1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 #include <linux/rbtree_augmented.h> 51 52 #include <asm/switch_to.h> 53 54 #include <linux/sched/cond_resched.h> 55 56 #include "sched.h" 57 #include "stats.h" 58 #include "autogroup.h" 59 60 /* 61 * The initial- and re-scaling of tunables is configurable 62 * 63 * Options are: 64 * 65 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 66 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 67 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 68 * 69 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 70 */ 71 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 72 73 /* 74 * Minimal preemption granularity for CPU-bound tasks: 75 * 76 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 77 */ 78 unsigned int sysctl_sched_base_slice = 750000ULL; 79 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; 80 81 /* 82 * After fork, child runs first. If set to 0 (default) then 83 * parent will (try to) run first. 84 */ 85 unsigned int sysctl_sched_child_runs_first __read_mostly; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 int sched_thermal_decay_shift; 90 static int __init setup_sched_thermal_decay_shift(char *str) 91 { 92 int _shift = 0; 93 94 if (kstrtoint(str, 0, &_shift)) 95 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 96 97 sched_thermal_decay_shift = clamp(_shift, 0, 10); 98 return 1; 99 } 100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 101 102 #ifdef CONFIG_SMP 103 /* 104 * For asym packing, by default the lower numbered CPU has higher priority. 105 */ 106 int __weak arch_asym_cpu_priority(int cpu) 107 { 108 return -cpu; 109 } 110 111 /* 112 * The margin used when comparing utilization with CPU capacity. 113 * 114 * (default: ~20%) 115 */ 116 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 117 118 /* 119 * The margin used when comparing CPU capacities. 120 * is 'cap1' noticeably greater than 'cap2' 121 * 122 * (default: ~5%) 123 */ 124 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 125 #endif 126 127 #ifdef CONFIG_CFS_BANDWIDTH 128 /* 129 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 130 * each time a cfs_rq requests quota. 131 * 132 * Note: in the case that the slice exceeds the runtime remaining (either due 133 * to consumption or the quota being specified to be smaller than the slice) 134 * we will always only issue the remaining available time. 135 * 136 * (default: 5 msec, units: microseconds) 137 */ 138 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 139 #endif 140 141 #ifdef CONFIG_NUMA_BALANCING 142 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 143 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 144 #endif 145 146 #ifdef CONFIG_SYSCTL 147 static struct ctl_table sched_fair_sysctls[] = { 148 { 149 .procname = "sched_child_runs_first", 150 .data = &sysctl_sched_child_runs_first, 151 .maxlen = sizeof(unsigned int), 152 .mode = 0644, 153 .proc_handler = proc_dointvec, 154 }, 155 #ifdef CONFIG_CFS_BANDWIDTH 156 { 157 .procname = "sched_cfs_bandwidth_slice_us", 158 .data = &sysctl_sched_cfs_bandwidth_slice, 159 .maxlen = sizeof(unsigned int), 160 .mode = 0644, 161 .proc_handler = proc_dointvec_minmax, 162 .extra1 = SYSCTL_ONE, 163 }, 164 #endif 165 #ifdef CONFIG_NUMA_BALANCING 166 { 167 .procname = "numa_balancing_promote_rate_limit_MBps", 168 .data = &sysctl_numa_balancing_promote_rate_limit, 169 .maxlen = sizeof(unsigned int), 170 .mode = 0644, 171 .proc_handler = proc_dointvec_minmax, 172 .extra1 = SYSCTL_ZERO, 173 }, 174 #endif /* CONFIG_NUMA_BALANCING */ 175 {} 176 }; 177 178 static int __init sched_fair_sysctl_init(void) 179 { 180 register_sysctl_init("kernel", sched_fair_sysctls); 181 return 0; 182 } 183 late_initcall(sched_fair_sysctl_init); 184 #endif 185 186 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 187 { 188 lw->weight += inc; 189 lw->inv_weight = 0; 190 } 191 192 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 193 { 194 lw->weight -= dec; 195 lw->inv_weight = 0; 196 } 197 198 static inline void update_load_set(struct load_weight *lw, unsigned long w) 199 { 200 lw->weight = w; 201 lw->inv_weight = 0; 202 } 203 204 /* 205 * Increase the granularity value when there are more CPUs, 206 * because with more CPUs the 'effective latency' as visible 207 * to users decreases. But the relationship is not linear, 208 * so pick a second-best guess by going with the log2 of the 209 * number of CPUs. 210 * 211 * This idea comes from the SD scheduler of Con Kolivas: 212 */ 213 static unsigned int get_update_sysctl_factor(void) 214 { 215 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 216 unsigned int factor; 217 218 switch (sysctl_sched_tunable_scaling) { 219 case SCHED_TUNABLESCALING_NONE: 220 factor = 1; 221 break; 222 case SCHED_TUNABLESCALING_LINEAR: 223 factor = cpus; 224 break; 225 case SCHED_TUNABLESCALING_LOG: 226 default: 227 factor = 1 + ilog2(cpus); 228 break; 229 } 230 231 return factor; 232 } 233 234 static void update_sysctl(void) 235 { 236 unsigned int factor = get_update_sysctl_factor(); 237 238 #define SET_SYSCTL(name) \ 239 (sysctl_##name = (factor) * normalized_sysctl_##name) 240 SET_SYSCTL(sched_base_slice); 241 #undef SET_SYSCTL 242 } 243 244 void __init sched_init_granularity(void) 245 { 246 update_sysctl(); 247 } 248 249 #define WMULT_CONST (~0U) 250 #define WMULT_SHIFT 32 251 252 static void __update_inv_weight(struct load_weight *lw) 253 { 254 unsigned long w; 255 256 if (likely(lw->inv_weight)) 257 return; 258 259 w = scale_load_down(lw->weight); 260 261 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 262 lw->inv_weight = 1; 263 else if (unlikely(!w)) 264 lw->inv_weight = WMULT_CONST; 265 else 266 lw->inv_weight = WMULT_CONST / w; 267 } 268 269 /* 270 * delta_exec * weight / lw.weight 271 * OR 272 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 273 * 274 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 275 * we're guaranteed shift stays positive because inv_weight is guaranteed to 276 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 277 * 278 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 279 * weight/lw.weight <= 1, and therefore our shift will also be positive. 280 */ 281 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 282 { 283 u64 fact = scale_load_down(weight); 284 u32 fact_hi = (u32)(fact >> 32); 285 int shift = WMULT_SHIFT; 286 int fs; 287 288 __update_inv_weight(lw); 289 290 if (unlikely(fact_hi)) { 291 fs = fls(fact_hi); 292 shift -= fs; 293 fact >>= fs; 294 } 295 296 fact = mul_u32_u32(fact, lw->inv_weight); 297 298 fact_hi = (u32)(fact >> 32); 299 if (fact_hi) { 300 fs = fls(fact_hi); 301 shift -= fs; 302 fact >>= fs; 303 } 304 305 return mul_u64_u32_shr(delta_exec, fact, shift); 306 } 307 308 /* 309 * delta /= w 310 */ 311 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 312 { 313 if (unlikely(se->load.weight != NICE_0_LOAD)) 314 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 315 316 return delta; 317 } 318 319 const struct sched_class fair_sched_class; 320 321 /************************************************************** 322 * CFS operations on generic schedulable entities: 323 */ 324 325 #ifdef CONFIG_FAIR_GROUP_SCHED 326 327 /* Walk up scheduling entities hierarchy */ 328 #define for_each_sched_entity(se) \ 329 for (; se; se = se->parent) 330 331 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 332 { 333 struct rq *rq = rq_of(cfs_rq); 334 int cpu = cpu_of(rq); 335 336 if (cfs_rq->on_list) 337 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 338 339 cfs_rq->on_list = 1; 340 341 /* 342 * Ensure we either appear before our parent (if already 343 * enqueued) or force our parent to appear after us when it is 344 * enqueued. The fact that we always enqueue bottom-up 345 * reduces this to two cases and a special case for the root 346 * cfs_rq. Furthermore, it also means that we will always reset 347 * tmp_alone_branch either when the branch is connected 348 * to a tree or when we reach the top of the tree 349 */ 350 if (cfs_rq->tg->parent && 351 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 352 /* 353 * If parent is already on the list, we add the child 354 * just before. Thanks to circular linked property of 355 * the list, this means to put the child at the tail 356 * of the list that starts by parent. 357 */ 358 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 359 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 360 /* 361 * The branch is now connected to its tree so we can 362 * reset tmp_alone_branch to the beginning of the 363 * list. 364 */ 365 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 366 return true; 367 } 368 369 if (!cfs_rq->tg->parent) { 370 /* 371 * cfs rq without parent should be put 372 * at the tail of the list. 373 */ 374 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 375 &rq->leaf_cfs_rq_list); 376 /* 377 * We have reach the top of a tree so we can reset 378 * tmp_alone_branch to the beginning of the list. 379 */ 380 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 381 return true; 382 } 383 384 /* 385 * The parent has not already been added so we want to 386 * make sure that it will be put after us. 387 * tmp_alone_branch points to the begin of the branch 388 * where we will add parent. 389 */ 390 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 391 /* 392 * update tmp_alone_branch to points to the new begin 393 * of the branch 394 */ 395 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 396 return false; 397 } 398 399 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 400 { 401 if (cfs_rq->on_list) { 402 struct rq *rq = rq_of(cfs_rq); 403 404 /* 405 * With cfs_rq being unthrottled/throttled during an enqueue, 406 * it can happen the tmp_alone_branch points the a leaf that 407 * we finally want to del. In this case, tmp_alone_branch moves 408 * to the prev element but it will point to rq->leaf_cfs_rq_list 409 * at the end of the enqueue. 410 */ 411 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 412 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 413 414 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 415 cfs_rq->on_list = 0; 416 } 417 } 418 419 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 420 { 421 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 422 } 423 424 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 425 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 426 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 427 leaf_cfs_rq_list) 428 429 /* Do the two (enqueued) entities belong to the same group ? */ 430 static inline struct cfs_rq * 431 is_same_group(struct sched_entity *se, struct sched_entity *pse) 432 { 433 if (se->cfs_rq == pse->cfs_rq) 434 return se->cfs_rq; 435 436 return NULL; 437 } 438 439 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 440 { 441 return se->parent; 442 } 443 444 static void 445 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 446 { 447 int se_depth, pse_depth; 448 449 /* 450 * preemption test can be made between sibling entities who are in the 451 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 452 * both tasks until we find their ancestors who are siblings of common 453 * parent. 454 */ 455 456 /* First walk up until both entities are at same depth */ 457 se_depth = (*se)->depth; 458 pse_depth = (*pse)->depth; 459 460 while (se_depth > pse_depth) { 461 se_depth--; 462 *se = parent_entity(*se); 463 } 464 465 while (pse_depth > se_depth) { 466 pse_depth--; 467 *pse = parent_entity(*pse); 468 } 469 470 while (!is_same_group(*se, *pse)) { 471 *se = parent_entity(*se); 472 *pse = parent_entity(*pse); 473 } 474 } 475 476 static int tg_is_idle(struct task_group *tg) 477 { 478 return tg->idle > 0; 479 } 480 481 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 482 { 483 return cfs_rq->idle > 0; 484 } 485 486 static int se_is_idle(struct sched_entity *se) 487 { 488 if (entity_is_task(se)) 489 return task_has_idle_policy(task_of(se)); 490 return cfs_rq_is_idle(group_cfs_rq(se)); 491 } 492 493 #else /* !CONFIG_FAIR_GROUP_SCHED */ 494 495 #define for_each_sched_entity(se) \ 496 for (; se; se = NULL) 497 498 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 499 { 500 return true; 501 } 502 503 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 504 { 505 } 506 507 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 508 { 509 } 510 511 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 512 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 513 514 static inline struct sched_entity *parent_entity(struct sched_entity *se) 515 { 516 return NULL; 517 } 518 519 static inline void 520 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 521 { 522 } 523 524 static inline int tg_is_idle(struct task_group *tg) 525 { 526 return 0; 527 } 528 529 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 530 { 531 return 0; 532 } 533 534 static int se_is_idle(struct sched_entity *se) 535 { 536 return 0; 537 } 538 539 #endif /* CONFIG_FAIR_GROUP_SCHED */ 540 541 static __always_inline 542 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 543 544 /************************************************************** 545 * Scheduling class tree data structure manipulation methods: 546 */ 547 548 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 549 { 550 s64 delta = (s64)(vruntime - max_vruntime); 551 if (delta > 0) 552 max_vruntime = vruntime; 553 554 return max_vruntime; 555 } 556 557 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 558 { 559 s64 delta = (s64)(vruntime - min_vruntime); 560 if (delta < 0) 561 min_vruntime = vruntime; 562 563 return min_vruntime; 564 } 565 566 static inline bool entity_before(const struct sched_entity *a, 567 const struct sched_entity *b) 568 { 569 return (s64)(a->vruntime - b->vruntime) < 0; 570 } 571 572 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 573 { 574 return (s64)(se->vruntime - cfs_rq->min_vruntime); 575 } 576 577 #define __node_2_se(node) \ 578 rb_entry((node), struct sched_entity, run_node) 579 580 /* 581 * Compute virtual time from the per-task service numbers: 582 * 583 * Fair schedulers conserve lag: 584 * 585 * \Sum lag_i = 0 586 * 587 * Where lag_i is given by: 588 * 589 * lag_i = S - s_i = w_i * (V - v_i) 590 * 591 * Where S is the ideal service time and V is it's virtual time counterpart. 592 * Therefore: 593 * 594 * \Sum lag_i = 0 595 * \Sum w_i * (V - v_i) = 0 596 * \Sum w_i * V - w_i * v_i = 0 597 * 598 * From which we can solve an expression for V in v_i (which we have in 599 * se->vruntime): 600 * 601 * \Sum v_i * w_i \Sum v_i * w_i 602 * V = -------------- = -------------- 603 * \Sum w_i W 604 * 605 * Specifically, this is the weighted average of all entity virtual runtimes. 606 * 607 * [[ NOTE: this is only equal to the ideal scheduler under the condition 608 * that join/leave operations happen at lag_i = 0, otherwise the 609 * virtual time has non-continguous motion equivalent to: 610 * 611 * V +-= lag_i / W 612 * 613 * Also see the comment in place_entity() that deals with this. ]] 614 * 615 * However, since v_i is u64, and the multiplcation could easily overflow 616 * transform it into a relative form that uses smaller quantities: 617 * 618 * Substitute: v_i == (v_i - v0) + v0 619 * 620 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 621 * V = ---------------------------- = --------------------- + v0 622 * W W 623 * 624 * Which we track using: 625 * 626 * v0 := cfs_rq->min_vruntime 627 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 628 * \Sum w_i := cfs_rq->avg_load 629 * 630 * Since min_vruntime is a monotonic increasing variable that closely tracks 631 * the per-task service, these deltas: (v_i - v), will be in the order of the 632 * maximal (virtual) lag induced in the system due to quantisation. 633 * 634 * Also, we use scale_load_down() to reduce the size. 635 * 636 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 637 */ 638 static void 639 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 640 { 641 unsigned long weight = scale_load_down(se->load.weight); 642 s64 key = entity_key(cfs_rq, se); 643 644 cfs_rq->avg_vruntime += key * weight; 645 cfs_rq->avg_load += weight; 646 } 647 648 static void 649 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 650 { 651 unsigned long weight = scale_load_down(se->load.weight); 652 s64 key = entity_key(cfs_rq, se); 653 654 cfs_rq->avg_vruntime -= key * weight; 655 cfs_rq->avg_load -= weight; 656 } 657 658 static inline 659 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 660 { 661 /* 662 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 663 */ 664 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 665 } 666 667 /* 668 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 669 * For this to be so, the result of this function must have a left bias. 670 */ 671 u64 avg_vruntime(struct cfs_rq *cfs_rq) 672 { 673 struct sched_entity *curr = cfs_rq->curr; 674 s64 avg = cfs_rq->avg_vruntime; 675 long load = cfs_rq->avg_load; 676 677 if (curr && curr->on_rq) { 678 unsigned long weight = scale_load_down(curr->load.weight); 679 680 avg += entity_key(cfs_rq, curr) * weight; 681 load += weight; 682 } 683 684 if (load) { 685 /* sign flips effective floor / ceil */ 686 if (avg < 0) 687 avg -= (load - 1); 688 avg = div_s64(avg, load); 689 } 690 691 return cfs_rq->min_vruntime + avg; 692 } 693 694 /* 695 * lag_i = S - s_i = w_i * (V - v_i) 696 * 697 * However, since V is approximated by the weighted average of all entities it 698 * is possible -- by addition/removal/reweight to the tree -- to move V around 699 * and end up with a larger lag than we started with. 700 * 701 * Limit this to either double the slice length with a minimum of TICK_NSEC 702 * since that is the timing granularity. 703 * 704 * EEVDF gives the following limit for a steady state system: 705 * 706 * -r_max < lag < max(r_max, q) 707 * 708 * XXX could add max_slice to the augmented data to track this. 709 */ 710 static s64 entity_lag(u64 avruntime, struct sched_entity *se) 711 { 712 s64 vlag, limit; 713 714 vlag = avruntime - se->vruntime; 715 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 716 717 return clamp(vlag, -limit, limit); 718 } 719 720 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 721 { 722 SCHED_WARN_ON(!se->on_rq); 723 724 se->vlag = entity_lag(avg_vruntime(cfs_rq), se); 725 } 726 727 /* 728 * Entity is eligible once it received less service than it ought to have, 729 * eg. lag >= 0. 730 * 731 * lag_i = S - s_i = w_i*(V - v_i) 732 * 733 * lag_i >= 0 -> V >= v_i 734 * 735 * \Sum (v_i - v)*w_i 736 * V = ------------------ + v 737 * \Sum w_i 738 * 739 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 740 * 741 * Note: using 'avg_vruntime() > se->vruntime' is inacurate due 742 * to the loss in precision caused by the division. 743 */ 744 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 745 { 746 struct sched_entity *curr = cfs_rq->curr; 747 s64 avg = cfs_rq->avg_vruntime; 748 long load = cfs_rq->avg_load; 749 750 if (curr && curr->on_rq) { 751 unsigned long weight = scale_load_down(curr->load.weight); 752 753 avg += entity_key(cfs_rq, curr) * weight; 754 load += weight; 755 } 756 757 return avg >= entity_key(cfs_rq, se) * load; 758 } 759 760 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 761 { 762 u64 min_vruntime = cfs_rq->min_vruntime; 763 /* 764 * open coded max_vruntime() to allow updating avg_vruntime 765 */ 766 s64 delta = (s64)(vruntime - min_vruntime); 767 if (delta > 0) { 768 avg_vruntime_update(cfs_rq, delta); 769 min_vruntime = vruntime; 770 } 771 return min_vruntime; 772 } 773 774 static void update_min_vruntime(struct cfs_rq *cfs_rq) 775 { 776 struct sched_entity *se = __pick_first_entity(cfs_rq); 777 struct sched_entity *curr = cfs_rq->curr; 778 779 u64 vruntime = cfs_rq->min_vruntime; 780 781 if (curr) { 782 if (curr->on_rq) 783 vruntime = curr->vruntime; 784 else 785 curr = NULL; 786 } 787 788 if (se) { 789 if (!curr) 790 vruntime = se->vruntime; 791 else 792 vruntime = min_vruntime(vruntime, se->vruntime); 793 } 794 795 /* ensure we never gain time by being placed backwards. */ 796 u64_u32_store(cfs_rq->min_vruntime, 797 __update_min_vruntime(cfs_rq, vruntime)); 798 } 799 800 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 801 { 802 return entity_before(__node_2_se(a), __node_2_se(b)); 803 } 804 805 #define deadline_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 806 807 static inline void __update_min_deadline(struct sched_entity *se, struct rb_node *node) 808 { 809 if (node) { 810 struct sched_entity *rse = __node_2_se(node); 811 if (deadline_gt(min_deadline, se, rse)) 812 se->min_deadline = rse->min_deadline; 813 } 814 } 815 816 /* 817 * se->min_deadline = min(se->deadline, left->min_deadline, right->min_deadline) 818 */ 819 static inline bool min_deadline_update(struct sched_entity *se, bool exit) 820 { 821 u64 old_min_deadline = se->min_deadline; 822 struct rb_node *node = &se->run_node; 823 824 se->min_deadline = se->deadline; 825 __update_min_deadline(se, node->rb_right); 826 __update_min_deadline(se, node->rb_left); 827 828 return se->min_deadline == old_min_deadline; 829 } 830 831 RB_DECLARE_CALLBACKS(static, min_deadline_cb, struct sched_entity, 832 run_node, min_deadline, min_deadline_update); 833 834 /* 835 * Enqueue an entity into the rb-tree: 836 */ 837 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 838 { 839 avg_vruntime_add(cfs_rq, se); 840 se->min_deadline = se->deadline; 841 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 842 __entity_less, &min_deadline_cb); 843 } 844 845 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 846 { 847 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 848 &min_deadline_cb); 849 avg_vruntime_sub(cfs_rq, se); 850 } 851 852 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 853 { 854 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 855 856 if (!left) 857 return NULL; 858 859 return __node_2_se(left); 860 } 861 862 /* 863 * Earliest Eligible Virtual Deadline First 864 * 865 * In order to provide latency guarantees for different request sizes 866 * EEVDF selects the best runnable task from two criteria: 867 * 868 * 1) the task must be eligible (must be owed service) 869 * 870 * 2) from those tasks that meet 1), we select the one 871 * with the earliest virtual deadline. 872 * 873 * We can do this in O(log n) time due to an augmented RB-tree. The 874 * tree keeps the entries sorted on service, but also functions as a 875 * heap based on the deadline by keeping: 876 * 877 * se->min_deadline = min(se->deadline, se->{left,right}->min_deadline) 878 * 879 * Which allows an EDF like search on (sub)trees. 880 */ 881 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq) 882 { 883 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 884 struct sched_entity *curr = cfs_rq->curr; 885 struct sched_entity *best = NULL; 886 struct sched_entity *best_left = NULL; 887 888 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 889 curr = NULL; 890 best = curr; 891 892 /* 893 * Once selected, run a task until it either becomes non-eligible or 894 * until it gets a new slice. See the HACK in set_next_entity(). 895 */ 896 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) 897 return curr; 898 899 while (node) { 900 struct sched_entity *se = __node_2_se(node); 901 902 /* 903 * If this entity is not eligible, try the left subtree. 904 */ 905 if (!entity_eligible(cfs_rq, se)) { 906 node = node->rb_left; 907 continue; 908 } 909 910 /* 911 * Now we heap search eligible trees for the best (min_)deadline 912 */ 913 if (!best || deadline_gt(deadline, best, se)) 914 best = se; 915 916 /* 917 * Every se in a left branch is eligible, keep track of the 918 * branch with the best min_deadline 919 */ 920 if (node->rb_left) { 921 struct sched_entity *left = __node_2_se(node->rb_left); 922 923 if (!best_left || deadline_gt(min_deadline, best_left, left)) 924 best_left = left; 925 926 /* 927 * min_deadline is in the left branch. rb_left and all 928 * descendants are eligible, so immediately switch to the second 929 * loop. 930 */ 931 if (left->min_deadline == se->min_deadline) 932 break; 933 } 934 935 /* min_deadline is at this node, no need to look right */ 936 if (se->deadline == se->min_deadline) 937 break; 938 939 /* else min_deadline is in the right branch. */ 940 node = node->rb_right; 941 } 942 943 /* 944 * We ran into an eligible node which is itself the best. 945 * (Or nr_running == 0 and both are NULL) 946 */ 947 if (!best_left || (s64)(best_left->min_deadline - best->deadline) > 0) 948 return best; 949 950 /* 951 * Now best_left and all of its children are eligible, and we are just 952 * looking for deadline == min_deadline 953 */ 954 node = &best_left->run_node; 955 while (node) { 956 struct sched_entity *se = __node_2_se(node); 957 958 /* min_deadline is the current node */ 959 if (se->deadline == se->min_deadline) 960 return se; 961 962 /* min_deadline is in the left branch */ 963 if (node->rb_left && 964 __node_2_se(node->rb_left)->min_deadline == se->min_deadline) { 965 node = node->rb_left; 966 continue; 967 } 968 969 /* else min_deadline is in the right branch */ 970 node = node->rb_right; 971 } 972 return NULL; 973 } 974 975 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 976 { 977 struct sched_entity *se = __pick_eevdf(cfs_rq); 978 979 if (!se) { 980 struct sched_entity *left = __pick_first_entity(cfs_rq); 981 if (left) { 982 pr_err("EEVDF scheduling fail, picking leftmost\n"); 983 return left; 984 } 985 } 986 987 return se; 988 } 989 990 #ifdef CONFIG_SCHED_DEBUG 991 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 992 { 993 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 994 995 if (!last) 996 return NULL; 997 998 return __node_2_se(last); 999 } 1000 1001 /************************************************************** 1002 * Scheduling class statistics methods: 1003 */ 1004 #ifdef CONFIG_SMP 1005 int sched_update_scaling(void) 1006 { 1007 unsigned int factor = get_update_sysctl_factor(); 1008 1009 #define WRT_SYSCTL(name) \ 1010 (normalized_sysctl_##name = sysctl_##name / (factor)) 1011 WRT_SYSCTL(sched_base_slice); 1012 #undef WRT_SYSCTL 1013 1014 return 0; 1015 } 1016 #endif 1017 #endif 1018 1019 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 1020 1021 /* 1022 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1023 * this is probably good enough. 1024 */ 1025 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1026 { 1027 if ((s64)(se->vruntime - se->deadline) < 0) 1028 return; 1029 1030 /* 1031 * For EEVDF the virtual time slope is determined by w_i (iow. 1032 * nice) while the request time r_i is determined by 1033 * sysctl_sched_base_slice. 1034 */ 1035 se->slice = sysctl_sched_base_slice; 1036 1037 /* 1038 * EEVDF: vd_i = ve_i + r_i / w_i 1039 */ 1040 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1041 1042 /* 1043 * The task has consumed its request, reschedule. 1044 */ 1045 if (cfs_rq->nr_running > 1) { 1046 resched_curr(rq_of(cfs_rq)); 1047 clear_buddies(cfs_rq, se); 1048 } 1049 } 1050 1051 #include "pelt.h" 1052 #ifdef CONFIG_SMP 1053 1054 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1055 static unsigned long task_h_load(struct task_struct *p); 1056 static unsigned long capacity_of(int cpu); 1057 1058 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1059 void init_entity_runnable_average(struct sched_entity *se) 1060 { 1061 struct sched_avg *sa = &se->avg; 1062 1063 memset(sa, 0, sizeof(*sa)); 1064 1065 /* 1066 * Tasks are initialized with full load to be seen as heavy tasks until 1067 * they get a chance to stabilize to their real load level. 1068 * Group entities are initialized with zero load to reflect the fact that 1069 * nothing has been attached to the task group yet. 1070 */ 1071 if (entity_is_task(se)) 1072 sa->load_avg = scale_load_down(se->load.weight); 1073 1074 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 1075 } 1076 1077 /* 1078 * With new tasks being created, their initial util_avgs are extrapolated 1079 * based on the cfs_rq's current util_avg: 1080 * 1081 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 1082 * 1083 * However, in many cases, the above util_avg does not give a desired 1084 * value. Moreover, the sum of the util_avgs may be divergent, such 1085 * as when the series is a harmonic series. 1086 * 1087 * To solve this problem, we also cap the util_avg of successive tasks to 1088 * only 1/2 of the left utilization budget: 1089 * 1090 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1091 * 1092 * where n denotes the nth task and cpu_scale the CPU capacity. 1093 * 1094 * For example, for a CPU with 1024 of capacity, a simplest series from 1095 * the beginning would be like: 1096 * 1097 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1098 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1099 * 1100 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1101 * if util_avg > util_avg_cap. 1102 */ 1103 void post_init_entity_util_avg(struct task_struct *p) 1104 { 1105 struct sched_entity *se = &p->se; 1106 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1107 struct sched_avg *sa = &se->avg; 1108 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1109 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1110 1111 if (p->sched_class != &fair_sched_class) { 1112 /* 1113 * For !fair tasks do: 1114 * 1115 update_cfs_rq_load_avg(now, cfs_rq); 1116 attach_entity_load_avg(cfs_rq, se); 1117 switched_from_fair(rq, p); 1118 * 1119 * such that the next switched_to_fair() has the 1120 * expected state. 1121 */ 1122 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1123 return; 1124 } 1125 1126 if (cap > 0) { 1127 if (cfs_rq->avg.util_avg != 0) { 1128 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 1129 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1130 1131 if (sa->util_avg > cap) 1132 sa->util_avg = cap; 1133 } else { 1134 sa->util_avg = cap; 1135 } 1136 } 1137 1138 sa->runnable_avg = sa->util_avg; 1139 } 1140 1141 #else /* !CONFIG_SMP */ 1142 void init_entity_runnable_average(struct sched_entity *se) 1143 { 1144 } 1145 void post_init_entity_util_avg(struct task_struct *p) 1146 { 1147 } 1148 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1149 { 1150 } 1151 #endif /* CONFIG_SMP */ 1152 1153 /* 1154 * Update the current task's runtime statistics. 1155 */ 1156 static void update_curr(struct cfs_rq *cfs_rq) 1157 { 1158 struct sched_entity *curr = cfs_rq->curr; 1159 u64 now = rq_clock_task(rq_of(cfs_rq)); 1160 u64 delta_exec; 1161 1162 if (unlikely(!curr)) 1163 return; 1164 1165 delta_exec = now - curr->exec_start; 1166 if (unlikely((s64)delta_exec <= 0)) 1167 return; 1168 1169 curr->exec_start = now; 1170 1171 if (schedstat_enabled()) { 1172 struct sched_statistics *stats; 1173 1174 stats = __schedstats_from_se(curr); 1175 __schedstat_set(stats->exec_max, 1176 max(delta_exec, stats->exec_max)); 1177 } 1178 1179 curr->sum_exec_runtime += delta_exec; 1180 schedstat_add(cfs_rq->exec_clock, delta_exec); 1181 1182 curr->vruntime += calc_delta_fair(delta_exec, curr); 1183 update_deadline(cfs_rq, curr); 1184 update_min_vruntime(cfs_rq); 1185 1186 if (entity_is_task(curr)) { 1187 struct task_struct *curtask = task_of(curr); 1188 1189 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 1190 cgroup_account_cputime(curtask, delta_exec); 1191 account_group_exec_runtime(curtask, delta_exec); 1192 } 1193 1194 account_cfs_rq_runtime(cfs_rq, delta_exec); 1195 } 1196 1197 static void update_curr_fair(struct rq *rq) 1198 { 1199 update_curr(cfs_rq_of(&rq->curr->se)); 1200 } 1201 1202 static inline void 1203 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1204 { 1205 struct sched_statistics *stats; 1206 struct task_struct *p = NULL; 1207 1208 if (!schedstat_enabled()) 1209 return; 1210 1211 stats = __schedstats_from_se(se); 1212 1213 if (entity_is_task(se)) 1214 p = task_of(se); 1215 1216 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1217 } 1218 1219 static inline void 1220 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1221 { 1222 struct sched_statistics *stats; 1223 struct task_struct *p = NULL; 1224 1225 if (!schedstat_enabled()) 1226 return; 1227 1228 stats = __schedstats_from_se(se); 1229 1230 /* 1231 * When the sched_schedstat changes from 0 to 1, some sched se 1232 * maybe already in the runqueue, the se->statistics.wait_start 1233 * will be 0.So it will let the delta wrong. We need to avoid this 1234 * scenario. 1235 */ 1236 if (unlikely(!schedstat_val(stats->wait_start))) 1237 return; 1238 1239 if (entity_is_task(se)) 1240 p = task_of(se); 1241 1242 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1243 } 1244 1245 static inline void 1246 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1247 { 1248 struct sched_statistics *stats; 1249 struct task_struct *tsk = NULL; 1250 1251 if (!schedstat_enabled()) 1252 return; 1253 1254 stats = __schedstats_from_se(se); 1255 1256 if (entity_is_task(se)) 1257 tsk = task_of(se); 1258 1259 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1260 } 1261 1262 /* 1263 * Task is being enqueued - update stats: 1264 */ 1265 static inline void 1266 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1267 { 1268 if (!schedstat_enabled()) 1269 return; 1270 1271 /* 1272 * Are we enqueueing a waiting task? (for current tasks 1273 * a dequeue/enqueue event is a NOP) 1274 */ 1275 if (se != cfs_rq->curr) 1276 update_stats_wait_start_fair(cfs_rq, se); 1277 1278 if (flags & ENQUEUE_WAKEUP) 1279 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1280 } 1281 1282 static inline void 1283 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1284 { 1285 1286 if (!schedstat_enabled()) 1287 return; 1288 1289 /* 1290 * Mark the end of the wait period if dequeueing a 1291 * waiting task: 1292 */ 1293 if (se != cfs_rq->curr) 1294 update_stats_wait_end_fair(cfs_rq, se); 1295 1296 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1297 struct task_struct *tsk = task_of(se); 1298 unsigned int state; 1299 1300 /* XXX racy against TTWU */ 1301 state = READ_ONCE(tsk->__state); 1302 if (state & TASK_INTERRUPTIBLE) 1303 __schedstat_set(tsk->stats.sleep_start, 1304 rq_clock(rq_of(cfs_rq))); 1305 if (state & TASK_UNINTERRUPTIBLE) 1306 __schedstat_set(tsk->stats.block_start, 1307 rq_clock(rq_of(cfs_rq))); 1308 } 1309 } 1310 1311 /* 1312 * We are picking a new current task - update its stats: 1313 */ 1314 static inline void 1315 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1316 { 1317 /* 1318 * We are starting a new run period: 1319 */ 1320 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1321 } 1322 1323 /************************************************** 1324 * Scheduling class queueing methods: 1325 */ 1326 1327 static inline bool is_core_idle(int cpu) 1328 { 1329 #ifdef CONFIG_SCHED_SMT 1330 int sibling; 1331 1332 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1333 if (cpu == sibling) 1334 continue; 1335 1336 if (!idle_cpu(sibling)) 1337 return false; 1338 } 1339 #endif 1340 1341 return true; 1342 } 1343 1344 #ifdef CONFIG_NUMA 1345 #define NUMA_IMBALANCE_MIN 2 1346 1347 static inline long 1348 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1349 { 1350 /* 1351 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1352 * threshold. Above this threshold, individual tasks may be contending 1353 * for both memory bandwidth and any shared HT resources. This is an 1354 * approximation as the number of running tasks may not be related to 1355 * the number of busy CPUs due to sched_setaffinity. 1356 */ 1357 if (dst_running > imb_numa_nr) 1358 return imbalance; 1359 1360 /* 1361 * Allow a small imbalance based on a simple pair of communicating 1362 * tasks that remain local when the destination is lightly loaded. 1363 */ 1364 if (imbalance <= NUMA_IMBALANCE_MIN) 1365 return 0; 1366 1367 return imbalance; 1368 } 1369 #endif /* CONFIG_NUMA */ 1370 1371 #ifdef CONFIG_NUMA_BALANCING 1372 /* 1373 * Approximate time to scan a full NUMA task in ms. The task scan period is 1374 * calculated based on the tasks virtual memory size and 1375 * numa_balancing_scan_size. 1376 */ 1377 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1378 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1379 1380 /* Portion of address space to scan in MB */ 1381 unsigned int sysctl_numa_balancing_scan_size = 256; 1382 1383 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1384 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1385 1386 /* The page with hint page fault latency < threshold in ms is considered hot */ 1387 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1388 1389 struct numa_group { 1390 refcount_t refcount; 1391 1392 spinlock_t lock; /* nr_tasks, tasks */ 1393 int nr_tasks; 1394 pid_t gid; 1395 int active_nodes; 1396 1397 struct rcu_head rcu; 1398 unsigned long total_faults; 1399 unsigned long max_faults_cpu; 1400 /* 1401 * faults[] array is split into two regions: faults_mem and faults_cpu. 1402 * 1403 * Faults_cpu is used to decide whether memory should move 1404 * towards the CPU. As a consequence, these stats are weighted 1405 * more by CPU use than by memory faults. 1406 */ 1407 unsigned long faults[]; 1408 }; 1409 1410 /* 1411 * For functions that can be called in multiple contexts that permit reading 1412 * ->numa_group (see struct task_struct for locking rules). 1413 */ 1414 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1415 { 1416 return rcu_dereference_check(p->numa_group, p == current || 1417 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1418 } 1419 1420 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1421 { 1422 return rcu_dereference_protected(p->numa_group, p == current); 1423 } 1424 1425 static inline unsigned long group_faults_priv(struct numa_group *ng); 1426 static inline unsigned long group_faults_shared(struct numa_group *ng); 1427 1428 static unsigned int task_nr_scan_windows(struct task_struct *p) 1429 { 1430 unsigned long rss = 0; 1431 unsigned long nr_scan_pages; 1432 1433 /* 1434 * Calculations based on RSS as non-present and empty pages are skipped 1435 * by the PTE scanner and NUMA hinting faults should be trapped based 1436 * on resident pages 1437 */ 1438 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1439 rss = get_mm_rss(p->mm); 1440 if (!rss) 1441 rss = nr_scan_pages; 1442 1443 rss = round_up(rss, nr_scan_pages); 1444 return rss / nr_scan_pages; 1445 } 1446 1447 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1448 #define MAX_SCAN_WINDOW 2560 1449 1450 static unsigned int task_scan_min(struct task_struct *p) 1451 { 1452 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1453 unsigned int scan, floor; 1454 unsigned int windows = 1; 1455 1456 if (scan_size < MAX_SCAN_WINDOW) 1457 windows = MAX_SCAN_WINDOW / scan_size; 1458 floor = 1000 / windows; 1459 1460 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1461 return max_t(unsigned int, floor, scan); 1462 } 1463 1464 static unsigned int task_scan_start(struct task_struct *p) 1465 { 1466 unsigned long smin = task_scan_min(p); 1467 unsigned long period = smin; 1468 struct numa_group *ng; 1469 1470 /* Scale the maximum scan period with the amount of shared memory. */ 1471 rcu_read_lock(); 1472 ng = rcu_dereference(p->numa_group); 1473 if (ng) { 1474 unsigned long shared = group_faults_shared(ng); 1475 unsigned long private = group_faults_priv(ng); 1476 1477 period *= refcount_read(&ng->refcount); 1478 period *= shared + 1; 1479 period /= private + shared + 1; 1480 } 1481 rcu_read_unlock(); 1482 1483 return max(smin, period); 1484 } 1485 1486 static unsigned int task_scan_max(struct task_struct *p) 1487 { 1488 unsigned long smin = task_scan_min(p); 1489 unsigned long smax; 1490 struct numa_group *ng; 1491 1492 /* Watch for min being lower than max due to floor calculations */ 1493 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1494 1495 /* Scale the maximum scan period with the amount of shared memory. */ 1496 ng = deref_curr_numa_group(p); 1497 if (ng) { 1498 unsigned long shared = group_faults_shared(ng); 1499 unsigned long private = group_faults_priv(ng); 1500 unsigned long period = smax; 1501 1502 period *= refcount_read(&ng->refcount); 1503 period *= shared + 1; 1504 period /= private + shared + 1; 1505 1506 smax = max(smax, period); 1507 } 1508 1509 return max(smin, smax); 1510 } 1511 1512 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1513 { 1514 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1515 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1516 } 1517 1518 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1519 { 1520 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1521 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1522 } 1523 1524 /* Shared or private faults. */ 1525 #define NR_NUMA_HINT_FAULT_TYPES 2 1526 1527 /* Memory and CPU locality */ 1528 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1529 1530 /* Averaged statistics, and temporary buffers. */ 1531 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1532 1533 pid_t task_numa_group_id(struct task_struct *p) 1534 { 1535 struct numa_group *ng; 1536 pid_t gid = 0; 1537 1538 rcu_read_lock(); 1539 ng = rcu_dereference(p->numa_group); 1540 if (ng) 1541 gid = ng->gid; 1542 rcu_read_unlock(); 1543 1544 return gid; 1545 } 1546 1547 /* 1548 * The averaged statistics, shared & private, memory & CPU, 1549 * occupy the first half of the array. The second half of the 1550 * array is for current counters, which are averaged into the 1551 * first set by task_numa_placement. 1552 */ 1553 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1554 { 1555 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1556 } 1557 1558 static inline unsigned long task_faults(struct task_struct *p, int nid) 1559 { 1560 if (!p->numa_faults) 1561 return 0; 1562 1563 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1564 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1565 } 1566 1567 static inline unsigned long group_faults(struct task_struct *p, int nid) 1568 { 1569 struct numa_group *ng = deref_task_numa_group(p); 1570 1571 if (!ng) 1572 return 0; 1573 1574 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1575 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1576 } 1577 1578 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1579 { 1580 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1581 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1582 } 1583 1584 static inline unsigned long group_faults_priv(struct numa_group *ng) 1585 { 1586 unsigned long faults = 0; 1587 int node; 1588 1589 for_each_online_node(node) { 1590 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1591 } 1592 1593 return faults; 1594 } 1595 1596 static inline unsigned long group_faults_shared(struct numa_group *ng) 1597 { 1598 unsigned long faults = 0; 1599 int node; 1600 1601 for_each_online_node(node) { 1602 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1603 } 1604 1605 return faults; 1606 } 1607 1608 /* 1609 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1610 * considered part of a numa group's pseudo-interleaving set. Migrations 1611 * between these nodes are slowed down, to allow things to settle down. 1612 */ 1613 #define ACTIVE_NODE_FRACTION 3 1614 1615 static bool numa_is_active_node(int nid, struct numa_group *ng) 1616 { 1617 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1618 } 1619 1620 /* Handle placement on systems where not all nodes are directly connected. */ 1621 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1622 int lim_dist, bool task) 1623 { 1624 unsigned long score = 0; 1625 int node, max_dist; 1626 1627 /* 1628 * All nodes are directly connected, and the same distance 1629 * from each other. No need for fancy placement algorithms. 1630 */ 1631 if (sched_numa_topology_type == NUMA_DIRECT) 1632 return 0; 1633 1634 /* sched_max_numa_distance may be changed in parallel. */ 1635 max_dist = READ_ONCE(sched_max_numa_distance); 1636 /* 1637 * This code is called for each node, introducing N^2 complexity, 1638 * which should be ok given the number of nodes rarely exceeds 8. 1639 */ 1640 for_each_online_node(node) { 1641 unsigned long faults; 1642 int dist = node_distance(nid, node); 1643 1644 /* 1645 * The furthest away nodes in the system are not interesting 1646 * for placement; nid was already counted. 1647 */ 1648 if (dist >= max_dist || node == nid) 1649 continue; 1650 1651 /* 1652 * On systems with a backplane NUMA topology, compare groups 1653 * of nodes, and move tasks towards the group with the most 1654 * memory accesses. When comparing two nodes at distance 1655 * "hoplimit", only nodes closer by than "hoplimit" are part 1656 * of each group. Skip other nodes. 1657 */ 1658 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1659 continue; 1660 1661 /* Add up the faults from nearby nodes. */ 1662 if (task) 1663 faults = task_faults(p, node); 1664 else 1665 faults = group_faults(p, node); 1666 1667 /* 1668 * On systems with a glueless mesh NUMA topology, there are 1669 * no fixed "groups of nodes". Instead, nodes that are not 1670 * directly connected bounce traffic through intermediate 1671 * nodes; a numa_group can occupy any set of nodes. 1672 * The further away a node is, the less the faults count. 1673 * This seems to result in good task placement. 1674 */ 1675 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1676 faults *= (max_dist - dist); 1677 faults /= (max_dist - LOCAL_DISTANCE); 1678 } 1679 1680 score += faults; 1681 } 1682 1683 return score; 1684 } 1685 1686 /* 1687 * These return the fraction of accesses done by a particular task, or 1688 * task group, on a particular numa node. The group weight is given a 1689 * larger multiplier, in order to group tasks together that are almost 1690 * evenly spread out between numa nodes. 1691 */ 1692 static inline unsigned long task_weight(struct task_struct *p, int nid, 1693 int dist) 1694 { 1695 unsigned long faults, total_faults; 1696 1697 if (!p->numa_faults) 1698 return 0; 1699 1700 total_faults = p->total_numa_faults; 1701 1702 if (!total_faults) 1703 return 0; 1704 1705 faults = task_faults(p, nid); 1706 faults += score_nearby_nodes(p, nid, dist, true); 1707 1708 return 1000 * faults / total_faults; 1709 } 1710 1711 static inline unsigned long group_weight(struct task_struct *p, int nid, 1712 int dist) 1713 { 1714 struct numa_group *ng = deref_task_numa_group(p); 1715 unsigned long faults, total_faults; 1716 1717 if (!ng) 1718 return 0; 1719 1720 total_faults = ng->total_faults; 1721 1722 if (!total_faults) 1723 return 0; 1724 1725 faults = group_faults(p, nid); 1726 faults += score_nearby_nodes(p, nid, dist, false); 1727 1728 return 1000 * faults / total_faults; 1729 } 1730 1731 /* 1732 * If memory tiering mode is enabled, cpupid of slow memory page is 1733 * used to record scan time instead of CPU and PID. When tiering mode 1734 * is disabled at run time, the scan time (in cpupid) will be 1735 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1736 * access out of array bound. 1737 */ 1738 static inline bool cpupid_valid(int cpupid) 1739 { 1740 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1741 } 1742 1743 /* 1744 * For memory tiering mode, if there are enough free pages (more than 1745 * enough watermark defined here) in fast memory node, to take full 1746 * advantage of fast memory capacity, all recently accessed slow 1747 * memory pages will be migrated to fast memory node without 1748 * considering hot threshold. 1749 */ 1750 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1751 { 1752 int z; 1753 unsigned long enough_wmark; 1754 1755 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1756 pgdat->node_present_pages >> 4); 1757 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1758 struct zone *zone = pgdat->node_zones + z; 1759 1760 if (!populated_zone(zone)) 1761 continue; 1762 1763 if (zone_watermark_ok(zone, 0, 1764 wmark_pages(zone, WMARK_PROMO) + enough_wmark, 1765 ZONE_MOVABLE, 0)) 1766 return true; 1767 } 1768 return false; 1769 } 1770 1771 /* 1772 * For memory tiering mode, when page tables are scanned, the scan 1773 * time will be recorded in struct page in addition to make page 1774 * PROT_NONE for slow memory page. So when the page is accessed, in 1775 * hint page fault handler, the hint page fault latency is calculated 1776 * via, 1777 * 1778 * hint page fault latency = hint page fault time - scan time 1779 * 1780 * The smaller the hint page fault latency, the higher the possibility 1781 * for the page to be hot. 1782 */ 1783 static int numa_hint_fault_latency(struct page *page) 1784 { 1785 int last_time, time; 1786 1787 time = jiffies_to_msecs(jiffies); 1788 last_time = xchg_page_access_time(page, time); 1789 1790 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1791 } 1792 1793 /* 1794 * For memory tiering mode, too high promotion/demotion throughput may 1795 * hurt application latency. So we provide a mechanism to rate limit 1796 * the number of pages that are tried to be promoted. 1797 */ 1798 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1799 unsigned long rate_limit, int nr) 1800 { 1801 unsigned long nr_cand; 1802 unsigned int now, start; 1803 1804 now = jiffies_to_msecs(jiffies); 1805 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1806 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1807 start = pgdat->nbp_rl_start; 1808 if (now - start > MSEC_PER_SEC && 1809 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1810 pgdat->nbp_rl_nr_cand = nr_cand; 1811 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1812 return true; 1813 return false; 1814 } 1815 1816 #define NUMA_MIGRATION_ADJUST_STEPS 16 1817 1818 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1819 unsigned long rate_limit, 1820 unsigned int ref_th) 1821 { 1822 unsigned int now, start, th_period, unit_th, th; 1823 unsigned long nr_cand, ref_cand, diff_cand; 1824 1825 now = jiffies_to_msecs(jiffies); 1826 th_period = sysctl_numa_balancing_scan_period_max; 1827 start = pgdat->nbp_th_start; 1828 if (now - start > th_period && 1829 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1830 ref_cand = rate_limit * 1831 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1832 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1833 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1834 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1835 th = pgdat->nbp_threshold ? : ref_th; 1836 if (diff_cand > ref_cand * 11 / 10) 1837 th = max(th - unit_th, unit_th); 1838 else if (diff_cand < ref_cand * 9 / 10) 1839 th = min(th + unit_th, ref_th * 2); 1840 pgdat->nbp_th_nr_cand = nr_cand; 1841 pgdat->nbp_threshold = th; 1842 } 1843 } 1844 1845 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1846 int src_nid, int dst_cpu) 1847 { 1848 struct numa_group *ng = deref_curr_numa_group(p); 1849 int dst_nid = cpu_to_node(dst_cpu); 1850 int last_cpupid, this_cpupid; 1851 1852 /* 1853 * The pages in slow memory node should be migrated according 1854 * to hot/cold instead of private/shared. 1855 */ 1856 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1857 !node_is_toptier(src_nid)) { 1858 struct pglist_data *pgdat; 1859 unsigned long rate_limit; 1860 unsigned int latency, th, def_th; 1861 1862 pgdat = NODE_DATA(dst_nid); 1863 if (pgdat_free_space_enough(pgdat)) { 1864 /* workload changed, reset hot threshold */ 1865 pgdat->nbp_threshold = 0; 1866 return true; 1867 } 1868 1869 def_th = sysctl_numa_balancing_hot_threshold; 1870 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1871 (20 - PAGE_SHIFT); 1872 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1873 1874 th = pgdat->nbp_threshold ? : def_th; 1875 latency = numa_hint_fault_latency(page); 1876 if (latency >= th) 1877 return false; 1878 1879 return !numa_promotion_rate_limit(pgdat, rate_limit, 1880 thp_nr_pages(page)); 1881 } 1882 1883 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1884 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1885 1886 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1887 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1888 return false; 1889 1890 /* 1891 * Allow first faults or private faults to migrate immediately early in 1892 * the lifetime of a task. The magic number 4 is based on waiting for 1893 * two full passes of the "multi-stage node selection" test that is 1894 * executed below. 1895 */ 1896 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1897 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1898 return true; 1899 1900 /* 1901 * Multi-stage node selection is used in conjunction with a periodic 1902 * migration fault to build a temporal task<->page relation. By using 1903 * a two-stage filter we remove short/unlikely relations. 1904 * 1905 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1906 * a task's usage of a particular page (n_p) per total usage of this 1907 * page (n_t) (in a given time-span) to a probability. 1908 * 1909 * Our periodic faults will sample this probability and getting the 1910 * same result twice in a row, given these samples are fully 1911 * independent, is then given by P(n)^2, provided our sample period 1912 * is sufficiently short compared to the usage pattern. 1913 * 1914 * This quadric squishes small probabilities, making it less likely we 1915 * act on an unlikely task<->page relation. 1916 */ 1917 if (!cpupid_pid_unset(last_cpupid) && 1918 cpupid_to_nid(last_cpupid) != dst_nid) 1919 return false; 1920 1921 /* Always allow migrate on private faults */ 1922 if (cpupid_match_pid(p, last_cpupid)) 1923 return true; 1924 1925 /* A shared fault, but p->numa_group has not been set up yet. */ 1926 if (!ng) 1927 return true; 1928 1929 /* 1930 * Destination node is much more heavily used than the source 1931 * node? Allow migration. 1932 */ 1933 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1934 ACTIVE_NODE_FRACTION) 1935 return true; 1936 1937 /* 1938 * Distribute memory according to CPU & memory use on each node, 1939 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1940 * 1941 * faults_cpu(dst) 3 faults_cpu(src) 1942 * --------------- * - > --------------- 1943 * faults_mem(dst) 4 faults_mem(src) 1944 */ 1945 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1946 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1947 } 1948 1949 /* 1950 * 'numa_type' describes the node at the moment of load balancing. 1951 */ 1952 enum numa_type { 1953 /* The node has spare capacity that can be used to run more tasks. */ 1954 node_has_spare = 0, 1955 /* 1956 * The node is fully used and the tasks don't compete for more CPU 1957 * cycles. Nevertheless, some tasks might wait before running. 1958 */ 1959 node_fully_busy, 1960 /* 1961 * The node is overloaded and can't provide expected CPU cycles to all 1962 * tasks. 1963 */ 1964 node_overloaded 1965 }; 1966 1967 /* Cached statistics for all CPUs within a node */ 1968 struct numa_stats { 1969 unsigned long load; 1970 unsigned long runnable; 1971 unsigned long util; 1972 /* Total compute capacity of CPUs on a node */ 1973 unsigned long compute_capacity; 1974 unsigned int nr_running; 1975 unsigned int weight; 1976 enum numa_type node_type; 1977 int idle_cpu; 1978 }; 1979 1980 struct task_numa_env { 1981 struct task_struct *p; 1982 1983 int src_cpu, src_nid; 1984 int dst_cpu, dst_nid; 1985 int imb_numa_nr; 1986 1987 struct numa_stats src_stats, dst_stats; 1988 1989 int imbalance_pct; 1990 int dist; 1991 1992 struct task_struct *best_task; 1993 long best_imp; 1994 int best_cpu; 1995 }; 1996 1997 static unsigned long cpu_load(struct rq *rq); 1998 static unsigned long cpu_runnable(struct rq *rq); 1999 2000 static inline enum 2001 numa_type numa_classify(unsigned int imbalance_pct, 2002 struct numa_stats *ns) 2003 { 2004 if ((ns->nr_running > ns->weight) && 2005 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 2006 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 2007 return node_overloaded; 2008 2009 if ((ns->nr_running < ns->weight) || 2010 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 2011 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 2012 return node_has_spare; 2013 2014 return node_fully_busy; 2015 } 2016 2017 #ifdef CONFIG_SCHED_SMT 2018 /* Forward declarations of select_idle_sibling helpers */ 2019 static inline bool test_idle_cores(int cpu); 2020 static inline int numa_idle_core(int idle_core, int cpu) 2021 { 2022 if (!static_branch_likely(&sched_smt_present) || 2023 idle_core >= 0 || !test_idle_cores(cpu)) 2024 return idle_core; 2025 2026 /* 2027 * Prefer cores instead of packing HT siblings 2028 * and triggering future load balancing. 2029 */ 2030 if (is_core_idle(cpu)) 2031 idle_core = cpu; 2032 2033 return idle_core; 2034 } 2035 #else 2036 static inline int numa_idle_core(int idle_core, int cpu) 2037 { 2038 return idle_core; 2039 } 2040 #endif 2041 2042 /* 2043 * Gather all necessary information to make NUMA balancing placement 2044 * decisions that are compatible with standard load balancer. This 2045 * borrows code and logic from update_sg_lb_stats but sharing a 2046 * common implementation is impractical. 2047 */ 2048 static void update_numa_stats(struct task_numa_env *env, 2049 struct numa_stats *ns, int nid, 2050 bool find_idle) 2051 { 2052 int cpu, idle_core = -1; 2053 2054 memset(ns, 0, sizeof(*ns)); 2055 ns->idle_cpu = -1; 2056 2057 rcu_read_lock(); 2058 for_each_cpu(cpu, cpumask_of_node(nid)) { 2059 struct rq *rq = cpu_rq(cpu); 2060 2061 ns->load += cpu_load(rq); 2062 ns->runnable += cpu_runnable(rq); 2063 ns->util += cpu_util_cfs(cpu); 2064 ns->nr_running += rq->cfs.h_nr_running; 2065 ns->compute_capacity += capacity_of(cpu); 2066 2067 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2068 if (READ_ONCE(rq->numa_migrate_on) || 2069 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2070 continue; 2071 2072 if (ns->idle_cpu == -1) 2073 ns->idle_cpu = cpu; 2074 2075 idle_core = numa_idle_core(idle_core, cpu); 2076 } 2077 } 2078 rcu_read_unlock(); 2079 2080 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2081 2082 ns->node_type = numa_classify(env->imbalance_pct, ns); 2083 2084 if (idle_core >= 0) 2085 ns->idle_cpu = idle_core; 2086 } 2087 2088 static void task_numa_assign(struct task_numa_env *env, 2089 struct task_struct *p, long imp) 2090 { 2091 struct rq *rq = cpu_rq(env->dst_cpu); 2092 2093 /* Check if run-queue part of active NUMA balance. */ 2094 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2095 int cpu; 2096 int start = env->dst_cpu; 2097 2098 /* Find alternative idle CPU. */ 2099 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2100 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2101 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2102 continue; 2103 } 2104 2105 env->dst_cpu = cpu; 2106 rq = cpu_rq(env->dst_cpu); 2107 if (!xchg(&rq->numa_migrate_on, 1)) 2108 goto assign; 2109 } 2110 2111 /* Failed to find an alternative idle CPU */ 2112 return; 2113 } 2114 2115 assign: 2116 /* 2117 * Clear previous best_cpu/rq numa-migrate flag, since task now 2118 * found a better CPU to move/swap. 2119 */ 2120 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2121 rq = cpu_rq(env->best_cpu); 2122 WRITE_ONCE(rq->numa_migrate_on, 0); 2123 } 2124 2125 if (env->best_task) 2126 put_task_struct(env->best_task); 2127 if (p) 2128 get_task_struct(p); 2129 2130 env->best_task = p; 2131 env->best_imp = imp; 2132 env->best_cpu = env->dst_cpu; 2133 } 2134 2135 static bool load_too_imbalanced(long src_load, long dst_load, 2136 struct task_numa_env *env) 2137 { 2138 long imb, old_imb; 2139 long orig_src_load, orig_dst_load; 2140 long src_capacity, dst_capacity; 2141 2142 /* 2143 * The load is corrected for the CPU capacity available on each node. 2144 * 2145 * src_load dst_load 2146 * ------------ vs --------- 2147 * src_capacity dst_capacity 2148 */ 2149 src_capacity = env->src_stats.compute_capacity; 2150 dst_capacity = env->dst_stats.compute_capacity; 2151 2152 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2153 2154 orig_src_load = env->src_stats.load; 2155 orig_dst_load = env->dst_stats.load; 2156 2157 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2158 2159 /* Would this change make things worse? */ 2160 return (imb > old_imb); 2161 } 2162 2163 /* 2164 * Maximum NUMA importance can be 1998 (2*999); 2165 * SMALLIMP @ 30 would be close to 1998/64. 2166 * Used to deter task migration. 2167 */ 2168 #define SMALLIMP 30 2169 2170 /* 2171 * This checks if the overall compute and NUMA accesses of the system would 2172 * be improved if the source tasks was migrated to the target dst_cpu taking 2173 * into account that it might be best if task running on the dst_cpu should 2174 * be exchanged with the source task 2175 */ 2176 static bool task_numa_compare(struct task_numa_env *env, 2177 long taskimp, long groupimp, bool maymove) 2178 { 2179 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2180 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2181 long imp = p_ng ? groupimp : taskimp; 2182 struct task_struct *cur; 2183 long src_load, dst_load; 2184 int dist = env->dist; 2185 long moveimp = imp; 2186 long load; 2187 bool stopsearch = false; 2188 2189 if (READ_ONCE(dst_rq->numa_migrate_on)) 2190 return false; 2191 2192 rcu_read_lock(); 2193 cur = rcu_dereference(dst_rq->curr); 2194 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2195 cur = NULL; 2196 2197 /* 2198 * Because we have preemption enabled we can get migrated around and 2199 * end try selecting ourselves (current == env->p) as a swap candidate. 2200 */ 2201 if (cur == env->p) { 2202 stopsearch = true; 2203 goto unlock; 2204 } 2205 2206 if (!cur) { 2207 if (maymove && moveimp >= env->best_imp) 2208 goto assign; 2209 else 2210 goto unlock; 2211 } 2212 2213 /* Skip this swap candidate if cannot move to the source cpu. */ 2214 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2215 goto unlock; 2216 2217 /* 2218 * Skip this swap candidate if it is not moving to its preferred 2219 * node and the best task is. 2220 */ 2221 if (env->best_task && 2222 env->best_task->numa_preferred_nid == env->src_nid && 2223 cur->numa_preferred_nid != env->src_nid) { 2224 goto unlock; 2225 } 2226 2227 /* 2228 * "imp" is the fault differential for the source task between the 2229 * source and destination node. Calculate the total differential for 2230 * the source task and potential destination task. The more negative 2231 * the value is, the more remote accesses that would be expected to 2232 * be incurred if the tasks were swapped. 2233 * 2234 * If dst and source tasks are in the same NUMA group, or not 2235 * in any group then look only at task weights. 2236 */ 2237 cur_ng = rcu_dereference(cur->numa_group); 2238 if (cur_ng == p_ng) { 2239 /* 2240 * Do not swap within a group or between tasks that have 2241 * no group if there is spare capacity. Swapping does 2242 * not address the load imbalance and helps one task at 2243 * the cost of punishing another. 2244 */ 2245 if (env->dst_stats.node_type == node_has_spare) 2246 goto unlock; 2247 2248 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2249 task_weight(cur, env->dst_nid, dist); 2250 /* 2251 * Add some hysteresis to prevent swapping the 2252 * tasks within a group over tiny differences. 2253 */ 2254 if (cur_ng) 2255 imp -= imp / 16; 2256 } else { 2257 /* 2258 * Compare the group weights. If a task is all by itself 2259 * (not part of a group), use the task weight instead. 2260 */ 2261 if (cur_ng && p_ng) 2262 imp += group_weight(cur, env->src_nid, dist) - 2263 group_weight(cur, env->dst_nid, dist); 2264 else 2265 imp += task_weight(cur, env->src_nid, dist) - 2266 task_weight(cur, env->dst_nid, dist); 2267 } 2268 2269 /* Discourage picking a task already on its preferred node */ 2270 if (cur->numa_preferred_nid == env->dst_nid) 2271 imp -= imp / 16; 2272 2273 /* 2274 * Encourage picking a task that moves to its preferred node. 2275 * This potentially makes imp larger than it's maximum of 2276 * 1998 (see SMALLIMP and task_weight for why) but in this 2277 * case, it does not matter. 2278 */ 2279 if (cur->numa_preferred_nid == env->src_nid) 2280 imp += imp / 8; 2281 2282 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2283 imp = moveimp; 2284 cur = NULL; 2285 goto assign; 2286 } 2287 2288 /* 2289 * Prefer swapping with a task moving to its preferred node over a 2290 * task that is not. 2291 */ 2292 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2293 env->best_task->numa_preferred_nid != env->src_nid) { 2294 goto assign; 2295 } 2296 2297 /* 2298 * If the NUMA importance is less than SMALLIMP, 2299 * task migration might only result in ping pong 2300 * of tasks and also hurt performance due to cache 2301 * misses. 2302 */ 2303 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2304 goto unlock; 2305 2306 /* 2307 * In the overloaded case, try and keep the load balanced. 2308 */ 2309 load = task_h_load(env->p) - task_h_load(cur); 2310 if (!load) 2311 goto assign; 2312 2313 dst_load = env->dst_stats.load + load; 2314 src_load = env->src_stats.load - load; 2315 2316 if (load_too_imbalanced(src_load, dst_load, env)) 2317 goto unlock; 2318 2319 assign: 2320 /* Evaluate an idle CPU for a task numa move. */ 2321 if (!cur) { 2322 int cpu = env->dst_stats.idle_cpu; 2323 2324 /* Nothing cached so current CPU went idle since the search. */ 2325 if (cpu < 0) 2326 cpu = env->dst_cpu; 2327 2328 /* 2329 * If the CPU is no longer truly idle and the previous best CPU 2330 * is, keep using it. 2331 */ 2332 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2333 idle_cpu(env->best_cpu)) { 2334 cpu = env->best_cpu; 2335 } 2336 2337 env->dst_cpu = cpu; 2338 } 2339 2340 task_numa_assign(env, cur, imp); 2341 2342 /* 2343 * If a move to idle is allowed because there is capacity or load 2344 * balance improves then stop the search. While a better swap 2345 * candidate may exist, a search is not free. 2346 */ 2347 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2348 stopsearch = true; 2349 2350 /* 2351 * If a swap candidate must be identified and the current best task 2352 * moves its preferred node then stop the search. 2353 */ 2354 if (!maymove && env->best_task && 2355 env->best_task->numa_preferred_nid == env->src_nid) { 2356 stopsearch = true; 2357 } 2358 unlock: 2359 rcu_read_unlock(); 2360 2361 return stopsearch; 2362 } 2363 2364 static void task_numa_find_cpu(struct task_numa_env *env, 2365 long taskimp, long groupimp) 2366 { 2367 bool maymove = false; 2368 int cpu; 2369 2370 /* 2371 * If dst node has spare capacity, then check if there is an 2372 * imbalance that would be overruled by the load balancer. 2373 */ 2374 if (env->dst_stats.node_type == node_has_spare) { 2375 unsigned int imbalance; 2376 int src_running, dst_running; 2377 2378 /* 2379 * Would movement cause an imbalance? Note that if src has 2380 * more running tasks that the imbalance is ignored as the 2381 * move improves the imbalance from the perspective of the 2382 * CPU load balancer. 2383 * */ 2384 src_running = env->src_stats.nr_running - 1; 2385 dst_running = env->dst_stats.nr_running + 1; 2386 imbalance = max(0, dst_running - src_running); 2387 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2388 env->imb_numa_nr); 2389 2390 /* Use idle CPU if there is no imbalance */ 2391 if (!imbalance) { 2392 maymove = true; 2393 if (env->dst_stats.idle_cpu >= 0) { 2394 env->dst_cpu = env->dst_stats.idle_cpu; 2395 task_numa_assign(env, NULL, 0); 2396 return; 2397 } 2398 } 2399 } else { 2400 long src_load, dst_load, load; 2401 /* 2402 * If the improvement from just moving env->p direction is better 2403 * than swapping tasks around, check if a move is possible. 2404 */ 2405 load = task_h_load(env->p); 2406 dst_load = env->dst_stats.load + load; 2407 src_load = env->src_stats.load - load; 2408 maymove = !load_too_imbalanced(src_load, dst_load, env); 2409 } 2410 2411 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2412 /* Skip this CPU if the source task cannot migrate */ 2413 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2414 continue; 2415 2416 env->dst_cpu = cpu; 2417 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2418 break; 2419 } 2420 } 2421 2422 static int task_numa_migrate(struct task_struct *p) 2423 { 2424 struct task_numa_env env = { 2425 .p = p, 2426 2427 .src_cpu = task_cpu(p), 2428 .src_nid = task_node(p), 2429 2430 .imbalance_pct = 112, 2431 2432 .best_task = NULL, 2433 .best_imp = 0, 2434 .best_cpu = -1, 2435 }; 2436 unsigned long taskweight, groupweight; 2437 struct sched_domain *sd; 2438 long taskimp, groupimp; 2439 struct numa_group *ng; 2440 struct rq *best_rq; 2441 int nid, ret, dist; 2442 2443 /* 2444 * Pick the lowest SD_NUMA domain, as that would have the smallest 2445 * imbalance and would be the first to start moving tasks about. 2446 * 2447 * And we want to avoid any moving of tasks about, as that would create 2448 * random movement of tasks -- counter the numa conditions we're trying 2449 * to satisfy here. 2450 */ 2451 rcu_read_lock(); 2452 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2453 if (sd) { 2454 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2455 env.imb_numa_nr = sd->imb_numa_nr; 2456 } 2457 rcu_read_unlock(); 2458 2459 /* 2460 * Cpusets can break the scheduler domain tree into smaller 2461 * balance domains, some of which do not cross NUMA boundaries. 2462 * Tasks that are "trapped" in such domains cannot be migrated 2463 * elsewhere, so there is no point in (re)trying. 2464 */ 2465 if (unlikely(!sd)) { 2466 sched_setnuma(p, task_node(p)); 2467 return -EINVAL; 2468 } 2469 2470 env.dst_nid = p->numa_preferred_nid; 2471 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2472 taskweight = task_weight(p, env.src_nid, dist); 2473 groupweight = group_weight(p, env.src_nid, dist); 2474 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2475 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2476 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2477 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2478 2479 /* Try to find a spot on the preferred nid. */ 2480 task_numa_find_cpu(&env, taskimp, groupimp); 2481 2482 /* 2483 * Look at other nodes in these cases: 2484 * - there is no space available on the preferred_nid 2485 * - the task is part of a numa_group that is interleaved across 2486 * multiple NUMA nodes; in order to better consolidate the group, 2487 * we need to check other locations. 2488 */ 2489 ng = deref_curr_numa_group(p); 2490 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2491 for_each_node_state(nid, N_CPU) { 2492 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2493 continue; 2494 2495 dist = node_distance(env.src_nid, env.dst_nid); 2496 if (sched_numa_topology_type == NUMA_BACKPLANE && 2497 dist != env.dist) { 2498 taskweight = task_weight(p, env.src_nid, dist); 2499 groupweight = group_weight(p, env.src_nid, dist); 2500 } 2501 2502 /* Only consider nodes where both task and groups benefit */ 2503 taskimp = task_weight(p, nid, dist) - taskweight; 2504 groupimp = group_weight(p, nid, dist) - groupweight; 2505 if (taskimp < 0 && groupimp < 0) 2506 continue; 2507 2508 env.dist = dist; 2509 env.dst_nid = nid; 2510 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2511 task_numa_find_cpu(&env, taskimp, groupimp); 2512 } 2513 } 2514 2515 /* 2516 * If the task is part of a workload that spans multiple NUMA nodes, 2517 * and is migrating into one of the workload's active nodes, remember 2518 * this node as the task's preferred numa node, so the workload can 2519 * settle down. 2520 * A task that migrated to a second choice node will be better off 2521 * trying for a better one later. Do not set the preferred node here. 2522 */ 2523 if (ng) { 2524 if (env.best_cpu == -1) 2525 nid = env.src_nid; 2526 else 2527 nid = cpu_to_node(env.best_cpu); 2528 2529 if (nid != p->numa_preferred_nid) 2530 sched_setnuma(p, nid); 2531 } 2532 2533 /* No better CPU than the current one was found. */ 2534 if (env.best_cpu == -1) { 2535 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2536 return -EAGAIN; 2537 } 2538 2539 best_rq = cpu_rq(env.best_cpu); 2540 if (env.best_task == NULL) { 2541 ret = migrate_task_to(p, env.best_cpu); 2542 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2543 if (ret != 0) 2544 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2545 return ret; 2546 } 2547 2548 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2549 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2550 2551 if (ret != 0) 2552 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2553 put_task_struct(env.best_task); 2554 return ret; 2555 } 2556 2557 /* Attempt to migrate a task to a CPU on the preferred node. */ 2558 static void numa_migrate_preferred(struct task_struct *p) 2559 { 2560 unsigned long interval = HZ; 2561 2562 /* This task has no NUMA fault statistics yet */ 2563 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2564 return; 2565 2566 /* Periodically retry migrating the task to the preferred node */ 2567 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2568 p->numa_migrate_retry = jiffies + interval; 2569 2570 /* Success if task is already running on preferred CPU */ 2571 if (task_node(p) == p->numa_preferred_nid) 2572 return; 2573 2574 /* Otherwise, try migrate to a CPU on the preferred node */ 2575 task_numa_migrate(p); 2576 } 2577 2578 /* 2579 * Find out how many nodes the workload is actively running on. Do this by 2580 * tracking the nodes from which NUMA hinting faults are triggered. This can 2581 * be different from the set of nodes where the workload's memory is currently 2582 * located. 2583 */ 2584 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2585 { 2586 unsigned long faults, max_faults = 0; 2587 int nid, active_nodes = 0; 2588 2589 for_each_node_state(nid, N_CPU) { 2590 faults = group_faults_cpu(numa_group, nid); 2591 if (faults > max_faults) 2592 max_faults = faults; 2593 } 2594 2595 for_each_node_state(nid, N_CPU) { 2596 faults = group_faults_cpu(numa_group, nid); 2597 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2598 active_nodes++; 2599 } 2600 2601 numa_group->max_faults_cpu = max_faults; 2602 numa_group->active_nodes = active_nodes; 2603 } 2604 2605 /* 2606 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2607 * increments. The more local the fault statistics are, the higher the scan 2608 * period will be for the next scan window. If local/(local+remote) ratio is 2609 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2610 * the scan period will decrease. Aim for 70% local accesses. 2611 */ 2612 #define NUMA_PERIOD_SLOTS 10 2613 #define NUMA_PERIOD_THRESHOLD 7 2614 2615 /* 2616 * Increase the scan period (slow down scanning) if the majority of 2617 * our memory is already on our local node, or if the majority of 2618 * the page accesses are shared with other processes. 2619 * Otherwise, decrease the scan period. 2620 */ 2621 static void update_task_scan_period(struct task_struct *p, 2622 unsigned long shared, unsigned long private) 2623 { 2624 unsigned int period_slot; 2625 int lr_ratio, ps_ratio; 2626 int diff; 2627 2628 unsigned long remote = p->numa_faults_locality[0]; 2629 unsigned long local = p->numa_faults_locality[1]; 2630 2631 /* 2632 * If there were no record hinting faults then either the task is 2633 * completely idle or all activity is in areas that are not of interest 2634 * to automatic numa balancing. Related to that, if there were failed 2635 * migration then it implies we are migrating too quickly or the local 2636 * node is overloaded. In either case, scan slower 2637 */ 2638 if (local + shared == 0 || p->numa_faults_locality[2]) { 2639 p->numa_scan_period = min(p->numa_scan_period_max, 2640 p->numa_scan_period << 1); 2641 2642 p->mm->numa_next_scan = jiffies + 2643 msecs_to_jiffies(p->numa_scan_period); 2644 2645 return; 2646 } 2647 2648 /* 2649 * Prepare to scale scan period relative to the current period. 2650 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2651 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2652 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2653 */ 2654 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2655 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2656 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2657 2658 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2659 /* 2660 * Most memory accesses are local. There is no need to 2661 * do fast NUMA scanning, since memory is already local. 2662 */ 2663 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2664 if (!slot) 2665 slot = 1; 2666 diff = slot * period_slot; 2667 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2668 /* 2669 * Most memory accesses are shared with other tasks. 2670 * There is no point in continuing fast NUMA scanning, 2671 * since other tasks may just move the memory elsewhere. 2672 */ 2673 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2674 if (!slot) 2675 slot = 1; 2676 diff = slot * period_slot; 2677 } else { 2678 /* 2679 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2680 * yet they are not on the local NUMA node. Speed up 2681 * NUMA scanning to get the memory moved over. 2682 */ 2683 int ratio = max(lr_ratio, ps_ratio); 2684 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2685 } 2686 2687 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2688 task_scan_min(p), task_scan_max(p)); 2689 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2690 } 2691 2692 /* 2693 * Get the fraction of time the task has been running since the last 2694 * NUMA placement cycle. The scheduler keeps similar statistics, but 2695 * decays those on a 32ms period, which is orders of magnitude off 2696 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2697 * stats only if the task is so new there are no NUMA statistics yet. 2698 */ 2699 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2700 { 2701 u64 runtime, delta, now; 2702 /* Use the start of this time slice to avoid calculations. */ 2703 now = p->se.exec_start; 2704 runtime = p->se.sum_exec_runtime; 2705 2706 if (p->last_task_numa_placement) { 2707 delta = runtime - p->last_sum_exec_runtime; 2708 *period = now - p->last_task_numa_placement; 2709 2710 /* Avoid time going backwards, prevent potential divide error: */ 2711 if (unlikely((s64)*period < 0)) 2712 *period = 0; 2713 } else { 2714 delta = p->se.avg.load_sum; 2715 *period = LOAD_AVG_MAX; 2716 } 2717 2718 p->last_sum_exec_runtime = runtime; 2719 p->last_task_numa_placement = now; 2720 2721 return delta; 2722 } 2723 2724 /* 2725 * Determine the preferred nid for a task in a numa_group. This needs to 2726 * be done in a way that produces consistent results with group_weight, 2727 * otherwise workloads might not converge. 2728 */ 2729 static int preferred_group_nid(struct task_struct *p, int nid) 2730 { 2731 nodemask_t nodes; 2732 int dist; 2733 2734 /* Direct connections between all NUMA nodes. */ 2735 if (sched_numa_topology_type == NUMA_DIRECT) 2736 return nid; 2737 2738 /* 2739 * On a system with glueless mesh NUMA topology, group_weight 2740 * scores nodes according to the number of NUMA hinting faults on 2741 * both the node itself, and on nearby nodes. 2742 */ 2743 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2744 unsigned long score, max_score = 0; 2745 int node, max_node = nid; 2746 2747 dist = sched_max_numa_distance; 2748 2749 for_each_node_state(node, N_CPU) { 2750 score = group_weight(p, node, dist); 2751 if (score > max_score) { 2752 max_score = score; 2753 max_node = node; 2754 } 2755 } 2756 return max_node; 2757 } 2758 2759 /* 2760 * Finding the preferred nid in a system with NUMA backplane 2761 * interconnect topology is more involved. The goal is to locate 2762 * tasks from numa_groups near each other in the system, and 2763 * untangle workloads from different sides of the system. This requires 2764 * searching down the hierarchy of node groups, recursively searching 2765 * inside the highest scoring group of nodes. The nodemask tricks 2766 * keep the complexity of the search down. 2767 */ 2768 nodes = node_states[N_CPU]; 2769 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2770 unsigned long max_faults = 0; 2771 nodemask_t max_group = NODE_MASK_NONE; 2772 int a, b; 2773 2774 /* Are there nodes at this distance from each other? */ 2775 if (!find_numa_distance(dist)) 2776 continue; 2777 2778 for_each_node_mask(a, nodes) { 2779 unsigned long faults = 0; 2780 nodemask_t this_group; 2781 nodes_clear(this_group); 2782 2783 /* Sum group's NUMA faults; includes a==b case. */ 2784 for_each_node_mask(b, nodes) { 2785 if (node_distance(a, b) < dist) { 2786 faults += group_faults(p, b); 2787 node_set(b, this_group); 2788 node_clear(b, nodes); 2789 } 2790 } 2791 2792 /* Remember the top group. */ 2793 if (faults > max_faults) { 2794 max_faults = faults; 2795 max_group = this_group; 2796 /* 2797 * subtle: at the smallest distance there is 2798 * just one node left in each "group", the 2799 * winner is the preferred nid. 2800 */ 2801 nid = a; 2802 } 2803 } 2804 /* Next round, evaluate the nodes within max_group. */ 2805 if (!max_faults) 2806 break; 2807 nodes = max_group; 2808 } 2809 return nid; 2810 } 2811 2812 static void task_numa_placement(struct task_struct *p) 2813 { 2814 int seq, nid, max_nid = NUMA_NO_NODE; 2815 unsigned long max_faults = 0; 2816 unsigned long fault_types[2] = { 0, 0 }; 2817 unsigned long total_faults; 2818 u64 runtime, period; 2819 spinlock_t *group_lock = NULL; 2820 struct numa_group *ng; 2821 2822 /* 2823 * The p->mm->numa_scan_seq field gets updated without 2824 * exclusive access. Use READ_ONCE() here to ensure 2825 * that the field is read in a single access: 2826 */ 2827 seq = READ_ONCE(p->mm->numa_scan_seq); 2828 if (p->numa_scan_seq == seq) 2829 return; 2830 p->numa_scan_seq = seq; 2831 p->numa_scan_period_max = task_scan_max(p); 2832 2833 total_faults = p->numa_faults_locality[0] + 2834 p->numa_faults_locality[1]; 2835 runtime = numa_get_avg_runtime(p, &period); 2836 2837 /* If the task is part of a group prevent parallel updates to group stats */ 2838 ng = deref_curr_numa_group(p); 2839 if (ng) { 2840 group_lock = &ng->lock; 2841 spin_lock_irq(group_lock); 2842 } 2843 2844 /* Find the node with the highest number of faults */ 2845 for_each_online_node(nid) { 2846 /* Keep track of the offsets in numa_faults array */ 2847 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2848 unsigned long faults = 0, group_faults = 0; 2849 int priv; 2850 2851 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2852 long diff, f_diff, f_weight; 2853 2854 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2855 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2856 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2857 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2858 2859 /* Decay existing window, copy faults since last scan */ 2860 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2861 fault_types[priv] += p->numa_faults[membuf_idx]; 2862 p->numa_faults[membuf_idx] = 0; 2863 2864 /* 2865 * Normalize the faults_from, so all tasks in a group 2866 * count according to CPU use, instead of by the raw 2867 * number of faults. Tasks with little runtime have 2868 * little over-all impact on throughput, and thus their 2869 * faults are less important. 2870 */ 2871 f_weight = div64_u64(runtime << 16, period + 1); 2872 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2873 (total_faults + 1); 2874 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2875 p->numa_faults[cpubuf_idx] = 0; 2876 2877 p->numa_faults[mem_idx] += diff; 2878 p->numa_faults[cpu_idx] += f_diff; 2879 faults += p->numa_faults[mem_idx]; 2880 p->total_numa_faults += diff; 2881 if (ng) { 2882 /* 2883 * safe because we can only change our own group 2884 * 2885 * mem_idx represents the offset for a given 2886 * nid and priv in a specific region because it 2887 * is at the beginning of the numa_faults array. 2888 */ 2889 ng->faults[mem_idx] += diff; 2890 ng->faults[cpu_idx] += f_diff; 2891 ng->total_faults += diff; 2892 group_faults += ng->faults[mem_idx]; 2893 } 2894 } 2895 2896 if (!ng) { 2897 if (faults > max_faults) { 2898 max_faults = faults; 2899 max_nid = nid; 2900 } 2901 } else if (group_faults > max_faults) { 2902 max_faults = group_faults; 2903 max_nid = nid; 2904 } 2905 } 2906 2907 /* Cannot migrate task to CPU-less node */ 2908 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) { 2909 int near_nid = max_nid; 2910 int distance, near_distance = INT_MAX; 2911 2912 for_each_node_state(nid, N_CPU) { 2913 distance = node_distance(max_nid, nid); 2914 if (distance < near_distance) { 2915 near_nid = nid; 2916 near_distance = distance; 2917 } 2918 } 2919 max_nid = near_nid; 2920 } 2921 2922 if (ng) { 2923 numa_group_count_active_nodes(ng); 2924 spin_unlock_irq(group_lock); 2925 max_nid = preferred_group_nid(p, max_nid); 2926 } 2927 2928 if (max_faults) { 2929 /* Set the new preferred node */ 2930 if (max_nid != p->numa_preferred_nid) 2931 sched_setnuma(p, max_nid); 2932 } 2933 2934 update_task_scan_period(p, fault_types[0], fault_types[1]); 2935 } 2936 2937 static inline int get_numa_group(struct numa_group *grp) 2938 { 2939 return refcount_inc_not_zero(&grp->refcount); 2940 } 2941 2942 static inline void put_numa_group(struct numa_group *grp) 2943 { 2944 if (refcount_dec_and_test(&grp->refcount)) 2945 kfree_rcu(grp, rcu); 2946 } 2947 2948 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2949 int *priv) 2950 { 2951 struct numa_group *grp, *my_grp; 2952 struct task_struct *tsk; 2953 bool join = false; 2954 int cpu = cpupid_to_cpu(cpupid); 2955 int i; 2956 2957 if (unlikely(!deref_curr_numa_group(p))) { 2958 unsigned int size = sizeof(struct numa_group) + 2959 NR_NUMA_HINT_FAULT_STATS * 2960 nr_node_ids * sizeof(unsigned long); 2961 2962 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2963 if (!grp) 2964 return; 2965 2966 refcount_set(&grp->refcount, 1); 2967 grp->active_nodes = 1; 2968 grp->max_faults_cpu = 0; 2969 spin_lock_init(&grp->lock); 2970 grp->gid = p->pid; 2971 2972 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2973 grp->faults[i] = p->numa_faults[i]; 2974 2975 grp->total_faults = p->total_numa_faults; 2976 2977 grp->nr_tasks++; 2978 rcu_assign_pointer(p->numa_group, grp); 2979 } 2980 2981 rcu_read_lock(); 2982 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2983 2984 if (!cpupid_match_pid(tsk, cpupid)) 2985 goto no_join; 2986 2987 grp = rcu_dereference(tsk->numa_group); 2988 if (!grp) 2989 goto no_join; 2990 2991 my_grp = deref_curr_numa_group(p); 2992 if (grp == my_grp) 2993 goto no_join; 2994 2995 /* 2996 * Only join the other group if its bigger; if we're the bigger group, 2997 * the other task will join us. 2998 */ 2999 if (my_grp->nr_tasks > grp->nr_tasks) 3000 goto no_join; 3001 3002 /* 3003 * Tie-break on the grp address. 3004 */ 3005 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 3006 goto no_join; 3007 3008 /* Always join threads in the same process. */ 3009 if (tsk->mm == current->mm) 3010 join = true; 3011 3012 /* Simple filter to avoid false positives due to PID collisions */ 3013 if (flags & TNF_SHARED) 3014 join = true; 3015 3016 /* Update priv based on whether false sharing was detected */ 3017 *priv = !join; 3018 3019 if (join && !get_numa_group(grp)) 3020 goto no_join; 3021 3022 rcu_read_unlock(); 3023 3024 if (!join) 3025 return; 3026 3027 WARN_ON_ONCE(irqs_disabled()); 3028 double_lock_irq(&my_grp->lock, &grp->lock); 3029 3030 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3031 my_grp->faults[i] -= p->numa_faults[i]; 3032 grp->faults[i] += p->numa_faults[i]; 3033 } 3034 my_grp->total_faults -= p->total_numa_faults; 3035 grp->total_faults += p->total_numa_faults; 3036 3037 my_grp->nr_tasks--; 3038 grp->nr_tasks++; 3039 3040 spin_unlock(&my_grp->lock); 3041 spin_unlock_irq(&grp->lock); 3042 3043 rcu_assign_pointer(p->numa_group, grp); 3044 3045 put_numa_group(my_grp); 3046 return; 3047 3048 no_join: 3049 rcu_read_unlock(); 3050 return; 3051 } 3052 3053 /* 3054 * Get rid of NUMA statistics associated with a task (either current or dead). 3055 * If @final is set, the task is dead and has reached refcount zero, so we can 3056 * safely free all relevant data structures. Otherwise, there might be 3057 * concurrent reads from places like load balancing and procfs, and we should 3058 * reset the data back to default state without freeing ->numa_faults. 3059 */ 3060 void task_numa_free(struct task_struct *p, bool final) 3061 { 3062 /* safe: p either is current or is being freed by current */ 3063 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3064 unsigned long *numa_faults = p->numa_faults; 3065 unsigned long flags; 3066 int i; 3067 3068 if (!numa_faults) 3069 return; 3070 3071 if (grp) { 3072 spin_lock_irqsave(&grp->lock, flags); 3073 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3074 grp->faults[i] -= p->numa_faults[i]; 3075 grp->total_faults -= p->total_numa_faults; 3076 3077 grp->nr_tasks--; 3078 spin_unlock_irqrestore(&grp->lock, flags); 3079 RCU_INIT_POINTER(p->numa_group, NULL); 3080 put_numa_group(grp); 3081 } 3082 3083 if (final) { 3084 p->numa_faults = NULL; 3085 kfree(numa_faults); 3086 } else { 3087 p->total_numa_faults = 0; 3088 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3089 numa_faults[i] = 0; 3090 } 3091 } 3092 3093 /* 3094 * Got a PROT_NONE fault for a page on @node. 3095 */ 3096 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3097 { 3098 struct task_struct *p = current; 3099 bool migrated = flags & TNF_MIGRATED; 3100 int cpu_node = task_node(current); 3101 int local = !!(flags & TNF_FAULT_LOCAL); 3102 struct numa_group *ng; 3103 int priv; 3104 3105 if (!static_branch_likely(&sched_numa_balancing)) 3106 return; 3107 3108 /* for example, ksmd faulting in a user's mm */ 3109 if (!p->mm) 3110 return; 3111 3112 /* 3113 * NUMA faults statistics are unnecessary for the slow memory 3114 * node for memory tiering mode. 3115 */ 3116 if (!node_is_toptier(mem_node) && 3117 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3118 !cpupid_valid(last_cpupid))) 3119 return; 3120 3121 /* Allocate buffer to track faults on a per-node basis */ 3122 if (unlikely(!p->numa_faults)) { 3123 int size = sizeof(*p->numa_faults) * 3124 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3125 3126 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3127 if (!p->numa_faults) 3128 return; 3129 3130 p->total_numa_faults = 0; 3131 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3132 } 3133 3134 /* 3135 * First accesses are treated as private, otherwise consider accesses 3136 * to be private if the accessing pid has not changed 3137 */ 3138 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3139 priv = 1; 3140 } else { 3141 priv = cpupid_match_pid(p, last_cpupid); 3142 if (!priv && !(flags & TNF_NO_GROUP)) 3143 task_numa_group(p, last_cpupid, flags, &priv); 3144 } 3145 3146 /* 3147 * If a workload spans multiple NUMA nodes, a shared fault that 3148 * occurs wholly within the set of nodes that the workload is 3149 * actively using should be counted as local. This allows the 3150 * scan rate to slow down when a workload has settled down. 3151 */ 3152 ng = deref_curr_numa_group(p); 3153 if (!priv && !local && ng && ng->active_nodes > 1 && 3154 numa_is_active_node(cpu_node, ng) && 3155 numa_is_active_node(mem_node, ng)) 3156 local = 1; 3157 3158 /* 3159 * Retry to migrate task to preferred node periodically, in case it 3160 * previously failed, or the scheduler moved us. 3161 */ 3162 if (time_after(jiffies, p->numa_migrate_retry)) { 3163 task_numa_placement(p); 3164 numa_migrate_preferred(p); 3165 } 3166 3167 if (migrated) 3168 p->numa_pages_migrated += pages; 3169 if (flags & TNF_MIGRATE_FAIL) 3170 p->numa_faults_locality[2] += pages; 3171 3172 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3173 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3174 p->numa_faults_locality[local] += pages; 3175 } 3176 3177 static void reset_ptenuma_scan(struct task_struct *p) 3178 { 3179 /* 3180 * We only did a read acquisition of the mmap sem, so 3181 * p->mm->numa_scan_seq is written to without exclusive access 3182 * and the update is not guaranteed to be atomic. That's not 3183 * much of an issue though, since this is just used for 3184 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3185 * expensive, to avoid any form of compiler optimizations: 3186 */ 3187 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3188 p->mm->numa_scan_offset = 0; 3189 } 3190 3191 static bool vma_is_accessed(struct vm_area_struct *vma) 3192 { 3193 unsigned long pids; 3194 /* 3195 * Allow unconditional access first two times, so that all the (pages) 3196 * of VMAs get prot_none fault introduced irrespective of accesses. 3197 * This is also done to avoid any side effect of task scanning 3198 * amplifying the unfairness of disjoint set of VMAs' access. 3199 */ 3200 if (READ_ONCE(current->mm->numa_scan_seq) < 2) 3201 return true; 3202 3203 pids = vma->numab_state->access_pids[0] | vma->numab_state->access_pids[1]; 3204 return test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids); 3205 } 3206 3207 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3208 3209 /* 3210 * The expensive part of numa migration is done from task_work context. 3211 * Triggered from task_tick_numa(). 3212 */ 3213 static void task_numa_work(struct callback_head *work) 3214 { 3215 unsigned long migrate, next_scan, now = jiffies; 3216 struct task_struct *p = current; 3217 struct mm_struct *mm = p->mm; 3218 u64 runtime = p->se.sum_exec_runtime; 3219 struct vm_area_struct *vma; 3220 unsigned long start, end; 3221 unsigned long nr_pte_updates = 0; 3222 long pages, virtpages; 3223 struct vma_iterator vmi; 3224 3225 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 3226 3227 work->next = work; 3228 /* 3229 * Who cares about NUMA placement when they're dying. 3230 * 3231 * NOTE: make sure not to dereference p->mm before this check, 3232 * exit_task_work() happens _after_ exit_mm() so we could be called 3233 * without p->mm even though we still had it when we enqueued this 3234 * work. 3235 */ 3236 if (p->flags & PF_EXITING) 3237 return; 3238 3239 if (!mm->numa_next_scan) { 3240 mm->numa_next_scan = now + 3241 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3242 } 3243 3244 /* 3245 * Enforce maximal scan/migration frequency.. 3246 */ 3247 migrate = mm->numa_next_scan; 3248 if (time_before(now, migrate)) 3249 return; 3250 3251 if (p->numa_scan_period == 0) { 3252 p->numa_scan_period_max = task_scan_max(p); 3253 p->numa_scan_period = task_scan_start(p); 3254 } 3255 3256 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3257 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3258 return; 3259 3260 /* 3261 * Delay this task enough that another task of this mm will likely win 3262 * the next time around. 3263 */ 3264 p->node_stamp += 2 * TICK_NSEC; 3265 3266 start = mm->numa_scan_offset; 3267 pages = sysctl_numa_balancing_scan_size; 3268 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3269 virtpages = pages * 8; /* Scan up to this much virtual space */ 3270 if (!pages) 3271 return; 3272 3273 3274 if (!mmap_read_trylock(mm)) 3275 return; 3276 vma_iter_init(&vmi, mm, start); 3277 vma = vma_next(&vmi); 3278 if (!vma) { 3279 reset_ptenuma_scan(p); 3280 start = 0; 3281 vma_iter_set(&vmi, start); 3282 vma = vma_next(&vmi); 3283 } 3284 3285 do { 3286 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3287 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3288 continue; 3289 } 3290 3291 /* 3292 * Shared library pages mapped by multiple processes are not 3293 * migrated as it is expected they are cache replicated. Avoid 3294 * hinting faults in read-only file-backed mappings or the vdso 3295 * as migrating the pages will be of marginal benefit. 3296 */ 3297 if (!vma->vm_mm || 3298 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 3299 continue; 3300 3301 /* 3302 * Skip inaccessible VMAs to avoid any confusion between 3303 * PROT_NONE and NUMA hinting ptes 3304 */ 3305 if (!vma_is_accessible(vma)) 3306 continue; 3307 3308 /* Initialise new per-VMA NUMAB state. */ 3309 if (!vma->numab_state) { 3310 vma->numab_state = kzalloc(sizeof(struct vma_numab_state), 3311 GFP_KERNEL); 3312 if (!vma->numab_state) 3313 continue; 3314 3315 vma->numab_state->next_scan = now + 3316 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3317 3318 /* Reset happens after 4 times scan delay of scan start */ 3319 vma->numab_state->next_pid_reset = vma->numab_state->next_scan + 3320 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3321 } 3322 3323 /* 3324 * Scanning the VMA's of short lived tasks add more overhead. So 3325 * delay the scan for new VMAs. 3326 */ 3327 if (mm->numa_scan_seq && time_before(jiffies, 3328 vma->numab_state->next_scan)) 3329 continue; 3330 3331 /* Do not scan the VMA if task has not accessed */ 3332 if (!vma_is_accessed(vma)) 3333 continue; 3334 3335 /* 3336 * RESET access PIDs regularly for old VMAs. Resetting after checking 3337 * vma for recent access to avoid clearing PID info before access.. 3338 */ 3339 if (mm->numa_scan_seq && 3340 time_after(jiffies, vma->numab_state->next_pid_reset)) { 3341 vma->numab_state->next_pid_reset = vma->numab_state->next_pid_reset + 3342 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3343 vma->numab_state->access_pids[0] = READ_ONCE(vma->numab_state->access_pids[1]); 3344 vma->numab_state->access_pids[1] = 0; 3345 } 3346 3347 do { 3348 start = max(start, vma->vm_start); 3349 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3350 end = min(end, vma->vm_end); 3351 nr_pte_updates = change_prot_numa(vma, start, end); 3352 3353 /* 3354 * Try to scan sysctl_numa_balancing_size worth of 3355 * hpages that have at least one present PTE that 3356 * is not already pte-numa. If the VMA contains 3357 * areas that are unused or already full of prot_numa 3358 * PTEs, scan up to virtpages, to skip through those 3359 * areas faster. 3360 */ 3361 if (nr_pte_updates) 3362 pages -= (end - start) >> PAGE_SHIFT; 3363 virtpages -= (end - start) >> PAGE_SHIFT; 3364 3365 start = end; 3366 if (pages <= 0 || virtpages <= 0) 3367 goto out; 3368 3369 cond_resched(); 3370 } while (end != vma->vm_end); 3371 } for_each_vma(vmi, vma); 3372 3373 out: 3374 /* 3375 * It is possible to reach the end of the VMA list but the last few 3376 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3377 * would find the !migratable VMA on the next scan but not reset the 3378 * scanner to the start so check it now. 3379 */ 3380 if (vma) 3381 mm->numa_scan_offset = start; 3382 else 3383 reset_ptenuma_scan(p); 3384 mmap_read_unlock(mm); 3385 3386 /* 3387 * Make sure tasks use at least 32x as much time to run other code 3388 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3389 * Usually update_task_scan_period slows down scanning enough; on an 3390 * overloaded system we need to limit overhead on a per task basis. 3391 */ 3392 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3393 u64 diff = p->se.sum_exec_runtime - runtime; 3394 p->node_stamp += 32 * diff; 3395 } 3396 } 3397 3398 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3399 { 3400 int mm_users = 0; 3401 struct mm_struct *mm = p->mm; 3402 3403 if (mm) { 3404 mm_users = atomic_read(&mm->mm_users); 3405 if (mm_users == 1) { 3406 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3407 mm->numa_scan_seq = 0; 3408 } 3409 } 3410 p->node_stamp = 0; 3411 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3412 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3413 p->numa_migrate_retry = 0; 3414 /* Protect against double add, see task_tick_numa and task_numa_work */ 3415 p->numa_work.next = &p->numa_work; 3416 p->numa_faults = NULL; 3417 p->numa_pages_migrated = 0; 3418 p->total_numa_faults = 0; 3419 RCU_INIT_POINTER(p->numa_group, NULL); 3420 p->last_task_numa_placement = 0; 3421 p->last_sum_exec_runtime = 0; 3422 3423 init_task_work(&p->numa_work, task_numa_work); 3424 3425 /* New address space, reset the preferred nid */ 3426 if (!(clone_flags & CLONE_VM)) { 3427 p->numa_preferred_nid = NUMA_NO_NODE; 3428 return; 3429 } 3430 3431 /* 3432 * New thread, keep existing numa_preferred_nid which should be copied 3433 * already by arch_dup_task_struct but stagger when scans start. 3434 */ 3435 if (mm) { 3436 unsigned int delay; 3437 3438 delay = min_t(unsigned int, task_scan_max(current), 3439 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3440 delay += 2 * TICK_NSEC; 3441 p->node_stamp = delay; 3442 } 3443 } 3444 3445 /* 3446 * Drive the periodic memory faults.. 3447 */ 3448 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3449 { 3450 struct callback_head *work = &curr->numa_work; 3451 u64 period, now; 3452 3453 /* 3454 * We don't care about NUMA placement if we don't have memory. 3455 */ 3456 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3457 return; 3458 3459 /* 3460 * Using runtime rather than walltime has the dual advantage that 3461 * we (mostly) drive the selection from busy threads and that the 3462 * task needs to have done some actual work before we bother with 3463 * NUMA placement. 3464 */ 3465 now = curr->se.sum_exec_runtime; 3466 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3467 3468 if (now > curr->node_stamp + period) { 3469 if (!curr->node_stamp) 3470 curr->numa_scan_period = task_scan_start(curr); 3471 curr->node_stamp += period; 3472 3473 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3474 task_work_add(curr, work, TWA_RESUME); 3475 } 3476 } 3477 3478 static void update_scan_period(struct task_struct *p, int new_cpu) 3479 { 3480 int src_nid = cpu_to_node(task_cpu(p)); 3481 int dst_nid = cpu_to_node(new_cpu); 3482 3483 if (!static_branch_likely(&sched_numa_balancing)) 3484 return; 3485 3486 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3487 return; 3488 3489 if (src_nid == dst_nid) 3490 return; 3491 3492 /* 3493 * Allow resets if faults have been trapped before one scan 3494 * has completed. This is most likely due to a new task that 3495 * is pulled cross-node due to wakeups or load balancing. 3496 */ 3497 if (p->numa_scan_seq) { 3498 /* 3499 * Avoid scan adjustments if moving to the preferred 3500 * node or if the task was not previously running on 3501 * the preferred node. 3502 */ 3503 if (dst_nid == p->numa_preferred_nid || 3504 (p->numa_preferred_nid != NUMA_NO_NODE && 3505 src_nid != p->numa_preferred_nid)) 3506 return; 3507 } 3508 3509 p->numa_scan_period = task_scan_start(p); 3510 } 3511 3512 #else 3513 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3514 { 3515 } 3516 3517 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3518 { 3519 } 3520 3521 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3522 { 3523 } 3524 3525 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3526 { 3527 } 3528 3529 #endif /* CONFIG_NUMA_BALANCING */ 3530 3531 static void 3532 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3533 { 3534 update_load_add(&cfs_rq->load, se->load.weight); 3535 #ifdef CONFIG_SMP 3536 if (entity_is_task(se)) { 3537 struct rq *rq = rq_of(cfs_rq); 3538 3539 account_numa_enqueue(rq, task_of(se)); 3540 list_add(&se->group_node, &rq->cfs_tasks); 3541 } 3542 #endif 3543 cfs_rq->nr_running++; 3544 if (se_is_idle(se)) 3545 cfs_rq->idle_nr_running++; 3546 } 3547 3548 static void 3549 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3550 { 3551 update_load_sub(&cfs_rq->load, se->load.weight); 3552 #ifdef CONFIG_SMP 3553 if (entity_is_task(se)) { 3554 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3555 list_del_init(&se->group_node); 3556 } 3557 #endif 3558 cfs_rq->nr_running--; 3559 if (se_is_idle(se)) 3560 cfs_rq->idle_nr_running--; 3561 } 3562 3563 /* 3564 * Signed add and clamp on underflow. 3565 * 3566 * Explicitly do a load-store to ensure the intermediate value never hits 3567 * memory. This allows lockless observations without ever seeing the negative 3568 * values. 3569 */ 3570 #define add_positive(_ptr, _val) do { \ 3571 typeof(_ptr) ptr = (_ptr); \ 3572 typeof(_val) val = (_val); \ 3573 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3574 \ 3575 res = var + val; \ 3576 \ 3577 if (val < 0 && res > var) \ 3578 res = 0; \ 3579 \ 3580 WRITE_ONCE(*ptr, res); \ 3581 } while (0) 3582 3583 /* 3584 * Unsigned subtract and clamp on underflow. 3585 * 3586 * Explicitly do a load-store to ensure the intermediate value never hits 3587 * memory. This allows lockless observations without ever seeing the negative 3588 * values. 3589 */ 3590 #define sub_positive(_ptr, _val) do { \ 3591 typeof(_ptr) ptr = (_ptr); \ 3592 typeof(*ptr) val = (_val); \ 3593 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3594 res = var - val; \ 3595 if (res > var) \ 3596 res = 0; \ 3597 WRITE_ONCE(*ptr, res); \ 3598 } while (0) 3599 3600 /* 3601 * Remove and clamp on negative, from a local variable. 3602 * 3603 * A variant of sub_positive(), which does not use explicit load-store 3604 * and is thus optimized for local variable updates. 3605 */ 3606 #define lsub_positive(_ptr, _val) do { \ 3607 typeof(_ptr) ptr = (_ptr); \ 3608 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3609 } while (0) 3610 3611 #ifdef CONFIG_SMP 3612 static inline void 3613 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3614 { 3615 cfs_rq->avg.load_avg += se->avg.load_avg; 3616 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3617 } 3618 3619 static inline void 3620 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3621 { 3622 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3623 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3624 /* See update_cfs_rq_load_avg() */ 3625 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3626 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3627 } 3628 #else 3629 static inline void 3630 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3631 static inline void 3632 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3633 #endif 3634 3635 static void reweight_eevdf(struct sched_entity *se, u64 avruntime, 3636 unsigned long weight) 3637 { 3638 unsigned long old_weight = se->load.weight; 3639 s64 vlag, vslice; 3640 3641 /* 3642 * VRUNTIME 3643 * ======== 3644 * 3645 * COROLLARY #1: The virtual runtime of the entity needs to be 3646 * adjusted if re-weight at !0-lag point. 3647 * 3648 * Proof: For contradiction assume this is not true, so we can 3649 * re-weight without changing vruntime at !0-lag point. 3650 * 3651 * Weight VRuntime Avg-VRuntime 3652 * before w v V 3653 * after w' v' V' 3654 * 3655 * Since lag needs to be preserved through re-weight: 3656 * 3657 * lag = (V - v)*w = (V'- v')*w', where v = v' 3658 * ==> V' = (V - v)*w/w' + v (1) 3659 * 3660 * Let W be the total weight of the entities before reweight, 3661 * since V' is the new weighted average of entities: 3662 * 3663 * V' = (WV + w'v - wv) / (W + w' - w) (2) 3664 * 3665 * by using (1) & (2) we obtain: 3666 * 3667 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v 3668 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v 3669 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v 3670 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3) 3671 * 3672 * Since we are doing at !0-lag point which means V != v, we 3673 * can simplify (3): 3674 * 3675 * ==> W / (W + w' - w) = w / w' 3676 * ==> Ww' = Ww + ww' - ww 3677 * ==> W * (w' - w) = w * (w' - w) 3678 * ==> W = w (re-weight indicates w' != w) 3679 * 3680 * So the cfs_rq contains only one entity, hence vruntime of 3681 * the entity @v should always equal to the cfs_rq's weighted 3682 * average vruntime @V, which means we will always re-weight 3683 * at 0-lag point, thus breach assumption. Proof completed. 3684 * 3685 * 3686 * COROLLARY #2: Re-weight does NOT affect weighted average 3687 * vruntime of all the entities. 3688 * 3689 * Proof: According to corollary #1, Eq. (1) should be: 3690 * 3691 * (V - v)*w = (V' - v')*w' 3692 * ==> v' = V' - (V - v)*w/w' (4) 3693 * 3694 * According to the weighted average formula, we have: 3695 * 3696 * V' = (WV - wv + w'v') / (W - w + w') 3697 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w') 3698 * = (WV - wv + w'V' - Vw + wv) / (W - w + w') 3699 * = (WV + w'V' - Vw) / (W - w + w') 3700 * 3701 * ==> V'*(W - w + w') = WV + w'V' - Vw 3702 * ==> V' * (W - w) = (W - w) * V (5) 3703 * 3704 * If the entity is the only one in the cfs_rq, then reweight 3705 * always occurs at 0-lag point, so V won't change. Or else 3706 * there are other entities, hence W != w, then Eq. (5) turns 3707 * into V' = V. So V won't change in either case, proof done. 3708 * 3709 * 3710 * So according to corollary #1 & #2, the effect of re-weight 3711 * on vruntime should be: 3712 * 3713 * v' = V' - (V - v) * w / w' (4) 3714 * = V - (V - v) * w / w' 3715 * = V - vl * w / w' 3716 * = V - vl' 3717 */ 3718 if (avruntime != se->vruntime) { 3719 vlag = entity_lag(avruntime, se); 3720 vlag = div_s64(vlag * old_weight, weight); 3721 se->vruntime = avruntime - vlag; 3722 } 3723 3724 /* 3725 * DEADLINE 3726 * ======== 3727 * 3728 * When the weight changes, the virtual time slope changes and 3729 * we should adjust the relative virtual deadline accordingly. 3730 * 3731 * d' = v' + (d - v)*w/w' 3732 * = V' - (V - v)*w/w' + (d - v)*w/w' 3733 * = V - (V - v)*w/w' + (d - v)*w/w' 3734 * = V + (d - V)*w/w' 3735 */ 3736 vslice = (s64)(se->deadline - avruntime); 3737 vslice = div_s64(vslice * old_weight, weight); 3738 se->deadline = avruntime + vslice; 3739 } 3740 3741 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3742 unsigned long weight) 3743 { 3744 bool curr = cfs_rq->curr == se; 3745 u64 avruntime; 3746 3747 if (se->on_rq) { 3748 /* commit outstanding execution time */ 3749 update_curr(cfs_rq); 3750 avruntime = avg_vruntime(cfs_rq); 3751 if (!curr) 3752 __dequeue_entity(cfs_rq, se); 3753 update_load_sub(&cfs_rq->load, se->load.weight); 3754 } 3755 dequeue_load_avg(cfs_rq, se); 3756 3757 if (se->on_rq) { 3758 reweight_eevdf(se, avruntime, weight); 3759 } else { 3760 /* 3761 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3762 * we need to scale se->vlag when w_i changes. 3763 */ 3764 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3765 } 3766 3767 update_load_set(&se->load, weight); 3768 3769 #ifdef CONFIG_SMP 3770 do { 3771 u32 divider = get_pelt_divider(&se->avg); 3772 3773 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3774 } while (0); 3775 #endif 3776 3777 enqueue_load_avg(cfs_rq, se); 3778 if (se->on_rq) { 3779 update_load_add(&cfs_rq->load, se->load.weight); 3780 if (!curr) 3781 __enqueue_entity(cfs_rq, se); 3782 3783 /* 3784 * The entity's vruntime has been adjusted, so let's check 3785 * whether the rq-wide min_vruntime needs updated too. Since 3786 * the calculations above require stable min_vruntime rather 3787 * than up-to-date one, we do the update at the end of the 3788 * reweight process. 3789 */ 3790 update_min_vruntime(cfs_rq); 3791 } 3792 } 3793 3794 void reweight_task(struct task_struct *p, const struct load_weight *lw) 3795 { 3796 struct sched_entity *se = &p->se; 3797 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3798 struct load_weight *load = &se->load; 3799 3800 reweight_entity(cfs_rq, se, lw->weight); 3801 load->inv_weight = lw->inv_weight; 3802 } 3803 3804 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3805 3806 #ifdef CONFIG_FAIR_GROUP_SCHED 3807 #ifdef CONFIG_SMP 3808 /* 3809 * All this does is approximate the hierarchical proportion which includes that 3810 * global sum we all love to hate. 3811 * 3812 * That is, the weight of a group entity, is the proportional share of the 3813 * group weight based on the group runqueue weights. That is: 3814 * 3815 * tg->weight * grq->load.weight 3816 * ge->load.weight = ----------------------------- (1) 3817 * \Sum grq->load.weight 3818 * 3819 * Now, because computing that sum is prohibitively expensive to compute (been 3820 * there, done that) we approximate it with this average stuff. The average 3821 * moves slower and therefore the approximation is cheaper and more stable. 3822 * 3823 * So instead of the above, we substitute: 3824 * 3825 * grq->load.weight -> grq->avg.load_avg (2) 3826 * 3827 * which yields the following: 3828 * 3829 * tg->weight * grq->avg.load_avg 3830 * ge->load.weight = ------------------------------ (3) 3831 * tg->load_avg 3832 * 3833 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3834 * 3835 * That is shares_avg, and it is right (given the approximation (2)). 3836 * 3837 * The problem with it is that because the average is slow -- it was designed 3838 * to be exactly that of course -- this leads to transients in boundary 3839 * conditions. In specific, the case where the group was idle and we start the 3840 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3841 * yielding bad latency etc.. 3842 * 3843 * Now, in that special case (1) reduces to: 3844 * 3845 * tg->weight * grq->load.weight 3846 * ge->load.weight = ----------------------------- = tg->weight (4) 3847 * grp->load.weight 3848 * 3849 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3850 * 3851 * So what we do is modify our approximation (3) to approach (4) in the (near) 3852 * UP case, like: 3853 * 3854 * ge->load.weight = 3855 * 3856 * tg->weight * grq->load.weight 3857 * --------------------------------------------------- (5) 3858 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3859 * 3860 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3861 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3862 * 3863 * 3864 * tg->weight * grq->load.weight 3865 * ge->load.weight = ----------------------------- (6) 3866 * tg_load_avg' 3867 * 3868 * Where: 3869 * 3870 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3871 * max(grq->load.weight, grq->avg.load_avg) 3872 * 3873 * And that is shares_weight and is icky. In the (near) UP case it approaches 3874 * (4) while in the normal case it approaches (3). It consistently 3875 * overestimates the ge->load.weight and therefore: 3876 * 3877 * \Sum ge->load.weight >= tg->weight 3878 * 3879 * hence icky! 3880 */ 3881 static long calc_group_shares(struct cfs_rq *cfs_rq) 3882 { 3883 long tg_weight, tg_shares, load, shares; 3884 struct task_group *tg = cfs_rq->tg; 3885 3886 tg_shares = READ_ONCE(tg->shares); 3887 3888 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3889 3890 tg_weight = atomic_long_read(&tg->load_avg); 3891 3892 /* Ensure tg_weight >= load */ 3893 tg_weight -= cfs_rq->tg_load_avg_contrib; 3894 tg_weight += load; 3895 3896 shares = (tg_shares * load); 3897 if (tg_weight) 3898 shares /= tg_weight; 3899 3900 /* 3901 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3902 * of a group with small tg->shares value. It is a floor value which is 3903 * assigned as a minimum load.weight to the sched_entity representing 3904 * the group on a CPU. 3905 * 3906 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3907 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3908 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3909 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3910 * instead of 0. 3911 */ 3912 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3913 } 3914 #endif /* CONFIG_SMP */ 3915 3916 /* 3917 * Recomputes the group entity based on the current state of its group 3918 * runqueue. 3919 */ 3920 static void update_cfs_group(struct sched_entity *se) 3921 { 3922 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3923 long shares; 3924 3925 if (!gcfs_rq) 3926 return; 3927 3928 if (throttled_hierarchy(gcfs_rq)) 3929 return; 3930 3931 #ifndef CONFIG_SMP 3932 shares = READ_ONCE(gcfs_rq->tg->shares); 3933 #else 3934 shares = calc_group_shares(gcfs_rq); 3935 #endif 3936 if (unlikely(se->load.weight != shares)) 3937 reweight_entity(cfs_rq_of(se), se, shares); 3938 } 3939 3940 #else /* CONFIG_FAIR_GROUP_SCHED */ 3941 static inline void update_cfs_group(struct sched_entity *se) 3942 { 3943 } 3944 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3945 3946 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3947 { 3948 struct rq *rq = rq_of(cfs_rq); 3949 3950 if (&rq->cfs == cfs_rq) { 3951 /* 3952 * There are a few boundary cases this might miss but it should 3953 * get called often enough that that should (hopefully) not be 3954 * a real problem. 3955 * 3956 * It will not get called when we go idle, because the idle 3957 * thread is a different class (!fair), nor will the utilization 3958 * number include things like RT tasks. 3959 * 3960 * As is, the util number is not freq-invariant (we'd have to 3961 * implement arch_scale_freq_capacity() for that). 3962 * 3963 * See cpu_util_cfs(). 3964 */ 3965 cpufreq_update_util(rq, flags); 3966 } 3967 } 3968 3969 #ifdef CONFIG_SMP 3970 static inline bool load_avg_is_decayed(struct sched_avg *sa) 3971 { 3972 if (sa->load_sum) 3973 return false; 3974 3975 if (sa->util_sum) 3976 return false; 3977 3978 if (sa->runnable_sum) 3979 return false; 3980 3981 /* 3982 * _avg must be null when _sum are null because _avg = _sum / divider 3983 * Make sure that rounding and/or propagation of PELT values never 3984 * break this. 3985 */ 3986 SCHED_WARN_ON(sa->load_avg || 3987 sa->util_avg || 3988 sa->runnable_avg); 3989 3990 return true; 3991 } 3992 3993 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3994 { 3995 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 3996 cfs_rq->last_update_time_copy); 3997 } 3998 #ifdef CONFIG_FAIR_GROUP_SCHED 3999 /* 4000 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4001 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4002 * bottom-up, we only have to test whether the cfs_rq before us on the list 4003 * is our child. 4004 * If cfs_rq is not on the list, test whether a child needs its to be added to 4005 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4006 */ 4007 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4008 { 4009 struct cfs_rq *prev_cfs_rq; 4010 struct list_head *prev; 4011 4012 if (cfs_rq->on_list) { 4013 prev = cfs_rq->leaf_cfs_rq_list.prev; 4014 } else { 4015 struct rq *rq = rq_of(cfs_rq); 4016 4017 prev = rq->tmp_alone_branch; 4018 } 4019 4020 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4021 4022 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4023 } 4024 4025 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4026 { 4027 if (cfs_rq->load.weight) 4028 return false; 4029 4030 if (!load_avg_is_decayed(&cfs_rq->avg)) 4031 return false; 4032 4033 if (child_cfs_rq_on_list(cfs_rq)) 4034 return false; 4035 4036 return true; 4037 } 4038 4039 /** 4040 * update_tg_load_avg - update the tg's load avg 4041 * @cfs_rq: the cfs_rq whose avg changed 4042 * 4043 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4044 * However, because tg->load_avg is a global value there are performance 4045 * considerations. 4046 * 4047 * In order to avoid having to look at the other cfs_rq's, we use a 4048 * differential update where we store the last value we propagated. This in 4049 * turn allows skipping updates if the differential is 'small'. 4050 * 4051 * Updating tg's load_avg is necessary before update_cfs_share(). 4052 */ 4053 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4054 { 4055 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4056 4057 /* 4058 * No need to update load_avg for root_task_group as it is not used. 4059 */ 4060 if (cfs_rq->tg == &root_task_group) 4061 return; 4062 4063 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4064 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4065 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4066 } 4067 } 4068 4069 /* 4070 * Called within set_task_rq() right before setting a task's CPU. The 4071 * caller only guarantees p->pi_lock is held; no other assumptions, 4072 * including the state of rq->lock, should be made. 4073 */ 4074 void set_task_rq_fair(struct sched_entity *se, 4075 struct cfs_rq *prev, struct cfs_rq *next) 4076 { 4077 u64 p_last_update_time; 4078 u64 n_last_update_time; 4079 4080 if (!sched_feat(ATTACH_AGE_LOAD)) 4081 return; 4082 4083 /* 4084 * We are supposed to update the task to "current" time, then its up to 4085 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4086 * getting what current time is, so simply throw away the out-of-date 4087 * time. This will result in the wakee task is less decayed, but giving 4088 * the wakee more load sounds not bad. 4089 */ 4090 if (!(se->avg.last_update_time && prev)) 4091 return; 4092 4093 p_last_update_time = cfs_rq_last_update_time(prev); 4094 n_last_update_time = cfs_rq_last_update_time(next); 4095 4096 __update_load_avg_blocked_se(p_last_update_time, se); 4097 se->avg.last_update_time = n_last_update_time; 4098 } 4099 4100 /* 4101 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4102 * propagate its contribution. The key to this propagation is the invariant 4103 * that for each group: 4104 * 4105 * ge->avg == grq->avg (1) 4106 * 4107 * _IFF_ we look at the pure running and runnable sums. Because they 4108 * represent the very same entity, just at different points in the hierarchy. 4109 * 4110 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4111 * and simply copies the running/runnable sum over (but still wrong, because 4112 * the group entity and group rq do not have their PELT windows aligned). 4113 * 4114 * However, update_tg_cfs_load() is more complex. So we have: 4115 * 4116 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4117 * 4118 * And since, like util, the runnable part should be directly transferable, 4119 * the following would _appear_ to be the straight forward approach: 4120 * 4121 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4122 * 4123 * And per (1) we have: 4124 * 4125 * ge->avg.runnable_avg == grq->avg.runnable_avg 4126 * 4127 * Which gives: 4128 * 4129 * ge->load.weight * grq->avg.load_avg 4130 * ge->avg.load_avg = ----------------------------------- (4) 4131 * grq->load.weight 4132 * 4133 * Except that is wrong! 4134 * 4135 * Because while for entities historical weight is not important and we 4136 * really only care about our future and therefore can consider a pure 4137 * runnable sum, runqueues can NOT do this. 4138 * 4139 * We specifically want runqueues to have a load_avg that includes 4140 * historical weights. Those represent the blocked load, the load we expect 4141 * to (shortly) return to us. This only works by keeping the weights as 4142 * integral part of the sum. We therefore cannot decompose as per (3). 4143 * 4144 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4145 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4146 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4147 * runnable section of these tasks overlap (or not). If they were to perfectly 4148 * align the rq as a whole would be runnable 2/3 of the time. If however we 4149 * always have at least 1 runnable task, the rq as a whole is always runnable. 4150 * 4151 * So we'll have to approximate.. :/ 4152 * 4153 * Given the constraint: 4154 * 4155 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4156 * 4157 * We can construct a rule that adds runnable to a rq by assuming minimal 4158 * overlap. 4159 * 4160 * On removal, we'll assume each task is equally runnable; which yields: 4161 * 4162 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4163 * 4164 * XXX: only do this for the part of runnable > running ? 4165 * 4166 */ 4167 static inline void 4168 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4169 { 4170 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4171 u32 new_sum, divider; 4172 4173 /* Nothing to update */ 4174 if (!delta_avg) 4175 return; 4176 4177 /* 4178 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4179 * See ___update_load_avg() for details. 4180 */ 4181 divider = get_pelt_divider(&cfs_rq->avg); 4182 4183 4184 /* Set new sched_entity's utilization */ 4185 se->avg.util_avg = gcfs_rq->avg.util_avg; 4186 new_sum = se->avg.util_avg * divider; 4187 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4188 se->avg.util_sum = new_sum; 4189 4190 /* Update parent cfs_rq utilization */ 4191 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4192 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4193 4194 /* See update_cfs_rq_load_avg() */ 4195 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4196 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4197 } 4198 4199 static inline void 4200 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4201 { 4202 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4203 u32 new_sum, divider; 4204 4205 /* Nothing to update */ 4206 if (!delta_avg) 4207 return; 4208 4209 /* 4210 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4211 * See ___update_load_avg() for details. 4212 */ 4213 divider = get_pelt_divider(&cfs_rq->avg); 4214 4215 /* Set new sched_entity's runnable */ 4216 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4217 new_sum = se->avg.runnable_avg * divider; 4218 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4219 se->avg.runnable_sum = new_sum; 4220 4221 /* Update parent cfs_rq runnable */ 4222 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4223 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4224 /* See update_cfs_rq_load_avg() */ 4225 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4226 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4227 } 4228 4229 static inline void 4230 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4231 { 4232 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4233 unsigned long load_avg; 4234 u64 load_sum = 0; 4235 s64 delta_sum; 4236 u32 divider; 4237 4238 if (!runnable_sum) 4239 return; 4240 4241 gcfs_rq->prop_runnable_sum = 0; 4242 4243 /* 4244 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4245 * See ___update_load_avg() for details. 4246 */ 4247 divider = get_pelt_divider(&cfs_rq->avg); 4248 4249 if (runnable_sum >= 0) { 4250 /* 4251 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4252 * the CPU is saturated running == runnable. 4253 */ 4254 runnable_sum += se->avg.load_sum; 4255 runnable_sum = min_t(long, runnable_sum, divider); 4256 } else { 4257 /* 4258 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4259 * assuming all tasks are equally runnable. 4260 */ 4261 if (scale_load_down(gcfs_rq->load.weight)) { 4262 load_sum = div_u64(gcfs_rq->avg.load_sum, 4263 scale_load_down(gcfs_rq->load.weight)); 4264 } 4265 4266 /* But make sure to not inflate se's runnable */ 4267 runnable_sum = min(se->avg.load_sum, load_sum); 4268 } 4269 4270 /* 4271 * runnable_sum can't be lower than running_sum 4272 * Rescale running sum to be in the same range as runnable sum 4273 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4274 * runnable_sum is in [0 : LOAD_AVG_MAX] 4275 */ 4276 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4277 runnable_sum = max(runnable_sum, running_sum); 4278 4279 load_sum = se_weight(se) * runnable_sum; 4280 load_avg = div_u64(load_sum, divider); 4281 4282 delta_avg = load_avg - se->avg.load_avg; 4283 if (!delta_avg) 4284 return; 4285 4286 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4287 4288 se->avg.load_sum = runnable_sum; 4289 se->avg.load_avg = load_avg; 4290 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4291 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4292 /* See update_cfs_rq_load_avg() */ 4293 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4294 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4295 } 4296 4297 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4298 { 4299 cfs_rq->propagate = 1; 4300 cfs_rq->prop_runnable_sum += runnable_sum; 4301 } 4302 4303 /* Update task and its cfs_rq load average */ 4304 static inline int propagate_entity_load_avg(struct sched_entity *se) 4305 { 4306 struct cfs_rq *cfs_rq, *gcfs_rq; 4307 4308 if (entity_is_task(se)) 4309 return 0; 4310 4311 gcfs_rq = group_cfs_rq(se); 4312 if (!gcfs_rq->propagate) 4313 return 0; 4314 4315 gcfs_rq->propagate = 0; 4316 4317 cfs_rq = cfs_rq_of(se); 4318 4319 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4320 4321 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4322 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4323 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4324 4325 trace_pelt_cfs_tp(cfs_rq); 4326 trace_pelt_se_tp(se); 4327 4328 return 1; 4329 } 4330 4331 /* 4332 * Check if we need to update the load and the utilization of a blocked 4333 * group_entity: 4334 */ 4335 static inline bool skip_blocked_update(struct sched_entity *se) 4336 { 4337 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4338 4339 /* 4340 * If sched_entity still have not zero load or utilization, we have to 4341 * decay it: 4342 */ 4343 if (se->avg.load_avg || se->avg.util_avg) 4344 return false; 4345 4346 /* 4347 * If there is a pending propagation, we have to update the load and 4348 * the utilization of the sched_entity: 4349 */ 4350 if (gcfs_rq->propagate) 4351 return false; 4352 4353 /* 4354 * Otherwise, the load and the utilization of the sched_entity is 4355 * already zero and there is no pending propagation, so it will be a 4356 * waste of time to try to decay it: 4357 */ 4358 return true; 4359 } 4360 4361 #else /* CONFIG_FAIR_GROUP_SCHED */ 4362 4363 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4364 4365 static inline int propagate_entity_load_avg(struct sched_entity *se) 4366 { 4367 return 0; 4368 } 4369 4370 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4371 4372 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4373 4374 #ifdef CONFIG_NO_HZ_COMMON 4375 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4376 { 4377 u64 throttled = 0, now, lut; 4378 struct cfs_rq *cfs_rq; 4379 struct rq *rq; 4380 bool is_idle; 4381 4382 if (load_avg_is_decayed(&se->avg)) 4383 return; 4384 4385 cfs_rq = cfs_rq_of(se); 4386 rq = rq_of(cfs_rq); 4387 4388 rcu_read_lock(); 4389 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4390 rcu_read_unlock(); 4391 4392 /* 4393 * The lag estimation comes with a cost we don't want to pay all the 4394 * time. Hence, limiting to the case where the source CPU is idle and 4395 * we know we are at the greatest risk to have an outdated clock. 4396 */ 4397 if (!is_idle) 4398 return; 4399 4400 /* 4401 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4402 * 4403 * last_update_time (the cfs_rq's last_update_time) 4404 * = cfs_rq_clock_pelt()@cfs_rq_idle 4405 * = rq_clock_pelt()@cfs_rq_idle 4406 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4407 * 4408 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4409 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4410 * 4411 * rq_idle_lag (delta between now and rq's update) 4412 * = sched_clock_cpu() - rq_clock()@rq_idle 4413 * 4414 * We can then write: 4415 * 4416 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4417 * sched_clock_cpu() - rq_clock()@rq_idle 4418 * Where: 4419 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4420 * rq_clock()@rq_idle is rq->clock_idle 4421 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4422 * is cfs_rq->throttled_pelt_idle 4423 */ 4424 4425 #ifdef CONFIG_CFS_BANDWIDTH 4426 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4427 /* The clock has been stopped for throttling */ 4428 if (throttled == U64_MAX) 4429 return; 4430 #endif 4431 now = u64_u32_load(rq->clock_pelt_idle); 4432 /* 4433 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4434 * is observed the old clock_pelt_idle value and the new clock_idle, 4435 * which lead to an underestimation. The opposite would lead to an 4436 * overestimation. 4437 */ 4438 smp_rmb(); 4439 lut = cfs_rq_last_update_time(cfs_rq); 4440 4441 now -= throttled; 4442 if (now < lut) 4443 /* 4444 * cfs_rq->avg.last_update_time is more recent than our 4445 * estimation, let's use it. 4446 */ 4447 now = lut; 4448 else 4449 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4450 4451 __update_load_avg_blocked_se(now, se); 4452 } 4453 #else 4454 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4455 #endif 4456 4457 /** 4458 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4459 * @now: current time, as per cfs_rq_clock_pelt() 4460 * @cfs_rq: cfs_rq to update 4461 * 4462 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4463 * avg. The immediate corollary is that all (fair) tasks must be attached. 4464 * 4465 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4466 * 4467 * Return: true if the load decayed or we removed load. 4468 * 4469 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4470 * call update_tg_load_avg() when this function returns true. 4471 */ 4472 static inline int 4473 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4474 { 4475 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4476 struct sched_avg *sa = &cfs_rq->avg; 4477 int decayed = 0; 4478 4479 if (cfs_rq->removed.nr) { 4480 unsigned long r; 4481 u32 divider = get_pelt_divider(&cfs_rq->avg); 4482 4483 raw_spin_lock(&cfs_rq->removed.lock); 4484 swap(cfs_rq->removed.util_avg, removed_util); 4485 swap(cfs_rq->removed.load_avg, removed_load); 4486 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4487 cfs_rq->removed.nr = 0; 4488 raw_spin_unlock(&cfs_rq->removed.lock); 4489 4490 r = removed_load; 4491 sub_positive(&sa->load_avg, r); 4492 sub_positive(&sa->load_sum, r * divider); 4493 /* See sa->util_sum below */ 4494 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4495 4496 r = removed_util; 4497 sub_positive(&sa->util_avg, r); 4498 sub_positive(&sa->util_sum, r * divider); 4499 /* 4500 * Because of rounding, se->util_sum might ends up being +1 more than 4501 * cfs->util_sum. Although this is not a problem by itself, detaching 4502 * a lot of tasks with the rounding problem between 2 updates of 4503 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4504 * cfs_util_avg is not. 4505 * Check that util_sum is still above its lower bound for the new 4506 * util_avg. Given that period_contrib might have moved since the last 4507 * sync, we are only sure that util_sum must be above or equal to 4508 * util_avg * minimum possible divider 4509 */ 4510 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4511 4512 r = removed_runnable; 4513 sub_positive(&sa->runnable_avg, r); 4514 sub_positive(&sa->runnable_sum, r * divider); 4515 /* See sa->util_sum above */ 4516 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4517 sa->runnable_avg * PELT_MIN_DIVIDER); 4518 4519 /* 4520 * removed_runnable is the unweighted version of removed_load so we 4521 * can use it to estimate removed_load_sum. 4522 */ 4523 add_tg_cfs_propagate(cfs_rq, 4524 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4525 4526 decayed = 1; 4527 } 4528 4529 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4530 u64_u32_store_copy(sa->last_update_time, 4531 cfs_rq->last_update_time_copy, 4532 sa->last_update_time); 4533 return decayed; 4534 } 4535 4536 /** 4537 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4538 * @cfs_rq: cfs_rq to attach to 4539 * @se: sched_entity to attach 4540 * 4541 * Must call update_cfs_rq_load_avg() before this, since we rely on 4542 * cfs_rq->avg.last_update_time being current. 4543 */ 4544 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4545 { 4546 /* 4547 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4548 * See ___update_load_avg() for details. 4549 */ 4550 u32 divider = get_pelt_divider(&cfs_rq->avg); 4551 4552 /* 4553 * When we attach the @se to the @cfs_rq, we must align the decay 4554 * window because without that, really weird and wonderful things can 4555 * happen. 4556 * 4557 * XXX illustrate 4558 */ 4559 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4560 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4561 4562 /* 4563 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4564 * period_contrib. This isn't strictly correct, but since we're 4565 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4566 * _sum a little. 4567 */ 4568 se->avg.util_sum = se->avg.util_avg * divider; 4569 4570 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4571 4572 se->avg.load_sum = se->avg.load_avg * divider; 4573 if (se_weight(se) < se->avg.load_sum) 4574 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4575 else 4576 se->avg.load_sum = 1; 4577 4578 enqueue_load_avg(cfs_rq, se); 4579 cfs_rq->avg.util_avg += se->avg.util_avg; 4580 cfs_rq->avg.util_sum += se->avg.util_sum; 4581 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4582 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4583 4584 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4585 4586 cfs_rq_util_change(cfs_rq, 0); 4587 4588 trace_pelt_cfs_tp(cfs_rq); 4589 } 4590 4591 /** 4592 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4593 * @cfs_rq: cfs_rq to detach from 4594 * @se: sched_entity to detach 4595 * 4596 * Must call update_cfs_rq_load_avg() before this, since we rely on 4597 * cfs_rq->avg.last_update_time being current. 4598 */ 4599 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4600 { 4601 dequeue_load_avg(cfs_rq, se); 4602 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4603 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4604 /* See update_cfs_rq_load_avg() */ 4605 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4606 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4607 4608 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4609 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4610 /* See update_cfs_rq_load_avg() */ 4611 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4612 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4613 4614 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4615 4616 cfs_rq_util_change(cfs_rq, 0); 4617 4618 trace_pelt_cfs_tp(cfs_rq); 4619 } 4620 4621 /* 4622 * Optional action to be done while updating the load average 4623 */ 4624 #define UPDATE_TG 0x1 4625 #define SKIP_AGE_LOAD 0x2 4626 #define DO_ATTACH 0x4 4627 #define DO_DETACH 0x8 4628 4629 /* Update task and its cfs_rq load average */ 4630 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4631 { 4632 u64 now = cfs_rq_clock_pelt(cfs_rq); 4633 int decayed; 4634 4635 /* 4636 * Track task load average for carrying it to new CPU after migrated, and 4637 * track group sched_entity load average for task_h_load calc in migration 4638 */ 4639 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4640 __update_load_avg_se(now, cfs_rq, se); 4641 4642 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4643 decayed |= propagate_entity_load_avg(se); 4644 4645 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4646 4647 /* 4648 * DO_ATTACH means we're here from enqueue_entity(). 4649 * !last_update_time means we've passed through 4650 * migrate_task_rq_fair() indicating we migrated. 4651 * 4652 * IOW we're enqueueing a task on a new CPU. 4653 */ 4654 attach_entity_load_avg(cfs_rq, se); 4655 update_tg_load_avg(cfs_rq); 4656 4657 } else if (flags & DO_DETACH) { 4658 /* 4659 * DO_DETACH means we're here from dequeue_entity() 4660 * and we are migrating task out of the CPU. 4661 */ 4662 detach_entity_load_avg(cfs_rq, se); 4663 update_tg_load_avg(cfs_rq); 4664 } else if (decayed) { 4665 cfs_rq_util_change(cfs_rq, 0); 4666 4667 if (flags & UPDATE_TG) 4668 update_tg_load_avg(cfs_rq); 4669 } 4670 } 4671 4672 /* 4673 * Synchronize entity load avg of dequeued entity without locking 4674 * the previous rq. 4675 */ 4676 static void sync_entity_load_avg(struct sched_entity *se) 4677 { 4678 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4679 u64 last_update_time; 4680 4681 last_update_time = cfs_rq_last_update_time(cfs_rq); 4682 __update_load_avg_blocked_se(last_update_time, se); 4683 } 4684 4685 /* 4686 * Task first catches up with cfs_rq, and then subtract 4687 * itself from the cfs_rq (task must be off the queue now). 4688 */ 4689 static void remove_entity_load_avg(struct sched_entity *se) 4690 { 4691 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4692 unsigned long flags; 4693 4694 /* 4695 * tasks cannot exit without having gone through wake_up_new_task() -> 4696 * enqueue_task_fair() which will have added things to the cfs_rq, 4697 * so we can remove unconditionally. 4698 */ 4699 4700 sync_entity_load_avg(se); 4701 4702 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4703 ++cfs_rq->removed.nr; 4704 cfs_rq->removed.util_avg += se->avg.util_avg; 4705 cfs_rq->removed.load_avg += se->avg.load_avg; 4706 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4707 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4708 } 4709 4710 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4711 { 4712 return cfs_rq->avg.runnable_avg; 4713 } 4714 4715 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4716 { 4717 return cfs_rq->avg.load_avg; 4718 } 4719 4720 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 4721 4722 static inline unsigned long task_util(struct task_struct *p) 4723 { 4724 return READ_ONCE(p->se.avg.util_avg); 4725 } 4726 4727 static inline unsigned long _task_util_est(struct task_struct *p) 4728 { 4729 struct util_est ue = READ_ONCE(p->se.avg.util_est); 4730 4731 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 4732 } 4733 4734 static inline unsigned long task_util_est(struct task_struct *p) 4735 { 4736 return max(task_util(p), _task_util_est(p)); 4737 } 4738 4739 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4740 struct task_struct *p) 4741 { 4742 unsigned int enqueued; 4743 4744 if (!sched_feat(UTIL_EST)) 4745 return; 4746 4747 /* Update root cfs_rq's estimated utilization */ 4748 enqueued = cfs_rq->avg.util_est.enqueued; 4749 enqueued += _task_util_est(p); 4750 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4751 4752 trace_sched_util_est_cfs_tp(cfs_rq); 4753 } 4754 4755 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4756 struct task_struct *p) 4757 { 4758 unsigned int enqueued; 4759 4760 if (!sched_feat(UTIL_EST)) 4761 return; 4762 4763 /* Update root cfs_rq's estimated utilization */ 4764 enqueued = cfs_rq->avg.util_est.enqueued; 4765 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4766 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4767 4768 trace_sched_util_est_cfs_tp(cfs_rq); 4769 } 4770 4771 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4772 4773 /* 4774 * Check if a (signed) value is within a specified (unsigned) margin, 4775 * based on the observation that: 4776 * 4777 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 4778 * 4779 * NOTE: this only works when value + margin < INT_MAX. 4780 */ 4781 static inline bool within_margin(int value, int margin) 4782 { 4783 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 4784 } 4785 4786 static inline void util_est_update(struct cfs_rq *cfs_rq, 4787 struct task_struct *p, 4788 bool task_sleep) 4789 { 4790 long last_ewma_diff, last_enqueued_diff; 4791 struct util_est ue; 4792 4793 if (!sched_feat(UTIL_EST)) 4794 return; 4795 4796 /* 4797 * Skip update of task's estimated utilization when the task has not 4798 * yet completed an activation, e.g. being migrated. 4799 */ 4800 if (!task_sleep) 4801 return; 4802 4803 /* 4804 * If the PELT values haven't changed since enqueue time, 4805 * skip the util_est update. 4806 */ 4807 ue = p->se.avg.util_est; 4808 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4809 return; 4810 4811 last_enqueued_diff = ue.enqueued; 4812 4813 /* 4814 * Reset EWMA on utilization increases, the moving average is used only 4815 * to smooth utilization decreases. 4816 */ 4817 ue.enqueued = task_util(p); 4818 if (sched_feat(UTIL_EST_FASTUP)) { 4819 if (ue.ewma < ue.enqueued) { 4820 ue.ewma = ue.enqueued; 4821 goto done; 4822 } 4823 } 4824 4825 /* 4826 * Skip update of task's estimated utilization when its members are 4827 * already ~1% close to its last activation value. 4828 */ 4829 last_ewma_diff = ue.enqueued - ue.ewma; 4830 last_enqueued_diff -= ue.enqueued; 4831 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4832 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4833 goto done; 4834 4835 return; 4836 } 4837 4838 /* 4839 * To avoid overestimation of actual task utilization, skip updates if 4840 * we cannot grant there is idle time in this CPU. 4841 */ 4842 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4843 return; 4844 4845 /* 4846 * Update Task's estimated utilization 4847 * 4848 * When *p completes an activation we can consolidate another sample 4849 * of the task size. This is done by storing the current PELT value 4850 * as ue.enqueued and by using this value to update the Exponential 4851 * Weighted Moving Average (EWMA): 4852 * 4853 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4854 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4855 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4856 * = w * ( last_ewma_diff ) + ewma(t-1) 4857 * = w * (last_ewma_diff + ewma(t-1) / w) 4858 * 4859 * Where 'w' is the weight of new samples, which is configured to be 4860 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4861 */ 4862 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4863 ue.ewma += last_ewma_diff; 4864 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4865 done: 4866 ue.enqueued |= UTIL_AVG_UNCHANGED; 4867 WRITE_ONCE(p->se.avg.util_est, ue); 4868 4869 trace_sched_util_est_se_tp(&p->se); 4870 } 4871 4872 static inline int util_fits_cpu(unsigned long util, 4873 unsigned long uclamp_min, 4874 unsigned long uclamp_max, 4875 int cpu) 4876 { 4877 unsigned long capacity_orig, capacity_orig_thermal; 4878 unsigned long capacity = capacity_of(cpu); 4879 bool fits, uclamp_max_fits; 4880 4881 /* 4882 * Check if the real util fits without any uclamp boost/cap applied. 4883 */ 4884 fits = fits_capacity(util, capacity); 4885 4886 if (!uclamp_is_used()) 4887 return fits; 4888 4889 /* 4890 * We must use capacity_orig_of() for comparing against uclamp_min and 4891 * uclamp_max. We only care about capacity pressure (by using 4892 * capacity_of()) for comparing against the real util. 4893 * 4894 * If a task is boosted to 1024 for example, we don't want a tiny 4895 * pressure to skew the check whether it fits a CPU or not. 4896 * 4897 * Similarly if a task is capped to capacity_orig_of(little_cpu), it 4898 * should fit a little cpu even if there's some pressure. 4899 * 4900 * Only exception is for thermal pressure since it has a direct impact 4901 * on available OPP of the system. 4902 * 4903 * We honour it for uclamp_min only as a drop in performance level 4904 * could result in not getting the requested minimum performance level. 4905 * 4906 * For uclamp_max, we can tolerate a drop in performance level as the 4907 * goal is to cap the task. So it's okay if it's getting less. 4908 */ 4909 capacity_orig = capacity_orig_of(cpu); 4910 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu); 4911 4912 /* 4913 * We want to force a task to fit a cpu as implied by uclamp_max. 4914 * But we do have some corner cases to cater for.. 4915 * 4916 * 4917 * C=z 4918 * | ___ 4919 * | C=y | | 4920 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4921 * | C=x | | | | 4922 * | ___ | | | | 4923 * | | | | | | | (util somewhere in this region) 4924 * | | | | | | | 4925 * | | | | | | | 4926 * +---------------------------------------- 4927 * cpu0 cpu1 cpu2 4928 * 4929 * In the above example if a task is capped to a specific performance 4930 * point, y, then when: 4931 * 4932 * * util = 80% of x then it does not fit on cpu0 and should migrate 4933 * to cpu1 4934 * * util = 80% of y then it is forced to fit on cpu1 to honour 4935 * uclamp_max request. 4936 * 4937 * which is what we're enforcing here. A task always fits if 4938 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 4939 * the normal upmigration rules should withhold still. 4940 * 4941 * Only exception is when we are on max capacity, then we need to be 4942 * careful not to block overutilized state. This is so because: 4943 * 4944 * 1. There's no concept of capping at max_capacity! We can't go 4945 * beyond this performance level anyway. 4946 * 2. The system is being saturated when we're operating near 4947 * max capacity, it doesn't make sense to block overutilized. 4948 */ 4949 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 4950 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 4951 fits = fits || uclamp_max_fits; 4952 4953 /* 4954 * 4955 * C=z 4956 * | ___ (region a, capped, util >= uclamp_max) 4957 * | C=y | | 4958 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4959 * | C=x | | | | 4960 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 4961 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 4962 * | | | | | | | 4963 * | | | | | | | (region c, boosted, util < uclamp_min) 4964 * +---------------------------------------- 4965 * cpu0 cpu1 cpu2 4966 * 4967 * a) If util > uclamp_max, then we're capped, we don't care about 4968 * actual fitness value here. We only care if uclamp_max fits 4969 * capacity without taking margin/pressure into account. 4970 * See comment above. 4971 * 4972 * b) If uclamp_min <= util <= uclamp_max, then the normal 4973 * fits_capacity() rules apply. Except we need to ensure that we 4974 * enforce we remain within uclamp_max, see comment above. 4975 * 4976 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 4977 * need to take into account the boosted value fits the CPU without 4978 * taking margin/pressure into account. 4979 * 4980 * Cases (a) and (b) are handled in the 'fits' variable already. We 4981 * just need to consider an extra check for case (c) after ensuring we 4982 * handle the case uclamp_min > uclamp_max. 4983 */ 4984 uclamp_min = min(uclamp_min, uclamp_max); 4985 if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal)) 4986 return -1; 4987 4988 return fits; 4989 } 4990 4991 static inline int task_fits_cpu(struct task_struct *p, int cpu) 4992 { 4993 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 4994 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 4995 unsigned long util = task_util_est(p); 4996 /* 4997 * Return true only if the cpu fully fits the task requirements, which 4998 * include the utilization but also the performance hints. 4999 */ 5000 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5001 } 5002 5003 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5004 { 5005 if (!sched_asym_cpucap_active()) 5006 return; 5007 5008 if (!p || p->nr_cpus_allowed == 1) { 5009 rq->misfit_task_load = 0; 5010 return; 5011 } 5012 5013 if (task_fits_cpu(p, cpu_of(rq))) { 5014 rq->misfit_task_load = 0; 5015 return; 5016 } 5017 5018 /* 5019 * Make sure that misfit_task_load will not be null even if 5020 * task_h_load() returns 0. 5021 */ 5022 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5023 } 5024 5025 #else /* CONFIG_SMP */ 5026 5027 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5028 { 5029 return !cfs_rq->nr_running; 5030 } 5031 5032 #define UPDATE_TG 0x0 5033 #define SKIP_AGE_LOAD 0x0 5034 #define DO_ATTACH 0x0 5035 #define DO_DETACH 0x0 5036 5037 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5038 { 5039 cfs_rq_util_change(cfs_rq, 0); 5040 } 5041 5042 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5043 5044 static inline void 5045 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5046 static inline void 5047 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5048 5049 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 5050 { 5051 return 0; 5052 } 5053 5054 static inline void 5055 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5056 5057 static inline void 5058 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5059 5060 static inline void 5061 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5062 bool task_sleep) {} 5063 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5064 5065 #endif /* CONFIG_SMP */ 5066 5067 static void 5068 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5069 { 5070 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5071 s64 lag = 0; 5072 5073 se->slice = sysctl_sched_base_slice; 5074 vslice = calc_delta_fair(se->slice, se); 5075 5076 /* 5077 * Due to how V is constructed as the weighted average of entities, 5078 * adding tasks with positive lag, or removing tasks with negative lag 5079 * will move 'time' backwards, this can screw around with the lag of 5080 * other tasks. 5081 * 5082 * EEVDF: placement strategy #1 / #2 5083 */ 5084 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) { 5085 struct sched_entity *curr = cfs_rq->curr; 5086 unsigned long load; 5087 5088 lag = se->vlag; 5089 5090 /* 5091 * If we want to place a task and preserve lag, we have to 5092 * consider the effect of the new entity on the weighted 5093 * average and compensate for this, otherwise lag can quickly 5094 * evaporate. 5095 * 5096 * Lag is defined as: 5097 * 5098 * lag_i = S - s_i = w_i * (V - v_i) 5099 * 5100 * To avoid the 'w_i' term all over the place, we only track 5101 * the virtual lag: 5102 * 5103 * vl_i = V - v_i <=> v_i = V - vl_i 5104 * 5105 * And we take V to be the weighted average of all v: 5106 * 5107 * V = (\Sum w_j*v_j) / W 5108 * 5109 * Where W is: \Sum w_j 5110 * 5111 * Then, the weighted average after adding an entity with lag 5112 * vl_i is given by: 5113 * 5114 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5115 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5116 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5117 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5118 * = V - w_i*vl_i / (W + w_i) 5119 * 5120 * And the actual lag after adding an entity with vl_i is: 5121 * 5122 * vl'_i = V' - v_i 5123 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5124 * = vl_i - w_i*vl_i / (W + w_i) 5125 * 5126 * Which is strictly less than vl_i. So in order to preserve lag 5127 * we should inflate the lag before placement such that the 5128 * effective lag after placement comes out right. 5129 * 5130 * As such, invert the above relation for vl'_i to get the vl_i 5131 * we need to use such that the lag after placement is the lag 5132 * we computed before dequeue. 5133 * 5134 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5135 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5136 * 5137 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5138 * = W*vl_i 5139 * 5140 * vl_i = (W + w_i)*vl'_i / W 5141 */ 5142 load = cfs_rq->avg_load; 5143 if (curr && curr->on_rq) 5144 load += scale_load_down(curr->load.weight); 5145 5146 lag *= load + scale_load_down(se->load.weight); 5147 if (WARN_ON_ONCE(!load)) 5148 load = 1; 5149 lag = div_s64(lag, load); 5150 } 5151 5152 se->vruntime = vruntime - lag; 5153 5154 /* 5155 * When joining the competition; the exisiting tasks will be, 5156 * on average, halfway through their slice, as such start tasks 5157 * off with half a slice to ease into the competition. 5158 */ 5159 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5160 vslice /= 2; 5161 5162 /* 5163 * EEVDF: vd_i = ve_i + r_i/w_i 5164 */ 5165 se->deadline = se->vruntime + vslice; 5166 } 5167 5168 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5169 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5170 5171 static inline bool cfs_bandwidth_used(void); 5172 5173 static void 5174 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5175 { 5176 bool curr = cfs_rq->curr == se; 5177 5178 /* 5179 * If we're the current task, we must renormalise before calling 5180 * update_curr(). 5181 */ 5182 if (curr) 5183 place_entity(cfs_rq, se, flags); 5184 5185 update_curr(cfs_rq); 5186 5187 /* 5188 * When enqueuing a sched_entity, we must: 5189 * - Update loads to have both entity and cfs_rq synced with now. 5190 * - For group_entity, update its runnable_weight to reflect the new 5191 * h_nr_running of its group cfs_rq. 5192 * - For group_entity, update its weight to reflect the new share of 5193 * its group cfs_rq 5194 * - Add its new weight to cfs_rq->load.weight 5195 */ 5196 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5197 se_update_runnable(se); 5198 /* 5199 * XXX update_load_avg() above will have attached us to the pelt sum; 5200 * but update_cfs_group() here will re-adjust the weight and have to 5201 * undo/redo all that. Seems wasteful. 5202 */ 5203 update_cfs_group(se); 5204 5205 /* 5206 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5207 * we can place the entity. 5208 */ 5209 if (!curr) 5210 place_entity(cfs_rq, se, flags); 5211 5212 account_entity_enqueue(cfs_rq, se); 5213 5214 /* Entity has migrated, no longer consider this task hot */ 5215 if (flags & ENQUEUE_MIGRATED) 5216 se->exec_start = 0; 5217 5218 check_schedstat_required(); 5219 update_stats_enqueue_fair(cfs_rq, se, flags); 5220 if (!curr) 5221 __enqueue_entity(cfs_rq, se); 5222 se->on_rq = 1; 5223 5224 if (cfs_rq->nr_running == 1) { 5225 check_enqueue_throttle(cfs_rq); 5226 if (!throttled_hierarchy(cfs_rq)) { 5227 list_add_leaf_cfs_rq(cfs_rq); 5228 } else { 5229 #ifdef CONFIG_CFS_BANDWIDTH 5230 struct rq *rq = rq_of(cfs_rq); 5231 5232 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5233 cfs_rq->throttled_clock = rq_clock(rq); 5234 if (!cfs_rq->throttled_clock_self) 5235 cfs_rq->throttled_clock_self = rq_clock(rq); 5236 #endif 5237 } 5238 } 5239 } 5240 5241 static void __clear_buddies_next(struct sched_entity *se) 5242 { 5243 for_each_sched_entity(se) { 5244 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5245 if (cfs_rq->next != se) 5246 break; 5247 5248 cfs_rq->next = NULL; 5249 } 5250 } 5251 5252 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5253 { 5254 if (cfs_rq->next == se) 5255 __clear_buddies_next(se); 5256 } 5257 5258 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5259 5260 static void 5261 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5262 { 5263 int action = UPDATE_TG; 5264 5265 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5266 action |= DO_DETACH; 5267 5268 /* 5269 * Update run-time statistics of the 'current'. 5270 */ 5271 update_curr(cfs_rq); 5272 5273 /* 5274 * When dequeuing a sched_entity, we must: 5275 * - Update loads to have both entity and cfs_rq synced with now. 5276 * - For group_entity, update its runnable_weight to reflect the new 5277 * h_nr_running of its group cfs_rq. 5278 * - Subtract its previous weight from cfs_rq->load.weight. 5279 * - For group entity, update its weight to reflect the new share 5280 * of its group cfs_rq. 5281 */ 5282 update_load_avg(cfs_rq, se, action); 5283 se_update_runnable(se); 5284 5285 update_stats_dequeue_fair(cfs_rq, se, flags); 5286 5287 clear_buddies(cfs_rq, se); 5288 5289 update_entity_lag(cfs_rq, se); 5290 if (se != cfs_rq->curr) 5291 __dequeue_entity(cfs_rq, se); 5292 se->on_rq = 0; 5293 account_entity_dequeue(cfs_rq, se); 5294 5295 /* return excess runtime on last dequeue */ 5296 return_cfs_rq_runtime(cfs_rq); 5297 5298 update_cfs_group(se); 5299 5300 /* 5301 * Now advance min_vruntime if @se was the entity holding it back, 5302 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5303 * put back on, and if we advance min_vruntime, we'll be placed back 5304 * further than we started -- ie. we'll be penalized. 5305 */ 5306 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5307 update_min_vruntime(cfs_rq); 5308 5309 if (cfs_rq->nr_running == 0) 5310 update_idle_cfs_rq_clock_pelt(cfs_rq); 5311 } 5312 5313 static void 5314 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5315 { 5316 clear_buddies(cfs_rq, se); 5317 5318 /* 'current' is not kept within the tree. */ 5319 if (se->on_rq) { 5320 /* 5321 * Any task has to be enqueued before it get to execute on 5322 * a CPU. So account for the time it spent waiting on the 5323 * runqueue. 5324 */ 5325 update_stats_wait_end_fair(cfs_rq, se); 5326 __dequeue_entity(cfs_rq, se); 5327 update_load_avg(cfs_rq, se, UPDATE_TG); 5328 /* 5329 * HACK, stash a copy of deadline at the point of pick in vlag, 5330 * which isn't used until dequeue. 5331 */ 5332 se->vlag = se->deadline; 5333 } 5334 5335 update_stats_curr_start(cfs_rq, se); 5336 cfs_rq->curr = se; 5337 5338 /* 5339 * Track our maximum slice length, if the CPU's load is at 5340 * least twice that of our own weight (i.e. dont track it 5341 * when there are only lesser-weight tasks around): 5342 */ 5343 if (schedstat_enabled() && 5344 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5345 struct sched_statistics *stats; 5346 5347 stats = __schedstats_from_se(se); 5348 __schedstat_set(stats->slice_max, 5349 max((u64)stats->slice_max, 5350 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5351 } 5352 5353 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5354 } 5355 5356 /* 5357 * Pick the next process, keeping these things in mind, in this order: 5358 * 1) keep things fair between processes/task groups 5359 * 2) pick the "next" process, since someone really wants that to run 5360 * 3) pick the "last" process, for cache locality 5361 * 4) do not run the "skip" process, if something else is available 5362 */ 5363 static struct sched_entity * 5364 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 5365 { 5366 /* 5367 * Enabling NEXT_BUDDY will affect latency but not fairness. 5368 */ 5369 if (sched_feat(NEXT_BUDDY) && 5370 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) 5371 return cfs_rq->next; 5372 5373 return pick_eevdf(cfs_rq); 5374 } 5375 5376 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5377 5378 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5379 { 5380 /* 5381 * If still on the runqueue then deactivate_task() 5382 * was not called and update_curr() has to be done: 5383 */ 5384 if (prev->on_rq) 5385 update_curr(cfs_rq); 5386 5387 /* throttle cfs_rqs exceeding runtime */ 5388 check_cfs_rq_runtime(cfs_rq); 5389 5390 if (prev->on_rq) { 5391 update_stats_wait_start_fair(cfs_rq, prev); 5392 /* Put 'current' back into the tree. */ 5393 __enqueue_entity(cfs_rq, prev); 5394 /* in !on_rq case, update occurred at dequeue */ 5395 update_load_avg(cfs_rq, prev, 0); 5396 } 5397 cfs_rq->curr = NULL; 5398 } 5399 5400 static void 5401 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5402 { 5403 /* 5404 * Update run-time statistics of the 'current'. 5405 */ 5406 update_curr(cfs_rq); 5407 5408 /* 5409 * Ensure that runnable average is periodically updated. 5410 */ 5411 update_load_avg(cfs_rq, curr, UPDATE_TG); 5412 update_cfs_group(curr); 5413 5414 #ifdef CONFIG_SCHED_HRTICK 5415 /* 5416 * queued ticks are scheduled to match the slice, so don't bother 5417 * validating it and just reschedule. 5418 */ 5419 if (queued) { 5420 resched_curr(rq_of(cfs_rq)); 5421 return; 5422 } 5423 /* 5424 * don't let the period tick interfere with the hrtick preemption 5425 */ 5426 if (!sched_feat(DOUBLE_TICK) && 5427 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 5428 return; 5429 #endif 5430 } 5431 5432 5433 /************************************************** 5434 * CFS bandwidth control machinery 5435 */ 5436 5437 #ifdef CONFIG_CFS_BANDWIDTH 5438 5439 #ifdef CONFIG_JUMP_LABEL 5440 static struct static_key __cfs_bandwidth_used; 5441 5442 static inline bool cfs_bandwidth_used(void) 5443 { 5444 return static_key_false(&__cfs_bandwidth_used); 5445 } 5446 5447 void cfs_bandwidth_usage_inc(void) 5448 { 5449 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5450 } 5451 5452 void cfs_bandwidth_usage_dec(void) 5453 { 5454 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5455 } 5456 #else /* CONFIG_JUMP_LABEL */ 5457 static bool cfs_bandwidth_used(void) 5458 { 5459 return true; 5460 } 5461 5462 void cfs_bandwidth_usage_inc(void) {} 5463 void cfs_bandwidth_usage_dec(void) {} 5464 #endif /* CONFIG_JUMP_LABEL */ 5465 5466 /* 5467 * default period for cfs group bandwidth. 5468 * default: 0.1s, units: nanoseconds 5469 */ 5470 static inline u64 default_cfs_period(void) 5471 { 5472 return 100000000ULL; 5473 } 5474 5475 static inline u64 sched_cfs_bandwidth_slice(void) 5476 { 5477 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5478 } 5479 5480 /* 5481 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5482 * directly instead of rq->clock to avoid adding additional synchronization 5483 * around rq->lock. 5484 * 5485 * requires cfs_b->lock 5486 */ 5487 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5488 { 5489 s64 runtime; 5490 5491 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5492 return; 5493 5494 cfs_b->runtime += cfs_b->quota; 5495 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5496 if (runtime > 0) { 5497 cfs_b->burst_time += runtime; 5498 cfs_b->nr_burst++; 5499 } 5500 5501 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5502 cfs_b->runtime_snap = cfs_b->runtime; 5503 } 5504 5505 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5506 { 5507 return &tg->cfs_bandwidth; 5508 } 5509 5510 /* returns 0 on failure to allocate runtime */ 5511 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5512 struct cfs_rq *cfs_rq, u64 target_runtime) 5513 { 5514 u64 min_amount, amount = 0; 5515 5516 lockdep_assert_held(&cfs_b->lock); 5517 5518 /* note: this is a positive sum as runtime_remaining <= 0 */ 5519 min_amount = target_runtime - cfs_rq->runtime_remaining; 5520 5521 if (cfs_b->quota == RUNTIME_INF) 5522 amount = min_amount; 5523 else { 5524 start_cfs_bandwidth(cfs_b); 5525 5526 if (cfs_b->runtime > 0) { 5527 amount = min(cfs_b->runtime, min_amount); 5528 cfs_b->runtime -= amount; 5529 cfs_b->idle = 0; 5530 } 5531 } 5532 5533 cfs_rq->runtime_remaining += amount; 5534 5535 return cfs_rq->runtime_remaining > 0; 5536 } 5537 5538 /* returns 0 on failure to allocate runtime */ 5539 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5540 { 5541 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5542 int ret; 5543 5544 raw_spin_lock(&cfs_b->lock); 5545 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5546 raw_spin_unlock(&cfs_b->lock); 5547 5548 return ret; 5549 } 5550 5551 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5552 { 5553 /* dock delta_exec before expiring quota (as it could span periods) */ 5554 cfs_rq->runtime_remaining -= delta_exec; 5555 5556 if (likely(cfs_rq->runtime_remaining > 0)) 5557 return; 5558 5559 if (cfs_rq->throttled) 5560 return; 5561 /* 5562 * if we're unable to extend our runtime we resched so that the active 5563 * hierarchy can be throttled 5564 */ 5565 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5566 resched_curr(rq_of(cfs_rq)); 5567 } 5568 5569 static __always_inline 5570 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5571 { 5572 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5573 return; 5574 5575 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5576 } 5577 5578 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5579 { 5580 return cfs_bandwidth_used() && cfs_rq->throttled; 5581 } 5582 5583 /* check whether cfs_rq, or any parent, is throttled */ 5584 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5585 { 5586 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5587 } 5588 5589 /* 5590 * Ensure that neither of the group entities corresponding to src_cpu or 5591 * dest_cpu are members of a throttled hierarchy when performing group 5592 * load-balance operations. 5593 */ 5594 static inline int throttled_lb_pair(struct task_group *tg, 5595 int src_cpu, int dest_cpu) 5596 { 5597 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5598 5599 src_cfs_rq = tg->cfs_rq[src_cpu]; 5600 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5601 5602 return throttled_hierarchy(src_cfs_rq) || 5603 throttled_hierarchy(dest_cfs_rq); 5604 } 5605 5606 static int tg_unthrottle_up(struct task_group *tg, void *data) 5607 { 5608 struct rq *rq = data; 5609 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5610 5611 cfs_rq->throttle_count--; 5612 if (!cfs_rq->throttle_count) { 5613 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5614 cfs_rq->throttled_clock_pelt; 5615 5616 /* Add cfs_rq with load or one or more already running entities to the list */ 5617 if (!cfs_rq_is_decayed(cfs_rq)) 5618 list_add_leaf_cfs_rq(cfs_rq); 5619 5620 if (cfs_rq->throttled_clock_self) { 5621 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5622 5623 cfs_rq->throttled_clock_self = 0; 5624 5625 if (SCHED_WARN_ON((s64)delta < 0)) 5626 delta = 0; 5627 5628 cfs_rq->throttled_clock_self_time += delta; 5629 } 5630 } 5631 5632 return 0; 5633 } 5634 5635 static int tg_throttle_down(struct task_group *tg, void *data) 5636 { 5637 struct rq *rq = data; 5638 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5639 5640 /* group is entering throttled state, stop time */ 5641 if (!cfs_rq->throttle_count) { 5642 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5643 list_del_leaf_cfs_rq(cfs_rq); 5644 5645 SCHED_WARN_ON(cfs_rq->throttled_clock_self); 5646 if (cfs_rq->nr_running) 5647 cfs_rq->throttled_clock_self = rq_clock(rq); 5648 } 5649 cfs_rq->throttle_count++; 5650 5651 return 0; 5652 } 5653 5654 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5655 { 5656 struct rq *rq = rq_of(cfs_rq); 5657 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5658 struct sched_entity *se; 5659 long task_delta, idle_task_delta, dequeue = 1; 5660 5661 raw_spin_lock(&cfs_b->lock); 5662 /* This will start the period timer if necessary */ 5663 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5664 /* 5665 * We have raced with bandwidth becoming available, and if we 5666 * actually throttled the timer might not unthrottle us for an 5667 * entire period. We additionally needed to make sure that any 5668 * subsequent check_cfs_rq_runtime calls agree not to throttle 5669 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5670 * for 1ns of runtime rather than just check cfs_b. 5671 */ 5672 dequeue = 0; 5673 } else { 5674 list_add_tail_rcu(&cfs_rq->throttled_list, 5675 &cfs_b->throttled_cfs_rq); 5676 } 5677 raw_spin_unlock(&cfs_b->lock); 5678 5679 if (!dequeue) 5680 return false; /* Throttle no longer required. */ 5681 5682 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5683 5684 /* freeze hierarchy runnable averages while throttled */ 5685 rcu_read_lock(); 5686 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5687 rcu_read_unlock(); 5688 5689 task_delta = cfs_rq->h_nr_running; 5690 idle_task_delta = cfs_rq->idle_h_nr_running; 5691 for_each_sched_entity(se) { 5692 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5693 /* throttled entity or throttle-on-deactivate */ 5694 if (!se->on_rq) 5695 goto done; 5696 5697 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 5698 5699 if (cfs_rq_is_idle(group_cfs_rq(se))) 5700 idle_task_delta = cfs_rq->h_nr_running; 5701 5702 qcfs_rq->h_nr_running -= task_delta; 5703 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5704 5705 if (qcfs_rq->load.weight) { 5706 /* Avoid re-evaluating load for this entity: */ 5707 se = parent_entity(se); 5708 break; 5709 } 5710 } 5711 5712 for_each_sched_entity(se) { 5713 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5714 /* throttled entity or throttle-on-deactivate */ 5715 if (!se->on_rq) 5716 goto done; 5717 5718 update_load_avg(qcfs_rq, se, 0); 5719 se_update_runnable(se); 5720 5721 if (cfs_rq_is_idle(group_cfs_rq(se))) 5722 idle_task_delta = cfs_rq->h_nr_running; 5723 5724 qcfs_rq->h_nr_running -= task_delta; 5725 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5726 } 5727 5728 /* At this point se is NULL and we are at root level*/ 5729 sub_nr_running(rq, task_delta); 5730 5731 done: 5732 /* 5733 * Note: distribution will already see us throttled via the 5734 * throttled-list. rq->lock protects completion. 5735 */ 5736 cfs_rq->throttled = 1; 5737 SCHED_WARN_ON(cfs_rq->throttled_clock); 5738 if (cfs_rq->nr_running) 5739 cfs_rq->throttled_clock = rq_clock(rq); 5740 return true; 5741 } 5742 5743 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5744 { 5745 struct rq *rq = rq_of(cfs_rq); 5746 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5747 struct sched_entity *se; 5748 long task_delta, idle_task_delta; 5749 5750 se = cfs_rq->tg->se[cpu_of(rq)]; 5751 5752 cfs_rq->throttled = 0; 5753 5754 update_rq_clock(rq); 5755 5756 raw_spin_lock(&cfs_b->lock); 5757 if (cfs_rq->throttled_clock) { 5758 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5759 cfs_rq->throttled_clock = 0; 5760 } 5761 list_del_rcu(&cfs_rq->throttled_list); 5762 raw_spin_unlock(&cfs_b->lock); 5763 5764 /* update hierarchical throttle state */ 5765 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5766 5767 if (!cfs_rq->load.weight) { 5768 if (!cfs_rq->on_list) 5769 return; 5770 /* 5771 * Nothing to run but something to decay (on_list)? 5772 * Complete the branch. 5773 */ 5774 for_each_sched_entity(se) { 5775 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5776 break; 5777 } 5778 goto unthrottle_throttle; 5779 } 5780 5781 task_delta = cfs_rq->h_nr_running; 5782 idle_task_delta = cfs_rq->idle_h_nr_running; 5783 for_each_sched_entity(se) { 5784 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5785 5786 if (se->on_rq) 5787 break; 5788 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5789 5790 if (cfs_rq_is_idle(group_cfs_rq(se))) 5791 idle_task_delta = cfs_rq->h_nr_running; 5792 5793 qcfs_rq->h_nr_running += task_delta; 5794 qcfs_rq->idle_h_nr_running += idle_task_delta; 5795 5796 /* end evaluation on encountering a throttled cfs_rq */ 5797 if (cfs_rq_throttled(qcfs_rq)) 5798 goto unthrottle_throttle; 5799 } 5800 5801 for_each_sched_entity(se) { 5802 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5803 5804 update_load_avg(qcfs_rq, se, UPDATE_TG); 5805 se_update_runnable(se); 5806 5807 if (cfs_rq_is_idle(group_cfs_rq(se))) 5808 idle_task_delta = cfs_rq->h_nr_running; 5809 5810 qcfs_rq->h_nr_running += task_delta; 5811 qcfs_rq->idle_h_nr_running += idle_task_delta; 5812 5813 /* end evaluation on encountering a throttled cfs_rq */ 5814 if (cfs_rq_throttled(qcfs_rq)) 5815 goto unthrottle_throttle; 5816 } 5817 5818 /* At this point se is NULL and we are at root level*/ 5819 add_nr_running(rq, task_delta); 5820 5821 unthrottle_throttle: 5822 assert_list_leaf_cfs_rq(rq); 5823 5824 /* Determine whether we need to wake up potentially idle CPU: */ 5825 if (rq->curr == rq->idle && rq->cfs.nr_running) 5826 resched_curr(rq); 5827 } 5828 5829 #ifdef CONFIG_SMP 5830 static void __cfsb_csd_unthrottle(void *arg) 5831 { 5832 struct cfs_rq *cursor, *tmp; 5833 struct rq *rq = arg; 5834 struct rq_flags rf; 5835 5836 rq_lock(rq, &rf); 5837 5838 /* 5839 * Iterating over the list can trigger several call to 5840 * update_rq_clock() in unthrottle_cfs_rq(). 5841 * Do it once and skip the potential next ones. 5842 */ 5843 update_rq_clock(rq); 5844 rq_clock_start_loop_update(rq); 5845 5846 /* 5847 * Since we hold rq lock we're safe from concurrent manipulation of 5848 * the CSD list. However, this RCU critical section annotates the 5849 * fact that we pair with sched_free_group_rcu(), so that we cannot 5850 * race with group being freed in the window between removing it 5851 * from the list and advancing to the next entry in the list. 5852 */ 5853 rcu_read_lock(); 5854 5855 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 5856 throttled_csd_list) { 5857 list_del_init(&cursor->throttled_csd_list); 5858 5859 if (cfs_rq_throttled(cursor)) 5860 unthrottle_cfs_rq(cursor); 5861 } 5862 5863 rcu_read_unlock(); 5864 5865 rq_clock_stop_loop_update(rq); 5866 rq_unlock(rq, &rf); 5867 } 5868 5869 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5870 { 5871 struct rq *rq = rq_of(cfs_rq); 5872 bool first; 5873 5874 if (rq == this_rq()) { 5875 unthrottle_cfs_rq(cfs_rq); 5876 return; 5877 } 5878 5879 /* Already enqueued */ 5880 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 5881 return; 5882 5883 first = list_empty(&rq->cfsb_csd_list); 5884 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 5885 if (first) 5886 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 5887 } 5888 #else 5889 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5890 { 5891 unthrottle_cfs_rq(cfs_rq); 5892 } 5893 #endif 5894 5895 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5896 { 5897 lockdep_assert_rq_held(rq_of(cfs_rq)); 5898 5899 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 5900 cfs_rq->runtime_remaining <= 0)) 5901 return; 5902 5903 __unthrottle_cfs_rq_async(cfs_rq); 5904 } 5905 5906 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 5907 { 5908 struct cfs_rq *local_unthrottle = NULL; 5909 int this_cpu = smp_processor_id(); 5910 u64 runtime, remaining = 1; 5911 bool throttled = false; 5912 struct cfs_rq *cfs_rq; 5913 struct rq_flags rf; 5914 struct rq *rq; 5915 5916 rcu_read_lock(); 5917 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 5918 throttled_list) { 5919 rq = rq_of(cfs_rq); 5920 5921 if (!remaining) { 5922 throttled = true; 5923 break; 5924 } 5925 5926 rq_lock_irqsave(rq, &rf); 5927 if (!cfs_rq_throttled(cfs_rq)) 5928 goto next; 5929 5930 #ifdef CONFIG_SMP 5931 /* Already queued for async unthrottle */ 5932 if (!list_empty(&cfs_rq->throttled_csd_list)) 5933 goto next; 5934 #endif 5935 5936 /* By the above checks, this should never be true */ 5937 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 5938 5939 raw_spin_lock(&cfs_b->lock); 5940 runtime = -cfs_rq->runtime_remaining + 1; 5941 if (runtime > cfs_b->runtime) 5942 runtime = cfs_b->runtime; 5943 cfs_b->runtime -= runtime; 5944 remaining = cfs_b->runtime; 5945 raw_spin_unlock(&cfs_b->lock); 5946 5947 cfs_rq->runtime_remaining += runtime; 5948 5949 /* we check whether we're throttled above */ 5950 if (cfs_rq->runtime_remaining > 0) { 5951 if (cpu_of(rq) != this_cpu || 5952 SCHED_WARN_ON(local_unthrottle)) 5953 unthrottle_cfs_rq_async(cfs_rq); 5954 else 5955 local_unthrottle = cfs_rq; 5956 } else { 5957 throttled = true; 5958 } 5959 5960 next: 5961 rq_unlock_irqrestore(rq, &rf); 5962 } 5963 rcu_read_unlock(); 5964 5965 if (local_unthrottle) { 5966 rq = cpu_rq(this_cpu); 5967 rq_lock_irqsave(rq, &rf); 5968 if (cfs_rq_throttled(local_unthrottle)) 5969 unthrottle_cfs_rq(local_unthrottle); 5970 rq_unlock_irqrestore(rq, &rf); 5971 } 5972 5973 return throttled; 5974 } 5975 5976 /* 5977 * Responsible for refilling a task_group's bandwidth and unthrottling its 5978 * cfs_rqs as appropriate. If there has been no activity within the last 5979 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 5980 * used to track this state. 5981 */ 5982 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 5983 { 5984 int throttled; 5985 5986 /* no need to continue the timer with no bandwidth constraint */ 5987 if (cfs_b->quota == RUNTIME_INF) 5988 goto out_deactivate; 5989 5990 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5991 cfs_b->nr_periods += overrun; 5992 5993 /* Refill extra burst quota even if cfs_b->idle */ 5994 __refill_cfs_bandwidth_runtime(cfs_b); 5995 5996 /* 5997 * idle depends on !throttled (for the case of a large deficit), and if 5998 * we're going inactive then everything else can be deferred 5999 */ 6000 if (cfs_b->idle && !throttled) 6001 goto out_deactivate; 6002 6003 if (!throttled) { 6004 /* mark as potentially idle for the upcoming period */ 6005 cfs_b->idle = 1; 6006 return 0; 6007 } 6008 6009 /* account preceding periods in which throttling occurred */ 6010 cfs_b->nr_throttled += overrun; 6011 6012 /* 6013 * This check is repeated as we release cfs_b->lock while we unthrottle. 6014 */ 6015 while (throttled && cfs_b->runtime > 0) { 6016 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6017 /* we can't nest cfs_b->lock while distributing bandwidth */ 6018 throttled = distribute_cfs_runtime(cfs_b); 6019 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6020 } 6021 6022 /* 6023 * While we are ensured activity in the period following an 6024 * unthrottle, this also covers the case in which the new bandwidth is 6025 * insufficient to cover the existing bandwidth deficit. (Forcing the 6026 * timer to remain active while there are any throttled entities.) 6027 */ 6028 cfs_b->idle = 0; 6029 6030 return 0; 6031 6032 out_deactivate: 6033 return 1; 6034 } 6035 6036 /* a cfs_rq won't donate quota below this amount */ 6037 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6038 /* minimum remaining period time to redistribute slack quota */ 6039 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6040 /* how long we wait to gather additional slack before distributing */ 6041 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6042 6043 /* 6044 * Are we near the end of the current quota period? 6045 * 6046 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6047 * hrtimer base being cleared by hrtimer_start. In the case of 6048 * migrate_hrtimers, base is never cleared, so we are fine. 6049 */ 6050 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6051 { 6052 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6053 s64 remaining; 6054 6055 /* if the call-back is running a quota refresh is already occurring */ 6056 if (hrtimer_callback_running(refresh_timer)) 6057 return 1; 6058 6059 /* is a quota refresh about to occur? */ 6060 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6061 if (remaining < (s64)min_expire) 6062 return 1; 6063 6064 return 0; 6065 } 6066 6067 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6068 { 6069 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6070 6071 /* if there's a quota refresh soon don't bother with slack */ 6072 if (runtime_refresh_within(cfs_b, min_left)) 6073 return; 6074 6075 /* don't push forwards an existing deferred unthrottle */ 6076 if (cfs_b->slack_started) 6077 return; 6078 cfs_b->slack_started = true; 6079 6080 hrtimer_start(&cfs_b->slack_timer, 6081 ns_to_ktime(cfs_bandwidth_slack_period), 6082 HRTIMER_MODE_REL); 6083 } 6084 6085 /* we know any runtime found here is valid as update_curr() precedes return */ 6086 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6087 { 6088 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6089 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6090 6091 if (slack_runtime <= 0) 6092 return; 6093 6094 raw_spin_lock(&cfs_b->lock); 6095 if (cfs_b->quota != RUNTIME_INF) { 6096 cfs_b->runtime += slack_runtime; 6097 6098 /* we are under rq->lock, defer unthrottling using a timer */ 6099 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6100 !list_empty(&cfs_b->throttled_cfs_rq)) 6101 start_cfs_slack_bandwidth(cfs_b); 6102 } 6103 raw_spin_unlock(&cfs_b->lock); 6104 6105 /* even if it's not valid for return we don't want to try again */ 6106 cfs_rq->runtime_remaining -= slack_runtime; 6107 } 6108 6109 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6110 { 6111 if (!cfs_bandwidth_used()) 6112 return; 6113 6114 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 6115 return; 6116 6117 __return_cfs_rq_runtime(cfs_rq); 6118 } 6119 6120 /* 6121 * This is done with a timer (instead of inline with bandwidth return) since 6122 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6123 */ 6124 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6125 { 6126 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6127 unsigned long flags; 6128 6129 /* confirm we're still not at a refresh boundary */ 6130 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6131 cfs_b->slack_started = false; 6132 6133 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6134 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6135 return; 6136 } 6137 6138 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6139 runtime = cfs_b->runtime; 6140 6141 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6142 6143 if (!runtime) 6144 return; 6145 6146 distribute_cfs_runtime(cfs_b); 6147 } 6148 6149 /* 6150 * When a group wakes up we want to make sure that its quota is not already 6151 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6152 * runtime as update_curr() throttling can not trigger until it's on-rq. 6153 */ 6154 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6155 { 6156 if (!cfs_bandwidth_used()) 6157 return; 6158 6159 /* an active group must be handled by the update_curr()->put() path */ 6160 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6161 return; 6162 6163 /* ensure the group is not already throttled */ 6164 if (cfs_rq_throttled(cfs_rq)) 6165 return; 6166 6167 /* update runtime allocation */ 6168 account_cfs_rq_runtime(cfs_rq, 0); 6169 if (cfs_rq->runtime_remaining <= 0) 6170 throttle_cfs_rq(cfs_rq); 6171 } 6172 6173 static void sync_throttle(struct task_group *tg, int cpu) 6174 { 6175 struct cfs_rq *pcfs_rq, *cfs_rq; 6176 6177 if (!cfs_bandwidth_used()) 6178 return; 6179 6180 if (!tg->parent) 6181 return; 6182 6183 cfs_rq = tg->cfs_rq[cpu]; 6184 pcfs_rq = tg->parent->cfs_rq[cpu]; 6185 6186 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6187 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6188 } 6189 6190 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6191 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6192 { 6193 if (!cfs_bandwidth_used()) 6194 return false; 6195 6196 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6197 return false; 6198 6199 /* 6200 * it's possible for a throttled entity to be forced into a running 6201 * state (e.g. set_curr_task), in this case we're finished. 6202 */ 6203 if (cfs_rq_throttled(cfs_rq)) 6204 return true; 6205 6206 return throttle_cfs_rq(cfs_rq); 6207 } 6208 6209 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6210 { 6211 struct cfs_bandwidth *cfs_b = 6212 container_of(timer, struct cfs_bandwidth, slack_timer); 6213 6214 do_sched_cfs_slack_timer(cfs_b); 6215 6216 return HRTIMER_NORESTART; 6217 } 6218 6219 extern const u64 max_cfs_quota_period; 6220 6221 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6222 { 6223 struct cfs_bandwidth *cfs_b = 6224 container_of(timer, struct cfs_bandwidth, period_timer); 6225 unsigned long flags; 6226 int overrun; 6227 int idle = 0; 6228 int count = 0; 6229 6230 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6231 for (;;) { 6232 overrun = hrtimer_forward_now(timer, cfs_b->period); 6233 if (!overrun) 6234 break; 6235 6236 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6237 6238 if (++count > 3) { 6239 u64 new, old = ktime_to_ns(cfs_b->period); 6240 6241 /* 6242 * Grow period by a factor of 2 to avoid losing precision. 6243 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6244 * to fail. 6245 */ 6246 new = old * 2; 6247 if (new < max_cfs_quota_period) { 6248 cfs_b->period = ns_to_ktime(new); 6249 cfs_b->quota *= 2; 6250 cfs_b->burst *= 2; 6251 6252 pr_warn_ratelimited( 6253 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6254 smp_processor_id(), 6255 div_u64(new, NSEC_PER_USEC), 6256 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6257 } else { 6258 pr_warn_ratelimited( 6259 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6260 smp_processor_id(), 6261 div_u64(old, NSEC_PER_USEC), 6262 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6263 } 6264 6265 /* reset count so we don't come right back in here */ 6266 count = 0; 6267 } 6268 } 6269 if (idle) 6270 cfs_b->period_active = 0; 6271 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6272 6273 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6274 } 6275 6276 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6277 { 6278 raw_spin_lock_init(&cfs_b->lock); 6279 cfs_b->runtime = 0; 6280 cfs_b->quota = RUNTIME_INF; 6281 cfs_b->period = ns_to_ktime(default_cfs_period()); 6282 cfs_b->burst = 0; 6283 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6284 6285 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6286 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6287 cfs_b->period_timer.function = sched_cfs_period_timer; 6288 6289 /* Add a random offset so that timers interleave */ 6290 hrtimer_set_expires(&cfs_b->period_timer, 6291 get_random_u32_below(cfs_b->period)); 6292 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6293 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6294 cfs_b->slack_started = false; 6295 } 6296 6297 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6298 { 6299 cfs_rq->runtime_enabled = 0; 6300 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6301 #ifdef CONFIG_SMP 6302 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6303 #endif 6304 } 6305 6306 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6307 { 6308 lockdep_assert_held(&cfs_b->lock); 6309 6310 if (cfs_b->period_active) 6311 return; 6312 6313 cfs_b->period_active = 1; 6314 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6315 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6316 } 6317 6318 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6319 { 6320 int __maybe_unused i; 6321 6322 /* init_cfs_bandwidth() was not called */ 6323 if (!cfs_b->throttled_cfs_rq.next) 6324 return; 6325 6326 hrtimer_cancel(&cfs_b->period_timer); 6327 hrtimer_cancel(&cfs_b->slack_timer); 6328 6329 /* 6330 * It is possible that we still have some cfs_rq's pending on a CSD 6331 * list, though this race is very rare. In order for this to occur, we 6332 * must have raced with the last task leaving the group while there 6333 * exist throttled cfs_rq(s), and the period_timer must have queued the 6334 * CSD item but the remote cpu has not yet processed it. To handle this, 6335 * we can simply flush all pending CSD work inline here. We're 6336 * guaranteed at this point that no additional cfs_rq of this group can 6337 * join a CSD list. 6338 */ 6339 #ifdef CONFIG_SMP 6340 for_each_possible_cpu(i) { 6341 struct rq *rq = cpu_rq(i); 6342 unsigned long flags; 6343 6344 if (list_empty(&rq->cfsb_csd_list)) 6345 continue; 6346 6347 local_irq_save(flags); 6348 __cfsb_csd_unthrottle(rq); 6349 local_irq_restore(flags); 6350 } 6351 #endif 6352 } 6353 6354 /* 6355 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6356 * 6357 * The race is harmless, since modifying bandwidth settings of unhooked group 6358 * bits doesn't do much. 6359 */ 6360 6361 /* cpu online callback */ 6362 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6363 { 6364 struct task_group *tg; 6365 6366 lockdep_assert_rq_held(rq); 6367 6368 rcu_read_lock(); 6369 list_for_each_entry_rcu(tg, &task_groups, list) { 6370 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6371 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6372 6373 raw_spin_lock(&cfs_b->lock); 6374 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6375 raw_spin_unlock(&cfs_b->lock); 6376 } 6377 rcu_read_unlock(); 6378 } 6379 6380 /* cpu offline callback */ 6381 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6382 { 6383 struct task_group *tg; 6384 6385 lockdep_assert_rq_held(rq); 6386 6387 /* 6388 * The rq clock has already been updated in the 6389 * set_rq_offline(), so we should skip updating 6390 * the rq clock again in unthrottle_cfs_rq(). 6391 */ 6392 rq_clock_start_loop_update(rq); 6393 6394 rcu_read_lock(); 6395 list_for_each_entry_rcu(tg, &task_groups, list) { 6396 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6397 6398 if (!cfs_rq->runtime_enabled) 6399 continue; 6400 6401 /* 6402 * clock_task is not advancing so we just need to make sure 6403 * there's some valid quota amount 6404 */ 6405 cfs_rq->runtime_remaining = 1; 6406 /* 6407 * Offline rq is schedulable till CPU is completely disabled 6408 * in take_cpu_down(), so we prevent new cfs throttling here. 6409 */ 6410 cfs_rq->runtime_enabled = 0; 6411 6412 if (cfs_rq_throttled(cfs_rq)) 6413 unthrottle_cfs_rq(cfs_rq); 6414 } 6415 rcu_read_unlock(); 6416 6417 rq_clock_stop_loop_update(rq); 6418 } 6419 6420 bool cfs_task_bw_constrained(struct task_struct *p) 6421 { 6422 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6423 6424 if (!cfs_bandwidth_used()) 6425 return false; 6426 6427 if (cfs_rq->runtime_enabled || 6428 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6429 return true; 6430 6431 return false; 6432 } 6433 6434 #ifdef CONFIG_NO_HZ_FULL 6435 /* called from pick_next_task_fair() */ 6436 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6437 { 6438 int cpu = cpu_of(rq); 6439 6440 if (!sched_feat(HZ_BW) || !cfs_bandwidth_used()) 6441 return; 6442 6443 if (!tick_nohz_full_cpu(cpu)) 6444 return; 6445 6446 if (rq->nr_running != 1) 6447 return; 6448 6449 /* 6450 * We know there is only one task runnable and we've just picked it. The 6451 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6452 * be otherwise able to stop the tick. Just need to check if we are using 6453 * bandwidth control. 6454 */ 6455 if (cfs_task_bw_constrained(p)) 6456 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6457 } 6458 #endif 6459 6460 #else /* CONFIG_CFS_BANDWIDTH */ 6461 6462 static inline bool cfs_bandwidth_used(void) 6463 { 6464 return false; 6465 } 6466 6467 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6468 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6469 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6470 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6471 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6472 6473 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6474 { 6475 return 0; 6476 } 6477 6478 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6479 { 6480 return 0; 6481 } 6482 6483 static inline int throttled_lb_pair(struct task_group *tg, 6484 int src_cpu, int dest_cpu) 6485 { 6486 return 0; 6487 } 6488 6489 #ifdef CONFIG_FAIR_GROUP_SCHED 6490 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6491 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6492 #endif 6493 6494 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6495 { 6496 return NULL; 6497 } 6498 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6499 static inline void update_runtime_enabled(struct rq *rq) {} 6500 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6501 #ifdef CONFIG_CGROUP_SCHED 6502 bool cfs_task_bw_constrained(struct task_struct *p) 6503 { 6504 return false; 6505 } 6506 #endif 6507 #endif /* CONFIG_CFS_BANDWIDTH */ 6508 6509 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6510 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6511 #endif 6512 6513 /************************************************** 6514 * CFS operations on tasks: 6515 */ 6516 6517 #ifdef CONFIG_SCHED_HRTICK 6518 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6519 { 6520 struct sched_entity *se = &p->se; 6521 6522 SCHED_WARN_ON(task_rq(p) != rq); 6523 6524 if (rq->cfs.h_nr_running > 1) { 6525 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6526 u64 slice = se->slice; 6527 s64 delta = slice - ran; 6528 6529 if (delta < 0) { 6530 if (task_current(rq, p)) 6531 resched_curr(rq); 6532 return; 6533 } 6534 hrtick_start(rq, delta); 6535 } 6536 } 6537 6538 /* 6539 * called from enqueue/dequeue and updates the hrtick when the 6540 * current task is from our class and nr_running is low enough 6541 * to matter. 6542 */ 6543 static void hrtick_update(struct rq *rq) 6544 { 6545 struct task_struct *curr = rq->curr; 6546 6547 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 6548 return; 6549 6550 hrtick_start_fair(rq, curr); 6551 } 6552 #else /* !CONFIG_SCHED_HRTICK */ 6553 static inline void 6554 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6555 { 6556 } 6557 6558 static inline void hrtick_update(struct rq *rq) 6559 { 6560 } 6561 #endif 6562 6563 #ifdef CONFIG_SMP 6564 static inline bool cpu_overutilized(int cpu) 6565 { 6566 unsigned long rq_util_min, rq_util_max; 6567 6568 if (!sched_energy_enabled()) 6569 return false; 6570 6571 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6572 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6573 6574 /* Return true only if the utilization doesn't fit CPU's capacity */ 6575 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6576 } 6577 6578 static inline void set_rd_overutilized_status(struct root_domain *rd, 6579 unsigned int status) 6580 { 6581 if (!sched_energy_enabled()) 6582 return; 6583 6584 WRITE_ONCE(rd->overutilized, status); 6585 trace_sched_overutilized_tp(rd, !!status); 6586 } 6587 6588 static inline void check_update_overutilized_status(struct rq *rq) 6589 { 6590 /* 6591 * overutilized field is used for load balancing decisions only 6592 * if energy aware scheduler is being used 6593 */ 6594 if (!sched_energy_enabled()) 6595 return; 6596 6597 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) 6598 set_rd_overutilized_status(rq->rd, SG_OVERUTILIZED); 6599 } 6600 #else 6601 static inline void check_update_overutilized_status(struct rq *rq) { } 6602 #endif 6603 6604 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6605 static int sched_idle_rq(struct rq *rq) 6606 { 6607 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6608 rq->nr_running); 6609 } 6610 6611 #ifdef CONFIG_SMP 6612 static int sched_idle_cpu(int cpu) 6613 { 6614 return sched_idle_rq(cpu_rq(cpu)); 6615 } 6616 #endif 6617 6618 /* 6619 * The enqueue_task method is called before nr_running is 6620 * increased. Here we update the fair scheduling stats and 6621 * then put the task into the rbtree: 6622 */ 6623 static void 6624 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6625 { 6626 struct cfs_rq *cfs_rq; 6627 struct sched_entity *se = &p->se; 6628 int idle_h_nr_running = task_has_idle_policy(p); 6629 int task_new = !(flags & ENQUEUE_WAKEUP); 6630 6631 /* 6632 * The code below (indirectly) updates schedutil which looks at 6633 * the cfs_rq utilization to select a frequency. 6634 * Let's add the task's estimated utilization to the cfs_rq's 6635 * estimated utilization, before we update schedutil. 6636 */ 6637 util_est_enqueue(&rq->cfs, p); 6638 6639 /* 6640 * If in_iowait is set, the code below may not trigger any cpufreq 6641 * utilization updates, so do it here explicitly with the IOWAIT flag 6642 * passed. 6643 */ 6644 if (p->in_iowait) 6645 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6646 6647 for_each_sched_entity(se) { 6648 if (se->on_rq) 6649 break; 6650 cfs_rq = cfs_rq_of(se); 6651 enqueue_entity(cfs_rq, se, flags); 6652 6653 cfs_rq->h_nr_running++; 6654 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6655 6656 if (cfs_rq_is_idle(cfs_rq)) 6657 idle_h_nr_running = 1; 6658 6659 /* end evaluation on encountering a throttled cfs_rq */ 6660 if (cfs_rq_throttled(cfs_rq)) 6661 goto enqueue_throttle; 6662 6663 flags = ENQUEUE_WAKEUP; 6664 } 6665 6666 for_each_sched_entity(se) { 6667 cfs_rq = cfs_rq_of(se); 6668 6669 update_load_avg(cfs_rq, se, UPDATE_TG); 6670 se_update_runnable(se); 6671 update_cfs_group(se); 6672 6673 cfs_rq->h_nr_running++; 6674 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6675 6676 if (cfs_rq_is_idle(cfs_rq)) 6677 idle_h_nr_running = 1; 6678 6679 /* end evaluation on encountering a throttled cfs_rq */ 6680 if (cfs_rq_throttled(cfs_rq)) 6681 goto enqueue_throttle; 6682 } 6683 6684 /* At this point se is NULL and we are at root level*/ 6685 add_nr_running(rq, 1); 6686 6687 /* 6688 * Since new tasks are assigned an initial util_avg equal to 6689 * half of the spare capacity of their CPU, tiny tasks have the 6690 * ability to cross the overutilized threshold, which will 6691 * result in the load balancer ruining all the task placement 6692 * done by EAS. As a way to mitigate that effect, do not account 6693 * for the first enqueue operation of new tasks during the 6694 * overutilized flag detection. 6695 * 6696 * A better way of solving this problem would be to wait for 6697 * the PELT signals of tasks to converge before taking them 6698 * into account, but that is not straightforward to implement, 6699 * and the following generally works well enough in practice. 6700 */ 6701 if (!task_new) 6702 check_update_overutilized_status(rq); 6703 6704 enqueue_throttle: 6705 assert_list_leaf_cfs_rq(rq); 6706 6707 hrtick_update(rq); 6708 } 6709 6710 static void set_next_buddy(struct sched_entity *se); 6711 6712 /* 6713 * The dequeue_task method is called before nr_running is 6714 * decreased. We remove the task from the rbtree and 6715 * update the fair scheduling stats: 6716 */ 6717 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6718 { 6719 struct cfs_rq *cfs_rq; 6720 struct sched_entity *se = &p->se; 6721 int task_sleep = flags & DEQUEUE_SLEEP; 6722 int idle_h_nr_running = task_has_idle_policy(p); 6723 bool was_sched_idle = sched_idle_rq(rq); 6724 6725 util_est_dequeue(&rq->cfs, p); 6726 6727 for_each_sched_entity(se) { 6728 cfs_rq = cfs_rq_of(se); 6729 dequeue_entity(cfs_rq, se, flags); 6730 6731 cfs_rq->h_nr_running--; 6732 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6733 6734 if (cfs_rq_is_idle(cfs_rq)) 6735 idle_h_nr_running = 1; 6736 6737 /* end evaluation on encountering a throttled cfs_rq */ 6738 if (cfs_rq_throttled(cfs_rq)) 6739 goto dequeue_throttle; 6740 6741 /* Don't dequeue parent if it has other entities besides us */ 6742 if (cfs_rq->load.weight) { 6743 /* Avoid re-evaluating load for this entity: */ 6744 se = parent_entity(se); 6745 /* 6746 * Bias pick_next to pick a task from this cfs_rq, as 6747 * p is sleeping when it is within its sched_slice. 6748 */ 6749 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 6750 set_next_buddy(se); 6751 break; 6752 } 6753 flags |= DEQUEUE_SLEEP; 6754 } 6755 6756 for_each_sched_entity(se) { 6757 cfs_rq = cfs_rq_of(se); 6758 6759 update_load_avg(cfs_rq, se, UPDATE_TG); 6760 se_update_runnable(se); 6761 update_cfs_group(se); 6762 6763 cfs_rq->h_nr_running--; 6764 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6765 6766 if (cfs_rq_is_idle(cfs_rq)) 6767 idle_h_nr_running = 1; 6768 6769 /* end evaluation on encountering a throttled cfs_rq */ 6770 if (cfs_rq_throttled(cfs_rq)) 6771 goto dequeue_throttle; 6772 6773 } 6774 6775 /* At this point se is NULL and we are at root level*/ 6776 sub_nr_running(rq, 1); 6777 6778 /* balance early to pull high priority tasks */ 6779 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 6780 rq->next_balance = jiffies; 6781 6782 dequeue_throttle: 6783 util_est_update(&rq->cfs, p, task_sleep); 6784 hrtick_update(rq); 6785 } 6786 6787 #ifdef CONFIG_SMP 6788 6789 /* Working cpumask for: load_balance, load_balance_newidle. */ 6790 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6791 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 6792 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 6793 6794 #ifdef CONFIG_NO_HZ_COMMON 6795 6796 static struct { 6797 cpumask_var_t idle_cpus_mask; 6798 atomic_t nr_cpus; 6799 int has_blocked; /* Idle CPUS has blocked load */ 6800 int needs_update; /* Newly idle CPUs need their next_balance collated */ 6801 unsigned long next_balance; /* in jiffy units */ 6802 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 6803 } nohz ____cacheline_aligned; 6804 6805 #endif /* CONFIG_NO_HZ_COMMON */ 6806 6807 static unsigned long cpu_load(struct rq *rq) 6808 { 6809 return cfs_rq_load_avg(&rq->cfs); 6810 } 6811 6812 /* 6813 * cpu_load_without - compute CPU load without any contributions from *p 6814 * @cpu: the CPU which load is requested 6815 * @p: the task which load should be discounted 6816 * 6817 * The load of a CPU is defined by the load of tasks currently enqueued on that 6818 * CPU as well as tasks which are currently sleeping after an execution on that 6819 * CPU. 6820 * 6821 * This method returns the load of the specified CPU by discounting the load of 6822 * the specified task, whenever the task is currently contributing to the CPU 6823 * load. 6824 */ 6825 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 6826 { 6827 struct cfs_rq *cfs_rq; 6828 unsigned int load; 6829 6830 /* Task has no contribution or is new */ 6831 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6832 return cpu_load(rq); 6833 6834 cfs_rq = &rq->cfs; 6835 load = READ_ONCE(cfs_rq->avg.load_avg); 6836 6837 /* Discount task's util from CPU's util */ 6838 lsub_positive(&load, task_h_load(p)); 6839 6840 return load; 6841 } 6842 6843 static unsigned long cpu_runnable(struct rq *rq) 6844 { 6845 return cfs_rq_runnable_avg(&rq->cfs); 6846 } 6847 6848 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 6849 { 6850 struct cfs_rq *cfs_rq; 6851 unsigned int runnable; 6852 6853 /* Task has no contribution or is new */ 6854 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6855 return cpu_runnable(rq); 6856 6857 cfs_rq = &rq->cfs; 6858 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 6859 6860 /* Discount task's runnable from CPU's runnable */ 6861 lsub_positive(&runnable, p->se.avg.runnable_avg); 6862 6863 return runnable; 6864 } 6865 6866 static unsigned long capacity_of(int cpu) 6867 { 6868 return cpu_rq(cpu)->cpu_capacity; 6869 } 6870 6871 static void record_wakee(struct task_struct *p) 6872 { 6873 /* 6874 * Only decay a single time; tasks that have less then 1 wakeup per 6875 * jiffy will not have built up many flips. 6876 */ 6877 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 6878 current->wakee_flips >>= 1; 6879 current->wakee_flip_decay_ts = jiffies; 6880 } 6881 6882 if (current->last_wakee != p) { 6883 current->last_wakee = p; 6884 current->wakee_flips++; 6885 } 6886 } 6887 6888 /* 6889 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 6890 * 6891 * A waker of many should wake a different task than the one last awakened 6892 * at a frequency roughly N times higher than one of its wakees. 6893 * 6894 * In order to determine whether we should let the load spread vs consolidating 6895 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 6896 * partner, and a factor of lls_size higher frequency in the other. 6897 * 6898 * With both conditions met, we can be relatively sure that the relationship is 6899 * non-monogamous, with partner count exceeding socket size. 6900 * 6901 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 6902 * whatever is irrelevant, spread criteria is apparent partner count exceeds 6903 * socket size. 6904 */ 6905 static int wake_wide(struct task_struct *p) 6906 { 6907 unsigned int master = current->wakee_flips; 6908 unsigned int slave = p->wakee_flips; 6909 int factor = __this_cpu_read(sd_llc_size); 6910 6911 if (master < slave) 6912 swap(master, slave); 6913 if (slave < factor || master < slave * factor) 6914 return 0; 6915 return 1; 6916 } 6917 6918 /* 6919 * The purpose of wake_affine() is to quickly determine on which CPU we can run 6920 * soonest. For the purpose of speed we only consider the waking and previous 6921 * CPU. 6922 * 6923 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 6924 * cache-affine and is (or will be) idle. 6925 * 6926 * wake_affine_weight() - considers the weight to reflect the average 6927 * scheduling latency of the CPUs. This seems to work 6928 * for the overloaded case. 6929 */ 6930 static int 6931 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 6932 { 6933 /* 6934 * If this_cpu is idle, it implies the wakeup is from interrupt 6935 * context. Only allow the move if cache is shared. Otherwise an 6936 * interrupt intensive workload could force all tasks onto one 6937 * node depending on the IO topology or IRQ affinity settings. 6938 * 6939 * If the prev_cpu is idle and cache affine then avoid a migration. 6940 * There is no guarantee that the cache hot data from an interrupt 6941 * is more important than cache hot data on the prev_cpu and from 6942 * a cpufreq perspective, it's better to have higher utilisation 6943 * on one CPU. 6944 */ 6945 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 6946 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 6947 6948 if (sync && cpu_rq(this_cpu)->nr_running == 1) 6949 return this_cpu; 6950 6951 if (available_idle_cpu(prev_cpu)) 6952 return prev_cpu; 6953 6954 return nr_cpumask_bits; 6955 } 6956 6957 static int 6958 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 6959 int this_cpu, int prev_cpu, int sync) 6960 { 6961 s64 this_eff_load, prev_eff_load; 6962 unsigned long task_load; 6963 6964 this_eff_load = cpu_load(cpu_rq(this_cpu)); 6965 6966 if (sync) { 6967 unsigned long current_load = task_h_load(current); 6968 6969 if (current_load > this_eff_load) 6970 return this_cpu; 6971 6972 this_eff_load -= current_load; 6973 } 6974 6975 task_load = task_h_load(p); 6976 6977 this_eff_load += task_load; 6978 if (sched_feat(WA_BIAS)) 6979 this_eff_load *= 100; 6980 this_eff_load *= capacity_of(prev_cpu); 6981 6982 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 6983 prev_eff_load -= task_load; 6984 if (sched_feat(WA_BIAS)) 6985 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 6986 prev_eff_load *= capacity_of(this_cpu); 6987 6988 /* 6989 * If sync, adjust the weight of prev_eff_load such that if 6990 * prev_eff == this_eff that select_idle_sibling() will consider 6991 * stacking the wakee on top of the waker if no other CPU is 6992 * idle. 6993 */ 6994 if (sync) 6995 prev_eff_load += 1; 6996 6997 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 6998 } 6999 7000 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7001 int this_cpu, int prev_cpu, int sync) 7002 { 7003 int target = nr_cpumask_bits; 7004 7005 if (sched_feat(WA_IDLE)) 7006 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7007 7008 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7009 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7010 7011 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7012 if (target != this_cpu) 7013 return prev_cpu; 7014 7015 schedstat_inc(sd->ttwu_move_affine); 7016 schedstat_inc(p->stats.nr_wakeups_affine); 7017 return target; 7018 } 7019 7020 static struct sched_group * 7021 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7022 7023 /* 7024 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 7025 */ 7026 static int 7027 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7028 { 7029 unsigned long load, min_load = ULONG_MAX; 7030 unsigned int min_exit_latency = UINT_MAX; 7031 u64 latest_idle_timestamp = 0; 7032 int least_loaded_cpu = this_cpu; 7033 int shallowest_idle_cpu = -1; 7034 int i; 7035 7036 /* Check if we have any choice: */ 7037 if (group->group_weight == 1) 7038 return cpumask_first(sched_group_span(group)); 7039 7040 /* Traverse only the allowed CPUs */ 7041 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7042 struct rq *rq = cpu_rq(i); 7043 7044 if (!sched_core_cookie_match(rq, p)) 7045 continue; 7046 7047 if (sched_idle_cpu(i)) 7048 return i; 7049 7050 if (available_idle_cpu(i)) { 7051 struct cpuidle_state *idle = idle_get_state(rq); 7052 if (idle && idle->exit_latency < min_exit_latency) { 7053 /* 7054 * We give priority to a CPU whose idle state 7055 * has the smallest exit latency irrespective 7056 * of any idle timestamp. 7057 */ 7058 min_exit_latency = idle->exit_latency; 7059 latest_idle_timestamp = rq->idle_stamp; 7060 shallowest_idle_cpu = i; 7061 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7062 rq->idle_stamp > latest_idle_timestamp) { 7063 /* 7064 * If equal or no active idle state, then 7065 * the most recently idled CPU might have 7066 * a warmer cache. 7067 */ 7068 latest_idle_timestamp = rq->idle_stamp; 7069 shallowest_idle_cpu = i; 7070 } 7071 } else if (shallowest_idle_cpu == -1) { 7072 load = cpu_load(cpu_rq(i)); 7073 if (load < min_load) { 7074 min_load = load; 7075 least_loaded_cpu = i; 7076 } 7077 } 7078 } 7079 7080 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7081 } 7082 7083 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 7084 int cpu, int prev_cpu, int sd_flag) 7085 { 7086 int new_cpu = cpu; 7087 7088 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7089 return prev_cpu; 7090 7091 /* 7092 * We need task's util for cpu_util_without, sync it up to 7093 * prev_cpu's last_update_time. 7094 */ 7095 if (!(sd_flag & SD_BALANCE_FORK)) 7096 sync_entity_load_avg(&p->se); 7097 7098 while (sd) { 7099 struct sched_group *group; 7100 struct sched_domain *tmp; 7101 int weight; 7102 7103 if (!(sd->flags & sd_flag)) { 7104 sd = sd->child; 7105 continue; 7106 } 7107 7108 group = find_idlest_group(sd, p, cpu); 7109 if (!group) { 7110 sd = sd->child; 7111 continue; 7112 } 7113 7114 new_cpu = find_idlest_group_cpu(group, p, cpu); 7115 if (new_cpu == cpu) { 7116 /* Now try balancing at a lower domain level of 'cpu': */ 7117 sd = sd->child; 7118 continue; 7119 } 7120 7121 /* Now try balancing at a lower domain level of 'new_cpu': */ 7122 cpu = new_cpu; 7123 weight = sd->span_weight; 7124 sd = NULL; 7125 for_each_domain(cpu, tmp) { 7126 if (weight <= tmp->span_weight) 7127 break; 7128 if (tmp->flags & sd_flag) 7129 sd = tmp; 7130 } 7131 } 7132 7133 return new_cpu; 7134 } 7135 7136 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7137 { 7138 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7139 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7140 return cpu; 7141 7142 return -1; 7143 } 7144 7145 #ifdef CONFIG_SCHED_SMT 7146 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7147 EXPORT_SYMBOL_GPL(sched_smt_present); 7148 7149 static inline void set_idle_cores(int cpu, int val) 7150 { 7151 struct sched_domain_shared *sds; 7152 7153 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7154 if (sds) 7155 WRITE_ONCE(sds->has_idle_cores, val); 7156 } 7157 7158 static inline bool test_idle_cores(int cpu) 7159 { 7160 struct sched_domain_shared *sds; 7161 7162 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7163 if (sds) 7164 return READ_ONCE(sds->has_idle_cores); 7165 7166 return false; 7167 } 7168 7169 /* 7170 * Scans the local SMT mask to see if the entire core is idle, and records this 7171 * information in sd_llc_shared->has_idle_cores. 7172 * 7173 * Since SMT siblings share all cache levels, inspecting this limited remote 7174 * state should be fairly cheap. 7175 */ 7176 void __update_idle_core(struct rq *rq) 7177 { 7178 int core = cpu_of(rq); 7179 int cpu; 7180 7181 rcu_read_lock(); 7182 if (test_idle_cores(core)) 7183 goto unlock; 7184 7185 for_each_cpu(cpu, cpu_smt_mask(core)) { 7186 if (cpu == core) 7187 continue; 7188 7189 if (!available_idle_cpu(cpu)) 7190 goto unlock; 7191 } 7192 7193 set_idle_cores(core, 1); 7194 unlock: 7195 rcu_read_unlock(); 7196 } 7197 7198 /* 7199 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7200 * there are no idle cores left in the system; tracked through 7201 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7202 */ 7203 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7204 { 7205 bool idle = true; 7206 int cpu; 7207 7208 for_each_cpu(cpu, cpu_smt_mask(core)) { 7209 if (!available_idle_cpu(cpu)) { 7210 idle = false; 7211 if (*idle_cpu == -1) { 7212 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7213 *idle_cpu = cpu; 7214 break; 7215 } 7216 continue; 7217 } 7218 break; 7219 } 7220 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7221 *idle_cpu = cpu; 7222 } 7223 7224 if (idle) 7225 return core; 7226 7227 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7228 return -1; 7229 } 7230 7231 /* 7232 * Scan the local SMT mask for idle CPUs. 7233 */ 7234 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7235 { 7236 int cpu; 7237 7238 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7239 if (cpu == target) 7240 continue; 7241 /* 7242 * Check if the CPU is in the LLC scheduling domain of @target. 7243 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7244 */ 7245 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7246 continue; 7247 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7248 return cpu; 7249 } 7250 7251 return -1; 7252 } 7253 7254 #else /* CONFIG_SCHED_SMT */ 7255 7256 static inline void set_idle_cores(int cpu, int val) 7257 { 7258 } 7259 7260 static inline bool test_idle_cores(int cpu) 7261 { 7262 return false; 7263 } 7264 7265 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7266 { 7267 return __select_idle_cpu(core, p); 7268 } 7269 7270 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7271 { 7272 return -1; 7273 } 7274 7275 #endif /* CONFIG_SCHED_SMT */ 7276 7277 /* 7278 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7279 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7280 * average idle time for this rq (as found in rq->avg_idle). 7281 */ 7282 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7283 { 7284 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7285 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7286 struct sched_domain_shared *sd_share; 7287 struct rq *this_rq = this_rq(); 7288 int this = smp_processor_id(); 7289 struct sched_domain *this_sd = NULL; 7290 u64 time = 0; 7291 7292 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7293 7294 if (sched_feat(SIS_PROP) && !has_idle_core) { 7295 u64 avg_cost, avg_idle, span_avg; 7296 unsigned long now = jiffies; 7297 7298 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 7299 if (!this_sd) 7300 return -1; 7301 7302 /* 7303 * If we're busy, the assumption that the last idle period 7304 * predicts the future is flawed; age away the remaining 7305 * predicted idle time. 7306 */ 7307 if (unlikely(this_rq->wake_stamp < now)) { 7308 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) { 7309 this_rq->wake_stamp++; 7310 this_rq->wake_avg_idle >>= 1; 7311 } 7312 } 7313 7314 avg_idle = this_rq->wake_avg_idle; 7315 avg_cost = this_sd->avg_scan_cost + 1; 7316 7317 span_avg = sd->span_weight * avg_idle; 7318 if (span_avg > 4*avg_cost) 7319 nr = div_u64(span_avg, avg_cost); 7320 else 7321 nr = 4; 7322 7323 time = cpu_clock(this); 7324 } 7325 7326 if (sched_feat(SIS_UTIL)) { 7327 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7328 if (sd_share) { 7329 /* because !--nr is the condition to stop scan */ 7330 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7331 /* overloaded LLC is unlikely to have idle cpu/core */ 7332 if (nr == 1) 7333 return -1; 7334 } 7335 } 7336 7337 for_each_cpu_wrap(cpu, cpus, target + 1) { 7338 if (has_idle_core) { 7339 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7340 if ((unsigned int)i < nr_cpumask_bits) 7341 return i; 7342 7343 } else { 7344 if (!--nr) 7345 return -1; 7346 idle_cpu = __select_idle_cpu(cpu, p); 7347 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7348 break; 7349 } 7350 } 7351 7352 if (has_idle_core) 7353 set_idle_cores(target, false); 7354 7355 if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) { 7356 time = cpu_clock(this) - time; 7357 7358 /* 7359 * Account for the scan cost of wakeups against the average 7360 * idle time. 7361 */ 7362 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time); 7363 7364 update_avg(&this_sd->avg_scan_cost, time); 7365 } 7366 7367 return idle_cpu; 7368 } 7369 7370 /* 7371 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7372 * the task fits. If no CPU is big enough, but there are idle ones, try to 7373 * maximize capacity. 7374 */ 7375 static int 7376 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7377 { 7378 unsigned long task_util, util_min, util_max, best_cap = 0; 7379 int fits, best_fits = 0; 7380 int cpu, best_cpu = -1; 7381 struct cpumask *cpus; 7382 7383 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7384 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7385 7386 task_util = task_util_est(p); 7387 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7388 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7389 7390 for_each_cpu_wrap(cpu, cpus, target) { 7391 unsigned long cpu_cap = capacity_of(cpu); 7392 7393 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7394 continue; 7395 7396 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7397 7398 /* This CPU fits with all requirements */ 7399 if (fits > 0) 7400 return cpu; 7401 /* 7402 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7403 * Look for the CPU with best capacity. 7404 */ 7405 else if (fits < 0) 7406 cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu)); 7407 7408 /* 7409 * First, select CPU which fits better (-1 being better than 0). 7410 * Then, select the one with best capacity at same level. 7411 */ 7412 if ((fits < best_fits) || 7413 ((fits == best_fits) && (cpu_cap > best_cap))) { 7414 best_cap = cpu_cap; 7415 best_cpu = cpu; 7416 best_fits = fits; 7417 } 7418 } 7419 7420 return best_cpu; 7421 } 7422 7423 static inline bool asym_fits_cpu(unsigned long util, 7424 unsigned long util_min, 7425 unsigned long util_max, 7426 int cpu) 7427 { 7428 if (sched_asym_cpucap_active()) 7429 /* 7430 * Return true only if the cpu fully fits the task requirements 7431 * which include the utilization and the performance hints. 7432 */ 7433 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7434 7435 return true; 7436 } 7437 7438 /* 7439 * Try and locate an idle core/thread in the LLC cache domain. 7440 */ 7441 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7442 { 7443 bool has_idle_core = false; 7444 struct sched_domain *sd; 7445 unsigned long task_util, util_min, util_max; 7446 int i, recent_used_cpu; 7447 7448 /* 7449 * On asymmetric system, update task utilization because we will check 7450 * that the task fits with cpu's capacity. 7451 */ 7452 if (sched_asym_cpucap_active()) { 7453 sync_entity_load_avg(&p->se); 7454 task_util = task_util_est(p); 7455 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7456 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7457 } 7458 7459 /* 7460 * per-cpu select_rq_mask usage 7461 */ 7462 lockdep_assert_irqs_disabled(); 7463 7464 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7465 asym_fits_cpu(task_util, util_min, util_max, target)) 7466 return target; 7467 7468 /* 7469 * If the previous CPU is cache affine and idle, don't be stupid: 7470 */ 7471 if (prev != target && cpus_share_cache(prev, target) && 7472 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7473 asym_fits_cpu(task_util, util_min, util_max, prev)) 7474 return prev; 7475 7476 /* 7477 * Allow a per-cpu kthread to stack with the wakee if the 7478 * kworker thread and the tasks previous CPUs are the same. 7479 * The assumption is that the wakee queued work for the 7480 * per-cpu kthread that is now complete and the wakeup is 7481 * essentially a sync wakeup. An obvious example of this 7482 * pattern is IO completions. 7483 */ 7484 if (is_per_cpu_kthread(current) && 7485 in_task() && 7486 prev == smp_processor_id() && 7487 this_rq()->nr_running <= 1 && 7488 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7489 return prev; 7490 } 7491 7492 /* Check a recently used CPU as a potential idle candidate: */ 7493 recent_used_cpu = p->recent_used_cpu; 7494 p->recent_used_cpu = prev; 7495 if (recent_used_cpu != prev && 7496 recent_used_cpu != target && 7497 cpus_share_cache(recent_used_cpu, target) && 7498 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7499 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7500 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7501 return recent_used_cpu; 7502 } 7503 7504 /* 7505 * For asymmetric CPU capacity systems, our domain of interest is 7506 * sd_asym_cpucapacity rather than sd_llc. 7507 */ 7508 if (sched_asym_cpucap_active()) { 7509 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7510 /* 7511 * On an asymmetric CPU capacity system where an exclusive 7512 * cpuset defines a symmetric island (i.e. one unique 7513 * capacity_orig value through the cpuset), the key will be set 7514 * but the CPUs within that cpuset will not have a domain with 7515 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7516 * capacity path. 7517 */ 7518 if (sd) { 7519 i = select_idle_capacity(p, sd, target); 7520 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7521 } 7522 } 7523 7524 sd = rcu_dereference(per_cpu(sd_llc, target)); 7525 if (!sd) 7526 return target; 7527 7528 if (sched_smt_active()) { 7529 has_idle_core = test_idle_cores(target); 7530 7531 if (!has_idle_core && cpus_share_cache(prev, target)) { 7532 i = select_idle_smt(p, sd, prev); 7533 if ((unsigned int)i < nr_cpumask_bits) 7534 return i; 7535 } 7536 } 7537 7538 i = select_idle_cpu(p, sd, has_idle_core, target); 7539 if ((unsigned)i < nr_cpumask_bits) 7540 return i; 7541 7542 return target; 7543 } 7544 7545 /** 7546 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7547 * @cpu: the CPU to get the utilization for 7548 * @p: task for which the CPU utilization should be predicted or NULL 7549 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7550 * @boost: 1 to enable boosting, otherwise 0 7551 * 7552 * The unit of the return value must be the same as the one of CPU capacity 7553 * so that CPU utilization can be compared with CPU capacity. 7554 * 7555 * CPU utilization is the sum of running time of runnable tasks plus the 7556 * recent utilization of currently non-runnable tasks on that CPU. 7557 * It represents the amount of CPU capacity currently used by CFS tasks in 7558 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7559 * capacity at f_max. 7560 * 7561 * The estimated CPU utilization is defined as the maximum between CPU 7562 * utilization and sum of the estimated utilization of the currently 7563 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7564 * previously-executed tasks, which helps better deduce how busy a CPU will 7565 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7566 * of such a task would be significantly decayed at this point of time. 7567 * 7568 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7569 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7570 * utilization. Boosting is implemented in cpu_util() so that internal 7571 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7572 * latter via cpu_util_cfs_boost(). 7573 * 7574 * CPU utilization can be higher than the current CPU capacity 7575 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7576 * of rounding errors as well as task migrations or wakeups of new tasks. 7577 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7578 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7579 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7580 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7581 * though since this is useful for predicting the CPU capacity required 7582 * after task migrations (scheduler-driven DVFS). 7583 * 7584 * Return: (Boosted) (estimated) utilization for the specified CPU. 7585 */ 7586 static unsigned long 7587 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 7588 { 7589 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7590 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7591 unsigned long runnable; 7592 7593 if (boost) { 7594 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7595 util = max(util, runnable); 7596 } 7597 7598 /* 7599 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7600 * contribution. If @p migrates from another CPU to @cpu add its 7601 * contribution. In all the other cases @cpu is not impacted by the 7602 * migration so its util_avg is already correct. 7603 */ 7604 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 7605 lsub_positive(&util, task_util(p)); 7606 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 7607 util += task_util(p); 7608 7609 if (sched_feat(UTIL_EST)) { 7610 unsigned long util_est; 7611 7612 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 7613 7614 /* 7615 * During wake-up @p isn't enqueued yet and doesn't contribute 7616 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued. 7617 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 7618 * has been enqueued. 7619 * 7620 * During exec (@dst_cpu = -1) @p is enqueued and does 7621 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued. 7622 * Remove it to "simulate" cpu_util without @p's contribution. 7623 * 7624 * Despite the task_on_rq_queued(@p) check there is still a 7625 * small window for a possible race when an exec 7626 * select_task_rq_fair() races with LB's detach_task(). 7627 * 7628 * detach_task() 7629 * deactivate_task() 7630 * p->on_rq = TASK_ON_RQ_MIGRATING; 7631 * -------------------------------- A 7632 * dequeue_task() \ 7633 * dequeue_task_fair() + Race Time 7634 * util_est_dequeue() / 7635 * -------------------------------- B 7636 * 7637 * The additional check "current == p" is required to further 7638 * reduce the race window. 7639 */ 7640 if (dst_cpu == cpu) 7641 util_est += _task_util_est(p); 7642 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 7643 lsub_positive(&util_est, _task_util_est(p)); 7644 7645 util = max(util, util_est); 7646 } 7647 7648 return min(util, capacity_orig_of(cpu)); 7649 } 7650 7651 unsigned long cpu_util_cfs(int cpu) 7652 { 7653 return cpu_util(cpu, NULL, -1, 0); 7654 } 7655 7656 unsigned long cpu_util_cfs_boost(int cpu) 7657 { 7658 return cpu_util(cpu, NULL, -1, 1); 7659 } 7660 7661 /* 7662 * cpu_util_without: compute cpu utilization without any contributions from *p 7663 * @cpu: the CPU which utilization is requested 7664 * @p: the task which utilization should be discounted 7665 * 7666 * The utilization of a CPU is defined by the utilization of tasks currently 7667 * enqueued on that CPU as well as tasks which are currently sleeping after an 7668 * execution on that CPU. 7669 * 7670 * This method returns the utilization of the specified CPU by discounting the 7671 * utilization of the specified task, whenever the task is currently 7672 * contributing to the CPU utilization. 7673 */ 7674 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 7675 { 7676 /* Task has no contribution or is new */ 7677 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7678 p = NULL; 7679 7680 return cpu_util(cpu, p, -1, 0); 7681 } 7682 7683 /* 7684 * energy_env - Utilization landscape for energy estimation. 7685 * @task_busy_time: Utilization contribution by the task for which we test the 7686 * placement. Given by eenv_task_busy_time(). 7687 * @pd_busy_time: Utilization of the whole perf domain without the task 7688 * contribution. Given by eenv_pd_busy_time(). 7689 * @cpu_cap: Maximum CPU capacity for the perf domain. 7690 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 7691 */ 7692 struct energy_env { 7693 unsigned long task_busy_time; 7694 unsigned long pd_busy_time; 7695 unsigned long cpu_cap; 7696 unsigned long pd_cap; 7697 }; 7698 7699 /* 7700 * Compute the task busy time for compute_energy(). This time cannot be 7701 * injected directly into effective_cpu_util() because of the IRQ scaling. 7702 * The latter only makes sense with the most recent CPUs where the task has 7703 * run. 7704 */ 7705 static inline void eenv_task_busy_time(struct energy_env *eenv, 7706 struct task_struct *p, int prev_cpu) 7707 { 7708 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 7709 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 7710 7711 if (unlikely(irq >= max_cap)) 7712 busy_time = max_cap; 7713 else 7714 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 7715 7716 eenv->task_busy_time = busy_time; 7717 } 7718 7719 /* 7720 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 7721 * utilization for each @pd_cpus, it however doesn't take into account 7722 * clamping since the ratio (utilization / cpu_capacity) is already enough to 7723 * scale the EM reported power consumption at the (eventually clamped) 7724 * cpu_capacity. 7725 * 7726 * The contribution of the task @p for which we want to estimate the 7727 * energy cost is removed (by cpu_util()) and must be calculated 7728 * separately (see eenv_task_busy_time). This ensures: 7729 * 7730 * - A stable PD utilization, no matter which CPU of that PD we want to place 7731 * the task on. 7732 * 7733 * - A fair comparison between CPUs as the task contribution (task_util()) 7734 * will always be the same no matter which CPU utilization we rely on 7735 * (util_avg or util_est). 7736 * 7737 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 7738 * exceed @eenv->pd_cap. 7739 */ 7740 static inline void eenv_pd_busy_time(struct energy_env *eenv, 7741 struct cpumask *pd_cpus, 7742 struct task_struct *p) 7743 { 7744 unsigned long busy_time = 0; 7745 int cpu; 7746 7747 for_each_cpu(cpu, pd_cpus) { 7748 unsigned long util = cpu_util(cpu, p, -1, 0); 7749 7750 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL); 7751 } 7752 7753 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 7754 } 7755 7756 /* 7757 * Compute the maximum utilization for compute_energy() when the task @p 7758 * is placed on the cpu @dst_cpu. 7759 * 7760 * Returns the maximum utilization among @eenv->cpus. This utilization can't 7761 * exceed @eenv->cpu_cap. 7762 */ 7763 static inline unsigned long 7764 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 7765 struct task_struct *p, int dst_cpu) 7766 { 7767 unsigned long max_util = 0; 7768 int cpu; 7769 7770 for_each_cpu(cpu, pd_cpus) { 7771 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 7772 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 7773 unsigned long eff_util; 7774 7775 /* 7776 * Performance domain frequency: utilization clamping 7777 * must be considered since it affects the selection 7778 * of the performance domain frequency. 7779 * NOTE: in case RT tasks are running, by default the 7780 * FREQUENCY_UTIL's utilization can be max OPP. 7781 */ 7782 eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk); 7783 max_util = max(max_util, eff_util); 7784 } 7785 7786 return min(max_util, eenv->cpu_cap); 7787 } 7788 7789 /* 7790 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 7791 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 7792 * contribution is ignored. 7793 */ 7794 static inline unsigned long 7795 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 7796 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 7797 { 7798 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 7799 unsigned long busy_time = eenv->pd_busy_time; 7800 7801 if (dst_cpu >= 0) 7802 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 7803 7804 return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 7805 } 7806 7807 /* 7808 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 7809 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 7810 * spare capacity in each performance domain and uses it as a potential 7811 * candidate to execute the task. Then, it uses the Energy Model to figure 7812 * out which of the CPU candidates is the most energy-efficient. 7813 * 7814 * The rationale for this heuristic is as follows. In a performance domain, 7815 * all the most energy efficient CPU candidates (according to the Energy 7816 * Model) are those for which we'll request a low frequency. When there are 7817 * several CPUs for which the frequency request will be the same, we don't 7818 * have enough data to break the tie between them, because the Energy Model 7819 * only includes active power costs. With this model, if we assume that 7820 * frequency requests follow utilization (e.g. using schedutil), the CPU with 7821 * the maximum spare capacity in a performance domain is guaranteed to be among 7822 * the best candidates of the performance domain. 7823 * 7824 * In practice, it could be preferable from an energy standpoint to pack 7825 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 7826 * but that could also hurt our chances to go cluster idle, and we have no 7827 * ways to tell with the current Energy Model if this is actually a good 7828 * idea or not. So, find_energy_efficient_cpu() basically favors 7829 * cluster-packing, and spreading inside a cluster. That should at least be 7830 * a good thing for latency, and this is consistent with the idea that most 7831 * of the energy savings of EAS come from the asymmetry of the system, and 7832 * not so much from breaking the tie between identical CPUs. That's also the 7833 * reason why EAS is enabled in the topology code only for systems where 7834 * SD_ASYM_CPUCAPACITY is set. 7835 * 7836 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 7837 * they don't have any useful utilization data yet and it's not possible to 7838 * forecast their impact on energy consumption. Consequently, they will be 7839 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 7840 * to be energy-inefficient in some use-cases. The alternative would be to 7841 * bias new tasks towards specific types of CPUs first, or to try to infer 7842 * their util_avg from the parent task, but those heuristics could hurt 7843 * other use-cases too. So, until someone finds a better way to solve this, 7844 * let's keep things simple by re-using the existing slow path. 7845 */ 7846 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 7847 { 7848 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7849 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 7850 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 7851 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 7852 struct root_domain *rd = this_rq()->rd; 7853 int cpu, best_energy_cpu, target = -1; 7854 int prev_fits = -1, best_fits = -1; 7855 unsigned long best_thermal_cap = 0; 7856 unsigned long prev_thermal_cap = 0; 7857 struct sched_domain *sd; 7858 struct perf_domain *pd; 7859 struct energy_env eenv; 7860 7861 rcu_read_lock(); 7862 pd = rcu_dereference(rd->pd); 7863 if (!pd || READ_ONCE(rd->overutilized)) 7864 goto unlock; 7865 7866 /* 7867 * Energy-aware wake-up happens on the lowest sched_domain starting 7868 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 7869 */ 7870 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 7871 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 7872 sd = sd->parent; 7873 if (!sd) 7874 goto unlock; 7875 7876 target = prev_cpu; 7877 7878 sync_entity_load_avg(&p->se); 7879 if (!task_util_est(p) && p_util_min == 0) 7880 goto unlock; 7881 7882 eenv_task_busy_time(&eenv, p, prev_cpu); 7883 7884 for (; pd; pd = pd->next) { 7885 unsigned long util_min = p_util_min, util_max = p_util_max; 7886 unsigned long cpu_cap, cpu_thermal_cap, util; 7887 long prev_spare_cap = -1, max_spare_cap = -1; 7888 unsigned long rq_util_min, rq_util_max; 7889 unsigned long cur_delta, base_energy; 7890 int max_spare_cap_cpu = -1; 7891 int fits, max_fits = -1; 7892 7893 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 7894 7895 if (cpumask_empty(cpus)) 7896 continue; 7897 7898 /* Account thermal pressure for the energy estimation */ 7899 cpu = cpumask_first(cpus); 7900 cpu_thermal_cap = arch_scale_cpu_capacity(cpu); 7901 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu); 7902 7903 eenv.cpu_cap = cpu_thermal_cap; 7904 eenv.pd_cap = 0; 7905 7906 for_each_cpu(cpu, cpus) { 7907 struct rq *rq = cpu_rq(cpu); 7908 7909 eenv.pd_cap += cpu_thermal_cap; 7910 7911 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7912 continue; 7913 7914 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 7915 continue; 7916 7917 util = cpu_util(cpu, p, cpu, 0); 7918 cpu_cap = capacity_of(cpu); 7919 7920 /* 7921 * Skip CPUs that cannot satisfy the capacity request. 7922 * IOW, placing the task there would make the CPU 7923 * overutilized. Take uclamp into account to see how 7924 * much capacity we can get out of the CPU; this is 7925 * aligned with sched_cpu_util(). 7926 */ 7927 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 7928 /* 7929 * Open code uclamp_rq_util_with() except for 7930 * the clamp() part. Ie: apply max aggregation 7931 * only. util_fits_cpu() logic requires to 7932 * operate on non clamped util but must use the 7933 * max-aggregated uclamp_{min, max}. 7934 */ 7935 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 7936 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 7937 7938 util_min = max(rq_util_min, p_util_min); 7939 util_max = max(rq_util_max, p_util_max); 7940 } 7941 7942 fits = util_fits_cpu(util, util_min, util_max, cpu); 7943 if (!fits) 7944 continue; 7945 7946 lsub_positive(&cpu_cap, util); 7947 7948 if (cpu == prev_cpu) { 7949 /* Always use prev_cpu as a candidate. */ 7950 prev_spare_cap = cpu_cap; 7951 prev_fits = fits; 7952 } else if ((fits > max_fits) || 7953 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 7954 /* 7955 * Find the CPU with the maximum spare capacity 7956 * among the remaining CPUs in the performance 7957 * domain. 7958 */ 7959 max_spare_cap = cpu_cap; 7960 max_spare_cap_cpu = cpu; 7961 max_fits = fits; 7962 } 7963 } 7964 7965 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 7966 continue; 7967 7968 eenv_pd_busy_time(&eenv, cpus, p); 7969 /* Compute the 'base' energy of the pd, without @p */ 7970 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 7971 7972 /* Evaluate the energy impact of using prev_cpu. */ 7973 if (prev_spare_cap > -1) { 7974 prev_delta = compute_energy(&eenv, pd, cpus, p, 7975 prev_cpu); 7976 /* CPU utilization has changed */ 7977 if (prev_delta < base_energy) 7978 goto unlock; 7979 prev_delta -= base_energy; 7980 prev_thermal_cap = cpu_thermal_cap; 7981 best_delta = min(best_delta, prev_delta); 7982 } 7983 7984 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 7985 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 7986 /* Current best energy cpu fits better */ 7987 if (max_fits < best_fits) 7988 continue; 7989 7990 /* 7991 * Both don't fit performance hint (i.e. uclamp_min) 7992 * but best energy cpu has better capacity. 7993 */ 7994 if ((max_fits < 0) && 7995 (cpu_thermal_cap <= best_thermal_cap)) 7996 continue; 7997 7998 cur_delta = compute_energy(&eenv, pd, cpus, p, 7999 max_spare_cap_cpu); 8000 /* CPU utilization has changed */ 8001 if (cur_delta < base_energy) 8002 goto unlock; 8003 cur_delta -= base_energy; 8004 8005 /* 8006 * Both fit for the task but best energy cpu has lower 8007 * energy impact. 8008 */ 8009 if ((max_fits > 0) && (best_fits > 0) && 8010 (cur_delta >= best_delta)) 8011 continue; 8012 8013 best_delta = cur_delta; 8014 best_energy_cpu = max_spare_cap_cpu; 8015 best_fits = max_fits; 8016 best_thermal_cap = cpu_thermal_cap; 8017 } 8018 } 8019 rcu_read_unlock(); 8020 8021 if ((best_fits > prev_fits) || 8022 ((best_fits > 0) && (best_delta < prev_delta)) || 8023 ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap))) 8024 target = best_energy_cpu; 8025 8026 return target; 8027 8028 unlock: 8029 rcu_read_unlock(); 8030 8031 return target; 8032 } 8033 8034 /* 8035 * select_task_rq_fair: Select target runqueue for the waking task in domains 8036 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8037 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8038 * 8039 * Balances load by selecting the idlest CPU in the idlest group, or under 8040 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8041 * 8042 * Returns the target CPU number. 8043 */ 8044 static int 8045 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8046 { 8047 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8048 struct sched_domain *tmp, *sd = NULL; 8049 int cpu = smp_processor_id(); 8050 int new_cpu = prev_cpu; 8051 int want_affine = 0; 8052 /* SD_flags and WF_flags share the first nibble */ 8053 int sd_flag = wake_flags & 0xF; 8054 8055 /* 8056 * required for stable ->cpus_allowed 8057 */ 8058 lockdep_assert_held(&p->pi_lock); 8059 if (wake_flags & WF_TTWU) { 8060 record_wakee(p); 8061 8062 if ((wake_flags & WF_CURRENT_CPU) && 8063 cpumask_test_cpu(cpu, p->cpus_ptr)) 8064 return cpu; 8065 8066 if (sched_energy_enabled()) { 8067 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8068 if (new_cpu >= 0) 8069 return new_cpu; 8070 new_cpu = prev_cpu; 8071 } 8072 8073 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8074 } 8075 8076 rcu_read_lock(); 8077 for_each_domain(cpu, tmp) { 8078 /* 8079 * If both 'cpu' and 'prev_cpu' are part of this domain, 8080 * cpu is a valid SD_WAKE_AFFINE target. 8081 */ 8082 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8083 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8084 if (cpu != prev_cpu) 8085 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8086 8087 sd = NULL; /* Prefer wake_affine over balance flags */ 8088 break; 8089 } 8090 8091 /* 8092 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8093 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8094 * will usually go to the fast path. 8095 */ 8096 if (tmp->flags & sd_flag) 8097 sd = tmp; 8098 else if (!want_affine) 8099 break; 8100 } 8101 8102 if (unlikely(sd)) { 8103 /* Slow path */ 8104 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 8105 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8106 /* Fast path */ 8107 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8108 } 8109 rcu_read_unlock(); 8110 8111 return new_cpu; 8112 } 8113 8114 /* 8115 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8116 * cfs_rq_of(p) references at time of call are still valid and identify the 8117 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8118 */ 8119 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8120 { 8121 struct sched_entity *se = &p->se; 8122 8123 if (!task_on_rq_migrating(p)) { 8124 remove_entity_load_avg(se); 8125 8126 /* 8127 * Here, the task's PELT values have been updated according to 8128 * the current rq's clock. But if that clock hasn't been 8129 * updated in a while, a substantial idle time will be missed, 8130 * leading to an inflation after wake-up on the new rq. 8131 * 8132 * Estimate the missing time from the cfs_rq last_update_time 8133 * and update sched_avg to improve the PELT continuity after 8134 * migration. 8135 */ 8136 migrate_se_pelt_lag(se); 8137 } 8138 8139 /* Tell new CPU we are migrated */ 8140 se->avg.last_update_time = 0; 8141 8142 update_scan_period(p, new_cpu); 8143 } 8144 8145 static void task_dead_fair(struct task_struct *p) 8146 { 8147 remove_entity_load_avg(&p->se); 8148 } 8149 8150 static int 8151 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8152 { 8153 if (rq->nr_running) 8154 return 1; 8155 8156 return newidle_balance(rq, rf) != 0; 8157 } 8158 #endif /* CONFIG_SMP */ 8159 8160 static void set_next_buddy(struct sched_entity *se) 8161 { 8162 for_each_sched_entity(se) { 8163 if (SCHED_WARN_ON(!se->on_rq)) 8164 return; 8165 if (se_is_idle(se)) 8166 return; 8167 cfs_rq_of(se)->next = se; 8168 } 8169 } 8170 8171 /* 8172 * Preempt the current task with a newly woken task if needed: 8173 */ 8174 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 8175 { 8176 struct task_struct *curr = rq->curr; 8177 struct sched_entity *se = &curr->se, *pse = &p->se; 8178 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8179 int next_buddy_marked = 0; 8180 int cse_is_idle, pse_is_idle; 8181 8182 if (unlikely(se == pse)) 8183 return; 8184 8185 /* 8186 * This is possible from callers such as attach_tasks(), in which we 8187 * unconditionally check_preempt_curr() after an enqueue (which may have 8188 * lead to a throttle). This both saves work and prevents false 8189 * next-buddy nomination below. 8190 */ 8191 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8192 return; 8193 8194 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) { 8195 set_next_buddy(pse); 8196 next_buddy_marked = 1; 8197 } 8198 8199 /* 8200 * We can come here with TIF_NEED_RESCHED already set from new task 8201 * wake up path. 8202 * 8203 * Note: this also catches the edge-case of curr being in a throttled 8204 * group (e.g. via set_curr_task), since update_curr() (in the 8205 * enqueue of curr) will have resulted in resched being set. This 8206 * prevents us from potentially nominating it as a false LAST_BUDDY 8207 * below. 8208 */ 8209 if (test_tsk_need_resched(curr)) 8210 return; 8211 8212 /* Idle tasks are by definition preempted by non-idle tasks. */ 8213 if (unlikely(task_has_idle_policy(curr)) && 8214 likely(!task_has_idle_policy(p))) 8215 goto preempt; 8216 8217 /* 8218 * Batch and idle tasks do not preempt non-idle tasks (their preemption 8219 * is driven by the tick): 8220 */ 8221 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 8222 return; 8223 8224 find_matching_se(&se, &pse); 8225 WARN_ON_ONCE(!pse); 8226 8227 cse_is_idle = se_is_idle(se); 8228 pse_is_idle = se_is_idle(pse); 8229 8230 /* 8231 * Preempt an idle group in favor of a non-idle group (and don't preempt 8232 * in the inverse case). 8233 */ 8234 if (cse_is_idle && !pse_is_idle) 8235 goto preempt; 8236 if (cse_is_idle != pse_is_idle) 8237 return; 8238 8239 cfs_rq = cfs_rq_of(se); 8240 update_curr(cfs_rq); 8241 8242 /* 8243 * XXX pick_eevdf(cfs_rq) != se ? 8244 */ 8245 if (pick_eevdf(cfs_rq) == pse) 8246 goto preempt; 8247 8248 return; 8249 8250 preempt: 8251 resched_curr(rq); 8252 } 8253 8254 #ifdef CONFIG_SMP 8255 static struct task_struct *pick_task_fair(struct rq *rq) 8256 { 8257 struct sched_entity *se; 8258 struct cfs_rq *cfs_rq; 8259 8260 again: 8261 cfs_rq = &rq->cfs; 8262 if (!cfs_rq->nr_running) 8263 return NULL; 8264 8265 do { 8266 struct sched_entity *curr = cfs_rq->curr; 8267 8268 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 8269 if (curr) { 8270 if (curr->on_rq) 8271 update_curr(cfs_rq); 8272 else 8273 curr = NULL; 8274 8275 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8276 goto again; 8277 } 8278 8279 se = pick_next_entity(cfs_rq, curr); 8280 cfs_rq = group_cfs_rq(se); 8281 } while (cfs_rq); 8282 8283 return task_of(se); 8284 } 8285 #endif 8286 8287 struct task_struct * 8288 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8289 { 8290 struct cfs_rq *cfs_rq = &rq->cfs; 8291 struct sched_entity *se; 8292 struct task_struct *p; 8293 int new_tasks; 8294 8295 again: 8296 if (!sched_fair_runnable(rq)) 8297 goto idle; 8298 8299 #ifdef CONFIG_FAIR_GROUP_SCHED 8300 if (!prev || prev->sched_class != &fair_sched_class) 8301 goto simple; 8302 8303 /* 8304 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8305 * likely that a next task is from the same cgroup as the current. 8306 * 8307 * Therefore attempt to avoid putting and setting the entire cgroup 8308 * hierarchy, only change the part that actually changes. 8309 */ 8310 8311 do { 8312 struct sched_entity *curr = cfs_rq->curr; 8313 8314 /* 8315 * Since we got here without doing put_prev_entity() we also 8316 * have to consider cfs_rq->curr. If it is still a runnable 8317 * entity, update_curr() will update its vruntime, otherwise 8318 * forget we've ever seen it. 8319 */ 8320 if (curr) { 8321 if (curr->on_rq) 8322 update_curr(cfs_rq); 8323 else 8324 curr = NULL; 8325 8326 /* 8327 * This call to check_cfs_rq_runtime() will do the 8328 * throttle and dequeue its entity in the parent(s). 8329 * Therefore the nr_running test will indeed 8330 * be correct. 8331 */ 8332 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 8333 cfs_rq = &rq->cfs; 8334 8335 if (!cfs_rq->nr_running) 8336 goto idle; 8337 8338 goto simple; 8339 } 8340 } 8341 8342 se = pick_next_entity(cfs_rq, curr); 8343 cfs_rq = group_cfs_rq(se); 8344 } while (cfs_rq); 8345 8346 p = task_of(se); 8347 8348 /* 8349 * Since we haven't yet done put_prev_entity and if the selected task 8350 * is a different task than we started out with, try and touch the 8351 * least amount of cfs_rqs. 8352 */ 8353 if (prev != p) { 8354 struct sched_entity *pse = &prev->se; 8355 8356 while (!(cfs_rq = is_same_group(se, pse))) { 8357 int se_depth = se->depth; 8358 int pse_depth = pse->depth; 8359 8360 if (se_depth <= pse_depth) { 8361 put_prev_entity(cfs_rq_of(pse), pse); 8362 pse = parent_entity(pse); 8363 } 8364 if (se_depth >= pse_depth) { 8365 set_next_entity(cfs_rq_of(se), se); 8366 se = parent_entity(se); 8367 } 8368 } 8369 8370 put_prev_entity(cfs_rq, pse); 8371 set_next_entity(cfs_rq, se); 8372 } 8373 8374 goto done; 8375 simple: 8376 #endif 8377 if (prev) 8378 put_prev_task(rq, prev); 8379 8380 do { 8381 se = pick_next_entity(cfs_rq, NULL); 8382 set_next_entity(cfs_rq, se); 8383 cfs_rq = group_cfs_rq(se); 8384 } while (cfs_rq); 8385 8386 p = task_of(se); 8387 8388 done: __maybe_unused; 8389 #ifdef CONFIG_SMP 8390 /* 8391 * Move the next running task to the front of 8392 * the list, so our cfs_tasks list becomes MRU 8393 * one. 8394 */ 8395 list_move(&p->se.group_node, &rq->cfs_tasks); 8396 #endif 8397 8398 if (hrtick_enabled_fair(rq)) 8399 hrtick_start_fair(rq, p); 8400 8401 update_misfit_status(p, rq); 8402 sched_fair_update_stop_tick(rq, p); 8403 8404 return p; 8405 8406 idle: 8407 if (!rf) 8408 return NULL; 8409 8410 new_tasks = newidle_balance(rq, rf); 8411 8412 /* 8413 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 8414 * possible for any higher priority task to appear. In that case we 8415 * must re-start the pick_next_entity() loop. 8416 */ 8417 if (new_tasks < 0) 8418 return RETRY_TASK; 8419 8420 if (new_tasks > 0) 8421 goto again; 8422 8423 /* 8424 * rq is about to be idle, check if we need to update the 8425 * lost_idle_time of clock_pelt 8426 */ 8427 update_idle_rq_clock_pelt(rq); 8428 8429 return NULL; 8430 } 8431 8432 static struct task_struct *__pick_next_task_fair(struct rq *rq) 8433 { 8434 return pick_next_task_fair(rq, NULL, NULL); 8435 } 8436 8437 /* 8438 * Account for a descheduled task: 8439 */ 8440 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 8441 { 8442 struct sched_entity *se = &prev->se; 8443 struct cfs_rq *cfs_rq; 8444 8445 for_each_sched_entity(se) { 8446 cfs_rq = cfs_rq_of(se); 8447 put_prev_entity(cfs_rq, se); 8448 } 8449 } 8450 8451 /* 8452 * sched_yield() is very simple 8453 */ 8454 static void yield_task_fair(struct rq *rq) 8455 { 8456 struct task_struct *curr = rq->curr; 8457 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8458 struct sched_entity *se = &curr->se; 8459 8460 /* 8461 * Are we the only task in the tree? 8462 */ 8463 if (unlikely(rq->nr_running == 1)) 8464 return; 8465 8466 clear_buddies(cfs_rq, se); 8467 8468 update_rq_clock(rq); 8469 /* 8470 * Update run-time statistics of the 'current'. 8471 */ 8472 update_curr(cfs_rq); 8473 /* 8474 * Tell update_rq_clock() that we've just updated, 8475 * so we don't do microscopic update in schedule() 8476 * and double the fastpath cost. 8477 */ 8478 rq_clock_skip_update(rq); 8479 8480 se->deadline += calc_delta_fair(se->slice, se); 8481 } 8482 8483 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 8484 { 8485 struct sched_entity *se = &p->se; 8486 8487 /* throttled hierarchies are not runnable */ 8488 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 8489 return false; 8490 8491 /* Tell the scheduler that we'd really like pse to run next. */ 8492 set_next_buddy(se); 8493 8494 yield_task_fair(rq); 8495 8496 return true; 8497 } 8498 8499 #ifdef CONFIG_SMP 8500 /************************************************** 8501 * Fair scheduling class load-balancing methods. 8502 * 8503 * BASICS 8504 * 8505 * The purpose of load-balancing is to achieve the same basic fairness the 8506 * per-CPU scheduler provides, namely provide a proportional amount of compute 8507 * time to each task. This is expressed in the following equation: 8508 * 8509 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 8510 * 8511 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 8512 * W_i,0 is defined as: 8513 * 8514 * W_i,0 = \Sum_j w_i,j (2) 8515 * 8516 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 8517 * is derived from the nice value as per sched_prio_to_weight[]. 8518 * 8519 * The weight average is an exponential decay average of the instantaneous 8520 * weight: 8521 * 8522 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 8523 * 8524 * C_i is the compute capacity of CPU i, typically it is the 8525 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 8526 * can also include other factors [XXX]. 8527 * 8528 * To achieve this balance we define a measure of imbalance which follows 8529 * directly from (1): 8530 * 8531 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 8532 * 8533 * We them move tasks around to minimize the imbalance. In the continuous 8534 * function space it is obvious this converges, in the discrete case we get 8535 * a few fun cases generally called infeasible weight scenarios. 8536 * 8537 * [XXX expand on: 8538 * - infeasible weights; 8539 * - local vs global optima in the discrete case. ] 8540 * 8541 * 8542 * SCHED DOMAINS 8543 * 8544 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 8545 * for all i,j solution, we create a tree of CPUs that follows the hardware 8546 * topology where each level pairs two lower groups (or better). This results 8547 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 8548 * tree to only the first of the previous level and we decrease the frequency 8549 * of load-balance at each level inv. proportional to the number of CPUs in 8550 * the groups. 8551 * 8552 * This yields: 8553 * 8554 * log_2 n 1 n 8555 * \Sum { --- * --- * 2^i } = O(n) (5) 8556 * i = 0 2^i 2^i 8557 * `- size of each group 8558 * | | `- number of CPUs doing load-balance 8559 * | `- freq 8560 * `- sum over all levels 8561 * 8562 * Coupled with a limit on how many tasks we can migrate every balance pass, 8563 * this makes (5) the runtime complexity of the balancer. 8564 * 8565 * An important property here is that each CPU is still (indirectly) connected 8566 * to every other CPU in at most O(log n) steps: 8567 * 8568 * The adjacency matrix of the resulting graph is given by: 8569 * 8570 * log_2 n 8571 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 8572 * k = 0 8573 * 8574 * And you'll find that: 8575 * 8576 * A^(log_2 n)_i,j != 0 for all i,j (7) 8577 * 8578 * Showing there's indeed a path between every CPU in at most O(log n) steps. 8579 * The task movement gives a factor of O(m), giving a convergence complexity 8580 * of: 8581 * 8582 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 8583 * 8584 * 8585 * WORK CONSERVING 8586 * 8587 * In order to avoid CPUs going idle while there's still work to do, new idle 8588 * balancing is more aggressive and has the newly idle CPU iterate up the domain 8589 * tree itself instead of relying on other CPUs to bring it work. 8590 * 8591 * This adds some complexity to both (5) and (8) but it reduces the total idle 8592 * time. 8593 * 8594 * [XXX more?] 8595 * 8596 * 8597 * CGROUPS 8598 * 8599 * Cgroups make a horror show out of (2), instead of a simple sum we get: 8600 * 8601 * s_k,i 8602 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 8603 * S_k 8604 * 8605 * Where 8606 * 8607 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 8608 * 8609 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 8610 * 8611 * The big problem is S_k, its a global sum needed to compute a local (W_i) 8612 * property. 8613 * 8614 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 8615 * rewrite all of this once again.] 8616 */ 8617 8618 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 8619 8620 enum fbq_type { regular, remote, all }; 8621 8622 /* 8623 * 'group_type' describes the group of CPUs at the moment of load balancing. 8624 * 8625 * The enum is ordered by pulling priority, with the group with lowest priority 8626 * first so the group_type can simply be compared when selecting the busiest 8627 * group. See update_sd_pick_busiest(). 8628 */ 8629 enum group_type { 8630 /* The group has spare capacity that can be used to run more tasks. */ 8631 group_has_spare = 0, 8632 /* 8633 * The group is fully used and the tasks don't compete for more CPU 8634 * cycles. Nevertheless, some tasks might wait before running. 8635 */ 8636 group_fully_busy, 8637 /* 8638 * One task doesn't fit with CPU's capacity and must be migrated to a 8639 * more powerful CPU. 8640 */ 8641 group_misfit_task, 8642 /* 8643 * Balance SMT group that's fully busy. Can benefit from migration 8644 * a task on SMT with busy sibling to another CPU on idle core. 8645 */ 8646 group_smt_balance, 8647 /* 8648 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 8649 * and the task should be migrated to it instead of running on the 8650 * current CPU. 8651 */ 8652 group_asym_packing, 8653 /* 8654 * The tasks' affinity constraints previously prevented the scheduler 8655 * from balancing the load across the system. 8656 */ 8657 group_imbalanced, 8658 /* 8659 * The CPU is overloaded and can't provide expected CPU cycles to all 8660 * tasks. 8661 */ 8662 group_overloaded 8663 }; 8664 8665 enum migration_type { 8666 migrate_load = 0, 8667 migrate_util, 8668 migrate_task, 8669 migrate_misfit 8670 }; 8671 8672 #define LBF_ALL_PINNED 0x01 8673 #define LBF_NEED_BREAK 0x02 8674 #define LBF_DST_PINNED 0x04 8675 #define LBF_SOME_PINNED 0x08 8676 #define LBF_ACTIVE_LB 0x10 8677 8678 struct lb_env { 8679 struct sched_domain *sd; 8680 8681 struct rq *src_rq; 8682 int src_cpu; 8683 8684 int dst_cpu; 8685 struct rq *dst_rq; 8686 8687 struct cpumask *dst_grpmask; 8688 int new_dst_cpu; 8689 enum cpu_idle_type idle; 8690 long imbalance; 8691 /* The set of CPUs under consideration for load-balancing */ 8692 struct cpumask *cpus; 8693 8694 unsigned int flags; 8695 8696 unsigned int loop; 8697 unsigned int loop_break; 8698 unsigned int loop_max; 8699 8700 enum fbq_type fbq_type; 8701 enum migration_type migration_type; 8702 struct list_head tasks; 8703 }; 8704 8705 /* 8706 * Is this task likely cache-hot: 8707 */ 8708 static int task_hot(struct task_struct *p, struct lb_env *env) 8709 { 8710 s64 delta; 8711 8712 lockdep_assert_rq_held(env->src_rq); 8713 8714 if (p->sched_class != &fair_sched_class) 8715 return 0; 8716 8717 if (unlikely(task_has_idle_policy(p))) 8718 return 0; 8719 8720 /* SMT siblings share cache */ 8721 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 8722 return 0; 8723 8724 /* 8725 * Buddy candidates are cache hot: 8726 */ 8727 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 8728 (&p->se == cfs_rq_of(&p->se)->next)) 8729 return 1; 8730 8731 if (sysctl_sched_migration_cost == -1) 8732 return 1; 8733 8734 /* 8735 * Don't migrate task if the task's cookie does not match 8736 * with the destination CPU's core cookie. 8737 */ 8738 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 8739 return 1; 8740 8741 if (sysctl_sched_migration_cost == 0) 8742 return 0; 8743 8744 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 8745 8746 return delta < (s64)sysctl_sched_migration_cost; 8747 } 8748 8749 #ifdef CONFIG_NUMA_BALANCING 8750 /* 8751 * Returns 1, if task migration degrades locality 8752 * Returns 0, if task migration improves locality i.e migration preferred. 8753 * Returns -1, if task migration is not affected by locality. 8754 */ 8755 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 8756 { 8757 struct numa_group *numa_group = rcu_dereference(p->numa_group); 8758 unsigned long src_weight, dst_weight; 8759 int src_nid, dst_nid, dist; 8760 8761 if (!static_branch_likely(&sched_numa_balancing)) 8762 return -1; 8763 8764 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 8765 return -1; 8766 8767 src_nid = cpu_to_node(env->src_cpu); 8768 dst_nid = cpu_to_node(env->dst_cpu); 8769 8770 if (src_nid == dst_nid) 8771 return -1; 8772 8773 /* Migrating away from the preferred node is always bad. */ 8774 if (src_nid == p->numa_preferred_nid) { 8775 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 8776 return 1; 8777 else 8778 return -1; 8779 } 8780 8781 /* Encourage migration to the preferred node. */ 8782 if (dst_nid == p->numa_preferred_nid) 8783 return 0; 8784 8785 /* Leaving a core idle is often worse than degrading locality. */ 8786 if (env->idle == CPU_IDLE) 8787 return -1; 8788 8789 dist = node_distance(src_nid, dst_nid); 8790 if (numa_group) { 8791 src_weight = group_weight(p, src_nid, dist); 8792 dst_weight = group_weight(p, dst_nid, dist); 8793 } else { 8794 src_weight = task_weight(p, src_nid, dist); 8795 dst_weight = task_weight(p, dst_nid, dist); 8796 } 8797 8798 return dst_weight < src_weight; 8799 } 8800 8801 #else 8802 static inline int migrate_degrades_locality(struct task_struct *p, 8803 struct lb_env *env) 8804 { 8805 return -1; 8806 } 8807 #endif 8808 8809 /* 8810 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 8811 */ 8812 static 8813 int can_migrate_task(struct task_struct *p, struct lb_env *env) 8814 { 8815 int tsk_cache_hot; 8816 8817 lockdep_assert_rq_held(env->src_rq); 8818 8819 /* 8820 * We do not migrate tasks that are: 8821 * 1) throttled_lb_pair, or 8822 * 2) cannot be migrated to this CPU due to cpus_ptr, or 8823 * 3) running (obviously), or 8824 * 4) are cache-hot on their current CPU. 8825 */ 8826 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 8827 return 0; 8828 8829 /* Disregard pcpu kthreads; they are where they need to be. */ 8830 if (kthread_is_per_cpu(p)) 8831 return 0; 8832 8833 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 8834 int cpu; 8835 8836 schedstat_inc(p->stats.nr_failed_migrations_affine); 8837 8838 env->flags |= LBF_SOME_PINNED; 8839 8840 /* 8841 * Remember if this task can be migrated to any other CPU in 8842 * our sched_group. We may want to revisit it if we couldn't 8843 * meet load balance goals by pulling other tasks on src_cpu. 8844 * 8845 * Avoid computing new_dst_cpu 8846 * - for NEWLY_IDLE 8847 * - if we have already computed one in current iteration 8848 * - if it's an active balance 8849 */ 8850 if (env->idle == CPU_NEWLY_IDLE || 8851 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 8852 return 0; 8853 8854 /* Prevent to re-select dst_cpu via env's CPUs: */ 8855 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 8856 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 8857 env->flags |= LBF_DST_PINNED; 8858 env->new_dst_cpu = cpu; 8859 break; 8860 } 8861 } 8862 8863 return 0; 8864 } 8865 8866 /* Record that we found at least one task that could run on dst_cpu */ 8867 env->flags &= ~LBF_ALL_PINNED; 8868 8869 if (task_on_cpu(env->src_rq, p)) { 8870 schedstat_inc(p->stats.nr_failed_migrations_running); 8871 return 0; 8872 } 8873 8874 /* 8875 * Aggressive migration if: 8876 * 1) active balance 8877 * 2) destination numa is preferred 8878 * 3) task is cache cold, or 8879 * 4) too many balance attempts have failed. 8880 */ 8881 if (env->flags & LBF_ACTIVE_LB) 8882 return 1; 8883 8884 tsk_cache_hot = migrate_degrades_locality(p, env); 8885 if (tsk_cache_hot == -1) 8886 tsk_cache_hot = task_hot(p, env); 8887 8888 if (tsk_cache_hot <= 0 || 8889 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 8890 if (tsk_cache_hot == 1) { 8891 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 8892 schedstat_inc(p->stats.nr_forced_migrations); 8893 } 8894 return 1; 8895 } 8896 8897 schedstat_inc(p->stats.nr_failed_migrations_hot); 8898 return 0; 8899 } 8900 8901 /* 8902 * detach_task() -- detach the task for the migration specified in env 8903 */ 8904 static void detach_task(struct task_struct *p, struct lb_env *env) 8905 { 8906 lockdep_assert_rq_held(env->src_rq); 8907 8908 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 8909 set_task_cpu(p, env->dst_cpu); 8910 } 8911 8912 /* 8913 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 8914 * part of active balancing operations within "domain". 8915 * 8916 * Returns a task if successful and NULL otherwise. 8917 */ 8918 static struct task_struct *detach_one_task(struct lb_env *env) 8919 { 8920 struct task_struct *p; 8921 8922 lockdep_assert_rq_held(env->src_rq); 8923 8924 list_for_each_entry_reverse(p, 8925 &env->src_rq->cfs_tasks, se.group_node) { 8926 if (!can_migrate_task(p, env)) 8927 continue; 8928 8929 detach_task(p, env); 8930 8931 /* 8932 * Right now, this is only the second place where 8933 * lb_gained[env->idle] is updated (other is detach_tasks) 8934 * so we can safely collect stats here rather than 8935 * inside detach_tasks(). 8936 */ 8937 schedstat_inc(env->sd->lb_gained[env->idle]); 8938 return p; 8939 } 8940 return NULL; 8941 } 8942 8943 /* 8944 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 8945 * busiest_rq, as part of a balancing operation within domain "sd". 8946 * 8947 * Returns number of detached tasks if successful and 0 otherwise. 8948 */ 8949 static int detach_tasks(struct lb_env *env) 8950 { 8951 struct list_head *tasks = &env->src_rq->cfs_tasks; 8952 unsigned long util, load; 8953 struct task_struct *p; 8954 int detached = 0; 8955 8956 lockdep_assert_rq_held(env->src_rq); 8957 8958 /* 8959 * Source run queue has been emptied by another CPU, clear 8960 * LBF_ALL_PINNED flag as we will not test any task. 8961 */ 8962 if (env->src_rq->nr_running <= 1) { 8963 env->flags &= ~LBF_ALL_PINNED; 8964 return 0; 8965 } 8966 8967 if (env->imbalance <= 0) 8968 return 0; 8969 8970 while (!list_empty(tasks)) { 8971 /* 8972 * We don't want to steal all, otherwise we may be treated likewise, 8973 * which could at worst lead to a livelock crash. 8974 */ 8975 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 8976 break; 8977 8978 env->loop++; 8979 /* We've more or less seen every task there is, call it quits */ 8980 if (env->loop > env->loop_max) 8981 break; 8982 8983 /* take a breather every nr_migrate tasks */ 8984 if (env->loop > env->loop_break) { 8985 env->loop_break += SCHED_NR_MIGRATE_BREAK; 8986 env->flags |= LBF_NEED_BREAK; 8987 break; 8988 } 8989 8990 p = list_last_entry(tasks, struct task_struct, se.group_node); 8991 8992 if (!can_migrate_task(p, env)) 8993 goto next; 8994 8995 switch (env->migration_type) { 8996 case migrate_load: 8997 /* 8998 * Depending of the number of CPUs and tasks and the 8999 * cgroup hierarchy, task_h_load() can return a null 9000 * value. Make sure that env->imbalance decreases 9001 * otherwise detach_tasks() will stop only after 9002 * detaching up to loop_max tasks. 9003 */ 9004 load = max_t(unsigned long, task_h_load(p), 1); 9005 9006 if (sched_feat(LB_MIN) && 9007 load < 16 && !env->sd->nr_balance_failed) 9008 goto next; 9009 9010 /* 9011 * Make sure that we don't migrate too much load. 9012 * Nevertheless, let relax the constraint if 9013 * scheduler fails to find a good waiting task to 9014 * migrate. 9015 */ 9016 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9017 goto next; 9018 9019 env->imbalance -= load; 9020 break; 9021 9022 case migrate_util: 9023 util = task_util_est(p); 9024 9025 if (util > env->imbalance) 9026 goto next; 9027 9028 env->imbalance -= util; 9029 break; 9030 9031 case migrate_task: 9032 env->imbalance--; 9033 break; 9034 9035 case migrate_misfit: 9036 /* This is not a misfit task */ 9037 if (task_fits_cpu(p, env->src_cpu)) 9038 goto next; 9039 9040 env->imbalance = 0; 9041 break; 9042 } 9043 9044 detach_task(p, env); 9045 list_add(&p->se.group_node, &env->tasks); 9046 9047 detached++; 9048 9049 #ifdef CONFIG_PREEMPTION 9050 /* 9051 * NEWIDLE balancing is a source of latency, so preemptible 9052 * kernels will stop after the first task is detached to minimize 9053 * the critical section. 9054 */ 9055 if (env->idle == CPU_NEWLY_IDLE) 9056 break; 9057 #endif 9058 9059 /* 9060 * We only want to steal up to the prescribed amount of 9061 * load/util/tasks. 9062 */ 9063 if (env->imbalance <= 0) 9064 break; 9065 9066 continue; 9067 next: 9068 list_move(&p->se.group_node, tasks); 9069 } 9070 9071 /* 9072 * Right now, this is one of only two places we collect this stat 9073 * so we can safely collect detach_one_task() stats here rather 9074 * than inside detach_one_task(). 9075 */ 9076 schedstat_add(env->sd->lb_gained[env->idle], detached); 9077 9078 return detached; 9079 } 9080 9081 /* 9082 * attach_task() -- attach the task detached by detach_task() to its new rq. 9083 */ 9084 static void attach_task(struct rq *rq, struct task_struct *p) 9085 { 9086 lockdep_assert_rq_held(rq); 9087 9088 WARN_ON_ONCE(task_rq(p) != rq); 9089 activate_task(rq, p, ENQUEUE_NOCLOCK); 9090 check_preempt_curr(rq, p, 0); 9091 } 9092 9093 /* 9094 * attach_one_task() -- attaches the task returned from detach_one_task() to 9095 * its new rq. 9096 */ 9097 static void attach_one_task(struct rq *rq, struct task_struct *p) 9098 { 9099 struct rq_flags rf; 9100 9101 rq_lock(rq, &rf); 9102 update_rq_clock(rq); 9103 attach_task(rq, p); 9104 rq_unlock(rq, &rf); 9105 } 9106 9107 /* 9108 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9109 * new rq. 9110 */ 9111 static void attach_tasks(struct lb_env *env) 9112 { 9113 struct list_head *tasks = &env->tasks; 9114 struct task_struct *p; 9115 struct rq_flags rf; 9116 9117 rq_lock(env->dst_rq, &rf); 9118 update_rq_clock(env->dst_rq); 9119 9120 while (!list_empty(tasks)) { 9121 p = list_first_entry(tasks, struct task_struct, se.group_node); 9122 list_del_init(&p->se.group_node); 9123 9124 attach_task(env->dst_rq, p); 9125 } 9126 9127 rq_unlock(env->dst_rq, &rf); 9128 } 9129 9130 #ifdef CONFIG_NO_HZ_COMMON 9131 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9132 { 9133 if (cfs_rq->avg.load_avg) 9134 return true; 9135 9136 if (cfs_rq->avg.util_avg) 9137 return true; 9138 9139 return false; 9140 } 9141 9142 static inline bool others_have_blocked(struct rq *rq) 9143 { 9144 if (READ_ONCE(rq->avg_rt.util_avg)) 9145 return true; 9146 9147 if (READ_ONCE(rq->avg_dl.util_avg)) 9148 return true; 9149 9150 if (thermal_load_avg(rq)) 9151 return true; 9152 9153 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 9154 if (READ_ONCE(rq->avg_irq.util_avg)) 9155 return true; 9156 #endif 9157 9158 return false; 9159 } 9160 9161 static inline void update_blocked_load_tick(struct rq *rq) 9162 { 9163 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9164 } 9165 9166 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9167 { 9168 if (!has_blocked) 9169 rq->has_blocked_load = 0; 9170 } 9171 #else 9172 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9173 static inline bool others_have_blocked(struct rq *rq) { return false; } 9174 static inline void update_blocked_load_tick(struct rq *rq) {} 9175 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9176 #endif 9177 9178 static bool __update_blocked_others(struct rq *rq, bool *done) 9179 { 9180 const struct sched_class *curr_class; 9181 u64 now = rq_clock_pelt(rq); 9182 unsigned long thermal_pressure; 9183 bool decayed; 9184 9185 /* 9186 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9187 * DL and IRQ signals have been updated before updating CFS. 9188 */ 9189 curr_class = rq->curr->sched_class; 9190 9191 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 9192 9193 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 9194 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 9195 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 9196 update_irq_load_avg(rq, 0); 9197 9198 if (others_have_blocked(rq)) 9199 *done = false; 9200 9201 return decayed; 9202 } 9203 9204 #ifdef CONFIG_FAIR_GROUP_SCHED 9205 9206 static bool __update_blocked_fair(struct rq *rq, bool *done) 9207 { 9208 struct cfs_rq *cfs_rq, *pos; 9209 bool decayed = false; 9210 int cpu = cpu_of(rq); 9211 9212 /* 9213 * Iterates the task_group tree in a bottom up fashion, see 9214 * list_add_leaf_cfs_rq() for details. 9215 */ 9216 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9217 struct sched_entity *se; 9218 9219 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9220 update_tg_load_avg(cfs_rq); 9221 9222 if (cfs_rq->nr_running == 0) 9223 update_idle_cfs_rq_clock_pelt(cfs_rq); 9224 9225 if (cfs_rq == &rq->cfs) 9226 decayed = true; 9227 } 9228 9229 /* Propagate pending load changes to the parent, if any: */ 9230 se = cfs_rq->tg->se[cpu]; 9231 if (se && !skip_blocked_update(se)) 9232 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9233 9234 /* 9235 * There can be a lot of idle CPU cgroups. Don't let fully 9236 * decayed cfs_rqs linger on the list. 9237 */ 9238 if (cfs_rq_is_decayed(cfs_rq)) 9239 list_del_leaf_cfs_rq(cfs_rq); 9240 9241 /* Don't need periodic decay once load/util_avg are null */ 9242 if (cfs_rq_has_blocked(cfs_rq)) 9243 *done = false; 9244 } 9245 9246 return decayed; 9247 } 9248 9249 /* 9250 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9251 * This needs to be done in a top-down fashion because the load of a child 9252 * group is a fraction of its parents load. 9253 */ 9254 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9255 { 9256 struct rq *rq = rq_of(cfs_rq); 9257 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9258 unsigned long now = jiffies; 9259 unsigned long load; 9260 9261 if (cfs_rq->last_h_load_update == now) 9262 return; 9263 9264 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9265 for_each_sched_entity(se) { 9266 cfs_rq = cfs_rq_of(se); 9267 WRITE_ONCE(cfs_rq->h_load_next, se); 9268 if (cfs_rq->last_h_load_update == now) 9269 break; 9270 } 9271 9272 if (!se) { 9273 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9274 cfs_rq->last_h_load_update = now; 9275 } 9276 9277 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9278 load = cfs_rq->h_load; 9279 load = div64_ul(load * se->avg.load_avg, 9280 cfs_rq_load_avg(cfs_rq) + 1); 9281 cfs_rq = group_cfs_rq(se); 9282 cfs_rq->h_load = load; 9283 cfs_rq->last_h_load_update = now; 9284 } 9285 } 9286 9287 static unsigned long task_h_load(struct task_struct *p) 9288 { 9289 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9290 9291 update_cfs_rq_h_load(cfs_rq); 9292 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9293 cfs_rq_load_avg(cfs_rq) + 1); 9294 } 9295 #else 9296 static bool __update_blocked_fair(struct rq *rq, bool *done) 9297 { 9298 struct cfs_rq *cfs_rq = &rq->cfs; 9299 bool decayed; 9300 9301 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9302 if (cfs_rq_has_blocked(cfs_rq)) 9303 *done = false; 9304 9305 return decayed; 9306 } 9307 9308 static unsigned long task_h_load(struct task_struct *p) 9309 { 9310 return p->se.avg.load_avg; 9311 } 9312 #endif 9313 9314 static void update_blocked_averages(int cpu) 9315 { 9316 bool decayed = false, done = true; 9317 struct rq *rq = cpu_rq(cpu); 9318 struct rq_flags rf; 9319 9320 rq_lock_irqsave(rq, &rf); 9321 update_blocked_load_tick(rq); 9322 update_rq_clock(rq); 9323 9324 decayed |= __update_blocked_others(rq, &done); 9325 decayed |= __update_blocked_fair(rq, &done); 9326 9327 update_blocked_load_status(rq, !done); 9328 if (decayed) 9329 cpufreq_update_util(rq, 0); 9330 rq_unlock_irqrestore(rq, &rf); 9331 } 9332 9333 /********** Helpers for find_busiest_group ************************/ 9334 9335 /* 9336 * sg_lb_stats - stats of a sched_group required for load_balancing 9337 */ 9338 struct sg_lb_stats { 9339 unsigned long avg_load; /*Avg load across the CPUs of the group */ 9340 unsigned long group_load; /* Total load over the CPUs of the group */ 9341 unsigned long group_capacity; 9342 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9343 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9344 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 9345 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9346 unsigned int idle_cpus; 9347 unsigned int group_weight; 9348 enum group_type group_type; 9349 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9350 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9351 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9352 #ifdef CONFIG_NUMA_BALANCING 9353 unsigned int nr_numa_running; 9354 unsigned int nr_preferred_running; 9355 #endif 9356 }; 9357 9358 /* 9359 * sd_lb_stats - Structure to store the statistics of a sched_domain 9360 * during load balancing. 9361 */ 9362 struct sd_lb_stats { 9363 struct sched_group *busiest; /* Busiest group in this sd */ 9364 struct sched_group *local; /* Local group in this sd */ 9365 unsigned long total_load; /* Total load of all groups in sd */ 9366 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9367 unsigned long avg_load; /* Average load across all groups in sd */ 9368 unsigned int prefer_sibling; /* tasks should go to sibling first */ 9369 9370 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 9371 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9372 }; 9373 9374 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9375 { 9376 /* 9377 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9378 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9379 * We must however set busiest_stat::group_type and 9380 * busiest_stat::idle_cpus to the worst busiest group because 9381 * update_sd_pick_busiest() reads these before assignment. 9382 */ 9383 *sds = (struct sd_lb_stats){ 9384 .busiest = NULL, 9385 .local = NULL, 9386 .total_load = 0UL, 9387 .total_capacity = 0UL, 9388 .busiest_stat = { 9389 .idle_cpus = UINT_MAX, 9390 .group_type = group_has_spare, 9391 }, 9392 }; 9393 } 9394 9395 static unsigned long scale_rt_capacity(int cpu) 9396 { 9397 struct rq *rq = cpu_rq(cpu); 9398 unsigned long max = arch_scale_cpu_capacity(cpu); 9399 unsigned long used, free; 9400 unsigned long irq; 9401 9402 irq = cpu_util_irq(rq); 9403 9404 if (unlikely(irq >= max)) 9405 return 1; 9406 9407 /* 9408 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9409 * (running and not running) with weights 0 and 1024 respectively. 9410 * avg_thermal.load_avg tracks thermal pressure and the weighted 9411 * average uses the actual delta max capacity(load). 9412 */ 9413 used = READ_ONCE(rq->avg_rt.util_avg); 9414 used += READ_ONCE(rq->avg_dl.util_avg); 9415 used += thermal_load_avg(rq); 9416 9417 if (unlikely(used >= max)) 9418 return 1; 9419 9420 free = max - used; 9421 9422 return scale_irq_capacity(free, irq, max); 9423 } 9424 9425 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9426 { 9427 unsigned long capacity = scale_rt_capacity(cpu); 9428 struct sched_group *sdg = sd->groups; 9429 9430 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 9431 9432 if (!capacity) 9433 capacity = 1; 9434 9435 cpu_rq(cpu)->cpu_capacity = capacity; 9436 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9437 9438 sdg->sgc->capacity = capacity; 9439 sdg->sgc->min_capacity = capacity; 9440 sdg->sgc->max_capacity = capacity; 9441 } 9442 9443 void update_group_capacity(struct sched_domain *sd, int cpu) 9444 { 9445 struct sched_domain *child = sd->child; 9446 struct sched_group *group, *sdg = sd->groups; 9447 unsigned long capacity, min_capacity, max_capacity; 9448 unsigned long interval; 9449 9450 interval = msecs_to_jiffies(sd->balance_interval); 9451 interval = clamp(interval, 1UL, max_load_balance_interval); 9452 sdg->sgc->next_update = jiffies + interval; 9453 9454 if (!child) { 9455 update_cpu_capacity(sd, cpu); 9456 return; 9457 } 9458 9459 capacity = 0; 9460 min_capacity = ULONG_MAX; 9461 max_capacity = 0; 9462 9463 if (child->flags & SD_OVERLAP) { 9464 /* 9465 * SD_OVERLAP domains cannot assume that child groups 9466 * span the current group. 9467 */ 9468 9469 for_each_cpu(cpu, sched_group_span(sdg)) { 9470 unsigned long cpu_cap = capacity_of(cpu); 9471 9472 capacity += cpu_cap; 9473 min_capacity = min(cpu_cap, min_capacity); 9474 max_capacity = max(cpu_cap, max_capacity); 9475 } 9476 } else { 9477 /* 9478 * !SD_OVERLAP domains can assume that child groups 9479 * span the current group. 9480 */ 9481 9482 group = child->groups; 9483 do { 9484 struct sched_group_capacity *sgc = group->sgc; 9485 9486 capacity += sgc->capacity; 9487 min_capacity = min(sgc->min_capacity, min_capacity); 9488 max_capacity = max(sgc->max_capacity, max_capacity); 9489 group = group->next; 9490 } while (group != child->groups); 9491 } 9492 9493 sdg->sgc->capacity = capacity; 9494 sdg->sgc->min_capacity = min_capacity; 9495 sdg->sgc->max_capacity = max_capacity; 9496 } 9497 9498 /* 9499 * Check whether the capacity of the rq has been noticeably reduced by side 9500 * activity. The imbalance_pct is used for the threshold. 9501 * Return true is the capacity is reduced 9502 */ 9503 static inline int 9504 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 9505 { 9506 return ((rq->cpu_capacity * sd->imbalance_pct) < 9507 (rq->cpu_capacity_orig * 100)); 9508 } 9509 9510 /* 9511 * Check whether a rq has a misfit task and if it looks like we can actually 9512 * help that task: we can migrate the task to a CPU of higher capacity, or 9513 * the task's current CPU is heavily pressured. 9514 */ 9515 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 9516 { 9517 return rq->misfit_task_load && 9518 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 9519 check_cpu_capacity(rq, sd)); 9520 } 9521 9522 /* 9523 * Group imbalance indicates (and tries to solve) the problem where balancing 9524 * groups is inadequate due to ->cpus_ptr constraints. 9525 * 9526 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 9527 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 9528 * Something like: 9529 * 9530 * { 0 1 2 3 } { 4 5 6 7 } 9531 * * * * * 9532 * 9533 * If we were to balance group-wise we'd place two tasks in the first group and 9534 * two tasks in the second group. Clearly this is undesired as it will overload 9535 * cpu 3 and leave one of the CPUs in the second group unused. 9536 * 9537 * The current solution to this issue is detecting the skew in the first group 9538 * by noticing the lower domain failed to reach balance and had difficulty 9539 * moving tasks due to affinity constraints. 9540 * 9541 * When this is so detected; this group becomes a candidate for busiest; see 9542 * update_sd_pick_busiest(). And calculate_imbalance() and 9543 * find_busiest_group() avoid some of the usual balance conditions to allow it 9544 * to create an effective group imbalance. 9545 * 9546 * This is a somewhat tricky proposition since the next run might not find the 9547 * group imbalance and decide the groups need to be balanced again. A most 9548 * subtle and fragile situation. 9549 */ 9550 9551 static inline int sg_imbalanced(struct sched_group *group) 9552 { 9553 return group->sgc->imbalance; 9554 } 9555 9556 /* 9557 * group_has_capacity returns true if the group has spare capacity that could 9558 * be used by some tasks. 9559 * We consider that a group has spare capacity if the number of task is 9560 * smaller than the number of CPUs or if the utilization is lower than the 9561 * available capacity for CFS tasks. 9562 * For the latter, we use a threshold to stabilize the state, to take into 9563 * account the variance of the tasks' load and to return true if the available 9564 * capacity in meaningful for the load balancer. 9565 * As an example, an available capacity of 1% can appear but it doesn't make 9566 * any benefit for the load balance. 9567 */ 9568 static inline bool 9569 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9570 { 9571 if (sgs->sum_nr_running < sgs->group_weight) 9572 return true; 9573 9574 if ((sgs->group_capacity * imbalance_pct) < 9575 (sgs->group_runnable * 100)) 9576 return false; 9577 9578 if ((sgs->group_capacity * 100) > 9579 (sgs->group_util * imbalance_pct)) 9580 return true; 9581 9582 return false; 9583 } 9584 9585 /* 9586 * group_is_overloaded returns true if the group has more tasks than it can 9587 * handle. 9588 * group_is_overloaded is not equals to !group_has_capacity because a group 9589 * with the exact right number of tasks, has no more spare capacity but is not 9590 * overloaded so both group_has_capacity and group_is_overloaded return 9591 * false. 9592 */ 9593 static inline bool 9594 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9595 { 9596 if (sgs->sum_nr_running <= sgs->group_weight) 9597 return false; 9598 9599 if ((sgs->group_capacity * 100) < 9600 (sgs->group_util * imbalance_pct)) 9601 return true; 9602 9603 if ((sgs->group_capacity * imbalance_pct) < 9604 (sgs->group_runnable * 100)) 9605 return true; 9606 9607 return false; 9608 } 9609 9610 static inline enum 9611 group_type group_classify(unsigned int imbalance_pct, 9612 struct sched_group *group, 9613 struct sg_lb_stats *sgs) 9614 { 9615 if (group_is_overloaded(imbalance_pct, sgs)) 9616 return group_overloaded; 9617 9618 if (sg_imbalanced(group)) 9619 return group_imbalanced; 9620 9621 if (sgs->group_asym_packing) 9622 return group_asym_packing; 9623 9624 if (sgs->group_smt_balance) 9625 return group_smt_balance; 9626 9627 if (sgs->group_misfit_task_load) 9628 return group_misfit_task; 9629 9630 if (!group_has_capacity(imbalance_pct, sgs)) 9631 return group_fully_busy; 9632 9633 return group_has_spare; 9634 } 9635 9636 /** 9637 * sched_use_asym_prio - Check whether asym_packing priority must be used 9638 * @sd: The scheduling domain of the load balancing 9639 * @cpu: A CPU 9640 * 9641 * Always use CPU priority when balancing load between SMT siblings. When 9642 * balancing load between cores, it is not sufficient that @cpu is idle. Only 9643 * use CPU priority if the whole core is idle. 9644 * 9645 * Returns: True if the priority of @cpu must be followed. False otherwise. 9646 */ 9647 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 9648 { 9649 if (!sched_smt_active()) 9650 return true; 9651 9652 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 9653 } 9654 9655 /** 9656 * sched_asym - Check if the destination CPU can do asym_packing load balance 9657 * @env: The load balancing environment 9658 * @sds: Load-balancing data with statistics of the local group 9659 * @sgs: Load-balancing statistics of the candidate busiest group 9660 * @group: The candidate busiest group 9661 * 9662 * @env::dst_cpu can do asym_packing if it has higher priority than the 9663 * preferred CPU of @group. 9664 * 9665 * SMT is a special case. If we are balancing load between cores, @env::dst_cpu 9666 * can do asym_packing balance only if all its SMT siblings are idle. Also, it 9667 * can only do it if @group is an SMT group and has exactly on busy CPU. Larger 9668 * imbalances in the number of CPUS are dealt with in find_busiest_group(). 9669 * 9670 * If we are balancing load within an SMT core, or at DIE domain level, always 9671 * proceed. 9672 * 9673 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 9674 * otherwise. 9675 */ 9676 static inline bool 9677 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs, 9678 struct sched_group *group) 9679 { 9680 /* Ensure that the whole local core is idle, if applicable. */ 9681 if (!sched_use_asym_prio(env->sd, env->dst_cpu)) 9682 return false; 9683 9684 /* 9685 * CPU priorities does not make sense for SMT cores with more than one 9686 * busy sibling. 9687 */ 9688 if (group->flags & SD_SHARE_CPUCAPACITY) { 9689 if (sgs->group_weight - sgs->idle_cpus != 1) 9690 return false; 9691 } 9692 9693 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu); 9694 } 9695 9696 /* One group has more than one SMT CPU while the other group does not */ 9697 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 9698 struct sched_group *sg2) 9699 { 9700 if (!sg1 || !sg2) 9701 return false; 9702 9703 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 9704 (sg2->flags & SD_SHARE_CPUCAPACITY); 9705 } 9706 9707 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 9708 struct sched_group *group) 9709 { 9710 if (env->idle == CPU_NOT_IDLE) 9711 return false; 9712 9713 /* 9714 * For SMT source group, it is better to move a task 9715 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 9716 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 9717 * will not be on. 9718 */ 9719 if (group->flags & SD_SHARE_CPUCAPACITY && 9720 sgs->sum_h_nr_running > 1) 9721 return true; 9722 9723 return false; 9724 } 9725 9726 static inline long sibling_imbalance(struct lb_env *env, 9727 struct sd_lb_stats *sds, 9728 struct sg_lb_stats *busiest, 9729 struct sg_lb_stats *local) 9730 { 9731 int ncores_busiest, ncores_local; 9732 long imbalance; 9733 9734 if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running) 9735 return 0; 9736 9737 ncores_busiest = sds->busiest->cores; 9738 ncores_local = sds->local->cores; 9739 9740 if (ncores_busiest == ncores_local) { 9741 imbalance = busiest->sum_nr_running; 9742 lsub_positive(&imbalance, local->sum_nr_running); 9743 return imbalance; 9744 } 9745 9746 /* Balance such that nr_running/ncores ratio are same on both groups */ 9747 imbalance = ncores_local * busiest->sum_nr_running; 9748 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 9749 /* Normalize imbalance and do rounding on normalization */ 9750 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 9751 imbalance /= ncores_local + ncores_busiest; 9752 9753 /* Take advantage of resource in an empty sched group */ 9754 if (imbalance <= 1 && local->sum_nr_running == 0 && 9755 busiest->sum_nr_running > 1) 9756 imbalance = 2; 9757 9758 return imbalance; 9759 } 9760 9761 static inline bool 9762 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 9763 { 9764 /* 9765 * When there is more than 1 task, the group_overloaded case already 9766 * takes care of cpu with reduced capacity 9767 */ 9768 if (rq->cfs.h_nr_running != 1) 9769 return false; 9770 9771 return check_cpu_capacity(rq, sd); 9772 } 9773 9774 /** 9775 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 9776 * @env: The load balancing environment. 9777 * @sds: Load-balancing data with statistics of the local group. 9778 * @group: sched_group whose statistics are to be updated. 9779 * @sgs: variable to hold the statistics for this group. 9780 * @sg_status: Holds flag indicating the status of the sched_group 9781 */ 9782 static inline void update_sg_lb_stats(struct lb_env *env, 9783 struct sd_lb_stats *sds, 9784 struct sched_group *group, 9785 struct sg_lb_stats *sgs, 9786 int *sg_status) 9787 { 9788 int i, nr_running, local_group; 9789 9790 memset(sgs, 0, sizeof(*sgs)); 9791 9792 local_group = group == sds->local; 9793 9794 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9795 struct rq *rq = cpu_rq(i); 9796 unsigned long load = cpu_load(rq); 9797 9798 sgs->group_load += load; 9799 sgs->group_util += cpu_util_cfs(i); 9800 sgs->group_runnable += cpu_runnable(rq); 9801 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 9802 9803 nr_running = rq->nr_running; 9804 sgs->sum_nr_running += nr_running; 9805 9806 if (nr_running > 1) 9807 *sg_status |= SG_OVERLOAD; 9808 9809 if (cpu_overutilized(i)) 9810 *sg_status |= SG_OVERUTILIZED; 9811 9812 #ifdef CONFIG_NUMA_BALANCING 9813 sgs->nr_numa_running += rq->nr_numa_running; 9814 sgs->nr_preferred_running += rq->nr_preferred_running; 9815 #endif 9816 /* 9817 * No need to call idle_cpu() if nr_running is not 0 9818 */ 9819 if (!nr_running && idle_cpu(i)) { 9820 sgs->idle_cpus++; 9821 /* Idle cpu can't have misfit task */ 9822 continue; 9823 } 9824 9825 if (local_group) 9826 continue; 9827 9828 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9829 /* Check for a misfit task on the cpu */ 9830 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 9831 sgs->group_misfit_task_load = rq->misfit_task_load; 9832 *sg_status |= SG_OVERLOAD; 9833 } 9834 } else if ((env->idle != CPU_NOT_IDLE) && 9835 sched_reduced_capacity(rq, env->sd)) { 9836 /* Check for a task running on a CPU with reduced capacity */ 9837 if (sgs->group_misfit_task_load < load) 9838 sgs->group_misfit_task_load = load; 9839 } 9840 } 9841 9842 sgs->group_capacity = group->sgc->capacity; 9843 9844 sgs->group_weight = group->group_weight; 9845 9846 /* Check if dst CPU is idle and preferred to this group */ 9847 if (!local_group && env->sd->flags & SD_ASYM_PACKING && 9848 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running && 9849 sched_asym(env, sds, sgs, group)) { 9850 sgs->group_asym_packing = 1; 9851 } 9852 9853 /* Check for loaded SMT group to be balanced to dst CPU */ 9854 if (!local_group && smt_balance(env, sgs, group)) 9855 sgs->group_smt_balance = 1; 9856 9857 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 9858 9859 /* Computing avg_load makes sense only when group is overloaded */ 9860 if (sgs->group_type == group_overloaded) 9861 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9862 sgs->group_capacity; 9863 } 9864 9865 /** 9866 * update_sd_pick_busiest - return 1 on busiest group 9867 * @env: The load balancing environment. 9868 * @sds: sched_domain statistics 9869 * @sg: sched_group candidate to be checked for being the busiest 9870 * @sgs: sched_group statistics 9871 * 9872 * Determine if @sg is a busier group than the previously selected 9873 * busiest group. 9874 * 9875 * Return: %true if @sg is a busier group than the previously selected 9876 * busiest group. %false otherwise. 9877 */ 9878 static bool update_sd_pick_busiest(struct lb_env *env, 9879 struct sd_lb_stats *sds, 9880 struct sched_group *sg, 9881 struct sg_lb_stats *sgs) 9882 { 9883 struct sg_lb_stats *busiest = &sds->busiest_stat; 9884 9885 /* Make sure that there is at least one task to pull */ 9886 if (!sgs->sum_h_nr_running) 9887 return false; 9888 9889 /* 9890 * Don't try to pull misfit tasks we can't help. 9891 * We can use max_capacity here as reduction in capacity on some 9892 * CPUs in the group should either be possible to resolve 9893 * internally or be covered by avg_load imbalance (eventually). 9894 */ 9895 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9896 (sgs->group_type == group_misfit_task) && 9897 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 9898 sds->local_stat.group_type != group_has_spare)) 9899 return false; 9900 9901 if (sgs->group_type > busiest->group_type) 9902 return true; 9903 9904 if (sgs->group_type < busiest->group_type) 9905 return false; 9906 9907 /* 9908 * The candidate and the current busiest group are the same type of 9909 * group. Let check which one is the busiest according to the type. 9910 */ 9911 9912 switch (sgs->group_type) { 9913 case group_overloaded: 9914 /* Select the overloaded group with highest avg_load. */ 9915 if (sgs->avg_load <= busiest->avg_load) 9916 return false; 9917 break; 9918 9919 case group_imbalanced: 9920 /* 9921 * Select the 1st imbalanced group as we don't have any way to 9922 * choose one more than another. 9923 */ 9924 return false; 9925 9926 case group_asym_packing: 9927 /* Prefer to move from lowest priority CPU's work */ 9928 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 9929 return false; 9930 break; 9931 9932 case group_misfit_task: 9933 /* 9934 * If we have more than one misfit sg go with the biggest 9935 * misfit. 9936 */ 9937 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 9938 return false; 9939 break; 9940 9941 case group_smt_balance: 9942 /* 9943 * Check if we have spare CPUs on either SMT group to 9944 * choose has spare or fully busy handling. 9945 */ 9946 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 9947 goto has_spare; 9948 9949 fallthrough; 9950 9951 case group_fully_busy: 9952 /* 9953 * Select the fully busy group with highest avg_load. In 9954 * theory, there is no need to pull task from such kind of 9955 * group because tasks have all compute capacity that they need 9956 * but we can still improve the overall throughput by reducing 9957 * contention when accessing shared HW resources. 9958 * 9959 * XXX for now avg_load is not computed and always 0 so we 9960 * select the 1st one, except if @sg is composed of SMT 9961 * siblings. 9962 */ 9963 9964 if (sgs->avg_load < busiest->avg_load) 9965 return false; 9966 9967 if (sgs->avg_load == busiest->avg_load) { 9968 /* 9969 * SMT sched groups need more help than non-SMT groups. 9970 * If @sg happens to also be SMT, either choice is good. 9971 */ 9972 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 9973 return false; 9974 } 9975 9976 break; 9977 9978 case group_has_spare: 9979 /* 9980 * Do not pick sg with SMT CPUs over sg with pure CPUs, 9981 * as we do not want to pull task off SMT core with one task 9982 * and make the core idle. 9983 */ 9984 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 9985 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 9986 return false; 9987 else 9988 return true; 9989 } 9990 has_spare: 9991 9992 /* 9993 * Select not overloaded group with lowest number of idle cpus 9994 * and highest number of running tasks. We could also compare 9995 * the spare capacity which is more stable but it can end up 9996 * that the group has less spare capacity but finally more idle 9997 * CPUs which means less opportunity to pull tasks. 9998 */ 9999 if (sgs->idle_cpus > busiest->idle_cpus) 10000 return false; 10001 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10002 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10003 return false; 10004 10005 break; 10006 } 10007 10008 /* 10009 * Candidate sg has no more than one task per CPU and has higher 10010 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10011 * throughput. Maximize throughput, power/energy consequences are not 10012 * considered. 10013 */ 10014 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10015 (sgs->group_type <= group_fully_busy) && 10016 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10017 return false; 10018 10019 return true; 10020 } 10021 10022 #ifdef CONFIG_NUMA_BALANCING 10023 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10024 { 10025 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10026 return regular; 10027 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10028 return remote; 10029 return all; 10030 } 10031 10032 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10033 { 10034 if (rq->nr_running > rq->nr_numa_running) 10035 return regular; 10036 if (rq->nr_running > rq->nr_preferred_running) 10037 return remote; 10038 return all; 10039 } 10040 #else 10041 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10042 { 10043 return all; 10044 } 10045 10046 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10047 { 10048 return regular; 10049 } 10050 #endif /* CONFIG_NUMA_BALANCING */ 10051 10052 10053 struct sg_lb_stats; 10054 10055 /* 10056 * task_running_on_cpu - return 1 if @p is running on @cpu. 10057 */ 10058 10059 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10060 { 10061 /* Task has no contribution or is new */ 10062 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10063 return 0; 10064 10065 if (task_on_rq_queued(p)) 10066 return 1; 10067 10068 return 0; 10069 } 10070 10071 /** 10072 * idle_cpu_without - would a given CPU be idle without p ? 10073 * @cpu: the processor on which idleness is tested. 10074 * @p: task which should be ignored. 10075 * 10076 * Return: 1 if the CPU would be idle. 0 otherwise. 10077 */ 10078 static int idle_cpu_without(int cpu, struct task_struct *p) 10079 { 10080 struct rq *rq = cpu_rq(cpu); 10081 10082 if (rq->curr != rq->idle && rq->curr != p) 10083 return 0; 10084 10085 /* 10086 * rq->nr_running can't be used but an updated version without the 10087 * impact of p on cpu must be used instead. The updated nr_running 10088 * be computed and tested before calling idle_cpu_without(). 10089 */ 10090 10091 #ifdef CONFIG_SMP 10092 if (rq->ttwu_pending) 10093 return 0; 10094 #endif 10095 10096 return 1; 10097 } 10098 10099 /* 10100 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10101 * @sd: The sched_domain level to look for idlest group. 10102 * @group: sched_group whose statistics are to be updated. 10103 * @sgs: variable to hold the statistics for this group. 10104 * @p: The task for which we look for the idlest group/CPU. 10105 */ 10106 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10107 struct sched_group *group, 10108 struct sg_lb_stats *sgs, 10109 struct task_struct *p) 10110 { 10111 int i, nr_running; 10112 10113 memset(sgs, 0, sizeof(*sgs)); 10114 10115 /* Assume that task can't fit any CPU of the group */ 10116 if (sd->flags & SD_ASYM_CPUCAPACITY) 10117 sgs->group_misfit_task_load = 1; 10118 10119 for_each_cpu(i, sched_group_span(group)) { 10120 struct rq *rq = cpu_rq(i); 10121 unsigned int local; 10122 10123 sgs->group_load += cpu_load_without(rq, p); 10124 sgs->group_util += cpu_util_without(i, p); 10125 sgs->group_runnable += cpu_runnable_without(rq, p); 10126 local = task_running_on_cpu(i, p); 10127 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 10128 10129 nr_running = rq->nr_running - local; 10130 sgs->sum_nr_running += nr_running; 10131 10132 /* 10133 * No need to call idle_cpu_without() if nr_running is not 0 10134 */ 10135 if (!nr_running && idle_cpu_without(i, p)) 10136 sgs->idle_cpus++; 10137 10138 /* Check if task fits in the CPU */ 10139 if (sd->flags & SD_ASYM_CPUCAPACITY && 10140 sgs->group_misfit_task_load && 10141 task_fits_cpu(p, i)) 10142 sgs->group_misfit_task_load = 0; 10143 10144 } 10145 10146 sgs->group_capacity = group->sgc->capacity; 10147 10148 sgs->group_weight = group->group_weight; 10149 10150 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10151 10152 /* 10153 * Computing avg_load makes sense only when group is fully busy or 10154 * overloaded 10155 */ 10156 if (sgs->group_type == group_fully_busy || 10157 sgs->group_type == group_overloaded) 10158 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10159 sgs->group_capacity; 10160 } 10161 10162 static bool update_pick_idlest(struct sched_group *idlest, 10163 struct sg_lb_stats *idlest_sgs, 10164 struct sched_group *group, 10165 struct sg_lb_stats *sgs) 10166 { 10167 if (sgs->group_type < idlest_sgs->group_type) 10168 return true; 10169 10170 if (sgs->group_type > idlest_sgs->group_type) 10171 return false; 10172 10173 /* 10174 * The candidate and the current idlest group are the same type of 10175 * group. Let check which one is the idlest according to the type. 10176 */ 10177 10178 switch (sgs->group_type) { 10179 case group_overloaded: 10180 case group_fully_busy: 10181 /* Select the group with lowest avg_load. */ 10182 if (idlest_sgs->avg_load <= sgs->avg_load) 10183 return false; 10184 break; 10185 10186 case group_imbalanced: 10187 case group_asym_packing: 10188 case group_smt_balance: 10189 /* Those types are not used in the slow wakeup path */ 10190 return false; 10191 10192 case group_misfit_task: 10193 /* Select group with the highest max capacity */ 10194 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10195 return false; 10196 break; 10197 10198 case group_has_spare: 10199 /* Select group with most idle CPUs */ 10200 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10201 return false; 10202 10203 /* Select group with lowest group_util */ 10204 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10205 idlest_sgs->group_util <= sgs->group_util) 10206 return false; 10207 10208 break; 10209 } 10210 10211 return true; 10212 } 10213 10214 /* 10215 * find_idlest_group() finds and returns the least busy CPU group within the 10216 * domain. 10217 * 10218 * Assumes p is allowed on at least one CPU in sd. 10219 */ 10220 static struct sched_group * 10221 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10222 { 10223 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10224 struct sg_lb_stats local_sgs, tmp_sgs; 10225 struct sg_lb_stats *sgs; 10226 unsigned long imbalance; 10227 struct sg_lb_stats idlest_sgs = { 10228 .avg_load = UINT_MAX, 10229 .group_type = group_overloaded, 10230 }; 10231 10232 do { 10233 int local_group; 10234 10235 /* Skip over this group if it has no CPUs allowed */ 10236 if (!cpumask_intersects(sched_group_span(group), 10237 p->cpus_ptr)) 10238 continue; 10239 10240 /* Skip over this group if no cookie matched */ 10241 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10242 continue; 10243 10244 local_group = cpumask_test_cpu(this_cpu, 10245 sched_group_span(group)); 10246 10247 if (local_group) { 10248 sgs = &local_sgs; 10249 local = group; 10250 } else { 10251 sgs = &tmp_sgs; 10252 } 10253 10254 update_sg_wakeup_stats(sd, group, sgs, p); 10255 10256 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10257 idlest = group; 10258 idlest_sgs = *sgs; 10259 } 10260 10261 } while (group = group->next, group != sd->groups); 10262 10263 10264 /* There is no idlest group to push tasks to */ 10265 if (!idlest) 10266 return NULL; 10267 10268 /* The local group has been skipped because of CPU affinity */ 10269 if (!local) 10270 return idlest; 10271 10272 /* 10273 * If the local group is idler than the selected idlest group 10274 * don't try and push the task. 10275 */ 10276 if (local_sgs.group_type < idlest_sgs.group_type) 10277 return NULL; 10278 10279 /* 10280 * If the local group is busier than the selected idlest group 10281 * try and push the task. 10282 */ 10283 if (local_sgs.group_type > idlest_sgs.group_type) 10284 return idlest; 10285 10286 switch (local_sgs.group_type) { 10287 case group_overloaded: 10288 case group_fully_busy: 10289 10290 /* Calculate allowed imbalance based on load */ 10291 imbalance = scale_load_down(NICE_0_LOAD) * 10292 (sd->imbalance_pct-100) / 100; 10293 10294 /* 10295 * When comparing groups across NUMA domains, it's possible for 10296 * the local domain to be very lightly loaded relative to the 10297 * remote domains but "imbalance" skews the comparison making 10298 * remote CPUs look much more favourable. When considering 10299 * cross-domain, add imbalance to the load on the remote node 10300 * and consider staying local. 10301 */ 10302 10303 if ((sd->flags & SD_NUMA) && 10304 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10305 return NULL; 10306 10307 /* 10308 * If the local group is less loaded than the selected 10309 * idlest group don't try and push any tasks. 10310 */ 10311 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10312 return NULL; 10313 10314 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10315 return NULL; 10316 break; 10317 10318 case group_imbalanced: 10319 case group_asym_packing: 10320 case group_smt_balance: 10321 /* Those type are not used in the slow wakeup path */ 10322 return NULL; 10323 10324 case group_misfit_task: 10325 /* Select group with the highest max capacity */ 10326 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10327 return NULL; 10328 break; 10329 10330 case group_has_spare: 10331 #ifdef CONFIG_NUMA 10332 if (sd->flags & SD_NUMA) { 10333 int imb_numa_nr = sd->imb_numa_nr; 10334 #ifdef CONFIG_NUMA_BALANCING 10335 int idlest_cpu; 10336 /* 10337 * If there is spare capacity at NUMA, try to select 10338 * the preferred node 10339 */ 10340 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10341 return NULL; 10342 10343 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10344 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10345 return idlest; 10346 #endif /* CONFIG_NUMA_BALANCING */ 10347 /* 10348 * Otherwise, keep the task close to the wakeup source 10349 * and improve locality if the number of running tasks 10350 * would remain below threshold where an imbalance is 10351 * allowed while accounting for the possibility the 10352 * task is pinned to a subset of CPUs. If there is a 10353 * real need of migration, periodic load balance will 10354 * take care of it. 10355 */ 10356 if (p->nr_cpus_allowed != NR_CPUS) { 10357 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10358 10359 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10360 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10361 } 10362 10363 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10364 if (!adjust_numa_imbalance(imbalance, 10365 local_sgs.sum_nr_running + 1, 10366 imb_numa_nr)) { 10367 return NULL; 10368 } 10369 } 10370 #endif /* CONFIG_NUMA */ 10371 10372 /* 10373 * Select group with highest number of idle CPUs. We could also 10374 * compare the utilization which is more stable but it can end 10375 * up that the group has less spare capacity but finally more 10376 * idle CPUs which means more opportunity to run task. 10377 */ 10378 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10379 return NULL; 10380 break; 10381 } 10382 10383 return idlest; 10384 } 10385 10386 static void update_idle_cpu_scan(struct lb_env *env, 10387 unsigned long sum_util) 10388 { 10389 struct sched_domain_shared *sd_share; 10390 int llc_weight, pct; 10391 u64 x, y, tmp; 10392 /* 10393 * Update the number of CPUs to scan in LLC domain, which could 10394 * be used as a hint in select_idle_cpu(). The update of sd_share 10395 * could be expensive because it is within a shared cache line. 10396 * So the write of this hint only occurs during periodic load 10397 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10398 * can fire way more frequently than the former. 10399 */ 10400 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10401 return; 10402 10403 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10404 if (env->sd->span_weight != llc_weight) 10405 return; 10406 10407 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10408 if (!sd_share) 10409 return; 10410 10411 /* 10412 * The number of CPUs to search drops as sum_util increases, when 10413 * sum_util hits 85% or above, the scan stops. 10414 * The reason to choose 85% as the threshold is because this is the 10415 * imbalance_pct(117) when a LLC sched group is overloaded. 10416 * 10417 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10418 * and y'= y / SCHED_CAPACITY_SCALE 10419 * 10420 * x is the ratio of sum_util compared to the CPU capacity: 10421 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10422 * y' is the ratio of CPUs to be scanned in the LLC domain, 10423 * and the number of CPUs to scan is calculated by: 10424 * 10425 * nr_scan = llc_weight * y' [2] 10426 * 10427 * When x hits the threshold of overloaded, AKA, when 10428 * x = 100 / pct, y drops to 0. According to [1], 10429 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10430 * 10431 * Scale x by SCHED_CAPACITY_SCALE: 10432 * x' = sum_util / llc_weight; [3] 10433 * 10434 * and finally [1] becomes: 10435 * y = SCHED_CAPACITY_SCALE - 10436 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10437 * 10438 */ 10439 /* equation [3] */ 10440 x = sum_util; 10441 do_div(x, llc_weight); 10442 10443 /* equation [4] */ 10444 pct = env->sd->imbalance_pct; 10445 tmp = x * x * pct * pct; 10446 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10447 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10448 y = SCHED_CAPACITY_SCALE - tmp; 10449 10450 /* equation [2] */ 10451 y *= llc_weight; 10452 do_div(y, SCHED_CAPACITY_SCALE); 10453 if ((int)y != sd_share->nr_idle_scan) 10454 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10455 } 10456 10457 /** 10458 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 10459 * @env: The load balancing environment. 10460 * @sds: variable to hold the statistics for this sched_domain. 10461 */ 10462 10463 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 10464 { 10465 struct sched_group *sg = env->sd->groups; 10466 struct sg_lb_stats *local = &sds->local_stat; 10467 struct sg_lb_stats tmp_sgs; 10468 unsigned long sum_util = 0; 10469 int sg_status = 0; 10470 10471 do { 10472 struct sg_lb_stats *sgs = &tmp_sgs; 10473 int local_group; 10474 10475 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10476 if (local_group) { 10477 sds->local = sg; 10478 sgs = local; 10479 10480 if (env->idle != CPU_NEWLY_IDLE || 10481 time_after_eq(jiffies, sg->sgc->next_update)) 10482 update_group_capacity(env->sd, env->dst_cpu); 10483 } 10484 10485 update_sg_lb_stats(env, sds, sg, sgs, &sg_status); 10486 10487 if (local_group) 10488 goto next_group; 10489 10490 10491 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 10492 sds->busiest = sg; 10493 sds->busiest_stat = *sgs; 10494 } 10495 10496 next_group: 10497 /* Now, start updating sd_lb_stats */ 10498 sds->total_load += sgs->group_load; 10499 sds->total_capacity += sgs->group_capacity; 10500 10501 sum_util += sgs->group_util; 10502 sg = sg->next; 10503 } while (sg != env->sd->groups); 10504 10505 /* 10506 * Indicate that the child domain of the busiest group prefers tasks 10507 * go to a child's sibling domains first. NB the flags of a sched group 10508 * are those of the child domain. 10509 */ 10510 if (sds->busiest) 10511 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 10512 10513 10514 if (env->sd->flags & SD_NUMA) 10515 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 10516 10517 if (!env->sd->parent) { 10518 /* update overload indicator if we are at root domain */ 10519 WRITE_ONCE(env->dst_rq->rd->overload, sg_status & SG_OVERLOAD); 10520 10521 /* Update over-utilization (tipping point, U >= 0) indicator */ 10522 set_rd_overutilized_status(env->dst_rq->rd, 10523 sg_status & SG_OVERUTILIZED); 10524 } else if (sg_status & SG_OVERUTILIZED) { 10525 set_rd_overutilized_status(env->dst_rq->rd, SG_OVERUTILIZED); 10526 } 10527 10528 update_idle_cpu_scan(env, sum_util); 10529 } 10530 10531 /** 10532 * calculate_imbalance - Calculate the amount of imbalance present within the 10533 * groups of a given sched_domain during load balance. 10534 * @env: load balance environment 10535 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 10536 */ 10537 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 10538 { 10539 struct sg_lb_stats *local, *busiest; 10540 10541 local = &sds->local_stat; 10542 busiest = &sds->busiest_stat; 10543 10544 if (busiest->group_type == group_misfit_task) { 10545 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10546 /* Set imbalance to allow misfit tasks to be balanced. */ 10547 env->migration_type = migrate_misfit; 10548 env->imbalance = 1; 10549 } else { 10550 /* 10551 * Set load imbalance to allow moving task from cpu 10552 * with reduced capacity. 10553 */ 10554 env->migration_type = migrate_load; 10555 env->imbalance = busiest->group_misfit_task_load; 10556 } 10557 return; 10558 } 10559 10560 if (busiest->group_type == group_asym_packing) { 10561 /* 10562 * In case of asym capacity, we will try to migrate all load to 10563 * the preferred CPU. 10564 */ 10565 env->migration_type = migrate_task; 10566 env->imbalance = busiest->sum_h_nr_running; 10567 return; 10568 } 10569 10570 if (busiest->group_type == group_smt_balance) { 10571 /* Reduce number of tasks sharing CPU capacity */ 10572 env->migration_type = migrate_task; 10573 env->imbalance = 1; 10574 return; 10575 } 10576 10577 if (busiest->group_type == group_imbalanced) { 10578 /* 10579 * In the group_imb case we cannot rely on group-wide averages 10580 * to ensure CPU-load equilibrium, try to move any task to fix 10581 * the imbalance. The next load balance will take care of 10582 * balancing back the system. 10583 */ 10584 env->migration_type = migrate_task; 10585 env->imbalance = 1; 10586 return; 10587 } 10588 10589 /* 10590 * Try to use spare capacity of local group without overloading it or 10591 * emptying busiest. 10592 */ 10593 if (local->group_type == group_has_spare) { 10594 if ((busiest->group_type > group_fully_busy) && 10595 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 10596 /* 10597 * If busiest is overloaded, try to fill spare 10598 * capacity. This might end up creating spare capacity 10599 * in busiest or busiest still being overloaded but 10600 * there is no simple way to directly compute the 10601 * amount of load to migrate in order to balance the 10602 * system. 10603 */ 10604 env->migration_type = migrate_util; 10605 env->imbalance = max(local->group_capacity, local->group_util) - 10606 local->group_util; 10607 10608 /* 10609 * In some cases, the group's utilization is max or even 10610 * higher than capacity because of migrations but the 10611 * local CPU is (newly) idle. There is at least one 10612 * waiting task in this overloaded busiest group. Let's 10613 * try to pull it. 10614 */ 10615 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 10616 env->migration_type = migrate_task; 10617 env->imbalance = 1; 10618 } 10619 10620 return; 10621 } 10622 10623 if (busiest->group_weight == 1 || sds->prefer_sibling) { 10624 /* 10625 * When prefer sibling, evenly spread running tasks on 10626 * groups. 10627 */ 10628 env->migration_type = migrate_task; 10629 env->imbalance = sibling_imbalance(env, sds, busiest, local); 10630 } else { 10631 10632 /* 10633 * If there is no overload, we just want to even the number of 10634 * idle cpus. 10635 */ 10636 env->migration_type = migrate_task; 10637 env->imbalance = max_t(long, 0, 10638 (local->idle_cpus - busiest->idle_cpus)); 10639 } 10640 10641 #ifdef CONFIG_NUMA 10642 /* Consider allowing a small imbalance between NUMA groups */ 10643 if (env->sd->flags & SD_NUMA) { 10644 env->imbalance = adjust_numa_imbalance(env->imbalance, 10645 local->sum_nr_running + 1, 10646 env->sd->imb_numa_nr); 10647 } 10648 #endif 10649 10650 /* Number of tasks to move to restore balance */ 10651 env->imbalance >>= 1; 10652 10653 return; 10654 } 10655 10656 /* 10657 * Local is fully busy but has to take more load to relieve the 10658 * busiest group 10659 */ 10660 if (local->group_type < group_overloaded) { 10661 /* 10662 * Local will become overloaded so the avg_load metrics are 10663 * finally needed. 10664 */ 10665 10666 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 10667 local->group_capacity; 10668 10669 /* 10670 * If the local group is more loaded than the selected 10671 * busiest group don't try to pull any tasks. 10672 */ 10673 if (local->avg_load >= busiest->avg_load) { 10674 env->imbalance = 0; 10675 return; 10676 } 10677 10678 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 10679 sds->total_capacity; 10680 10681 /* 10682 * If the local group is more loaded than the average system 10683 * load, don't try to pull any tasks. 10684 */ 10685 if (local->avg_load >= sds->avg_load) { 10686 env->imbalance = 0; 10687 return; 10688 } 10689 10690 } 10691 10692 /* 10693 * Both group are or will become overloaded and we're trying to get all 10694 * the CPUs to the average_load, so we don't want to push ourselves 10695 * above the average load, nor do we wish to reduce the max loaded CPU 10696 * below the average load. At the same time, we also don't want to 10697 * reduce the group load below the group capacity. Thus we look for 10698 * the minimum possible imbalance. 10699 */ 10700 env->migration_type = migrate_load; 10701 env->imbalance = min( 10702 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 10703 (sds->avg_load - local->avg_load) * local->group_capacity 10704 ) / SCHED_CAPACITY_SCALE; 10705 } 10706 10707 /******* find_busiest_group() helpers end here *********************/ 10708 10709 /* 10710 * Decision matrix according to the local and busiest group type: 10711 * 10712 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 10713 * has_spare nr_idle balanced N/A N/A balanced balanced 10714 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 10715 * misfit_task force N/A N/A N/A N/A N/A 10716 * asym_packing force force N/A N/A force force 10717 * imbalanced force force N/A N/A force force 10718 * overloaded force force N/A N/A force avg_load 10719 * 10720 * N/A : Not Applicable because already filtered while updating 10721 * statistics. 10722 * balanced : The system is balanced for these 2 groups. 10723 * force : Calculate the imbalance as load migration is probably needed. 10724 * avg_load : Only if imbalance is significant enough. 10725 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 10726 * different in groups. 10727 */ 10728 10729 /** 10730 * find_busiest_group - Returns the busiest group within the sched_domain 10731 * if there is an imbalance. 10732 * @env: The load balancing environment. 10733 * 10734 * Also calculates the amount of runnable load which should be moved 10735 * to restore balance. 10736 * 10737 * Return: - The busiest group if imbalance exists. 10738 */ 10739 static struct sched_group *find_busiest_group(struct lb_env *env) 10740 { 10741 struct sg_lb_stats *local, *busiest; 10742 struct sd_lb_stats sds; 10743 10744 init_sd_lb_stats(&sds); 10745 10746 /* 10747 * Compute the various statistics relevant for load balancing at 10748 * this level. 10749 */ 10750 update_sd_lb_stats(env, &sds); 10751 10752 /* There is no busy sibling group to pull tasks from */ 10753 if (!sds.busiest) 10754 goto out_balanced; 10755 10756 busiest = &sds.busiest_stat; 10757 10758 /* Misfit tasks should be dealt with regardless of the avg load */ 10759 if (busiest->group_type == group_misfit_task) 10760 goto force_balance; 10761 10762 if (sched_energy_enabled()) { 10763 struct root_domain *rd = env->dst_rq->rd; 10764 10765 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 10766 goto out_balanced; 10767 } 10768 10769 /* ASYM feature bypasses nice load balance check */ 10770 if (busiest->group_type == group_asym_packing) 10771 goto force_balance; 10772 10773 /* 10774 * If the busiest group is imbalanced the below checks don't 10775 * work because they assume all things are equal, which typically 10776 * isn't true due to cpus_ptr constraints and the like. 10777 */ 10778 if (busiest->group_type == group_imbalanced) 10779 goto force_balance; 10780 10781 local = &sds.local_stat; 10782 /* 10783 * If the local group is busier than the selected busiest group 10784 * don't try and pull any tasks. 10785 */ 10786 if (local->group_type > busiest->group_type) 10787 goto out_balanced; 10788 10789 /* 10790 * When groups are overloaded, use the avg_load to ensure fairness 10791 * between tasks. 10792 */ 10793 if (local->group_type == group_overloaded) { 10794 /* 10795 * If the local group is more loaded than the selected 10796 * busiest group don't try to pull any tasks. 10797 */ 10798 if (local->avg_load >= busiest->avg_load) 10799 goto out_balanced; 10800 10801 /* XXX broken for overlapping NUMA groups */ 10802 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 10803 sds.total_capacity; 10804 10805 /* 10806 * Don't pull any tasks if this group is already above the 10807 * domain average load. 10808 */ 10809 if (local->avg_load >= sds.avg_load) 10810 goto out_balanced; 10811 10812 /* 10813 * If the busiest group is more loaded, use imbalance_pct to be 10814 * conservative. 10815 */ 10816 if (100 * busiest->avg_load <= 10817 env->sd->imbalance_pct * local->avg_load) 10818 goto out_balanced; 10819 } 10820 10821 /* 10822 * Try to move all excess tasks to a sibling domain of the busiest 10823 * group's child domain. 10824 */ 10825 if (sds.prefer_sibling && local->group_type == group_has_spare && 10826 sibling_imbalance(env, &sds, busiest, local) > 1) 10827 goto force_balance; 10828 10829 if (busiest->group_type != group_overloaded) { 10830 if (env->idle == CPU_NOT_IDLE) { 10831 /* 10832 * If the busiest group is not overloaded (and as a 10833 * result the local one too) but this CPU is already 10834 * busy, let another idle CPU try to pull task. 10835 */ 10836 goto out_balanced; 10837 } 10838 10839 if (busiest->group_type == group_smt_balance && 10840 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 10841 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 10842 goto force_balance; 10843 } 10844 10845 if (busiest->group_weight > 1 && 10846 local->idle_cpus <= (busiest->idle_cpus + 1)) { 10847 /* 10848 * If the busiest group is not overloaded 10849 * and there is no imbalance between this and busiest 10850 * group wrt idle CPUs, it is balanced. The imbalance 10851 * becomes significant if the diff is greater than 1 10852 * otherwise we might end up to just move the imbalance 10853 * on another group. Of course this applies only if 10854 * there is more than 1 CPU per group. 10855 */ 10856 goto out_balanced; 10857 } 10858 10859 if (busiest->sum_h_nr_running == 1) { 10860 /* 10861 * busiest doesn't have any tasks waiting to run 10862 */ 10863 goto out_balanced; 10864 } 10865 } 10866 10867 force_balance: 10868 /* Looks like there is an imbalance. Compute it */ 10869 calculate_imbalance(env, &sds); 10870 return env->imbalance ? sds.busiest : NULL; 10871 10872 out_balanced: 10873 env->imbalance = 0; 10874 return NULL; 10875 } 10876 10877 /* 10878 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 10879 */ 10880 static struct rq *find_busiest_queue(struct lb_env *env, 10881 struct sched_group *group) 10882 { 10883 struct rq *busiest = NULL, *rq; 10884 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 10885 unsigned int busiest_nr = 0; 10886 int i; 10887 10888 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10889 unsigned long capacity, load, util; 10890 unsigned int nr_running; 10891 enum fbq_type rt; 10892 10893 rq = cpu_rq(i); 10894 rt = fbq_classify_rq(rq); 10895 10896 /* 10897 * We classify groups/runqueues into three groups: 10898 * - regular: there are !numa tasks 10899 * - remote: there are numa tasks that run on the 'wrong' node 10900 * - all: there is no distinction 10901 * 10902 * In order to avoid migrating ideally placed numa tasks, 10903 * ignore those when there's better options. 10904 * 10905 * If we ignore the actual busiest queue to migrate another 10906 * task, the next balance pass can still reduce the busiest 10907 * queue by moving tasks around inside the node. 10908 * 10909 * If we cannot move enough load due to this classification 10910 * the next pass will adjust the group classification and 10911 * allow migration of more tasks. 10912 * 10913 * Both cases only affect the total convergence complexity. 10914 */ 10915 if (rt > env->fbq_type) 10916 continue; 10917 10918 nr_running = rq->cfs.h_nr_running; 10919 if (!nr_running) 10920 continue; 10921 10922 capacity = capacity_of(i); 10923 10924 /* 10925 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 10926 * eventually lead to active_balancing high->low capacity. 10927 * Higher per-CPU capacity is considered better than balancing 10928 * average load. 10929 */ 10930 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 10931 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 10932 nr_running == 1) 10933 continue; 10934 10935 /* 10936 * Make sure we only pull tasks from a CPU of lower priority 10937 * when balancing between SMT siblings. 10938 * 10939 * If balancing between cores, let lower priority CPUs help 10940 * SMT cores with more than one busy sibling. 10941 */ 10942 if ((env->sd->flags & SD_ASYM_PACKING) && 10943 sched_use_asym_prio(env->sd, i) && 10944 sched_asym_prefer(i, env->dst_cpu) && 10945 nr_running == 1) 10946 continue; 10947 10948 switch (env->migration_type) { 10949 case migrate_load: 10950 /* 10951 * When comparing with load imbalance, use cpu_load() 10952 * which is not scaled with the CPU capacity. 10953 */ 10954 load = cpu_load(rq); 10955 10956 if (nr_running == 1 && load > env->imbalance && 10957 !check_cpu_capacity(rq, env->sd)) 10958 break; 10959 10960 /* 10961 * For the load comparisons with the other CPUs, 10962 * consider the cpu_load() scaled with the CPU 10963 * capacity, so that the load can be moved away 10964 * from the CPU that is potentially running at a 10965 * lower capacity. 10966 * 10967 * Thus we're looking for max(load_i / capacity_i), 10968 * crosswise multiplication to rid ourselves of the 10969 * division works out to: 10970 * load_i * capacity_j > load_j * capacity_i; 10971 * where j is our previous maximum. 10972 */ 10973 if (load * busiest_capacity > busiest_load * capacity) { 10974 busiest_load = load; 10975 busiest_capacity = capacity; 10976 busiest = rq; 10977 } 10978 break; 10979 10980 case migrate_util: 10981 util = cpu_util_cfs_boost(i); 10982 10983 /* 10984 * Don't try to pull utilization from a CPU with one 10985 * running task. Whatever its utilization, we will fail 10986 * detach the task. 10987 */ 10988 if (nr_running <= 1) 10989 continue; 10990 10991 if (busiest_util < util) { 10992 busiest_util = util; 10993 busiest = rq; 10994 } 10995 break; 10996 10997 case migrate_task: 10998 if (busiest_nr < nr_running) { 10999 busiest_nr = nr_running; 11000 busiest = rq; 11001 } 11002 break; 11003 11004 case migrate_misfit: 11005 /* 11006 * For ASYM_CPUCAPACITY domains with misfit tasks we 11007 * simply seek the "biggest" misfit task. 11008 */ 11009 if (rq->misfit_task_load > busiest_load) { 11010 busiest_load = rq->misfit_task_load; 11011 busiest = rq; 11012 } 11013 11014 break; 11015 11016 } 11017 } 11018 11019 return busiest; 11020 } 11021 11022 /* 11023 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11024 * so long as it is large enough. 11025 */ 11026 #define MAX_PINNED_INTERVAL 512 11027 11028 static inline bool 11029 asym_active_balance(struct lb_env *env) 11030 { 11031 /* 11032 * ASYM_PACKING needs to force migrate tasks from busy but lower 11033 * priority CPUs in order to pack all tasks in the highest priority 11034 * CPUs. When done between cores, do it only if the whole core if the 11035 * whole core is idle. 11036 * 11037 * If @env::src_cpu is an SMT core with busy siblings, let 11038 * the lower priority @env::dst_cpu help it. Do not follow 11039 * CPU priority. 11040 */ 11041 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 11042 sched_use_asym_prio(env->sd, env->dst_cpu) && 11043 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11044 !sched_use_asym_prio(env->sd, env->src_cpu)); 11045 } 11046 11047 static inline bool 11048 imbalanced_active_balance(struct lb_env *env) 11049 { 11050 struct sched_domain *sd = env->sd; 11051 11052 /* 11053 * The imbalanced case includes the case of pinned tasks preventing a fair 11054 * distribution of the load on the system but also the even distribution of the 11055 * threads on a system with spare capacity 11056 */ 11057 if ((env->migration_type == migrate_task) && 11058 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11059 return 1; 11060 11061 return 0; 11062 } 11063 11064 static int need_active_balance(struct lb_env *env) 11065 { 11066 struct sched_domain *sd = env->sd; 11067 11068 if (asym_active_balance(env)) 11069 return 1; 11070 11071 if (imbalanced_active_balance(env)) 11072 return 1; 11073 11074 /* 11075 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11076 * It's worth migrating the task if the src_cpu's capacity is reduced 11077 * because of other sched_class or IRQs if more capacity stays 11078 * available on dst_cpu. 11079 */ 11080 if ((env->idle != CPU_NOT_IDLE) && 11081 (env->src_rq->cfs.h_nr_running == 1)) { 11082 if ((check_cpu_capacity(env->src_rq, sd)) && 11083 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11084 return 1; 11085 } 11086 11087 if (env->migration_type == migrate_misfit) 11088 return 1; 11089 11090 return 0; 11091 } 11092 11093 static int active_load_balance_cpu_stop(void *data); 11094 11095 static int should_we_balance(struct lb_env *env) 11096 { 11097 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11098 struct sched_group *sg = env->sd->groups; 11099 int cpu, idle_smt = -1; 11100 11101 /* 11102 * Ensure the balancing environment is consistent; can happen 11103 * when the softirq triggers 'during' hotplug. 11104 */ 11105 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11106 return 0; 11107 11108 /* 11109 * In the newly idle case, we will allow all the CPUs 11110 * to do the newly idle load balance. 11111 * 11112 * However, we bail out if we already have tasks or a wakeup pending, 11113 * to optimize wakeup latency. 11114 */ 11115 if (env->idle == CPU_NEWLY_IDLE) { 11116 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11117 return 0; 11118 return 1; 11119 } 11120 11121 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11122 /* Try to find first idle CPU */ 11123 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11124 if (!idle_cpu(cpu)) 11125 continue; 11126 11127 /* 11128 * Don't balance to idle SMT in busy core right away when 11129 * balancing cores, but remember the first idle SMT CPU for 11130 * later consideration. Find CPU on an idle core first. 11131 */ 11132 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11133 if (idle_smt == -1) 11134 idle_smt = cpu; 11135 /* 11136 * If the core is not idle, and first SMT sibling which is 11137 * idle has been found, then its not needed to check other 11138 * SMT siblings for idleness: 11139 */ 11140 #ifdef CONFIG_SCHED_SMT 11141 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11142 #endif 11143 continue; 11144 } 11145 11146 /* 11147 * Are we the first idle core in a non-SMT domain or higher, 11148 * or the first idle CPU in a SMT domain? 11149 */ 11150 return cpu == env->dst_cpu; 11151 } 11152 11153 /* Are we the first idle CPU with busy siblings? */ 11154 if (idle_smt != -1) 11155 return idle_smt == env->dst_cpu; 11156 11157 /* Are we the first CPU of this group ? */ 11158 return group_balance_cpu(sg) == env->dst_cpu; 11159 } 11160 11161 /* 11162 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11163 * tasks if there is an imbalance. 11164 */ 11165 static int load_balance(int this_cpu, struct rq *this_rq, 11166 struct sched_domain *sd, enum cpu_idle_type idle, 11167 int *continue_balancing) 11168 { 11169 int ld_moved, cur_ld_moved, active_balance = 0; 11170 struct sched_domain *sd_parent = sd->parent; 11171 struct sched_group *group; 11172 struct rq *busiest; 11173 struct rq_flags rf; 11174 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11175 struct lb_env env = { 11176 .sd = sd, 11177 .dst_cpu = this_cpu, 11178 .dst_rq = this_rq, 11179 .dst_grpmask = group_balance_mask(sd->groups), 11180 .idle = idle, 11181 .loop_break = SCHED_NR_MIGRATE_BREAK, 11182 .cpus = cpus, 11183 .fbq_type = all, 11184 .tasks = LIST_HEAD_INIT(env.tasks), 11185 }; 11186 11187 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11188 11189 schedstat_inc(sd->lb_count[idle]); 11190 11191 redo: 11192 if (!should_we_balance(&env)) { 11193 *continue_balancing = 0; 11194 goto out_balanced; 11195 } 11196 11197 group = find_busiest_group(&env); 11198 if (!group) { 11199 schedstat_inc(sd->lb_nobusyg[idle]); 11200 goto out_balanced; 11201 } 11202 11203 busiest = find_busiest_queue(&env, group); 11204 if (!busiest) { 11205 schedstat_inc(sd->lb_nobusyq[idle]); 11206 goto out_balanced; 11207 } 11208 11209 WARN_ON_ONCE(busiest == env.dst_rq); 11210 11211 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 11212 11213 env.src_cpu = busiest->cpu; 11214 env.src_rq = busiest; 11215 11216 ld_moved = 0; 11217 /* Clear this flag as soon as we find a pullable task */ 11218 env.flags |= LBF_ALL_PINNED; 11219 if (busiest->nr_running > 1) { 11220 /* 11221 * Attempt to move tasks. If find_busiest_group has found 11222 * an imbalance but busiest->nr_running <= 1, the group is 11223 * still unbalanced. ld_moved simply stays zero, so it is 11224 * correctly treated as an imbalance. 11225 */ 11226 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11227 11228 more_balance: 11229 rq_lock_irqsave(busiest, &rf); 11230 update_rq_clock(busiest); 11231 11232 /* 11233 * cur_ld_moved - load moved in current iteration 11234 * ld_moved - cumulative load moved across iterations 11235 */ 11236 cur_ld_moved = detach_tasks(&env); 11237 11238 /* 11239 * We've detached some tasks from busiest_rq. Every 11240 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11241 * unlock busiest->lock, and we are able to be sure 11242 * that nobody can manipulate the tasks in parallel. 11243 * See task_rq_lock() family for the details. 11244 */ 11245 11246 rq_unlock(busiest, &rf); 11247 11248 if (cur_ld_moved) { 11249 attach_tasks(&env); 11250 ld_moved += cur_ld_moved; 11251 } 11252 11253 local_irq_restore(rf.flags); 11254 11255 if (env.flags & LBF_NEED_BREAK) { 11256 env.flags &= ~LBF_NEED_BREAK; 11257 goto more_balance; 11258 } 11259 11260 /* 11261 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11262 * us and move them to an alternate dst_cpu in our sched_group 11263 * where they can run. The upper limit on how many times we 11264 * iterate on same src_cpu is dependent on number of CPUs in our 11265 * sched_group. 11266 * 11267 * This changes load balance semantics a bit on who can move 11268 * load to a given_cpu. In addition to the given_cpu itself 11269 * (or a ilb_cpu acting on its behalf where given_cpu is 11270 * nohz-idle), we now have balance_cpu in a position to move 11271 * load to given_cpu. In rare situations, this may cause 11272 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11273 * _independently_ and at _same_ time to move some load to 11274 * given_cpu) causing excess load to be moved to given_cpu. 11275 * This however should not happen so much in practice and 11276 * moreover subsequent load balance cycles should correct the 11277 * excess load moved. 11278 */ 11279 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11280 11281 /* Prevent to re-select dst_cpu via env's CPUs */ 11282 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11283 11284 env.dst_rq = cpu_rq(env.new_dst_cpu); 11285 env.dst_cpu = env.new_dst_cpu; 11286 env.flags &= ~LBF_DST_PINNED; 11287 env.loop = 0; 11288 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11289 11290 /* 11291 * Go back to "more_balance" rather than "redo" since we 11292 * need to continue with same src_cpu. 11293 */ 11294 goto more_balance; 11295 } 11296 11297 /* 11298 * We failed to reach balance because of affinity. 11299 */ 11300 if (sd_parent) { 11301 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11302 11303 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11304 *group_imbalance = 1; 11305 } 11306 11307 /* All tasks on this runqueue were pinned by CPU affinity */ 11308 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11309 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11310 /* 11311 * Attempting to continue load balancing at the current 11312 * sched_domain level only makes sense if there are 11313 * active CPUs remaining as possible busiest CPUs to 11314 * pull load from which are not contained within the 11315 * destination group that is receiving any migrated 11316 * load. 11317 */ 11318 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11319 env.loop = 0; 11320 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11321 goto redo; 11322 } 11323 goto out_all_pinned; 11324 } 11325 } 11326 11327 if (!ld_moved) { 11328 schedstat_inc(sd->lb_failed[idle]); 11329 /* 11330 * Increment the failure counter only on periodic balance. 11331 * We do not want newidle balance, which can be very 11332 * frequent, pollute the failure counter causing 11333 * excessive cache_hot migrations and active balances. 11334 */ 11335 if (idle != CPU_NEWLY_IDLE) 11336 sd->nr_balance_failed++; 11337 11338 if (need_active_balance(&env)) { 11339 unsigned long flags; 11340 11341 raw_spin_rq_lock_irqsave(busiest, flags); 11342 11343 /* 11344 * Don't kick the active_load_balance_cpu_stop, 11345 * if the curr task on busiest CPU can't be 11346 * moved to this_cpu: 11347 */ 11348 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11349 raw_spin_rq_unlock_irqrestore(busiest, flags); 11350 goto out_one_pinned; 11351 } 11352 11353 /* Record that we found at least one task that could run on this_cpu */ 11354 env.flags &= ~LBF_ALL_PINNED; 11355 11356 /* 11357 * ->active_balance synchronizes accesses to 11358 * ->active_balance_work. Once set, it's cleared 11359 * only after active load balance is finished. 11360 */ 11361 if (!busiest->active_balance) { 11362 busiest->active_balance = 1; 11363 busiest->push_cpu = this_cpu; 11364 active_balance = 1; 11365 } 11366 11367 preempt_disable(); 11368 raw_spin_rq_unlock_irqrestore(busiest, flags); 11369 if (active_balance) { 11370 stop_one_cpu_nowait(cpu_of(busiest), 11371 active_load_balance_cpu_stop, busiest, 11372 &busiest->active_balance_work); 11373 } 11374 preempt_enable(); 11375 } 11376 } else { 11377 sd->nr_balance_failed = 0; 11378 } 11379 11380 if (likely(!active_balance) || need_active_balance(&env)) { 11381 /* We were unbalanced, so reset the balancing interval */ 11382 sd->balance_interval = sd->min_interval; 11383 } 11384 11385 goto out; 11386 11387 out_balanced: 11388 /* 11389 * We reach balance although we may have faced some affinity 11390 * constraints. Clear the imbalance flag only if other tasks got 11391 * a chance to move and fix the imbalance. 11392 */ 11393 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11394 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11395 11396 if (*group_imbalance) 11397 *group_imbalance = 0; 11398 } 11399 11400 out_all_pinned: 11401 /* 11402 * We reach balance because all tasks are pinned at this level so 11403 * we can't migrate them. Let the imbalance flag set so parent level 11404 * can try to migrate them. 11405 */ 11406 schedstat_inc(sd->lb_balanced[idle]); 11407 11408 sd->nr_balance_failed = 0; 11409 11410 out_one_pinned: 11411 ld_moved = 0; 11412 11413 /* 11414 * newidle_balance() disregards balance intervals, so we could 11415 * repeatedly reach this code, which would lead to balance_interval 11416 * skyrocketing in a short amount of time. Skip the balance_interval 11417 * increase logic to avoid that. 11418 */ 11419 if (env.idle == CPU_NEWLY_IDLE) 11420 goto out; 11421 11422 /* tune up the balancing interval */ 11423 if ((env.flags & LBF_ALL_PINNED && 11424 sd->balance_interval < MAX_PINNED_INTERVAL) || 11425 sd->balance_interval < sd->max_interval) 11426 sd->balance_interval *= 2; 11427 out: 11428 return ld_moved; 11429 } 11430 11431 static inline unsigned long 11432 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11433 { 11434 unsigned long interval = sd->balance_interval; 11435 11436 if (cpu_busy) 11437 interval *= sd->busy_factor; 11438 11439 /* scale ms to jiffies */ 11440 interval = msecs_to_jiffies(interval); 11441 11442 /* 11443 * Reduce likelihood of busy balancing at higher domains racing with 11444 * balancing at lower domains by preventing their balancing periods 11445 * from being multiples of each other. 11446 */ 11447 if (cpu_busy) 11448 interval -= 1; 11449 11450 interval = clamp(interval, 1UL, max_load_balance_interval); 11451 11452 return interval; 11453 } 11454 11455 static inline void 11456 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 11457 { 11458 unsigned long interval, next; 11459 11460 /* used by idle balance, so cpu_busy = 0 */ 11461 interval = get_sd_balance_interval(sd, 0); 11462 next = sd->last_balance + interval; 11463 11464 if (time_after(*next_balance, next)) 11465 *next_balance = next; 11466 } 11467 11468 /* 11469 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 11470 * running tasks off the busiest CPU onto idle CPUs. It requires at 11471 * least 1 task to be running on each physical CPU where possible, and 11472 * avoids physical / logical imbalances. 11473 */ 11474 static int active_load_balance_cpu_stop(void *data) 11475 { 11476 struct rq *busiest_rq = data; 11477 int busiest_cpu = cpu_of(busiest_rq); 11478 int target_cpu = busiest_rq->push_cpu; 11479 struct rq *target_rq = cpu_rq(target_cpu); 11480 struct sched_domain *sd; 11481 struct task_struct *p = NULL; 11482 struct rq_flags rf; 11483 11484 rq_lock_irq(busiest_rq, &rf); 11485 /* 11486 * Between queueing the stop-work and running it is a hole in which 11487 * CPUs can become inactive. We should not move tasks from or to 11488 * inactive CPUs. 11489 */ 11490 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 11491 goto out_unlock; 11492 11493 /* Make sure the requested CPU hasn't gone down in the meantime: */ 11494 if (unlikely(busiest_cpu != smp_processor_id() || 11495 !busiest_rq->active_balance)) 11496 goto out_unlock; 11497 11498 /* Is there any task to move? */ 11499 if (busiest_rq->nr_running <= 1) 11500 goto out_unlock; 11501 11502 /* 11503 * This condition is "impossible", if it occurs 11504 * we need to fix it. Originally reported by 11505 * Bjorn Helgaas on a 128-CPU setup. 11506 */ 11507 WARN_ON_ONCE(busiest_rq == target_rq); 11508 11509 /* Search for an sd spanning us and the target CPU. */ 11510 rcu_read_lock(); 11511 for_each_domain(target_cpu, sd) { 11512 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 11513 break; 11514 } 11515 11516 if (likely(sd)) { 11517 struct lb_env env = { 11518 .sd = sd, 11519 .dst_cpu = target_cpu, 11520 .dst_rq = target_rq, 11521 .src_cpu = busiest_rq->cpu, 11522 .src_rq = busiest_rq, 11523 .idle = CPU_IDLE, 11524 .flags = LBF_ACTIVE_LB, 11525 }; 11526 11527 schedstat_inc(sd->alb_count); 11528 update_rq_clock(busiest_rq); 11529 11530 p = detach_one_task(&env); 11531 if (p) { 11532 schedstat_inc(sd->alb_pushed); 11533 /* Active balancing done, reset the failure counter. */ 11534 sd->nr_balance_failed = 0; 11535 } else { 11536 schedstat_inc(sd->alb_failed); 11537 } 11538 } 11539 rcu_read_unlock(); 11540 out_unlock: 11541 busiest_rq->active_balance = 0; 11542 rq_unlock(busiest_rq, &rf); 11543 11544 if (p) 11545 attach_one_task(target_rq, p); 11546 11547 local_irq_enable(); 11548 11549 return 0; 11550 } 11551 11552 static DEFINE_SPINLOCK(balancing); 11553 11554 /* 11555 * Scale the max load_balance interval with the number of CPUs in the system. 11556 * This trades load-balance latency on larger machines for less cross talk. 11557 */ 11558 void update_max_interval(void) 11559 { 11560 max_load_balance_interval = HZ*num_online_cpus()/10; 11561 } 11562 11563 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 11564 { 11565 if (cost > sd->max_newidle_lb_cost) { 11566 /* 11567 * Track max cost of a domain to make sure to not delay the 11568 * next wakeup on the CPU. 11569 */ 11570 sd->max_newidle_lb_cost = cost; 11571 sd->last_decay_max_lb_cost = jiffies; 11572 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 11573 /* 11574 * Decay the newidle max times by ~1% per second to ensure that 11575 * it is not outdated and the current max cost is actually 11576 * shorter. 11577 */ 11578 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 11579 sd->last_decay_max_lb_cost = jiffies; 11580 11581 return true; 11582 } 11583 11584 return false; 11585 } 11586 11587 /* 11588 * It checks each scheduling domain to see if it is due to be balanced, 11589 * and initiates a balancing operation if so. 11590 * 11591 * Balancing parameters are set up in init_sched_domains. 11592 */ 11593 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 11594 { 11595 int continue_balancing = 1; 11596 int cpu = rq->cpu; 11597 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11598 unsigned long interval; 11599 struct sched_domain *sd; 11600 /* Earliest time when we have to do rebalance again */ 11601 unsigned long next_balance = jiffies + 60*HZ; 11602 int update_next_balance = 0; 11603 int need_serialize, need_decay = 0; 11604 u64 max_cost = 0; 11605 11606 rcu_read_lock(); 11607 for_each_domain(cpu, sd) { 11608 /* 11609 * Decay the newidle max times here because this is a regular 11610 * visit to all the domains. 11611 */ 11612 need_decay = update_newidle_cost(sd, 0); 11613 max_cost += sd->max_newidle_lb_cost; 11614 11615 /* 11616 * Stop the load balance at this level. There is another 11617 * CPU in our sched group which is doing load balancing more 11618 * actively. 11619 */ 11620 if (!continue_balancing) { 11621 if (need_decay) 11622 continue; 11623 break; 11624 } 11625 11626 interval = get_sd_balance_interval(sd, busy); 11627 11628 need_serialize = sd->flags & SD_SERIALIZE; 11629 if (need_serialize) { 11630 if (!spin_trylock(&balancing)) 11631 goto out; 11632 } 11633 11634 if (time_after_eq(jiffies, sd->last_balance + interval)) { 11635 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 11636 /* 11637 * The LBF_DST_PINNED logic could have changed 11638 * env->dst_cpu, so we can't know our idle 11639 * state even if we migrated tasks. Update it. 11640 */ 11641 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 11642 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11643 } 11644 sd->last_balance = jiffies; 11645 interval = get_sd_balance_interval(sd, busy); 11646 } 11647 if (need_serialize) 11648 spin_unlock(&balancing); 11649 out: 11650 if (time_after(next_balance, sd->last_balance + interval)) { 11651 next_balance = sd->last_balance + interval; 11652 update_next_balance = 1; 11653 } 11654 } 11655 if (need_decay) { 11656 /* 11657 * Ensure the rq-wide value also decays but keep it at a 11658 * reasonable floor to avoid funnies with rq->avg_idle. 11659 */ 11660 rq->max_idle_balance_cost = 11661 max((u64)sysctl_sched_migration_cost, max_cost); 11662 } 11663 rcu_read_unlock(); 11664 11665 /* 11666 * next_balance will be updated only when there is a need. 11667 * When the cpu is attached to null domain for ex, it will not be 11668 * updated. 11669 */ 11670 if (likely(update_next_balance)) 11671 rq->next_balance = next_balance; 11672 11673 } 11674 11675 static inline int on_null_domain(struct rq *rq) 11676 { 11677 return unlikely(!rcu_dereference_sched(rq->sd)); 11678 } 11679 11680 #ifdef CONFIG_NO_HZ_COMMON 11681 /* 11682 * idle load balancing details 11683 * - When one of the busy CPUs notice that there may be an idle rebalancing 11684 * needed, they will kick the idle load balancer, which then does idle 11685 * load balancing for all the idle CPUs. 11686 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set 11687 * anywhere yet. 11688 */ 11689 11690 static inline int find_new_ilb(void) 11691 { 11692 int ilb; 11693 const struct cpumask *hk_mask; 11694 11695 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 11696 11697 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) { 11698 11699 if (ilb == smp_processor_id()) 11700 continue; 11701 11702 if (idle_cpu(ilb)) 11703 return ilb; 11704 } 11705 11706 return nr_cpu_ids; 11707 } 11708 11709 /* 11710 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 11711 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 11712 */ 11713 static void kick_ilb(unsigned int flags) 11714 { 11715 int ilb_cpu; 11716 11717 /* 11718 * Increase nohz.next_balance only when if full ilb is triggered but 11719 * not if we only update stats. 11720 */ 11721 if (flags & NOHZ_BALANCE_KICK) 11722 nohz.next_balance = jiffies+1; 11723 11724 ilb_cpu = find_new_ilb(); 11725 11726 if (ilb_cpu >= nr_cpu_ids) 11727 return; 11728 11729 /* 11730 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 11731 * the first flag owns it; cleared by nohz_csd_func(). 11732 */ 11733 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 11734 if (flags & NOHZ_KICK_MASK) 11735 return; 11736 11737 /* 11738 * This way we generate an IPI on the target CPU which 11739 * is idle. And the softirq performing nohz idle load balance 11740 * will be run before returning from the IPI. 11741 */ 11742 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 11743 } 11744 11745 /* 11746 * Current decision point for kicking the idle load balancer in the presence 11747 * of idle CPUs in the system. 11748 */ 11749 static void nohz_balancer_kick(struct rq *rq) 11750 { 11751 unsigned long now = jiffies; 11752 struct sched_domain_shared *sds; 11753 struct sched_domain *sd; 11754 int nr_busy, i, cpu = rq->cpu; 11755 unsigned int flags = 0; 11756 11757 if (unlikely(rq->idle_balance)) 11758 return; 11759 11760 /* 11761 * We may be recently in ticked or tickless idle mode. At the first 11762 * busy tick after returning from idle, we will update the busy stats. 11763 */ 11764 nohz_balance_exit_idle(rq); 11765 11766 /* 11767 * None are in tickless mode and hence no need for NOHZ idle load 11768 * balancing. 11769 */ 11770 if (likely(!atomic_read(&nohz.nr_cpus))) 11771 return; 11772 11773 if (READ_ONCE(nohz.has_blocked) && 11774 time_after(now, READ_ONCE(nohz.next_blocked))) 11775 flags = NOHZ_STATS_KICK; 11776 11777 if (time_before(now, nohz.next_balance)) 11778 goto out; 11779 11780 if (rq->nr_running >= 2) { 11781 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11782 goto out; 11783 } 11784 11785 rcu_read_lock(); 11786 11787 sd = rcu_dereference(rq->sd); 11788 if (sd) { 11789 /* 11790 * If there's a CFS task and the current CPU has reduced 11791 * capacity; kick the ILB to see if there's a better CPU to run 11792 * on. 11793 */ 11794 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 11795 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11796 goto unlock; 11797 } 11798 } 11799 11800 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 11801 if (sd) { 11802 /* 11803 * When ASYM_PACKING; see if there's a more preferred CPU 11804 * currently idle; in which case, kick the ILB to move tasks 11805 * around. 11806 * 11807 * When balancing betwen cores, all the SMT siblings of the 11808 * preferred CPU must be idle. 11809 */ 11810 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 11811 if (sched_use_asym_prio(sd, i) && 11812 sched_asym_prefer(i, cpu)) { 11813 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11814 goto unlock; 11815 } 11816 } 11817 } 11818 11819 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 11820 if (sd) { 11821 /* 11822 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 11823 * to run the misfit task on. 11824 */ 11825 if (check_misfit_status(rq, sd)) { 11826 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11827 goto unlock; 11828 } 11829 11830 /* 11831 * For asymmetric systems, we do not want to nicely balance 11832 * cache use, instead we want to embrace asymmetry and only 11833 * ensure tasks have enough CPU capacity. 11834 * 11835 * Skip the LLC logic because it's not relevant in that case. 11836 */ 11837 goto unlock; 11838 } 11839 11840 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 11841 if (sds) { 11842 /* 11843 * If there is an imbalance between LLC domains (IOW we could 11844 * increase the overall cache use), we need some less-loaded LLC 11845 * domain to pull some load. Likewise, we may need to spread 11846 * load within the current LLC domain (e.g. packed SMT cores but 11847 * other CPUs are idle). We can't really know from here how busy 11848 * the others are - so just get a nohz balance going if it looks 11849 * like this LLC domain has tasks we could move. 11850 */ 11851 nr_busy = atomic_read(&sds->nr_busy_cpus); 11852 if (nr_busy > 1) { 11853 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11854 goto unlock; 11855 } 11856 } 11857 unlock: 11858 rcu_read_unlock(); 11859 out: 11860 if (READ_ONCE(nohz.needs_update)) 11861 flags |= NOHZ_NEXT_KICK; 11862 11863 if (flags) 11864 kick_ilb(flags); 11865 } 11866 11867 static void set_cpu_sd_state_busy(int cpu) 11868 { 11869 struct sched_domain *sd; 11870 11871 rcu_read_lock(); 11872 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11873 11874 if (!sd || !sd->nohz_idle) 11875 goto unlock; 11876 sd->nohz_idle = 0; 11877 11878 atomic_inc(&sd->shared->nr_busy_cpus); 11879 unlock: 11880 rcu_read_unlock(); 11881 } 11882 11883 void nohz_balance_exit_idle(struct rq *rq) 11884 { 11885 SCHED_WARN_ON(rq != this_rq()); 11886 11887 if (likely(!rq->nohz_tick_stopped)) 11888 return; 11889 11890 rq->nohz_tick_stopped = 0; 11891 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 11892 atomic_dec(&nohz.nr_cpus); 11893 11894 set_cpu_sd_state_busy(rq->cpu); 11895 } 11896 11897 static void set_cpu_sd_state_idle(int cpu) 11898 { 11899 struct sched_domain *sd; 11900 11901 rcu_read_lock(); 11902 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11903 11904 if (!sd || sd->nohz_idle) 11905 goto unlock; 11906 sd->nohz_idle = 1; 11907 11908 atomic_dec(&sd->shared->nr_busy_cpus); 11909 unlock: 11910 rcu_read_unlock(); 11911 } 11912 11913 /* 11914 * This routine will record that the CPU is going idle with tick stopped. 11915 * This info will be used in performing idle load balancing in the future. 11916 */ 11917 void nohz_balance_enter_idle(int cpu) 11918 { 11919 struct rq *rq = cpu_rq(cpu); 11920 11921 SCHED_WARN_ON(cpu != smp_processor_id()); 11922 11923 /* If this CPU is going down, then nothing needs to be done: */ 11924 if (!cpu_active(cpu)) 11925 return; 11926 11927 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 11928 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 11929 return; 11930 11931 /* 11932 * Can be set safely without rq->lock held 11933 * If a clear happens, it will have evaluated last additions because 11934 * rq->lock is held during the check and the clear 11935 */ 11936 rq->has_blocked_load = 1; 11937 11938 /* 11939 * The tick is still stopped but load could have been added in the 11940 * meantime. We set the nohz.has_blocked flag to trig a check of the 11941 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 11942 * of nohz.has_blocked can only happen after checking the new load 11943 */ 11944 if (rq->nohz_tick_stopped) 11945 goto out; 11946 11947 /* If we're a completely isolated CPU, we don't play: */ 11948 if (on_null_domain(rq)) 11949 return; 11950 11951 rq->nohz_tick_stopped = 1; 11952 11953 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 11954 atomic_inc(&nohz.nr_cpus); 11955 11956 /* 11957 * Ensures that if nohz_idle_balance() fails to observe our 11958 * @idle_cpus_mask store, it must observe the @has_blocked 11959 * and @needs_update stores. 11960 */ 11961 smp_mb__after_atomic(); 11962 11963 set_cpu_sd_state_idle(cpu); 11964 11965 WRITE_ONCE(nohz.needs_update, 1); 11966 out: 11967 /* 11968 * Each time a cpu enter idle, we assume that it has blocked load and 11969 * enable the periodic update of the load of idle cpus 11970 */ 11971 WRITE_ONCE(nohz.has_blocked, 1); 11972 } 11973 11974 static bool update_nohz_stats(struct rq *rq) 11975 { 11976 unsigned int cpu = rq->cpu; 11977 11978 if (!rq->has_blocked_load) 11979 return false; 11980 11981 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 11982 return false; 11983 11984 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 11985 return true; 11986 11987 update_blocked_averages(cpu); 11988 11989 return rq->has_blocked_load; 11990 } 11991 11992 /* 11993 * Internal function that runs load balance for all idle cpus. The load balance 11994 * can be a simple update of blocked load or a complete load balance with 11995 * tasks movement depending of flags. 11996 */ 11997 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 11998 { 11999 /* Earliest time when we have to do rebalance again */ 12000 unsigned long now = jiffies; 12001 unsigned long next_balance = now + 60*HZ; 12002 bool has_blocked_load = false; 12003 int update_next_balance = 0; 12004 int this_cpu = this_rq->cpu; 12005 int balance_cpu; 12006 struct rq *rq; 12007 12008 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12009 12010 /* 12011 * We assume there will be no idle load after this update and clear 12012 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12013 * set the has_blocked flag and trigger another update of idle load. 12014 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12015 * setting the flag, we are sure to not clear the state and not 12016 * check the load of an idle cpu. 12017 * 12018 * Same applies to idle_cpus_mask vs needs_update. 12019 */ 12020 if (flags & NOHZ_STATS_KICK) 12021 WRITE_ONCE(nohz.has_blocked, 0); 12022 if (flags & NOHZ_NEXT_KICK) 12023 WRITE_ONCE(nohz.needs_update, 0); 12024 12025 /* 12026 * Ensures that if we miss the CPU, we must see the has_blocked 12027 * store from nohz_balance_enter_idle(). 12028 */ 12029 smp_mb(); 12030 12031 /* 12032 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12033 * chance for other idle cpu to pull load. 12034 */ 12035 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12036 if (!idle_cpu(balance_cpu)) 12037 continue; 12038 12039 /* 12040 * If this CPU gets work to do, stop the load balancing 12041 * work being done for other CPUs. Next load 12042 * balancing owner will pick it up. 12043 */ 12044 if (need_resched()) { 12045 if (flags & NOHZ_STATS_KICK) 12046 has_blocked_load = true; 12047 if (flags & NOHZ_NEXT_KICK) 12048 WRITE_ONCE(nohz.needs_update, 1); 12049 goto abort; 12050 } 12051 12052 rq = cpu_rq(balance_cpu); 12053 12054 if (flags & NOHZ_STATS_KICK) 12055 has_blocked_load |= update_nohz_stats(rq); 12056 12057 /* 12058 * If time for next balance is due, 12059 * do the balance. 12060 */ 12061 if (time_after_eq(jiffies, rq->next_balance)) { 12062 struct rq_flags rf; 12063 12064 rq_lock_irqsave(rq, &rf); 12065 update_rq_clock(rq); 12066 rq_unlock_irqrestore(rq, &rf); 12067 12068 if (flags & NOHZ_BALANCE_KICK) 12069 rebalance_domains(rq, CPU_IDLE); 12070 } 12071 12072 if (time_after(next_balance, rq->next_balance)) { 12073 next_balance = rq->next_balance; 12074 update_next_balance = 1; 12075 } 12076 } 12077 12078 /* 12079 * next_balance will be updated only when there is a need. 12080 * When the CPU is attached to null domain for ex, it will not be 12081 * updated. 12082 */ 12083 if (likely(update_next_balance)) 12084 nohz.next_balance = next_balance; 12085 12086 if (flags & NOHZ_STATS_KICK) 12087 WRITE_ONCE(nohz.next_blocked, 12088 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12089 12090 abort: 12091 /* There is still blocked load, enable periodic update */ 12092 if (has_blocked_load) 12093 WRITE_ONCE(nohz.has_blocked, 1); 12094 } 12095 12096 /* 12097 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12098 * rebalancing for all the cpus for whom scheduler ticks are stopped. 12099 */ 12100 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12101 { 12102 unsigned int flags = this_rq->nohz_idle_balance; 12103 12104 if (!flags) 12105 return false; 12106 12107 this_rq->nohz_idle_balance = 0; 12108 12109 if (idle != CPU_IDLE) 12110 return false; 12111 12112 _nohz_idle_balance(this_rq, flags); 12113 12114 return true; 12115 } 12116 12117 /* 12118 * Check if we need to run the ILB for updating blocked load before entering 12119 * idle state. 12120 */ 12121 void nohz_run_idle_balance(int cpu) 12122 { 12123 unsigned int flags; 12124 12125 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12126 12127 /* 12128 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12129 * (ie NOHZ_STATS_KICK set) and will do the same. 12130 */ 12131 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12132 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12133 } 12134 12135 static void nohz_newidle_balance(struct rq *this_rq) 12136 { 12137 int this_cpu = this_rq->cpu; 12138 12139 /* 12140 * This CPU doesn't want to be disturbed by scheduler 12141 * housekeeping 12142 */ 12143 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 12144 return; 12145 12146 /* Will wake up very soon. No time for doing anything else*/ 12147 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12148 return; 12149 12150 /* Don't need to update blocked load of idle CPUs*/ 12151 if (!READ_ONCE(nohz.has_blocked) || 12152 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12153 return; 12154 12155 /* 12156 * Set the need to trigger ILB in order to update blocked load 12157 * before entering idle state. 12158 */ 12159 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12160 } 12161 12162 #else /* !CONFIG_NO_HZ_COMMON */ 12163 static inline void nohz_balancer_kick(struct rq *rq) { } 12164 12165 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12166 { 12167 return false; 12168 } 12169 12170 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12171 #endif /* CONFIG_NO_HZ_COMMON */ 12172 12173 /* 12174 * newidle_balance is called by schedule() if this_cpu is about to become 12175 * idle. Attempts to pull tasks from other CPUs. 12176 * 12177 * Returns: 12178 * < 0 - we released the lock and there are !fair tasks present 12179 * 0 - failed, no new tasks 12180 * > 0 - success, new (fair) tasks present 12181 */ 12182 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 12183 { 12184 unsigned long next_balance = jiffies + HZ; 12185 int this_cpu = this_rq->cpu; 12186 u64 t0, t1, curr_cost = 0; 12187 struct sched_domain *sd; 12188 int pulled_task = 0; 12189 12190 update_misfit_status(NULL, this_rq); 12191 12192 /* 12193 * There is a task waiting to run. No need to search for one. 12194 * Return 0; the task will be enqueued when switching to idle. 12195 */ 12196 if (this_rq->ttwu_pending) 12197 return 0; 12198 12199 /* 12200 * We must set idle_stamp _before_ calling idle_balance(), such that we 12201 * measure the duration of idle_balance() as idle time. 12202 */ 12203 this_rq->idle_stamp = rq_clock(this_rq); 12204 12205 /* 12206 * Do not pull tasks towards !active CPUs... 12207 */ 12208 if (!cpu_active(this_cpu)) 12209 return 0; 12210 12211 /* 12212 * This is OK, because current is on_cpu, which avoids it being picked 12213 * for load-balance and preemption/IRQs are still disabled avoiding 12214 * further scheduler activity on it and we're being very careful to 12215 * re-start the picking loop. 12216 */ 12217 rq_unpin_lock(this_rq, rf); 12218 12219 rcu_read_lock(); 12220 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12221 12222 if (!READ_ONCE(this_rq->rd->overload) || 12223 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12224 12225 if (sd) 12226 update_next_balance(sd, &next_balance); 12227 rcu_read_unlock(); 12228 12229 goto out; 12230 } 12231 rcu_read_unlock(); 12232 12233 raw_spin_rq_unlock(this_rq); 12234 12235 t0 = sched_clock_cpu(this_cpu); 12236 update_blocked_averages(this_cpu); 12237 12238 rcu_read_lock(); 12239 for_each_domain(this_cpu, sd) { 12240 int continue_balancing = 1; 12241 u64 domain_cost; 12242 12243 update_next_balance(sd, &next_balance); 12244 12245 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12246 break; 12247 12248 if (sd->flags & SD_BALANCE_NEWIDLE) { 12249 12250 pulled_task = load_balance(this_cpu, this_rq, 12251 sd, CPU_NEWLY_IDLE, 12252 &continue_balancing); 12253 12254 t1 = sched_clock_cpu(this_cpu); 12255 domain_cost = t1 - t0; 12256 update_newidle_cost(sd, domain_cost); 12257 12258 curr_cost += domain_cost; 12259 t0 = t1; 12260 } 12261 12262 /* 12263 * Stop searching for tasks to pull if there are 12264 * now runnable tasks on this rq. 12265 */ 12266 if (pulled_task || this_rq->nr_running > 0 || 12267 this_rq->ttwu_pending) 12268 break; 12269 } 12270 rcu_read_unlock(); 12271 12272 raw_spin_rq_lock(this_rq); 12273 12274 if (curr_cost > this_rq->max_idle_balance_cost) 12275 this_rq->max_idle_balance_cost = curr_cost; 12276 12277 /* 12278 * While browsing the domains, we released the rq lock, a task could 12279 * have been enqueued in the meantime. Since we're not going idle, 12280 * pretend we pulled a task. 12281 */ 12282 if (this_rq->cfs.h_nr_running && !pulled_task) 12283 pulled_task = 1; 12284 12285 /* Is there a task of a high priority class? */ 12286 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 12287 pulled_task = -1; 12288 12289 out: 12290 /* Move the next balance forward */ 12291 if (time_after(this_rq->next_balance, next_balance)) 12292 this_rq->next_balance = next_balance; 12293 12294 if (pulled_task) 12295 this_rq->idle_stamp = 0; 12296 else 12297 nohz_newidle_balance(this_rq); 12298 12299 rq_repin_lock(this_rq, rf); 12300 12301 return pulled_task; 12302 } 12303 12304 /* 12305 * run_rebalance_domains is triggered when needed from the scheduler tick. 12306 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 12307 */ 12308 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 12309 { 12310 struct rq *this_rq = this_rq(); 12311 enum cpu_idle_type idle = this_rq->idle_balance ? 12312 CPU_IDLE : CPU_NOT_IDLE; 12313 12314 /* 12315 * If this CPU has a pending nohz_balance_kick, then do the 12316 * balancing on behalf of the other idle CPUs whose ticks are 12317 * stopped. Do nohz_idle_balance *before* rebalance_domains to 12318 * give the idle CPUs a chance to load balance. Else we may 12319 * load balance only within the local sched_domain hierarchy 12320 * and abort nohz_idle_balance altogether if we pull some load. 12321 */ 12322 if (nohz_idle_balance(this_rq, idle)) 12323 return; 12324 12325 /* normal load balance */ 12326 update_blocked_averages(this_rq->cpu); 12327 rebalance_domains(this_rq, idle); 12328 } 12329 12330 /* 12331 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12332 */ 12333 void trigger_load_balance(struct rq *rq) 12334 { 12335 /* 12336 * Don't need to rebalance while attached to NULL domain or 12337 * runqueue CPU is not active 12338 */ 12339 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12340 return; 12341 12342 if (time_after_eq(jiffies, rq->next_balance)) 12343 raise_softirq(SCHED_SOFTIRQ); 12344 12345 nohz_balancer_kick(rq); 12346 } 12347 12348 static void rq_online_fair(struct rq *rq) 12349 { 12350 update_sysctl(); 12351 12352 update_runtime_enabled(rq); 12353 } 12354 12355 static void rq_offline_fair(struct rq *rq) 12356 { 12357 update_sysctl(); 12358 12359 /* Ensure any throttled groups are reachable by pick_next_task */ 12360 unthrottle_offline_cfs_rqs(rq); 12361 } 12362 12363 #endif /* CONFIG_SMP */ 12364 12365 #ifdef CONFIG_SCHED_CORE 12366 static inline bool 12367 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12368 { 12369 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12370 u64 slice = se->slice; 12371 12372 return (rtime * min_nr_tasks > slice); 12373 } 12374 12375 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12376 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12377 { 12378 if (!sched_core_enabled(rq)) 12379 return; 12380 12381 /* 12382 * If runqueue has only one task which used up its slice and 12383 * if the sibling is forced idle, then trigger schedule to 12384 * give forced idle task a chance. 12385 * 12386 * sched_slice() considers only this active rq and it gets the 12387 * whole slice. But during force idle, we have siblings acting 12388 * like a single runqueue and hence we need to consider runnable 12389 * tasks on this CPU and the forced idle CPU. Ideally, we should 12390 * go through the forced idle rq, but that would be a perf hit. 12391 * We can assume that the forced idle CPU has at least 12392 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12393 * if we need to give up the CPU. 12394 */ 12395 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 12396 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12397 resched_curr(rq); 12398 } 12399 12400 /* 12401 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12402 */ 12403 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12404 bool forceidle) 12405 { 12406 for_each_sched_entity(se) { 12407 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12408 12409 if (forceidle) { 12410 if (cfs_rq->forceidle_seq == fi_seq) 12411 break; 12412 cfs_rq->forceidle_seq = fi_seq; 12413 } 12414 12415 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 12416 } 12417 } 12418 12419 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 12420 { 12421 struct sched_entity *se = &p->se; 12422 12423 if (p->sched_class != &fair_sched_class) 12424 return; 12425 12426 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 12427 } 12428 12429 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 12430 bool in_fi) 12431 { 12432 struct rq *rq = task_rq(a); 12433 const struct sched_entity *sea = &a->se; 12434 const struct sched_entity *seb = &b->se; 12435 struct cfs_rq *cfs_rqa; 12436 struct cfs_rq *cfs_rqb; 12437 s64 delta; 12438 12439 SCHED_WARN_ON(task_rq(b)->core != rq->core); 12440 12441 #ifdef CONFIG_FAIR_GROUP_SCHED 12442 /* 12443 * Find an se in the hierarchy for tasks a and b, such that the se's 12444 * are immediate siblings. 12445 */ 12446 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 12447 int sea_depth = sea->depth; 12448 int seb_depth = seb->depth; 12449 12450 if (sea_depth >= seb_depth) 12451 sea = parent_entity(sea); 12452 if (sea_depth <= seb_depth) 12453 seb = parent_entity(seb); 12454 } 12455 12456 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 12457 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 12458 12459 cfs_rqa = sea->cfs_rq; 12460 cfs_rqb = seb->cfs_rq; 12461 #else 12462 cfs_rqa = &task_rq(a)->cfs; 12463 cfs_rqb = &task_rq(b)->cfs; 12464 #endif 12465 12466 /* 12467 * Find delta after normalizing se's vruntime with its cfs_rq's 12468 * min_vruntime_fi, which would have been updated in prior calls 12469 * to se_fi_update(). 12470 */ 12471 delta = (s64)(sea->vruntime - seb->vruntime) + 12472 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 12473 12474 return delta > 0; 12475 } 12476 12477 static int task_is_throttled_fair(struct task_struct *p, int cpu) 12478 { 12479 struct cfs_rq *cfs_rq; 12480 12481 #ifdef CONFIG_FAIR_GROUP_SCHED 12482 cfs_rq = task_group(p)->cfs_rq[cpu]; 12483 #else 12484 cfs_rq = &cpu_rq(cpu)->cfs; 12485 #endif 12486 return throttled_hierarchy(cfs_rq); 12487 } 12488 #else 12489 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 12490 #endif 12491 12492 /* 12493 * scheduler tick hitting a task of our scheduling class. 12494 * 12495 * NOTE: This function can be called remotely by the tick offload that 12496 * goes along full dynticks. Therefore no local assumption can be made 12497 * and everything must be accessed through the @rq and @curr passed in 12498 * parameters. 12499 */ 12500 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 12501 { 12502 struct cfs_rq *cfs_rq; 12503 struct sched_entity *se = &curr->se; 12504 12505 for_each_sched_entity(se) { 12506 cfs_rq = cfs_rq_of(se); 12507 entity_tick(cfs_rq, se, queued); 12508 } 12509 12510 if (static_branch_unlikely(&sched_numa_balancing)) 12511 task_tick_numa(rq, curr); 12512 12513 update_misfit_status(curr, rq); 12514 check_update_overutilized_status(task_rq(curr)); 12515 12516 task_tick_core(rq, curr); 12517 } 12518 12519 /* 12520 * called on fork with the child task as argument from the parent's context 12521 * - child not yet on the tasklist 12522 * - preemption disabled 12523 */ 12524 static void task_fork_fair(struct task_struct *p) 12525 { 12526 struct sched_entity *se = &p->se, *curr; 12527 struct cfs_rq *cfs_rq; 12528 struct rq *rq = this_rq(); 12529 struct rq_flags rf; 12530 12531 rq_lock(rq, &rf); 12532 update_rq_clock(rq); 12533 12534 cfs_rq = task_cfs_rq(current); 12535 curr = cfs_rq->curr; 12536 if (curr) 12537 update_curr(cfs_rq); 12538 place_entity(cfs_rq, se, ENQUEUE_INITIAL); 12539 rq_unlock(rq, &rf); 12540 } 12541 12542 /* 12543 * Priority of the task has changed. Check to see if we preempt 12544 * the current task. 12545 */ 12546 static void 12547 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 12548 { 12549 if (!task_on_rq_queued(p)) 12550 return; 12551 12552 if (rq->cfs.nr_running == 1) 12553 return; 12554 12555 /* 12556 * Reschedule if we are currently running on this runqueue and 12557 * our priority decreased, or if we are not currently running on 12558 * this runqueue and our priority is higher than the current's 12559 */ 12560 if (task_current(rq, p)) { 12561 if (p->prio > oldprio) 12562 resched_curr(rq); 12563 } else 12564 check_preempt_curr(rq, p, 0); 12565 } 12566 12567 #ifdef CONFIG_FAIR_GROUP_SCHED 12568 /* 12569 * Propagate the changes of the sched_entity across the tg tree to make it 12570 * visible to the root 12571 */ 12572 static void propagate_entity_cfs_rq(struct sched_entity *se) 12573 { 12574 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12575 12576 if (cfs_rq_throttled(cfs_rq)) 12577 return; 12578 12579 if (!throttled_hierarchy(cfs_rq)) 12580 list_add_leaf_cfs_rq(cfs_rq); 12581 12582 /* Start to propagate at parent */ 12583 se = se->parent; 12584 12585 for_each_sched_entity(se) { 12586 cfs_rq = cfs_rq_of(se); 12587 12588 update_load_avg(cfs_rq, se, UPDATE_TG); 12589 12590 if (cfs_rq_throttled(cfs_rq)) 12591 break; 12592 12593 if (!throttled_hierarchy(cfs_rq)) 12594 list_add_leaf_cfs_rq(cfs_rq); 12595 } 12596 } 12597 #else 12598 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 12599 #endif 12600 12601 static void detach_entity_cfs_rq(struct sched_entity *se) 12602 { 12603 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12604 12605 #ifdef CONFIG_SMP 12606 /* 12607 * In case the task sched_avg hasn't been attached: 12608 * - A forked task which hasn't been woken up by wake_up_new_task(). 12609 * - A task which has been woken up by try_to_wake_up() but is 12610 * waiting for actually being woken up by sched_ttwu_pending(). 12611 */ 12612 if (!se->avg.last_update_time) 12613 return; 12614 #endif 12615 12616 /* Catch up with the cfs_rq and remove our load when we leave */ 12617 update_load_avg(cfs_rq, se, 0); 12618 detach_entity_load_avg(cfs_rq, se); 12619 update_tg_load_avg(cfs_rq); 12620 propagate_entity_cfs_rq(se); 12621 } 12622 12623 static void attach_entity_cfs_rq(struct sched_entity *se) 12624 { 12625 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12626 12627 /* Synchronize entity with its cfs_rq */ 12628 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 12629 attach_entity_load_avg(cfs_rq, se); 12630 update_tg_load_avg(cfs_rq); 12631 propagate_entity_cfs_rq(se); 12632 } 12633 12634 static void detach_task_cfs_rq(struct task_struct *p) 12635 { 12636 struct sched_entity *se = &p->se; 12637 12638 detach_entity_cfs_rq(se); 12639 } 12640 12641 static void attach_task_cfs_rq(struct task_struct *p) 12642 { 12643 struct sched_entity *se = &p->se; 12644 12645 attach_entity_cfs_rq(se); 12646 } 12647 12648 static void switched_from_fair(struct rq *rq, struct task_struct *p) 12649 { 12650 detach_task_cfs_rq(p); 12651 } 12652 12653 static void switched_to_fair(struct rq *rq, struct task_struct *p) 12654 { 12655 attach_task_cfs_rq(p); 12656 12657 if (task_on_rq_queued(p)) { 12658 /* 12659 * We were most likely switched from sched_rt, so 12660 * kick off the schedule if running, otherwise just see 12661 * if we can still preempt the current task. 12662 */ 12663 if (task_current(rq, p)) 12664 resched_curr(rq); 12665 else 12666 check_preempt_curr(rq, p, 0); 12667 } 12668 } 12669 12670 /* Account for a task changing its policy or group. 12671 * 12672 * This routine is mostly called to set cfs_rq->curr field when a task 12673 * migrates between groups/classes. 12674 */ 12675 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 12676 { 12677 struct sched_entity *se = &p->se; 12678 12679 #ifdef CONFIG_SMP 12680 if (task_on_rq_queued(p)) { 12681 /* 12682 * Move the next running task to the front of the list, so our 12683 * cfs_tasks list becomes MRU one. 12684 */ 12685 list_move(&se->group_node, &rq->cfs_tasks); 12686 } 12687 #endif 12688 12689 for_each_sched_entity(se) { 12690 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12691 12692 set_next_entity(cfs_rq, se); 12693 /* ensure bandwidth has been allocated on our new cfs_rq */ 12694 account_cfs_rq_runtime(cfs_rq, 0); 12695 } 12696 } 12697 12698 void init_cfs_rq(struct cfs_rq *cfs_rq) 12699 { 12700 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 12701 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20))); 12702 #ifdef CONFIG_SMP 12703 raw_spin_lock_init(&cfs_rq->removed.lock); 12704 #endif 12705 } 12706 12707 #ifdef CONFIG_FAIR_GROUP_SCHED 12708 static void task_change_group_fair(struct task_struct *p) 12709 { 12710 /* 12711 * We couldn't detach or attach a forked task which 12712 * hasn't been woken up by wake_up_new_task(). 12713 */ 12714 if (READ_ONCE(p->__state) == TASK_NEW) 12715 return; 12716 12717 detach_task_cfs_rq(p); 12718 12719 #ifdef CONFIG_SMP 12720 /* Tell se's cfs_rq has been changed -- migrated */ 12721 p->se.avg.last_update_time = 0; 12722 #endif 12723 set_task_rq(p, task_cpu(p)); 12724 attach_task_cfs_rq(p); 12725 } 12726 12727 void free_fair_sched_group(struct task_group *tg) 12728 { 12729 int i; 12730 12731 for_each_possible_cpu(i) { 12732 if (tg->cfs_rq) 12733 kfree(tg->cfs_rq[i]); 12734 if (tg->se) 12735 kfree(tg->se[i]); 12736 } 12737 12738 kfree(tg->cfs_rq); 12739 kfree(tg->se); 12740 } 12741 12742 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12743 { 12744 struct sched_entity *se; 12745 struct cfs_rq *cfs_rq; 12746 int i; 12747 12748 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 12749 if (!tg->cfs_rq) 12750 goto err; 12751 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 12752 if (!tg->se) 12753 goto err; 12754 12755 tg->shares = NICE_0_LOAD; 12756 12757 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 12758 12759 for_each_possible_cpu(i) { 12760 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 12761 GFP_KERNEL, cpu_to_node(i)); 12762 if (!cfs_rq) 12763 goto err; 12764 12765 se = kzalloc_node(sizeof(struct sched_entity_stats), 12766 GFP_KERNEL, cpu_to_node(i)); 12767 if (!se) 12768 goto err_free_rq; 12769 12770 init_cfs_rq(cfs_rq); 12771 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 12772 init_entity_runnable_average(se); 12773 } 12774 12775 return 1; 12776 12777 err_free_rq: 12778 kfree(cfs_rq); 12779 err: 12780 return 0; 12781 } 12782 12783 void online_fair_sched_group(struct task_group *tg) 12784 { 12785 struct sched_entity *se; 12786 struct rq_flags rf; 12787 struct rq *rq; 12788 int i; 12789 12790 for_each_possible_cpu(i) { 12791 rq = cpu_rq(i); 12792 se = tg->se[i]; 12793 rq_lock_irq(rq, &rf); 12794 update_rq_clock(rq); 12795 attach_entity_cfs_rq(se); 12796 sync_throttle(tg, i); 12797 rq_unlock_irq(rq, &rf); 12798 } 12799 } 12800 12801 void unregister_fair_sched_group(struct task_group *tg) 12802 { 12803 unsigned long flags; 12804 struct rq *rq; 12805 int cpu; 12806 12807 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12808 12809 for_each_possible_cpu(cpu) { 12810 if (tg->se[cpu]) 12811 remove_entity_load_avg(tg->se[cpu]); 12812 12813 /* 12814 * Only empty task groups can be destroyed; so we can speculatively 12815 * check on_list without danger of it being re-added. 12816 */ 12817 if (!tg->cfs_rq[cpu]->on_list) 12818 continue; 12819 12820 rq = cpu_rq(cpu); 12821 12822 raw_spin_rq_lock_irqsave(rq, flags); 12823 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 12824 raw_spin_rq_unlock_irqrestore(rq, flags); 12825 } 12826 } 12827 12828 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 12829 struct sched_entity *se, int cpu, 12830 struct sched_entity *parent) 12831 { 12832 struct rq *rq = cpu_rq(cpu); 12833 12834 cfs_rq->tg = tg; 12835 cfs_rq->rq = rq; 12836 init_cfs_rq_runtime(cfs_rq); 12837 12838 tg->cfs_rq[cpu] = cfs_rq; 12839 tg->se[cpu] = se; 12840 12841 /* se could be NULL for root_task_group */ 12842 if (!se) 12843 return; 12844 12845 if (!parent) { 12846 se->cfs_rq = &rq->cfs; 12847 se->depth = 0; 12848 } else { 12849 se->cfs_rq = parent->my_q; 12850 se->depth = parent->depth + 1; 12851 } 12852 12853 se->my_q = cfs_rq; 12854 /* guarantee group entities always have weight */ 12855 update_load_set(&se->load, NICE_0_LOAD); 12856 se->parent = parent; 12857 } 12858 12859 static DEFINE_MUTEX(shares_mutex); 12860 12861 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 12862 { 12863 int i; 12864 12865 lockdep_assert_held(&shares_mutex); 12866 12867 /* 12868 * We can't change the weight of the root cgroup. 12869 */ 12870 if (!tg->se[0]) 12871 return -EINVAL; 12872 12873 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 12874 12875 if (tg->shares == shares) 12876 return 0; 12877 12878 tg->shares = shares; 12879 for_each_possible_cpu(i) { 12880 struct rq *rq = cpu_rq(i); 12881 struct sched_entity *se = tg->se[i]; 12882 struct rq_flags rf; 12883 12884 /* Propagate contribution to hierarchy */ 12885 rq_lock_irqsave(rq, &rf); 12886 update_rq_clock(rq); 12887 for_each_sched_entity(se) { 12888 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 12889 update_cfs_group(se); 12890 } 12891 rq_unlock_irqrestore(rq, &rf); 12892 } 12893 12894 return 0; 12895 } 12896 12897 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 12898 { 12899 int ret; 12900 12901 mutex_lock(&shares_mutex); 12902 if (tg_is_idle(tg)) 12903 ret = -EINVAL; 12904 else 12905 ret = __sched_group_set_shares(tg, shares); 12906 mutex_unlock(&shares_mutex); 12907 12908 return ret; 12909 } 12910 12911 int sched_group_set_idle(struct task_group *tg, long idle) 12912 { 12913 int i; 12914 12915 if (tg == &root_task_group) 12916 return -EINVAL; 12917 12918 if (idle < 0 || idle > 1) 12919 return -EINVAL; 12920 12921 mutex_lock(&shares_mutex); 12922 12923 if (tg->idle == idle) { 12924 mutex_unlock(&shares_mutex); 12925 return 0; 12926 } 12927 12928 tg->idle = idle; 12929 12930 for_each_possible_cpu(i) { 12931 struct rq *rq = cpu_rq(i); 12932 struct sched_entity *se = tg->se[i]; 12933 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 12934 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 12935 long idle_task_delta; 12936 struct rq_flags rf; 12937 12938 rq_lock_irqsave(rq, &rf); 12939 12940 grp_cfs_rq->idle = idle; 12941 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 12942 goto next_cpu; 12943 12944 if (se->on_rq) { 12945 parent_cfs_rq = cfs_rq_of(se); 12946 if (cfs_rq_is_idle(grp_cfs_rq)) 12947 parent_cfs_rq->idle_nr_running++; 12948 else 12949 parent_cfs_rq->idle_nr_running--; 12950 } 12951 12952 idle_task_delta = grp_cfs_rq->h_nr_running - 12953 grp_cfs_rq->idle_h_nr_running; 12954 if (!cfs_rq_is_idle(grp_cfs_rq)) 12955 idle_task_delta *= -1; 12956 12957 for_each_sched_entity(se) { 12958 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12959 12960 if (!se->on_rq) 12961 break; 12962 12963 cfs_rq->idle_h_nr_running += idle_task_delta; 12964 12965 /* Already accounted at parent level and above. */ 12966 if (cfs_rq_is_idle(cfs_rq)) 12967 break; 12968 } 12969 12970 next_cpu: 12971 rq_unlock_irqrestore(rq, &rf); 12972 } 12973 12974 /* Idle groups have minimum weight. */ 12975 if (tg_is_idle(tg)) 12976 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 12977 else 12978 __sched_group_set_shares(tg, NICE_0_LOAD); 12979 12980 mutex_unlock(&shares_mutex); 12981 return 0; 12982 } 12983 12984 #else /* CONFIG_FAIR_GROUP_SCHED */ 12985 12986 void free_fair_sched_group(struct task_group *tg) { } 12987 12988 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12989 { 12990 return 1; 12991 } 12992 12993 void online_fair_sched_group(struct task_group *tg) { } 12994 12995 void unregister_fair_sched_group(struct task_group *tg) { } 12996 12997 #endif /* CONFIG_FAIR_GROUP_SCHED */ 12998 12999 13000 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13001 { 13002 struct sched_entity *se = &task->se; 13003 unsigned int rr_interval = 0; 13004 13005 /* 13006 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13007 * idle runqueue: 13008 */ 13009 if (rq->cfs.load.weight) 13010 rr_interval = NS_TO_JIFFIES(se->slice); 13011 13012 return rr_interval; 13013 } 13014 13015 /* 13016 * All the scheduling class methods: 13017 */ 13018 DEFINE_SCHED_CLASS(fair) = { 13019 13020 .enqueue_task = enqueue_task_fair, 13021 .dequeue_task = dequeue_task_fair, 13022 .yield_task = yield_task_fair, 13023 .yield_to_task = yield_to_task_fair, 13024 13025 .check_preempt_curr = check_preempt_wakeup, 13026 13027 .pick_next_task = __pick_next_task_fair, 13028 .put_prev_task = put_prev_task_fair, 13029 .set_next_task = set_next_task_fair, 13030 13031 #ifdef CONFIG_SMP 13032 .balance = balance_fair, 13033 .pick_task = pick_task_fair, 13034 .select_task_rq = select_task_rq_fair, 13035 .migrate_task_rq = migrate_task_rq_fair, 13036 13037 .rq_online = rq_online_fair, 13038 .rq_offline = rq_offline_fair, 13039 13040 .task_dead = task_dead_fair, 13041 .set_cpus_allowed = set_cpus_allowed_common, 13042 #endif 13043 13044 .task_tick = task_tick_fair, 13045 .task_fork = task_fork_fair, 13046 13047 .prio_changed = prio_changed_fair, 13048 .switched_from = switched_from_fair, 13049 .switched_to = switched_to_fair, 13050 13051 .get_rr_interval = get_rr_interval_fair, 13052 13053 .update_curr = update_curr_fair, 13054 13055 #ifdef CONFIG_FAIR_GROUP_SCHED 13056 .task_change_group = task_change_group_fair, 13057 #endif 13058 13059 #ifdef CONFIG_SCHED_CORE 13060 .task_is_throttled = task_is_throttled_fair, 13061 #endif 13062 13063 #ifdef CONFIG_UCLAMP_TASK 13064 .uclamp_enabled = 1, 13065 #endif 13066 }; 13067 13068 #ifdef CONFIG_SCHED_DEBUG 13069 void print_cfs_stats(struct seq_file *m, int cpu) 13070 { 13071 struct cfs_rq *cfs_rq, *pos; 13072 13073 rcu_read_lock(); 13074 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13075 print_cfs_rq(m, cpu, cfs_rq); 13076 rcu_read_unlock(); 13077 } 13078 13079 #ifdef CONFIG_NUMA_BALANCING 13080 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13081 { 13082 int node; 13083 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13084 struct numa_group *ng; 13085 13086 rcu_read_lock(); 13087 ng = rcu_dereference(p->numa_group); 13088 for_each_online_node(node) { 13089 if (p->numa_faults) { 13090 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13091 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13092 } 13093 if (ng) { 13094 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13095 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13096 } 13097 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13098 } 13099 rcu_read_unlock(); 13100 } 13101 #endif /* CONFIG_NUMA_BALANCING */ 13102 #endif /* CONFIG_SCHED_DEBUG */ 13103 13104 __init void init_sched_fair_class(void) 13105 { 13106 #ifdef CONFIG_SMP 13107 int i; 13108 13109 for_each_possible_cpu(i) { 13110 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13111 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13112 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13113 GFP_KERNEL, cpu_to_node(i)); 13114 13115 #ifdef CONFIG_CFS_BANDWIDTH 13116 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13117 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13118 #endif 13119 } 13120 13121 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 13122 13123 #ifdef CONFIG_NO_HZ_COMMON 13124 nohz.next_balance = jiffies; 13125 nohz.next_blocked = jiffies; 13126 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13127 #endif 13128 #endif /* SMP */ 13129 13130 } 13131