	if (dst_nid == p->numa_preferred_nid)
7070 		return 0;
7071 
7072 	/* Leaving a core idle is often worse than degrading locality. */
7073 	if (env->idle == CPU_IDLE)
7074 		return -1;
7075 
7076 	dist = node_distance(src_nid, dst_nid);
7077 	if (numa_group) {
7078 		src_weight = group_weight(p, src_nid, dist);
7079 		dst_weight = group_weight(p, dst_nid, dist);
7080 	} else {
7081 		src_weight = task_weight(p, src_nid, dist);
7082 		dst_weight = task_weight(p, dst_nid, dist);
7083 	}
7084 
7085 	return dst_weight < src_weight;
7086 }
7087 
7088 #else
7089 static inline int migrate_degrades_locality(struct task_struct *p,
7090 					     struct lb_env *env)
7091 {
7092 	return -1;
7093 }
7094 #endif
7095 
7096 /*
7097  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7098  */
7099 static
7100 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7101 {
7102 	int tsk_cache_hot;
7103 
7104 	lockdep_assert_held(&env->src_rq->lock);
7105 
7106 	/*
7107 	 * We do not migrate tasks that are:
7108 	 * 1) throttled_lb_pair, or
7109 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7110 	 * 3) running (obviously), or
7111 	 * 4) are cache-hot on their current CPU.
7112 	 */
7113 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7114 		return 0;
7115 
7116 	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7117 		int cpu;
7118 
7119 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7120 
7121 		env->flags |= LBF_SOME_PINNED;
7122 
7123 		/*
7124 		 * Remember if this task can be migrated to any other CPU in
7125 		 * our sched_group. We may want to revisit it if we couldn't
7126 		 * meet load balance goals by pulling other tasks on src_cpu.
7127 		 *
7128 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7129 		 * already computed one in current iteration.
7130 		 */
7131 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7132 			return 0;
7133 
7134 		/* Prevent to re-select dst_cpu via env's CPUs: */
7135 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7136 			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7137 				env->flags |= LBF_DST_PINNED;
7138 				env->new_dst_cpu = cpu;
7139 				break;
7140 			}
7141 		}
7142 
7143 		return 0;
7144 	}
7145 
7146 	/* Record that we found atleast one task that could run on dst_cpu */
7147 	env->flags &= ~LBF_ALL_PINNED;
7148 
7149 	if (task_running(env->src_rq, p)) {
7150 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7151 		return 0;
7152 	}
7153 
7154 	/*
7155 	 * Aggressive migration if:
7156 	 * 1) destination numa is preferred
7157 	 * 2) task is cache cold, or
7158 	 * 3) too many balance attempts have failed.
7159 	 */
7160 	tsk_cache_hot = migrate_degrades_locality(p, env);
7161 	if (tsk_cache_hot == -1)
7162 		tsk_cache_hot = task_hot(p, env);
7163 
7164 	if (tsk_cache_hot <= 0 ||
7165 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7166 		if (tsk_cache_hot == 1) {
7167 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7168 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7169 		}
7170 		return 1;
7171 	}
7172 
7173 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7174 	return 0;
7175 }
7176 
7177 /*
7178  * detach_task() -- detach the task for the migration specified in env
7179  */
7180 static void detach_task(struct task_struct *p, struct lb_env *env)
7181 {
7182 	lockdep_assert_held(&env->src_rq->lock);
7183 
7184 	p->on_rq = TASK_ON_RQ_MIGRATING;
7185 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7186 	set_task_cpu(p, env->dst_cpu);
7187 }
7188 
7189 /*
7190  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7191  * part of active balancing operations within "domain".
7192  *
7193  * Returns a task if successful and NULL otherwise.
7194  */
7195 static struct task_struct *detach_one_task(struct lb_env *env)
7196 {
7197 	struct task_struct *p;
7198 
7199 	lockdep_assert_held(&env->src_rq->lock);
7200 
7201 	list_for_each_entry_reverse(p,
7202 			&env->src_rq->cfs_tasks, se.group_node) {
7203 		if (!can_migrate_task(p, env))
7204 			continue;
7205 
7206 		detach_task(p, env);
7207 
7208 		/*
7209 		 * Right now, this is only the second place where
7210 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7211 		 * so we can safely collect stats here rather than
7212 		 * inside detach_tasks().
7213 		 */
7214 		schedstat_inc(env->sd->lb_gained[env->idle]);
7215 		return p;
7216 	}
7217 	return NULL;
7218 }
7219 
7220 static const unsigned int sched_nr_migrate_break = 32;
7221 
7222 /*
7223  * detach_tasks() -- tries to detach up to imbalance weighted load from
7224  * busiest_rq, as part of a balancing operation within domain "sd".
7225  *
7226  * Returns number of detached tasks if successful and 0 otherwise.
7227  */
7228 static int detach_tasks(struct lb_env *env)
7229 {
7230 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7231 	struct task_struct *p;
7232 	unsigned long load;
7233 	int detached = 0;
7234 
7235 	lockdep_assert_held(&env->src_rq->lock);
7236 
7237 	if (env->imbalance <= 0)
7238 		return 0;
7239 
7240 	while (!list_empty(tasks)) {
7241 		/*
7242 		 * We don't want to steal all, otherwise we may be treated likewise,
7243 		 * which could at worst lead to a livelock crash.
7244 		 */
7245 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7246 			break;
7247 
7248 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7249 
7250 		env->loop++;
7251 		/* We've more or less seen every task there is, call it quits */
7252 		if (env->loop > env->loop_max)
7253 			break;
7254 
7255 		/* take a breather every nr_migrate tasks */
7256 		if (env->loop > env->loop_break) {
7257 			env->loop_break += sched_nr_migrate_break;
7258 			env->flags |= LBF_NEED_BREAK;
7259 			break;
7260 		}
7261 
7262 		if (!can_migrate_task(p, env))
7263 			goto next;
7264 
7265 		load = task_h_load(p);
7266 
7267 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7268 			goto next;
7269 
7270 		if ((load / 2) > env->imbalance)
7271 			goto next;
7272 
7273 		detach_task(p, env);
7274 		list_add(&p->se.group_node, &env->tasks);
7275 
7276 		detached++;
7277 		env->imbalance -= load;
7278 
7279 #ifdef CONFIG_PREEMPT
7280 		/*
7281 		 * NEWIDLE balancing is a source of latency, so preemptible
7282 		 * kernels will stop after the first task is detached to minimize
7283 		 * the critical section.
7284 		 */
7285 		if (env->idle == CPU_NEWLY_IDLE)
7286 			break;
7287 #endif
7288 
7289 		/*
7290 		 * We only want to steal up to the prescribed amount of
7291 		 * weighted load.
7292 		 */
7293 		if (env->imbalance <= 0)
7294 			break;
7295 
7296 		continue;
7297 next:
7298 		list_move(&p->se.group_node, tasks);
7299 	}
7300 
7301 	/*
7302 	 * Right now, this is one of only two places we collect this stat
7303 	 * so we can safely collect detach_one_task() stats here rather
7304 	 * than inside detach_one_task().
7305 	 */
7306 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7307 
7308 	return detached;
7309 }
7310 
7311 /*
7312  * attach_task() -- attach the task detached by detach_task() to its new rq.
7313  */
7314 static void attach_task(struct rq *rq, struct task_struct *p)
7315 {
7316 	lockdep_assert_held(&rq->lock);
7317 
7318 	BUG_ON(task_rq(p) != rq);
7319 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7320 	p->on_rq = TASK_ON_RQ_QUEUED;
7321 	check_preempt_curr(rq, p, 0);
7322 }
7323 
7324 /*
7325  * attach_one_task() -- attaches the task returned from detach_one_task() to
7326  * its new rq.
7327  */
7328 static void attach_one_task(struct rq *rq, struct task_struct *p)
7329 {
7330 	struct rq_flags rf;
7331 
7332 	rq_lock(rq, &rf);
7333 	update_rq_clock(rq);
7334 	attach_task(rq, p);
7335 	rq_unlock(rq, &rf);
7336 }
7337 
7338 /*
7339  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7340  * new rq.
7341  */
7342 static void attach_tasks(struct lb_env *env)
7343 {
7344 	struct list_head *tasks = &env->tasks;
7345 	struct task_struct *p;
7346 	struct rq_flags rf;
7347 
7348 	rq_lock(env->dst_rq, &rf);
7349 	update_rq_clock(env->dst_rq);
7350 
7351 	while (!list_empty(tasks)) {
7352 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7353 		list_del_init(&p->se.group_node);
7354 
7355 		attach_task(env->dst_rq, p);
7356 	}
7357 
7358 	rq_unlock(env->dst_rq, &rf);
7359 }
7360 
7361 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7362 {
7363 	if (cfs_rq->avg.load_avg)
7364 		return true;
7365 
7366 	if (cfs_rq->avg.util_avg)
7367 		return true;
7368 
7369 	return false;
7370 }
7371 
7372 static inline bool others_have_blocked(struct rq *rq)
7373 {
7374 	if (READ_ONCE(rq->avg_rt.util_avg))
7375 		return true;
7376 
7377 	if (READ_ONCE(rq->avg_dl.util_avg))
7378 		return true;
7379 
7380 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7381 	if (READ_ONCE(rq->avg_irq.util_avg))
7382 		return true;
7383 #endif
7384 
7385 	return false;
7386 }
7387 
7388 #ifdef CONFIG_FAIR_GROUP_SCHED
7389 
7390 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7391 {
7392 	if (cfs_rq->load.weight)
7393 		return false;
7394 
7395 	if (cfs_rq->avg.load_sum)
7396 		return false;
7397 
7398 	if (cfs_rq->avg.util_sum)
7399 		return false;
7400 
7401 	if (cfs_rq->avg.runnable_load_sum)
7402 		return false;
7403 
7404 	return true;
7405 }
7406 
7407 static void update_blocked_averages(int cpu)
7408 {
7409 	struct rq *rq = cpu_rq(cpu);
7410 	struct cfs_rq *cfs_rq, *pos;
7411 	const struct sched_class *curr_class;
7412 	struct rq_flags rf;
7413 	bool done = true;
7414 
7415 	rq_lock_irqsave(rq, &rf);
7416 	update_rq_clock(rq);
7417 
7418 	/*
7419 	 * Iterates the task_group tree in a bottom up fashion, see
7420 	 * list_add_leaf_cfs_rq() for details.
7421 	 */
7422 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7423 		struct sched_entity *se;
7424 
7425 		/* throttled entities do not contribute to load */
7426 		if (throttled_hierarchy(cfs_rq))
7427 			continue;
7428 
7429 		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7430 			update_tg_load_avg(cfs_rq, 0);
7431 
7432 		/* Propagate pending load changes to the parent, if any: */
7433 		se = cfs_rq->tg->se[cpu];
7434 		if (se && !skip_blocked_update(se))
7435 			update_load_avg(cfs_rq_of(se), se, 0);
7436 
7437 		/*
7438 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7439 		 * decayed cfs_rqs linger on the list.
7440 		 */
7441 		if (cfs_rq_is_decayed(cfs_rq))
7442 			list_del_leaf_cfs_rq(cfs_rq);
7443 
7444 		/* Don't need periodic decay once load/util_avg are null */
7445 		if (cfs_rq_has_blocked(cfs_rq))
7446 			done = false;
7447 	}
7448 
7449 	curr_class = rq->curr->sched_class;
7450 	update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
7451 	update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7452 	update_irq_load_avg(rq, 0);
7453 	/* Don't need periodic decay once load/util_avg are null */
7454 	if (others_have_blocked(rq))
7455 		done = false;
7456 
7457 #ifdef CONFIG_NO_HZ_COMMON
7458 	rq->last_blocked_load_update_tick = jiffies;
7459 	if (done)
7460 		rq->has_blocked_load = 0;
7461 #endif
7462 	rq_unlock_irqrestore(rq, &rf);
7463 }
7464 
7465 /*
7466  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7467  * This needs to be done in a top-down fashion because the load of a child
7468  * group is a fraction of its parents load.
7469  */
7470 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7471 {
7472 	struct rq *rq = rq_of(cfs_rq);
7473 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7474 	unsigned long now = jiffies;
7475 	unsigned long load;
7476 
7477 	if (cfs_rq->last_h_load_update == now)
7478 		return;
7479 
7480 	cfs_rq->h_load_next = NULL;
7481 	for_each_sched_entity(se) {
7482 		cfs_rq = cfs_rq_of(se);
7483 		cfs_rq->h_load_next = se;
7484 		if (cfs_rq->last_h_load_update == now)
7485 			break;
7486 	}
7487 
7488 	if (!se) {
7489 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7490 		cfs_rq->last_h_load_update = now;
7491 	}
7492 
7493 	while ((se = cfs_rq->h_load_next) != NULL) {
7494 		load = cfs_rq->h_load;
7495 		load = div64_ul(load * se->avg.load_avg,
7496 			cfs_rq_load_avg(cfs_rq) + 1);
7497 		cfs_rq = group_cfs_rq(se);
7498 		cfs_rq->h_load = load;
7499 		cfs_rq->last_h_load_update = now;
7500 	}
7501 }
7502 
7503 static unsigned long task_h_load(struct task_struct *p)
7504 {
7505 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7506 
7507 	update_cfs_rq_h_load(cfs_rq);
7508 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7509 			cfs_rq_load_avg(cfs_rq) + 1);
7510 }
7511 #else
7512 static inline void update_blocked_averages(int cpu)
7513 {
7514 	struct rq *rq = cpu_rq(cpu);
7515 	struct cfs_rq *cfs_rq = &rq->cfs;
7516 	const struct sched_class *curr_class;
7517 	struct rq_flags rf;
7518 
7519 	rq_lock_irqsave(rq, &rf);
7520 	update_rq_clock(rq);
7521 	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7522 
7523 	curr_class = rq->curr->sched_class;
7524 	update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
7525 	update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7526 	update_irq_load_avg(rq, 0);
7527 #ifdef CONFIG_NO_HZ_COMMON
7528 	rq->last_blocked_load_update_tick = jiffies;
7529 	if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
7530 		rq->has_blocked_load = 0;
7531 #endif
7532 	rq_unlock_irqrestore(rq, &rf);
7533 }
7534 
7535 static unsigned long task_h_load(struct task_struct *p)
7536 {
7537 	return p->se.avg.load_avg;
7538 }
7539 #endif
7540 
7541 /********** Helpers for find_busiest_group ************************/
7542 
7543 /*
7544  * sg_lb_stats - stats of a sched_group required for load_balancing
7545  */
7546 struct sg_lb_stats {
7547 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7548 	unsigned long group_load; /* Total load over the CPUs of the group */
7549 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7550 	unsigned long load_per_task;
7551 	unsigned long group_capacity;
7552 	unsigned long group_util; /* Total utilization of the group */
7553 	unsigned int sum_nr_running; /* Nr tasks running in the group */
7554 	unsigned int idle_cpus;
7555 	unsigned int group_weight;
7556 	enum group_type group_type;
7557 	int group_no_capacity;
7558 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
7559 #ifdef CONFIG_NUMA_BALANCING
7560 	unsigned int nr_numa_running;
7561 	unsigned int nr_preferred_running;
7562 #endif
7563 };
7564 
7565 /*
7566  * sd_lb_stats - Structure to store the statistics of a sched_domain
7567  *		 during load balancing.
7568  */
7569 struct sd_lb_stats {
7570 	struct sched_group *busiest;	/* Busiest group in this sd */
7571 	struct sched_group *local;	/* Local group in this sd */
7572 	unsigned long total_running;
7573 	unsigned long total_load;	/* Total load of all groups in sd */
7574 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7575 	unsigned long avg_load;	/* Average load across all groups in sd */
7576 
7577 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7578 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7579 };
7580 
7581 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7582 {
7583 	/*
7584 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7585 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7586 	 * We must however clear busiest_stat::avg_load because
7587 	 * update_sd_pick_busiest() reads this before assignment.
7588 	 */
7589 	*sds = (struct sd_lb_stats){
7590 		.busiest = NULL,
7591 		.local = NULL,
7592 		.total_running = 0UL,
7593 		.total_load = 0UL,
7594 		.total_capacity = 0UL,
7595 		.busiest_stat = {
7596 			.avg_load = 0UL,
7597 			.sum_nr_running = 0,
7598 			.group_type = group_other,
7599 		},
7600 	};
7601 }
7602 
7603 /**
7604  * get_sd_load_idx - Obtain the load index for a given sched domain.
7605  * @sd: The sched_domain whose load_idx is to be obtained.
7606  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7607  *
7608  * Return: The load index.
7609  */
7610 static inline int get_sd_load_idx(struct sched_domain *sd,
7611 					enum cpu_idle_type idle)
7612 {
7613 	int load_idx;
7614 
7615 	switch (idle) {
7616 	case CPU_NOT_IDLE:
7617 		load_idx = sd->busy_idx;
7618 		break;
7619 
7620 	case CPU_NEWLY_IDLE:
7621 		load_idx = sd->newidle_idx;
7622 		break;
7623 	default:
7624 		load_idx = sd->idle_idx;
7625 		break;
7626 	}
7627 
7628 	return load_idx;
7629 }
7630 
7631 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7632 {
7633 	struct rq *rq = cpu_rq(cpu);
7634 	unsigned long max = arch_scale_cpu_capacity(sd, cpu);
7635 	unsigned long used, free;
7636 	unsigned long irq;
7637 
7638 	irq = cpu_util_irq(rq);
7639 
7640 	if (unlikely(irq >= max))
7641 		return 1;
7642 
7643 	used = READ_ONCE(rq->avg_rt.util_avg);
7644 	used += READ_ONCE(rq->avg_dl.util_avg);
7645 
7646 	if (unlikely(used >= max))
7647 		return 1;
7648 
7649 	free = max - used;
7650 
7651 	return scale_irq_capacity(free, irq, max);
7652 }
7653 
7654 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7655 {
7656 	unsigned long capacity = scale_rt_capacity(sd, cpu);
7657 	struct sched_group *sdg = sd->groups;
7658 
7659 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
7660 
7661 	if (!capacity)
7662 		capacity = 1;
7663 
7664 	cpu_rq(cpu)->cpu_capacity = capacity;
7665 	sdg->sgc->capacity = capacity;
7666 	sdg->sgc->min_capacity = capacity;
7667 	sdg->sgc->max_capacity = capacity;
7668 }
7669 
7670 void update_group_capacity(struct sched_domain *sd, int cpu)
7671 {
7672 	struct sched_domain *child = sd->child;
7673 	struct sched_group *group, *sdg = sd->groups;
7674 	unsigned long capacity, min_capacity, max_capacity;
7675 	unsigned long interval;
7676 
7677 	interval = msecs_to_jiffies(sd->balance_interval);
7678 	interval = clamp(interval, 1UL, max_load_balance_interval);
7679 	sdg->sgc->next_update = jiffies + interval;
7680 
7681 	if (!child) {
7682 		update_cpu_capacity(sd, cpu);
7683 		return;
7684 	}
7685 
7686 	capacity = 0;
7687 	min_capacity = ULONG_MAX;
7688 	max_capacity = 0;
7689 
7690 	if (child->flags & SD_OVERLAP) {
7691 		/*
7692 		 * SD_OVERLAP domains cannot assume that child groups
7693 		 * span the current group.
7694 		 */
7695 
7696 		for_each_cpu(cpu, sched_group_span(sdg)) {
7697 			struct sched_group_capacity *sgc;
7698 			struct rq *rq = cpu_rq(cpu);
7699 
7700 			/*
7701 			 * build_sched_domains() -> init_sched_groups_capacity()
7702 			 * gets here before we've attached the domains to the
7703 			 * runqueues.
7704 			 *
7705 			 * Use capacity_of(), which is set irrespective of domains
7706 			 * in update_cpu_capacity().
7707 			 *
7708 			 * This avoids capacity from being 0 and
7709 			 * causing divide-by-zero issues on boot.
7710 			 */
7711 			if (unlikely(!rq->sd)) {
7712 				capacity += capacity_of(cpu);
7713 			} else {
7714 				sgc = rq->sd->groups->sgc;
7715 				capacity += sgc->capacity;
7716 			}
7717 
7718 			min_capacity = min(capacity, min_capacity);
7719 			max_capacity = max(capacity, max_capacity);
7720 		}
7721 	} else  {
7722 		/*
7723 		 * !SD_OVERLAP domains can assume that child groups
7724 		 * span the current group.
7725 		 */
7726 
7727 		group = child->groups;
7728 		do {
7729 			struct sched_group_capacity *sgc = group->sgc;
7730 
7731 			capacity += sgc->capacity;
7732 			min_capacity = min(sgc->min_capacity, min_capacity);
7733 			max_capacity = max(sgc->max_capacity, max_capacity);
7734 			group = group->next;
7735 		} while (group != child->groups);
7736 	}
7737 
7738 	sdg->sgc->capacity = capacity;
7739 	sdg->sgc->min_capacity = min_capacity;
7740 	sdg->sgc->max_capacity = max_capacity;
7741 }
7742 
7743 /*
7744  * Check whether the capacity of the rq has been noticeably reduced by side
7745  * activity. The imbalance_pct is used for the threshold.
7746  * Return true is the capacity is reduced
7747  */
7748 static inline int
7749 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7750 {
7751 	return ((rq->cpu_capacity * sd->imbalance_pct) <
7752 				(rq->cpu_capacity_orig * 100));
7753 }
7754 
7755 /*
7756  * Group imbalance indicates (and tries to solve) the problem where balancing
7757  * groups is inadequate due to ->cpus_allowed constraints.
7758  *
7759  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7760  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7761  * Something like:
7762  *
7763  *	{ 0 1 2 3 } { 4 5 6 7 }
7764  *	        *     * * *
7765  *
7766  * If we were to balance group-wise we'd place two tasks in the first group and
7767  * two tasks in the second group. Clearly this is undesired as it will overload
7768  * cpu 3 and leave one of the CPUs in the second group unused.
7769  *
7770  * The current solution to this issue is detecting the skew in the first group
7771  * by noticing the lower domain failed to reach balance and had difficulty
7772  * moving tasks due to affinity constraints.
7773  *
7774  * When this is so detected; this group becomes a candidate for busiest; see
7775  * update_sd_pick_busiest(). And calculate_imbalance() and
7776  * find_busiest_group() avoid some of the usual balance conditions to allow it
7777  * to create an effective group imbalance.
7778  *
7779  * This is a somewhat tricky proposition since the next run might not find the
7780  * group imbalance and decide the groups need to be balanced again. A most
7781  * subtle and fragile situation.
7782  */
7783 
7784 static inline int sg_imbalanced(struct sched_group *group)
7785 {
7786 	return group->sgc->imbalance;
7787 }
7788 
7789 /*
7790  * group_has_capacity returns true if the group has spare capacity that could
7791  * be used by some tasks.
7792  * We consider that a group has spare capacity if the  * number of task is
7793  * smaller than the number of CPUs or if the utilization is lower than the
7794  * available capacity for CFS tasks.
7795  * For the latter, we use a threshold to stabilize the state, to take into
7796  * account the variance of the tasks' load and to return true if the available
7797  * capacity in meaningful for the load balancer.
7798  * As an example, an available capacity of 1% can appear but it doesn't make
7799  * any benefit for the load balance.
7800  */
7801 static inline bool
7802 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7803 {
7804 	if (sgs->sum_nr_running < sgs->group_weight)
7805 		return true;
7806 
7807 	if ((sgs->group_capacity * 100) >
7808 			(sgs->group_util * env->sd->imbalance_pct))
7809 		return true;
7810 
7811 	return false;
7812 }
7813 
7814 /*
7815  *  group_is_overloaded returns true if the group has more tasks than it can
7816  *  handle.
7817  *  group_is_overloaded is not equals to !group_has_capacity because a group
7818  *  with the exact right number of tasks, has no more spare capacity but is not
7819  *  overloaded so both group_has_capacity and group_is_overloaded return
7820  *  false.
7821  */
7822 static inline bool
7823 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7824 {
7825 	if (sgs->sum_nr_running <= sgs->group_weight)
7826 		return false;
7827 
7828 	if ((sgs->group_capacity * 100) <
7829 			(sgs->group_util * env->sd->imbalance_pct))
7830 		return true;
7831 
7832 	return false;
7833 }
7834 
7835 /*
7836  * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
7837  * per-CPU capacity than sched_group ref.
7838  */
7839 static inline bool
7840 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7841 {
7842 	return sg->sgc->min_capacity * capacity_margin <
7843 						ref->sgc->min_capacity * 1024;
7844 }
7845 
7846 /*
7847  * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
7848  * per-CPU capacity_orig than sched_group ref.
7849  */
7850 static inline bool
7851 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7852 {
7853 	return sg->sgc->max_capacity * capacity_margin <
7854 						ref->sgc->max_capacity * 1024;
7855 }
7856 
7857 static inline enum
7858 group_type group_classify(struct sched_group *group,
7859 			  struct sg_lb_stats *sgs)
7860 {
7861 	if (sgs->group_no_capacity)
7862 		return group_overloaded;
7863 
7864 	if (sg_imbalanced(group))
7865 		return group_imbalanced;
7866 
7867 	if (sgs->group_misfit_task_load)
7868 		return group_misfit_task;
7869 
7870 	return group_other;
7871 }
7872 
7873 static bool update_nohz_stats(struct rq *rq, bool force)
7874 {
7875 #ifdef CONFIG_NO_HZ_COMMON
7876 	unsigned int cpu = rq->cpu;
7877 
7878 	if (!rq->has_blocked_load)
7879 		return false;
7880 
7881 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
7882 		return false;
7883 
7884 	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
7885 		return true;
7886 
7887 	update_blocked_averages(cpu);
7888 
7889 	return rq->has_blocked_load;
7890 #else
7891 	return false;
7892 #endif
7893 }
7894 
7895 /**
7896  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7897  * @env: The load balancing environment.
7898  * @group: sched_group whose statistics are to be updated.
7899  * @load_idx: Load index of sched_domain of this_cpu for load calc.
7900  * @local_group: Does group contain this_cpu.
7901  * @sgs: variable to hold the statistics for this group.
7902  * @overload: Indicate pullable load (e.g. >1 runnable task).
7903  */
7904 static inline void update_sg_lb_stats(struct lb_env *env,
7905 			struct sched_group *group, int load_idx,
7906 			int local_group, struct sg_lb_stats *sgs,
7907 			bool *overload)
7908 {
7909 	unsigned long load;
7910 	int i, nr_running;
7911 
7912 	memset(sgs, 0, sizeof(*sgs));
7913 
7914 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7915 		struct rq *rq = cpu_rq(i);
7916 
7917 		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
7918 			env->flags |= LBF_NOHZ_AGAIN;
7919 
7920 		/* Bias balancing toward CPUs of our domain: */
7921 		if (local_group)
7922 			load = target_load(i, load_idx);
7923 		else
7924 			load = source_load(i, load_idx);
7925 
7926 		sgs->group_load += load;
7927 		sgs->group_util += cpu_util(i);
7928 		sgs->sum_nr_running += rq->cfs.h_nr_running;
7929 
7930 		nr_running = rq->nr_running;
7931 		if (nr_running > 1)
7932 			*overload = true;
7933 
7934 #ifdef CONFIG_NUMA_BALANCING
7935 		sgs->nr_numa_running += rq->nr_numa_running;
7936 		sgs->nr_preferred_running += rq->nr_preferred_running;
7937 #endif
7938 		sgs->sum_weighted_load += weighted_cpuload(rq);
7939 		/*
7940 		 * No need to call idle_cpu() if nr_running is not 0
7941 		 */
7942 		if (!nr_running && idle_cpu(i))
7943 			sgs->idle_cpus++;
7944 
7945 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
7946 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
7947 			sgs->group_misfit_task_load = rq->misfit_task_load;
7948 			*overload = 1;
7949 		}
7950 	}
7951 
7952 	/* Adjust by relative CPU capacity of the group */
7953 	sgs->group_capacity = group->sgc->capacity;
7954 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7955 
7956 	if (sgs->sum_nr_running)
7957 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7958 
7959 	sgs->group_weight = group->group_weight;
7960 
7961 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7962 	sgs->group_type = group_classify(group, sgs);
7963 }
7964 
7965 /**
7966  * update_sd_pick_busiest - return 1 on busiest group
7967  * @env: The load balancing environment.
7968  * @sds: sched_domain statistics
7969  * @sg: sched_group candidate to be checked for being the busiest
7970  * @sgs: sched_group statistics
7971  *
7972  * Determine if @sg is a busier group than the previously selected
7973  * busiest group.
7974  *
7975  * Return: %true if @sg is a busier group than the previously selected
7976  * busiest group. %false otherwise.
7977  */
7978 static bool update_sd_pick_busiest(struct lb_env *env,
7979 				   struct sd_lb_stats *sds,
7980 				   struct sched_group *sg,
7981 				   struct sg_lb_stats *sgs)
7982 {
7983 	struct sg_lb_stats *busiest = &sds->busiest_stat;
7984 
7985 	/*
7986 	 * Don't try to pull misfit tasks we can't help.
7987 	 * We can use max_capacity here as reduction in capacity on some
7988 	 * CPUs in the group should either be possible to resolve
7989 	 * internally or be covered by avg_load imbalance (eventually).
7990 	 */
7991 	if (sgs->group_type == group_misfit_task &&
7992 	    (!group_smaller_max_cpu_capacity(sg, sds->local) ||
7993 	     !group_has_capacity(env, &sds->local_stat)))
7994 		return false;
7995 
7996 	if (sgs->group_type > busiest->group_type)
7997 		return true;
7998 
7999 	if (sgs->group_type < busiest->group_type)
8000 		return false;
8001 
8002 	if (sgs->avg_load <= busiest->avg_load)
8003 		return false;
8004 
8005 	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8006 		goto asym_packing;
8007 
8008 	/*
8009 	 * Candidate sg has no more than one task per CPU and
8010 	 * has higher per-CPU capacity. Migrating tasks to less
8011 	 * capable CPUs may harm throughput. Maximize throughput,
8012 	 * power/energy consequences are not considered.
8013 	 */
8014 	if (sgs->sum_nr_running <= sgs->group_weight &&
8015 	    group_smaller_min_cpu_capacity(sds->local, sg))
8016 		return false;
8017 
8018 	/*
8019 	 * If we have more than one misfit sg go with the biggest misfit.
8020 	 */
8021 	if (sgs->group_type == group_misfit_task &&
8022 	    sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8023 		return false;
8024 
8025 asym_packing:
8026 	/* This is the busiest node in its class. */
8027 	if (!(env->sd->flags & SD_ASYM_PACKING))
8028 		return true;
8029 
8030 	/* No ASYM_PACKING if target CPU is already busy */
8031 	if (env->idle == CPU_NOT_IDLE)
8032 		return true;
8033 	/*
8034 	 * ASYM_PACKING needs to move all the work to the highest
8035 	 * prority CPUs in the group, therefore mark all groups
8036 	 * of lower priority than ourself as busy.
8037 	 */
8038 	if (sgs->sum_nr_running &&
8039 	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
8040 		if (!sds->busiest)
8041 			return true;
8042 
8043 		/* Prefer to move from lowest priority CPU's work */
8044 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8045 				      sg->asym_prefer_cpu))
8046 			return true;
8047 	}
8048 
8049 	return false;
8050 }
8051 
8052 #ifdef CONFIG_NUMA_BALANCING
8053 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8054 {
8055 	if (sgs->sum_nr_running > sgs->nr_numa_running)
8056 		return regular;
8057 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
8058 		return remote;
8059 	return all;
8060 }
8061 
8062 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8063 {
8064 	if (rq->nr_running > rq->nr_numa_running)
8065 		return regular;
8066 	if (rq->nr_running > rq->nr_preferred_running)
8067 		return remote;
8068 	return all;
8069 }
8070 #else
8071 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8072 {
8073 	return all;
8074 }
8075 
8076 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8077 {
8078 	return regular;
8079 }
8080 #endif /* CONFIG_NUMA_BALANCING */
8081 
8082 /**
8083  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8084  * @env: The load balancing environment.
8085  * @sds: variable to hold the statistics for this sched_domain.
8086  */
8087 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8088 {
8089 	struct sched_domain *child = env->sd->child;
8090 	struct sched_group *sg = env->sd->groups;
8091 	struct sg_lb_stats *local = &sds->local_stat;
8092 	struct sg_lb_stats tmp_sgs;
8093 	int load_idx;
8094 	bool overload = false;
8095 	bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8096 
8097 #ifdef CONFIG_NO_HZ_COMMON
8098 	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8099 		env->flags |= LBF_NOHZ_STATS;
8100 #endif
8101 
8102 	load_idx = get_sd_load_idx(env->sd, env->idle);
8103 
8104 	do {
8105 		struct sg_lb_stats *sgs = &tmp_sgs;
8106 		int local_group;
8107 
8108 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8109 		if (local_group) {
8110 			sds->local = sg;
8111 			sgs = local;
8112 
8113 			if (env->idle != CPU_NEWLY_IDLE ||
8114 			    time_after_eq(jiffies, sg->sgc->next_update))
8115 				update_group_capacity(env->sd, env->dst_cpu);
8116 		}
8117 
8118 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
8119 						&overload);
8120 
8121 		if (local_group)
8122 			goto next_group;
8123 
8124 		/*
8125 		 * In case the child domain prefers tasks go to siblings
8126 		 * first, lower the sg capacity so that we'll try
8127 		 * and move all the excess tasks away. We lower the capacity
8128 		 * of a group only if the local group has the capacity to fit
8129 		 * these excess tasks. The extra check prevents the case where
8130 		 * you always pull from the heaviest group when it is already
8131 		 * under-utilized (possible with a large weight task outweighs
8132 		 * the tasks on the system).
8133 		 */
8134 		if (prefer_sibling && sds->local &&
8135 		    group_has_capacity(env, local) &&
8136 		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8137 			sgs->group_no_capacity = 1;
8138 			sgs->group_type = group_classify(sg, sgs);
8139 		}
8140 
8141 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8142 			sds->busiest = sg;
8143 			sds->busiest_stat = *sgs;
8144 		}
8145 
8146 next_group:
8147 		/* Now, start updating sd_lb_stats */
8148 		sds->total_running += sgs->sum_nr_running;
8149 		sds->total_load += sgs->group_load;
8150 		sds->total_capacity += sgs->group_capacity;
8151 
8152 		sg = sg->next;
8153 	} while (sg != env->sd->groups);
8154 
8155 #ifdef CONFIG_NO_HZ_COMMON
8156 	if ((env->flags & LBF_NOHZ_AGAIN) &&
8157 	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8158 
8159 		WRITE_ONCE(nohz.next_blocked,
8160 			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8161 	}
8162 #endif
8163 
8164 	if (env->sd->flags & SD_NUMA)
8165 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8166 
8167 	if (!env->sd->parent) {
8168 		/* update overload indicator if we are at root domain */
8169 		if (READ_ONCE(env->dst_rq->rd->overload) != overload)
8170 			WRITE_ONCE(env->dst_rq->rd->overload, overload);
8171 	}
8172 }
8173 
8174 /**
8175  * check_asym_packing - Check to see if the group is packed into the
8176  *			sched domain.
8177  *
8178  * This is primarily intended to used at the sibling level.  Some
8179  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
8180  * case of POWER7, it can move to lower SMT modes only when higher
8181  * threads are idle.  When in lower SMT modes, the threads will
8182  * perform better since they share less core resources.  Hence when we
8183  * have idle threads, we want them to be the higher ones.
8184  *
8185  * This packing function is run on idle threads.  It checks to see if
8186  * the busiest CPU in this domain (core in the P7 case) has a higher
8187  * CPU number than the packing function is being run on.  Here we are
8188  * assuming lower CPU number will be equivalent to lower a SMT thread
8189  * number.
8190  *
8191  * Return: 1 when packing is required and a task should be moved to
8192  * this CPU.  The amount of the imbalance is returned in env->imbalance.
8193  *
8194  * @env: The load balancing environment.
8195  * @sds: Statistics of the sched_domain which is to be packed
8196  */
8197 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8198 {
8199 	int busiest_cpu;
8200 
8201 	if (!(env->sd->flags & SD_ASYM_PACKING))
8202 		return 0;
8203 
8204 	if (env->idle == CPU_NOT_IDLE)
8205 		return 0;
8206 
8207 	if (!sds->busiest)
8208 		return 0;
8209 
8210 	busiest_cpu = sds->busiest->asym_prefer_cpu;
8211 	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8212 		return 0;
8213 
8214 	env->imbalance = DIV_ROUND_CLOSEST(
8215 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8216 		SCHED_CAPACITY_SCALE);
8217 
8218 	return 1;
8219 }
8220 
8221 /**
8222  * fix_small_imbalance - Calculate the minor imbalance that exists
8223  *			amongst the groups of a sched_domain, during
8224  *			load balancing.
8225  * @env: The load balancing environment.
8226  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8227  */
8228 static inline
8229 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8230 {
8231 	unsigned long tmp, capa_now = 0, capa_move = 0;
8232 	unsigned int imbn = 2;
8233 	unsigned long scaled_busy_load_per_task;
8234 	struct sg_lb_stats *local, *busiest;
8235 
8236 	local = &sds->local_stat;
8237 	busiest = &sds->busiest_stat;
8238 
8239 	if (!local->sum_nr_running)
8240 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8241 	else if (busiest->load_per_task > local->load_per_task)
8242 		imbn = 1;
8243 
8244 	scaled_busy_load_per_task =
8245 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8246 		busiest->group_capacity;
8247 
8248 	if (busiest->avg_load + scaled_busy_load_per_task >=
8249 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
8250 		env->imbalance = busiest->load_per_task;
8251 		return;
8252 	}
8253 
8254 	/*
8255 	 * OK, we don't have enough imbalance to justify moving tasks,
8256 	 * however we may be able to increase total CPU capacity used by
8257 	 * moving them.
8258 	 */
8259 
8260 	capa_now += busiest->group_capacity *
8261 			min(busiest->load_per_task, busiest->avg_load);
8262 	capa_now += local->group_capacity *
8263 			min(local->load_per_task, local->avg_load);
8264 	capa_now /= SCHED_CAPACITY_SCALE;
8265 
8266 	/* Amount of load we'd subtract */
8267 	if (busiest->avg_load > scaled_busy_load_per_task) {
8268 		capa_move += busiest->group_capacity *
8269 			    min(busiest->load_per_task,
8270 				busiest->avg_load - scaled_busy_load_per_task);
8271 	}
8272 
8273 	/* Amount of load we'd add */
8274 	if (busiest->avg_load * busiest->group_capacity <
8275 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8276 		tmp = (busiest->avg_load * busiest->group_capacity) /
8277 		      local->group_capacity;
8278 	} else {
8279 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8280 		      local->group_capacity;
8281 	}
8282 	capa_move += local->group_capacity *
8283 		    min(local->load_per_task, local->avg_load + tmp);
8284 	capa_move /= SCHED_CAPACITY_SCALE;
8285 
8286 	/* Move if we gain throughput */
8287 	if (capa_move > capa_now)
8288 		env->imbalance = busiest->load_per_task;
8289 }
8290 
8291 /**
8292  * calculate_imbalance - Calculate the amount of imbalance present within the
8293  *			 groups of a given sched_domain during load balance.
8294  * @env: load balance environment
8295  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8296  */
8297 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8298 {
8299 	unsigned long max_pull, load_above_capacity = ~0UL;
8300 	struct sg_lb_stats *local, *busiest;
8301 
8302 	local = &sds->local_stat;
8303 	busiest = &sds->busiest_stat;
8304 
8305 	if (busiest->group_type == group_imbalanced) {
8306 		/*
8307 		 * In the group_imb case we cannot rely on group-wide averages
8308 		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8309 		 */
8310 		busiest->load_per_task =
8311 			min(busiest->load_per_task, sds->avg_load);
8312 	}
8313 
8314 	/*
8315 	 * Avg load of busiest sg can be less and avg load of local sg can
8316 	 * be greater than avg load across all sgs of sd because avg load
8317 	 * factors in sg capacity and sgs with smaller group_type are
8318 	 * skipped when updating the busiest sg:
8319 	 */
8320 	if (busiest->group_type != group_misfit_task &&
8321 	    (busiest->avg_load <= sds->avg_load ||
8322 	     local->avg_load >= sds->avg_load)) {
8323 		env->imbalance = 0;
8324 		return fix_small_imbalance(env, sds);
8325 	}
8326 
8327 	/*
8328 	 * If there aren't any idle CPUs, avoid creating some.
8329 	 */
8330 	if (busiest->group_type == group_overloaded &&
8331 	    local->group_type   == group_overloaded) {
8332 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8333 		if (load_above_capacity > busiest->group_capacity) {
8334 			load_above_capacity -= busiest->group_capacity;
8335 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8336 			load_above_capacity /= busiest->group_capacity;
8337 		} else
8338 			load_above_capacity = ~0UL;
8339 	}
8340 
8341 	/*
8342 	 * We're trying to get all the CPUs to the average_load, so we don't
8343 	 * want to push ourselves above the average load, nor do we wish to
8344 	 * reduce the max loaded CPU below the average load. At the same time,
8345 	 * we also don't want to reduce the group load below the group
8346 	 * capacity. Thus we look for the minimum possible imbalance.
8347 	 */
8348 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8349 
8350 	/* How much load to actually move to equalise the imbalance */
8351 	env->imbalance = min(
8352 		max_pull * busiest->group_capacity,
8353 		(sds->avg_load - local->avg_load) * local->group_capacity
8354 	) / SCHED_CAPACITY_SCALE;
8355 
8356 	/* Boost imbalance to allow misfit task to be balanced. */
8357 	if (busiest->group_type == group_misfit_task) {
8358 		env->imbalance = max_t(long, env->imbalance,
8359 				       busiest->group_misfit_task_load);
8360 	}
8361 
8362 	/*
8363 	 * if *imbalance is less than the average load per runnable task
8364 	 * there is no guarantee that any tasks will be moved so we'll have
8365 	 * a think about bumping its value to force at least one task to be
8366 	 * moved
8367 	 */
8368 	if (env->imbalance < busiest->load_per_task)
8369 		return fix_small_imbalance(env, sds);
8370 }
8371 
8372 /******* find_busiest_group() helpers end here *********************/
8373 
8374 /**
8375  * find_busiest_group - Returns the busiest group within the sched_domain
8376  * if there is an imbalance.
8377  *
8378  * Also calculates the amount of weighted load which should be moved
8379  * to restore balance.
8380  *
8381  * @env: The load balancing environment.
8382  *
8383  * Return:	- The busiest group if imbalance exists.
8384  */
8385 static struct sched_group *find_busiest_group(struct lb_env *env)
8386 {
8387 	struct sg_lb_stats *local, *busiest;
8388 	struct sd_lb_stats sds;
8389 
8390 	init_sd_lb_stats(&sds);
8391 
8392 	/*
8393 	 * Compute the various statistics relavent for load balancing at
8394 	 * this level.
8395 	 */
8396 	update_sd_lb_stats(env, &sds);
8397 	local = &sds.local_stat;
8398 	busiest = &sds.busiest_stat;
8399 
8400 	/* ASYM feature bypasses nice load balance check */
8401 	if (check_asym_packing(env, &sds))
8402 		return sds.busiest;
8403 
8404 	/* There is no busy sibling group to pull tasks from */
8405 	if (!sds.busiest || busiest->sum_nr_running == 0)
8406 		goto out_balanced;
8407 
8408 	/* XXX broken for overlapping NUMA groups */
8409 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8410 						/ sds.total_capacity;
8411 
8412 	/*
8413 	 * If the busiest group is imbalanced the below checks don't
8414 	 * work because they assume all things are equal, which typically
8415 	 * isn't true due to cpus_allowed constraints and the like.
8416 	 */
8417 	if (busiest->group_type == group_imbalanced)
8418 		goto force_balance;
8419 
8420 	/*
8421 	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8422 	 * capacities from resulting in underutilization due to avg_load.
8423 	 */
8424 	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8425 	    busiest->group_no_capacity)
8426 		goto force_balance;
8427 
8428 	/* Misfit tasks should be dealt with regardless of the avg load */
8429 	if (busiest->group_type == group_misfit_task)
8430 		goto force_balance;
8431 
8432 	/*
8433 	 * If the local group is busier than the selected busiest group
8434 	 * don't try and pull any tasks.
8435 	 */
8436 	if (local->avg_load >= busiest->avg_load)
8437 		goto out_balanced;
8438 
8439 	/*
8440 	 * Don't pull any tasks if this group is already above the domain
8441 	 * average load.
8442 	 */
8443 	if (local->avg_load >= sds.avg_load)
8444 		goto out_balanced;
8445 
8446 	if (env->idle == CPU_IDLE) {
8447 		/*
8448 		 * This CPU is idle. If the busiest group is not overloaded
8449 		 * and there is no imbalance between this and busiest group
8450 		 * wrt idle CPUs, it is balanced. The imbalance becomes
8451 		 * significant if the diff is greater than 1 otherwise we
8452 		 * might end up to just move the imbalance on another group
8453 		 */
8454 		if ((busiest->group_type != group_overloaded) &&
8455 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8456 			goto out_balanced;
8457 	} else {
8458 		/*
8459 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8460 		 * imbalance_pct to be conservative.
8461 		 */
8462 		if (100 * busiest->avg_load <=
8463 				env->sd->imbalance_pct * local->avg_load)
8464 			goto out_balanced;
8465 	}
8466 
8467 force_balance:
8468 	/* Looks like there is an imbalance. Compute it */
8469 	env->src_grp_type = busiest->group_type;
8470 	calculate_imbalance(env, &sds);
8471 	return env->imbalance ? sds.busiest : NULL;
8472 
8473 out_balanced:
8474 	env->imbalance = 0;
8475 	return NULL;
8476 }
8477 
8478 /*
8479  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8480  */
8481 static struct rq *find_busiest_queue(struct lb_env *env,
8482 				     struct sched_group *group)
8483 {
8484 	struct rq *busiest = NULL, *rq;
8485 	unsigned long busiest_load = 0, busiest_capacity = 1;
8486 	int i;
8487 
8488 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8489 		unsigned long capacity, wl;
8490 		enum fbq_type rt;
8491 
8492 		rq = cpu_rq(i);
8493 		rt = fbq_classify_rq(rq);
8494 
8495 		/*
8496 		 * We classify groups/runqueues into three groups:
8497 		 *  - regular: there are !numa tasks
8498 		 *  - remote:  there are numa tasks that run on the 'wrong' node
8499 		 *  - all:     there is no distinction
8500 		 *
8501 		 * In order to avoid migrating ideally placed numa tasks,
8502 		 * ignore those when there's better options.
8503 		 *
8504 		 * If we ignore the actual busiest queue to migrate another
8505 		 * task, the next balance pass can still reduce the busiest
8506 		 * queue by moving tasks around inside the node.
8507 		 *
8508 		 * If we cannot move enough load due to this classification
8509 		 * the next pass will adjust the group classification and
8510 		 * allow migration of more tasks.
8511 		 *
8512 		 * Both cases only affect the total convergence complexity.
8513 		 */
8514 		if (rt > env->fbq_type)
8515 			continue;
8516 
8517 		/*
8518 		 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8519 		 * seek the "biggest" misfit task.
8520 		 */
8521 		if (env->src_grp_type == group_misfit_task) {
8522 			if (rq->misfit_task_load > busiest_load) {
8523 				busiest_load = rq->misfit_task_load;
8524 				busiest = rq;
8525 			}
8526 
8527 			continue;
8528 		}
8529 
8530 		capacity = capacity_of(i);
8531 
8532 		/*
8533 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8534 		 * eventually lead to active_balancing high->low capacity.
8535 		 * Higher per-CPU capacity is considered better than balancing
8536 		 * average load.
8537 		 */
8538 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8539 		    capacity_of(env->dst_cpu) < capacity &&
8540 		    rq->nr_running == 1)
8541 			continue;
8542 
8543 		wl = weighted_cpuload(rq);
8544 
8545 		/*
8546 		 * When comparing with imbalance, use weighted_cpuload()
8547 		 * which is not scaled with the CPU capacity.
8548 		 */
8549 
8550 		if (rq->nr_running == 1 && wl > env->imbalance &&
8551 		    !check_cpu_capacity(rq, env->sd))
8552 			continue;
8553 
8554 		/*
8555 		 * For the load comparisons with the other CPU's, consider
8556 		 * the weighted_cpuload() scaled with the CPU capacity, so
8557 		 * that the load can be moved away from the CPU that is
8558 		 * potentially running at a lower capacity.
8559 		 *
8560 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8561 		 * multiplication to rid ourselves of the division works out
8562 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
8563 		 * our previous maximum.
8564 		 */
8565 		if (wl * busiest_capacity > busiest_load * capacity) {
8566 			busiest_load = wl;
8567 			busiest_capacity = capacity;
8568 			busiest = rq;
8569 		}
8570 	}
8571 
8572 	return busiest;
8573 }
8574 
8575 /*
8576  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8577  * so long as it is large enough.
8578  */
8579 #define MAX_PINNED_INTERVAL	512
8580 
8581 static int need_active_balance(struct lb_env *env)
8582 {
8583 	struct sched_domain *sd = env->sd;
8584 
8585 	if (env->idle == CPU_NEWLY_IDLE) {
8586 
8587 		/*
8588 		 * ASYM_PACKING needs to force migrate tasks from busy but
8589 		 * lower priority CPUs in order to pack all tasks in the
8590 		 * highest priority CPUs.
8591 		 */
8592 		if ((sd->flags & SD_ASYM_PACKING) &&
8593 		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8594 			return 1;
8595 	}
8596 
8597 	/*
8598 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8599 	 * It's worth migrating the task if the src_cpu's capacity is reduced
8600 	 * because of other sched_class or IRQs if more capacity stays
8601 	 * available on dst_cpu.
8602 	 */
8603 	if ((env->idle != CPU_NOT_IDLE) &&
8604 	    (env->src_rq->cfs.h_nr_running == 1)) {
8605 		if ((check_cpu_capacity(env->src_rq, sd)) &&
8606 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8607 			return 1;
8608 	}
8609 
8610 	if (env->src_grp_type == group_misfit_task)
8611 		return 1;
8612 
8613 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8614 }
8615 
8616 static int active_load_balance_cpu_stop(void *data);
8617 
8618 static int should_we_balance(struct lb_env *env)
8619 {
8620 	struct sched_group *sg = env->sd->groups;
8621 	int cpu, balance_cpu = -1;
8622 
8623 	/*
8624 	 * Ensure the balancing environment is consistent; can happen
8625 	 * when the softirq triggers 'during' hotplug.
8626 	 */
8627 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8628 		return 0;
8629 
8630 	/*
8631 	 * In the newly idle case, we will allow all the CPUs
8632 	 * to do the newly idle load balance.
8633 	 */
8634 	if (env->idle == CPU_NEWLY_IDLE)
8635 		return 1;
8636 
8637 	/* Try to find first idle CPU */
8638 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8639 		if (!idle_cpu(cpu))
8640 			continue;
8641 
8642 		balance_cpu = cpu;
8643 		break;
8644 	}
8645 
8646 	if (balance_cpu == -1)
8647 		balance_cpu = group_balance_cpu(sg);
8648 
8649 	/*
8650 	 * First idle CPU or the first CPU(busiest) in this sched group
8651 	 * is eligible for doing load balancing at this and above domains.
8652 	 */
8653 	return balance_cpu == env->dst_cpu;
8654 }
8655 
8656 /*
8657  * Check this_cpu to ensure it is balanced within domain. Attempt to move
8658  * tasks if there is an imbalance.
8659  */
8660 static int load_balance(int this_cpu, struct rq *this_rq,
8661 			struct sched_domain *sd, enum cpu_idle_type idle,
8662 			int *continue_balancing)
8663 {
8664 	int ld_moved, cur_ld_moved, active_balance = 0;
8665 	struct sched_domain *sd_parent = sd->parent;
8666 	struct sched_group *group;
8667 	struct rq *busiest;
8668 	struct rq_flags rf;
8669 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8670 
8671 	struct lb_env env = {
8672 		.sd		= sd,
8673 		.dst_cpu	= this_cpu,
8674 		.dst_rq		= this_rq,
8675 		.dst_grpmask    = sched_group_span(sd->groups),
8676 		.idle		= idle,
8677 		.loop_break	= sched_nr_migrate_break,
8678 		.cpus		= cpus,
8679 		.fbq_type	= all,
8680 		.tasks		= LIST_HEAD_INIT(env.tasks),
8681 	};
8682 
8683 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8684 
8685 	schedstat_inc(sd->lb_count[idle]);
8686 
8687 redo:
8688 	if (!should_we_balance(&env)) {
8689 		*continue_balancing = 0;
8690 		goto out_balanced;
8691 	}
8692 
8693 	group = find_busiest_group(&env);
8694 	if (!group) {
8695 		schedstat_inc(sd->lb_nobusyg[idle]);
8696 		goto out_balanced;
8697 	}
8698 
8699 	busiest = find_busiest_queue(&env, group);
8700 	if (!busiest) {
8701 		schedstat_inc(sd->lb_nobusyq[idle]);
8702 		goto out_balanced;
8703 	}
8704 
8705 	BUG_ON(busiest == env.dst_rq);
8706 
8707 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8708 
8709 	env.src_cpu = busiest->cpu;
8710 	env.src_rq = busiest;
8711 
8712 	ld_moved = 0;
8713 	if (busiest->nr_running > 1) {
8714 		/*
8715 		 * Attempt to move tasks. If find_busiest_group has found
8716 		 * an imbalance but busiest->nr_running <= 1, the group is
8717 		 * still unbalanced. ld_moved simply stays zero, so it is
8718 		 * correctly treated as an imbalance.
8719 		 */
8720 		env.flags |= LBF_ALL_PINNED;
8721 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8722 
8723 more_balance:
8724 		rq_lock_irqsave(busiest, &rf);
8725 		update_rq_clock(busiest);
8726 
8727 		/*
8728 		 * cur_ld_moved - load moved in current iteration
8729 		 * ld_moved     - cumulative load moved across iterations
8730 		 */
8731 		cur_ld_moved = detach_tasks(&env);
8732 
8733 		/*
8734 		 * We've detached some tasks from busiest_rq. Every
8735 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8736 		 * unlock busiest->lock, and we are able to be sure
8737 		 * that nobody can manipulate the tasks in parallel.
8738 		 * See task_rq_lock() family for the details.
8739 		 */
8740 
8741 		rq_unlock(busiest, &rf);
8742 
8743 		if (cur_ld_moved) {
8744 			attach_tasks(&env);
8745 			ld_moved += cur_ld_moved;
8746 		}
8747 
8748 		local_irq_restore(rf.flags);
8749 
8750 		if (env.flags & LBF_NEED_BREAK) {
8751 			env.flags &= ~LBF_NEED_BREAK;
8752 			goto more_balance;
8753 		}
8754 
8755 		/*
8756 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8757 		 * us and move them to an alternate dst_cpu in our sched_group
8758 		 * where they can run. The upper limit on how many times we
8759 		 * iterate on same src_cpu is dependent on number of CPUs in our
8760 		 * sched_group.
8761 		 *
8762 		 * This changes load balance semantics a bit on who can move
8763 		 * load to a given_cpu. In addition to the given_cpu itself
8764 		 * (or a ilb_cpu acting on its behalf where given_cpu is
8765 		 * nohz-idle), we now have balance_cpu in a position to move
8766 		 * load to given_cpu. In rare situations, this may cause
8767 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8768 		 * _independently_ and at _same_ time to move some load to
8769 		 * given_cpu) causing exceess load to be moved to given_cpu.
8770 		 * This however should not happen so much in practice and
8771 		 * moreover subsequent load balance cycles should correct the
8772 		 * excess load moved.
8773 		 */
8774 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8775 
8776 			/* Prevent to re-select dst_cpu via env's CPUs */
8777 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
8778 
8779 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8780 			env.dst_cpu	 = env.new_dst_cpu;
8781 			env.flags	&= ~LBF_DST_PINNED;
8782 			env.loop	 = 0;
8783 			env.loop_break	 = sched_nr_migrate_break;
8784 
8785 			/*
8786 			 * Go back to "more_balance" rather than "redo" since we
8787 			 * need to continue with same src_cpu.
8788 			 */
8789 			goto more_balance;
8790 		}
8791 
8792 		/*
8793 		 * We failed to reach balance because of affinity.
8794 		 */
8795 		if (sd_parent) {
8796 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8797 
8798 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8799 				*group_imbalance = 1;
8800 		}
8801 
8802 		/* All tasks on this runqueue were pinned by CPU affinity */
8803 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8804 			cpumask_clear_cpu(cpu_of(busiest), cpus);
8805 			/*
8806 			 * Attempting to continue load balancing at the current
8807 			 * sched_domain level only makes sense if there are
8808 			 * active CPUs remaining as possible busiest CPUs to
8809 			 * pull load from which are not contained within the
8810 			 * destination group that is receiving any migrated
8811 			 * load.
8812 			 */
8813 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8814 				env.loop = 0;
8815 				env.loop_break = sched_nr_migrate_break;
8816 				goto redo;
8817 			}
8818 			goto out_all_pinned;
8819 		}
8820 	}
8821 
8822 	if (!ld_moved) {
8823 		schedstat_inc(sd->lb_failed[idle]);
8824 		/*
8825 		 * Increment the failure counter only on periodic balance.
8826 		 * We do not want newidle balance, which can be very
8827 		 * frequent, pollute the failure counter causing
8828 		 * excessive cache_hot migrations and active balances.
8829 		 */
8830 		if (idle != CPU_NEWLY_IDLE)
8831 			sd->nr_balance_failed++;
8832 
8833 		if (need_active_balance(&env)) {
8834 			unsigned long flags;
8835 
8836 			raw_spin_lock_irqsave(&busiest->lock, flags);
8837 
8838 			/*
8839 			 * Don't kick the active_load_balance_cpu_stop,
8840 			 * if the curr task on busiest CPU can't be
8841 			 * moved to this_cpu:
8842 			 */
8843 			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8844 				raw_spin_unlock_irqrestore(&busiest->lock,
8845 							    flags);
8846 				env.flags |= LBF_ALL_PINNED;
8847 				goto out_one_pinned;
8848 			}
8849 
8850 			/*
8851 			 * ->active_balance synchronizes accesses to
8852 			 * ->active_balance_work.  Once set, it's cleared
8853 			 * only after active load balance is finished.
8854 			 */
8855 			if (!busiest->active_balance) {
8856 				busiest->active_balance = 1;
8857 				busiest->push_cpu = this_cpu;
8858 				active_balance = 1;
8859 			}
8860 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8861 
8862 			if (active_balance) {
8863 				stop_one_cpu_nowait(cpu_of(busiest),
8864 					active_load_balance_cpu_stop, busiest,
8865 					&busiest->active_balance_work);
8866 			}
8867 
8868 			/* We've kicked active balancing, force task migration. */
8869 			sd->nr_balance_failed = sd->cache_nice_tries+1;
8870 		}
8871 	} else
8872 		sd->nr_balance_failed = 0;
8873 
8874 	if (likely(!active_balance)) {
8875 		/* We were unbalanced, so reset the balancing interval */
8876 		sd->balance_interval = sd->min_interval;
8877 	} else {
8878 		/*
8879 		 * If we've begun active balancing, start to back off. This
8880 		 * case may not be covered by the all_pinned logic if there
8881 		 * is only 1 task on the busy runqueue (because we don't call
8882 		 * detach_tasks).
8883 		 */
8884 		if (sd->balance_interval < sd->max_interval)
8885 			sd->balance_interval *= 2;
8886 	}
8887 
8888 	goto out;
8889 
8890 out_balanced:
8891 	/*
8892 	 * We reach balance although we may have faced some affinity
8893 	 * constraints. Clear the imbalance flag if it was set.
8894 	 */
8895 	if (sd_parent) {
8896 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8897 
8898 		if (*group_imbalance)
8899 			*group_imbalance = 0;
8900 	}
8901 
8902 out_all_pinned:
8903 	/*
8904 	 * We reach balance because all tasks are pinned at this level so
8905 	 * we can't migrate them. Let the imbalance flag set so parent level
8906 	 * can try to migrate them.
8907 	 */
8908 	schedstat_inc(sd->lb_balanced[idle]);
8909 
8910 	sd->nr_balance_failed = 0;
8911 
8912 out_one_pinned:
8913 	/* tune up the balancing interval */
8914 	if (((env.flags & LBF_ALL_PINNED) &&
8915 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8916 			(sd->balance_interval < sd->max_interval))
8917 		sd->balance_interval *= 2;
8918 
8919 	ld_moved = 0;
8920 out:
8921 	return ld_moved;
8922 }
8923 
8924 static inline unsigned long
8925 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8926 {
8927 	unsigned long interval = sd->balance_interval;
8928 
8929 	if (cpu_busy)
8930 		interval *= sd->busy_factor;
8931 
8932 	/* scale ms to jiffies */
8933 	interval = msecs_to_jiffies(interval);
8934 	interval = clamp(interval, 1UL, max_load_balance_interval);
8935 
8936 	return interval;
8937 }
8938 
8939 static inline void
8940 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8941 {
8942 	unsigned long interval, next;
8943 
8944 	/* used by idle balance, so cpu_busy = 0 */
8945 	interval = get_sd_balance_interval(sd, 0);
8946 	next = sd->last_balance + interval;
8947 
8948 	if (time_after(*next_balance, next))
8949 		*next_balance = next;
8950 }
8951 
8952 /*
8953  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
8954  * running tasks off the busiest CPU onto idle CPUs. It requires at
8955  * least 1 task to be running on each physical CPU where possible, and
8956  * avoids physical / logical imbalances.
8957  */
8958 static int active_load_balance_cpu_stop(void *data)
8959 {
8960 	struct rq *busiest_rq = data;
8961 	int busiest_cpu = cpu_of(busiest_rq);
8962 	int target_cpu = busiest_rq->push_cpu;
8963 	struct rq *target_rq = cpu_rq(target_cpu);
8964 	struct sched_domain *sd;
8965 	struct task_struct *p = NULL;
8966 	struct rq_flags rf;
8967 
8968 	rq_lock_irq(busiest_rq, &rf);
8969 	/*
8970 	 * Between queueing the stop-work and running it is a hole in which
8971 	 * CPUs can become inactive. We should not move tasks from or to
8972 	 * inactive CPUs.
8973 	 */
8974 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
8975 		goto out_unlock;
8976 
8977 	/* Make sure the requested CPU hasn't gone down in the meantime: */
8978 	if (unlikely(busiest_cpu != smp_processor_id() ||
8979 		     !busiest_rq->active_balance))
8980 		goto out_unlock;
8981 
8982 	/* Is there any task to move? */
8983 	if (busiest_rq->nr_running <= 1)
8984 		goto out_unlock;
8985 
8986 	/*
8987 	 * This condition is "impossible", if it occurs
8988 	 * we need to fix it. Originally reported by
8989 	 * Bjorn Helgaas on a 128-CPU setup.
8990 	 */
8991 	BUG_ON(busiest_rq == target_rq);
8992 
8993 	/* Search for an sd spanning us and the target CPU. */
8994 	rcu_read_lock();
8995 	for_each_domain(target_cpu, sd) {
8996 		if ((sd->flags & SD_LOAD_BALANCE) &&
8997 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8998 				break;
8999 	}
9000 
9001 	if (likely(sd)) {
9002 		struct lb_env env = {
9003 			.sd		= sd,
9004 			.dst_cpu	= target_cpu,
9005 			.dst_rq		= target_rq,
9006 			.src_cpu	= busiest_rq->cpu,
9007 			.src_rq		= busiest_rq,
9008 			.idle		= CPU_IDLE,
9009 			/*
9010 			 * can_migrate_task() doesn't need to compute new_dst_cpu
9011 			 * for active balancing. Since we have CPU_IDLE, but no
9012 			 * @dst_grpmask we need to make that test go away with lying
9013 			 * about DST_PINNED.
9014 			 */
9015 			.flags		= LBF_DST_PINNED,
9016 		};
9017 
9018 		schedstat_inc(sd->alb_count);
9019 		update_rq_clock(busiest_rq);
9020 
9021 		p = detach_one_task(&env);
9022 		if (p) {
9023 			schedstat_inc(sd->alb_pushed);
9024 			/* Active balancing done, reset the failure counter. */
9025 			sd->nr_balance_failed = 0;
9026 		} else {
9027 			schedstat_inc(sd->alb_failed);
9028 		}
9029 	}
9030 	rcu_read_unlock();
9031 out_unlock:
9032 	busiest_rq->active_balance = 0;
9033 	rq_unlock(busiest_rq, &rf);
9034 
9035 	if (p)
9036 		attach_one_task(target_rq, p);
9037 
9038 	local_irq_enable();
9039 
9040 	return 0;
9041 }
9042 
9043 static DEFINE_SPINLOCK(balancing);
9044 
9045 /*
9046  * Scale the max load_balance interval with the number of CPUs in the system.
9047  * This trades load-balance latency on larger machines for less cross talk.
9048  */
9049 void update_max_interval(void)
9050 {
9051 	max_load_balance_interval = HZ*num_online_cpus()/10;
9052 }
9053 
9054 /*
9055  * It checks each scheduling domain to see if it is due to be balanced,
9056  * and initiates a balancing operation if so.
9057  *
9058  * Balancing parameters are set up in init_sched_domains.
9059  */
9060 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9061 {
9062 	int continue_balancing = 1;
9063 	int cpu = rq->cpu;
9064 	unsigned long interval;
9065 	struct sched_domain *sd;
9066 	/* Earliest time when we have to do rebalance again */
9067 	unsigned long next_balance = jiffies + 60*HZ;
9068 	int update_next_balance = 0;
9069 	int need_serialize, need_decay = 0;
9070 	u64 max_cost = 0;
9071 
9072 	rcu_read_lock();
9073 	for_each_domain(cpu, sd) {
9074 		/*
9075 		 * Decay the newidle max times here because this is a regular
9076 		 * visit to all the domains. Decay ~1% per second.
9077 		 */
9078 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9079 			sd->max_newidle_lb_cost =
9080 				(sd->max_newidle_lb_cost * 253) / 256;
9081 			sd->next_decay_max_lb_cost = jiffies + HZ;
9082 			need_decay = 1;
9083 		}
9084 		max_cost += sd->max_newidle_lb_cost;
9085 
9086 		if (!(sd->flags & SD_LOAD_BALANCE))
9087 			continue;
9088 
9089 		/*
9090 		 * Stop the load balance at this level. There is another
9091 		 * CPU in our sched group which is doing load balancing more
9092 		 * actively.
9093 		 */
9094 		if (!continue_balancing) {
9095 			if (need_decay)
9096 				continue;
9097 			break;
9098 		}
9099 
9100 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9101 
9102 		need_serialize = sd->flags & SD_SERIALIZE;
9103 		if (need_serialize) {
9104 			if (!spin_trylock(&balancing))
9105 				goto out;
9106 		}
9107 
9108 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
9109 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9110 				/*
9111 				 * The LBF_DST_PINNED logic could have changed
9112 				 * env->dst_cpu, so we can't know our idle
9113 				 * state even if we migrated tasks. Update it.
9114 				 */
9115 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9116 			}
9117 			sd->last_balance = jiffies;
9118 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9119 		}
9120 		if (need_serialize)
9121 			spin_unlock(&balancing);
9122 out:
9123 		if (time_after(next_balance, sd->last_balance + interval)) {
9124 			next_balance = sd->last_balance + interval;
9125 			update_next_balance = 1;
9126 		}
9127 	}
9128 	if (need_decay) {
9129 		/*
9130 		 * Ensure the rq-wide value also decays but keep it at a
9131 		 * reasonable floor to avoid funnies with rq->avg_idle.
9132 		 */
9133 		rq->max_idle_balance_cost =
9134 			max((u64)sysctl_sched_migration_cost, max_cost);
9135 	}
9136 	rcu_read_unlock();
9137 
9138 	/*
9139 	 * next_balance will be updated only when there is a need.
9140 	 * When the cpu is attached to null domain for ex, it will not be
9141 	 * updated.
9142 	 */
9143 	if (likely(update_next_balance)) {
9144 		rq->next_balance = next_balance;
9145 
9146 #ifdef CONFIG_NO_HZ_COMMON
9147 		/*
9148 		 * If this CPU has been elected to perform the nohz idle
9149 		 * balance. Other idle CPUs have already rebalanced with
9150 		 * nohz_idle_balance() and nohz.next_balance has been
9151 		 * updated accordingly. This CPU is now running the idle load
9152 		 * balance for itself and we need to update the
9153 		 * nohz.next_balance accordingly.
9154 		 */
9155 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9156 			nohz.next_balance = rq->next_balance;
9157 #endif
9158 	}
9159 }
9160 
9161 static inline int on_null_domain(struct rq *rq)
9162 {
9163 	return unlikely(!rcu_dereference_sched(rq->sd));
9164 }
9165 
9166 #ifdef CONFIG_NO_HZ_COMMON
9167 /*
9168  * idle load balancing details
9169  * - When one of the busy CPUs notice that there may be an idle rebalancing
9170  *   needed, they will kick the idle load balancer, which then does idle
9171  *   load balancing for all the idle CPUs.
9172  */
9173 
9174 static inline int find_new_ilb(void)
9175 {
9176 	int ilb = cpumask_first(nohz.idle_cpus_mask);
9177 
9178 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
9179 		return ilb;
9180 
9181 	return nr_cpu_ids;
9182 }
9183 
9184 /*
9185  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
9186  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
9187  * CPU (if there is one).
9188  */
9189 static void kick_ilb(unsigned int flags)
9190 {
9191 	int ilb_cpu;
9192 
9193 	nohz.next_balance++;
9194 
9195 	ilb_cpu = find_new_ilb();
9196 
9197 	if (ilb_cpu >= nr_cpu_ids)
9198 		return;
9199 
9200 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
9201 	if (flags & NOHZ_KICK_MASK)
9202 		return;
9203 
9204 	/*
9205 	 * Use smp_send_reschedule() instead of resched_cpu().
9206 	 * This way we generate a sched IPI on the target CPU which
9207 	 * is idle. And the softirq performing nohz idle load balance
9208 	 * will be run before returning from the IPI.
9209 	 */
9210 	smp_send_reschedule(ilb_cpu);
9211 }
9212 
9213 /*
9214  * Current heuristic for kicking the idle load balancer in the presence
9215  * of an idle cpu in the system.
9216  *   - This rq has more than one task.
9217  *   - This rq has at least one CFS task and the capacity of the CPU is
9218  *     significantly reduced because of RT tasks or IRQs.
9219  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
9220  *     multiple busy cpu.
9221  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9222  *     domain span are idle.
9223  */
9224 static void nohz_balancer_kick(struct rq *rq)
9225 {
9226 	unsigned long now = jiffies;
9227 	struct sched_domain_shared *sds;
9228 	struct sched_domain *sd;
9229 	int nr_busy, i, cpu = rq->cpu;
9230 	unsigned int flags = 0;
9231 
9232 	if (unlikely(rq->idle_balance))
9233 		return;
9234 
9235 	/*
9236 	 * We may be recently in ticked or tickless idle mode. At the first
9237 	 * busy tick after returning from idle, we will update the busy stats.
9238 	 */
9239 	nohz_balance_exit_idle(rq);
9240 
9241 	/*
9242 	 * None are in tickless mode and hence no need for NOHZ idle load
9243 	 * balancing.
9244 	 */
9245 	if (likely(!atomic_read(&nohz.nr_cpus)))
9246 		return;
9247 
9248 	if (READ_ONCE(nohz.has_blocked) &&
9249 	    time_after(now, READ_ONCE(nohz.next_blocked)))
9250 		flags = NOHZ_STATS_KICK;
9251 
9252 	if (time_before(now, nohz.next_balance))
9253 		goto out;
9254 
9255 	if (rq->nr_running >= 2 || rq->misfit_task_load) {
9256 		flags = NOHZ_KICK_MASK;
9257 		goto out;
9258 	}
9259 
9260 	rcu_read_lock();
9261 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9262 	if (sds) {
9263 		/*
9264 		 * XXX: write a coherent comment on why we do this.
9265 		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9266 		 */
9267 		nr_busy = atomic_read(&sds->nr_busy_cpus);
9268 		if (nr_busy > 1) {
9269 			flags = NOHZ_KICK_MASK;
9270 			goto unlock;
9271 		}
9272 
9273 	}
9274 
9275 	sd = rcu_dereference(rq->sd);
9276 	if (sd) {
9277 		if ((rq->cfs.h_nr_running >= 1) &&
9278 				check_cpu_capacity(rq, sd)) {
9279 			flags = NOHZ_KICK_MASK;
9280 			goto unlock;
9281 		}
9282 	}
9283 
9284 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
9285 	if (sd) {
9286 		for_each_cpu(i, sched_domain_span(sd)) {
9287 			if (i == cpu ||
9288 			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9289 				continue;
9290 
9291 			if (sched_asym_prefer(i, cpu)) {
9292 				flags = NOHZ_KICK_MASK;
9293 				goto unlock;
9294 			}
9295 		}
9296 	}
9297 unlock:
9298 	rcu_read_unlock();
9299 out:
9300 	if (flags)
9301 		kick_ilb(flags);
9302 }
9303 
9304 static void set_cpu_sd_state_busy(int cpu)
9305 {
9306 	struct sched_domain *sd;
9307 
9308 	rcu_read_lock();
9309 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9310 
9311 	if (!sd || !sd->nohz_idle)
9312 		goto unlock;
9313 	sd->nohz_idle = 0;
9314 
9315 	atomic_inc(&sd->shared->nr_busy_cpus);
9316 unlock:
9317 	rcu_read_unlock();
9318 }
9319 
9320 void nohz_balance_exit_idle(struct rq *rq)
9321 {
9322 	SCHED_WARN_ON(rq != this_rq());
9323 
9324 	if (likely(!rq->nohz_tick_stopped))
9325 		return;
9326 
9327 	rq->nohz_tick_stopped = 0;
9328 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9329 	atomic_dec(&nohz.nr_cpus);
9330 
9331 	set_cpu_sd_state_busy(rq->cpu);
9332 }
9333 
9334 static void set_cpu_sd_state_idle(int cpu)
9335 {
9336 	struct sched_domain *sd;
9337 
9338 	rcu_read_lock();
9339 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9340 
9341 	if (!sd || sd->nohz_idle)
9342 		goto unlock;
9343 	sd->nohz_idle = 1;
9344 
9345 	atomic_dec(&sd->shared->nr_busy_cpus);
9346 unlock:
9347 	rcu_read_unlock();
9348 }
9349 
9350 /*
9351  * This routine will record that the CPU is going idle with tick stopped.
9352  * This info will be used in performing idle load balancing in the future.
9353  */
9354 void nohz_balance_enter_idle(int cpu)
9355 {
9356 	struct rq *rq = cpu_rq(cpu);
9357 
9358 	SCHED_WARN_ON(cpu != smp_processor_id());
9359 
9360 	/* If this CPU is going down, then nothing needs to be done: */
9361 	if (!cpu_active(cpu))
9362 		return;
9363 
9364 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9365 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9366 		return;
9367 
9368 	/*
9369 	 * Can be set safely without rq->lock held
9370 	 * If a clear happens, it will have evaluated last additions because
9371 	 * rq->lock is held during the check and the clear
9372 	 */
9373 	rq->has_blocked_load = 1;
9374 
9375 	/*
9376 	 * The tick is still stopped but load could have been added in the
9377 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
9378 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9379 	 * of nohz.has_blocked can only happen after checking the new load
9380 	 */
9381 	if (rq->nohz_tick_stopped)
9382 		goto out;
9383 
9384 	/* If we're a completely isolated CPU, we don't play: */
9385 	if (on_null_domain(rq))
9386 		return;
9387 
9388 	rq->nohz_tick_stopped = 1;
9389 
9390 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9391 	atomic_inc(&nohz.nr_cpus);
9392 
9393 	/*
9394 	 * Ensures that if nohz_idle_balance() fails to observe our
9395 	 * @idle_cpus_mask store, it must observe the @has_blocked
9396 	 * store.
9397 	 */
9398 	smp_mb__after_atomic();
9399 
9400 	set_cpu_sd_state_idle(cpu);
9401 
9402 out:
9403 	/*
9404 	 * Each time a cpu enter idle, we assume that it has blocked load and
9405 	 * enable the periodic update of the load of idle cpus
9406 	 */
9407 	WRITE_ONCE(nohz.has_blocked, 1);
9408 }
9409 
9410 /*
9411  * Internal function that runs load balance for all idle cpus. The load balance
9412  * can be a simple update of blocked load or a complete load balance with
9413  * tasks movement depending of flags.
9414  * The function returns false if the loop has stopped before running
9415  * through all idle CPUs.
9416  */
9417 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9418 			       enum cpu_idle_type idle)
9419 {
9420 	/* Earliest time when we have to do rebalance again */
9421 	unsigned long now = jiffies;
9422 	unsigned long next_balance = now + 60*HZ;
9423 	bool has_blocked_load = false;
9424 	int update_next_balance = 0;
9425 	int this_cpu = this_rq->cpu;
9426 	int balance_cpu;
9427 	int ret = false;
9428 	struct rq *rq;
9429 
9430 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9431 
9432 	/*
9433 	 * We assume there will be no idle load after this update and clear
9434 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9435 	 * set the has_blocked flag and trig another update of idle load.
9436 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9437 	 * setting the flag, we are sure to not clear the state and not
9438 	 * check the load of an idle cpu.
9439 	 */
9440 	WRITE_ONCE(nohz.has_blocked, 0);
9441 
9442 	/*
9443 	 * Ensures that if we miss the CPU, we must see the has_blocked
9444 	 * store from nohz_balance_enter_idle().
9445 	 */
9446 	smp_mb();
9447 
9448 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9449 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9450 			continue;
9451 
9452 		/*
9453 		 * If this CPU gets work to do, stop the load balancing
9454 		 * work being done for other CPUs. Next load
9455 		 * balancing owner will pick it up.
9456 		 */
9457 		if (need_resched()) {
9458 			has_blocked_load = true;
9459 			goto abort;
9460 		}
9461 
9462 		rq = cpu_rq(balance_cpu);
9463 
9464 		has_blocked_load |= update_nohz_stats(rq, true);
9465 
9466 		/*
9467 		 * If time for next balance is due,
9468 		 * do the balance.
9469 		 */
9470 		if (time_after_eq(jiffies, rq->next_balance)) {
9471 			struct rq_flags rf;
9472 
9473 			rq_lock_irqsave(rq, &rf);
9474 			update_rq_clock(rq);
9475 			cpu_load_update_idle(rq);
9476 			rq_unlock_irqrestore(rq, &rf);
9477 
9478 			if (flags & NOHZ_BALANCE_KICK)
9479 				rebalance_domains(rq, CPU_IDLE);
9480 		}
9481 
9482 		if (time_after(next_balance, rq->next_balance)) {
9483 			next_balance = rq->next_balance;
9484 			update_next_balance = 1;
9485 		}
9486 	}
9487 
9488 	/* Newly idle CPU doesn't need an update */
9489 	if (idle != CPU_NEWLY_IDLE) {
9490 		update_blocked_averages(this_cpu);
9491 		has_blocked_load |= this_rq->has_blocked_load;
9492 	}
9493 
9494 	if (flags & NOHZ_BALANCE_KICK)
9495 		rebalance_domains(this_rq, CPU_IDLE);
9496 
9497 	WRITE_ONCE(nohz.next_blocked,
9498 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9499 
9500 	/* The full idle balance loop has been done */
9501 	ret = true;
9502 
9503 abort:
9504 	/* There is still blocked load, enable periodic update */
9505 	if (has_blocked_load)
9506 		WRITE_ONCE(nohz.has_blocked, 1);
9507 
9508 	/*
9509 	 * next_balance will be updated only when there is a need.
9510 	 * When the CPU is attached to null domain for ex, it will not be
9511 	 * updated.
9512 	 */
9513 	if (likely(update_next_balance))
9514 		nohz.next_balance = next_balance;
9515 
9516 	return ret;
9517 }
9518 
9519 /*
9520  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9521  * rebalancing for all the cpus for whom scheduler ticks are stopped.
9522  */
9523 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9524 {
9525 	int this_cpu = this_rq->cpu;
9526 	unsigned int flags;
9527 
9528 	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9529 		return false;
9530 
9531 	if (idle != CPU_IDLE) {
9532 		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9533 		return false;
9534 	}
9535 
9536 	/*
9537 	 * barrier, pairs with nohz_balance_enter_idle(), ensures ...
9538 	 */
9539 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9540 	if (!(flags & NOHZ_KICK_MASK))
9541 		return false;
9542 
9543 	_nohz_idle_balance(this_rq, flags, idle);
9544 
9545 	return true;
9546 }
9547 
9548 static void nohz_newidle_balance(struct rq *this_rq)
9549 {
9550 	int this_cpu = this_rq->cpu;
9551 
9552 	/*
9553 	 * This CPU doesn't want to be disturbed by scheduler
9554 	 * housekeeping
9555 	 */
9556 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9557 		return;
9558 
9559 	/* Will wake up very soon. No time for doing anything else*/
9560 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
9561 		return;
9562 
9563 	/* Don't need to update blocked load of idle CPUs*/
9564 	if (!READ_ONCE(nohz.has_blocked) ||
9565 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9566 		return;
9567 
9568 	raw_spin_unlock(&this_rq->lock);
9569 	/*
9570 	 * This CPU is going to be idle and blocked load of idle CPUs
9571 	 * need to be updated. Run the ilb locally as it is a good
9572 	 * candidate for ilb instead of waking up another idle CPU.
9573 	 * Kick an normal ilb if we failed to do the update.
9574 	 */
9575 	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9576 		kick_ilb(NOHZ_STATS_KICK);
9577 	raw_spin_lock(&this_rq->lock);
9578 }
9579 
9580 #else /* !CONFIG_NO_HZ_COMMON */
9581 static inline void nohz_balancer_kick(struct rq *rq) { }
9582 
9583 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9584 {
9585 	return false;
9586 }
9587 
9588 static inline void nohz_newidle_balance(struct rq *this_rq) { }
9589 #endif /* CONFIG_NO_HZ_COMMON */
9590 
9591 /*
9592  * idle_balance is called by schedule() if this_cpu is about to become
9593  * idle. Attempts to pull tasks from other CPUs.
9594  */
9595 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9596 {
9597 	unsigned long next_balance = jiffies + HZ;
9598 	int this_cpu = this_rq->cpu;
9599 	struct sched_domain *sd;
9600 	int pulled_task = 0;
9601 	u64 curr_cost = 0;
9602 
9603 	/*
9604 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
9605 	 * measure the duration of idle_balance() as idle time.
9606 	 */
9607 	this_rq->idle_stamp = rq_clock(this_rq);
9608 
9609 	/*
9610 	 * Do not pull tasks towards !active CPUs...
9611 	 */
9612 	if (!cpu_active(this_cpu))
9613 		return 0;
9614 
9615 	/*
9616 	 * This is OK, because current is on_cpu, which avoids it being picked
9617 	 * for load-balance and preemption/IRQs are still disabled avoiding
9618 	 * further scheduler activity on it and we're being very careful to
9619 	 * re-start the picking loop.
9620 	 */
9621 	rq_unpin_lock(this_rq, rf);
9622 
9623 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
9624 	    !READ_ONCE(this_rq->rd->overload)) {
9625 
9626 		rcu_read_lock();
9627 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
9628 		if (sd)
9629 			update_next_balance(sd, &next_balance);
9630 		rcu_read_unlock();
9631 
9632 		nohz_newidle_balance(this_rq);
9633 
9634 		goto out;
9635 	}
9636 
9637 	raw_spin_unlock(&this_rq->lock);
9638 
9639 	update_blocked_averages(this_cpu);
9640 	rcu_read_lock();
9641 	for_each_domain(this_cpu, sd) {
9642 		int continue_balancing = 1;
9643 		u64 t0, domain_cost;
9644 
9645 		if (!(sd->flags & SD_LOAD_BALANCE))
9646 			continue;
9647 
9648 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9649 			update_next_balance(sd, &next_balance);
9650 			break;
9651 		}
9652 
9653 		if (sd->flags & SD_BALANCE_NEWIDLE) {
9654 			t0 = sched_clock_cpu(this_cpu);
9655 
9656 			pulled_task = load_balance(this_cpu, this_rq,
9657 						   sd, CPU_NEWLY_IDLE,
9658 						   &continue_balancing);
9659 
9660 			domain_cost = sched_clock_cpu(this_cpu) - t0;
9661 			if (domain_cost > sd->max_newidle_lb_cost)
9662 				sd->max_newidle_lb_cost = domain_cost;
9663 
9664 			curr_cost += domain_cost;
9665 		}
9666 
9667 		update_next_balance(sd, &next_balance);
9668 
9669 		/*
9670 		 * Stop searching for tasks to pull if there are
9671 		 * now runnable tasks on this rq.
9672 		 */
9673 		if (pulled_task || this_rq->nr_running > 0)
9674 			break;
9675 	}
9676 	rcu_read_unlock();
9677 
9678 	raw_spin_lock(&this_rq->lock);
9679 
9680 	if (curr_cost > this_rq->max_idle_balance_cost)
9681 		this_rq->max_idle_balance_cost = curr_cost;
9682 
9683 out:
9684 	/*
9685 	 * While browsing the domains, we released the rq lock, a task could
9686 	 * have been enqueued in the meantime. Since we're not going idle,
9687 	 * pretend we pulled a task.
9688 	 */
9689 	if (this_rq->cfs.h_nr_running && !pulled_task)
9690 		pulled_task = 1;
9691 
9692 	/* Move the next balance forward */
9693 	if (time_after(this_rq->next_balance, next_balance))
9694 		this_rq->next_balance = next_balance;
9695 
9696 	/* Is there a task of a high priority class? */
9697 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9698 		pulled_task = -1;
9699 
9700 	if (pulled_task)
9701 		this_rq->idle_stamp = 0;
9702 
9703 	rq_repin_lock(this_rq, rf);
9704 
9705 	return pulled_task;
9706 }
9707 
9708 /*
9709  * run_rebalance_domains is triggered when needed from the scheduler tick.
9710  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9711  */
9712 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9713 {
9714 	struct rq *this_rq = this_rq();
9715 	enum cpu_idle_type idle = this_rq->idle_balance ?
9716 						CPU_IDLE : CPU_NOT_IDLE;
9717 
9718 	/*
9719 	 * If this CPU has a pending nohz_balance_kick, then do the
9720 	 * balancing on behalf of the other idle CPUs whose ticks are
9721 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9722 	 * give the idle CPUs a chance to load balance. Else we may
9723 	 * load balance only within the local sched_domain hierarchy
9724 	 * and abort nohz_idle_balance altogether if we pull some load.
9725 	 */
9726 	if (nohz_idle_balance(this_rq, idle))
9727 		return;
9728 
9729 	/* normal load balance */
9730 	update_blocked_averages(this_rq->cpu);
9731 	rebalance_domains(this_rq, idle);
9732 }
9733 
9734 /*
9735  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9736  */
9737 void trigger_load_balance(struct rq *rq)
9738 {
9739 	/* Don't need to rebalance while attached to NULL domain */
9740 	if (unlikely(on_null_domain(rq)))
9741 		return;
9742 
9743 	if (time_after_eq(jiffies, rq->next_balance))
9744 		raise_softirq(SCHED_SOFTIRQ);
9745 
9746 	nohz_balancer_kick(rq);
9747 }
9748 
9749 static void rq_online_fair(struct rq *rq)
9750 {
9751 	update_sysctl();
9752 
9753 	update_runtime_enabled(rq);
9754 }
9755 
9756 static void rq_offline_fair(struct rq *rq)
9757 {
9758 	update_sysctl();
9759 
9760 	/* Ensure any throttled groups are reachable by pick_next_task */
9761 	unthrottle_offline_cfs_rqs(rq);
9762 }
9763 
9764 #endif /* CONFIG_SMP */
9765 
9766 /*
9767  * scheduler tick hitting a task of our scheduling class.
9768  *
9769  * NOTE: This function can be called remotely by the tick offload that
9770  * goes along full dynticks. Therefore no local assumption can be made
9771  * and everything must be accessed through the @rq and @curr passed in
9772  * parameters.
9773  */
9774 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9775 {
9776 	struct cfs_rq *cfs_rq;
9777 	struct sched_entity *se = &curr->se;
9778 
9779 	for_each_sched_entity(se) {
9780 		cfs_rq = cfs_rq_of(se);
9781 		entity_tick(cfs_rq, se, queued);
9782 	}
9783 
9784 	if (static_branch_unlikely(&sched_numa_balancing))
9785 		task_tick_numa(rq, curr);
9786 
9787 	update_misfit_status(curr, rq);
9788 }
9789 
9790 /*
9791  * called on fork with the child task as argument from the parent's context
9792  *  - child not yet on the tasklist
9793  *  - preemption disabled
9794  */
9795 static void task_fork_fair(struct task_struct *p)
9796 {
9797 	struct cfs_rq *cfs_rq;
9798 	struct sched_entity *se = &p->se, *curr;
9799 	struct rq *rq = this_rq();
9800 	struct rq_flags rf;
9801 
9802 	rq_lock(rq, &rf);
9803 	update_rq_clock(rq);
9804 
9805 	cfs_rq = task_cfs_rq(current);
9806 	curr = cfs_rq->curr;
9807 	if (curr) {
9808 		update_curr(cfs_rq);
9809 		se->vruntime = curr->vruntime;
9810 	}
9811 	place_entity(cfs_rq, se, 1);
9812 
9813 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9814 		/*
9815 		 * Upon rescheduling, sched_class::put_prev_task() will place
9816 		 * 'current' within the tree based on its new key value.
9817 		 */
9818 		swap(curr->vruntime, se->vruntime);
9819 		resched_curr(rq);
9820 	}
9821 
9822 	se->vruntime -= cfs_rq->min_vruntime;
9823 	rq_unlock(rq, &rf);
9824 }
9825 
9826 /*
9827  * Priority of the task has changed. Check to see if we preempt
9828  * the current task.
9829  */
9830 static void
9831 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9832 {
9833 	if (!task_on_rq_queued(p))
9834 		return;
9835 
9836 	/*
9837 	 * Reschedule if we are currently running on this runqueue and
9838 	 * our priority decreased, or if we are not currently running on
9839 	 * this runqueue and our priority is higher than the current's
9840 	 */
9841 	if (rq->curr == p) {
9842 		if (p->prio > oldprio)
9843 			resched_curr(rq);
9844 	} else
9845 		check_preempt_curr(rq, p, 0);
9846 }
9847 
9848 static inline bool vruntime_normalized(struct task_struct *p)
9849 {
9850 	struct sched_entity *se = &p->se;
9851 
9852 	/*
9853 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9854 	 * the dequeue_entity(.flags=0) will already have normalized the
9855 	 * vruntime.
9856 	 */
9857 	if (p->on_rq)
9858 		return true;
9859 
9860 	/*
9861 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
9862 	 * But there are some cases where it has already been normalized:
9863 	 *
9864 	 * - A forked child which is waiting for being woken up by
9865 	 *   wake_up_new_task().
9866 	 * - A task which has been woken up by try_to_wake_up() and
9867 	 *   waiting for actually being woken up by sched_ttwu_pending().
9868 	 */
9869 	if (!se->sum_exec_runtime ||
9870 	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
9871 		return true;
9872 
9873 	return false;
9874 }
9875 
9876 #ifdef CONFIG_FAIR_GROUP_SCHED
9877 /*
9878  * Propagate the changes of the sched_entity across the tg tree to make it
9879  * visible to the root
9880  */
9881 static void propagate_entity_cfs_rq(struct sched_entity *se)
9882 {
9883 	struct cfs_rq *cfs_rq;
9884 
9885 	/* Start to propagate at parent */
9886 	se = se->parent;
9887 
9888 	for_each_sched_entity(se) {
9889 		cfs_rq = cfs_rq_of(se);
9890 
9891 		if (cfs_rq_throttled(cfs_rq))
9892 			break;
9893 
9894 		update_load_avg(cfs_rq, se, UPDATE_TG);
9895 	}
9896 }
9897 #else
9898 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9899 #endif
9900 
9901 static void detach_entity_cfs_rq(struct sched_entity *se)
9902 {
9903 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9904 
9905 	/* Catch up with the cfs_rq and remove our load when we leave */
9906 	update_load_avg(cfs_rq, se, 0);
9907 	detach_entity_load_avg(cfs_rq, se);
9908 	update_tg_load_avg(cfs_rq, false);
9909 	propagate_entity_cfs_rq(se);
9910 }
9911 
9912 static void attach_entity_cfs_rq(struct sched_entity *se)
9913 {
9914 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9915 
9916 #ifdef CONFIG_FAIR_GROUP_SCHED
9917 	/*
9918 	 * Since the real-depth could have been changed (only FAIR
9919 	 * class maintain depth value), reset depth properly.
9920 	 */
9921 	se->depth = se->parent ? se->parent->depth + 1 : 0;
9922 #endif
9923 
9924 	/* Synchronize entity with its cfs_rq */
9925 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9926 	attach_entity_load_avg(cfs_rq, se, 0);
9927 	update_tg_load_avg(cfs_rq, false);
9928 	propagate_entity_cfs_rq(se);
9929 }
9930 
9931 static void detach_task_cfs_rq(struct task_struct *p)
9932 {
9933 	struct sched_entity *se = &p->se;
9934 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9935 
9936 	if (!vruntime_normalized(p)) {
9937 		/*
9938 		 * Fix up our vruntime so that the current sleep doesn't
9939 		 * cause 'unlimited' sleep bonus.
9940 		 */
9941 		place_entity(cfs_rq, se, 0);
9942 		se->vruntime -= cfs_rq->min_vruntime;
9943 	}
9944 
9945 	detach_entity_cfs_rq(se);
9946 }
9947 
9948 static void attach_task_cfs_rq(struct task_struct *p)
9949 {
9950 	struct sched_entity *se = &p->se;
9951 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9952 
9953 	attach_entity_cfs_rq(se);
9954 
9955 	if (!vruntime_normalized(p))
9956 		se->vruntime += cfs_rq->min_vruntime;
9957 }
9958 
9959 static void switched_from_fair(struct rq *rq, struct task_struct *p)
9960 {
9961 	detach_task_cfs_rq(p);
9962 }
9963 
9964 static void switched_to_fair(struct rq *rq, struct task_struct *p)
9965 {
9966 	attach_task_cfs_rq(p);
9967 
9968 	if (task_on_rq_queued(p)) {
9969 		/*
9970 		 * We were most likely switched from sched_rt, so
9971 		 * kick off the schedule if running, otherwise just see
9972 		 * if we can still preempt the current task.
9973 		 */
9974 		if (rq->curr == p)
9975 			resched_curr(rq);
9976 		else
9977 			check_preempt_curr(rq, p, 0);
9978 	}
9979 }
9980 
9981 /* Account for a task changing its policy or group.
9982  *
9983  * This routine is mostly called to set cfs_rq->curr field when a task
9984  * migrates between groups/classes.
9985  */
9986 static void set_curr_task_fair(struct rq *rq)
9987 {
9988 	struct sched_entity *se = &rq->curr->se;
9989 
9990 	for_each_sched_entity(se) {
9991 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
9992 
9993 		set_next_entity(cfs_rq, se);
9994 		/* ensure bandwidth has been allocated on our new cfs_rq */
9995 		account_cfs_rq_runtime(cfs_rq, 0);
9996 	}
9997 }
9998 
9999 void init_cfs_rq(struct cfs_rq *cfs_rq)
10000 {
10001 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10002 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10003 #ifndef CONFIG_64BIT
10004 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10005 #endif
10006 #ifdef CONFIG_SMP
10007 	raw_spin_lock_init(&cfs_rq->removed.lock);
10008 #endif
10009 }
10010 
10011 #ifdef CONFIG_FAIR_GROUP_SCHED
10012 static void task_set_group_fair(struct task_struct *p)
10013 {
10014 	struct sched_entity *se = &p->se;
10015 
10016 	set_task_rq(p, task_cpu(p));
10017 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10018 }
10019 
10020 static void task_move_group_fair(struct task_struct *p)
10021 {
10022 	detach_task_cfs_rq(p);
10023 	set_task_rq(p, task_cpu(p));
10024 
10025 #ifdef CONFIG_SMP
10026 	/* Tell se's cfs_rq has been changed -- migrated */
10027 	p->se.avg.last_update_time = 0;
10028 #endif
10029 	attach_task_cfs_rq(p);
10030 }
10031 
10032 static void task_change_group_fair(struct task_struct *p, int type)
10033 {
10034 	switch (type) {
10035 	case TASK_SET_GROUP:
10036 		task_set_group_fair(p);
10037 		break;
10038 
10039 	case TASK_MOVE_GROUP:
10040 		task_move_group_fair(p);
10041 		break;
10042 	}
10043 }
10044 
10045 void free_fair_sched_group(struct task_group *tg)
10046 {
10047 	int i;
10048 
10049 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10050 
10051 	for_each_possible_cpu(i) {
10052 		if (tg->cfs_rq)
10053 			kfree(tg->cfs_rq[i]);
10054 		if (tg->se)
10055 			kfree(tg->se[i]);
10056 	}
10057 
10058 	kfree(tg->cfs_rq);
10059 	kfree(tg->se);
10060 }
10061 
10062 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10063 {
10064 	struct sched_entity *se;
10065 	struct cfs_rq *cfs_rq;
10066 	int i;
10067 
10068 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10069 	if (!tg->cfs_rq)
10070 		goto err;
10071 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10072 	if (!tg->se)
10073 		goto err;
10074 
10075 	tg->shares = NICE_0_LOAD;
10076 
10077 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10078 
10079 	for_each_possible_cpu(i) {
10080 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10081 				      GFP_KERNEL, cpu_to_node(i));
10082 		if (!cfs_rq)
10083 			goto err;
10084 
10085 		se = kzalloc_node(sizeof(struct sched_entity),
10086 				  GFP_KERNEL, cpu_to_node(i));
10087 		if (!se)
10088 			goto err_free_rq;
10089 
10090 		init_cfs_rq(cfs_rq);
10091 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10092 		init_entity_runnable_average(se);
10093 	}
10094 
10095 	return 1;
10096 
10097 err_free_rq:
10098 	kfree(cfs_rq);
10099 err:
10100 	return 0;
10101 }
10102 
10103 void online_fair_sched_group(struct task_group *tg)
10104 {
10105 	struct sched_entity *se;
10106 	struct rq *rq;
10107 	int i;
10108 
10109 	for_each_possible_cpu(i) {
10110 		rq = cpu_rq(i);
10111 		se = tg->se[i];
10112 
10113 		raw_spin_lock_irq(&rq->lock);
10114 		update_rq_clock(rq);
10115 		attach_entity_cfs_rq(se);
10116 		sync_throttle(tg, i);
10117 		raw_spin_unlock_irq(&rq->lock);
10118 	}
10119 }
10120 
10121 void unregister_fair_sched_group(struct task_group *tg)
10122 {
10123 	unsigned long flags;
10124 	struct rq *rq;
10125 	int cpu;
10126 
10127 	for_each_possible_cpu(cpu) {
10128 		if (tg->se[cpu])
10129 			remove_entity_load_avg(tg->se[cpu]);
10130 
10131 		/*
10132 		 * Only empty task groups can be destroyed; so we can speculatively
10133 		 * check on_list without danger of it being re-added.
10134 		 */
10135 		if (!tg->cfs_rq[cpu]->on_list)
10136 			continue;
10137 
10138 		rq = cpu_rq(cpu);
10139 
10140 		raw_spin_lock_irqsave(&rq->lock, flags);
10141 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10142 		raw_spin_unlock_irqrestore(&rq->lock, flags);
10143 	}
10144 }
10145 
10146 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10147 			struct sched_entity *se, int cpu,
10148 			struct sched_entity *parent)
10149 {
10150 	struct rq *rq = cpu_rq(cpu);
10151 
10152 	cfs_rq->tg = tg;
10153 	cfs_rq->rq = rq;
10154 	init_cfs_rq_runtime(cfs_rq);
10155 
10156 	tg->cfs_rq[cpu] = cfs_rq;
10157 	tg->se[cpu] = se;
10158 
10159 	/* se could be NULL for root_task_group */
10160 	if (!se)
10161 		return;
10162 
10163 	if (!parent) {
10164 		se->cfs_rq = &rq->cfs;
10165 		se->depth = 0;
10166 	} else {
10167 		se->cfs_rq = parent->my_q;
10168 		se->depth = parent->depth + 1;
10169 	}
10170 
10171 	se->my_q = cfs_rq;
10172 	/* guarantee group entities always have weight */
10173 	update_load_set(&se->load, NICE_0_LOAD);
10174 	se->parent = parent;
10175 }
10176 
10177 static DEFINE_MUTEX(shares_mutex);
10178 
10179 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10180 {
10181 	int i;
10182 
10183 	/*
10184 	 * We can't change the weight of the root cgroup.
10185 	 */
10186 	if (!tg->se[0])
10187 		return -EINVAL;
10188 
10189 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10190 
10191 	mutex_lock(&shares_mutex);
10192 	if (tg->shares == shares)
10193 		goto done;
10194 
10195 	tg->shares = shares;
10196 	for_each_possible_cpu(i) {
10197 		struct rq *rq = cpu_rq(i);
10198 		struct sched_entity *se = tg->se[i];
10199 		struct rq_flags rf;
10200 
10201 		/* Propagate contribution to hierarchy */
10202 		rq_lock_irqsave(rq, &rf);
10203 		update_rq_clock(rq);
10204 		for_each_sched_entity(se) {
10205 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10206 			update_cfs_group(se);
10207 		}
10208 		rq_unlock_irqrestore(rq, &rf);
10209 	}
10210 
10211 done:
10212 	mutex_unlock(&shares_mutex);
10213 	return 0;
10214 }
10215 #else /* CONFIG_FAIR_GROUP_SCHED */
10216 
10217 void free_fair_sched_group(struct task_group *tg) { }
10218 
10219 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10220 {
10221 	return 1;
10222 }
10223 
10224 void online_fair_sched_group(struct task_group *tg) { }
10225 
10226 void unregister_fair_sched_group(struct task_group *tg) { }
10227 
10228 #endif /* CONFIG_FAIR_GROUP_SCHED */
10229 
10230 
10231 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10232 {
10233 	struct sched_entity *se = &task->se;
10234 	unsigned int rr_interval = 0;
10235 
10236 	/*
10237 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10238 	 * idle runqueue:
10239 	 */
10240 	if (rq->cfs.load.weight)
10241 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10242 
10243 	return rr_interval;
10244 }
10245 
10246 /*
10247  * All the scheduling class methods:
10248  */
10249 const struct sched_class fair_sched_class = {
10250 	.next			= &idle_sched_class,
10251 	.enqueue_task		= enqueue_task_fair,
10252 	.dequeue_task		= dequeue_task_fair,
10253 	.yield_task		= yield_task_fair,
10254 	.yield_to_task		= yield_to_task_fair,
10255 
10256 	.check_preempt_curr	= check_preempt_wakeup,
10257 
10258 	.pick_next_task		= pick_next_task_fair,
10259 	.put_prev_task		= put_prev_task_fair,
10260 
10261 #ifdef CONFIG_SMP
10262 	.select_task_rq		= select_task_rq_fair,
10263 	.migrate_task_rq	= migrate_task_rq_fair,
10264 
10265 	.rq_online		= rq_online_fair,
10266 	.rq_offline		= rq_offline_fair,
10267 
10268 	.task_dead		= task_dead_fair,
10269 	.set_cpus_allowed	= set_cpus_allowed_common,
10270 #endif
10271 
10272 	.set_curr_task          = set_curr_task_fair,
10273 	.task_tick		= task_tick_fair,
10274 	.task_fork		= task_fork_fair,
10275 
10276 	.prio_changed		= prio_changed_fair,
10277 	.switched_from		= switched_from_fair,
10278 	.switched_to		= switched_to_fair,
10279 
10280 	.get_rr_interval	= get_rr_interval_fair,
10281 
10282 	.update_curr		= update_curr_fair,
10283 
10284 #ifdef CONFIG_FAIR_GROUP_SCHED
10285 	.task_change_group	= task_change_group_fair,
10286 #endif
10287 };
10288 
10289 #ifdef CONFIG_SCHED_DEBUG
10290 void print_cfs_stats(struct seq_file *m, int cpu)
10291 {
10292 	struct cfs_rq *cfs_rq, *pos;
10293 
10294 	rcu_read_lock();
10295 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10296 		print_cfs_rq(m, cpu, cfs_rq);
10297 	rcu_read_unlock();
10298 }
10299 
10300 #ifdef CONFIG_NUMA_BALANCING
10301 void show_numa_stats(struct task_struct *p, struct seq_file *m)
10302 {
10303 	int node;
10304 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10305 
10306 	for_each_online_node(node) {
10307 		if (p->numa_faults) {
10308 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10309 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10310 		}
10311 		if (p->numa_group) {
10312 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10313 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10314 		}
10315 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10316 	}
10317 }
10318 #endif /* CONFIG_NUMA_BALANCING */
10319 #endif /* CONFIG_SCHED_DEBUG */
10320 
10321 __init void init_sched_fair_class(void)
10322 {
10323 #ifdef CONFIG_SMP
10324 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10325 
10326 #ifdef CONFIG_NO_HZ_COMMON
10327 	nohz.next_balance = jiffies;
10328 	nohz.next_blocked = jiffies;
10329 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10330 #endif
10331 #endif /* SMP */
10332 
10333 }
10334