1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51
52 #include <asm/switch_to.h>
53
54 #include <linux/sched/cond_resched.h>
55
56 #include "sched.h"
57 #include "stats.h"
58 #include "autogroup.h"
59
60 /*
61 * The initial- and re-scaling of tunables is configurable
62 *
63 * Options are:
64 *
65 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
66 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
67 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
68 *
69 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
70 */
71 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
72
73 /*
74 * Minimal preemption granularity for CPU-bound tasks:
75 *
76 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
77 */
78 unsigned int sysctl_sched_base_slice = 750000ULL;
79 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL;
80
81 /*
82 * After fork, child runs first. If set to 0 (default) then
83 * parent will (try to) run first.
84 */
85 unsigned int sysctl_sched_child_runs_first __read_mostly;
86
87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
88
89 int sched_thermal_decay_shift;
setup_sched_thermal_decay_shift(char * str)90 static int __init setup_sched_thermal_decay_shift(char *str)
91 {
92 int _shift = 0;
93
94 if (kstrtoint(str, 0, &_shift))
95 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
96
97 sched_thermal_decay_shift = clamp(_shift, 0, 10);
98 return 1;
99 }
100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
101
102 #ifdef CONFIG_SMP
103 /*
104 * For asym packing, by default the lower numbered CPU has higher priority.
105 */
arch_asym_cpu_priority(int cpu)106 int __weak arch_asym_cpu_priority(int cpu)
107 {
108 return -cpu;
109 }
110
111 /*
112 * The margin used when comparing utilization with CPU capacity.
113 *
114 * (default: ~20%)
115 */
116 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
117
118 /*
119 * The margin used when comparing CPU capacities.
120 * is 'cap1' noticeably greater than 'cap2'
121 *
122 * (default: ~5%)
123 */
124 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
125 #endif
126
127 #ifdef CONFIG_CFS_BANDWIDTH
128 /*
129 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
130 * each time a cfs_rq requests quota.
131 *
132 * Note: in the case that the slice exceeds the runtime remaining (either due
133 * to consumption or the quota being specified to be smaller than the slice)
134 * we will always only issue the remaining available time.
135 *
136 * (default: 5 msec, units: microseconds)
137 */
138 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
139 #endif
140
141 #ifdef CONFIG_NUMA_BALANCING
142 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
143 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
144 #endif
145
146 #ifdef CONFIG_SYSCTL
147 static struct ctl_table sched_fair_sysctls[] = {
148 {
149 .procname = "sched_child_runs_first",
150 .data = &sysctl_sched_child_runs_first,
151 .maxlen = sizeof(unsigned int),
152 .mode = 0644,
153 .proc_handler = proc_dointvec,
154 },
155 #ifdef CONFIG_CFS_BANDWIDTH
156 {
157 .procname = "sched_cfs_bandwidth_slice_us",
158 .data = &sysctl_sched_cfs_bandwidth_slice,
159 .maxlen = sizeof(unsigned int),
160 .mode = 0644,
161 .proc_handler = proc_dointvec_minmax,
162 .extra1 = SYSCTL_ONE,
163 },
164 #endif
165 #ifdef CONFIG_NUMA_BALANCING
166 {
167 .procname = "numa_balancing_promote_rate_limit_MBps",
168 .data = &sysctl_numa_balancing_promote_rate_limit,
169 .maxlen = sizeof(unsigned int),
170 .mode = 0644,
171 .proc_handler = proc_dointvec_minmax,
172 .extra1 = SYSCTL_ZERO,
173 },
174 #endif /* CONFIG_NUMA_BALANCING */
175 {}
176 };
177
sched_fair_sysctl_init(void)178 static int __init sched_fair_sysctl_init(void)
179 {
180 register_sysctl_init("kernel", sched_fair_sysctls);
181 return 0;
182 }
183 late_initcall(sched_fair_sysctl_init);
184 #endif
185
update_load_add(struct load_weight * lw,unsigned long inc)186 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
187 {
188 lw->weight += inc;
189 lw->inv_weight = 0;
190 }
191
update_load_sub(struct load_weight * lw,unsigned long dec)192 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
193 {
194 lw->weight -= dec;
195 lw->inv_weight = 0;
196 }
197
update_load_set(struct load_weight * lw,unsigned long w)198 static inline void update_load_set(struct load_weight *lw, unsigned long w)
199 {
200 lw->weight = w;
201 lw->inv_weight = 0;
202 }
203
204 /*
205 * Increase the granularity value when there are more CPUs,
206 * because with more CPUs the 'effective latency' as visible
207 * to users decreases. But the relationship is not linear,
208 * so pick a second-best guess by going with the log2 of the
209 * number of CPUs.
210 *
211 * This idea comes from the SD scheduler of Con Kolivas:
212 */
get_update_sysctl_factor(void)213 static unsigned int get_update_sysctl_factor(void)
214 {
215 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
216 unsigned int factor;
217
218 switch (sysctl_sched_tunable_scaling) {
219 case SCHED_TUNABLESCALING_NONE:
220 factor = 1;
221 break;
222 case SCHED_TUNABLESCALING_LINEAR:
223 factor = cpus;
224 break;
225 case SCHED_TUNABLESCALING_LOG:
226 default:
227 factor = 1 + ilog2(cpus);
228 break;
229 }
230
231 return factor;
232 }
233
update_sysctl(void)234 static void update_sysctl(void)
235 {
236 unsigned int factor = get_update_sysctl_factor();
237
238 #define SET_SYSCTL(name) \
239 (sysctl_##name = (factor) * normalized_sysctl_##name)
240 SET_SYSCTL(sched_base_slice);
241 #undef SET_SYSCTL
242 }
243
sched_init_granularity(void)244 void __init sched_init_granularity(void)
245 {
246 update_sysctl();
247 }
248
249 #define WMULT_CONST (~0U)
250 #define WMULT_SHIFT 32
251
__update_inv_weight(struct load_weight * lw)252 static void __update_inv_weight(struct load_weight *lw)
253 {
254 unsigned long w;
255
256 if (likely(lw->inv_weight))
257 return;
258
259 w = scale_load_down(lw->weight);
260
261 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
262 lw->inv_weight = 1;
263 else if (unlikely(!w))
264 lw->inv_weight = WMULT_CONST;
265 else
266 lw->inv_weight = WMULT_CONST / w;
267 }
268
269 /*
270 * delta_exec * weight / lw.weight
271 * OR
272 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
273 *
274 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
275 * we're guaranteed shift stays positive because inv_weight is guaranteed to
276 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
277 *
278 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
279 * weight/lw.weight <= 1, and therefore our shift will also be positive.
280 */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)281 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
282 {
283 u64 fact = scale_load_down(weight);
284 u32 fact_hi = (u32)(fact >> 32);
285 int shift = WMULT_SHIFT;
286 int fs;
287
288 __update_inv_weight(lw);
289
290 if (unlikely(fact_hi)) {
291 fs = fls(fact_hi);
292 shift -= fs;
293 fact >>= fs;
294 }
295
296 fact = mul_u32_u32(fact, lw->inv_weight);
297
298 fact_hi = (u32)(fact >> 32);
299 if (fact_hi) {
300 fs = fls(fact_hi);
301 shift -= fs;
302 fact >>= fs;
303 }
304
305 return mul_u64_u32_shr(delta_exec, fact, shift);
306 }
307
308 /*
309 * delta /= w
310 */
calc_delta_fair(u64 delta,struct sched_entity * se)311 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
312 {
313 if (unlikely(se->load.weight != NICE_0_LOAD))
314 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
315
316 return delta;
317 }
318
319 const struct sched_class fair_sched_class;
320
321 /**************************************************************
322 * CFS operations on generic schedulable entities:
323 */
324
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326
327 /* Walk up scheduling entities hierarchy */
328 #define for_each_sched_entity(se) \
329 for (; se; se = se->parent)
330
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)331 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
332 {
333 struct rq *rq = rq_of(cfs_rq);
334 int cpu = cpu_of(rq);
335
336 if (cfs_rq->on_list)
337 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
338
339 cfs_rq->on_list = 1;
340
341 /*
342 * Ensure we either appear before our parent (if already
343 * enqueued) or force our parent to appear after us when it is
344 * enqueued. The fact that we always enqueue bottom-up
345 * reduces this to two cases and a special case for the root
346 * cfs_rq. Furthermore, it also means that we will always reset
347 * tmp_alone_branch either when the branch is connected
348 * to a tree or when we reach the top of the tree
349 */
350 if (cfs_rq->tg->parent &&
351 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
352 /*
353 * If parent is already on the list, we add the child
354 * just before. Thanks to circular linked property of
355 * the list, this means to put the child at the tail
356 * of the list that starts by parent.
357 */
358 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
359 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
360 /*
361 * The branch is now connected to its tree so we can
362 * reset tmp_alone_branch to the beginning of the
363 * list.
364 */
365 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
366 return true;
367 }
368
369 if (!cfs_rq->tg->parent) {
370 /*
371 * cfs rq without parent should be put
372 * at the tail of the list.
373 */
374 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
375 &rq->leaf_cfs_rq_list);
376 /*
377 * We have reach the top of a tree so we can reset
378 * tmp_alone_branch to the beginning of the list.
379 */
380 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
381 return true;
382 }
383
384 /*
385 * The parent has not already been added so we want to
386 * make sure that it will be put after us.
387 * tmp_alone_branch points to the begin of the branch
388 * where we will add parent.
389 */
390 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
391 /*
392 * update tmp_alone_branch to points to the new begin
393 * of the branch
394 */
395 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
396 return false;
397 }
398
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)399 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
400 {
401 if (cfs_rq->on_list) {
402 struct rq *rq = rq_of(cfs_rq);
403
404 /*
405 * With cfs_rq being unthrottled/throttled during an enqueue,
406 * it can happen the tmp_alone_branch points the a leaf that
407 * we finally want to del. In this case, tmp_alone_branch moves
408 * to the prev element but it will point to rq->leaf_cfs_rq_list
409 * at the end of the enqueue.
410 */
411 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
412 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
413
414 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
415 cfs_rq->on_list = 0;
416 }
417 }
418
assert_list_leaf_cfs_rq(struct rq * rq)419 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
420 {
421 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
422 }
423
424 /* Iterate thr' all leaf cfs_rq's on a runqueue */
425 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
426 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
427 leaf_cfs_rq_list)
428
429 /* Do the two (enqueued) entities belong to the same group ? */
430 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)431 is_same_group(struct sched_entity *se, struct sched_entity *pse)
432 {
433 if (se->cfs_rq == pse->cfs_rq)
434 return se->cfs_rq;
435
436 return NULL;
437 }
438
parent_entity(const struct sched_entity * se)439 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
440 {
441 return se->parent;
442 }
443
444 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)445 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
446 {
447 int se_depth, pse_depth;
448
449 /*
450 * preemption test can be made between sibling entities who are in the
451 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
452 * both tasks until we find their ancestors who are siblings of common
453 * parent.
454 */
455
456 /* First walk up until both entities are at same depth */
457 se_depth = (*se)->depth;
458 pse_depth = (*pse)->depth;
459
460 while (se_depth > pse_depth) {
461 se_depth--;
462 *se = parent_entity(*se);
463 }
464
465 while (pse_depth > se_depth) {
466 pse_depth--;
467 *pse = parent_entity(*pse);
468 }
469
470 while (!is_same_group(*se, *pse)) {
471 *se = parent_entity(*se);
472 *pse = parent_entity(*pse);
473 }
474 }
475
tg_is_idle(struct task_group * tg)476 static int tg_is_idle(struct task_group *tg)
477 {
478 return tg->idle > 0;
479 }
480
cfs_rq_is_idle(struct cfs_rq * cfs_rq)481 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
482 {
483 return cfs_rq->idle > 0;
484 }
485
se_is_idle(struct sched_entity * se)486 static int se_is_idle(struct sched_entity *se)
487 {
488 if (entity_is_task(se))
489 return task_has_idle_policy(task_of(se));
490 return cfs_rq_is_idle(group_cfs_rq(se));
491 }
492
493 #else /* !CONFIG_FAIR_GROUP_SCHED */
494
495 #define for_each_sched_entity(se) \
496 for (; se; se = NULL)
497
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)498 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
499 {
500 return true;
501 }
502
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)503 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
504 {
505 }
506
assert_list_leaf_cfs_rq(struct rq * rq)507 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
508 {
509 }
510
511 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
512 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
513
parent_entity(struct sched_entity * se)514 static inline struct sched_entity *parent_entity(struct sched_entity *se)
515 {
516 return NULL;
517 }
518
519 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)520 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
521 {
522 }
523
tg_is_idle(struct task_group * tg)524 static inline int tg_is_idle(struct task_group *tg)
525 {
526 return 0;
527 }
528
cfs_rq_is_idle(struct cfs_rq * cfs_rq)529 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
530 {
531 return 0;
532 }
533
se_is_idle(struct sched_entity * se)534 static int se_is_idle(struct sched_entity *se)
535 {
536 return task_has_idle_policy(task_of(se));
537 }
538
539 #endif /* CONFIG_FAIR_GROUP_SCHED */
540
541 static __always_inline
542 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
543
544 /**************************************************************
545 * Scheduling class tree data structure manipulation methods:
546 */
547
max_vruntime(u64 max_vruntime,u64 vruntime)548 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
549 {
550 s64 delta = (s64)(vruntime - max_vruntime);
551 if (delta > 0)
552 max_vruntime = vruntime;
553
554 return max_vruntime;
555 }
556
min_vruntime(u64 min_vruntime,u64 vruntime)557 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
558 {
559 s64 delta = (s64)(vruntime - min_vruntime);
560 if (delta < 0)
561 min_vruntime = vruntime;
562
563 return min_vruntime;
564 }
565
entity_before(const struct sched_entity * a,const struct sched_entity * b)566 static inline bool entity_before(const struct sched_entity *a,
567 const struct sched_entity *b)
568 {
569 return (s64)(a->vruntime - b->vruntime) < 0;
570 }
571
entity_key(struct cfs_rq * cfs_rq,struct sched_entity * se)572 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
573 {
574 return (s64)(se->vruntime - cfs_rq->min_vruntime);
575 }
576
577 #define __node_2_se(node) \
578 rb_entry((node), struct sched_entity, run_node)
579
580 /*
581 * Compute virtual time from the per-task service numbers:
582 *
583 * Fair schedulers conserve lag:
584 *
585 * \Sum lag_i = 0
586 *
587 * Where lag_i is given by:
588 *
589 * lag_i = S - s_i = w_i * (V - v_i)
590 *
591 * Where S is the ideal service time and V is it's virtual time counterpart.
592 * Therefore:
593 *
594 * \Sum lag_i = 0
595 * \Sum w_i * (V - v_i) = 0
596 * \Sum w_i * V - w_i * v_i = 0
597 *
598 * From which we can solve an expression for V in v_i (which we have in
599 * se->vruntime):
600 *
601 * \Sum v_i * w_i \Sum v_i * w_i
602 * V = -------------- = --------------
603 * \Sum w_i W
604 *
605 * Specifically, this is the weighted average of all entity virtual runtimes.
606 *
607 * [[ NOTE: this is only equal to the ideal scheduler under the condition
608 * that join/leave operations happen at lag_i = 0, otherwise the
609 * virtual time has non-continguous motion equivalent to:
610 *
611 * V +-= lag_i / W
612 *
613 * Also see the comment in place_entity() that deals with this. ]]
614 *
615 * However, since v_i is u64, and the multiplcation could easily overflow
616 * transform it into a relative form that uses smaller quantities:
617 *
618 * Substitute: v_i == (v_i - v0) + v0
619 *
620 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i
621 * V = ---------------------------- = --------------------- + v0
622 * W W
623 *
624 * Which we track using:
625 *
626 * v0 := cfs_rq->min_vruntime
627 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
628 * \Sum w_i := cfs_rq->avg_load
629 *
630 * Since min_vruntime is a monotonic increasing variable that closely tracks
631 * the per-task service, these deltas: (v_i - v), will be in the order of the
632 * maximal (virtual) lag induced in the system due to quantisation.
633 *
634 * Also, we use scale_load_down() to reduce the size.
635 *
636 * As measured, the max (key * weight) value was ~44 bits for a kernel build.
637 */
638 static void
avg_vruntime_add(struct cfs_rq * cfs_rq,struct sched_entity * se)639 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
640 {
641 unsigned long weight = scale_load_down(se->load.weight);
642 s64 key = entity_key(cfs_rq, se);
643
644 cfs_rq->avg_vruntime += key * weight;
645 cfs_rq->avg_load += weight;
646 }
647
648 static void
avg_vruntime_sub(struct cfs_rq * cfs_rq,struct sched_entity * se)649 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
650 {
651 unsigned long weight = scale_load_down(se->load.weight);
652 s64 key = entity_key(cfs_rq, se);
653
654 cfs_rq->avg_vruntime -= key * weight;
655 cfs_rq->avg_load -= weight;
656 }
657
658 static inline
avg_vruntime_update(struct cfs_rq * cfs_rq,s64 delta)659 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
660 {
661 /*
662 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
663 */
664 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
665 }
666
667 /*
668 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
669 * For this to be so, the result of this function must have a left bias.
670 */
avg_vruntime(struct cfs_rq * cfs_rq)671 u64 avg_vruntime(struct cfs_rq *cfs_rq)
672 {
673 struct sched_entity *curr = cfs_rq->curr;
674 s64 avg = cfs_rq->avg_vruntime;
675 long load = cfs_rq->avg_load;
676
677 if (curr && curr->on_rq) {
678 unsigned long weight = scale_load_down(curr->load.weight);
679
680 avg += entity_key(cfs_rq, curr) * weight;
681 load += weight;
682 }
683
684 if (load) {
685 /* sign flips effective floor / ceil */
686 if (avg < 0)
687 avg -= (load - 1);
688 avg = div_s64(avg, load);
689 }
690
691 return cfs_rq->min_vruntime + avg;
692 }
693
694 /*
695 * lag_i = S - s_i = w_i * (V - v_i)
696 *
697 * However, since V is approximated by the weighted average of all entities it
698 * is possible -- by addition/removal/reweight to the tree -- to move V around
699 * and end up with a larger lag than we started with.
700 *
701 * Limit this to either double the slice length with a minimum of TICK_NSEC
702 * since that is the timing granularity.
703 *
704 * EEVDF gives the following limit for a steady state system:
705 *
706 * -r_max < lag < max(r_max, q)
707 *
708 * XXX could add max_slice to the augmented data to track this.
709 */
entity_lag(u64 avruntime,struct sched_entity * se)710 static s64 entity_lag(u64 avruntime, struct sched_entity *se)
711 {
712 s64 vlag, limit;
713
714 vlag = avruntime - se->vruntime;
715 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
716
717 return clamp(vlag, -limit, limit);
718 }
719
update_entity_lag(struct cfs_rq * cfs_rq,struct sched_entity * se)720 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
721 {
722 SCHED_WARN_ON(!se->on_rq);
723
724 se->vlag = entity_lag(avg_vruntime(cfs_rq), se);
725 }
726
727 /*
728 * Entity is eligible once it received less service than it ought to have,
729 * eg. lag >= 0.
730 *
731 * lag_i = S - s_i = w_i*(V - v_i)
732 *
733 * lag_i >= 0 -> V >= v_i
734 *
735 * \Sum (v_i - v)*w_i
736 * V = ------------------ + v
737 * \Sum w_i
738 *
739 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
740 *
741 * Note: using 'avg_vruntime() > se->vruntime' is inacurate due
742 * to the loss in precision caused by the division.
743 */
entity_eligible(struct cfs_rq * cfs_rq,struct sched_entity * se)744 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
745 {
746 struct sched_entity *curr = cfs_rq->curr;
747 s64 avg = cfs_rq->avg_vruntime;
748 long load = cfs_rq->avg_load;
749
750 if (curr && curr->on_rq) {
751 unsigned long weight = scale_load_down(curr->load.weight);
752
753 avg += entity_key(cfs_rq, curr) * weight;
754 load += weight;
755 }
756
757 return avg >= entity_key(cfs_rq, se) * load;
758 }
759
__update_min_vruntime(struct cfs_rq * cfs_rq,u64 vruntime)760 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
761 {
762 u64 min_vruntime = cfs_rq->min_vruntime;
763 /*
764 * open coded max_vruntime() to allow updating avg_vruntime
765 */
766 s64 delta = (s64)(vruntime - min_vruntime);
767 if (delta > 0) {
768 avg_vruntime_update(cfs_rq, delta);
769 min_vruntime = vruntime;
770 }
771 return min_vruntime;
772 }
773
update_min_vruntime(struct cfs_rq * cfs_rq)774 static void update_min_vruntime(struct cfs_rq *cfs_rq)
775 {
776 struct sched_entity *se = __pick_first_entity(cfs_rq);
777 struct sched_entity *curr = cfs_rq->curr;
778
779 u64 vruntime = cfs_rq->min_vruntime;
780
781 if (curr) {
782 if (curr->on_rq)
783 vruntime = curr->vruntime;
784 else
785 curr = NULL;
786 }
787
788 if (se) {
789 if (!curr)
790 vruntime = se->vruntime;
791 else
792 vruntime = min_vruntime(vruntime, se->vruntime);
793 }
794
795 /* ensure we never gain time by being placed backwards. */
796 u64_u32_store(cfs_rq->min_vruntime,
797 __update_min_vruntime(cfs_rq, vruntime));
798 }
799
__entity_less(struct rb_node * a,const struct rb_node * b)800 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
801 {
802 return entity_before(__node_2_se(a), __node_2_se(b));
803 }
804
805 #define deadline_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
806
__update_min_deadline(struct sched_entity * se,struct rb_node * node)807 static inline void __update_min_deadline(struct sched_entity *se, struct rb_node *node)
808 {
809 if (node) {
810 struct sched_entity *rse = __node_2_se(node);
811 if (deadline_gt(min_deadline, se, rse))
812 se->min_deadline = rse->min_deadline;
813 }
814 }
815
816 /*
817 * se->min_deadline = min(se->deadline, left->min_deadline, right->min_deadline)
818 */
min_deadline_update(struct sched_entity * se,bool exit)819 static inline bool min_deadline_update(struct sched_entity *se, bool exit)
820 {
821 u64 old_min_deadline = se->min_deadline;
822 struct rb_node *node = &se->run_node;
823
824 se->min_deadline = se->deadline;
825 __update_min_deadline(se, node->rb_right);
826 __update_min_deadline(se, node->rb_left);
827
828 return se->min_deadline == old_min_deadline;
829 }
830
831 RB_DECLARE_CALLBACKS(static, min_deadline_cb, struct sched_entity,
832 run_node, min_deadline, min_deadline_update);
833
834 /*
835 * Enqueue an entity into the rb-tree:
836 */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)837 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
838 {
839 avg_vruntime_add(cfs_rq, se);
840 se->min_deadline = se->deadline;
841 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
842 __entity_less, &min_deadline_cb);
843 }
844
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)845 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
846 {
847 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
848 &min_deadline_cb);
849 avg_vruntime_sub(cfs_rq, se);
850 }
851
__pick_first_entity(struct cfs_rq * cfs_rq)852 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
853 {
854 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
855
856 if (!left)
857 return NULL;
858
859 return __node_2_se(left);
860 }
861
862 /*
863 * Earliest Eligible Virtual Deadline First
864 *
865 * In order to provide latency guarantees for different request sizes
866 * EEVDF selects the best runnable task from two criteria:
867 *
868 * 1) the task must be eligible (must be owed service)
869 *
870 * 2) from those tasks that meet 1), we select the one
871 * with the earliest virtual deadline.
872 *
873 * We can do this in O(log n) time due to an augmented RB-tree. The
874 * tree keeps the entries sorted on service, but also functions as a
875 * heap based on the deadline by keeping:
876 *
877 * se->min_deadline = min(se->deadline, se->{left,right}->min_deadline)
878 *
879 * Which allows an EDF like search on (sub)trees.
880 */
__pick_eevdf(struct cfs_rq * cfs_rq)881 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq)
882 {
883 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
884 struct sched_entity *curr = cfs_rq->curr;
885 struct sched_entity *best = NULL;
886 struct sched_entity *best_left = NULL;
887
888 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
889 curr = NULL;
890 best = curr;
891
892 /*
893 * Once selected, run a task until it either becomes non-eligible or
894 * until it gets a new slice. See the HACK in set_next_entity().
895 */
896 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
897 return curr;
898
899 while (node) {
900 struct sched_entity *se = __node_2_se(node);
901
902 /*
903 * If this entity is not eligible, try the left subtree.
904 */
905 if (!entity_eligible(cfs_rq, se)) {
906 node = node->rb_left;
907 continue;
908 }
909
910 /*
911 * Now we heap search eligible trees for the best (min_)deadline
912 */
913 if (!best || deadline_gt(deadline, best, se))
914 best = se;
915
916 /*
917 * Every se in a left branch is eligible, keep track of the
918 * branch with the best min_deadline
919 */
920 if (node->rb_left) {
921 struct sched_entity *left = __node_2_se(node->rb_left);
922
923 if (!best_left || deadline_gt(min_deadline, best_left, left))
924 best_left = left;
925
926 /*
927 * min_deadline is in the left branch. rb_left and all
928 * descendants are eligible, so immediately switch to the second
929 * loop.
930 */
931 if (left->min_deadline == se->min_deadline)
932 break;
933 }
934
935 /* min_deadline is at this node, no need to look right */
936 if (se->deadline == se->min_deadline)
937 break;
938
939 /* else min_deadline is in the right branch. */
940 node = node->rb_right;
941 }
942
943 /*
944 * We ran into an eligible node which is itself the best.
945 * (Or nr_running == 0 and both are NULL)
946 */
947 if (!best_left || (s64)(best_left->min_deadline - best->deadline) > 0)
948 return best;
949
950 /*
951 * Now best_left and all of its children are eligible, and we are just
952 * looking for deadline == min_deadline
953 */
954 node = &best_left->run_node;
955 while (node) {
956 struct sched_entity *se = __node_2_se(node);
957
958 /* min_deadline is the current node */
959 if (se->deadline == se->min_deadline)
960 return se;
961
962 /* min_deadline is in the left branch */
963 if (node->rb_left &&
964 __node_2_se(node->rb_left)->min_deadline == se->min_deadline) {
965 node = node->rb_left;
966 continue;
967 }
968
969 /* else min_deadline is in the right branch */
970 node = node->rb_right;
971 }
972 return NULL;
973 }
974
pick_eevdf(struct cfs_rq * cfs_rq)975 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
976 {
977 struct sched_entity *se = __pick_eevdf(cfs_rq);
978
979 if (!se) {
980 struct sched_entity *left = __pick_first_entity(cfs_rq);
981 if (left) {
982 pr_err("EEVDF scheduling fail, picking leftmost\n");
983 return left;
984 }
985 }
986
987 return se;
988 }
989
990 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)991 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
992 {
993 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
994
995 if (!last)
996 return NULL;
997
998 return __node_2_se(last);
999 }
1000
1001 /**************************************************************
1002 * Scheduling class statistics methods:
1003 */
1004 #ifdef CONFIG_SMP
sched_update_scaling(void)1005 int sched_update_scaling(void)
1006 {
1007 unsigned int factor = get_update_sysctl_factor();
1008
1009 #define WRT_SYSCTL(name) \
1010 (normalized_sysctl_##name = sysctl_##name / (factor))
1011 WRT_SYSCTL(sched_base_slice);
1012 #undef WRT_SYSCTL
1013
1014 return 0;
1015 }
1016 #endif
1017 #endif
1018
1019 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1020
1021 /*
1022 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1023 * this is probably good enough.
1024 */
update_deadline(struct cfs_rq * cfs_rq,struct sched_entity * se)1025 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1026 {
1027 if ((s64)(se->vruntime - se->deadline) < 0)
1028 return;
1029
1030 /*
1031 * For EEVDF the virtual time slope is determined by w_i (iow.
1032 * nice) while the request time r_i is determined by
1033 * sysctl_sched_base_slice.
1034 */
1035 se->slice = sysctl_sched_base_slice;
1036
1037 /*
1038 * EEVDF: vd_i = ve_i + r_i / w_i
1039 */
1040 se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1041
1042 /*
1043 * The task has consumed its request, reschedule.
1044 */
1045 if (cfs_rq->nr_running > 1) {
1046 resched_curr(rq_of(cfs_rq));
1047 clear_buddies(cfs_rq, se);
1048 }
1049 }
1050
1051 #include "pelt.h"
1052 #ifdef CONFIG_SMP
1053
1054 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1055 static unsigned long task_h_load(struct task_struct *p);
1056 static unsigned long capacity_of(int cpu);
1057
1058 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)1059 void init_entity_runnable_average(struct sched_entity *se)
1060 {
1061 struct sched_avg *sa = &se->avg;
1062
1063 memset(sa, 0, sizeof(*sa));
1064
1065 /*
1066 * Tasks are initialized with full load to be seen as heavy tasks until
1067 * they get a chance to stabilize to their real load level.
1068 * Group entities are initialized with zero load to reflect the fact that
1069 * nothing has been attached to the task group yet.
1070 */
1071 if (entity_is_task(se))
1072 sa->load_avg = scale_load_down(se->load.weight);
1073
1074 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
1075 }
1076
1077 /*
1078 * With new tasks being created, their initial util_avgs are extrapolated
1079 * based on the cfs_rq's current util_avg:
1080 *
1081 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
1082 *
1083 * However, in many cases, the above util_avg does not give a desired
1084 * value. Moreover, the sum of the util_avgs may be divergent, such
1085 * as when the series is a harmonic series.
1086 *
1087 * To solve this problem, we also cap the util_avg of successive tasks to
1088 * only 1/2 of the left utilization budget:
1089 *
1090 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1091 *
1092 * where n denotes the nth task and cpu_scale the CPU capacity.
1093 *
1094 * For example, for a CPU with 1024 of capacity, a simplest series from
1095 * the beginning would be like:
1096 *
1097 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
1098 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1099 *
1100 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1101 * if util_avg > util_avg_cap.
1102 */
post_init_entity_util_avg(struct task_struct * p)1103 void post_init_entity_util_avg(struct task_struct *p)
1104 {
1105 struct sched_entity *se = &p->se;
1106 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1107 struct sched_avg *sa = &se->avg;
1108 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1109 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1110
1111 if (p->sched_class != &fair_sched_class) {
1112 /*
1113 * For !fair tasks do:
1114 *
1115 update_cfs_rq_load_avg(now, cfs_rq);
1116 attach_entity_load_avg(cfs_rq, se);
1117 switched_from_fair(rq, p);
1118 *
1119 * such that the next switched_to_fair() has the
1120 * expected state.
1121 */
1122 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1123 return;
1124 }
1125
1126 if (cap > 0) {
1127 if (cfs_rq->avg.util_avg != 0) {
1128 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
1129 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1130
1131 if (sa->util_avg > cap)
1132 sa->util_avg = cap;
1133 } else {
1134 sa->util_avg = cap;
1135 }
1136 }
1137
1138 sa->runnable_avg = sa->util_avg;
1139 }
1140
1141 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)1142 void init_entity_runnable_average(struct sched_entity *se)
1143 {
1144 }
post_init_entity_util_avg(struct task_struct * p)1145 void post_init_entity_util_avg(struct task_struct *p)
1146 {
1147 }
update_tg_load_avg(struct cfs_rq * cfs_rq)1148 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1149 {
1150 }
1151 #endif /* CONFIG_SMP */
1152
update_curr_se(struct rq * rq,struct sched_entity * curr)1153 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1154 {
1155 u64 now = rq_clock_task(rq);
1156 s64 delta_exec;
1157
1158 delta_exec = now - curr->exec_start;
1159 if (unlikely(delta_exec <= 0))
1160 return delta_exec;
1161
1162 curr->exec_start = now;
1163 curr->sum_exec_runtime += delta_exec;
1164
1165 if (schedstat_enabled()) {
1166 struct sched_statistics *stats;
1167
1168 stats = __schedstats_from_se(curr);
1169 __schedstat_set(stats->exec_max,
1170 max(delta_exec, stats->exec_max));
1171 }
1172
1173 return delta_exec;
1174 }
1175
update_curr_task(struct task_struct * p,s64 delta_exec)1176 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1177 {
1178 trace_sched_stat_runtime(p, delta_exec);
1179 account_group_exec_runtime(p, delta_exec);
1180 cgroup_account_cputime(p, delta_exec);
1181 }
1182
1183 /*
1184 * Used by other classes to account runtime.
1185 */
update_curr_common(struct rq * rq)1186 s64 update_curr_common(struct rq *rq)
1187 {
1188 struct task_struct *curr = rq->curr;
1189 s64 delta_exec;
1190
1191 delta_exec = update_curr_se(rq, &curr->se);
1192 if (likely(delta_exec > 0))
1193 update_curr_task(curr, delta_exec);
1194
1195 return delta_exec;
1196 }
1197
1198 /*
1199 * Update the current task's runtime statistics.
1200 */
update_curr(struct cfs_rq * cfs_rq)1201 static void update_curr(struct cfs_rq *cfs_rq)
1202 {
1203 struct sched_entity *curr = cfs_rq->curr;
1204 s64 delta_exec;
1205
1206 if (unlikely(!curr))
1207 return;
1208
1209 delta_exec = update_curr_se(rq_of(cfs_rq), curr);
1210 if (unlikely(delta_exec <= 0))
1211 return;
1212
1213 curr->vruntime += calc_delta_fair(delta_exec, curr);
1214 update_deadline(cfs_rq, curr);
1215 update_min_vruntime(cfs_rq);
1216
1217 if (entity_is_task(curr))
1218 update_curr_task(task_of(curr), delta_exec);
1219
1220 account_cfs_rq_runtime(cfs_rq, delta_exec);
1221 }
1222
update_curr_fair(struct rq * rq)1223 static void update_curr_fair(struct rq *rq)
1224 {
1225 update_curr(cfs_rq_of(&rq->curr->se));
1226 }
1227
1228 static inline void
update_stats_wait_start_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1229 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1230 {
1231 struct sched_statistics *stats;
1232 struct task_struct *p = NULL;
1233
1234 if (!schedstat_enabled())
1235 return;
1236
1237 stats = __schedstats_from_se(se);
1238
1239 if (entity_is_task(se))
1240 p = task_of(se);
1241
1242 __update_stats_wait_start(rq_of(cfs_rq), p, stats);
1243 }
1244
1245 static inline void
update_stats_wait_end_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1246 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1247 {
1248 struct sched_statistics *stats;
1249 struct task_struct *p = NULL;
1250
1251 if (!schedstat_enabled())
1252 return;
1253
1254 stats = __schedstats_from_se(se);
1255
1256 /*
1257 * When the sched_schedstat changes from 0 to 1, some sched se
1258 * maybe already in the runqueue, the se->statistics.wait_start
1259 * will be 0.So it will let the delta wrong. We need to avoid this
1260 * scenario.
1261 */
1262 if (unlikely(!schedstat_val(stats->wait_start)))
1263 return;
1264
1265 if (entity_is_task(se))
1266 p = task_of(se);
1267
1268 __update_stats_wait_end(rq_of(cfs_rq), p, stats);
1269 }
1270
1271 static inline void
update_stats_enqueue_sleeper_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1272 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1273 {
1274 struct sched_statistics *stats;
1275 struct task_struct *tsk = NULL;
1276
1277 if (!schedstat_enabled())
1278 return;
1279
1280 stats = __schedstats_from_se(se);
1281
1282 if (entity_is_task(se))
1283 tsk = task_of(se);
1284
1285 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1286 }
1287
1288 /*
1289 * Task is being enqueued - update stats:
1290 */
1291 static inline void
update_stats_enqueue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1292 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1293 {
1294 if (!schedstat_enabled())
1295 return;
1296
1297 /*
1298 * Are we enqueueing a waiting task? (for current tasks
1299 * a dequeue/enqueue event is a NOP)
1300 */
1301 if (se != cfs_rq->curr)
1302 update_stats_wait_start_fair(cfs_rq, se);
1303
1304 if (flags & ENQUEUE_WAKEUP)
1305 update_stats_enqueue_sleeper_fair(cfs_rq, se);
1306 }
1307
1308 static inline void
update_stats_dequeue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1309 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1310 {
1311
1312 if (!schedstat_enabled())
1313 return;
1314
1315 /*
1316 * Mark the end of the wait period if dequeueing a
1317 * waiting task:
1318 */
1319 if (se != cfs_rq->curr)
1320 update_stats_wait_end_fair(cfs_rq, se);
1321
1322 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1323 struct task_struct *tsk = task_of(se);
1324 unsigned int state;
1325
1326 /* XXX racy against TTWU */
1327 state = READ_ONCE(tsk->__state);
1328 if (state & TASK_INTERRUPTIBLE)
1329 __schedstat_set(tsk->stats.sleep_start,
1330 rq_clock(rq_of(cfs_rq)));
1331 if (state & TASK_UNINTERRUPTIBLE)
1332 __schedstat_set(tsk->stats.block_start,
1333 rq_clock(rq_of(cfs_rq)));
1334 }
1335 }
1336
1337 /*
1338 * We are picking a new current task - update its stats:
1339 */
1340 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1341 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1342 {
1343 /*
1344 * We are starting a new run period:
1345 */
1346 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1347 }
1348
1349 /**************************************************
1350 * Scheduling class queueing methods:
1351 */
1352
is_core_idle(int cpu)1353 static inline bool is_core_idle(int cpu)
1354 {
1355 #ifdef CONFIG_SCHED_SMT
1356 int sibling;
1357
1358 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1359 if (cpu == sibling)
1360 continue;
1361
1362 if (!idle_cpu(sibling))
1363 return false;
1364 }
1365 #endif
1366
1367 return true;
1368 }
1369
1370 #ifdef CONFIG_NUMA
1371 #define NUMA_IMBALANCE_MIN 2
1372
1373 static inline long
adjust_numa_imbalance(int imbalance,int dst_running,int imb_numa_nr)1374 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1375 {
1376 /*
1377 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1378 * threshold. Above this threshold, individual tasks may be contending
1379 * for both memory bandwidth and any shared HT resources. This is an
1380 * approximation as the number of running tasks may not be related to
1381 * the number of busy CPUs due to sched_setaffinity.
1382 */
1383 if (dst_running > imb_numa_nr)
1384 return imbalance;
1385
1386 /*
1387 * Allow a small imbalance based on a simple pair of communicating
1388 * tasks that remain local when the destination is lightly loaded.
1389 */
1390 if (imbalance <= NUMA_IMBALANCE_MIN)
1391 return 0;
1392
1393 return imbalance;
1394 }
1395 #endif /* CONFIG_NUMA */
1396
1397 #ifdef CONFIG_NUMA_BALANCING
1398 /*
1399 * Approximate time to scan a full NUMA task in ms. The task scan period is
1400 * calculated based on the tasks virtual memory size and
1401 * numa_balancing_scan_size.
1402 */
1403 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1404 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1405
1406 /* Portion of address space to scan in MB */
1407 unsigned int sysctl_numa_balancing_scan_size = 256;
1408
1409 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1410 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1411
1412 /* The page with hint page fault latency < threshold in ms is considered hot */
1413 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1414
1415 struct numa_group {
1416 refcount_t refcount;
1417
1418 spinlock_t lock; /* nr_tasks, tasks */
1419 int nr_tasks;
1420 pid_t gid;
1421 int active_nodes;
1422
1423 struct rcu_head rcu;
1424 unsigned long total_faults;
1425 unsigned long max_faults_cpu;
1426 /*
1427 * faults[] array is split into two regions: faults_mem and faults_cpu.
1428 *
1429 * Faults_cpu is used to decide whether memory should move
1430 * towards the CPU. As a consequence, these stats are weighted
1431 * more by CPU use than by memory faults.
1432 */
1433 unsigned long faults[];
1434 };
1435
1436 /*
1437 * For functions that can be called in multiple contexts that permit reading
1438 * ->numa_group (see struct task_struct for locking rules).
1439 */
deref_task_numa_group(struct task_struct * p)1440 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1441 {
1442 return rcu_dereference_check(p->numa_group, p == current ||
1443 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1444 }
1445
deref_curr_numa_group(struct task_struct * p)1446 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1447 {
1448 return rcu_dereference_protected(p->numa_group, p == current);
1449 }
1450
1451 static inline unsigned long group_faults_priv(struct numa_group *ng);
1452 static inline unsigned long group_faults_shared(struct numa_group *ng);
1453
task_nr_scan_windows(struct task_struct * p)1454 static unsigned int task_nr_scan_windows(struct task_struct *p)
1455 {
1456 unsigned long rss = 0;
1457 unsigned long nr_scan_pages;
1458
1459 /*
1460 * Calculations based on RSS as non-present and empty pages are skipped
1461 * by the PTE scanner and NUMA hinting faults should be trapped based
1462 * on resident pages
1463 */
1464 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1465 rss = get_mm_rss(p->mm);
1466 if (!rss)
1467 rss = nr_scan_pages;
1468
1469 rss = round_up(rss, nr_scan_pages);
1470 return rss / nr_scan_pages;
1471 }
1472
1473 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1474 #define MAX_SCAN_WINDOW 2560
1475
task_scan_min(struct task_struct * p)1476 static unsigned int task_scan_min(struct task_struct *p)
1477 {
1478 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1479 unsigned int scan, floor;
1480 unsigned int windows = 1;
1481
1482 if (scan_size < MAX_SCAN_WINDOW)
1483 windows = MAX_SCAN_WINDOW / scan_size;
1484 floor = 1000 / windows;
1485
1486 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1487 return max_t(unsigned int, floor, scan);
1488 }
1489
task_scan_start(struct task_struct * p)1490 static unsigned int task_scan_start(struct task_struct *p)
1491 {
1492 unsigned long smin = task_scan_min(p);
1493 unsigned long period = smin;
1494 struct numa_group *ng;
1495
1496 /* Scale the maximum scan period with the amount of shared memory. */
1497 rcu_read_lock();
1498 ng = rcu_dereference(p->numa_group);
1499 if (ng) {
1500 unsigned long shared = group_faults_shared(ng);
1501 unsigned long private = group_faults_priv(ng);
1502
1503 period *= refcount_read(&ng->refcount);
1504 period *= shared + 1;
1505 period /= private + shared + 1;
1506 }
1507 rcu_read_unlock();
1508
1509 return max(smin, period);
1510 }
1511
task_scan_max(struct task_struct * p)1512 static unsigned int task_scan_max(struct task_struct *p)
1513 {
1514 unsigned long smin = task_scan_min(p);
1515 unsigned long smax;
1516 struct numa_group *ng;
1517
1518 /* Watch for min being lower than max due to floor calculations */
1519 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1520
1521 /* Scale the maximum scan period with the amount of shared memory. */
1522 ng = deref_curr_numa_group(p);
1523 if (ng) {
1524 unsigned long shared = group_faults_shared(ng);
1525 unsigned long private = group_faults_priv(ng);
1526 unsigned long period = smax;
1527
1528 period *= refcount_read(&ng->refcount);
1529 period *= shared + 1;
1530 period /= private + shared + 1;
1531
1532 smax = max(smax, period);
1533 }
1534
1535 return max(smin, smax);
1536 }
1537
account_numa_enqueue(struct rq * rq,struct task_struct * p)1538 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1539 {
1540 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1541 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1542 }
1543
account_numa_dequeue(struct rq * rq,struct task_struct * p)1544 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1545 {
1546 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1547 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1548 }
1549
1550 /* Shared or private faults. */
1551 #define NR_NUMA_HINT_FAULT_TYPES 2
1552
1553 /* Memory and CPU locality */
1554 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1555
1556 /* Averaged statistics, and temporary buffers. */
1557 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1558
task_numa_group_id(struct task_struct * p)1559 pid_t task_numa_group_id(struct task_struct *p)
1560 {
1561 struct numa_group *ng;
1562 pid_t gid = 0;
1563
1564 rcu_read_lock();
1565 ng = rcu_dereference(p->numa_group);
1566 if (ng)
1567 gid = ng->gid;
1568 rcu_read_unlock();
1569
1570 return gid;
1571 }
1572
1573 /*
1574 * The averaged statistics, shared & private, memory & CPU,
1575 * occupy the first half of the array. The second half of the
1576 * array is for current counters, which are averaged into the
1577 * first set by task_numa_placement.
1578 */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1579 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1580 {
1581 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1582 }
1583
task_faults(struct task_struct * p,int nid)1584 static inline unsigned long task_faults(struct task_struct *p, int nid)
1585 {
1586 if (!p->numa_faults)
1587 return 0;
1588
1589 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1590 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1591 }
1592
group_faults(struct task_struct * p,int nid)1593 static inline unsigned long group_faults(struct task_struct *p, int nid)
1594 {
1595 struct numa_group *ng = deref_task_numa_group(p);
1596
1597 if (!ng)
1598 return 0;
1599
1600 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1601 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1602 }
1603
group_faults_cpu(struct numa_group * group,int nid)1604 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1605 {
1606 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1607 group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1608 }
1609
group_faults_priv(struct numa_group * ng)1610 static inline unsigned long group_faults_priv(struct numa_group *ng)
1611 {
1612 unsigned long faults = 0;
1613 int node;
1614
1615 for_each_online_node(node) {
1616 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1617 }
1618
1619 return faults;
1620 }
1621
group_faults_shared(struct numa_group * ng)1622 static inline unsigned long group_faults_shared(struct numa_group *ng)
1623 {
1624 unsigned long faults = 0;
1625 int node;
1626
1627 for_each_online_node(node) {
1628 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1629 }
1630
1631 return faults;
1632 }
1633
1634 /*
1635 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1636 * considered part of a numa group's pseudo-interleaving set. Migrations
1637 * between these nodes are slowed down, to allow things to settle down.
1638 */
1639 #define ACTIVE_NODE_FRACTION 3
1640
numa_is_active_node(int nid,struct numa_group * ng)1641 static bool numa_is_active_node(int nid, struct numa_group *ng)
1642 {
1643 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1644 }
1645
1646 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int lim_dist,bool task)1647 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1648 int lim_dist, bool task)
1649 {
1650 unsigned long score = 0;
1651 int node, max_dist;
1652
1653 /*
1654 * All nodes are directly connected, and the same distance
1655 * from each other. No need for fancy placement algorithms.
1656 */
1657 if (sched_numa_topology_type == NUMA_DIRECT)
1658 return 0;
1659
1660 /* sched_max_numa_distance may be changed in parallel. */
1661 max_dist = READ_ONCE(sched_max_numa_distance);
1662 /*
1663 * This code is called for each node, introducing N^2 complexity,
1664 * which should be ok given the number of nodes rarely exceeds 8.
1665 */
1666 for_each_online_node(node) {
1667 unsigned long faults;
1668 int dist = node_distance(nid, node);
1669
1670 /*
1671 * The furthest away nodes in the system are not interesting
1672 * for placement; nid was already counted.
1673 */
1674 if (dist >= max_dist || node == nid)
1675 continue;
1676
1677 /*
1678 * On systems with a backplane NUMA topology, compare groups
1679 * of nodes, and move tasks towards the group with the most
1680 * memory accesses. When comparing two nodes at distance
1681 * "hoplimit", only nodes closer by than "hoplimit" are part
1682 * of each group. Skip other nodes.
1683 */
1684 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1685 continue;
1686
1687 /* Add up the faults from nearby nodes. */
1688 if (task)
1689 faults = task_faults(p, node);
1690 else
1691 faults = group_faults(p, node);
1692
1693 /*
1694 * On systems with a glueless mesh NUMA topology, there are
1695 * no fixed "groups of nodes". Instead, nodes that are not
1696 * directly connected bounce traffic through intermediate
1697 * nodes; a numa_group can occupy any set of nodes.
1698 * The further away a node is, the less the faults count.
1699 * This seems to result in good task placement.
1700 */
1701 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1702 faults *= (max_dist - dist);
1703 faults /= (max_dist - LOCAL_DISTANCE);
1704 }
1705
1706 score += faults;
1707 }
1708
1709 return score;
1710 }
1711
1712 /*
1713 * These return the fraction of accesses done by a particular task, or
1714 * task group, on a particular numa node. The group weight is given a
1715 * larger multiplier, in order to group tasks together that are almost
1716 * evenly spread out between numa nodes.
1717 */
task_weight(struct task_struct * p,int nid,int dist)1718 static inline unsigned long task_weight(struct task_struct *p, int nid,
1719 int dist)
1720 {
1721 unsigned long faults, total_faults;
1722
1723 if (!p->numa_faults)
1724 return 0;
1725
1726 total_faults = p->total_numa_faults;
1727
1728 if (!total_faults)
1729 return 0;
1730
1731 faults = task_faults(p, nid);
1732 faults += score_nearby_nodes(p, nid, dist, true);
1733
1734 return 1000 * faults / total_faults;
1735 }
1736
group_weight(struct task_struct * p,int nid,int dist)1737 static inline unsigned long group_weight(struct task_struct *p, int nid,
1738 int dist)
1739 {
1740 struct numa_group *ng = deref_task_numa_group(p);
1741 unsigned long faults, total_faults;
1742
1743 if (!ng)
1744 return 0;
1745
1746 total_faults = ng->total_faults;
1747
1748 if (!total_faults)
1749 return 0;
1750
1751 faults = group_faults(p, nid);
1752 faults += score_nearby_nodes(p, nid, dist, false);
1753
1754 return 1000 * faults / total_faults;
1755 }
1756
1757 /*
1758 * If memory tiering mode is enabled, cpupid of slow memory page is
1759 * used to record scan time instead of CPU and PID. When tiering mode
1760 * is disabled at run time, the scan time (in cpupid) will be
1761 * interpreted as CPU and PID. So CPU needs to be checked to avoid to
1762 * access out of array bound.
1763 */
cpupid_valid(int cpupid)1764 static inline bool cpupid_valid(int cpupid)
1765 {
1766 return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1767 }
1768
1769 /*
1770 * For memory tiering mode, if there are enough free pages (more than
1771 * enough watermark defined here) in fast memory node, to take full
1772 * advantage of fast memory capacity, all recently accessed slow
1773 * memory pages will be migrated to fast memory node without
1774 * considering hot threshold.
1775 */
pgdat_free_space_enough(struct pglist_data * pgdat)1776 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1777 {
1778 int z;
1779 unsigned long enough_wmark;
1780
1781 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1782 pgdat->node_present_pages >> 4);
1783 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1784 struct zone *zone = pgdat->node_zones + z;
1785
1786 if (!populated_zone(zone))
1787 continue;
1788
1789 if (zone_watermark_ok(zone, 0,
1790 wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1791 ZONE_MOVABLE, 0))
1792 return true;
1793 }
1794 return false;
1795 }
1796
1797 /*
1798 * For memory tiering mode, when page tables are scanned, the scan
1799 * time will be recorded in struct page in addition to make page
1800 * PROT_NONE for slow memory page. So when the page is accessed, in
1801 * hint page fault handler, the hint page fault latency is calculated
1802 * via,
1803 *
1804 * hint page fault latency = hint page fault time - scan time
1805 *
1806 * The smaller the hint page fault latency, the higher the possibility
1807 * for the page to be hot.
1808 */
numa_hint_fault_latency(struct page * page)1809 static int numa_hint_fault_latency(struct page *page)
1810 {
1811 int last_time, time;
1812
1813 time = jiffies_to_msecs(jiffies);
1814 last_time = xchg_page_access_time(page, time);
1815
1816 return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1817 }
1818
1819 /*
1820 * For memory tiering mode, too high promotion/demotion throughput may
1821 * hurt application latency. So we provide a mechanism to rate limit
1822 * the number of pages that are tried to be promoted.
1823 */
numa_promotion_rate_limit(struct pglist_data * pgdat,unsigned long rate_limit,int nr)1824 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1825 unsigned long rate_limit, int nr)
1826 {
1827 unsigned long nr_cand;
1828 unsigned int now, start;
1829
1830 now = jiffies_to_msecs(jiffies);
1831 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1832 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1833 start = pgdat->nbp_rl_start;
1834 if (now - start > MSEC_PER_SEC &&
1835 cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1836 pgdat->nbp_rl_nr_cand = nr_cand;
1837 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1838 return true;
1839 return false;
1840 }
1841
1842 #define NUMA_MIGRATION_ADJUST_STEPS 16
1843
numa_promotion_adjust_threshold(struct pglist_data * pgdat,unsigned long rate_limit,unsigned int ref_th)1844 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1845 unsigned long rate_limit,
1846 unsigned int ref_th)
1847 {
1848 unsigned int now, start, th_period, unit_th, th;
1849 unsigned long nr_cand, ref_cand, diff_cand;
1850
1851 now = jiffies_to_msecs(jiffies);
1852 th_period = sysctl_numa_balancing_scan_period_max;
1853 start = pgdat->nbp_th_start;
1854 if (now - start > th_period &&
1855 cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1856 ref_cand = rate_limit *
1857 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1858 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1859 diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1860 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1861 th = pgdat->nbp_threshold ? : ref_th;
1862 if (diff_cand > ref_cand * 11 / 10)
1863 th = max(th - unit_th, unit_th);
1864 else if (diff_cand < ref_cand * 9 / 10)
1865 th = min(th + unit_th, ref_th * 2);
1866 pgdat->nbp_th_nr_cand = nr_cand;
1867 pgdat->nbp_threshold = th;
1868 }
1869 }
1870
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)1871 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1872 int src_nid, int dst_cpu)
1873 {
1874 struct numa_group *ng = deref_curr_numa_group(p);
1875 int dst_nid = cpu_to_node(dst_cpu);
1876 int last_cpupid, this_cpupid;
1877
1878 /*
1879 * The pages in slow memory node should be migrated according
1880 * to hot/cold instead of private/shared.
1881 */
1882 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1883 !node_is_toptier(src_nid)) {
1884 struct pglist_data *pgdat;
1885 unsigned long rate_limit;
1886 unsigned int latency, th, def_th;
1887
1888 pgdat = NODE_DATA(dst_nid);
1889 if (pgdat_free_space_enough(pgdat)) {
1890 /* workload changed, reset hot threshold */
1891 pgdat->nbp_threshold = 0;
1892 return true;
1893 }
1894
1895 def_th = sysctl_numa_balancing_hot_threshold;
1896 rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1897 (20 - PAGE_SHIFT);
1898 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1899
1900 th = pgdat->nbp_threshold ? : def_th;
1901 latency = numa_hint_fault_latency(page);
1902 if (latency >= th)
1903 return false;
1904
1905 return !numa_promotion_rate_limit(pgdat, rate_limit,
1906 thp_nr_pages(page));
1907 }
1908
1909 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1910 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1911
1912 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1913 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1914 return false;
1915
1916 /*
1917 * Allow first faults or private faults to migrate immediately early in
1918 * the lifetime of a task. The magic number 4 is based on waiting for
1919 * two full passes of the "multi-stage node selection" test that is
1920 * executed below.
1921 */
1922 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1923 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1924 return true;
1925
1926 /*
1927 * Multi-stage node selection is used in conjunction with a periodic
1928 * migration fault to build a temporal task<->page relation. By using
1929 * a two-stage filter we remove short/unlikely relations.
1930 *
1931 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1932 * a task's usage of a particular page (n_p) per total usage of this
1933 * page (n_t) (in a given time-span) to a probability.
1934 *
1935 * Our periodic faults will sample this probability and getting the
1936 * same result twice in a row, given these samples are fully
1937 * independent, is then given by P(n)^2, provided our sample period
1938 * is sufficiently short compared to the usage pattern.
1939 *
1940 * This quadric squishes small probabilities, making it less likely we
1941 * act on an unlikely task<->page relation.
1942 */
1943 if (!cpupid_pid_unset(last_cpupid) &&
1944 cpupid_to_nid(last_cpupid) != dst_nid)
1945 return false;
1946
1947 /* Always allow migrate on private faults */
1948 if (cpupid_match_pid(p, last_cpupid))
1949 return true;
1950
1951 /* A shared fault, but p->numa_group has not been set up yet. */
1952 if (!ng)
1953 return true;
1954
1955 /*
1956 * Destination node is much more heavily used than the source
1957 * node? Allow migration.
1958 */
1959 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1960 ACTIVE_NODE_FRACTION)
1961 return true;
1962
1963 /*
1964 * Distribute memory according to CPU & memory use on each node,
1965 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1966 *
1967 * faults_cpu(dst) 3 faults_cpu(src)
1968 * --------------- * - > ---------------
1969 * faults_mem(dst) 4 faults_mem(src)
1970 */
1971 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1972 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1973 }
1974
1975 /*
1976 * 'numa_type' describes the node at the moment of load balancing.
1977 */
1978 enum numa_type {
1979 /* The node has spare capacity that can be used to run more tasks. */
1980 node_has_spare = 0,
1981 /*
1982 * The node is fully used and the tasks don't compete for more CPU
1983 * cycles. Nevertheless, some tasks might wait before running.
1984 */
1985 node_fully_busy,
1986 /*
1987 * The node is overloaded and can't provide expected CPU cycles to all
1988 * tasks.
1989 */
1990 node_overloaded
1991 };
1992
1993 /* Cached statistics for all CPUs within a node */
1994 struct numa_stats {
1995 unsigned long load;
1996 unsigned long runnable;
1997 unsigned long util;
1998 /* Total compute capacity of CPUs on a node */
1999 unsigned long compute_capacity;
2000 unsigned int nr_running;
2001 unsigned int weight;
2002 enum numa_type node_type;
2003 int idle_cpu;
2004 };
2005
2006 struct task_numa_env {
2007 struct task_struct *p;
2008
2009 int src_cpu, src_nid;
2010 int dst_cpu, dst_nid;
2011 int imb_numa_nr;
2012
2013 struct numa_stats src_stats, dst_stats;
2014
2015 int imbalance_pct;
2016 int dist;
2017
2018 struct task_struct *best_task;
2019 long best_imp;
2020 int best_cpu;
2021 };
2022
2023 static unsigned long cpu_load(struct rq *rq);
2024 static unsigned long cpu_runnable(struct rq *rq);
2025
2026 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)2027 numa_type numa_classify(unsigned int imbalance_pct,
2028 struct numa_stats *ns)
2029 {
2030 if ((ns->nr_running > ns->weight) &&
2031 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2032 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2033 return node_overloaded;
2034
2035 if ((ns->nr_running < ns->weight) ||
2036 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2037 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2038 return node_has_spare;
2039
2040 return node_fully_busy;
2041 }
2042
2043 #ifdef CONFIG_SCHED_SMT
2044 /* Forward declarations of select_idle_sibling helpers */
2045 static inline bool test_idle_cores(int cpu);
numa_idle_core(int idle_core,int cpu)2046 static inline int numa_idle_core(int idle_core, int cpu)
2047 {
2048 if (!static_branch_likely(&sched_smt_present) ||
2049 idle_core >= 0 || !test_idle_cores(cpu))
2050 return idle_core;
2051
2052 /*
2053 * Prefer cores instead of packing HT siblings
2054 * and triggering future load balancing.
2055 */
2056 if (is_core_idle(cpu))
2057 idle_core = cpu;
2058
2059 return idle_core;
2060 }
2061 #else
numa_idle_core(int idle_core,int cpu)2062 static inline int numa_idle_core(int idle_core, int cpu)
2063 {
2064 return idle_core;
2065 }
2066 #endif
2067
2068 /*
2069 * Gather all necessary information to make NUMA balancing placement
2070 * decisions that are compatible with standard load balancer. This
2071 * borrows code and logic from update_sg_lb_stats but sharing a
2072 * common implementation is impractical.
2073 */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)2074 static void update_numa_stats(struct task_numa_env *env,
2075 struct numa_stats *ns, int nid,
2076 bool find_idle)
2077 {
2078 int cpu, idle_core = -1;
2079
2080 memset(ns, 0, sizeof(*ns));
2081 ns->idle_cpu = -1;
2082
2083 rcu_read_lock();
2084 for_each_cpu(cpu, cpumask_of_node(nid)) {
2085 struct rq *rq = cpu_rq(cpu);
2086
2087 ns->load += cpu_load(rq);
2088 ns->runnable += cpu_runnable(rq);
2089 ns->util += cpu_util_cfs(cpu);
2090 ns->nr_running += rq->cfs.h_nr_running;
2091 ns->compute_capacity += capacity_of(cpu);
2092
2093 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2094 if (READ_ONCE(rq->numa_migrate_on) ||
2095 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2096 continue;
2097
2098 if (ns->idle_cpu == -1)
2099 ns->idle_cpu = cpu;
2100
2101 idle_core = numa_idle_core(idle_core, cpu);
2102 }
2103 }
2104 rcu_read_unlock();
2105
2106 ns->weight = cpumask_weight(cpumask_of_node(nid));
2107
2108 ns->node_type = numa_classify(env->imbalance_pct, ns);
2109
2110 if (idle_core >= 0)
2111 ns->idle_cpu = idle_core;
2112 }
2113
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)2114 static void task_numa_assign(struct task_numa_env *env,
2115 struct task_struct *p, long imp)
2116 {
2117 struct rq *rq = cpu_rq(env->dst_cpu);
2118
2119 /* Check if run-queue part of active NUMA balance. */
2120 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2121 int cpu;
2122 int start = env->dst_cpu;
2123
2124 /* Find alternative idle CPU. */
2125 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2126 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2127 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2128 continue;
2129 }
2130
2131 env->dst_cpu = cpu;
2132 rq = cpu_rq(env->dst_cpu);
2133 if (!xchg(&rq->numa_migrate_on, 1))
2134 goto assign;
2135 }
2136
2137 /* Failed to find an alternative idle CPU */
2138 return;
2139 }
2140
2141 assign:
2142 /*
2143 * Clear previous best_cpu/rq numa-migrate flag, since task now
2144 * found a better CPU to move/swap.
2145 */
2146 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2147 rq = cpu_rq(env->best_cpu);
2148 WRITE_ONCE(rq->numa_migrate_on, 0);
2149 }
2150
2151 if (env->best_task)
2152 put_task_struct(env->best_task);
2153 if (p)
2154 get_task_struct(p);
2155
2156 env->best_task = p;
2157 env->best_imp = imp;
2158 env->best_cpu = env->dst_cpu;
2159 }
2160
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)2161 static bool load_too_imbalanced(long src_load, long dst_load,
2162 struct task_numa_env *env)
2163 {
2164 long imb, old_imb;
2165 long orig_src_load, orig_dst_load;
2166 long src_capacity, dst_capacity;
2167
2168 /*
2169 * The load is corrected for the CPU capacity available on each node.
2170 *
2171 * src_load dst_load
2172 * ------------ vs ---------
2173 * src_capacity dst_capacity
2174 */
2175 src_capacity = env->src_stats.compute_capacity;
2176 dst_capacity = env->dst_stats.compute_capacity;
2177
2178 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2179
2180 orig_src_load = env->src_stats.load;
2181 orig_dst_load = env->dst_stats.load;
2182
2183 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2184
2185 /* Would this change make things worse? */
2186 return (imb > old_imb);
2187 }
2188
2189 /*
2190 * Maximum NUMA importance can be 1998 (2*999);
2191 * SMALLIMP @ 30 would be close to 1998/64.
2192 * Used to deter task migration.
2193 */
2194 #define SMALLIMP 30
2195
2196 /*
2197 * This checks if the overall compute and NUMA accesses of the system would
2198 * be improved if the source tasks was migrated to the target dst_cpu taking
2199 * into account that it might be best if task running on the dst_cpu should
2200 * be exchanged with the source task
2201 */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)2202 static bool task_numa_compare(struct task_numa_env *env,
2203 long taskimp, long groupimp, bool maymove)
2204 {
2205 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2206 struct rq *dst_rq = cpu_rq(env->dst_cpu);
2207 long imp = p_ng ? groupimp : taskimp;
2208 struct task_struct *cur;
2209 long src_load, dst_load;
2210 int dist = env->dist;
2211 long moveimp = imp;
2212 long load;
2213 bool stopsearch = false;
2214
2215 if (READ_ONCE(dst_rq->numa_migrate_on))
2216 return false;
2217
2218 rcu_read_lock();
2219 cur = rcu_dereference(dst_rq->curr);
2220 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2221 cur = NULL;
2222
2223 /*
2224 * Because we have preemption enabled we can get migrated around and
2225 * end try selecting ourselves (current == env->p) as a swap candidate.
2226 */
2227 if (cur == env->p) {
2228 stopsearch = true;
2229 goto unlock;
2230 }
2231
2232 if (!cur) {
2233 if (maymove && moveimp >= env->best_imp)
2234 goto assign;
2235 else
2236 goto unlock;
2237 }
2238
2239 /* Skip this swap candidate if cannot move to the source cpu. */
2240 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2241 goto unlock;
2242
2243 /*
2244 * Skip this swap candidate if it is not moving to its preferred
2245 * node and the best task is.
2246 */
2247 if (env->best_task &&
2248 env->best_task->numa_preferred_nid == env->src_nid &&
2249 cur->numa_preferred_nid != env->src_nid) {
2250 goto unlock;
2251 }
2252
2253 /*
2254 * "imp" is the fault differential for the source task between the
2255 * source and destination node. Calculate the total differential for
2256 * the source task and potential destination task. The more negative
2257 * the value is, the more remote accesses that would be expected to
2258 * be incurred if the tasks were swapped.
2259 *
2260 * If dst and source tasks are in the same NUMA group, or not
2261 * in any group then look only at task weights.
2262 */
2263 cur_ng = rcu_dereference(cur->numa_group);
2264 if (cur_ng == p_ng) {
2265 /*
2266 * Do not swap within a group or between tasks that have
2267 * no group if there is spare capacity. Swapping does
2268 * not address the load imbalance and helps one task at
2269 * the cost of punishing another.
2270 */
2271 if (env->dst_stats.node_type == node_has_spare)
2272 goto unlock;
2273
2274 imp = taskimp + task_weight(cur, env->src_nid, dist) -
2275 task_weight(cur, env->dst_nid, dist);
2276 /*
2277 * Add some hysteresis to prevent swapping the
2278 * tasks within a group over tiny differences.
2279 */
2280 if (cur_ng)
2281 imp -= imp / 16;
2282 } else {
2283 /*
2284 * Compare the group weights. If a task is all by itself
2285 * (not part of a group), use the task weight instead.
2286 */
2287 if (cur_ng && p_ng)
2288 imp += group_weight(cur, env->src_nid, dist) -
2289 group_weight(cur, env->dst_nid, dist);
2290 else
2291 imp += task_weight(cur, env->src_nid, dist) -
2292 task_weight(cur, env->dst_nid, dist);
2293 }
2294
2295 /* Discourage picking a task already on its preferred node */
2296 if (cur->numa_preferred_nid == env->dst_nid)
2297 imp -= imp / 16;
2298
2299 /*
2300 * Encourage picking a task that moves to its preferred node.
2301 * This potentially makes imp larger than it's maximum of
2302 * 1998 (see SMALLIMP and task_weight for why) but in this
2303 * case, it does not matter.
2304 */
2305 if (cur->numa_preferred_nid == env->src_nid)
2306 imp += imp / 8;
2307
2308 if (maymove && moveimp > imp && moveimp > env->best_imp) {
2309 imp = moveimp;
2310 cur = NULL;
2311 goto assign;
2312 }
2313
2314 /*
2315 * Prefer swapping with a task moving to its preferred node over a
2316 * task that is not.
2317 */
2318 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2319 env->best_task->numa_preferred_nid != env->src_nid) {
2320 goto assign;
2321 }
2322
2323 /*
2324 * If the NUMA importance is less than SMALLIMP,
2325 * task migration might only result in ping pong
2326 * of tasks and also hurt performance due to cache
2327 * misses.
2328 */
2329 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2330 goto unlock;
2331
2332 /*
2333 * In the overloaded case, try and keep the load balanced.
2334 */
2335 load = task_h_load(env->p) - task_h_load(cur);
2336 if (!load)
2337 goto assign;
2338
2339 dst_load = env->dst_stats.load + load;
2340 src_load = env->src_stats.load - load;
2341
2342 if (load_too_imbalanced(src_load, dst_load, env))
2343 goto unlock;
2344
2345 assign:
2346 /* Evaluate an idle CPU for a task numa move. */
2347 if (!cur) {
2348 int cpu = env->dst_stats.idle_cpu;
2349
2350 /* Nothing cached so current CPU went idle since the search. */
2351 if (cpu < 0)
2352 cpu = env->dst_cpu;
2353
2354 /*
2355 * If the CPU is no longer truly idle and the previous best CPU
2356 * is, keep using it.
2357 */
2358 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2359 idle_cpu(env->best_cpu)) {
2360 cpu = env->best_cpu;
2361 }
2362
2363 env->dst_cpu = cpu;
2364 }
2365
2366 task_numa_assign(env, cur, imp);
2367
2368 /*
2369 * If a move to idle is allowed because there is capacity or load
2370 * balance improves then stop the search. While a better swap
2371 * candidate may exist, a search is not free.
2372 */
2373 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2374 stopsearch = true;
2375
2376 /*
2377 * If a swap candidate must be identified and the current best task
2378 * moves its preferred node then stop the search.
2379 */
2380 if (!maymove && env->best_task &&
2381 env->best_task->numa_preferred_nid == env->src_nid) {
2382 stopsearch = true;
2383 }
2384 unlock:
2385 rcu_read_unlock();
2386
2387 return stopsearch;
2388 }
2389
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)2390 static void task_numa_find_cpu(struct task_numa_env *env,
2391 long taskimp, long groupimp)
2392 {
2393 bool maymove = false;
2394 int cpu;
2395
2396 /*
2397 * If dst node has spare capacity, then check if there is an
2398 * imbalance that would be overruled by the load balancer.
2399 */
2400 if (env->dst_stats.node_type == node_has_spare) {
2401 unsigned int imbalance;
2402 int src_running, dst_running;
2403
2404 /*
2405 * Would movement cause an imbalance? Note that if src has
2406 * more running tasks that the imbalance is ignored as the
2407 * move improves the imbalance from the perspective of the
2408 * CPU load balancer.
2409 * */
2410 src_running = env->src_stats.nr_running - 1;
2411 dst_running = env->dst_stats.nr_running + 1;
2412 imbalance = max(0, dst_running - src_running);
2413 imbalance = adjust_numa_imbalance(imbalance, dst_running,
2414 env->imb_numa_nr);
2415
2416 /* Use idle CPU if there is no imbalance */
2417 if (!imbalance) {
2418 maymove = true;
2419 if (env->dst_stats.idle_cpu >= 0) {
2420 env->dst_cpu = env->dst_stats.idle_cpu;
2421 task_numa_assign(env, NULL, 0);
2422 return;
2423 }
2424 }
2425 } else {
2426 long src_load, dst_load, load;
2427 /*
2428 * If the improvement from just moving env->p direction is better
2429 * than swapping tasks around, check if a move is possible.
2430 */
2431 load = task_h_load(env->p);
2432 dst_load = env->dst_stats.load + load;
2433 src_load = env->src_stats.load - load;
2434 maymove = !load_too_imbalanced(src_load, dst_load, env);
2435 }
2436
2437 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2438 /* Skip this CPU if the source task cannot migrate */
2439 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2440 continue;
2441
2442 env->dst_cpu = cpu;
2443 if (task_numa_compare(env, taskimp, groupimp, maymove))
2444 break;
2445 }
2446 }
2447
task_numa_migrate(struct task_struct * p)2448 static int task_numa_migrate(struct task_struct *p)
2449 {
2450 struct task_numa_env env = {
2451 .p = p,
2452
2453 .src_cpu = task_cpu(p),
2454 .src_nid = task_node(p),
2455
2456 .imbalance_pct = 112,
2457
2458 .best_task = NULL,
2459 .best_imp = 0,
2460 .best_cpu = -1,
2461 };
2462 unsigned long taskweight, groupweight;
2463 struct sched_domain *sd;
2464 long taskimp, groupimp;
2465 struct numa_group *ng;
2466 struct rq *best_rq;
2467 int nid, ret, dist;
2468
2469 /*
2470 * Pick the lowest SD_NUMA domain, as that would have the smallest
2471 * imbalance and would be the first to start moving tasks about.
2472 *
2473 * And we want to avoid any moving of tasks about, as that would create
2474 * random movement of tasks -- counter the numa conditions we're trying
2475 * to satisfy here.
2476 */
2477 rcu_read_lock();
2478 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2479 if (sd) {
2480 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2481 env.imb_numa_nr = sd->imb_numa_nr;
2482 }
2483 rcu_read_unlock();
2484
2485 /*
2486 * Cpusets can break the scheduler domain tree into smaller
2487 * balance domains, some of which do not cross NUMA boundaries.
2488 * Tasks that are "trapped" in such domains cannot be migrated
2489 * elsewhere, so there is no point in (re)trying.
2490 */
2491 if (unlikely(!sd)) {
2492 sched_setnuma(p, task_node(p));
2493 return -EINVAL;
2494 }
2495
2496 env.dst_nid = p->numa_preferred_nid;
2497 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2498 taskweight = task_weight(p, env.src_nid, dist);
2499 groupweight = group_weight(p, env.src_nid, dist);
2500 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2501 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2502 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2503 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2504
2505 /* Try to find a spot on the preferred nid. */
2506 task_numa_find_cpu(&env, taskimp, groupimp);
2507
2508 /*
2509 * Look at other nodes in these cases:
2510 * - there is no space available on the preferred_nid
2511 * - the task is part of a numa_group that is interleaved across
2512 * multiple NUMA nodes; in order to better consolidate the group,
2513 * we need to check other locations.
2514 */
2515 ng = deref_curr_numa_group(p);
2516 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2517 for_each_node_state(nid, N_CPU) {
2518 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2519 continue;
2520
2521 dist = node_distance(env.src_nid, env.dst_nid);
2522 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2523 dist != env.dist) {
2524 taskweight = task_weight(p, env.src_nid, dist);
2525 groupweight = group_weight(p, env.src_nid, dist);
2526 }
2527
2528 /* Only consider nodes where both task and groups benefit */
2529 taskimp = task_weight(p, nid, dist) - taskweight;
2530 groupimp = group_weight(p, nid, dist) - groupweight;
2531 if (taskimp < 0 && groupimp < 0)
2532 continue;
2533
2534 env.dist = dist;
2535 env.dst_nid = nid;
2536 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2537 task_numa_find_cpu(&env, taskimp, groupimp);
2538 }
2539 }
2540
2541 /*
2542 * If the task is part of a workload that spans multiple NUMA nodes,
2543 * and is migrating into one of the workload's active nodes, remember
2544 * this node as the task's preferred numa node, so the workload can
2545 * settle down.
2546 * A task that migrated to a second choice node will be better off
2547 * trying for a better one later. Do not set the preferred node here.
2548 */
2549 if (ng) {
2550 if (env.best_cpu == -1)
2551 nid = env.src_nid;
2552 else
2553 nid = cpu_to_node(env.best_cpu);
2554
2555 if (nid != p->numa_preferred_nid)
2556 sched_setnuma(p, nid);
2557 }
2558
2559 /* No better CPU than the current one was found. */
2560 if (env.best_cpu == -1) {
2561 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2562 return -EAGAIN;
2563 }
2564
2565 best_rq = cpu_rq(env.best_cpu);
2566 if (env.best_task == NULL) {
2567 ret = migrate_task_to(p, env.best_cpu);
2568 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2569 if (ret != 0)
2570 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2571 return ret;
2572 }
2573
2574 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2575 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2576
2577 if (ret != 0)
2578 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2579 put_task_struct(env.best_task);
2580 return ret;
2581 }
2582
2583 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2584 static void numa_migrate_preferred(struct task_struct *p)
2585 {
2586 unsigned long interval = HZ;
2587
2588 /* This task has no NUMA fault statistics yet */
2589 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2590 return;
2591
2592 /* Periodically retry migrating the task to the preferred node */
2593 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2594 p->numa_migrate_retry = jiffies + interval;
2595
2596 /* Success if task is already running on preferred CPU */
2597 if (task_node(p) == p->numa_preferred_nid)
2598 return;
2599
2600 /* Otherwise, try migrate to a CPU on the preferred node */
2601 task_numa_migrate(p);
2602 }
2603
2604 /*
2605 * Find out how many nodes the workload is actively running on. Do this by
2606 * tracking the nodes from which NUMA hinting faults are triggered. This can
2607 * be different from the set of nodes where the workload's memory is currently
2608 * located.
2609 */
numa_group_count_active_nodes(struct numa_group * numa_group)2610 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2611 {
2612 unsigned long faults, max_faults = 0;
2613 int nid, active_nodes = 0;
2614
2615 for_each_node_state(nid, N_CPU) {
2616 faults = group_faults_cpu(numa_group, nid);
2617 if (faults > max_faults)
2618 max_faults = faults;
2619 }
2620
2621 for_each_node_state(nid, N_CPU) {
2622 faults = group_faults_cpu(numa_group, nid);
2623 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2624 active_nodes++;
2625 }
2626
2627 numa_group->max_faults_cpu = max_faults;
2628 numa_group->active_nodes = active_nodes;
2629 }
2630
2631 /*
2632 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2633 * increments. The more local the fault statistics are, the higher the scan
2634 * period will be for the next scan window. If local/(local+remote) ratio is
2635 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2636 * the scan period will decrease. Aim for 70% local accesses.
2637 */
2638 #define NUMA_PERIOD_SLOTS 10
2639 #define NUMA_PERIOD_THRESHOLD 7
2640
2641 /*
2642 * Increase the scan period (slow down scanning) if the majority of
2643 * our memory is already on our local node, or if the majority of
2644 * the page accesses are shared with other processes.
2645 * Otherwise, decrease the scan period.
2646 */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2647 static void update_task_scan_period(struct task_struct *p,
2648 unsigned long shared, unsigned long private)
2649 {
2650 unsigned int period_slot;
2651 int lr_ratio, ps_ratio;
2652 int diff;
2653
2654 unsigned long remote = p->numa_faults_locality[0];
2655 unsigned long local = p->numa_faults_locality[1];
2656
2657 /*
2658 * If there were no record hinting faults then either the task is
2659 * completely idle or all activity is in areas that are not of interest
2660 * to automatic numa balancing. Related to that, if there were failed
2661 * migration then it implies we are migrating too quickly or the local
2662 * node is overloaded. In either case, scan slower
2663 */
2664 if (local + shared == 0 || p->numa_faults_locality[2]) {
2665 p->numa_scan_period = min(p->numa_scan_period_max,
2666 p->numa_scan_period << 1);
2667
2668 p->mm->numa_next_scan = jiffies +
2669 msecs_to_jiffies(p->numa_scan_period);
2670
2671 return;
2672 }
2673
2674 /*
2675 * Prepare to scale scan period relative to the current period.
2676 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2677 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2678 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2679 */
2680 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2681 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2682 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2683
2684 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2685 /*
2686 * Most memory accesses are local. There is no need to
2687 * do fast NUMA scanning, since memory is already local.
2688 */
2689 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2690 if (!slot)
2691 slot = 1;
2692 diff = slot * period_slot;
2693 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2694 /*
2695 * Most memory accesses are shared with other tasks.
2696 * There is no point in continuing fast NUMA scanning,
2697 * since other tasks may just move the memory elsewhere.
2698 */
2699 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2700 if (!slot)
2701 slot = 1;
2702 diff = slot * period_slot;
2703 } else {
2704 /*
2705 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2706 * yet they are not on the local NUMA node. Speed up
2707 * NUMA scanning to get the memory moved over.
2708 */
2709 int ratio = max(lr_ratio, ps_ratio);
2710 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2711 }
2712
2713 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2714 task_scan_min(p), task_scan_max(p));
2715 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2716 }
2717
2718 /*
2719 * Get the fraction of time the task has been running since the last
2720 * NUMA placement cycle. The scheduler keeps similar statistics, but
2721 * decays those on a 32ms period, which is orders of magnitude off
2722 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2723 * stats only if the task is so new there are no NUMA statistics yet.
2724 */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2725 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2726 {
2727 u64 runtime, delta, now;
2728 /* Use the start of this time slice to avoid calculations. */
2729 now = p->se.exec_start;
2730 runtime = p->se.sum_exec_runtime;
2731
2732 if (p->last_task_numa_placement) {
2733 delta = runtime - p->last_sum_exec_runtime;
2734 *period = now - p->last_task_numa_placement;
2735
2736 /* Avoid time going backwards, prevent potential divide error: */
2737 if (unlikely((s64)*period < 0))
2738 *period = 0;
2739 } else {
2740 delta = p->se.avg.load_sum;
2741 *period = LOAD_AVG_MAX;
2742 }
2743
2744 p->last_sum_exec_runtime = runtime;
2745 p->last_task_numa_placement = now;
2746
2747 return delta;
2748 }
2749
2750 /*
2751 * Determine the preferred nid for a task in a numa_group. This needs to
2752 * be done in a way that produces consistent results with group_weight,
2753 * otherwise workloads might not converge.
2754 */
preferred_group_nid(struct task_struct * p,int nid)2755 static int preferred_group_nid(struct task_struct *p, int nid)
2756 {
2757 nodemask_t nodes;
2758 int dist;
2759
2760 /* Direct connections between all NUMA nodes. */
2761 if (sched_numa_topology_type == NUMA_DIRECT)
2762 return nid;
2763
2764 /*
2765 * On a system with glueless mesh NUMA topology, group_weight
2766 * scores nodes according to the number of NUMA hinting faults on
2767 * both the node itself, and on nearby nodes.
2768 */
2769 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2770 unsigned long score, max_score = 0;
2771 int node, max_node = nid;
2772
2773 dist = sched_max_numa_distance;
2774
2775 for_each_node_state(node, N_CPU) {
2776 score = group_weight(p, node, dist);
2777 if (score > max_score) {
2778 max_score = score;
2779 max_node = node;
2780 }
2781 }
2782 return max_node;
2783 }
2784
2785 /*
2786 * Finding the preferred nid in a system with NUMA backplane
2787 * interconnect topology is more involved. The goal is to locate
2788 * tasks from numa_groups near each other in the system, and
2789 * untangle workloads from different sides of the system. This requires
2790 * searching down the hierarchy of node groups, recursively searching
2791 * inside the highest scoring group of nodes. The nodemask tricks
2792 * keep the complexity of the search down.
2793 */
2794 nodes = node_states[N_CPU];
2795 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2796 unsigned long max_faults = 0;
2797 nodemask_t max_group = NODE_MASK_NONE;
2798 int a, b;
2799
2800 /* Are there nodes at this distance from each other? */
2801 if (!find_numa_distance(dist))
2802 continue;
2803
2804 for_each_node_mask(a, nodes) {
2805 unsigned long faults = 0;
2806 nodemask_t this_group;
2807 nodes_clear(this_group);
2808
2809 /* Sum group's NUMA faults; includes a==b case. */
2810 for_each_node_mask(b, nodes) {
2811 if (node_distance(a, b) < dist) {
2812 faults += group_faults(p, b);
2813 node_set(b, this_group);
2814 node_clear(b, nodes);
2815 }
2816 }
2817
2818 /* Remember the top group. */
2819 if (faults > max_faults) {
2820 max_faults = faults;
2821 max_group = this_group;
2822 /*
2823 * subtle: at the smallest distance there is
2824 * just one node left in each "group", the
2825 * winner is the preferred nid.
2826 */
2827 nid = a;
2828 }
2829 }
2830 /* Next round, evaluate the nodes within max_group. */
2831 if (!max_faults)
2832 break;
2833 nodes = max_group;
2834 }
2835 return nid;
2836 }
2837
task_numa_placement(struct task_struct * p)2838 static void task_numa_placement(struct task_struct *p)
2839 {
2840 int seq, nid, max_nid = NUMA_NO_NODE;
2841 unsigned long max_faults = 0;
2842 unsigned long fault_types[2] = { 0, 0 };
2843 unsigned long total_faults;
2844 u64 runtime, period;
2845 spinlock_t *group_lock = NULL;
2846 struct numa_group *ng;
2847
2848 /*
2849 * The p->mm->numa_scan_seq field gets updated without
2850 * exclusive access. Use READ_ONCE() here to ensure
2851 * that the field is read in a single access:
2852 */
2853 seq = READ_ONCE(p->mm->numa_scan_seq);
2854 if (p->numa_scan_seq == seq)
2855 return;
2856 p->numa_scan_seq = seq;
2857 p->numa_scan_period_max = task_scan_max(p);
2858
2859 total_faults = p->numa_faults_locality[0] +
2860 p->numa_faults_locality[1];
2861 runtime = numa_get_avg_runtime(p, &period);
2862
2863 /* If the task is part of a group prevent parallel updates to group stats */
2864 ng = deref_curr_numa_group(p);
2865 if (ng) {
2866 group_lock = &ng->lock;
2867 spin_lock_irq(group_lock);
2868 }
2869
2870 /* Find the node with the highest number of faults */
2871 for_each_online_node(nid) {
2872 /* Keep track of the offsets in numa_faults array */
2873 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2874 unsigned long faults = 0, group_faults = 0;
2875 int priv;
2876
2877 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2878 long diff, f_diff, f_weight;
2879
2880 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2881 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2882 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2883 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2884
2885 /* Decay existing window, copy faults since last scan */
2886 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2887 fault_types[priv] += p->numa_faults[membuf_idx];
2888 p->numa_faults[membuf_idx] = 0;
2889
2890 /*
2891 * Normalize the faults_from, so all tasks in a group
2892 * count according to CPU use, instead of by the raw
2893 * number of faults. Tasks with little runtime have
2894 * little over-all impact on throughput, and thus their
2895 * faults are less important.
2896 */
2897 f_weight = div64_u64(runtime << 16, period + 1);
2898 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2899 (total_faults + 1);
2900 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2901 p->numa_faults[cpubuf_idx] = 0;
2902
2903 p->numa_faults[mem_idx] += diff;
2904 p->numa_faults[cpu_idx] += f_diff;
2905 faults += p->numa_faults[mem_idx];
2906 p->total_numa_faults += diff;
2907 if (ng) {
2908 /*
2909 * safe because we can only change our own group
2910 *
2911 * mem_idx represents the offset for a given
2912 * nid and priv in a specific region because it
2913 * is at the beginning of the numa_faults array.
2914 */
2915 ng->faults[mem_idx] += diff;
2916 ng->faults[cpu_idx] += f_diff;
2917 ng->total_faults += diff;
2918 group_faults += ng->faults[mem_idx];
2919 }
2920 }
2921
2922 if (!ng) {
2923 if (faults > max_faults) {
2924 max_faults = faults;
2925 max_nid = nid;
2926 }
2927 } else if (group_faults > max_faults) {
2928 max_faults = group_faults;
2929 max_nid = nid;
2930 }
2931 }
2932
2933 /* Cannot migrate task to CPU-less node */
2934 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
2935 int near_nid = max_nid;
2936 int distance, near_distance = INT_MAX;
2937
2938 for_each_node_state(nid, N_CPU) {
2939 distance = node_distance(max_nid, nid);
2940 if (distance < near_distance) {
2941 near_nid = nid;
2942 near_distance = distance;
2943 }
2944 }
2945 max_nid = near_nid;
2946 }
2947
2948 if (ng) {
2949 numa_group_count_active_nodes(ng);
2950 spin_unlock_irq(group_lock);
2951 max_nid = preferred_group_nid(p, max_nid);
2952 }
2953
2954 if (max_faults) {
2955 /* Set the new preferred node */
2956 if (max_nid != p->numa_preferred_nid)
2957 sched_setnuma(p, max_nid);
2958 }
2959
2960 update_task_scan_period(p, fault_types[0], fault_types[1]);
2961 }
2962
get_numa_group(struct numa_group * grp)2963 static inline int get_numa_group(struct numa_group *grp)
2964 {
2965 return refcount_inc_not_zero(&grp->refcount);
2966 }
2967
put_numa_group(struct numa_group * grp)2968 static inline void put_numa_group(struct numa_group *grp)
2969 {
2970 if (refcount_dec_and_test(&grp->refcount))
2971 kfree_rcu(grp, rcu);
2972 }
2973
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)2974 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2975 int *priv)
2976 {
2977 struct numa_group *grp, *my_grp;
2978 struct task_struct *tsk;
2979 bool join = false;
2980 int cpu = cpupid_to_cpu(cpupid);
2981 int i;
2982
2983 if (unlikely(!deref_curr_numa_group(p))) {
2984 unsigned int size = sizeof(struct numa_group) +
2985 NR_NUMA_HINT_FAULT_STATS *
2986 nr_node_ids * sizeof(unsigned long);
2987
2988 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2989 if (!grp)
2990 return;
2991
2992 refcount_set(&grp->refcount, 1);
2993 grp->active_nodes = 1;
2994 grp->max_faults_cpu = 0;
2995 spin_lock_init(&grp->lock);
2996 grp->gid = p->pid;
2997
2998 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2999 grp->faults[i] = p->numa_faults[i];
3000
3001 grp->total_faults = p->total_numa_faults;
3002
3003 grp->nr_tasks++;
3004 rcu_assign_pointer(p->numa_group, grp);
3005 }
3006
3007 rcu_read_lock();
3008 tsk = READ_ONCE(cpu_rq(cpu)->curr);
3009
3010 if (!cpupid_match_pid(tsk, cpupid))
3011 goto no_join;
3012
3013 grp = rcu_dereference(tsk->numa_group);
3014 if (!grp)
3015 goto no_join;
3016
3017 my_grp = deref_curr_numa_group(p);
3018 if (grp == my_grp)
3019 goto no_join;
3020
3021 /*
3022 * Only join the other group if its bigger; if we're the bigger group,
3023 * the other task will join us.
3024 */
3025 if (my_grp->nr_tasks > grp->nr_tasks)
3026 goto no_join;
3027
3028 /*
3029 * Tie-break on the grp address.
3030 */
3031 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3032 goto no_join;
3033
3034 /* Always join threads in the same process. */
3035 if (tsk->mm == current->mm)
3036 join = true;
3037
3038 /* Simple filter to avoid false positives due to PID collisions */
3039 if (flags & TNF_SHARED)
3040 join = true;
3041
3042 /* Update priv based on whether false sharing was detected */
3043 *priv = !join;
3044
3045 if (join && !get_numa_group(grp))
3046 goto no_join;
3047
3048 rcu_read_unlock();
3049
3050 if (!join)
3051 return;
3052
3053 WARN_ON_ONCE(irqs_disabled());
3054 double_lock_irq(&my_grp->lock, &grp->lock);
3055
3056 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3057 my_grp->faults[i] -= p->numa_faults[i];
3058 grp->faults[i] += p->numa_faults[i];
3059 }
3060 my_grp->total_faults -= p->total_numa_faults;
3061 grp->total_faults += p->total_numa_faults;
3062
3063 my_grp->nr_tasks--;
3064 grp->nr_tasks++;
3065
3066 spin_unlock(&my_grp->lock);
3067 spin_unlock_irq(&grp->lock);
3068
3069 rcu_assign_pointer(p->numa_group, grp);
3070
3071 put_numa_group(my_grp);
3072 return;
3073
3074 no_join:
3075 rcu_read_unlock();
3076 return;
3077 }
3078
3079 /*
3080 * Get rid of NUMA statistics associated with a task (either current or dead).
3081 * If @final is set, the task is dead and has reached refcount zero, so we can
3082 * safely free all relevant data structures. Otherwise, there might be
3083 * concurrent reads from places like load balancing and procfs, and we should
3084 * reset the data back to default state without freeing ->numa_faults.
3085 */
task_numa_free(struct task_struct * p,bool final)3086 void task_numa_free(struct task_struct *p, bool final)
3087 {
3088 /* safe: p either is current or is being freed by current */
3089 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3090 unsigned long *numa_faults = p->numa_faults;
3091 unsigned long flags;
3092 int i;
3093
3094 if (!numa_faults)
3095 return;
3096
3097 if (grp) {
3098 spin_lock_irqsave(&grp->lock, flags);
3099 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3100 grp->faults[i] -= p->numa_faults[i];
3101 grp->total_faults -= p->total_numa_faults;
3102
3103 grp->nr_tasks--;
3104 spin_unlock_irqrestore(&grp->lock, flags);
3105 RCU_INIT_POINTER(p->numa_group, NULL);
3106 put_numa_group(grp);
3107 }
3108
3109 if (final) {
3110 p->numa_faults = NULL;
3111 kfree(numa_faults);
3112 } else {
3113 p->total_numa_faults = 0;
3114 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3115 numa_faults[i] = 0;
3116 }
3117 }
3118
3119 /*
3120 * Got a PROT_NONE fault for a page on @node.
3121 */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)3122 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3123 {
3124 struct task_struct *p = current;
3125 bool migrated = flags & TNF_MIGRATED;
3126 int cpu_node = task_node(current);
3127 int local = !!(flags & TNF_FAULT_LOCAL);
3128 struct numa_group *ng;
3129 int priv;
3130
3131 if (!static_branch_likely(&sched_numa_balancing))
3132 return;
3133
3134 /* for example, ksmd faulting in a user's mm */
3135 if (!p->mm)
3136 return;
3137
3138 /*
3139 * NUMA faults statistics are unnecessary for the slow memory
3140 * node for memory tiering mode.
3141 */
3142 if (!node_is_toptier(mem_node) &&
3143 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3144 !cpupid_valid(last_cpupid)))
3145 return;
3146
3147 /* Allocate buffer to track faults on a per-node basis */
3148 if (unlikely(!p->numa_faults)) {
3149 int size = sizeof(*p->numa_faults) *
3150 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3151
3152 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3153 if (!p->numa_faults)
3154 return;
3155
3156 p->total_numa_faults = 0;
3157 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3158 }
3159
3160 /*
3161 * First accesses are treated as private, otherwise consider accesses
3162 * to be private if the accessing pid has not changed
3163 */
3164 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3165 priv = 1;
3166 } else {
3167 priv = cpupid_match_pid(p, last_cpupid);
3168 if (!priv && !(flags & TNF_NO_GROUP))
3169 task_numa_group(p, last_cpupid, flags, &priv);
3170 }
3171
3172 /*
3173 * If a workload spans multiple NUMA nodes, a shared fault that
3174 * occurs wholly within the set of nodes that the workload is
3175 * actively using should be counted as local. This allows the
3176 * scan rate to slow down when a workload has settled down.
3177 */
3178 ng = deref_curr_numa_group(p);
3179 if (!priv && !local && ng && ng->active_nodes > 1 &&
3180 numa_is_active_node(cpu_node, ng) &&
3181 numa_is_active_node(mem_node, ng))
3182 local = 1;
3183
3184 /*
3185 * Retry to migrate task to preferred node periodically, in case it
3186 * previously failed, or the scheduler moved us.
3187 */
3188 if (time_after(jiffies, p->numa_migrate_retry)) {
3189 task_numa_placement(p);
3190 numa_migrate_preferred(p);
3191 }
3192
3193 if (migrated)
3194 p->numa_pages_migrated += pages;
3195 if (flags & TNF_MIGRATE_FAIL)
3196 p->numa_faults_locality[2] += pages;
3197
3198 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3199 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3200 p->numa_faults_locality[local] += pages;
3201 }
3202
reset_ptenuma_scan(struct task_struct * p)3203 static void reset_ptenuma_scan(struct task_struct *p)
3204 {
3205 /*
3206 * We only did a read acquisition of the mmap sem, so
3207 * p->mm->numa_scan_seq is written to without exclusive access
3208 * and the update is not guaranteed to be atomic. That's not
3209 * much of an issue though, since this is just used for
3210 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3211 * expensive, to avoid any form of compiler optimizations:
3212 */
3213 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3214 p->mm->numa_scan_offset = 0;
3215 }
3216
vma_is_accessed(struct mm_struct * mm,struct vm_area_struct * vma)3217 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3218 {
3219 unsigned long pids;
3220 /*
3221 * Allow unconditional access first two times, so that all the (pages)
3222 * of VMAs get prot_none fault introduced irrespective of accesses.
3223 * This is also done to avoid any side effect of task scanning
3224 * amplifying the unfairness of disjoint set of VMAs' access.
3225 */
3226 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3227 return true;
3228
3229 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3230 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3231 return true;
3232
3233 /*
3234 * Complete a scan that has already started regardless of PID access, or
3235 * some VMAs may never be scanned in multi-threaded applications:
3236 */
3237 if (mm->numa_scan_offset > vma->vm_start) {
3238 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3239 return true;
3240 }
3241
3242 /*
3243 * This vma has not been accessed for a while, and if the number
3244 * the threads in the same process is low, which means no other
3245 * threads can help scan this vma, force a vma scan.
3246 */
3247 if (READ_ONCE(mm->numa_scan_seq) >
3248 (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3249 return true;
3250
3251 return false;
3252 }
3253
3254 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3255
3256 /*
3257 * The expensive part of numa migration is done from task_work context.
3258 * Triggered from task_tick_numa().
3259 */
task_numa_work(struct callback_head * work)3260 static void task_numa_work(struct callback_head *work)
3261 {
3262 unsigned long migrate, next_scan, now = jiffies;
3263 struct task_struct *p = current;
3264 struct mm_struct *mm = p->mm;
3265 u64 runtime = p->se.sum_exec_runtime;
3266 struct vm_area_struct *vma;
3267 unsigned long start, end;
3268 unsigned long nr_pte_updates = 0;
3269 long pages, virtpages;
3270 struct vma_iterator vmi;
3271 bool vma_pids_skipped;
3272 bool vma_pids_forced = false;
3273
3274 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3275
3276 work->next = work;
3277 /*
3278 * Who cares about NUMA placement when they're dying.
3279 *
3280 * NOTE: make sure not to dereference p->mm before this check,
3281 * exit_task_work() happens _after_ exit_mm() so we could be called
3282 * without p->mm even though we still had it when we enqueued this
3283 * work.
3284 */
3285 if (p->flags & PF_EXITING)
3286 return;
3287
3288 if (!mm->numa_next_scan) {
3289 mm->numa_next_scan = now +
3290 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3291 }
3292
3293 /*
3294 * Enforce maximal scan/migration frequency..
3295 */
3296 migrate = mm->numa_next_scan;
3297 if (time_before(now, migrate))
3298 return;
3299
3300 if (p->numa_scan_period == 0) {
3301 p->numa_scan_period_max = task_scan_max(p);
3302 p->numa_scan_period = task_scan_start(p);
3303 }
3304
3305 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3306 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3307 return;
3308
3309 /*
3310 * Delay this task enough that another task of this mm will likely win
3311 * the next time around.
3312 */
3313 p->node_stamp += 2 * TICK_NSEC;
3314
3315 pages = sysctl_numa_balancing_scan_size;
3316 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3317 virtpages = pages * 8; /* Scan up to this much virtual space */
3318 if (!pages)
3319 return;
3320
3321
3322 if (!mmap_read_trylock(mm))
3323 return;
3324
3325 /*
3326 * VMAs are skipped if the current PID has not trapped a fault within
3327 * the VMA recently. Allow scanning to be forced if there is no
3328 * suitable VMA remaining.
3329 */
3330 vma_pids_skipped = false;
3331
3332 retry_pids:
3333 start = mm->numa_scan_offset;
3334 vma_iter_init(&vmi, mm, start);
3335 vma = vma_next(&vmi);
3336 if (!vma) {
3337 reset_ptenuma_scan(p);
3338 start = 0;
3339 vma_iter_set(&vmi, start);
3340 vma = vma_next(&vmi);
3341 }
3342
3343 for (; vma; vma = vma_next(&vmi)) {
3344 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3345 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3346 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3347 continue;
3348 }
3349
3350 /*
3351 * Shared library pages mapped by multiple processes are not
3352 * migrated as it is expected they are cache replicated. Avoid
3353 * hinting faults in read-only file-backed mappings or the vdso
3354 * as migrating the pages will be of marginal benefit.
3355 */
3356 if (!vma->vm_mm ||
3357 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3358 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3359 continue;
3360 }
3361
3362 /*
3363 * Skip inaccessible VMAs to avoid any confusion between
3364 * PROT_NONE and NUMA hinting ptes
3365 */
3366 if (!vma_is_accessible(vma)) {
3367 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3368 continue;
3369 }
3370
3371 /* Initialise new per-VMA NUMAB state. */
3372 if (!vma->numab_state) {
3373 struct vma_numab_state *ptr;
3374
3375 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL);
3376 if (!ptr)
3377 continue;
3378
3379 if (cmpxchg(&vma->numab_state, NULL, ptr)) {
3380 kfree(ptr);
3381 continue;
3382 }
3383
3384 vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3385
3386 vma->numab_state->next_scan = now +
3387 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3388
3389 /* Reset happens after 4 times scan delay of scan start */
3390 vma->numab_state->pids_active_reset = vma->numab_state->next_scan +
3391 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3392
3393 /*
3394 * Ensure prev_scan_seq does not match numa_scan_seq,
3395 * to prevent VMAs being skipped prematurely on the
3396 * first scan:
3397 */
3398 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3399 }
3400
3401 /*
3402 * Scanning the VMA's of short lived tasks add more overhead. So
3403 * delay the scan for new VMAs.
3404 */
3405 if (mm->numa_scan_seq && time_before(jiffies,
3406 vma->numab_state->next_scan)) {
3407 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3408 continue;
3409 }
3410
3411 /* RESET access PIDs regularly for old VMAs. */
3412 if (mm->numa_scan_seq &&
3413 time_after(jiffies, vma->numab_state->pids_active_reset)) {
3414 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3415 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3416 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3417 vma->numab_state->pids_active[1] = 0;
3418 }
3419
3420 /* Do not rescan VMAs twice within the same sequence. */
3421 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3422 mm->numa_scan_offset = vma->vm_end;
3423 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3424 continue;
3425 }
3426
3427 /*
3428 * Do not scan the VMA if task has not accessed it, unless no other
3429 * VMA candidate exists.
3430 */
3431 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3432 vma_pids_skipped = true;
3433 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3434 continue;
3435 }
3436
3437 do {
3438 start = max(start, vma->vm_start);
3439 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3440 end = min(end, vma->vm_end);
3441 nr_pte_updates = change_prot_numa(vma, start, end);
3442
3443 /*
3444 * Try to scan sysctl_numa_balancing_size worth of
3445 * hpages that have at least one present PTE that
3446 * is not already pte-numa. If the VMA contains
3447 * areas that are unused or already full of prot_numa
3448 * PTEs, scan up to virtpages, to skip through those
3449 * areas faster.
3450 */
3451 if (nr_pte_updates)
3452 pages -= (end - start) >> PAGE_SHIFT;
3453 virtpages -= (end - start) >> PAGE_SHIFT;
3454
3455 start = end;
3456 if (pages <= 0 || virtpages <= 0)
3457 goto out;
3458
3459 cond_resched();
3460 } while (end != vma->vm_end);
3461
3462 /* VMA scan is complete, do not scan until next sequence. */
3463 vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3464
3465 /*
3466 * Only force scan within one VMA at a time, to limit the
3467 * cost of scanning a potentially uninteresting VMA.
3468 */
3469 if (vma_pids_forced)
3470 break;
3471 }
3472
3473 /*
3474 * If no VMAs are remaining and VMAs were skipped due to the PID
3475 * not accessing the VMA previously, then force a scan to ensure
3476 * forward progress:
3477 */
3478 if (!vma && !vma_pids_forced && vma_pids_skipped) {
3479 vma_pids_forced = true;
3480 goto retry_pids;
3481 }
3482
3483 out:
3484 /*
3485 * It is possible to reach the end of the VMA list but the last few
3486 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3487 * would find the !migratable VMA on the next scan but not reset the
3488 * scanner to the start so check it now.
3489 */
3490 if (vma)
3491 mm->numa_scan_offset = start;
3492 else
3493 reset_ptenuma_scan(p);
3494 mmap_read_unlock(mm);
3495
3496 /*
3497 * Make sure tasks use at least 32x as much time to run other code
3498 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3499 * Usually update_task_scan_period slows down scanning enough; on an
3500 * overloaded system we need to limit overhead on a per task basis.
3501 */
3502 if (unlikely(p->se.sum_exec_runtime != runtime)) {
3503 u64 diff = p->se.sum_exec_runtime - runtime;
3504 p->node_stamp += 32 * diff;
3505 }
3506 }
3507
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)3508 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3509 {
3510 int mm_users = 0;
3511 struct mm_struct *mm = p->mm;
3512
3513 if (mm) {
3514 mm_users = atomic_read(&mm->mm_users);
3515 if (mm_users == 1) {
3516 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3517 mm->numa_scan_seq = 0;
3518 }
3519 }
3520 p->node_stamp = 0;
3521 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
3522 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
3523 p->numa_migrate_retry = 0;
3524 /* Protect against double add, see task_tick_numa and task_numa_work */
3525 p->numa_work.next = &p->numa_work;
3526 p->numa_faults = NULL;
3527 p->numa_pages_migrated = 0;
3528 p->total_numa_faults = 0;
3529 RCU_INIT_POINTER(p->numa_group, NULL);
3530 p->last_task_numa_placement = 0;
3531 p->last_sum_exec_runtime = 0;
3532
3533 init_task_work(&p->numa_work, task_numa_work);
3534
3535 /* New address space, reset the preferred nid */
3536 if (!(clone_flags & CLONE_VM)) {
3537 p->numa_preferred_nid = NUMA_NO_NODE;
3538 return;
3539 }
3540
3541 /*
3542 * New thread, keep existing numa_preferred_nid which should be copied
3543 * already by arch_dup_task_struct but stagger when scans start.
3544 */
3545 if (mm) {
3546 unsigned int delay;
3547
3548 delay = min_t(unsigned int, task_scan_max(current),
3549 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3550 delay += 2 * TICK_NSEC;
3551 p->node_stamp = delay;
3552 }
3553 }
3554
3555 /*
3556 * Drive the periodic memory faults..
3557 */
task_tick_numa(struct rq * rq,struct task_struct * curr)3558 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3559 {
3560 struct callback_head *work = &curr->numa_work;
3561 u64 period, now;
3562
3563 /*
3564 * We don't care about NUMA placement if we don't have memory.
3565 */
3566 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3567 return;
3568
3569 /*
3570 * Using runtime rather than walltime has the dual advantage that
3571 * we (mostly) drive the selection from busy threads and that the
3572 * task needs to have done some actual work before we bother with
3573 * NUMA placement.
3574 */
3575 now = curr->se.sum_exec_runtime;
3576 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3577
3578 if (now > curr->node_stamp + period) {
3579 if (!curr->node_stamp)
3580 curr->numa_scan_period = task_scan_start(curr);
3581 curr->node_stamp += period;
3582
3583 if (!time_before(jiffies, curr->mm->numa_next_scan))
3584 task_work_add(curr, work, TWA_RESUME);
3585 }
3586 }
3587
update_scan_period(struct task_struct * p,int new_cpu)3588 static void update_scan_period(struct task_struct *p, int new_cpu)
3589 {
3590 int src_nid = cpu_to_node(task_cpu(p));
3591 int dst_nid = cpu_to_node(new_cpu);
3592
3593 if (!static_branch_likely(&sched_numa_balancing))
3594 return;
3595
3596 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3597 return;
3598
3599 if (src_nid == dst_nid)
3600 return;
3601
3602 /*
3603 * Allow resets if faults have been trapped before one scan
3604 * has completed. This is most likely due to a new task that
3605 * is pulled cross-node due to wakeups or load balancing.
3606 */
3607 if (p->numa_scan_seq) {
3608 /*
3609 * Avoid scan adjustments if moving to the preferred
3610 * node or if the task was not previously running on
3611 * the preferred node.
3612 */
3613 if (dst_nid == p->numa_preferred_nid ||
3614 (p->numa_preferred_nid != NUMA_NO_NODE &&
3615 src_nid != p->numa_preferred_nid))
3616 return;
3617 }
3618
3619 p->numa_scan_period = task_scan_start(p);
3620 }
3621
3622 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)3623 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3624 {
3625 }
3626
account_numa_enqueue(struct rq * rq,struct task_struct * p)3627 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3628 {
3629 }
3630
account_numa_dequeue(struct rq * rq,struct task_struct * p)3631 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3632 {
3633 }
3634
update_scan_period(struct task_struct * p,int new_cpu)3635 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3636 {
3637 }
3638
3639 #endif /* CONFIG_NUMA_BALANCING */
3640
3641 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3642 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3643 {
3644 update_load_add(&cfs_rq->load, se->load.weight);
3645 #ifdef CONFIG_SMP
3646 if (entity_is_task(se)) {
3647 struct rq *rq = rq_of(cfs_rq);
3648
3649 account_numa_enqueue(rq, task_of(se));
3650 list_add(&se->group_node, &rq->cfs_tasks);
3651 }
3652 #endif
3653 cfs_rq->nr_running++;
3654 if (se_is_idle(se))
3655 cfs_rq->idle_nr_running++;
3656 }
3657
3658 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3659 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3660 {
3661 update_load_sub(&cfs_rq->load, se->load.weight);
3662 #ifdef CONFIG_SMP
3663 if (entity_is_task(se)) {
3664 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3665 list_del_init(&se->group_node);
3666 }
3667 #endif
3668 cfs_rq->nr_running--;
3669 if (se_is_idle(se))
3670 cfs_rq->idle_nr_running--;
3671 }
3672
3673 /*
3674 * Signed add and clamp on underflow.
3675 *
3676 * Explicitly do a load-store to ensure the intermediate value never hits
3677 * memory. This allows lockless observations without ever seeing the negative
3678 * values.
3679 */
3680 #define add_positive(_ptr, _val) do { \
3681 typeof(_ptr) ptr = (_ptr); \
3682 typeof(_val) val = (_val); \
3683 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3684 \
3685 res = var + val; \
3686 \
3687 if (val < 0 && res > var) \
3688 res = 0; \
3689 \
3690 WRITE_ONCE(*ptr, res); \
3691 } while (0)
3692
3693 /*
3694 * Unsigned subtract and clamp on underflow.
3695 *
3696 * Explicitly do a load-store to ensure the intermediate value never hits
3697 * memory. This allows lockless observations without ever seeing the negative
3698 * values.
3699 */
3700 #define sub_positive(_ptr, _val) do { \
3701 typeof(_ptr) ptr = (_ptr); \
3702 typeof(*ptr) val = (_val); \
3703 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3704 res = var - val; \
3705 if (res > var) \
3706 res = 0; \
3707 WRITE_ONCE(*ptr, res); \
3708 } while (0)
3709
3710 /*
3711 * Remove and clamp on negative, from a local variable.
3712 *
3713 * A variant of sub_positive(), which does not use explicit load-store
3714 * and is thus optimized for local variable updates.
3715 */
3716 #define lsub_positive(_ptr, _val) do { \
3717 typeof(_ptr) ptr = (_ptr); \
3718 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3719 } while (0)
3720
3721 #ifdef CONFIG_SMP
3722 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3723 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3724 {
3725 cfs_rq->avg.load_avg += se->avg.load_avg;
3726 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3727 }
3728
3729 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3730 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3731 {
3732 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3733 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3734 /* See update_cfs_rq_load_avg() */
3735 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3736 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3737 }
3738 #else
3739 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3740 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3741 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3742 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3743 #endif
3744
reweight_eevdf(struct sched_entity * se,u64 avruntime,unsigned long weight)3745 static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
3746 unsigned long weight)
3747 {
3748 unsigned long old_weight = se->load.weight;
3749 s64 vlag, vslice;
3750
3751 /*
3752 * VRUNTIME
3753 * ========
3754 *
3755 * COROLLARY #1: The virtual runtime of the entity needs to be
3756 * adjusted if re-weight at !0-lag point.
3757 *
3758 * Proof: For contradiction assume this is not true, so we can
3759 * re-weight without changing vruntime at !0-lag point.
3760 *
3761 * Weight VRuntime Avg-VRuntime
3762 * before w v V
3763 * after w' v' V'
3764 *
3765 * Since lag needs to be preserved through re-weight:
3766 *
3767 * lag = (V - v)*w = (V'- v')*w', where v = v'
3768 * ==> V' = (V - v)*w/w' + v (1)
3769 *
3770 * Let W be the total weight of the entities before reweight,
3771 * since V' is the new weighted average of entities:
3772 *
3773 * V' = (WV + w'v - wv) / (W + w' - w) (2)
3774 *
3775 * by using (1) & (2) we obtain:
3776 *
3777 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3778 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3779 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3780 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3781 *
3782 * Since we are doing at !0-lag point which means V != v, we
3783 * can simplify (3):
3784 *
3785 * ==> W / (W + w' - w) = w / w'
3786 * ==> Ww' = Ww + ww' - ww
3787 * ==> W * (w' - w) = w * (w' - w)
3788 * ==> W = w (re-weight indicates w' != w)
3789 *
3790 * So the cfs_rq contains only one entity, hence vruntime of
3791 * the entity @v should always equal to the cfs_rq's weighted
3792 * average vruntime @V, which means we will always re-weight
3793 * at 0-lag point, thus breach assumption. Proof completed.
3794 *
3795 *
3796 * COROLLARY #2: Re-weight does NOT affect weighted average
3797 * vruntime of all the entities.
3798 *
3799 * Proof: According to corollary #1, Eq. (1) should be:
3800 *
3801 * (V - v)*w = (V' - v')*w'
3802 * ==> v' = V' - (V - v)*w/w' (4)
3803 *
3804 * According to the weighted average formula, we have:
3805 *
3806 * V' = (WV - wv + w'v') / (W - w + w')
3807 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3808 * = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3809 * = (WV + w'V' - Vw) / (W - w + w')
3810 *
3811 * ==> V'*(W - w + w') = WV + w'V' - Vw
3812 * ==> V' * (W - w) = (W - w) * V (5)
3813 *
3814 * If the entity is the only one in the cfs_rq, then reweight
3815 * always occurs at 0-lag point, so V won't change. Or else
3816 * there are other entities, hence W != w, then Eq. (5) turns
3817 * into V' = V. So V won't change in either case, proof done.
3818 *
3819 *
3820 * So according to corollary #1 & #2, the effect of re-weight
3821 * on vruntime should be:
3822 *
3823 * v' = V' - (V - v) * w / w' (4)
3824 * = V - (V - v) * w / w'
3825 * = V - vl * w / w'
3826 * = V - vl'
3827 */
3828 if (avruntime != se->vruntime) {
3829 vlag = entity_lag(avruntime, se);
3830 vlag = div_s64(vlag * old_weight, weight);
3831 se->vruntime = avruntime - vlag;
3832 }
3833
3834 /*
3835 * DEADLINE
3836 * ========
3837 *
3838 * When the weight changes, the virtual time slope changes and
3839 * we should adjust the relative virtual deadline accordingly.
3840 *
3841 * d' = v' + (d - v)*w/w'
3842 * = V' - (V - v)*w/w' + (d - v)*w/w'
3843 * = V - (V - v)*w/w' + (d - v)*w/w'
3844 * = V + (d - V)*w/w'
3845 */
3846 vslice = (s64)(se->deadline - avruntime);
3847 vslice = div_s64(vslice * old_weight, weight);
3848 se->deadline = avruntime + vslice;
3849 }
3850
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3851 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3852 unsigned long weight)
3853 {
3854 bool curr = cfs_rq->curr == se;
3855 u64 avruntime;
3856
3857 if (se->on_rq) {
3858 /* commit outstanding execution time */
3859 update_curr(cfs_rq);
3860 avruntime = avg_vruntime(cfs_rq);
3861 if (!curr)
3862 __dequeue_entity(cfs_rq, se);
3863 update_load_sub(&cfs_rq->load, se->load.weight);
3864 }
3865 dequeue_load_avg(cfs_rq, se);
3866
3867 if (se->on_rq) {
3868 reweight_eevdf(se, avruntime, weight);
3869 } else {
3870 /*
3871 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3872 * we need to scale se->vlag when w_i changes.
3873 */
3874 se->vlag = div_s64(se->vlag * se->load.weight, weight);
3875 }
3876
3877 update_load_set(&se->load, weight);
3878
3879 #ifdef CONFIG_SMP
3880 do {
3881 u32 divider = get_pelt_divider(&se->avg);
3882
3883 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3884 } while (0);
3885 #endif
3886
3887 enqueue_load_avg(cfs_rq, se);
3888 if (se->on_rq) {
3889 update_load_add(&cfs_rq->load, se->load.weight);
3890 if (!curr)
3891 __enqueue_entity(cfs_rq, se);
3892
3893 /*
3894 * The entity's vruntime has been adjusted, so let's check
3895 * whether the rq-wide min_vruntime needs updated too. Since
3896 * the calculations above require stable min_vruntime rather
3897 * than up-to-date one, we do the update at the end of the
3898 * reweight process.
3899 */
3900 update_min_vruntime(cfs_rq);
3901 }
3902 }
3903
reweight_task(struct task_struct * p,const struct load_weight * lw)3904 void reweight_task(struct task_struct *p, const struct load_weight *lw)
3905 {
3906 struct sched_entity *se = &p->se;
3907 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3908 struct load_weight *load = &se->load;
3909
3910 reweight_entity(cfs_rq, se, lw->weight);
3911 load->inv_weight = lw->inv_weight;
3912 }
3913
3914 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3915
3916 #ifdef CONFIG_FAIR_GROUP_SCHED
3917 #ifdef CONFIG_SMP
3918 /*
3919 * All this does is approximate the hierarchical proportion which includes that
3920 * global sum we all love to hate.
3921 *
3922 * That is, the weight of a group entity, is the proportional share of the
3923 * group weight based on the group runqueue weights. That is:
3924 *
3925 * tg->weight * grq->load.weight
3926 * ge->load.weight = ----------------------------- (1)
3927 * \Sum grq->load.weight
3928 *
3929 * Now, because computing that sum is prohibitively expensive to compute (been
3930 * there, done that) we approximate it with this average stuff. The average
3931 * moves slower and therefore the approximation is cheaper and more stable.
3932 *
3933 * So instead of the above, we substitute:
3934 *
3935 * grq->load.weight -> grq->avg.load_avg (2)
3936 *
3937 * which yields the following:
3938 *
3939 * tg->weight * grq->avg.load_avg
3940 * ge->load.weight = ------------------------------ (3)
3941 * tg->load_avg
3942 *
3943 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3944 *
3945 * That is shares_avg, and it is right (given the approximation (2)).
3946 *
3947 * The problem with it is that because the average is slow -- it was designed
3948 * to be exactly that of course -- this leads to transients in boundary
3949 * conditions. In specific, the case where the group was idle and we start the
3950 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3951 * yielding bad latency etc..
3952 *
3953 * Now, in that special case (1) reduces to:
3954 *
3955 * tg->weight * grq->load.weight
3956 * ge->load.weight = ----------------------------- = tg->weight (4)
3957 * grp->load.weight
3958 *
3959 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3960 *
3961 * So what we do is modify our approximation (3) to approach (4) in the (near)
3962 * UP case, like:
3963 *
3964 * ge->load.weight =
3965 *
3966 * tg->weight * grq->load.weight
3967 * --------------------------------------------------- (5)
3968 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3969 *
3970 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3971 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3972 *
3973 *
3974 * tg->weight * grq->load.weight
3975 * ge->load.weight = ----------------------------- (6)
3976 * tg_load_avg'
3977 *
3978 * Where:
3979 *
3980 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3981 * max(grq->load.weight, grq->avg.load_avg)
3982 *
3983 * And that is shares_weight and is icky. In the (near) UP case it approaches
3984 * (4) while in the normal case it approaches (3). It consistently
3985 * overestimates the ge->load.weight and therefore:
3986 *
3987 * \Sum ge->load.weight >= tg->weight
3988 *
3989 * hence icky!
3990 */
calc_group_shares(struct cfs_rq * cfs_rq)3991 static long calc_group_shares(struct cfs_rq *cfs_rq)
3992 {
3993 long tg_weight, tg_shares, load, shares;
3994 struct task_group *tg = cfs_rq->tg;
3995
3996 tg_shares = READ_ONCE(tg->shares);
3997
3998 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3999
4000 tg_weight = atomic_long_read(&tg->load_avg);
4001
4002 /* Ensure tg_weight >= load */
4003 tg_weight -= cfs_rq->tg_load_avg_contrib;
4004 tg_weight += load;
4005
4006 shares = (tg_shares * load);
4007 if (tg_weight)
4008 shares /= tg_weight;
4009
4010 /*
4011 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
4012 * of a group with small tg->shares value. It is a floor value which is
4013 * assigned as a minimum load.weight to the sched_entity representing
4014 * the group on a CPU.
4015 *
4016 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
4017 * on an 8-core system with 8 tasks each runnable on one CPU shares has
4018 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
4019 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
4020 * instead of 0.
4021 */
4022 return clamp_t(long, shares, MIN_SHARES, tg_shares);
4023 }
4024 #endif /* CONFIG_SMP */
4025
4026 /*
4027 * Recomputes the group entity based on the current state of its group
4028 * runqueue.
4029 */
update_cfs_group(struct sched_entity * se)4030 static void update_cfs_group(struct sched_entity *se)
4031 {
4032 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4033 long shares;
4034
4035 if (!gcfs_rq)
4036 return;
4037
4038 if (throttled_hierarchy(gcfs_rq))
4039 return;
4040
4041 #ifndef CONFIG_SMP
4042 shares = READ_ONCE(gcfs_rq->tg->shares);
4043 #else
4044 shares = calc_group_shares(gcfs_rq);
4045 #endif
4046 if (unlikely(se->load.weight != shares))
4047 reweight_entity(cfs_rq_of(se), se, shares);
4048 }
4049
4050 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)4051 static inline void update_cfs_group(struct sched_entity *se)
4052 {
4053 }
4054 #endif /* CONFIG_FAIR_GROUP_SCHED */
4055
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)4056 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
4057 {
4058 struct rq *rq = rq_of(cfs_rq);
4059
4060 if (&rq->cfs == cfs_rq) {
4061 /*
4062 * There are a few boundary cases this might miss but it should
4063 * get called often enough that that should (hopefully) not be
4064 * a real problem.
4065 *
4066 * It will not get called when we go idle, because the idle
4067 * thread is a different class (!fair), nor will the utilization
4068 * number include things like RT tasks.
4069 *
4070 * As is, the util number is not freq-invariant (we'd have to
4071 * implement arch_scale_freq_capacity() for that).
4072 *
4073 * See cpu_util_cfs().
4074 */
4075 cpufreq_update_util(rq, flags);
4076 }
4077 }
4078
4079 #ifdef CONFIG_SMP
load_avg_is_decayed(struct sched_avg * sa)4080 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4081 {
4082 if (sa->load_sum)
4083 return false;
4084
4085 if (sa->util_sum)
4086 return false;
4087
4088 if (sa->runnable_sum)
4089 return false;
4090
4091 /*
4092 * _avg must be null when _sum are null because _avg = _sum / divider
4093 * Make sure that rounding and/or propagation of PELT values never
4094 * break this.
4095 */
4096 SCHED_WARN_ON(sa->load_avg ||
4097 sa->util_avg ||
4098 sa->runnable_avg);
4099
4100 return true;
4101 }
4102
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)4103 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4104 {
4105 return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4106 cfs_rq->last_update_time_copy);
4107 }
4108 #ifdef CONFIG_FAIR_GROUP_SCHED
4109 /*
4110 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4111 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4112 * bottom-up, we only have to test whether the cfs_rq before us on the list
4113 * is our child.
4114 * If cfs_rq is not on the list, test whether a child needs its to be added to
4115 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
4116 */
child_cfs_rq_on_list(struct cfs_rq * cfs_rq)4117 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4118 {
4119 struct cfs_rq *prev_cfs_rq;
4120 struct list_head *prev;
4121
4122 if (cfs_rq->on_list) {
4123 prev = cfs_rq->leaf_cfs_rq_list.prev;
4124 } else {
4125 struct rq *rq = rq_of(cfs_rq);
4126
4127 prev = rq->tmp_alone_branch;
4128 }
4129
4130 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4131
4132 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4133 }
4134
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)4135 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4136 {
4137 if (cfs_rq->load.weight)
4138 return false;
4139
4140 if (!load_avg_is_decayed(&cfs_rq->avg))
4141 return false;
4142
4143 if (child_cfs_rq_on_list(cfs_rq))
4144 return false;
4145
4146 return true;
4147 }
4148
4149 /**
4150 * update_tg_load_avg - update the tg's load avg
4151 * @cfs_rq: the cfs_rq whose avg changed
4152 *
4153 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4154 * However, because tg->load_avg is a global value there are performance
4155 * considerations.
4156 *
4157 * In order to avoid having to look at the other cfs_rq's, we use a
4158 * differential update where we store the last value we propagated. This in
4159 * turn allows skipping updates if the differential is 'small'.
4160 *
4161 * Updating tg's load_avg is necessary before update_cfs_share().
4162 */
update_tg_load_avg(struct cfs_rq * cfs_rq)4163 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4164 {
4165 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4166
4167 /*
4168 * No need to update load_avg for root_task_group as it is not used.
4169 */
4170 if (cfs_rq->tg == &root_task_group)
4171 return;
4172
4173 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4174 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4175 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4176 }
4177 }
4178
4179 /*
4180 * Called within set_task_rq() right before setting a task's CPU. The
4181 * caller only guarantees p->pi_lock is held; no other assumptions,
4182 * including the state of rq->lock, should be made.
4183 */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)4184 void set_task_rq_fair(struct sched_entity *se,
4185 struct cfs_rq *prev, struct cfs_rq *next)
4186 {
4187 u64 p_last_update_time;
4188 u64 n_last_update_time;
4189
4190 if (!sched_feat(ATTACH_AGE_LOAD))
4191 return;
4192
4193 /*
4194 * We are supposed to update the task to "current" time, then its up to
4195 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4196 * getting what current time is, so simply throw away the out-of-date
4197 * time. This will result in the wakee task is less decayed, but giving
4198 * the wakee more load sounds not bad.
4199 */
4200 if (!(se->avg.last_update_time && prev))
4201 return;
4202
4203 p_last_update_time = cfs_rq_last_update_time(prev);
4204 n_last_update_time = cfs_rq_last_update_time(next);
4205
4206 __update_load_avg_blocked_se(p_last_update_time, se);
4207 se->avg.last_update_time = n_last_update_time;
4208 }
4209
4210 /*
4211 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4212 * propagate its contribution. The key to this propagation is the invariant
4213 * that for each group:
4214 *
4215 * ge->avg == grq->avg (1)
4216 *
4217 * _IFF_ we look at the pure running and runnable sums. Because they
4218 * represent the very same entity, just at different points in the hierarchy.
4219 *
4220 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4221 * and simply copies the running/runnable sum over (but still wrong, because
4222 * the group entity and group rq do not have their PELT windows aligned).
4223 *
4224 * However, update_tg_cfs_load() is more complex. So we have:
4225 *
4226 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
4227 *
4228 * And since, like util, the runnable part should be directly transferable,
4229 * the following would _appear_ to be the straight forward approach:
4230 *
4231 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
4232 *
4233 * And per (1) we have:
4234 *
4235 * ge->avg.runnable_avg == grq->avg.runnable_avg
4236 *
4237 * Which gives:
4238 *
4239 * ge->load.weight * grq->avg.load_avg
4240 * ge->avg.load_avg = ----------------------------------- (4)
4241 * grq->load.weight
4242 *
4243 * Except that is wrong!
4244 *
4245 * Because while for entities historical weight is not important and we
4246 * really only care about our future and therefore can consider a pure
4247 * runnable sum, runqueues can NOT do this.
4248 *
4249 * We specifically want runqueues to have a load_avg that includes
4250 * historical weights. Those represent the blocked load, the load we expect
4251 * to (shortly) return to us. This only works by keeping the weights as
4252 * integral part of the sum. We therefore cannot decompose as per (3).
4253 *
4254 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4255 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4256 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4257 * runnable section of these tasks overlap (or not). If they were to perfectly
4258 * align the rq as a whole would be runnable 2/3 of the time. If however we
4259 * always have at least 1 runnable task, the rq as a whole is always runnable.
4260 *
4261 * So we'll have to approximate.. :/
4262 *
4263 * Given the constraint:
4264 *
4265 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4266 *
4267 * We can construct a rule that adds runnable to a rq by assuming minimal
4268 * overlap.
4269 *
4270 * On removal, we'll assume each task is equally runnable; which yields:
4271 *
4272 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4273 *
4274 * XXX: only do this for the part of runnable > running ?
4275 *
4276 */
4277 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4278 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4279 {
4280 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4281 u32 new_sum, divider;
4282
4283 /* Nothing to update */
4284 if (!delta_avg)
4285 return;
4286
4287 /*
4288 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4289 * See ___update_load_avg() for details.
4290 */
4291 divider = get_pelt_divider(&cfs_rq->avg);
4292
4293
4294 /* Set new sched_entity's utilization */
4295 se->avg.util_avg = gcfs_rq->avg.util_avg;
4296 new_sum = se->avg.util_avg * divider;
4297 delta_sum = (long)new_sum - (long)se->avg.util_sum;
4298 se->avg.util_sum = new_sum;
4299
4300 /* Update parent cfs_rq utilization */
4301 add_positive(&cfs_rq->avg.util_avg, delta_avg);
4302 add_positive(&cfs_rq->avg.util_sum, delta_sum);
4303
4304 /* See update_cfs_rq_load_avg() */
4305 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4306 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4307 }
4308
4309 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4310 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4311 {
4312 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4313 u32 new_sum, divider;
4314
4315 /* Nothing to update */
4316 if (!delta_avg)
4317 return;
4318
4319 /*
4320 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4321 * See ___update_load_avg() for details.
4322 */
4323 divider = get_pelt_divider(&cfs_rq->avg);
4324
4325 /* Set new sched_entity's runnable */
4326 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4327 new_sum = se->avg.runnable_avg * divider;
4328 delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4329 se->avg.runnable_sum = new_sum;
4330
4331 /* Update parent cfs_rq runnable */
4332 add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4333 add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4334 /* See update_cfs_rq_load_avg() */
4335 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4336 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4337 }
4338
4339 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4340 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4341 {
4342 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4343 unsigned long load_avg;
4344 u64 load_sum = 0;
4345 s64 delta_sum;
4346 u32 divider;
4347
4348 if (!runnable_sum)
4349 return;
4350
4351 gcfs_rq->prop_runnable_sum = 0;
4352
4353 /*
4354 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4355 * See ___update_load_avg() for details.
4356 */
4357 divider = get_pelt_divider(&cfs_rq->avg);
4358
4359 if (runnable_sum >= 0) {
4360 /*
4361 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4362 * the CPU is saturated running == runnable.
4363 */
4364 runnable_sum += se->avg.load_sum;
4365 runnable_sum = min_t(long, runnable_sum, divider);
4366 } else {
4367 /*
4368 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4369 * assuming all tasks are equally runnable.
4370 */
4371 if (scale_load_down(gcfs_rq->load.weight)) {
4372 load_sum = div_u64(gcfs_rq->avg.load_sum,
4373 scale_load_down(gcfs_rq->load.weight));
4374 }
4375
4376 /* But make sure to not inflate se's runnable */
4377 runnable_sum = min(se->avg.load_sum, load_sum);
4378 }
4379
4380 /*
4381 * runnable_sum can't be lower than running_sum
4382 * Rescale running sum to be in the same range as runnable sum
4383 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
4384 * runnable_sum is in [0 : LOAD_AVG_MAX]
4385 */
4386 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4387 runnable_sum = max(runnable_sum, running_sum);
4388
4389 load_sum = se_weight(se) * runnable_sum;
4390 load_avg = div_u64(load_sum, divider);
4391
4392 delta_avg = load_avg - se->avg.load_avg;
4393 if (!delta_avg)
4394 return;
4395
4396 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4397
4398 se->avg.load_sum = runnable_sum;
4399 se->avg.load_avg = load_avg;
4400 add_positive(&cfs_rq->avg.load_avg, delta_avg);
4401 add_positive(&cfs_rq->avg.load_sum, delta_sum);
4402 /* See update_cfs_rq_load_avg() */
4403 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4404 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4405 }
4406
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4407 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4408 {
4409 cfs_rq->propagate = 1;
4410 cfs_rq->prop_runnable_sum += runnable_sum;
4411 }
4412
4413 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)4414 static inline int propagate_entity_load_avg(struct sched_entity *se)
4415 {
4416 struct cfs_rq *cfs_rq, *gcfs_rq;
4417
4418 if (entity_is_task(se))
4419 return 0;
4420
4421 gcfs_rq = group_cfs_rq(se);
4422 if (!gcfs_rq->propagate)
4423 return 0;
4424
4425 gcfs_rq->propagate = 0;
4426
4427 cfs_rq = cfs_rq_of(se);
4428
4429 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4430
4431 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4432 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4433 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4434
4435 trace_pelt_cfs_tp(cfs_rq);
4436 trace_pelt_se_tp(se);
4437
4438 return 1;
4439 }
4440
4441 /*
4442 * Check if we need to update the load and the utilization of a blocked
4443 * group_entity:
4444 */
skip_blocked_update(struct sched_entity * se)4445 static inline bool skip_blocked_update(struct sched_entity *se)
4446 {
4447 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4448
4449 /*
4450 * If sched_entity still have not zero load or utilization, we have to
4451 * decay it:
4452 */
4453 if (se->avg.load_avg || se->avg.util_avg)
4454 return false;
4455
4456 /*
4457 * If there is a pending propagation, we have to update the load and
4458 * the utilization of the sched_entity:
4459 */
4460 if (gcfs_rq->propagate)
4461 return false;
4462
4463 /*
4464 * Otherwise, the load and the utilization of the sched_entity is
4465 * already zero and there is no pending propagation, so it will be a
4466 * waste of time to try to decay it:
4467 */
4468 return true;
4469 }
4470
4471 #else /* CONFIG_FAIR_GROUP_SCHED */
4472
update_tg_load_avg(struct cfs_rq * cfs_rq)4473 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4474
propagate_entity_load_avg(struct sched_entity * se)4475 static inline int propagate_entity_load_avg(struct sched_entity *se)
4476 {
4477 return 0;
4478 }
4479
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4480 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4481
4482 #endif /* CONFIG_FAIR_GROUP_SCHED */
4483
4484 #ifdef CONFIG_NO_HZ_COMMON
migrate_se_pelt_lag(struct sched_entity * se)4485 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4486 {
4487 u64 throttled = 0, now, lut;
4488 struct cfs_rq *cfs_rq;
4489 struct rq *rq;
4490 bool is_idle;
4491
4492 if (load_avg_is_decayed(&se->avg))
4493 return;
4494
4495 cfs_rq = cfs_rq_of(se);
4496 rq = rq_of(cfs_rq);
4497
4498 rcu_read_lock();
4499 is_idle = is_idle_task(rcu_dereference(rq->curr));
4500 rcu_read_unlock();
4501
4502 /*
4503 * The lag estimation comes with a cost we don't want to pay all the
4504 * time. Hence, limiting to the case where the source CPU is idle and
4505 * we know we are at the greatest risk to have an outdated clock.
4506 */
4507 if (!is_idle)
4508 return;
4509
4510 /*
4511 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4512 *
4513 * last_update_time (the cfs_rq's last_update_time)
4514 * = cfs_rq_clock_pelt()@cfs_rq_idle
4515 * = rq_clock_pelt()@cfs_rq_idle
4516 * - cfs->throttled_clock_pelt_time@cfs_rq_idle
4517 *
4518 * cfs_idle_lag (delta between rq's update and cfs_rq's update)
4519 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4520 *
4521 * rq_idle_lag (delta between now and rq's update)
4522 * = sched_clock_cpu() - rq_clock()@rq_idle
4523 *
4524 * We can then write:
4525 *
4526 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4527 * sched_clock_cpu() - rq_clock()@rq_idle
4528 * Where:
4529 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4530 * rq_clock()@rq_idle is rq->clock_idle
4531 * cfs->throttled_clock_pelt_time@cfs_rq_idle
4532 * is cfs_rq->throttled_pelt_idle
4533 */
4534
4535 #ifdef CONFIG_CFS_BANDWIDTH
4536 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4537 /* The clock has been stopped for throttling */
4538 if (throttled == U64_MAX)
4539 return;
4540 #endif
4541 now = u64_u32_load(rq->clock_pelt_idle);
4542 /*
4543 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4544 * is observed the old clock_pelt_idle value and the new clock_idle,
4545 * which lead to an underestimation. The opposite would lead to an
4546 * overestimation.
4547 */
4548 smp_rmb();
4549 lut = cfs_rq_last_update_time(cfs_rq);
4550
4551 now -= throttled;
4552 if (now < lut)
4553 /*
4554 * cfs_rq->avg.last_update_time is more recent than our
4555 * estimation, let's use it.
4556 */
4557 now = lut;
4558 else
4559 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4560
4561 __update_load_avg_blocked_se(now, se);
4562 }
4563 #else
migrate_se_pelt_lag(struct sched_entity * se)4564 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4565 #endif
4566
4567 /**
4568 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4569 * @now: current time, as per cfs_rq_clock_pelt()
4570 * @cfs_rq: cfs_rq to update
4571 *
4572 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4573 * avg. The immediate corollary is that all (fair) tasks must be attached.
4574 *
4575 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4576 *
4577 * Return: true if the load decayed or we removed load.
4578 *
4579 * Since both these conditions indicate a changed cfs_rq->avg.load we should
4580 * call update_tg_load_avg() when this function returns true.
4581 */
4582 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)4583 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4584 {
4585 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4586 struct sched_avg *sa = &cfs_rq->avg;
4587 int decayed = 0;
4588
4589 if (cfs_rq->removed.nr) {
4590 unsigned long r;
4591 u32 divider = get_pelt_divider(&cfs_rq->avg);
4592
4593 raw_spin_lock(&cfs_rq->removed.lock);
4594 swap(cfs_rq->removed.util_avg, removed_util);
4595 swap(cfs_rq->removed.load_avg, removed_load);
4596 swap(cfs_rq->removed.runnable_avg, removed_runnable);
4597 cfs_rq->removed.nr = 0;
4598 raw_spin_unlock(&cfs_rq->removed.lock);
4599
4600 r = removed_load;
4601 sub_positive(&sa->load_avg, r);
4602 sub_positive(&sa->load_sum, r * divider);
4603 /* See sa->util_sum below */
4604 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4605
4606 r = removed_util;
4607 sub_positive(&sa->util_avg, r);
4608 sub_positive(&sa->util_sum, r * divider);
4609 /*
4610 * Because of rounding, se->util_sum might ends up being +1 more than
4611 * cfs->util_sum. Although this is not a problem by itself, detaching
4612 * a lot of tasks with the rounding problem between 2 updates of
4613 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4614 * cfs_util_avg is not.
4615 * Check that util_sum is still above its lower bound for the new
4616 * util_avg. Given that period_contrib might have moved since the last
4617 * sync, we are only sure that util_sum must be above or equal to
4618 * util_avg * minimum possible divider
4619 */
4620 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4621
4622 r = removed_runnable;
4623 sub_positive(&sa->runnable_avg, r);
4624 sub_positive(&sa->runnable_sum, r * divider);
4625 /* See sa->util_sum above */
4626 sa->runnable_sum = max_t(u32, sa->runnable_sum,
4627 sa->runnable_avg * PELT_MIN_DIVIDER);
4628
4629 /*
4630 * removed_runnable is the unweighted version of removed_load so we
4631 * can use it to estimate removed_load_sum.
4632 */
4633 add_tg_cfs_propagate(cfs_rq,
4634 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4635
4636 decayed = 1;
4637 }
4638
4639 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4640 u64_u32_store_copy(sa->last_update_time,
4641 cfs_rq->last_update_time_copy,
4642 sa->last_update_time);
4643 return decayed;
4644 }
4645
4646 /**
4647 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4648 * @cfs_rq: cfs_rq to attach to
4649 * @se: sched_entity to attach
4650 *
4651 * Must call update_cfs_rq_load_avg() before this, since we rely on
4652 * cfs_rq->avg.last_update_time being current.
4653 */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4654 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4655 {
4656 /*
4657 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4658 * See ___update_load_avg() for details.
4659 */
4660 u32 divider = get_pelt_divider(&cfs_rq->avg);
4661
4662 /*
4663 * When we attach the @se to the @cfs_rq, we must align the decay
4664 * window because without that, really weird and wonderful things can
4665 * happen.
4666 *
4667 * XXX illustrate
4668 */
4669 se->avg.last_update_time = cfs_rq->avg.last_update_time;
4670 se->avg.period_contrib = cfs_rq->avg.period_contrib;
4671
4672 /*
4673 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4674 * period_contrib. This isn't strictly correct, but since we're
4675 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4676 * _sum a little.
4677 */
4678 se->avg.util_sum = se->avg.util_avg * divider;
4679
4680 se->avg.runnable_sum = se->avg.runnable_avg * divider;
4681
4682 se->avg.load_sum = se->avg.load_avg * divider;
4683 if (se_weight(se) < se->avg.load_sum)
4684 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4685 else
4686 se->avg.load_sum = 1;
4687
4688 enqueue_load_avg(cfs_rq, se);
4689 cfs_rq->avg.util_avg += se->avg.util_avg;
4690 cfs_rq->avg.util_sum += se->avg.util_sum;
4691 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4692 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4693
4694 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4695
4696 cfs_rq_util_change(cfs_rq, 0);
4697
4698 trace_pelt_cfs_tp(cfs_rq);
4699 }
4700
4701 /**
4702 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4703 * @cfs_rq: cfs_rq to detach from
4704 * @se: sched_entity to detach
4705 *
4706 * Must call update_cfs_rq_load_avg() before this, since we rely on
4707 * cfs_rq->avg.last_update_time being current.
4708 */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4709 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4710 {
4711 dequeue_load_avg(cfs_rq, se);
4712 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4713 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4714 /* See update_cfs_rq_load_avg() */
4715 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4716 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4717
4718 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4719 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4720 /* See update_cfs_rq_load_avg() */
4721 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4722 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4723
4724 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4725
4726 cfs_rq_util_change(cfs_rq, 0);
4727
4728 trace_pelt_cfs_tp(cfs_rq);
4729 }
4730
4731 /*
4732 * Optional action to be done while updating the load average
4733 */
4734 #define UPDATE_TG 0x1
4735 #define SKIP_AGE_LOAD 0x2
4736 #define DO_ATTACH 0x4
4737 #define DO_DETACH 0x8
4738
4739 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4740 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4741 {
4742 u64 now = cfs_rq_clock_pelt(cfs_rq);
4743 int decayed;
4744
4745 /*
4746 * Track task load average for carrying it to new CPU after migrated, and
4747 * track group sched_entity load average for task_h_load calc in migration
4748 */
4749 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4750 __update_load_avg_se(now, cfs_rq, se);
4751
4752 decayed = update_cfs_rq_load_avg(now, cfs_rq);
4753 decayed |= propagate_entity_load_avg(se);
4754
4755 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4756
4757 /*
4758 * DO_ATTACH means we're here from enqueue_entity().
4759 * !last_update_time means we've passed through
4760 * migrate_task_rq_fair() indicating we migrated.
4761 *
4762 * IOW we're enqueueing a task on a new CPU.
4763 */
4764 attach_entity_load_avg(cfs_rq, se);
4765 update_tg_load_avg(cfs_rq);
4766
4767 } else if (flags & DO_DETACH) {
4768 /*
4769 * DO_DETACH means we're here from dequeue_entity()
4770 * and we are migrating task out of the CPU.
4771 */
4772 detach_entity_load_avg(cfs_rq, se);
4773 update_tg_load_avg(cfs_rq);
4774 } else if (decayed) {
4775 cfs_rq_util_change(cfs_rq, 0);
4776
4777 if (flags & UPDATE_TG)
4778 update_tg_load_avg(cfs_rq);
4779 }
4780 }
4781
4782 /*
4783 * Synchronize entity load avg of dequeued entity without locking
4784 * the previous rq.
4785 */
sync_entity_load_avg(struct sched_entity * se)4786 static void sync_entity_load_avg(struct sched_entity *se)
4787 {
4788 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4789 u64 last_update_time;
4790
4791 last_update_time = cfs_rq_last_update_time(cfs_rq);
4792 __update_load_avg_blocked_se(last_update_time, se);
4793 }
4794
4795 /*
4796 * Task first catches up with cfs_rq, and then subtract
4797 * itself from the cfs_rq (task must be off the queue now).
4798 */
remove_entity_load_avg(struct sched_entity * se)4799 static void remove_entity_load_avg(struct sched_entity *se)
4800 {
4801 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4802 unsigned long flags;
4803
4804 /*
4805 * tasks cannot exit without having gone through wake_up_new_task() ->
4806 * enqueue_task_fair() which will have added things to the cfs_rq,
4807 * so we can remove unconditionally.
4808 */
4809
4810 sync_entity_load_avg(se);
4811
4812 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4813 ++cfs_rq->removed.nr;
4814 cfs_rq->removed.util_avg += se->avg.util_avg;
4815 cfs_rq->removed.load_avg += se->avg.load_avg;
4816 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
4817 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4818 }
4819
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)4820 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4821 {
4822 return cfs_rq->avg.runnable_avg;
4823 }
4824
cfs_rq_load_avg(struct cfs_rq * cfs_rq)4825 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4826 {
4827 return cfs_rq->avg.load_avg;
4828 }
4829
4830 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4831
task_util(struct task_struct * p)4832 static inline unsigned long task_util(struct task_struct *p)
4833 {
4834 return READ_ONCE(p->se.avg.util_avg);
4835 }
4836
_task_util_est(struct task_struct * p)4837 static inline unsigned long _task_util_est(struct task_struct *p)
4838 {
4839 struct util_est ue = READ_ONCE(p->se.avg.util_est);
4840
4841 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4842 }
4843
task_util_est(struct task_struct * p)4844 static inline unsigned long task_util_est(struct task_struct *p)
4845 {
4846 return max(task_util(p), _task_util_est(p));
4847 }
4848
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4849 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4850 struct task_struct *p)
4851 {
4852 unsigned int enqueued;
4853
4854 if (!sched_feat(UTIL_EST))
4855 return;
4856
4857 /* Update root cfs_rq's estimated utilization */
4858 enqueued = cfs_rq->avg.util_est.enqueued;
4859 enqueued += _task_util_est(p);
4860 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4861
4862 trace_sched_util_est_cfs_tp(cfs_rq);
4863 }
4864
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4865 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4866 struct task_struct *p)
4867 {
4868 unsigned int enqueued;
4869
4870 if (!sched_feat(UTIL_EST))
4871 return;
4872
4873 /* Update root cfs_rq's estimated utilization */
4874 enqueued = cfs_rq->avg.util_est.enqueued;
4875 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4876 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4877
4878 trace_sched_util_est_cfs_tp(cfs_rq);
4879 }
4880
4881 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4882
4883 /*
4884 * Check if a (signed) value is within a specified (unsigned) margin,
4885 * based on the observation that:
4886 *
4887 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4888 *
4889 * NOTE: this only works when value + margin < INT_MAX.
4890 */
within_margin(int value,int margin)4891 static inline bool within_margin(int value, int margin)
4892 {
4893 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4894 }
4895
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4896 static inline void util_est_update(struct cfs_rq *cfs_rq,
4897 struct task_struct *p,
4898 bool task_sleep)
4899 {
4900 long last_ewma_diff, last_enqueued_diff;
4901 struct util_est ue;
4902
4903 if (!sched_feat(UTIL_EST))
4904 return;
4905
4906 /*
4907 * Skip update of task's estimated utilization when the task has not
4908 * yet completed an activation, e.g. being migrated.
4909 */
4910 if (!task_sleep)
4911 return;
4912
4913 /*
4914 * If the PELT values haven't changed since enqueue time,
4915 * skip the util_est update.
4916 */
4917 ue = p->se.avg.util_est;
4918 if (ue.enqueued & UTIL_AVG_UNCHANGED)
4919 return;
4920
4921 last_enqueued_diff = ue.enqueued;
4922
4923 /*
4924 * Reset EWMA on utilization increases, the moving average is used only
4925 * to smooth utilization decreases.
4926 */
4927 ue.enqueued = task_util(p);
4928 if (sched_feat(UTIL_EST_FASTUP)) {
4929 if (ue.ewma < ue.enqueued) {
4930 ue.ewma = ue.enqueued;
4931 goto done;
4932 }
4933 }
4934
4935 /*
4936 * Skip update of task's estimated utilization when its members are
4937 * already ~1% close to its last activation value.
4938 */
4939 last_ewma_diff = ue.enqueued - ue.ewma;
4940 last_enqueued_diff -= ue.enqueued;
4941 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4942 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4943 goto done;
4944
4945 return;
4946 }
4947
4948 /*
4949 * To avoid overestimation of actual task utilization, skip updates if
4950 * we cannot grant there is idle time in this CPU.
4951 */
4952 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4953 return;
4954
4955 /*
4956 * Update Task's estimated utilization
4957 *
4958 * When *p completes an activation we can consolidate another sample
4959 * of the task size. This is done by storing the current PELT value
4960 * as ue.enqueued and by using this value to update the Exponential
4961 * Weighted Moving Average (EWMA):
4962 *
4963 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4964 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4965 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4966 * = w * ( last_ewma_diff ) + ewma(t-1)
4967 * = w * (last_ewma_diff + ewma(t-1) / w)
4968 *
4969 * Where 'w' is the weight of new samples, which is configured to be
4970 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4971 */
4972 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4973 ue.ewma += last_ewma_diff;
4974 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4975 done:
4976 ue.enqueued |= UTIL_AVG_UNCHANGED;
4977 WRITE_ONCE(p->se.avg.util_est, ue);
4978
4979 trace_sched_util_est_se_tp(&p->se);
4980 }
4981
util_fits_cpu(unsigned long util,unsigned long uclamp_min,unsigned long uclamp_max,int cpu)4982 static inline int util_fits_cpu(unsigned long util,
4983 unsigned long uclamp_min,
4984 unsigned long uclamp_max,
4985 int cpu)
4986 {
4987 unsigned long capacity_orig, capacity_orig_thermal;
4988 unsigned long capacity = capacity_of(cpu);
4989 bool fits, uclamp_max_fits;
4990
4991 /*
4992 * Check if the real util fits without any uclamp boost/cap applied.
4993 */
4994 fits = fits_capacity(util, capacity);
4995
4996 if (!uclamp_is_used())
4997 return fits;
4998
4999 /*
5000 * We must use capacity_orig_of() for comparing against uclamp_min and
5001 * uclamp_max. We only care about capacity pressure (by using
5002 * capacity_of()) for comparing against the real util.
5003 *
5004 * If a task is boosted to 1024 for example, we don't want a tiny
5005 * pressure to skew the check whether it fits a CPU or not.
5006 *
5007 * Similarly if a task is capped to capacity_orig_of(little_cpu), it
5008 * should fit a little cpu even if there's some pressure.
5009 *
5010 * Only exception is for thermal pressure since it has a direct impact
5011 * on available OPP of the system.
5012 *
5013 * We honour it for uclamp_min only as a drop in performance level
5014 * could result in not getting the requested minimum performance level.
5015 *
5016 * For uclamp_max, we can tolerate a drop in performance level as the
5017 * goal is to cap the task. So it's okay if it's getting less.
5018 */
5019 capacity_orig = capacity_orig_of(cpu);
5020 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
5021
5022 /*
5023 * We want to force a task to fit a cpu as implied by uclamp_max.
5024 * But we do have some corner cases to cater for..
5025 *
5026 *
5027 * C=z
5028 * | ___
5029 * | C=y | |
5030 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5031 * | C=x | | | |
5032 * | ___ | | | |
5033 * | | | | | | | (util somewhere in this region)
5034 * | | | | | | |
5035 * | | | | | | |
5036 * +----------------------------------------
5037 * cpu0 cpu1 cpu2
5038 *
5039 * In the above example if a task is capped to a specific performance
5040 * point, y, then when:
5041 *
5042 * * util = 80% of x then it does not fit on cpu0 and should migrate
5043 * to cpu1
5044 * * util = 80% of y then it is forced to fit on cpu1 to honour
5045 * uclamp_max request.
5046 *
5047 * which is what we're enforcing here. A task always fits if
5048 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5049 * the normal upmigration rules should withhold still.
5050 *
5051 * Only exception is when we are on max capacity, then we need to be
5052 * careful not to block overutilized state. This is so because:
5053 *
5054 * 1. There's no concept of capping at max_capacity! We can't go
5055 * beyond this performance level anyway.
5056 * 2. The system is being saturated when we're operating near
5057 * max capacity, it doesn't make sense to block overutilized.
5058 */
5059 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5060 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5061 fits = fits || uclamp_max_fits;
5062
5063 /*
5064 *
5065 * C=z
5066 * | ___ (region a, capped, util >= uclamp_max)
5067 * | C=y | |
5068 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5069 * | C=x | | | |
5070 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max)
5071 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5072 * | | | | | | |
5073 * | | | | | | | (region c, boosted, util < uclamp_min)
5074 * +----------------------------------------
5075 * cpu0 cpu1 cpu2
5076 *
5077 * a) If util > uclamp_max, then we're capped, we don't care about
5078 * actual fitness value here. We only care if uclamp_max fits
5079 * capacity without taking margin/pressure into account.
5080 * See comment above.
5081 *
5082 * b) If uclamp_min <= util <= uclamp_max, then the normal
5083 * fits_capacity() rules apply. Except we need to ensure that we
5084 * enforce we remain within uclamp_max, see comment above.
5085 *
5086 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5087 * need to take into account the boosted value fits the CPU without
5088 * taking margin/pressure into account.
5089 *
5090 * Cases (a) and (b) are handled in the 'fits' variable already. We
5091 * just need to consider an extra check for case (c) after ensuring we
5092 * handle the case uclamp_min > uclamp_max.
5093 */
5094 uclamp_min = min(uclamp_min, uclamp_max);
5095 if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
5096 return -1;
5097
5098 return fits;
5099 }
5100
task_fits_cpu(struct task_struct * p,int cpu)5101 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5102 {
5103 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5104 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5105 unsigned long util = task_util_est(p);
5106 /*
5107 * Return true only if the cpu fully fits the task requirements, which
5108 * include the utilization but also the performance hints.
5109 */
5110 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5111 }
5112
update_misfit_status(struct task_struct * p,struct rq * rq)5113 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5114 {
5115 if (!sched_asym_cpucap_active())
5116 return;
5117
5118 if (!p || p->nr_cpus_allowed == 1) {
5119 rq->misfit_task_load = 0;
5120 return;
5121 }
5122
5123 if (task_fits_cpu(p, cpu_of(rq))) {
5124 rq->misfit_task_load = 0;
5125 return;
5126 }
5127
5128 /*
5129 * Make sure that misfit_task_load will not be null even if
5130 * task_h_load() returns 0.
5131 */
5132 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5133 }
5134
5135 #else /* CONFIG_SMP */
5136
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)5137 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5138 {
5139 return !cfs_rq->nr_running;
5140 }
5141
5142 #define UPDATE_TG 0x0
5143 #define SKIP_AGE_LOAD 0x0
5144 #define DO_ATTACH 0x0
5145 #define DO_DETACH 0x0
5146
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)5147 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5148 {
5149 cfs_rq_util_change(cfs_rq, 0);
5150 }
5151
remove_entity_load_avg(struct sched_entity * se)5152 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5153
5154 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5155 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5156 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5157 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5158
newidle_balance(struct rq * rq,struct rq_flags * rf)5159 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
5160 {
5161 return 0;
5162 }
5163
5164 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)5165 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5166
5167 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)5168 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5169
5170 static inline void
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)5171 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5172 bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)5173 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5174
5175 #endif /* CONFIG_SMP */
5176
5177 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5178 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5179 {
5180 u64 vslice, vruntime = avg_vruntime(cfs_rq);
5181 s64 lag = 0;
5182
5183 se->slice = sysctl_sched_base_slice;
5184 vslice = calc_delta_fair(se->slice, se);
5185
5186 /*
5187 * Due to how V is constructed as the weighted average of entities,
5188 * adding tasks with positive lag, or removing tasks with negative lag
5189 * will move 'time' backwards, this can screw around with the lag of
5190 * other tasks.
5191 *
5192 * EEVDF: placement strategy #1 / #2
5193 */
5194 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
5195 struct sched_entity *curr = cfs_rq->curr;
5196 unsigned long load;
5197
5198 lag = se->vlag;
5199
5200 /*
5201 * If we want to place a task and preserve lag, we have to
5202 * consider the effect of the new entity on the weighted
5203 * average and compensate for this, otherwise lag can quickly
5204 * evaporate.
5205 *
5206 * Lag is defined as:
5207 *
5208 * lag_i = S - s_i = w_i * (V - v_i)
5209 *
5210 * To avoid the 'w_i' term all over the place, we only track
5211 * the virtual lag:
5212 *
5213 * vl_i = V - v_i <=> v_i = V - vl_i
5214 *
5215 * And we take V to be the weighted average of all v:
5216 *
5217 * V = (\Sum w_j*v_j) / W
5218 *
5219 * Where W is: \Sum w_j
5220 *
5221 * Then, the weighted average after adding an entity with lag
5222 * vl_i is given by:
5223 *
5224 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5225 * = (W*V + w_i*(V - vl_i)) / (W + w_i)
5226 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5227 * = (V*(W + w_i) - w_i*l) / (W + w_i)
5228 * = V - w_i*vl_i / (W + w_i)
5229 *
5230 * And the actual lag after adding an entity with vl_i is:
5231 *
5232 * vl'_i = V' - v_i
5233 * = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5234 * = vl_i - w_i*vl_i / (W + w_i)
5235 *
5236 * Which is strictly less than vl_i. So in order to preserve lag
5237 * we should inflate the lag before placement such that the
5238 * effective lag after placement comes out right.
5239 *
5240 * As such, invert the above relation for vl'_i to get the vl_i
5241 * we need to use such that the lag after placement is the lag
5242 * we computed before dequeue.
5243 *
5244 * vl'_i = vl_i - w_i*vl_i / (W + w_i)
5245 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5246 *
5247 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5248 * = W*vl_i
5249 *
5250 * vl_i = (W + w_i)*vl'_i / W
5251 */
5252 load = cfs_rq->avg_load;
5253 if (curr && curr->on_rq)
5254 load += scale_load_down(curr->load.weight);
5255
5256 lag *= load + scale_load_down(se->load.weight);
5257 if (WARN_ON_ONCE(!load))
5258 load = 1;
5259 lag = div_s64(lag, load);
5260 }
5261
5262 se->vruntime = vruntime - lag;
5263
5264 /*
5265 * When joining the competition; the exisiting tasks will be,
5266 * on average, halfway through their slice, as such start tasks
5267 * off with half a slice to ease into the competition.
5268 */
5269 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5270 vslice /= 2;
5271
5272 /*
5273 * EEVDF: vd_i = ve_i + r_i/w_i
5274 */
5275 se->deadline = se->vruntime + vslice;
5276 }
5277
5278 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5279 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5280
5281 static inline bool cfs_bandwidth_used(void);
5282
5283 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5284 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5285 {
5286 bool curr = cfs_rq->curr == se;
5287
5288 /*
5289 * If we're the current task, we must renormalise before calling
5290 * update_curr().
5291 */
5292 if (curr)
5293 place_entity(cfs_rq, se, flags);
5294
5295 update_curr(cfs_rq);
5296
5297 /*
5298 * When enqueuing a sched_entity, we must:
5299 * - Update loads to have both entity and cfs_rq synced with now.
5300 * - For group_entity, update its runnable_weight to reflect the new
5301 * h_nr_running of its group cfs_rq.
5302 * - For group_entity, update its weight to reflect the new share of
5303 * its group cfs_rq
5304 * - Add its new weight to cfs_rq->load.weight
5305 */
5306 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5307 se_update_runnable(se);
5308 /*
5309 * XXX update_load_avg() above will have attached us to the pelt sum;
5310 * but update_cfs_group() here will re-adjust the weight and have to
5311 * undo/redo all that. Seems wasteful.
5312 */
5313 update_cfs_group(se);
5314
5315 /*
5316 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5317 * we can place the entity.
5318 */
5319 if (!curr)
5320 place_entity(cfs_rq, se, flags);
5321
5322 account_entity_enqueue(cfs_rq, se);
5323
5324 /* Entity has migrated, no longer consider this task hot */
5325 if (flags & ENQUEUE_MIGRATED)
5326 se->exec_start = 0;
5327
5328 check_schedstat_required();
5329 update_stats_enqueue_fair(cfs_rq, se, flags);
5330 if (!curr)
5331 __enqueue_entity(cfs_rq, se);
5332 se->on_rq = 1;
5333
5334 if (cfs_rq->nr_running == 1) {
5335 check_enqueue_throttle(cfs_rq);
5336 if (!throttled_hierarchy(cfs_rq)) {
5337 list_add_leaf_cfs_rq(cfs_rq);
5338 } else {
5339 #ifdef CONFIG_CFS_BANDWIDTH
5340 struct rq *rq = rq_of(cfs_rq);
5341
5342 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5343 cfs_rq->throttled_clock = rq_clock(rq);
5344 if (!cfs_rq->throttled_clock_self)
5345 cfs_rq->throttled_clock_self = rq_clock(rq);
5346 #endif
5347 }
5348 }
5349 }
5350
__clear_buddies_next(struct sched_entity * se)5351 static void __clear_buddies_next(struct sched_entity *se)
5352 {
5353 for_each_sched_entity(se) {
5354 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5355 if (cfs_rq->next != se)
5356 break;
5357
5358 cfs_rq->next = NULL;
5359 }
5360 }
5361
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)5362 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5363 {
5364 if (cfs_rq->next == se)
5365 __clear_buddies_next(se);
5366 }
5367
5368 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5369
5370 static void
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5371 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5372 {
5373 int action = UPDATE_TG;
5374
5375 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5376 action |= DO_DETACH;
5377
5378 /*
5379 * Update run-time statistics of the 'current'.
5380 */
5381 update_curr(cfs_rq);
5382
5383 /*
5384 * When dequeuing a sched_entity, we must:
5385 * - Update loads to have both entity and cfs_rq synced with now.
5386 * - For group_entity, update its runnable_weight to reflect the new
5387 * h_nr_running of its group cfs_rq.
5388 * - Subtract its previous weight from cfs_rq->load.weight.
5389 * - For group entity, update its weight to reflect the new share
5390 * of its group cfs_rq.
5391 */
5392 update_load_avg(cfs_rq, se, action);
5393 se_update_runnable(se);
5394
5395 update_stats_dequeue_fair(cfs_rq, se, flags);
5396
5397 clear_buddies(cfs_rq, se);
5398
5399 update_entity_lag(cfs_rq, se);
5400 if (se != cfs_rq->curr)
5401 __dequeue_entity(cfs_rq, se);
5402 se->on_rq = 0;
5403 account_entity_dequeue(cfs_rq, se);
5404
5405 /* return excess runtime on last dequeue */
5406 return_cfs_rq_runtime(cfs_rq);
5407
5408 update_cfs_group(se);
5409
5410 /*
5411 * Now advance min_vruntime if @se was the entity holding it back,
5412 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5413 * put back on, and if we advance min_vruntime, we'll be placed back
5414 * further than we started -- ie. we'll be penalized.
5415 */
5416 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5417 update_min_vruntime(cfs_rq);
5418
5419 if (cfs_rq->nr_running == 0)
5420 update_idle_cfs_rq_clock_pelt(cfs_rq);
5421 }
5422
5423 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)5424 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5425 {
5426 clear_buddies(cfs_rq, se);
5427
5428 /* 'current' is not kept within the tree. */
5429 if (se->on_rq) {
5430 /*
5431 * Any task has to be enqueued before it get to execute on
5432 * a CPU. So account for the time it spent waiting on the
5433 * runqueue.
5434 */
5435 update_stats_wait_end_fair(cfs_rq, se);
5436 __dequeue_entity(cfs_rq, se);
5437 update_load_avg(cfs_rq, se, UPDATE_TG);
5438 /*
5439 * HACK, stash a copy of deadline at the point of pick in vlag,
5440 * which isn't used until dequeue.
5441 */
5442 se->vlag = se->deadline;
5443 }
5444
5445 update_stats_curr_start(cfs_rq, se);
5446 cfs_rq->curr = se;
5447
5448 /*
5449 * Track our maximum slice length, if the CPU's load is at
5450 * least twice that of our own weight (i.e. dont track it
5451 * when there are only lesser-weight tasks around):
5452 */
5453 if (schedstat_enabled() &&
5454 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5455 struct sched_statistics *stats;
5456
5457 stats = __schedstats_from_se(se);
5458 __schedstat_set(stats->slice_max,
5459 max((u64)stats->slice_max,
5460 se->sum_exec_runtime - se->prev_sum_exec_runtime));
5461 }
5462
5463 se->prev_sum_exec_runtime = se->sum_exec_runtime;
5464 }
5465
5466 /*
5467 * Pick the next process, keeping these things in mind, in this order:
5468 * 1) keep things fair between processes/task groups
5469 * 2) pick the "next" process, since someone really wants that to run
5470 * 3) pick the "last" process, for cache locality
5471 * 4) do not run the "skip" process, if something else is available
5472 */
5473 static struct sched_entity *
pick_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * curr)5474 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
5475 {
5476 /*
5477 * Enabling NEXT_BUDDY will affect latency but not fairness.
5478 */
5479 if (sched_feat(NEXT_BUDDY) &&
5480 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
5481 return cfs_rq->next;
5482
5483 return pick_eevdf(cfs_rq);
5484 }
5485
5486 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5487
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)5488 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5489 {
5490 /*
5491 * If still on the runqueue then deactivate_task()
5492 * was not called and update_curr() has to be done:
5493 */
5494 if (prev->on_rq)
5495 update_curr(cfs_rq);
5496
5497 /* throttle cfs_rqs exceeding runtime */
5498 check_cfs_rq_runtime(cfs_rq);
5499
5500 if (prev->on_rq) {
5501 update_stats_wait_start_fair(cfs_rq, prev);
5502 /* Put 'current' back into the tree. */
5503 __enqueue_entity(cfs_rq, prev);
5504 /* in !on_rq case, update occurred at dequeue */
5505 update_load_avg(cfs_rq, prev, 0);
5506 }
5507 cfs_rq->curr = NULL;
5508 }
5509
5510 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)5511 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5512 {
5513 /*
5514 * Update run-time statistics of the 'current'.
5515 */
5516 update_curr(cfs_rq);
5517
5518 /*
5519 * Ensure that runnable average is periodically updated.
5520 */
5521 update_load_avg(cfs_rq, curr, UPDATE_TG);
5522 update_cfs_group(curr);
5523
5524 #ifdef CONFIG_SCHED_HRTICK
5525 /*
5526 * queued ticks are scheduled to match the slice, so don't bother
5527 * validating it and just reschedule.
5528 */
5529 if (queued) {
5530 resched_curr(rq_of(cfs_rq));
5531 return;
5532 }
5533 /*
5534 * don't let the period tick interfere with the hrtick preemption
5535 */
5536 if (!sched_feat(DOUBLE_TICK) &&
5537 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5538 return;
5539 #endif
5540 }
5541
5542
5543 /**************************************************
5544 * CFS bandwidth control machinery
5545 */
5546
5547 #ifdef CONFIG_CFS_BANDWIDTH
5548
5549 #ifdef CONFIG_JUMP_LABEL
5550 static struct static_key __cfs_bandwidth_used;
5551
cfs_bandwidth_used(void)5552 static inline bool cfs_bandwidth_used(void)
5553 {
5554 return static_key_false(&__cfs_bandwidth_used);
5555 }
5556
cfs_bandwidth_usage_inc(void)5557 void cfs_bandwidth_usage_inc(void)
5558 {
5559 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5560 }
5561
cfs_bandwidth_usage_dec(void)5562 void cfs_bandwidth_usage_dec(void)
5563 {
5564 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5565 }
5566 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)5567 static bool cfs_bandwidth_used(void)
5568 {
5569 return true;
5570 }
5571
cfs_bandwidth_usage_inc(void)5572 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)5573 void cfs_bandwidth_usage_dec(void) {}
5574 #endif /* CONFIG_JUMP_LABEL */
5575
5576 /*
5577 * default period for cfs group bandwidth.
5578 * default: 0.1s, units: nanoseconds
5579 */
default_cfs_period(void)5580 static inline u64 default_cfs_period(void)
5581 {
5582 return 100000000ULL;
5583 }
5584
sched_cfs_bandwidth_slice(void)5585 static inline u64 sched_cfs_bandwidth_slice(void)
5586 {
5587 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5588 }
5589
5590 /*
5591 * Replenish runtime according to assigned quota. We use sched_clock_cpu
5592 * directly instead of rq->clock to avoid adding additional synchronization
5593 * around rq->lock.
5594 *
5595 * requires cfs_b->lock
5596 */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)5597 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5598 {
5599 s64 runtime;
5600
5601 if (unlikely(cfs_b->quota == RUNTIME_INF))
5602 return;
5603
5604 cfs_b->runtime += cfs_b->quota;
5605 runtime = cfs_b->runtime_snap - cfs_b->runtime;
5606 if (runtime > 0) {
5607 cfs_b->burst_time += runtime;
5608 cfs_b->nr_burst++;
5609 }
5610
5611 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5612 cfs_b->runtime_snap = cfs_b->runtime;
5613 }
5614
tg_cfs_bandwidth(struct task_group * tg)5615 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5616 {
5617 return &tg->cfs_bandwidth;
5618 }
5619
5620 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)5621 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5622 struct cfs_rq *cfs_rq, u64 target_runtime)
5623 {
5624 u64 min_amount, amount = 0;
5625
5626 lockdep_assert_held(&cfs_b->lock);
5627
5628 /* note: this is a positive sum as runtime_remaining <= 0 */
5629 min_amount = target_runtime - cfs_rq->runtime_remaining;
5630
5631 if (cfs_b->quota == RUNTIME_INF)
5632 amount = min_amount;
5633 else {
5634 start_cfs_bandwidth(cfs_b);
5635
5636 if (cfs_b->runtime > 0) {
5637 amount = min(cfs_b->runtime, min_amount);
5638 cfs_b->runtime -= amount;
5639 cfs_b->idle = 0;
5640 }
5641 }
5642
5643 cfs_rq->runtime_remaining += amount;
5644
5645 return cfs_rq->runtime_remaining > 0;
5646 }
5647
5648 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)5649 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5650 {
5651 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5652 int ret;
5653
5654 raw_spin_lock(&cfs_b->lock);
5655 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5656 raw_spin_unlock(&cfs_b->lock);
5657
5658 return ret;
5659 }
5660
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5661 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5662 {
5663 /* dock delta_exec before expiring quota (as it could span periods) */
5664 cfs_rq->runtime_remaining -= delta_exec;
5665
5666 if (likely(cfs_rq->runtime_remaining > 0))
5667 return;
5668
5669 if (cfs_rq->throttled)
5670 return;
5671 /*
5672 * if we're unable to extend our runtime we resched so that the active
5673 * hierarchy can be throttled
5674 */
5675 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5676 resched_curr(rq_of(cfs_rq));
5677 }
5678
5679 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5680 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5681 {
5682 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5683 return;
5684
5685 __account_cfs_rq_runtime(cfs_rq, delta_exec);
5686 }
5687
cfs_rq_throttled(struct cfs_rq * cfs_rq)5688 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5689 {
5690 return cfs_bandwidth_used() && cfs_rq->throttled;
5691 }
5692
5693 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)5694 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5695 {
5696 return cfs_bandwidth_used() && cfs_rq->throttle_count;
5697 }
5698
5699 /*
5700 * Ensure that neither of the group entities corresponding to src_cpu or
5701 * dest_cpu are members of a throttled hierarchy when performing group
5702 * load-balance operations.
5703 */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5704 static inline int throttled_lb_pair(struct task_group *tg,
5705 int src_cpu, int dest_cpu)
5706 {
5707 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5708
5709 src_cfs_rq = tg->cfs_rq[src_cpu];
5710 dest_cfs_rq = tg->cfs_rq[dest_cpu];
5711
5712 return throttled_hierarchy(src_cfs_rq) ||
5713 throttled_hierarchy(dest_cfs_rq);
5714 }
5715
tg_unthrottle_up(struct task_group * tg,void * data)5716 static int tg_unthrottle_up(struct task_group *tg, void *data)
5717 {
5718 struct rq *rq = data;
5719 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5720
5721 cfs_rq->throttle_count--;
5722 if (!cfs_rq->throttle_count) {
5723 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5724 cfs_rq->throttled_clock_pelt;
5725
5726 /* Add cfs_rq with load or one or more already running entities to the list */
5727 if (!cfs_rq_is_decayed(cfs_rq))
5728 list_add_leaf_cfs_rq(cfs_rq);
5729
5730 if (cfs_rq->throttled_clock_self) {
5731 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5732
5733 cfs_rq->throttled_clock_self = 0;
5734
5735 if (SCHED_WARN_ON((s64)delta < 0))
5736 delta = 0;
5737
5738 cfs_rq->throttled_clock_self_time += delta;
5739 }
5740 }
5741
5742 return 0;
5743 }
5744
tg_throttle_down(struct task_group * tg,void * data)5745 static int tg_throttle_down(struct task_group *tg, void *data)
5746 {
5747 struct rq *rq = data;
5748 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5749
5750 /* group is entering throttled state, stop time */
5751 if (!cfs_rq->throttle_count) {
5752 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5753 list_del_leaf_cfs_rq(cfs_rq);
5754
5755 SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5756 if (cfs_rq->nr_running)
5757 cfs_rq->throttled_clock_self = rq_clock(rq);
5758 }
5759 cfs_rq->throttle_count++;
5760
5761 return 0;
5762 }
5763
throttle_cfs_rq(struct cfs_rq * cfs_rq)5764 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5765 {
5766 struct rq *rq = rq_of(cfs_rq);
5767 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5768 struct sched_entity *se;
5769 long task_delta, idle_task_delta, dequeue = 1;
5770
5771 raw_spin_lock(&cfs_b->lock);
5772 /* This will start the period timer if necessary */
5773 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5774 /*
5775 * We have raced with bandwidth becoming available, and if we
5776 * actually throttled the timer might not unthrottle us for an
5777 * entire period. We additionally needed to make sure that any
5778 * subsequent check_cfs_rq_runtime calls agree not to throttle
5779 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5780 * for 1ns of runtime rather than just check cfs_b.
5781 */
5782 dequeue = 0;
5783 } else {
5784 list_add_tail_rcu(&cfs_rq->throttled_list,
5785 &cfs_b->throttled_cfs_rq);
5786 }
5787 raw_spin_unlock(&cfs_b->lock);
5788
5789 if (!dequeue)
5790 return false; /* Throttle no longer required. */
5791
5792 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5793
5794 /* freeze hierarchy runnable averages while throttled */
5795 rcu_read_lock();
5796 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5797 rcu_read_unlock();
5798
5799 task_delta = cfs_rq->h_nr_running;
5800 idle_task_delta = cfs_rq->idle_h_nr_running;
5801 for_each_sched_entity(se) {
5802 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5803 /* throttled entity or throttle-on-deactivate */
5804 if (!se->on_rq)
5805 goto done;
5806
5807 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5808
5809 if (cfs_rq_is_idle(group_cfs_rq(se)))
5810 idle_task_delta = cfs_rq->h_nr_running;
5811
5812 qcfs_rq->h_nr_running -= task_delta;
5813 qcfs_rq->idle_h_nr_running -= idle_task_delta;
5814
5815 if (qcfs_rq->load.weight) {
5816 /* Avoid re-evaluating load for this entity: */
5817 se = parent_entity(se);
5818 break;
5819 }
5820 }
5821
5822 for_each_sched_entity(se) {
5823 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5824 /* throttled entity or throttle-on-deactivate */
5825 if (!se->on_rq)
5826 goto done;
5827
5828 update_load_avg(qcfs_rq, se, 0);
5829 se_update_runnable(se);
5830
5831 if (cfs_rq_is_idle(group_cfs_rq(se)))
5832 idle_task_delta = cfs_rq->h_nr_running;
5833
5834 qcfs_rq->h_nr_running -= task_delta;
5835 qcfs_rq->idle_h_nr_running -= idle_task_delta;
5836 }
5837
5838 /* At this point se is NULL and we are at root level*/
5839 sub_nr_running(rq, task_delta);
5840
5841 done:
5842 /*
5843 * Note: distribution will already see us throttled via the
5844 * throttled-list. rq->lock protects completion.
5845 */
5846 cfs_rq->throttled = 1;
5847 SCHED_WARN_ON(cfs_rq->throttled_clock);
5848 if (cfs_rq->nr_running)
5849 cfs_rq->throttled_clock = rq_clock(rq);
5850 return true;
5851 }
5852
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)5853 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5854 {
5855 struct rq *rq = rq_of(cfs_rq);
5856 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5857 struct sched_entity *se;
5858 long task_delta, idle_task_delta;
5859
5860 se = cfs_rq->tg->se[cpu_of(rq)];
5861
5862 cfs_rq->throttled = 0;
5863
5864 update_rq_clock(rq);
5865
5866 raw_spin_lock(&cfs_b->lock);
5867 if (cfs_rq->throttled_clock) {
5868 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5869 cfs_rq->throttled_clock = 0;
5870 }
5871 list_del_rcu(&cfs_rq->throttled_list);
5872 raw_spin_unlock(&cfs_b->lock);
5873
5874 /* update hierarchical throttle state */
5875 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5876
5877 if (!cfs_rq->load.weight) {
5878 if (!cfs_rq->on_list)
5879 return;
5880 /*
5881 * Nothing to run but something to decay (on_list)?
5882 * Complete the branch.
5883 */
5884 for_each_sched_entity(se) {
5885 if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5886 break;
5887 }
5888 goto unthrottle_throttle;
5889 }
5890
5891 task_delta = cfs_rq->h_nr_running;
5892 idle_task_delta = cfs_rq->idle_h_nr_running;
5893 for_each_sched_entity(se) {
5894 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5895
5896 if (se->on_rq)
5897 break;
5898 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5899
5900 if (cfs_rq_is_idle(group_cfs_rq(se)))
5901 idle_task_delta = cfs_rq->h_nr_running;
5902
5903 qcfs_rq->h_nr_running += task_delta;
5904 qcfs_rq->idle_h_nr_running += idle_task_delta;
5905
5906 /* end evaluation on encountering a throttled cfs_rq */
5907 if (cfs_rq_throttled(qcfs_rq))
5908 goto unthrottle_throttle;
5909 }
5910
5911 for_each_sched_entity(se) {
5912 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5913
5914 update_load_avg(qcfs_rq, se, UPDATE_TG);
5915 se_update_runnable(se);
5916
5917 if (cfs_rq_is_idle(group_cfs_rq(se)))
5918 idle_task_delta = cfs_rq->h_nr_running;
5919
5920 qcfs_rq->h_nr_running += task_delta;
5921 qcfs_rq->idle_h_nr_running += idle_task_delta;
5922
5923 /* end evaluation on encountering a throttled cfs_rq */
5924 if (cfs_rq_throttled(qcfs_rq))
5925 goto unthrottle_throttle;
5926 }
5927
5928 /* At this point se is NULL and we are at root level*/
5929 add_nr_running(rq, task_delta);
5930
5931 unthrottle_throttle:
5932 assert_list_leaf_cfs_rq(rq);
5933
5934 /* Determine whether we need to wake up potentially idle CPU: */
5935 if (rq->curr == rq->idle && rq->cfs.nr_running)
5936 resched_curr(rq);
5937 }
5938
5939 #ifdef CONFIG_SMP
__cfsb_csd_unthrottle(void * arg)5940 static void __cfsb_csd_unthrottle(void *arg)
5941 {
5942 struct cfs_rq *cursor, *tmp;
5943 struct rq *rq = arg;
5944 struct rq_flags rf;
5945
5946 rq_lock(rq, &rf);
5947
5948 /*
5949 * Iterating over the list can trigger several call to
5950 * update_rq_clock() in unthrottle_cfs_rq().
5951 * Do it once and skip the potential next ones.
5952 */
5953 update_rq_clock(rq);
5954 rq_clock_start_loop_update(rq);
5955
5956 /*
5957 * Since we hold rq lock we're safe from concurrent manipulation of
5958 * the CSD list. However, this RCU critical section annotates the
5959 * fact that we pair with sched_free_group_rcu(), so that we cannot
5960 * race with group being freed in the window between removing it
5961 * from the list and advancing to the next entry in the list.
5962 */
5963 rcu_read_lock();
5964
5965 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
5966 throttled_csd_list) {
5967 list_del_init(&cursor->throttled_csd_list);
5968
5969 if (cfs_rq_throttled(cursor))
5970 unthrottle_cfs_rq(cursor);
5971 }
5972
5973 rcu_read_unlock();
5974
5975 rq_clock_stop_loop_update(rq);
5976 rq_unlock(rq, &rf);
5977 }
5978
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)5979 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5980 {
5981 struct rq *rq = rq_of(cfs_rq);
5982 bool first;
5983
5984 if (rq == this_rq()) {
5985 unthrottle_cfs_rq(cfs_rq);
5986 return;
5987 }
5988
5989 /* Already enqueued */
5990 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
5991 return;
5992
5993 first = list_empty(&rq->cfsb_csd_list);
5994 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
5995 if (first)
5996 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
5997 }
5998 #else
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)5999 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6000 {
6001 unthrottle_cfs_rq(cfs_rq);
6002 }
6003 #endif
6004
unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6005 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6006 {
6007 lockdep_assert_rq_held(rq_of(cfs_rq));
6008
6009 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
6010 cfs_rq->runtime_remaining <= 0))
6011 return;
6012
6013 __unthrottle_cfs_rq_async(cfs_rq);
6014 }
6015
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)6016 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6017 {
6018 struct cfs_rq *local_unthrottle = NULL;
6019 int this_cpu = smp_processor_id();
6020 u64 runtime, remaining = 1;
6021 bool throttled = false;
6022 struct cfs_rq *cfs_rq;
6023 struct rq_flags rf;
6024 struct rq *rq;
6025
6026 rcu_read_lock();
6027 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6028 throttled_list) {
6029 rq = rq_of(cfs_rq);
6030
6031 if (!remaining) {
6032 throttled = true;
6033 break;
6034 }
6035
6036 rq_lock_irqsave(rq, &rf);
6037 if (!cfs_rq_throttled(cfs_rq))
6038 goto next;
6039
6040 #ifdef CONFIG_SMP
6041 /* Already queued for async unthrottle */
6042 if (!list_empty(&cfs_rq->throttled_csd_list))
6043 goto next;
6044 #endif
6045
6046 /* By the above checks, this should never be true */
6047 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6048
6049 raw_spin_lock(&cfs_b->lock);
6050 runtime = -cfs_rq->runtime_remaining + 1;
6051 if (runtime > cfs_b->runtime)
6052 runtime = cfs_b->runtime;
6053 cfs_b->runtime -= runtime;
6054 remaining = cfs_b->runtime;
6055 raw_spin_unlock(&cfs_b->lock);
6056
6057 cfs_rq->runtime_remaining += runtime;
6058
6059 /* we check whether we're throttled above */
6060 if (cfs_rq->runtime_remaining > 0) {
6061 if (cpu_of(rq) != this_cpu ||
6062 SCHED_WARN_ON(local_unthrottle))
6063 unthrottle_cfs_rq_async(cfs_rq);
6064 else
6065 local_unthrottle = cfs_rq;
6066 } else {
6067 throttled = true;
6068 }
6069
6070 next:
6071 rq_unlock_irqrestore(rq, &rf);
6072 }
6073 rcu_read_unlock();
6074
6075 if (local_unthrottle) {
6076 rq = cpu_rq(this_cpu);
6077 rq_lock_irqsave(rq, &rf);
6078 if (cfs_rq_throttled(local_unthrottle))
6079 unthrottle_cfs_rq(local_unthrottle);
6080 rq_unlock_irqrestore(rq, &rf);
6081 }
6082
6083 return throttled;
6084 }
6085
6086 /*
6087 * Responsible for refilling a task_group's bandwidth and unthrottling its
6088 * cfs_rqs as appropriate. If there has been no activity within the last
6089 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6090 * used to track this state.
6091 */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)6092 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6093 {
6094 int throttled;
6095
6096 /* no need to continue the timer with no bandwidth constraint */
6097 if (cfs_b->quota == RUNTIME_INF)
6098 goto out_deactivate;
6099
6100 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6101 cfs_b->nr_periods += overrun;
6102
6103 /* Refill extra burst quota even if cfs_b->idle */
6104 __refill_cfs_bandwidth_runtime(cfs_b);
6105
6106 /*
6107 * idle depends on !throttled (for the case of a large deficit), and if
6108 * we're going inactive then everything else can be deferred
6109 */
6110 if (cfs_b->idle && !throttled)
6111 goto out_deactivate;
6112
6113 if (!throttled) {
6114 /* mark as potentially idle for the upcoming period */
6115 cfs_b->idle = 1;
6116 return 0;
6117 }
6118
6119 /* account preceding periods in which throttling occurred */
6120 cfs_b->nr_throttled += overrun;
6121
6122 /*
6123 * This check is repeated as we release cfs_b->lock while we unthrottle.
6124 */
6125 while (throttled && cfs_b->runtime > 0) {
6126 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6127 /* we can't nest cfs_b->lock while distributing bandwidth */
6128 throttled = distribute_cfs_runtime(cfs_b);
6129 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6130 }
6131
6132 /*
6133 * While we are ensured activity in the period following an
6134 * unthrottle, this also covers the case in which the new bandwidth is
6135 * insufficient to cover the existing bandwidth deficit. (Forcing the
6136 * timer to remain active while there are any throttled entities.)
6137 */
6138 cfs_b->idle = 0;
6139
6140 return 0;
6141
6142 out_deactivate:
6143 return 1;
6144 }
6145
6146 /* a cfs_rq won't donate quota below this amount */
6147 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6148 /* minimum remaining period time to redistribute slack quota */
6149 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6150 /* how long we wait to gather additional slack before distributing */
6151 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6152
6153 /*
6154 * Are we near the end of the current quota period?
6155 *
6156 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6157 * hrtimer base being cleared by hrtimer_start. In the case of
6158 * migrate_hrtimers, base is never cleared, so we are fine.
6159 */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)6160 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6161 {
6162 struct hrtimer *refresh_timer = &cfs_b->period_timer;
6163 s64 remaining;
6164
6165 /* if the call-back is running a quota refresh is already occurring */
6166 if (hrtimer_callback_running(refresh_timer))
6167 return 1;
6168
6169 /* is a quota refresh about to occur? */
6170 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6171 if (remaining < (s64)min_expire)
6172 return 1;
6173
6174 return 0;
6175 }
6176
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)6177 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6178 {
6179 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6180
6181 /* if there's a quota refresh soon don't bother with slack */
6182 if (runtime_refresh_within(cfs_b, min_left))
6183 return;
6184
6185 /* don't push forwards an existing deferred unthrottle */
6186 if (cfs_b->slack_started)
6187 return;
6188 cfs_b->slack_started = true;
6189
6190 hrtimer_start(&cfs_b->slack_timer,
6191 ns_to_ktime(cfs_bandwidth_slack_period),
6192 HRTIMER_MODE_REL);
6193 }
6194
6195 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6196 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6197 {
6198 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6199 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6200
6201 if (slack_runtime <= 0)
6202 return;
6203
6204 raw_spin_lock(&cfs_b->lock);
6205 if (cfs_b->quota != RUNTIME_INF) {
6206 cfs_b->runtime += slack_runtime;
6207
6208 /* we are under rq->lock, defer unthrottling using a timer */
6209 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6210 !list_empty(&cfs_b->throttled_cfs_rq))
6211 start_cfs_slack_bandwidth(cfs_b);
6212 }
6213 raw_spin_unlock(&cfs_b->lock);
6214
6215 /* even if it's not valid for return we don't want to try again */
6216 cfs_rq->runtime_remaining -= slack_runtime;
6217 }
6218
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6219 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6220 {
6221 if (!cfs_bandwidth_used())
6222 return;
6223
6224 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6225 return;
6226
6227 __return_cfs_rq_runtime(cfs_rq);
6228 }
6229
6230 /*
6231 * This is done with a timer (instead of inline with bandwidth return) since
6232 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6233 */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)6234 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6235 {
6236 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6237 unsigned long flags;
6238
6239 /* confirm we're still not at a refresh boundary */
6240 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6241 cfs_b->slack_started = false;
6242
6243 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6244 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6245 return;
6246 }
6247
6248 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6249 runtime = cfs_b->runtime;
6250
6251 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6252
6253 if (!runtime)
6254 return;
6255
6256 distribute_cfs_runtime(cfs_b);
6257 }
6258
6259 /*
6260 * When a group wakes up we want to make sure that its quota is not already
6261 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6262 * runtime as update_curr() throttling can not trigger until it's on-rq.
6263 */
check_enqueue_throttle(struct cfs_rq * cfs_rq)6264 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6265 {
6266 if (!cfs_bandwidth_used())
6267 return;
6268
6269 /* an active group must be handled by the update_curr()->put() path */
6270 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6271 return;
6272
6273 /* ensure the group is not already throttled */
6274 if (cfs_rq_throttled(cfs_rq))
6275 return;
6276
6277 /* update runtime allocation */
6278 account_cfs_rq_runtime(cfs_rq, 0);
6279 if (cfs_rq->runtime_remaining <= 0)
6280 throttle_cfs_rq(cfs_rq);
6281 }
6282
sync_throttle(struct task_group * tg,int cpu)6283 static void sync_throttle(struct task_group *tg, int cpu)
6284 {
6285 struct cfs_rq *pcfs_rq, *cfs_rq;
6286
6287 if (!cfs_bandwidth_used())
6288 return;
6289
6290 if (!tg->parent)
6291 return;
6292
6293 cfs_rq = tg->cfs_rq[cpu];
6294 pcfs_rq = tg->parent->cfs_rq[cpu];
6295
6296 cfs_rq->throttle_count = pcfs_rq->throttle_count;
6297 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6298 }
6299
6300 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6301 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6302 {
6303 if (!cfs_bandwidth_used())
6304 return false;
6305
6306 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6307 return false;
6308
6309 /*
6310 * it's possible for a throttled entity to be forced into a running
6311 * state (e.g. set_curr_task), in this case we're finished.
6312 */
6313 if (cfs_rq_throttled(cfs_rq))
6314 return true;
6315
6316 return throttle_cfs_rq(cfs_rq);
6317 }
6318
sched_cfs_slack_timer(struct hrtimer * timer)6319 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6320 {
6321 struct cfs_bandwidth *cfs_b =
6322 container_of(timer, struct cfs_bandwidth, slack_timer);
6323
6324 do_sched_cfs_slack_timer(cfs_b);
6325
6326 return HRTIMER_NORESTART;
6327 }
6328
6329 extern const u64 max_cfs_quota_period;
6330
sched_cfs_period_timer(struct hrtimer * timer)6331 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6332 {
6333 struct cfs_bandwidth *cfs_b =
6334 container_of(timer, struct cfs_bandwidth, period_timer);
6335 unsigned long flags;
6336 int overrun;
6337 int idle = 0;
6338 int count = 0;
6339
6340 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6341 for (;;) {
6342 overrun = hrtimer_forward_now(timer, cfs_b->period);
6343 if (!overrun)
6344 break;
6345
6346 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6347
6348 if (++count > 3) {
6349 u64 new, old = ktime_to_ns(cfs_b->period);
6350
6351 /*
6352 * Grow period by a factor of 2 to avoid losing precision.
6353 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6354 * to fail.
6355 */
6356 new = old * 2;
6357 if (new < max_cfs_quota_period) {
6358 cfs_b->period = ns_to_ktime(new);
6359 cfs_b->quota *= 2;
6360 cfs_b->burst *= 2;
6361
6362 pr_warn_ratelimited(
6363 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6364 smp_processor_id(),
6365 div_u64(new, NSEC_PER_USEC),
6366 div_u64(cfs_b->quota, NSEC_PER_USEC));
6367 } else {
6368 pr_warn_ratelimited(
6369 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6370 smp_processor_id(),
6371 div_u64(old, NSEC_PER_USEC),
6372 div_u64(cfs_b->quota, NSEC_PER_USEC));
6373 }
6374
6375 /* reset count so we don't come right back in here */
6376 count = 0;
6377 }
6378 }
6379 if (idle)
6380 cfs_b->period_active = 0;
6381 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6382
6383 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6384 }
6385
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6386 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6387 {
6388 raw_spin_lock_init(&cfs_b->lock);
6389 cfs_b->runtime = 0;
6390 cfs_b->quota = RUNTIME_INF;
6391 cfs_b->period = ns_to_ktime(default_cfs_period());
6392 cfs_b->burst = 0;
6393 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6394
6395 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6396 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6397 cfs_b->period_timer.function = sched_cfs_period_timer;
6398
6399 /* Add a random offset so that timers interleave */
6400 hrtimer_set_expires(&cfs_b->period_timer,
6401 get_random_u32_below(cfs_b->period));
6402 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6403 cfs_b->slack_timer.function = sched_cfs_slack_timer;
6404 cfs_b->slack_started = false;
6405 }
6406
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6407 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6408 {
6409 cfs_rq->runtime_enabled = 0;
6410 INIT_LIST_HEAD(&cfs_rq->throttled_list);
6411 #ifdef CONFIG_SMP
6412 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6413 #endif
6414 }
6415
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6416 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6417 {
6418 lockdep_assert_held(&cfs_b->lock);
6419
6420 if (cfs_b->period_active)
6421 return;
6422
6423 cfs_b->period_active = 1;
6424 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6425 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6426 }
6427
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6428 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6429 {
6430 int __maybe_unused i;
6431
6432 /* init_cfs_bandwidth() was not called */
6433 if (!cfs_b->throttled_cfs_rq.next)
6434 return;
6435
6436 hrtimer_cancel(&cfs_b->period_timer);
6437 hrtimer_cancel(&cfs_b->slack_timer);
6438
6439 /*
6440 * It is possible that we still have some cfs_rq's pending on a CSD
6441 * list, though this race is very rare. In order for this to occur, we
6442 * must have raced with the last task leaving the group while there
6443 * exist throttled cfs_rq(s), and the period_timer must have queued the
6444 * CSD item but the remote cpu has not yet processed it. To handle this,
6445 * we can simply flush all pending CSD work inline here. We're
6446 * guaranteed at this point that no additional cfs_rq of this group can
6447 * join a CSD list.
6448 */
6449 #ifdef CONFIG_SMP
6450 for_each_possible_cpu(i) {
6451 struct rq *rq = cpu_rq(i);
6452 unsigned long flags;
6453
6454 if (list_empty(&rq->cfsb_csd_list))
6455 continue;
6456
6457 local_irq_save(flags);
6458 __cfsb_csd_unthrottle(rq);
6459 local_irq_restore(flags);
6460 }
6461 #endif
6462 }
6463
6464 /*
6465 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6466 *
6467 * The race is harmless, since modifying bandwidth settings of unhooked group
6468 * bits doesn't do much.
6469 */
6470
6471 /* cpu online callback */
update_runtime_enabled(struct rq * rq)6472 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6473 {
6474 struct task_group *tg;
6475
6476 lockdep_assert_rq_held(rq);
6477
6478 rcu_read_lock();
6479 list_for_each_entry_rcu(tg, &task_groups, list) {
6480 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6481 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6482
6483 raw_spin_lock(&cfs_b->lock);
6484 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6485 raw_spin_unlock(&cfs_b->lock);
6486 }
6487 rcu_read_unlock();
6488 }
6489
6490 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)6491 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6492 {
6493 struct task_group *tg;
6494
6495 lockdep_assert_rq_held(rq);
6496
6497 /*
6498 * The rq clock has already been updated in the
6499 * set_rq_offline(), so we should skip updating
6500 * the rq clock again in unthrottle_cfs_rq().
6501 */
6502 rq_clock_start_loop_update(rq);
6503
6504 rcu_read_lock();
6505 list_for_each_entry_rcu(tg, &task_groups, list) {
6506 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6507
6508 if (!cfs_rq->runtime_enabled)
6509 continue;
6510
6511 /*
6512 * clock_task is not advancing so we just need to make sure
6513 * there's some valid quota amount
6514 */
6515 cfs_rq->runtime_remaining = 1;
6516 /*
6517 * Offline rq is schedulable till CPU is completely disabled
6518 * in take_cpu_down(), so we prevent new cfs throttling here.
6519 */
6520 cfs_rq->runtime_enabled = 0;
6521
6522 if (cfs_rq_throttled(cfs_rq))
6523 unthrottle_cfs_rq(cfs_rq);
6524 }
6525 rcu_read_unlock();
6526
6527 rq_clock_stop_loop_update(rq);
6528 }
6529
cfs_task_bw_constrained(struct task_struct * p)6530 bool cfs_task_bw_constrained(struct task_struct *p)
6531 {
6532 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6533
6534 if (!cfs_bandwidth_used())
6535 return false;
6536
6537 if (cfs_rq->runtime_enabled ||
6538 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6539 return true;
6540
6541 return false;
6542 }
6543
6544 #ifdef CONFIG_NO_HZ_FULL
6545 /* called from pick_next_task_fair() */
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6546 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6547 {
6548 int cpu = cpu_of(rq);
6549
6550 if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
6551 return;
6552
6553 if (!tick_nohz_full_cpu(cpu))
6554 return;
6555
6556 if (rq->nr_running != 1)
6557 return;
6558
6559 /*
6560 * We know there is only one task runnable and we've just picked it. The
6561 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6562 * be otherwise able to stop the tick. Just need to check if we are using
6563 * bandwidth control.
6564 */
6565 if (cfs_task_bw_constrained(p))
6566 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6567 }
6568 #endif
6569
6570 #else /* CONFIG_CFS_BANDWIDTH */
6571
cfs_bandwidth_used(void)6572 static inline bool cfs_bandwidth_used(void)
6573 {
6574 return false;
6575 }
6576
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)6577 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6578 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)6579 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)6580 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6581 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6582
cfs_rq_throttled(struct cfs_rq * cfs_rq)6583 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6584 {
6585 return 0;
6586 }
6587
throttled_hierarchy(struct cfs_rq * cfs_rq)6588 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6589 {
6590 return 0;
6591 }
6592
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)6593 static inline int throttled_lb_pair(struct task_group *tg,
6594 int src_cpu, int dest_cpu)
6595 {
6596 return 0;
6597 }
6598
6599 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6600 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6601 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6602 #endif
6603
tg_cfs_bandwidth(struct task_group * tg)6604 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6605 {
6606 return NULL;
6607 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6608 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)6609 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)6610 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6611 #ifdef CONFIG_CGROUP_SCHED
cfs_task_bw_constrained(struct task_struct * p)6612 bool cfs_task_bw_constrained(struct task_struct *p)
6613 {
6614 return false;
6615 }
6616 #endif
6617 #endif /* CONFIG_CFS_BANDWIDTH */
6618
6619 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6620 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6621 #endif
6622
6623 /**************************************************
6624 * CFS operations on tasks:
6625 */
6626
6627 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)6628 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6629 {
6630 struct sched_entity *se = &p->se;
6631
6632 SCHED_WARN_ON(task_rq(p) != rq);
6633
6634 if (rq->cfs.h_nr_running > 1) {
6635 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6636 u64 slice = se->slice;
6637 s64 delta = slice - ran;
6638
6639 if (delta < 0) {
6640 if (task_current(rq, p))
6641 resched_curr(rq);
6642 return;
6643 }
6644 hrtick_start(rq, delta);
6645 }
6646 }
6647
6648 /*
6649 * called from enqueue/dequeue and updates the hrtick when the
6650 * current task is from our class and nr_running is low enough
6651 * to matter.
6652 */
hrtick_update(struct rq * rq)6653 static void hrtick_update(struct rq *rq)
6654 {
6655 struct task_struct *curr = rq->curr;
6656
6657 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6658 return;
6659
6660 hrtick_start_fair(rq, curr);
6661 }
6662 #else /* !CONFIG_SCHED_HRTICK */
6663 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)6664 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6665 {
6666 }
6667
hrtick_update(struct rq * rq)6668 static inline void hrtick_update(struct rq *rq)
6669 {
6670 }
6671 #endif
6672
6673 #ifdef CONFIG_SMP
cpu_overutilized(int cpu)6674 static inline bool cpu_overutilized(int cpu)
6675 {
6676 unsigned long rq_util_min, rq_util_max;
6677
6678 if (!sched_energy_enabled())
6679 return false;
6680
6681 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6682 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6683
6684 /* Return true only if the utilization doesn't fit CPU's capacity */
6685 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6686 }
6687
set_rd_overutilized_status(struct root_domain * rd,unsigned int status)6688 static inline void set_rd_overutilized_status(struct root_domain *rd,
6689 unsigned int status)
6690 {
6691 if (!sched_energy_enabled())
6692 return;
6693
6694 WRITE_ONCE(rd->overutilized, status);
6695 trace_sched_overutilized_tp(rd, !!status);
6696 }
6697
check_update_overutilized_status(struct rq * rq)6698 static inline void check_update_overutilized_status(struct rq *rq)
6699 {
6700 /*
6701 * overutilized field is used for load balancing decisions only
6702 * if energy aware scheduler is being used
6703 */
6704 if (!sched_energy_enabled())
6705 return;
6706
6707 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu))
6708 set_rd_overutilized_status(rq->rd, SG_OVERUTILIZED);
6709 }
6710 #else
check_update_overutilized_status(struct rq * rq)6711 static inline void check_update_overutilized_status(struct rq *rq) { }
6712 #endif
6713
6714 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)6715 static int sched_idle_rq(struct rq *rq)
6716 {
6717 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6718 rq->nr_running);
6719 }
6720
6721 #ifdef CONFIG_SMP
sched_idle_cpu(int cpu)6722 static int sched_idle_cpu(int cpu)
6723 {
6724 return sched_idle_rq(cpu_rq(cpu));
6725 }
6726 #endif
6727
6728 /*
6729 * The enqueue_task method is called before nr_running is
6730 * increased. Here we update the fair scheduling stats and
6731 * then put the task into the rbtree:
6732 */
6733 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)6734 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6735 {
6736 struct cfs_rq *cfs_rq;
6737 struct sched_entity *se = &p->se;
6738 int idle_h_nr_running = task_has_idle_policy(p);
6739 int task_new = !(flags & ENQUEUE_WAKEUP);
6740
6741 /*
6742 * The code below (indirectly) updates schedutil which looks at
6743 * the cfs_rq utilization to select a frequency.
6744 * Let's add the task's estimated utilization to the cfs_rq's
6745 * estimated utilization, before we update schedutil.
6746 */
6747 util_est_enqueue(&rq->cfs, p);
6748
6749 /*
6750 * If in_iowait is set, the code below may not trigger any cpufreq
6751 * utilization updates, so do it here explicitly with the IOWAIT flag
6752 * passed.
6753 */
6754 if (p->in_iowait)
6755 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6756
6757 for_each_sched_entity(se) {
6758 if (se->on_rq)
6759 break;
6760 cfs_rq = cfs_rq_of(se);
6761 enqueue_entity(cfs_rq, se, flags);
6762
6763 cfs_rq->h_nr_running++;
6764 cfs_rq->idle_h_nr_running += idle_h_nr_running;
6765
6766 if (cfs_rq_is_idle(cfs_rq))
6767 idle_h_nr_running = 1;
6768
6769 /* end evaluation on encountering a throttled cfs_rq */
6770 if (cfs_rq_throttled(cfs_rq))
6771 goto enqueue_throttle;
6772
6773 flags = ENQUEUE_WAKEUP;
6774 }
6775
6776 for_each_sched_entity(se) {
6777 cfs_rq = cfs_rq_of(se);
6778
6779 update_load_avg(cfs_rq, se, UPDATE_TG);
6780 se_update_runnable(se);
6781 update_cfs_group(se);
6782
6783 cfs_rq->h_nr_running++;
6784 cfs_rq->idle_h_nr_running += idle_h_nr_running;
6785
6786 if (cfs_rq_is_idle(cfs_rq))
6787 idle_h_nr_running = 1;
6788
6789 /* end evaluation on encountering a throttled cfs_rq */
6790 if (cfs_rq_throttled(cfs_rq))
6791 goto enqueue_throttle;
6792 }
6793
6794 /* At this point se is NULL and we are at root level*/
6795 add_nr_running(rq, 1);
6796
6797 /*
6798 * Since new tasks are assigned an initial util_avg equal to
6799 * half of the spare capacity of their CPU, tiny tasks have the
6800 * ability to cross the overutilized threshold, which will
6801 * result in the load balancer ruining all the task placement
6802 * done by EAS. As a way to mitigate that effect, do not account
6803 * for the first enqueue operation of new tasks during the
6804 * overutilized flag detection.
6805 *
6806 * A better way of solving this problem would be to wait for
6807 * the PELT signals of tasks to converge before taking them
6808 * into account, but that is not straightforward to implement,
6809 * and the following generally works well enough in practice.
6810 */
6811 if (!task_new)
6812 check_update_overutilized_status(rq);
6813
6814 enqueue_throttle:
6815 assert_list_leaf_cfs_rq(rq);
6816
6817 hrtick_update(rq);
6818 }
6819
6820 static void set_next_buddy(struct sched_entity *se);
6821
6822 /*
6823 * The dequeue_task method is called before nr_running is
6824 * decreased. We remove the task from the rbtree and
6825 * update the fair scheduling stats:
6826 */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)6827 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6828 {
6829 struct cfs_rq *cfs_rq;
6830 struct sched_entity *se = &p->se;
6831 int task_sleep = flags & DEQUEUE_SLEEP;
6832 int idle_h_nr_running = task_has_idle_policy(p);
6833 bool was_sched_idle = sched_idle_rq(rq);
6834
6835 util_est_dequeue(&rq->cfs, p);
6836
6837 for_each_sched_entity(se) {
6838 cfs_rq = cfs_rq_of(se);
6839 dequeue_entity(cfs_rq, se, flags);
6840
6841 cfs_rq->h_nr_running--;
6842 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6843
6844 if (cfs_rq_is_idle(cfs_rq))
6845 idle_h_nr_running = 1;
6846
6847 /* end evaluation on encountering a throttled cfs_rq */
6848 if (cfs_rq_throttled(cfs_rq))
6849 goto dequeue_throttle;
6850
6851 /* Don't dequeue parent if it has other entities besides us */
6852 if (cfs_rq->load.weight) {
6853 /* Avoid re-evaluating load for this entity: */
6854 se = parent_entity(se);
6855 /*
6856 * Bias pick_next to pick a task from this cfs_rq, as
6857 * p is sleeping when it is within its sched_slice.
6858 */
6859 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6860 set_next_buddy(se);
6861 break;
6862 }
6863 flags |= DEQUEUE_SLEEP;
6864 }
6865
6866 for_each_sched_entity(se) {
6867 cfs_rq = cfs_rq_of(se);
6868
6869 update_load_avg(cfs_rq, se, UPDATE_TG);
6870 se_update_runnable(se);
6871 update_cfs_group(se);
6872
6873 cfs_rq->h_nr_running--;
6874 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6875
6876 if (cfs_rq_is_idle(cfs_rq))
6877 idle_h_nr_running = 1;
6878
6879 /* end evaluation on encountering a throttled cfs_rq */
6880 if (cfs_rq_throttled(cfs_rq))
6881 goto dequeue_throttle;
6882
6883 }
6884
6885 /* At this point se is NULL and we are at root level*/
6886 sub_nr_running(rq, 1);
6887
6888 /* balance early to pull high priority tasks */
6889 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6890 rq->next_balance = jiffies;
6891
6892 dequeue_throttle:
6893 util_est_update(&rq->cfs, p, task_sleep);
6894 hrtick_update(rq);
6895 }
6896
6897 #ifdef CONFIG_SMP
6898
6899 /* Working cpumask for: load_balance, load_balance_newidle. */
6900 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6901 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6902 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
6903
6904 #ifdef CONFIG_NO_HZ_COMMON
6905
6906 static struct {
6907 cpumask_var_t idle_cpus_mask;
6908 atomic_t nr_cpus;
6909 int has_blocked; /* Idle CPUS has blocked load */
6910 int needs_update; /* Newly idle CPUs need their next_balance collated */
6911 unsigned long next_balance; /* in jiffy units */
6912 unsigned long next_blocked; /* Next update of blocked load in jiffies */
6913 } nohz ____cacheline_aligned;
6914
6915 #endif /* CONFIG_NO_HZ_COMMON */
6916
cpu_load(struct rq * rq)6917 static unsigned long cpu_load(struct rq *rq)
6918 {
6919 return cfs_rq_load_avg(&rq->cfs);
6920 }
6921
6922 /*
6923 * cpu_load_without - compute CPU load without any contributions from *p
6924 * @cpu: the CPU which load is requested
6925 * @p: the task which load should be discounted
6926 *
6927 * The load of a CPU is defined by the load of tasks currently enqueued on that
6928 * CPU as well as tasks which are currently sleeping after an execution on that
6929 * CPU.
6930 *
6931 * This method returns the load of the specified CPU by discounting the load of
6932 * the specified task, whenever the task is currently contributing to the CPU
6933 * load.
6934 */
cpu_load_without(struct rq * rq,struct task_struct * p)6935 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6936 {
6937 struct cfs_rq *cfs_rq;
6938 unsigned int load;
6939
6940 /* Task has no contribution or is new */
6941 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6942 return cpu_load(rq);
6943
6944 cfs_rq = &rq->cfs;
6945 load = READ_ONCE(cfs_rq->avg.load_avg);
6946
6947 /* Discount task's util from CPU's util */
6948 lsub_positive(&load, task_h_load(p));
6949
6950 return load;
6951 }
6952
cpu_runnable(struct rq * rq)6953 static unsigned long cpu_runnable(struct rq *rq)
6954 {
6955 return cfs_rq_runnable_avg(&rq->cfs);
6956 }
6957
cpu_runnable_without(struct rq * rq,struct task_struct * p)6958 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6959 {
6960 struct cfs_rq *cfs_rq;
6961 unsigned int runnable;
6962
6963 /* Task has no contribution or is new */
6964 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6965 return cpu_runnable(rq);
6966
6967 cfs_rq = &rq->cfs;
6968 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6969
6970 /* Discount task's runnable from CPU's runnable */
6971 lsub_positive(&runnable, p->se.avg.runnable_avg);
6972
6973 return runnable;
6974 }
6975
capacity_of(int cpu)6976 static unsigned long capacity_of(int cpu)
6977 {
6978 return cpu_rq(cpu)->cpu_capacity;
6979 }
6980
record_wakee(struct task_struct * p)6981 static void record_wakee(struct task_struct *p)
6982 {
6983 /*
6984 * Only decay a single time; tasks that have less then 1 wakeup per
6985 * jiffy will not have built up many flips.
6986 */
6987 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6988 current->wakee_flips >>= 1;
6989 current->wakee_flip_decay_ts = jiffies;
6990 }
6991
6992 if (current->last_wakee != p) {
6993 current->last_wakee = p;
6994 current->wakee_flips++;
6995 }
6996 }
6997
6998 /*
6999 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7000 *
7001 * A waker of many should wake a different task than the one last awakened
7002 * at a frequency roughly N times higher than one of its wakees.
7003 *
7004 * In order to determine whether we should let the load spread vs consolidating
7005 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7006 * partner, and a factor of lls_size higher frequency in the other.
7007 *
7008 * With both conditions met, we can be relatively sure that the relationship is
7009 * non-monogamous, with partner count exceeding socket size.
7010 *
7011 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7012 * whatever is irrelevant, spread criteria is apparent partner count exceeds
7013 * socket size.
7014 */
wake_wide(struct task_struct * p)7015 static int wake_wide(struct task_struct *p)
7016 {
7017 unsigned int master = current->wakee_flips;
7018 unsigned int slave = p->wakee_flips;
7019 int factor = __this_cpu_read(sd_llc_size);
7020
7021 if (master < slave)
7022 swap(master, slave);
7023 if (slave < factor || master < slave * factor)
7024 return 0;
7025 return 1;
7026 }
7027
7028 /*
7029 * The purpose of wake_affine() is to quickly determine on which CPU we can run
7030 * soonest. For the purpose of speed we only consider the waking and previous
7031 * CPU.
7032 *
7033 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7034 * cache-affine and is (or will be) idle.
7035 *
7036 * wake_affine_weight() - considers the weight to reflect the average
7037 * scheduling latency of the CPUs. This seems to work
7038 * for the overloaded case.
7039 */
7040 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)7041 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7042 {
7043 /*
7044 * If this_cpu is idle, it implies the wakeup is from interrupt
7045 * context. Only allow the move if cache is shared. Otherwise an
7046 * interrupt intensive workload could force all tasks onto one
7047 * node depending on the IO topology or IRQ affinity settings.
7048 *
7049 * If the prev_cpu is idle and cache affine then avoid a migration.
7050 * There is no guarantee that the cache hot data from an interrupt
7051 * is more important than cache hot data on the prev_cpu and from
7052 * a cpufreq perspective, it's better to have higher utilisation
7053 * on one CPU.
7054 */
7055 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7056 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7057
7058 if (sync && cpu_rq(this_cpu)->nr_running == 1)
7059 return this_cpu;
7060
7061 if (available_idle_cpu(prev_cpu))
7062 return prev_cpu;
7063
7064 return nr_cpumask_bits;
7065 }
7066
7067 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7068 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7069 int this_cpu, int prev_cpu, int sync)
7070 {
7071 s64 this_eff_load, prev_eff_load;
7072 unsigned long task_load;
7073
7074 this_eff_load = cpu_load(cpu_rq(this_cpu));
7075
7076 if (sync) {
7077 unsigned long current_load = task_h_load(current);
7078
7079 if (current_load > this_eff_load)
7080 return this_cpu;
7081
7082 this_eff_load -= current_load;
7083 }
7084
7085 task_load = task_h_load(p);
7086
7087 this_eff_load += task_load;
7088 if (sched_feat(WA_BIAS))
7089 this_eff_load *= 100;
7090 this_eff_load *= capacity_of(prev_cpu);
7091
7092 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7093 prev_eff_load -= task_load;
7094 if (sched_feat(WA_BIAS))
7095 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7096 prev_eff_load *= capacity_of(this_cpu);
7097
7098 /*
7099 * If sync, adjust the weight of prev_eff_load such that if
7100 * prev_eff == this_eff that select_idle_sibling() will consider
7101 * stacking the wakee on top of the waker if no other CPU is
7102 * idle.
7103 */
7104 if (sync)
7105 prev_eff_load += 1;
7106
7107 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7108 }
7109
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7110 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7111 int this_cpu, int prev_cpu, int sync)
7112 {
7113 int target = nr_cpumask_bits;
7114
7115 if (sched_feat(WA_IDLE))
7116 target = wake_affine_idle(this_cpu, prev_cpu, sync);
7117
7118 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7119 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7120
7121 schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7122 if (target != this_cpu)
7123 return prev_cpu;
7124
7125 schedstat_inc(sd->ttwu_move_affine);
7126 schedstat_inc(p->stats.nr_wakeups_affine);
7127 return target;
7128 }
7129
7130 static struct sched_group *
7131 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7132
7133 /*
7134 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
7135 */
7136 static int
find_idlest_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)7137 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7138 {
7139 unsigned long load, min_load = ULONG_MAX;
7140 unsigned int min_exit_latency = UINT_MAX;
7141 u64 latest_idle_timestamp = 0;
7142 int least_loaded_cpu = this_cpu;
7143 int shallowest_idle_cpu = -1;
7144 int i;
7145
7146 /* Check if we have any choice: */
7147 if (group->group_weight == 1)
7148 return cpumask_first(sched_group_span(group));
7149
7150 /* Traverse only the allowed CPUs */
7151 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7152 struct rq *rq = cpu_rq(i);
7153
7154 if (!sched_core_cookie_match(rq, p))
7155 continue;
7156
7157 if (sched_idle_cpu(i))
7158 return i;
7159
7160 if (available_idle_cpu(i)) {
7161 struct cpuidle_state *idle = idle_get_state(rq);
7162 if (idle && idle->exit_latency < min_exit_latency) {
7163 /*
7164 * We give priority to a CPU whose idle state
7165 * has the smallest exit latency irrespective
7166 * of any idle timestamp.
7167 */
7168 min_exit_latency = idle->exit_latency;
7169 latest_idle_timestamp = rq->idle_stamp;
7170 shallowest_idle_cpu = i;
7171 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
7172 rq->idle_stamp > latest_idle_timestamp) {
7173 /*
7174 * If equal or no active idle state, then
7175 * the most recently idled CPU might have
7176 * a warmer cache.
7177 */
7178 latest_idle_timestamp = rq->idle_stamp;
7179 shallowest_idle_cpu = i;
7180 }
7181 } else if (shallowest_idle_cpu == -1) {
7182 load = cpu_load(cpu_rq(i));
7183 if (load < min_load) {
7184 min_load = load;
7185 least_loaded_cpu = i;
7186 }
7187 }
7188 }
7189
7190 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7191 }
7192
find_idlest_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)7193 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
7194 int cpu, int prev_cpu, int sd_flag)
7195 {
7196 int new_cpu = cpu;
7197
7198 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7199 return prev_cpu;
7200
7201 /*
7202 * We need task's util for cpu_util_without, sync it up to
7203 * prev_cpu's last_update_time.
7204 */
7205 if (!(sd_flag & SD_BALANCE_FORK))
7206 sync_entity_load_avg(&p->se);
7207
7208 while (sd) {
7209 struct sched_group *group;
7210 struct sched_domain *tmp;
7211 int weight;
7212
7213 if (!(sd->flags & sd_flag)) {
7214 sd = sd->child;
7215 continue;
7216 }
7217
7218 group = find_idlest_group(sd, p, cpu);
7219 if (!group) {
7220 sd = sd->child;
7221 continue;
7222 }
7223
7224 new_cpu = find_idlest_group_cpu(group, p, cpu);
7225 if (new_cpu == cpu) {
7226 /* Now try balancing at a lower domain level of 'cpu': */
7227 sd = sd->child;
7228 continue;
7229 }
7230
7231 /* Now try balancing at a lower domain level of 'new_cpu': */
7232 cpu = new_cpu;
7233 weight = sd->span_weight;
7234 sd = NULL;
7235 for_each_domain(cpu, tmp) {
7236 if (weight <= tmp->span_weight)
7237 break;
7238 if (tmp->flags & sd_flag)
7239 sd = tmp;
7240 }
7241 }
7242
7243 return new_cpu;
7244 }
7245
__select_idle_cpu(int cpu,struct task_struct * p)7246 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7247 {
7248 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7249 sched_cpu_cookie_match(cpu_rq(cpu), p))
7250 return cpu;
7251
7252 return -1;
7253 }
7254
7255 #ifdef CONFIG_SCHED_SMT
7256 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7257 EXPORT_SYMBOL_GPL(sched_smt_present);
7258
set_idle_cores(int cpu,int val)7259 static inline void set_idle_cores(int cpu, int val)
7260 {
7261 struct sched_domain_shared *sds;
7262
7263 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7264 if (sds)
7265 WRITE_ONCE(sds->has_idle_cores, val);
7266 }
7267
test_idle_cores(int cpu)7268 static inline bool test_idle_cores(int cpu)
7269 {
7270 struct sched_domain_shared *sds;
7271
7272 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7273 if (sds)
7274 return READ_ONCE(sds->has_idle_cores);
7275
7276 return false;
7277 }
7278
7279 /*
7280 * Scans the local SMT mask to see if the entire core is idle, and records this
7281 * information in sd_llc_shared->has_idle_cores.
7282 *
7283 * Since SMT siblings share all cache levels, inspecting this limited remote
7284 * state should be fairly cheap.
7285 */
__update_idle_core(struct rq * rq)7286 void __update_idle_core(struct rq *rq)
7287 {
7288 int core = cpu_of(rq);
7289 int cpu;
7290
7291 rcu_read_lock();
7292 if (test_idle_cores(core))
7293 goto unlock;
7294
7295 for_each_cpu(cpu, cpu_smt_mask(core)) {
7296 if (cpu == core)
7297 continue;
7298
7299 if (!available_idle_cpu(cpu))
7300 goto unlock;
7301 }
7302
7303 set_idle_cores(core, 1);
7304 unlock:
7305 rcu_read_unlock();
7306 }
7307
7308 /*
7309 * Scan the entire LLC domain for idle cores; this dynamically switches off if
7310 * there are no idle cores left in the system; tracked through
7311 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7312 */
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7313 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7314 {
7315 bool idle = true;
7316 int cpu;
7317
7318 for_each_cpu(cpu, cpu_smt_mask(core)) {
7319 if (!available_idle_cpu(cpu)) {
7320 idle = false;
7321 if (*idle_cpu == -1) {
7322 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7323 *idle_cpu = cpu;
7324 break;
7325 }
7326 continue;
7327 }
7328 break;
7329 }
7330 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7331 *idle_cpu = cpu;
7332 }
7333
7334 if (idle)
7335 return core;
7336
7337 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7338 return -1;
7339 }
7340
7341 /*
7342 * Scan the local SMT mask for idle CPUs.
7343 */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7344 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7345 {
7346 int cpu;
7347
7348 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7349 if (cpu == target)
7350 continue;
7351 /*
7352 * Check if the CPU is in the LLC scheduling domain of @target.
7353 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7354 */
7355 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7356 continue;
7357 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7358 return cpu;
7359 }
7360
7361 return -1;
7362 }
7363
7364 #else /* CONFIG_SCHED_SMT */
7365
set_idle_cores(int cpu,int val)7366 static inline void set_idle_cores(int cpu, int val)
7367 {
7368 }
7369
test_idle_cores(int cpu)7370 static inline bool test_idle_cores(int cpu)
7371 {
7372 return false;
7373 }
7374
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7375 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7376 {
7377 return __select_idle_cpu(core, p);
7378 }
7379
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7380 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7381 {
7382 return -1;
7383 }
7384
7385 #endif /* CONFIG_SCHED_SMT */
7386
7387 /*
7388 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7389 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7390 * average idle time for this rq (as found in rq->avg_idle).
7391 */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,bool has_idle_core,int target)7392 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7393 {
7394 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7395 int i, cpu, idle_cpu = -1, nr = INT_MAX;
7396 struct sched_domain_shared *sd_share;
7397 struct rq *this_rq = this_rq();
7398 int this = smp_processor_id();
7399 struct sched_domain *this_sd = NULL;
7400 u64 time = 0;
7401
7402 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7403
7404 if (sched_feat(SIS_PROP) && !has_idle_core) {
7405 u64 avg_cost, avg_idle, span_avg;
7406 unsigned long now = jiffies;
7407
7408 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
7409 if (!this_sd)
7410 return -1;
7411
7412 /*
7413 * If we're busy, the assumption that the last idle period
7414 * predicts the future is flawed; age away the remaining
7415 * predicted idle time.
7416 */
7417 if (unlikely(this_rq->wake_stamp < now)) {
7418 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
7419 this_rq->wake_stamp++;
7420 this_rq->wake_avg_idle >>= 1;
7421 }
7422 }
7423
7424 avg_idle = this_rq->wake_avg_idle;
7425 avg_cost = this_sd->avg_scan_cost + 1;
7426
7427 span_avg = sd->span_weight * avg_idle;
7428 if (span_avg > 4*avg_cost)
7429 nr = div_u64(span_avg, avg_cost);
7430 else
7431 nr = 4;
7432
7433 time = cpu_clock(this);
7434 }
7435
7436 if (sched_feat(SIS_UTIL)) {
7437 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7438 if (sd_share) {
7439 /* because !--nr is the condition to stop scan */
7440 nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7441 /* overloaded LLC is unlikely to have idle cpu/core */
7442 if (nr == 1)
7443 return -1;
7444 }
7445 }
7446
7447 for_each_cpu_wrap(cpu, cpus, target + 1) {
7448 if (has_idle_core) {
7449 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7450 if ((unsigned int)i < nr_cpumask_bits)
7451 return i;
7452
7453 } else {
7454 if (!--nr)
7455 return -1;
7456 idle_cpu = __select_idle_cpu(cpu, p);
7457 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7458 break;
7459 }
7460 }
7461
7462 if (has_idle_core)
7463 set_idle_cores(target, false);
7464
7465 if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) {
7466 time = cpu_clock(this) - time;
7467
7468 /*
7469 * Account for the scan cost of wakeups against the average
7470 * idle time.
7471 */
7472 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
7473
7474 update_avg(&this_sd->avg_scan_cost, time);
7475 }
7476
7477 return idle_cpu;
7478 }
7479
7480 /*
7481 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7482 * the task fits. If no CPU is big enough, but there are idle ones, try to
7483 * maximize capacity.
7484 */
7485 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)7486 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7487 {
7488 unsigned long task_util, util_min, util_max, best_cap = 0;
7489 int fits, best_fits = 0;
7490 int cpu, best_cpu = -1;
7491 struct cpumask *cpus;
7492
7493 cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7494 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7495
7496 task_util = task_util_est(p);
7497 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7498 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7499
7500 for_each_cpu_wrap(cpu, cpus, target) {
7501 unsigned long cpu_cap = capacity_of(cpu);
7502
7503 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7504 continue;
7505
7506 fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7507
7508 /* This CPU fits with all requirements */
7509 if (fits > 0)
7510 return cpu;
7511 /*
7512 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7513 * Look for the CPU with best capacity.
7514 */
7515 else if (fits < 0)
7516 cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu));
7517
7518 /*
7519 * First, select CPU which fits better (-1 being better than 0).
7520 * Then, select the one with best capacity at same level.
7521 */
7522 if ((fits < best_fits) ||
7523 ((fits == best_fits) && (cpu_cap > best_cap))) {
7524 best_cap = cpu_cap;
7525 best_cpu = cpu;
7526 best_fits = fits;
7527 }
7528 }
7529
7530 return best_cpu;
7531 }
7532
asym_fits_cpu(unsigned long util,unsigned long util_min,unsigned long util_max,int cpu)7533 static inline bool asym_fits_cpu(unsigned long util,
7534 unsigned long util_min,
7535 unsigned long util_max,
7536 int cpu)
7537 {
7538 if (sched_asym_cpucap_active())
7539 /*
7540 * Return true only if the cpu fully fits the task requirements
7541 * which include the utilization and the performance hints.
7542 */
7543 return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7544
7545 return true;
7546 }
7547
7548 /*
7549 * Try and locate an idle core/thread in the LLC cache domain.
7550 */
select_idle_sibling(struct task_struct * p,int prev,int target)7551 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7552 {
7553 bool has_idle_core = false;
7554 struct sched_domain *sd;
7555 unsigned long task_util, util_min, util_max;
7556 int i, recent_used_cpu;
7557
7558 /*
7559 * On asymmetric system, update task utilization because we will check
7560 * that the task fits with cpu's capacity.
7561 */
7562 if (sched_asym_cpucap_active()) {
7563 sync_entity_load_avg(&p->se);
7564 task_util = task_util_est(p);
7565 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7566 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7567 }
7568
7569 /*
7570 * per-cpu select_rq_mask usage
7571 */
7572 lockdep_assert_irqs_disabled();
7573
7574 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7575 asym_fits_cpu(task_util, util_min, util_max, target))
7576 return target;
7577
7578 /*
7579 * If the previous CPU is cache affine and idle, don't be stupid:
7580 */
7581 if (prev != target && cpus_share_cache(prev, target) &&
7582 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7583 asym_fits_cpu(task_util, util_min, util_max, prev))
7584 return prev;
7585
7586 /*
7587 * Allow a per-cpu kthread to stack with the wakee if the
7588 * kworker thread and the tasks previous CPUs are the same.
7589 * The assumption is that the wakee queued work for the
7590 * per-cpu kthread that is now complete and the wakeup is
7591 * essentially a sync wakeup. An obvious example of this
7592 * pattern is IO completions.
7593 */
7594 if (is_per_cpu_kthread(current) &&
7595 in_task() &&
7596 prev == smp_processor_id() &&
7597 this_rq()->nr_running <= 1 &&
7598 asym_fits_cpu(task_util, util_min, util_max, prev)) {
7599 return prev;
7600 }
7601
7602 /* Check a recently used CPU as a potential idle candidate: */
7603 recent_used_cpu = p->recent_used_cpu;
7604 p->recent_used_cpu = prev;
7605 if (recent_used_cpu != prev &&
7606 recent_used_cpu != target &&
7607 cpus_share_cache(recent_used_cpu, target) &&
7608 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7609 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7610 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7611 return recent_used_cpu;
7612 }
7613
7614 /*
7615 * For asymmetric CPU capacity systems, our domain of interest is
7616 * sd_asym_cpucapacity rather than sd_llc.
7617 */
7618 if (sched_asym_cpucap_active()) {
7619 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7620 /*
7621 * On an asymmetric CPU capacity system where an exclusive
7622 * cpuset defines a symmetric island (i.e. one unique
7623 * capacity_orig value through the cpuset), the key will be set
7624 * but the CPUs within that cpuset will not have a domain with
7625 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7626 * capacity path.
7627 */
7628 if (sd) {
7629 i = select_idle_capacity(p, sd, target);
7630 return ((unsigned)i < nr_cpumask_bits) ? i : target;
7631 }
7632 }
7633
7634 sd = rcu_dereference(per_cpu(sd_llc, target));
7635 if (!sd)
7636 return target;
7637
7638 if (sched_smt_active()) {
7639 has_idle_core = test_idle_cores(target);
7640
7641 if (!has_idle_core && cpus_share_cache(prev, target)) {
7642 i = select_idle_smt(p, sd, prev);
7643 if ((unsigned int)i < nr_cpumask_bits)
7644 return i;
7645 }
7646 }
7647
7648 i = select_idle_cpu(p, sd, has_idle_core, target);
7649 if ((unsigned)i < nr_cpumask_bits)
7650 return i;
7651
7652 return target;
7653 }
7654
7655 /**
7656 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7657 * @cpu: the CPU to get the utilization for
7658 * @p: task for which the CPU utilization should be predicted or NULL
7659 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7660 * @boost: 1 to enable boosting, otherwise 0
7661 *
7662 * The unit of the return value must be the same as the one of CPU capacity
7663 * so that CPU utilization can be compared with CPU capacity.
7664 *
7665 * CPU utilization is the sum of running time of runnable tasks plus the
7666 * recent utilization of currently non-runnable tasks on that CPU.
7667 * It represents the amount of CPU capacity currently used by CFS tasks in
7668 * the range [0..max CPU capacity] with max CPU capacity being the CPU
7669 * capacity at f_max.
7670 *
7671 * The estimated CPU utilization is defined as the maximum between CPU
7672 * utilization and sum of the estimated utilization of the currently
7673 * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7674 * previously-executed tasks, which helps better deduce how busy a CPU will
7675 * be when a long-sleeping task wakes up. The contribution to CPU utilization
7676 * of such a task would be significantly decayed at this point of time.
7677 *
7678 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7679 * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7680 * utilization. Boosting is implemented in cpu_util() so that internal
7681 * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7682 * latter via cpu_util_cfs_boost().
7683 *
7684 * CPU utilization can be higher than the current CPU capacity
7685 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7686 * of rounding errors as well as task migrations or wakeups of new tasks.
7687 * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7688 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7689 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7690 * capacity. CPU utilization is allowed to overshoot current CPU capacity
7691 * though since this is useful for predicting the CPU capacity required
7692 * after task migrations (scheduler-driven DVFS).
7693 *
7694 * Return: (Boosted) (estimated) utilization for the specified CPU.
7695 */
7696 static unsigned long
cpu_util(int cpu,struct task_struct * p,int dst_cpu,int boost)7697 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7698 {
7699 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7700 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7701 unsigned long runnable;
7702
7703 if (boost) {
7704 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7705 util = max(util, runnable);
7706 }
7707
7708 /*
7709 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7710 * contribution. If @p migrates from another CPU to @cpu add its
7711 * contribution. In all the other cases @cpu is not impacted by the
7712 * migration so its util_avg is already correct.
7713 */
7714 if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7715 lsub_positive(&util, task_util(p));
7716 else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7717 util += task_util(p);
7718
7719 if (sched_feat(UTIL_EST)) {
7720 unsigned long util_est;
7721
7722 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
7723
7724 /*
7725 * During wake-up @p isn't enqueued yet and doesn't contribute
7726 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
7727 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7728 * has been enqueued.
7729 *
7730 * During exec (@dst_cpu = -1) @p is enqueued and does
7731 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
7732 * Remove it to "simulate" cpu_util without @p's contribution.
7733 *
7734 * Despite the task_on_rq_queued(@p) check there is still a
7735 * small window for a possible race when an exec
7736 * select_task_rq_fair() races with LB's detach_task().
7737 *
7738 * detach_task()
7739 * deactivate_task()
7740 * p->on_rq = TASK_ON_RQ_MIGRATING;
7741 * -------------------------------- A
7742 * dequeue_task() \
7743 * dequeue_task_fair() + Race Time
7744 * util_est_dequeue() /
7745 * -------------------------------- B
7746 *
7747 * The additional check "current == p" is required to further
7748 * reduce the race window.
7749 */
7750 if (dst_cpu == cpu)
7751 util_est += _task_util_est(p);
7752 else if (p && unlikely(task_on_rq_queued(p) || current == p))
7753 lsub_positive(&util_est, _task_util_est(p));
7754
7755 util = max(util, util_est);
7756 }
7757
7758 return min(util, capacity_orig_of(cpu));
7759 }
7760
cpu_util_cfs(int cpu)7761 unsigned long cpu_util_cfs(int cpu)
7762 {
7763 return cpu_util(cpu, NULL, -1, 0);
7764 }
7765
cpu_util_cfs_boost(int cpu)7766 unsigned long cpu_util_cfs_boost(int cpu)
7767 {
7768 return cpu_util(cpu, NULL, -1, 1);
7769 }
7770
7771 /*
7772 * cpu_util_without: compute cpu utilization without any contributions from *p
7773 * @cpu: the CPU which utilization is requested
7774 * @p: the task which utilization should be discounted
7775 *
7776 * The utilization of a CPU is defined by the utilization of tasks currently
7777 * enqueued on that CPU as well as tasks which are currently sleeping after an
7778 * execution on that CPU.
7779 *
7780 * This method returns the utilization of the specified CPU by discounting the
7781 * utilization of the specified task, whenever the task is currently
7782 * contributing to the CPU utilization.
7783 */
cpu_util_without(int cpu,struct task_struct * p)7784 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7785 {
7786 /* Task has no contribution or is new */
7787 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7788 p = NULL;
7789
7790 return cpu_util(cpu, p, -1, 0);
7791 }
7792
7793 /*
7794 * energy_env - Utilization landscape for energy estimation.
7795 * @task_busy_time: Utilization contribution by the task for which we test the
7796 * placement. Given by eenv_task_busy_time().
7797 * @pd_busy_time: Utilization of the whole perf domain without the task
7798 * contribution. Given by eenv_pd_busy_time().
7799 * @cpu_cap: Maximum CPU capacity for the perf domain.
7800 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7801 */
7802 struct energy_env {
7803 unsigned long task_busy_time;
7804 unsigned long pd_busy_time;
7805 unsigned long cpu_cap;
7806 unsigned long pd_cap;
7807 };
7808
7809 /*
7810 * Compute the task busy time for compute_energy(). This time cannot be
7811 * injected directly into effective_cpu_util() because of the IRQ scaling.
7812 * The latter only makes sense with the most recent CPUs where the task has
7813 * run.
7814 */
eenv_task_busy_time(struct energy_env * eenv,struct task_struct * p,int prev_cpu)7815 static inline void eenv_task_busy_time(struct energy_env *eenv,
7816 struct task_struct *p, int prev_cpu)
7817 {
7818 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7819 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7820
7821 if (unlikely(irq >= max_cap))
7822 busy_time = max_cap;
7823 else
7824 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7825
7826 eenv->task_busy_time = busy_time;
7827 }
7828
7829 /*
7830 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7831 * utilization for each @pd_cpus, it however doesn't take into account
7832 * clamping since the ratio (utilization / cpu_capacity) is already enough to
7833 * scale the EM reported power consumption at the (eventually clamped)
7834 * cpu_capacity.
7835 *
7836 * The contribution of the task @p for which we want to estimate the
7837 * energy cost is removed (by cpu_util()) and must be calculated
7838 * separately (see eenv_task_busy_time). This ensures:
7839 *
7840 * - A stable PD utilization, no matter which CPU of that PD we want to place
7841 * the task on.
7842 *
7843 * - A fair comparison between CPUs as the task contribution (task_util())
7844 * will always be the same no matter which CPU utilization we rely on
7845 * (util_avg or util_est).
7846 *
7847 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7848 * exceed @eenv->pd_cap.
7849 */
eenv_pd_busy_time(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p)7850 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7851 struct cpumask *pd_cpus,
7852 struct task_struct *p)
7853 {
7854 unsigned long busy_time = 0;
7855 int cpu;
7856
7857 for_each_cpu(cpu, pd_cpus) {
7858 unsigned long util = cpu_util(cpu, p, -1, 0);
7859
7860 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
7861 }
7862
7863 eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7864 }
7865
7866 /*
7867 * Compute the maximum utilization for compute_energy() when the task @p
7868 * is placed on the cpu @dst_cpu.
7869 *
7870 * Returns the maximum utilization among @eenv->cpus. This utilization can't
7871 * exceed @eenv->cpu_cap.
7872 */
7873 static inline unsigned long
eenv_pd_max_util(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)7874 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7875 struct task_struct *p, int dst_cpu)
7876 {
7877 unsigned long max_util = 0;
7878 int cpu;
7879
7880 for_each_cpu(cpu, pd_cpus) {
7881 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7882 unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
7883 unsigned long eff_util;
7884
7885 /*
7886 * Performance domain frequency: utilization clamping
7887 * must be considered since it affects the selection
7888 * of the performance domain frequency.
7889 * NOTE: in case RT tasks are running, by default the
7890 * FREQUENCY_UTIL's utilization can be max OPP.
7891 */
7892 eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
7893 max_util = max(max_util, eff_util);
7894 }
7895
7896 return min(max_util, eenv->cpu_cap);
7897 }
7898
7899 /*
7900 * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7901 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7902 * contribution is ignored.
7903 */
7904 static inline unsigned long
compute_energy(struct energy_env * eenv,struct perf_domain * pd,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)7905 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7906 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7907 {
7908 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7909 unsigned long busy_time = eenv->pd_busy_time;
7910
7911 if (dst_cpu >= 0)
7912 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7913
7914 return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7915 }
7916
7917 /*
7918 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7919 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7920 * spare capacity in each performance domain and uses it as a potential
7921 * candidate to execute the task. Then, it uses the Energy Model to figure
7922 * out which of the CPU candidates is the most energy-efficient.
7923 *
7924 * The rationale for this heuristic is as follows. In a performance domain,
7925 * all the most energy efficient CPU candidates (according to the Energy
7926 * Model) are those for which we'll request a low frequency. When there are
7927 * several CPUs for which the frequency request will be the same, we don't
7928 * have enough data to break the tie between them, because the Energy Model
7929 * only includes active power costs. With this model, if we assume that
7930 * frequency requests follow utilization (e.g. using schedutil), the CPU with
7931 * the maximum spare capacity in a performance domain is guaranteed to be among
7932 * the best candidates of the performance domain.
7933 *
7934 * In practice, it could be preferable from an energy standpoint to pack
7935 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7936 * but that could also hurt our chances to go cluster idle, and we have no
7937 * ways to tell with the current Energy Model if this is actually a good
7938 * idea or not. So, find_energy_efficient_cpu() basically favors
7939 * cluster-packing, and spreading inside a cluster. That should at least be
7940 * a good thing for latency, and this is consistent with the idea that most
7941 * of the energy savings of EAS come from the asymmetry of the system, and
7942 * not so much from breaking the tie between identical CPUs. That's also the
7943 * reason why EAS is enabled in the topology code only for systems where
7944 * SD_ASYM_CPUCAPACITY is set.
7945 *
7946 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7947 * they don't have any useful utilization data yet and it's not possible to
7948 * forecast their impact on energy consumption. Consequently, they will be
7949 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7950 * to be energy-inefficient in some use-cases. The alternative would be to
7951 * bias new tasks towards specific types of CPUs first, or to try to infer
7952 * their util_avg from the parent task, but those heuristics could hurt
7953 * other use-cases too. So, until someone finds a better way to solve this,
7954 * let's keep things simple by re-using the existing slow path.
7955 */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu)7956 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7957 {
7958 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7959 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7960 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7961 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7962 struct root_domain *rd = this_rq()->rd;
7963 int cpu, best_energy_cpu, target = -1;
7964 int prev_fits = -1, best_fits = -1;
7965 unsigned long best_thermal_cap = 0;
7966 unsigned long prev_thermal_cap = 0;
7967 struct sched_domain *sd;
7968 struct perf_domain *pd;
7969 struct energy_env eenv;
7970
7971 rcu_read_lock();
7972 pd = rcu_dereference(rd->pd);
7973 if (!pd || READ_ONCE(rd->overutilized))
7974 goto unlock;
7975
7976 /*
7977 * Energy-aware wake-up happens on the lowest sched_domain starting
7978 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7979 */
7980 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7981 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7982 sd = sd->parent;
7983 if (!sd)
7984 goto unlock;
7985
7986 target = prev_cpu;
7987
7988 sync_entity_load_avg(&p->se);
7989 if (!task_util_est(p) && p_util_min == 0)
7990 goto unlock;
7991
7992 eenv_task_busy_time(&eenv, p, prev_cpu);
7993
7994 for (; pd; pd = pd->next) {
7995 unsigned long util_min = p_util_min, util_max = p_util_max;
7996 unsigned long cpu_cap, cpu_thermal_cap, util;
7997 long prev_spare_cap = -1, max_spare_cap = -1;
7998 unsigned long rq_util_min, rq_util_max;
7999 unsigned long cur_delta, base_energy;
8000 int max_spare_cap_cpu = -1;
8001 int fits, max_fits = -1;
8002
8003 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8004
8005 if (cpumask_empty(cpus))
8006 continue;
8007
8008 /* Account thermal pressure for the energy estimation */
8009 cpu = cpumask_first(cpus);
8010 cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
8011 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
8012
8013 eenv.cpu_cap = cpu_thermal_cap;
8014 eenv.pd_cap = 0;
8015
8016 for_each_cpu(cpu, cpus) {
8017 struct rq *rq = cpu_rq(cpu);
8018
8019 eenv.pd_cap += cpu_thermal_cap;
8020
8021 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8022 continue;
8023
8024 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8025 continue;
8026
8027 util = cpu_util(cpu, p, cpu, 0);
8028 cpu_cap = capacity_of(cpu);
8029
8030 /*
8031 * Skip CPUs that cannot satisfy the capacity request.
8032 * IOW, placing the task there would make the CPU
8033 * overutilized. Take uclamp into account to see how
8034 * much capacity we can get out of the CPU; this is
8035 * aligned with sched_cpu_util().
8036 */
8037 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8038 /*
8039 * Open code uclamp_rq_util_with() except for
8040 * the clamp() part. Ie: apply max aggregation
8041 * only. util_fits_cpu() logic requires to
8042 * operate on non clamped util but must use the
8043 * max-aggregated uclamp_{min, max}.
8044 */
8045 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8046 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8047
8048 util_min = max(rq_util_min, p_util_min);
8049 util_max = max(rq_util_max, p_util_max);
8050 }
8051
8052 fits = util_fits_cpu(util, util_min, util_max, cpu);
8053 if (!fits)
8054 continue;
8055
8056 lsub_positive(&cpu_cap, util);
8057
8058 if (cpu == prev_cpu) {
8059 /* Always use prev_cpu as a candidate. */
8060 prev_spare_cap = cpu_cap;
8061 prev_fits = fits;
8062 } else if ((fits > max_fits) ||
8063 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8064 /*
8065 * Find the CPU with the maximum spare capacity
8066 * among the remaining CPUs in the performance
8067 * domain.
8068 */
8069 max_spare_cap = cpu_cap;
8070 max_spare_cap_cpu = cpu;
8071 max_fits = fits;
8072 }
8073 }
8074
8075 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8076 continue;
8077
8078 eenv_pd_busy_time(&eenv, cpus, p);
8079 /* Compute the 'base' energy of the pd, without @p */
8080 base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8081
8082 /* Evaluate the energy impact of using prev_cpu. */
8083 if (prev_spare_cap > -1) {
8084 prev_delta = compute_energy(&eenv, pd, cpus, p,
8085 prev_cpu);
8086 /* CPU utilization has changed */
8087 if (prev_delta < base_energy)
8088 goto unlock;
8089 prev_delta -= base_energy;
8090 prev_thermal_cap = cpu_thermal_cap;
8091 best_delta = min(best_delta, prev_delta);
8092 }
8093
8094 /* Evaluate the energy impact of using max_spare_cap_cpu. */
8095 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8096 /* Current best energy cpu fits better */
8097 if (max_fits < best_fits)
8098 continue;
8099
8100 /*
8101 * Both don't fit performance hint (i.e. uclamp_min)
8102 * but best energy cpu has better capacity.
8103 */
8104 if ((max_fits < 0) &&
8105 (cpu_thermal_cap <= best_thermal_cap))
8106 continue;
8107
8108 cur_delta = compute_energy(&eenv, pd, cpus, p,
8109 max_spare_cap_cpu);
8110 /* CPU utilization has changed */
8111 if (cur_delta < base_energy)
8112 goto unlock;
8113 cur_delta -= base_energy;
8114
8115 /*
8116 * Both fit for the task but best energy cpu has lower
8117 * energy impact.
8118 */
8119 if ((max_fits > 0) && (best_fits > 0) &&
8120 (cur_delta >= best_delta))
8121 continue;
8122
8123 best_delta = cur_delta;
8124 best_energy_cpu = max_spare_cap_cpu;
8125 best_fits = max_fits;
8126 best_thermal_cap = cpu_thermal_cap;
8127 }
8128 }
8129 rcu_read_unlock();
8130
8131 if ((best_fits > prev_fits) ||
8132 ((best_fits > 0) && (best_delta < prev_delta)) ||
8133 ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
8134 target = best_energy_cpu;
8135
8136 return target;
8137
8138 unlock:
8139 rcu_read_unlock();
8140
8141 return target;
8142 }
8143
8144 /*
8145 * select_task_rq_fair: Select target runqueue for the waking task in domains
8146 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8147 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8148 *
8149 * Balances load by selecting the idlest CPU in the idlest group, or under
8150 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8151 *
8152 * Returns the target CPU number.
8153 */
8154 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int wake_flags)8155 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8156 {
8157 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8158 struct sched_domain *tmp, *sd = NULL;
8159 int cpu = smp_processor_id();
8160 int new_cpu = prev_cpu;
8161 int want_affine = 0;
8162 /* SD_flags and WF_flags share the first nibble */
8163 int sd_flag = wake_flags & 0xF;
8164
8165 /*
8166 * required for stable ->cpus_allowed
8167 */
8168 lockdep_assert_held(&p->pi_lock);
8169 if (wake_flags & WF_TTWU) {
8170 record_wakee(p);
8171
8172 if ((wake_flags & WF_CURRENT_CPU) &&
8173 cpumask_test_cpu(cpu, p->cpus_ptr))
8174 return cpu;
8175
8176 if (sched_energy_enabled()) {
8177 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8178 if (new_cpu >= 0)
8179 return new_cpu;
8180 new_cpu = prev_cpu;
8181 }
8182
8183 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8184 }
8185
8186 rcu_read_lock();
8187 for_each_domain(cpu, tmp) {
8188 /*
8189 * If both 'cpu' and 'prev_cpu' are part of this domain,
8190 * cpu is a valid SD_WAKE_AFFINE target.
8191 */
8192 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8193 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8194 if (cpu != prev_cpu)
8195 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8196
8197 sd = NULL; /* Prefer wake_affine over balance flags */
8198 break;
8199 }
8200
8201 /*
8202 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8203 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8204 * will usually go to the fast path.
8205 */
8206 if (tmp->flags & sd_flag)
8207 sd = tmp;
8208 else if (!want_affine)
8209 break;
8210 }
8211
8212 if (unlikely(sd)) {
8213 /* Slow path */
8214 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
8215 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
8216 /* Fast path */
8217 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8218 }
8219 rcu_read_unlock();
8220
8221 return new_cpu;
8222 }
8223
8224 /*
8225 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8226 * cfs_rq_of(p) references at time of call are still valid and identify the
8227 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8228 */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)8229 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8230 {
8231 struct sched_entity *se = &p->se;
8232
8233 if (!task_on_rq_migrating(p)) {
8234 remove_entity_load_avg(se);
8235
8236 /*
8237 * Here, the task's PELT values have been updated according to
8238 * the current rq's clock. But if that clock hasn't been
8239 * updated in a while, a substantial idle time will be missed,
8240 * leading to an inflation after wake-up on the new rq.
8241 *
8242 * Estimate the missing time from the cfs_rq last_update_time
8243 * and update sched_avg to improve the PELT continuity after
8244 * migration.
8245 */
8246 migrate_se_pelt_lag(se);
8247 }
8248
8249 /* Tell new CPU we are migrated */
8250 se->avg.last_update_time = 0;
8251
8252 update_scan_period(p, new_cpu);
8253 }
8254
task_dead_fair(struct task_struct * p)8255 static void task_dead_fair(struct task_struct *p)
8256 {
8257 remove_entity_load_avg(&p->se);
8258 }
8259
8260 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8261 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8262 {
8263 if (rq->nr_running)
8264 return 1;
8265
8266 return newidle_balance(rq, rf) != 0;
8267 }
8268 #endif /* CONFIG_SMP */
8269
set_next_buddy(struct sched_entity * se)8270 static void set_next_buddy(struct sched_entity *se)
8271 {
8272 for_each_sched_entity(se) {
8273 if (SCHED_WARN_ON(!se->on_rq))
8274 return;
8275 if (se_is_idle(se))
8276 return;
8277 cfs_rq_of(se)->next = se;
8278 }
8279 }
8280
8281 /*
8282 * Preempt the current task with a newly woken task if needed:
8283 */
check_preempt_wakeup_fair(struct rq * rq,struct task_struct * p,int wake_flags)8284 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8285 {
8286 struct task_struct *curr = rq->curr;
8287 struct sched_entity *se = &curr->se, *pse = &p->se;
8288 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8289 int next_buddy_marked = 0;
8290 int cse_is_idle, pse_is_idle;
8291
8292 if (unlikely(se == pse))
8293 return;
8294
8295 /*
8296 * This is possible from callers such as attach_tasks(), in which we
8297 * unconditionally wakeup_preempt() after an enqueue (which may have
8298 * lead to a throttle). This both saves work and prevents false
8299 * next-buddy nomination below.
8300 */
8301 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8302 return;
8303
8304 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8305 set_next_buddy(pse);
8306 next_buddy_marked = 1;
8307 }
8308
8309 /*
8310 * We can come here with TIF_NEED_RESCHED already set from new task
8311 * wake up path.
8312 *
8313 * Note: this also catches the edge-case of curr being in a throttled
8314 * group (e.g. via set_curr_task), since update_curr() (in the
8315 * enqueue of curr) will have resulted in resched being set. This
8316 * prevents us from potentially nominating it as a false LAST_BUDDY
8317 * below.
8318 */
8319 if (test_tsk_need_resched(curr))
8320 return;
8321
8322 if (!sched_feat(WAKEUP_PREEMPTION))
8323 return;
8324
8325 find_matching_se(&se, &pse);
8326 WARN_ON_ONCE(!pse);
8327
8328 cse_is_idle = se_is_idle(se);
8329 pse_is_idle = se_is_idle(pse);
8330
8331 /*
8332 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8333 * in the inverse case).
8334 */
8335 if (cse_is_idle && !pse_is_idle)
8336 goto preempt;
8337 if (cse_is_idle != pse_is_idle)
8338 return;
8339
8340 /*
8341 * BATCH and IDLE tasks do not preempt others.
8342 */
8343 if (unlikely(p->policy != SCHED_NORMAL))
8344 return;
8345
8346 cfs_rq = cfs_rq_of(se);
8347 update_curr(cfs_rq);
8348 /*
8349 * XXX pick_eevdf(cfs_rq) != se ?
8350 */
8351 if (pick_eevdf(cfs_rq) == pse)
8352 goto preempt;
8353
8354 return;
8355
8356 preempt:
8357 resched_curr(rq);
8358 }
8359
8360 #ifdef CONFIG_SMP
pick_task_fair(struct rq * rq)8361 static struct task_struct *pick_task_fair(struct rq *rq)
8362 {
8363 struct sched_entity *se;
8364 struct cfs_rq *cfs_rq;
8365
8366 again:
8367 cfs_rq = &rq->cfs;
8368 if (!cfs_rq->nr_running)
8369 return NULL;
8370
8371 do {
8372 struct sched_entity *curr = cfs_rq->curr;
8373
8374 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
8375 if (curr) {
8376 if (curr->on_rq)
8377 update_curr(cfs_rq);
8378 else
8379 curr = NULL;
8380
8381 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8382 goto again;
8383 }
8384
8385 se = pick_next_entity(cfs_rq, curr);
8386 cfs_rq = group_cfs_rq(se);
8387 } while (cfs_rq);
8388
8389 return task_of(se);
8390 }
8391 #endif
8392
8393 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8394 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8395 {
8396 struct cfs_rq *cfs_rq = &rq->cfs;
8397 struct sched_entity *se;
8398 struct task_struct *p;
8399 int new_tasks;
8400
8401 again:
8402 if (!sched_fair_runnable(rq))
8403 goto idle;
8404
8405 #ifdef CONFIG_FAIR_GROUP_SCHED
8406 if (!prev || prev->sched_class != &fair_sched_class)
8407 goto simple;
8408
8409 /*
8410 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8411 * likely that a next task is from the same cgroup as the current.
8412 *
8413 * Therefore attempt to avoid putting and setting the entire cgroup
8414 * hierarchy, only change the part that actually changes.
8415 */
8416
8417 do {
8418 struct sched_entity *curr = cfs_rq->curr;
8419
8420 /*
8421 * Since we got here without doing put_prev_entity() we also
8422 * have to consider cfs_rq->curr. If it is still a runnable
8423 * entity, update_curr() will update its vruntime, otherwise
8424 * forget we've ever seen it.
8425 */
8426 if (curr) {
8427 if (curr->on_rq)
8428 update_curr(cfs_rq);
8429 else
8430 curr = NULL;
8431
8432 /*
8433 * This call to check_cfs_rq_runtime() will do the
8434 * throttle and dequeue its entity in the parent(s).
8435 * Therefore the nr_running test will indeed
8436 * be correct.
8437 */
8438 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8439 cfs_rq = &rq->cfs;
8440
8441 if (!cfs_rq->nr_running)
8442 goto idle;
8443
8444 goto simple;
8445 }
8446 }
8447
8448 se = pick_next_entity(cfs_rq, curr);
8449 cfs_rq = group_cfs_rq(se);
8450 } while (cfs_rq);
8451
8452 p = task_of(se);
8453
8454 /*
8455 * Since we haven't yet done put_prev_entity and if the selected task
8456 * is a different task than we started out with, try and touch the
8457 * least amount of cfs_rqs.
8458 */
8459 if (prev != p) {
8460 struct sched_entity *pse = &prev->se;
8461
8462 while (!(cfs_rq = is_same_group(se, pse))) {
8463 int se_depth = se->depth;
8464 int pse_depth = pse->depth;
8465
8466 if (se_depth <= pse_depth) {
8467 put_prev_entity(cfs_rq_of(pse), pse);
8468 pse = parent_entity(pse);
8469 }
8470 if (se_depth >= pse_depth) {
8471 set_next_entity(cfs_rq_of(se), se);
8472 se = parent_entity(se);
8473 }
8474 }
8475
8476 put_prev_entity(cfs_rq, pse);
8477 set_next_entity(cfs_rq, se);
8478 }
8479
8480 goto done;
8481 simple:
8482 #endif
8483 if (prev)
8484 put_prev_task(rq, prev);
8485
8486 do {
8487 se = pick_next_entity(cfs_rq, NULL);
8488 set_next_entity(cfs_rq, se);
8489 cfs_rq = group_cfs_rq(se);
8490 } while (cfs_rq);
8491
8492 p = task_of(se);
8493
8494 done: __maybe_unused;
8495 #ifdef CONFIG_SMP
8496 /*
8497 * Move the next running task to the front of
8498 * the list, so our cfs_tasks list becomes MRU
8499 * one.
8500 */
8501 list_move(&p->se.group_node, &rq->cfs_tasks);
8502 #endif
8503
8504 if (hrtick_enabled_fair(rq))
8505 hrtick_start_fair(rq, p);
8506
8507 update_misfit_status(p, rq);
8508 sched_fair_update_stop_tick(rq, p);
8509
8510 return p;
8511
8512 idle:
8513 if (!rf)
8514 return NULL;
8515
8516 new_tasks = newidle_balance(rq, rf);
8517
8518 /*
8519 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
8520 * possible for any higher priority task to appear. In that case we
8521 * must re-start the pick_next_entity() loop.
8522 */
8523 if (new_tasks < 0)
8524 return RETRY_TASK;
8525
8526 if (new_tasks > 0)
8527 goto again;
8528
8529 /*
8530 * rq is about to be idle, check if we need to update the
8531 * lost_idle_time of clock_pelt
8532 */
8533 update_idle_rq_clock_pelt(rq);
8534
8535 return NULL;
8536 }
8537
__pick_next_task_fair(struct rq * rq)8538 static struct task_struct *__pick_next_task_fair(struct rq *rq)
8539 {
8540 return pick_next_task_fair(rq, NULL, NULL);
8541 }
8542
8543 /*
8544 * Account for a descheduled task:
8545 */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)8546 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8547 {
8548 struct sched_entity *se = &prev->se;
8549 struct cfs_rq *cfs_rq;
8550
8551 for_each_sched_entity(se) {
8552 cfs_rq = cfs_rq_of(se);
8553 put_prev_entity(cfs_rq, se);
8554 }
8555 }
8556
8557 /*
8558 * sched_yield() is very simple
8559 */
yield_task_fair(struct rq * rq)8560 static void yield_task_fair(struct rq *rq)
8561 {
8562 struct task_struct *curr = rq->curr;
8563 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8564 struct sched_entity *se = &curr->se;
8565
8566 /*
8567 * Are we the only task in the tree?
8568 */
8569 if (unlikely(rq->nr_running == 1))
8570 return;
8571
8572 clear_buddies(cfs_rq, se);
8573
8574 update_rq_clock(rq);
8575 /*
8576 * Update run-time statistics of the 'current'.
8577 */
8578 update_curr(cfs_rq);
8579 /*
8580 * Tell update_rq_clock() that we've just updated,
8581 * so we don't do microscopic update in schedule()
8582 * and double the fastpath cost.
8583 */
8584 rq_clock_skip_update(rq);
8585
8586 se->deadline += calc_delta_fair(se->slice, se);
8587 }
8588
yield_to_task_fair(struct rq * rq,struct task_struct * p)8589 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8590 {
8591 struct sched_entity *se = &p->se;
8592
8593 /* throttled hierarchies are not runnable */
8594 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8595 return false;
8596
8597 /* Tell the scheduler that we'd really like pse to run next. */
8598 set_next_buddy(se);
8599
8600 yield_task_fair(rq);
8601
8602 return true;
8603 }
8604
8605 #ifdef CONFIG_SMP
8606 /**************************************************
8607 * Fair scheduling class load-balancing methods.
8608 *
8609 * BASICS
8610 *
8611 * The purpose of load-balancing is to achieve the same basic fairness the
8612 * per-CPU scheduler provides, namely provide a proportional amount of compute
8613 * time to each task. This is expressed in the following equation:
8614 *
8615 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
8616 *
8617 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8618 * W_i,0 is defined as:
8619 *
8620 * W_i,0 = \Sum_j w_i,j (2)
8621 *
8622 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8623 * is derived from the nice value as per sched_prio_to_weight[].
8624 *
8625 * The weight average is an exponential decay average of the instantaneous
8626 * weight:
8627 *
8628 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
8629 *
8630 * C_i is the compute capacity of CPU i, typically it is the
8631 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8632 * can also include other factors [XXX].
8633 *
8634 * To achieve this balance we define a measure of imbalance which follows
8635 * directly from (1):
8636 *
8637 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
8638 *
8639 * We them move tasks around to minimize the imbalance. In the continuous
8640 * function space it is obvious this converges, in the discrete case we get
8641 * a few fun cases generally called infeasible weight scenarios.
8642 *
8643 * [XXX expand on:
8644 * - infeasible weights;
8645 * - local vs global optima in the discrete case. ]
8646 *
8647 *
8648 * SCHED DOMAINS
8649 *
8650 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8651 * for all i,j solution, we create a tree of CPUs that follows the hardware
8652 * topology where each level pairs two lower groups (or better). This results
8653 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8654 * tree to only the first of the previous level and we decrease the frequency
8655 * of load-balance at each level inv. proportional to the number of CPUs in
8656 * the groups.
8657 *
8658 * This yields:
8659 *
8660 * log_2 n 1 n
8661 * \Sum { --- * --- * 2^i } = O(n) (5)
8662 * i = 0 2^i 2^i
8663 * `- size of each group
8664 * | | `- number of CPUs doing load-balance
8665 * | `- freq
8666 * `- sum over all levels
8667 *
8668 * Coupled with a limit on how many tasks we can migrate every balance pass,
8669 * this makes (5) the runtime complexity of the balancer.
8670 *
8671 * An important property here is that each CPU is still (indirectly) connected
8672 * to every other CPU in at most O(log n) steps:
8673 *
8674 * The adjacency matrix of the resulting graph is given by:
8675 *
8676 * log_2 n
8677 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
8678 * k = 0
8679 *
8680 * And you'll find that:
8681 *
8682 * A^(log_2 n)_i,j != 0 for all i,j (7)
8683 *
8684 * Showing there's indeed a path between every CPU in at most O(log n) steps.
8685 * The task movement gives a factor of O(m), giving a convergence complexity
8686 * of:
8687 *
8688 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
8689 *
8690 *
8691 * WORK CONSERVING
8692 *
8693 * In order to avoid CPUs going idle while there's still work to do, new idle
8694 * balancing is more aggressive and has the newly idle CPU iterate up the domain
8695 * tree itself instead of relying on other CPUs to bring it work.
8696 *
8697 * This adds some complexity to both (5) and (8) but it reduces the total idle
8698 * time.
8699 *
8700 * [XXX more?]
8701 *
8702 *
8703 * CGROUPS
8704 *
8705 * Cgroups make a horror show out of (2), instead of a simple sum we get:
8706 *
8707 * s_k,i
8708 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
8709 * S_k
8710 *
8711 * Where
8712 *
8713 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
8714 *
8715 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8716 *
8717 * The big problem is S_k, its a global sum needed to compute a local (W_i)
8718 * property.
8719 *
8720 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8721 * rewrite all of this once again.]
8722 */
8723
8724 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8725
8726 enum fbq_type { regular, remote, all };
8727
8728 /*
8729 * 'group_type' describes the group of CPUs at the moment of load balancing.
8730 *
8731 * The enum is ordered by pulling priority, with the group with lowest priority
8732 * first so the group_type can simply be compared when selecting the busiest
8733 * group. See update_sd_pick_busiest().
8734 */
8735 enum group_type {
8736 /* The group has spare capacity that can be used to run more tasks. */
8737 group_has_spare = 0,
8738 /*
8739 * The group is fully used and the tasks don't compete for more CPU
8740 * cycles. Nevertheless, some tasks might wait before running.
8741 */
8742 group_fully_busy,
8743 /*
8744 * One task doesn't fit with CPU's capacity and must be migrated to a
8745 * more powerful CPU.
8746 */
8747 group_misfit_task,
8748 /*
8749 * Balance SMT group that's fully busy. Can benefit from migration
8750 * a task on SMT with busy sibling to another CPU on idle core.
8751 */
8752 group_smt_balance,
8753 /*
8754 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8755 * and the task should be migrated to it instead of running on the
8756 * current CPU.
8757 */
8758 group_asym_packing,
8759 /*
8760 * The tasks' affinity constraints previously prevented the scheduler
8761 * from balancing the load across the system.
8762 */
8763 group_imbalanced,
8764 /*
8765 * The CPU is overloaded and can't provide expected CPU cycles to all
8766 * tasks.
8767 */
8768 group_overloaded
8769 };
8770
8771 enum migration_type {
8772 migrate_load = 0,
8773 migrate_util,
8774 migrate_task,
8775 migrate_misfit
8776 };
8777
8778 #define LBF_ALL_PINNED 0x01
8779 #define LBF_NEED_BREAK 0x02
8780 #define LBF_DST_PINNED 0x04
8781 #define LBF_SOME_PINNED 0x08
8782 #define LBF_ACTIVE_LB 0x10
8783
8784 struct lb_env {
8785 struct sched_domain *sd;
8786
8787 struct rq *src_rq;
8788 int src_cpu;
8789
8790 int dst_cpu;
8791 struct rq *dst_rq;
8792
8793 struct cpumask *dst_grpmask;
8794 int new_dst_cpu;
8795 enum cpu_idle_type idle;
8796 long imbalance;
8797 /* The set of CPUs under consideration for load-balancing */
8798 struct cpumask *cpus;
8799
8800 unsigned int flags;
8801
8802 unsigned int loop;
8803 unsigned int loop_break;
8804 unsigned int loop_max;
8805
8806 enum fbq_type fbq_type;
8807 enum migration_type migration_type;
8808 struct list_head tasks;
8809 };
8810
8811 /*
8812 * Is this task likely cache-hot:
8813 */
task_hot(struct task_struct * p,struct lb_env * env)8814 static int task_hot(struct task_struct *p, struct lb_env *env)
8815 {
8816 s64 delta;
8817
8818 lockdep_assert_rq_held(env->src_rq);
8819
8820 if (p->sched_class != &fair_sched_class)
8821 return 0;
8822
8823 if (unlikely(task_has_idle_policy(p)))
8824 return 0;
8825
8826 /* SMT siblings share cache */
8827 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8828 return 0;
8829
8830 /*
8831 * Buddy candidates are cache hot:
8832 */
8833 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8834 (&p->se == cfs_rq_of(&p->se)->next))
8835 return 1;
8836
8837 if (sysctl_sched_migration_cost == -1)
8838 return 1;
8839
8840 /*
8841 * Don't migrate task if the task's cookie does not match
8842 * with the destination CPU's core cookie.
8843 */
8844 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8845 return 1;
8846
8847 if (sysctl_sched_migration_cost == 0)
8848 return 0;
8849
8850 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8851
8852 return delta < (s64)sysctl_sched_migration_cost;
8853 }
8854
8855 #ifdef CONFIG_NUMA_BALANCING
8856 /*
8857 * Returns 1, if task migration degrades locality
8858 * Returns 0, if task migration improves locality i.e migration preferred.
8859 * Returns -1, if task migration is not affected by locality.
8860 */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)8861 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8862 {
8863 struct numa_group *numa_group = rcu_dereference(p->numa_group);
8864 unsigned long src_weight, dst_weight;
8865 int src_nid, dst_nid, dist;
8866
8867 if (!static_branch_likely(&sched_numa_balancing))
8868 return -1;
8869
8870 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8871 return -1;
8872
8873 src_nid = cpu_to_node(env->src_cpu);
8874 dst_nid = cpu_to_node(env->dst_cpu);
8875
8876 if (src_nid == dst_nid)
8877 return -1;
8878
8879 /* Migrating away from the preferred node is always bad. */
8880 if (src_nid == p->numa_preferred_nid) {
8881 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8882 return 1;
8883 else
8884 return -1;
8885 }
8886
8887 /* Encourage migration to the preferred node. */
8888 if (dst_nid == p->numa_preferred_nid)
8889 return 0;
8890
8891 /* Leaving a core idle is often worse than degrading locality. */
8892 if (env->idle == CPU_IDLE)
8893 return -1;
8894
8895 dist = node_distance(src_nid, dst_nid);
8896 if (numa_group) {
8897 src_weight = group_weight(p, src_nid, dist);
8898 dst_weight = group_weight(p, dst_nid, dist);
8899 } else {
8900 src_weight = task_weight(p, src_nid, dist);
8901 dst_weight = task_weight(p, dst_nid, dist);
8902 }
8903
8904 return dst_weight < src_weight;
8905 }
8906
8907 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)8908 static inline int migrate_degrades_locality(struct task_struct *p,
8909 struct lb_env *env)
8910 {
8911 return -1;
8912 }
8913 #endif
8914
8915 /*
8916 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8917 */
8918 static
can_migrate_task(struct task_struct * p,struct lb_env * env)8919 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8920 {
8921 int tsk_cache_hot;
8922
8923 lockdep_assert_rq_held(env->src_rq);
8924
8925 /*
8926 * We do not migrate tasks that are:
8927 * 1) throttled_lb_pair, or
8928 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8929 * 3) running (obviously), or
8930 * 4) are cache-hot on their current CPU.
8931 */
8932 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8933 return 0;
8934
8935 /* Disregard pcpu kthreads; they are where they need to be. */
8936 if (kthread_is_per_cpu(p))
8937 return 0;
8938
8939 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8940 int cpu;
8941
8942 schedstat_inc(p->stats.nr_failed_migrations_affine);
8943
8944 env->flags |= LBF_SOME_PINNED;
8945
8946 /*
8947 * Remember if this task can be migrated to any other CPU in
8948 * our sched_group. We may want to revisit it if we couldn't
8949 * meet load balance goals by pulling other tasks on src_cpu.
8950 *
8951 * Avoid computing new_dst_cpu
8952 * - for NEWLY_IDLE
8953 * - if we have already computed one in current iteration
8954 * - if it's an active balance
8955 */
8956 if (env->idle == CPU_NEWLY_IDLE ||
8957 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8958 return 0;
8959
8960 /* Prevent to re-select dst_cpu via env's CPUs: */
8961 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8962 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8963 env->flags |= LBF_DST_PINNED;
8964 env->new_dst_cpu = cpu;
8965 break;
8966 }
8967 }
8968
8969 return 0;
8970 }
8971
8972 /* Record that we found at least one task that could run on dst_cpu */
8973 env->flags &= ~LBF_ALL_PINNED;
8974
8975 if (task_on_cpu(env->src_rq, p)) {
8976 schedstat_inc(p->stats.nr_failed_migrations_running);
8977 return 0;
8978 }
8979
8980 /*
8981 * Aggressive migration if:
8982 * 1) active balance
8983 * 2) destination numa is preferred
8984 * 3) task is cache cold, or
8985 * 4) too many balance attempts have failed.
8986 */
8987 if (env->flags & LBF_ACTIVE_LB)
8988 return 1;
8989
8990 tsk_cache_hot = migrate_degrades_locality(p, env);
8991 if (tsk_cache_hot == -1)
8992 tsk_cache_hot = task_hot(p, env);
8993
8994 if (tsk_cache_hot <= 0 ||
8995 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8996 if (tsk_cache_hot == 1) {
8997 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8998 schedstat_inc(p->stats.nr_forced_migrations);
8999 }
9000 return 1;
9001 }
9002
9003 schedstat_inc(p->stats.nr_failed_migrations_hot);
9004 return 0;
9005 }
9006
9007 /*
9008 * detach_task() -- detach the task for the migration specified in env
9009 */
detach_task(struct task_struct * p,struct lb_env * env)9010 static void detach_task(struct task_struct *p, struct lb_env *env)
9011 {
9012 lockdep_assert_rq_held(env->src_rq);
9013
9014 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9015 set_task_cpu(p, env->dst_cpu);
9016 }
9017
9018 /*
9019 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9020 * part of active balancing operations within "domain".
9021 *
9022 * Returns a task if successful and NULL otherwise.
9023 */
detach_one_task(struct lb_env * env)9024 static struct task_struct *detach_one_task(struct lb_env *env)
9025 {
9026 struct task_struct *p;
9027
9028 lockdep_assert_rq_held(env->src_rq);
9029
9030 list_for_each_entry_reverse(p,
9031 &env->src_rq->cfs_tasks, se.group_node) {
9032 if (!can_migrate_task(p, env))
9033 continue;
9034
9035 detach_task(p, env);
9036
9037 /*
9038 * Right now, this is only the second place where
9039 * lb_gained[env->idle] is updated (other is detach_tasks)
9040 * so we can safely collect stats here rather than
9041 * inside detach_tasks().
9042 */
9043 schedstat_inc(env->sd->lb_gained[env->idle]);
9044 return p;
9045 }
9046 return NULL;
9047 }
9048
9049 /*
9050 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9051 * busiest_rq, as part of a balancing operation within domain "sd".
9052 *
9053 * Returns number of detached tasks if successful and 0 otherwise.
9054 */
detach_tasks(struct lb_env * env)9055 static int detach_tasks(struct lb_env *env)
9056 {
9057 struct list_head *tasks = &env->src_rq->cfs_tasks;
9058 unsigned long util, load;
9059 struct task_struct *p;
9060 int detached = 0;
9061
9062 lockdep_assert_rq_held(env->src_rq);
9063
9064 /*
9065 * Source run queue has been emptied by another CPU, clear
9066 * LBF_ALL_PINNED flag as we will not test any task.
9067 */
9068 if (env->src_rq->nr_running <= 1) {
9069 env->flags &= ~LBF_ALL_PINNED;
9070 return 0;
9071 }
9072
9073 if (env->imbalance <= 0)
9074 return 0;
9075
9076 while (!list_empty(tasks)) {
9077 /*
9078 * We don't want to steal all, otherwise we may be treated likewise,
9079 * which could at worst lead to a livelock crash.
9080 */
9081 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
9082 break;
9083
9084 env->loop++;
9085 /* We've more or less seen every task there is, call it quits */
9086 if (env->loop > env->loop_max)
9087 break;
9088
9089 /* take a breather every nr_migrate tasks */
9090 if (env->loop > env->loop_break) {
9091 env->loop_break += SCHED_NR_MIGRATE_BREAK;
9092 env->flags |= LBF_NEED_BREAK;
9093 break;
9094 }
9095
9096 p = list_last_entry(tasks, struct task_struct, se.group_node);
9097
9098 if (!can_migrate_task(p, env))
9099 goto next;
9100
9101 switch (env->migration_type) {
9102 case migrate_load:
9103 /*
9104 * Depending of the number of CPUs and tasks and the
9105 * cgroup hierarchy, task_h_load() can return a null
9106 * value. Make sure that env->imbalance decreases
9107 * otherwise detach_tasks() will stop only after
9108 * detaching up to loop_max tasks.
9109 */
9110 load = max_t(unsigned long, task_h_load(p), 1);
9111
9112 if (sched_feat(LB_MIN) &&
9113 load < 16 && !env->sd->nr_balance_failed)
9114 goto next;
9115
9116 /*
9117 * Make sure that we don't migrate too much load.
9118 * Nevertheless, let relax the constraint if
9119 * scheduler fails to find a good waiting task to
9120 * migrate.
9121 */
9122 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9123 goto next;
9124
9125 env->imbalance -= load;
9126 break;
9127
9128 case migrate_util:
9129 util = task_util_est(p);
9130
9131 if (util > env->imbalance)
9132 goto next;
9133
9134 env->imbalance -= util;
9135 break;
9136
9137 case migrate_task:
9138 env->imbalance--;
9139 break;
9140
9141 case migrate_misfit:
9142 /* This is not a misfit task */
9143 if (task_fits_cpu(p, env->src_cpu))
9144 goto next;
9145
9146 env->imbalance = 0;
9147 break;
9148 }
9149
9150 detach_task(p, env);
9151 list_add(&p->se.group_node, &env->tasks);
9152
9153 detached++;
9154
9155 #ifdef CONFIG_PREEMPTION
9156 /*
9157 * NEWIDLE balancing is a source of latency, so preemptible
9158 * kernels will stop after the first task is detached to minimize
9159 * the critical section.
9160 */
9161 if (env->idle == CPU_NEWLY_IDLE)
9162 break;
9163 #endif
9164
9165 /*
9166 * We only want to steal up to the prescribed amount of
9167 * load/util/tasks.
9168 */
9169 if (env->imbalance <= 0)
9170 break;
9171
9172 continue;
9173 next:
9174 list_move(&p->se.group_node, tasks);
9175 }
9176
9177 /*
9178 * Right now, this is one of only two places we collect this stat
9179 * so we can safely collect detach_one_task() stats here rather
9180 * than inside detach_one_task().
9181 */
9182 schedstat_add(env->sd->lb_gained[env->idle], detached);
9183
9184 return detached;
9185 }
9186
9187 /*
9188 * attach_task() -- attach the task detached by detach_task() to its new rq.
9189 */
attach_task(struct rq * rq,struct task_struct * p)9190 static void attach_task(struct rq *rq, struct task_struct *p)
9191 {
9192 lockdep_assert_rq_held(rq);
9193
9194 WARN_ON_ONCE(task_rq(p) != rq);
9195 activate_task(rq, p, ENQUEUE_NOCLOCK);
9196 wakeup_preempt(rq, p, 0);
9197 }
9198
9199 /*
9200 * attach_one_task() -- attaches the task returned from detach_one_task() to
9201 * its new rq.
9202 */
attach_one_task(struct rq * rq,struct task_struct * p)9203 static void attach_one_task(struct rq *rq, struct task_struct *p)
9204 {
9205 struct rq_flags rf;
9206
9207 rq_lock(rq, &rf);
9208 update_rq_clock(rq);
9209 attach_task(rq, p);
9210 rq_unlock(rq, &rf);
9211 }
9212
9213 /*
9214 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9215 * new rq.
9216 */
attach_tasks(struct lb_env * env)9217 static void attach_tasks(struct lb_env *env)
9218 {
9219 struct list_head *tasks = &env->tasks;
9220 struct task_struct *p;
9221 struct rq_flags rf;
9222
9223 rq_lock(env->dst_rq, &rf);
9224 update_rq_clock(env->dst_rq);
9225
9226 while (!list_empty(tasks)) {
9227 p = list_first_entry(tasks, struct task_struct, se.group_node);
9228 list_del_init(&p->se.group_node);
9229
9230 attach_task(env->dst_rq, p);
9231 }
9232
9233 rq_unlock(env->dst_rq, &rf);
9234 }
9235
9236 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9237 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9238 {
9239 if (cfs_rq->avg.load_avg)
9240 return true;
9241
9242 if (cfs_rq->avg.util_avg)
9243 return true;
9244
9245 return false;
9246 }
9247
others_have_blocked(struct rq * rq)9248 static inline bool others_have_blocked(struct rq *rq)
9249 {
9250 if (READ_ONCE(rq->avg_rt.util_avg))
9251 return true;
9252
9253 if (READ_ONCE(rq->avg_dl.util_avg))
9254 return true;
9255
9256 if (thermal_load_avg(rq))
9257 return true;
9258
9259 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9260 if (READ_ONCE(rq->avg_irq.util_avg))
9261 return true;
9262 #endif
9263
9264 return false;
9265 }
9266
update_blocked_load_tick(struct rq * rq)9267 static inline void update_blocked_load_tick(struct rq *rq)
9268 {
9269 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9270 }
9271
update_blocked_load_status(struct rq * rq,bool has_blocked)9272 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9273 {
9274 if (!has_blocked)
9275 rq->has_blocked_load = 0;
9276 }
9277 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9278 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)9279 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_tick(struct rq * rq)9280 static inline void update_blocked_load_tick(struct rq *rq) {}
update_blocked_load_status(struct rq * rq,bool has_blocked)9281 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9282 #endif
9283
__update_blocked_others(struct rq * rq,bool * done)9284 static bool __update_blocked_others(struct rq *rq, bool *done)
9285 {
9286 const struct sched_class *curr_class;
9287 u64 now = rq_clock_pelt(rq);
9288 unsigned long thermal_pressure;
9289 bool decayed;
9290
9291 /*
9292 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9293 * DL and IRQ signals have been updated before updating CFS.
9294 */
9295 curr_class = rq->curr->sched_class;
9296
9297 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
9298
9299 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
9300 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
9301 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
9302 update_irq_load_avg(rq, 0);
9303
9304 if (others_have_blocked(rq))
9305 *done = false;
9306
9307 return decayed;
9308 }
9309
9310 #ifdef CONFIG_FAIR_GROUP_SCHED
9311
__update_blocked_fair(struct rq * rq,bool * done)9312 static bool __update_blocked_fair(struct rq *rq, bool *done)
9313 {
9314 struct cfs_rq *cfs_rq, *pos;
9315 bool decayed = false;
9316 int cpu = cpu_of(rq);
9317
9318 /*
9319 * Iterates the task_group tree in a bottom up fashion, see
9320 * list_add_leaf_cfs_rq() for details.
9321 */
9322 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9323 struct sched_entity *se;
9324
9325 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9326 update_tg_load_avg(cfs_rq);
9327
9328 if (cfs_rq->nr_running == 0)
9329 update_idle_cfs_rq_clock_pelt(cfs_rq);
9330
9331 if (cfs_rq == &rq->cfs)
9332 decayed = true;
9333 }
9334
9335 /* Propagate pending load changes to the parent, if any: */
9336 se = cfs_rq->tg->se[cpu];
9337 if (se && !skip_blocked_update(se))
9338 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9339
9340 /*
9341 * There can be a lot of idle CPU cgroups. Don't let fully
9342 * decayed cfs_rqs linger on the list.
9343 */
9344 if (cfs_rq_is_decayed(cfs_rq))
9345 list_del_leaf_cfs_rq(cfs_rq);
9346
9347 /* Don't need periodic decay once load/util_avg are null */
9348 if (cfs_rq_has_blocked(cfs_rq))
9349 *done = false;
9350 }
9351
9352 return decayed;
9353 }
9354
9355 /*
9356 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9357 * This needs to be done in a top-down fashion because the load of a child
9358 * group is a fraction of its parents load.
9359 */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)9360 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9361 {
9362 struct rq *rq = rq_of(cfs_rq);
9363 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9364 unsigned long now = jiffies;
9365 unsigned long load;
9366
9367 if (cfs_rq->last_h_load_update == now)
9368 return;
9369
9370 WRITE_ONCE(cfs_rq->h_load_next, NULL);
9371 for_each_sched_entity(se) {
9372 cfs_rq = cfs_rq_of(se);
9373 WRITE_ONCE(cfs_rq->h_load_next, se);
9374 if (cfs_rq->last_h_load_update == now)
9375 break;
9376 }
9377
9378 if (!se) {
9379 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9380 cfs_rq->last_h_load_update = now;
9381 }
9382
9383 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9384 load = cfs_rq->h_load;
9385 load = div64_ul(load * se->avg.load_avg,
9386 cfs_rq_load_avg(cfs_rq) + 1);
9387 cfs_rq = group_cfs_rq(se);
9388 cfs_rq->h_load = load;
9389 cfs_rq->last_h_load_update = now;
9390 }
9391 }
9392
task_h_load(struct task_struct * p)9393 static unsigned long task_h_load(struct task_struct *p)
9394 {
9395 struct cfs_rq *cfs_rq = task_cfs_rq(p);
9396
9397 update_cfs_rq_h_load(cfs_rq);
9398 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9399 cfs_rq_load_avg(cfs_rq) + 1);
9400 }
9401 #else
__update_blocked_fair(struct rq * rq,bool * done)9402 static bool __update_blocked_fair(struct rq *rq, bool *done)
9403 {
9404 struct cfs_rq *cfs_rq = &rq->cfs;
9405 bool decayed;
9406
9407 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9408 if (cfs_rq_has_blocked(cfs_rq))
9409 *done = false;
9410
9411 return decayed;
9412 }
9413
task_h_load(struct task_struct * p)9414 static unsigned long task_h_load(struct task_struct *p)
9415 {
9416 return p->se.avg.load_avg;
9417 }
9418 #endif
9419
update_blocked_averages(int cpu)9420 static void update_blocked_averages(int cpu)
9421 {
9422 bool decayed = false, done = true;
9423 struct rq *rq = cpu_rq(cpu);
9424 struct rq_flags rf;
9425
9426 rq_lock_irqsave(rq, &rf);
9427 update_blocked_load_tick(rq);
9428 update_rq_clock(rq);
9429
9430 decayed |= __update_blocked_others(rq, &done);
9431 decayed |= __update_blocked_fair(rq, &done);
9432
9433 update_blocked_load_status(rq, !done);
9434 if (decayed)
9435 cpufreq_update_util(rq, 0);
9436 rq_unlock_irqrestore(rq, &rf);
9437 }
9438
9439 /********** Helpers for find_busiest_group ************************/
9440
9441 /*
9442 * sg_lb_stats - stats of a sched_group required for load_balancing
9443 */
9444 struct sg_lb_stats {
9445 unsigned long avg_load; /*Avg load across the CPUs of the group */
9446 unsigned long group_load; /* Total load over the CPUs of the group */
9447 unsigned long group_capacity;
9448 unsigned long group_util; /* Total utilization over the CPUs of the group */
9449 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9450 unsigned int sum_nr_running; /* Nr of tasks running in the group */
9451 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9452 unsigned int idle_cpus;
9453 unsigned int group_weight;
9454 enum group_type group_type;
9455 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9456 unsigned int group_smt_balance; /* Task on busy SMT be moved */
9457 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9458 #ifdef CONFIG_NUMA_BALANCING
9459 unsigned int nr_numa_running;
9460 unsigned int nr_preferred_running;
9461 #endif
9462 };
9463
9464 /*
9465 * sd_lb_stats - Structure to store the statistics of a sched_domain
9466 * during load balancing.
9467 */
9468 struct sd_lb_stats {
9469 struct sched_group *busiest; /* Busiest group in this sd */
9470 struct sched_group *local; /* Local group in this sd */
9471 unsigned long total_load; /* Total load of all groups in sd */
9472 unsigned long total_capacity; /* Total capacity of all groups in sd */
9473 unsigned long avg_load; /* Average load across all groups in sd */
9474 unsigned int prefer_sibling; /* tasks should go to sibling first */
9475
9476 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
9477 struct sg_lb_stats local_stat; /* Statistics of the local group */
9478 };
9479
init_sd_lb_stats(struct sd_lb_stats * sds)9480 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9481 {
9482 /*
9483 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9484 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9485 * We must however set busiest_stat::group_type and
9486 * busiest_stat::idle_cpus to the worst busiest group because
9487 * update_sd_pick_busiest() reads these before assignment.
9488 */
9489 *sds = (struct sd_lb_stats){
9490 .busiest = NULL,
9491 .local = NULL,
9492 .total_load = 0UL,
9493 .total_capacity = 0UL,
9494 .busiest_stat = {
9495 .idle_cpus = UINT_MAX,
9496 .group_type = group_has_spare,
9497 },
9498 };
9499 }
9500
scale_rt_capacity(int cpu)9501 static unsigned long scale_rt_capacity(int cpu)
9502 {
9503 struct rq *rq = cpu_rq(cpu);
9504 unsigned long max = arch_scale_cpu_capacity(cpu);
9505 unsigned long used, free;
9506 unsigned long irq;
9507
9508 irq = cpu_util_irq(rq);
9509
9510 if (unlikely(irq >= max))
9511 return 1;
9512
9513 /*
9514 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9515 * (running and not running) with weights 0 and 1024 respectively.
9516 * avg_thermal.load_avg tracks thermal pressure and the weighted
9517 * average uses the actual delta max capacity(load).
9518 */
9519 used = READ_ONCE(rq->avg_rt.util_avg);
9520 used += READ_ONCE(rq->avg_dl.util_avg);
9521 used += thermal_load_avg(rq);
9522
9523 if (unlikely(used >= max))
9524 return 1;
9525
9526 free = max - used;
9527
9528 return scale_irq_capacity(free, irq, max);
9529 }
9530
update_cpu_capacity(struct sched_domain * sd,int cpu)9531 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9532 {
9533 unsigned long capacity = scale_rt_capacity(cpu);
9534 struct sched_group *sdg = sd->groups;
9535
9536 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
9537
9538 if (!capacity)
9539 capacity = 1;
9540
9541 cpu_rq(cpu)->cpu_capacity = capacity;
9542 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9543
9544 sdg->sgc->capacity = capacity;
9545 sdg->sgc->min_capacity = capacity;
9546 sdg->sgc->max_capacity = capacity;
9547 }
9548
update_group_capacity(struct sched_domain * sd,int cpu)9549 void update_group_capacity(struct sched_domain *sd, int cpu)
9550 {
9551 struct sched_domain *child = sd->child;
9552 struct sched_group *group, *sdg = sd->groups;
9553 unsigned long capacity, min_capacity, max_capacity;
9554 unsigned long interval;
9555
9556 interval = msecs_to_jiffies(sd->balance_interval);
9557 interval = clamp(interval, 1UL, max_load_balance_interval);
9558 sdg->sgc->next_update = jiffies + interval;
9559
9560 if (!child) {
9561 update_cpu_capacity(sd, cpu);
9562 return;
9563 }
9564
9565 capacity = 0;
9566 min_capacity = ULONG_MAX;
9567 max_capacity = 0;
9568
9569 if (child->flags & SD_OVERLAP) {
9570 /*
9571 * SD_OVERLAP domains cannot assume that child groups
9572 * span the current group.
9573 */
9574
9575 for_each_cpu(cpu, sched_group_span(sdg)) {
9576 unsigned long cpu_cap = capacity_of(cpu);
9577
9578 capacity += cpu_cap;
9579 min_capacity = min(cpu_cap, min_capacity);
9580 max_capacity = max(cpu_cap, max_capacity);
9581 }
9582 } else {
9583 /*
9584 * !SD_OVERLAP domains can assume that child groups
9585 * span the current group.
9586 */
9587
9588 group = child->groups;
9589 do {
9590 struct sched_group_capacity *sgc = group->sgc;
9591
9592 capacity += sgc->capacity;
9593 min_capacity = min(sgc->min_capacity, min_capacity);
9594 max_capacity = max(sgc->max_capacity, max_capacity);
9595 group = group->next;
9596 } while (group != child->groups);
9597 }
9598
9599 sdg->sgc->capacity = capacity;
9600 sdg->sgc->min_capacity = min_capacity;
9601 sdg->sgc->max_capacity = max_capacity;
9602 }
9603
9604 /*
9605 * Check whether the capacity of the rq has been noticeably reduced by side
9606 * activity. The imbalance_pct is used for the threshold.
9607 * Return true is the capacity is reduced
9608 */
9609 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)9610 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9611 {
9612 return ((rq->cpu_capacity * sd->imbalance_pct) <
9613 (rq->cpu_capacity_orig * 100));
9614 }
9615
9616 /*
9617 * Check whether a rq has a misfit task and if it looks like we can actually
9618 * help that task: we can migrate the task to a CPU of higher capacity, or
9619 * the task's current CPU is heavily pressured.
9620 */
check_misfit_status(struct rq * rq,struct sched_domain * sd)9621 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
9622 {
9623 return rq->misfit_task_load &&
9624 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
9625 check_cpu_capacity(rq, sd));
9626 }
9627
9628 /*
9629 * Group imbalance indicates (and tries to solve) the problem where balancing
9630 * groups is inadequate due to ->cpus_ptr constraints.
9631 *
9632 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9633 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9634 * Something like:
9635 *
9636 * { 0 1 2 3 } { 4 5 6 7 }
9637 * * * * *
9638 *
9639 * If we were to balance group-wise we'd place two tasks in the first group and
9640 * two tasks in the second group. Clearly this is undesired as it will overload
9641 * cpu 3 and leave one of the CPUs in the second group unused.
9642 *
9643 * The current solution to this issue is detecting the skew in the first group
9644 * by noticing the lower domain failed to reach balance and had difficulty
9645 * moving tasks due to affinity constraints.
9646 *
9647 * When this is so detected; this group becomes a candidate for busiest; see
9648 * update_sd_pick_busiest(). And calculate_imbalance() and
9649 * find_busiest_group() avoid some of the usual balance conditions to allow it
9650 * to create an effective group imbalance.
9651 *
9652 * This is a somewhat tricky proposition since the next run might not find the
9653 * group imbalance and decide the groups need to be balanced again. A most
9654 * subtle and fragile situation.
9655 */
9656
sg_imbalanced(struct sched_group * group)9657 static inline int sg_imbalanced(struct sched_group *group)
9658 {
9659 return group->sgc->imbalance;
9660 }
9661
9662 /*
9663 * group_has_capacity returns true if the group has spare capacity that could
9664 * be used by some tasks.
9665 * We consider that a group has spare capacity if the number of task is
9666 * smaller than the number of CPUs or if the utilization is lower than the
9667 * available capacity for CFS tasks.
9668 * For the latter, we use a threshold to stabilize the state, to take into
9669 * account the variance of the tasks' load and to return true if the available
9670 * capacity in meaningful for the load balancer.
9671 * As an example, an available capacity of 1% can appear but it doesn't make
9672 * any benefit for the load balance.
9673 */
9674 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)9675 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9676 {
9677 if (sgs->sum_nr_running < sgs->group_weight)
9678 return true;
9679
9680 if ((sgs->group_capacity * imbalance_pct) <
9681 (sgs->group_runnable * 100))
9682 return false;
9683
9684 if ((sgs->group_capacity * 100) >
9685 (sgs->group_util * imbalance_pct))
9686 return true;
9687
9688 return false;
9689 }
9690
9691 /*
9692 * group_is_overloaded returns true if the group has more tasks than it can
9693 * handle.
9694 * group_is_overloaded is not equals to !group_has_capacity because a group
9695 * with the exact right number of tasks, has no more spare capacity but is not
9696 * overloaded so both group_has_capacity and group_is_overloaded return
9697 * false.
9698 */
9699 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)9700 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9701 {
9702 if (sgs->sum_nr_running <= sgs->group_weight)
9703 return false;
9704
9705 if ((sgs->group_capacity * 100) <
9706 (sgs->group_util * imbalance_pct))
9707 return true;
9708
9709 if ((sgs->group_capacity * imbalance_pct) <
9710 (sgs->group_runnable * 100))
9711 return true;
9712
9713 return false;
9714 }
9715
9716 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)9717 group_type group_classify(unsigned int imbalance_pct,
9718 struct sched_group *group,
9719 struct sg_lb_stats *sgs)
9720 {
9721 if (group_is_overloaded(imbalance_pct, sgs))
9722 return group_overloaded;
9723
9724 if (sg_imbalanced(group))
9725 return group_imbalanced;
9726
9727 if (sgs->group_asym_packing)
9728 return group_asym_packing;
9729
9730 if (sgs->group_smt_balance)
9731 return group_smt_balance;
9732
9733 if (sgs->group_misfit_task_load)
9734 return group_misfit_task;
9735
9736 if (!group_has_capacity(imbalance_pct, sgs))
9737 return group_fully_busy;
9738
9739 return group_has_spare;
9740 }
9741
9742 /**
9743 * sched_use_asym_prio - Check whether asym_packing priority must be used
9744 * @sd: The scheduling domain of the load balancing
9745 * @cpu: A CPU
9746 *
9747 * Always use CPU priority when balancing load between SMT siblings. When
9748 * balancing load between cores, it is not sufficient that @cpu is idle. Only
9749 * use CPU priority if the whole core is idle.
9750 *
9751 * Returns: True if the priority of @cpu must be followed. False otherwise.
9752 */
sched_use_asym_prio(struct sched_domain * sd,int cpu)9753 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
9754 {
9755 if (!sched_smt_active())
9756 return true;
9757
9758 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
9759 }
9760
9761 /**
9762 * sched_asym - Check if the destination CPU can do asym_packing load balance
9763 * @env: The load balancing environment
9764 * @sds: Load-balancing data with statistics of the local group
9765 * @sgs: Load-balancing statistics of the candidate busiest group
9766 * @group: The candidate busiest group
9767 *
9768 * @env::dst_cpu can do asym_packing if it has higher priority than the
9769 * preferred CPU of @group.
9770 *
9771 * SMT is a special case. If we are balancing load between cores, @env::dst_cpu
9772 * can do asym_packing balance only if all its SMT siblings are idle. Also, it
9773 * can only do it if @group is an SMT group and has exactly on busy CPU. Larger
9774 * imbalances in the number of CPUS are dealt with in find_busiest_group().
9775 *
9776 * If we are balancing load within an SMT core, or at DIE domain level, always
9777 * proceed.
9778 *
9779 * Return: true if @env::dst_cpu can do with asym_packing load balance. False
9780 * otherwise.
9781 */
9782 static inline bool
sched_asym(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * sgs,struct sched_group * group)9783 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs,
9784 struct sched_group *group)
9785 {
9786 /* Ensure that the whole local core is idle, if applicable. */
9787 if (!sched_use_asym_prio(env->sd, env->dst_cpu))
9788 return false;
9789
9790 /*
9791 * CPU priorities does not make sense for SMT cores with more than one
9792 * busy sibling.
9793 */
9794 if (group->flags & SD_SHARE_CPUCAPACITY) {
9795 if (sgs->group_weight - sgs->idle_cpus != 1)
9796 return false;
9797 }
9798
9799 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
9800 }
9801
9802 /* One group has more than one SMT CPU while the other group does not */
smt_vs_nonsmt_groups(struct sched_group * sg1,struct sched_group * sg2)9803 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
9804 struct sched_group *sg2)
9805 {
9806 if (!sg1 || !sg2)
9807 return false;
9808
9809 return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
9810 (sg2->flags & SD_SHARE_CPUCAPACITY);
9811 }
9812
smt_balance(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)9813 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
9814 struct sched_group *group)
9815 {
9816 if (env->idle == CPU_NOT_IDLE)
9817 return false;
9818
9819 /*
9820 * For SMT source group, it is better to move a task
9821 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
9822 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
9823 * will not be on.
9824 */
9825 if (group->flags & SD_SHARE_CPUCAPACITY &&
9826 sgs->sum_h_nr_running > 1)
9827 return true;
9828
9829 return false;
9830 }
9831
sibling_imbalance(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * busiest,struct sg_lb_stats * local)9832 static inline long sibling_imbalance(struct lb_env *env,
9833 struct sd_lb_stats *sds,
9834 struct sg_lb_stats *busiest,
9835 struct sg_lb_stats *local)
9836 {
9837 int ncores_busiest, ncores_local;
9838 long imbalance;
9839
9840 if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running)
9841 return 0;
9842
9843 ncores_busiest = sds->busiest->cores;
9844 ncores_local = sds->local->cores;
9845
9846 if (ncores_busiest == ncores_local) {
9847 imbalance = busiest->sum_nr_running;
9848 lsub_positive(&imbalance, local->sum_nr_running);
9849 return imbalance;
9850 }
9851
9852 /* Balance such that nr_running/ncores ratio are same on both groups */
9853 imbalance = ncores_local * busiest->sum_nr_running;
9854 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
9855 /* Normalize imbalance and do rounding on normalization */
9856 imbalance = 2 * imbalance + ncores_local + ncores_busiest;
9857 imbalance /= ncores_local + ncores_busiest;
9858
9859 /* Take advantage of resource in an empty sched group */
9860 if (imbalance <= 1 && local->sum_nr_running == 0 &&
9861 busiest->sum_nr_running > 1)
9862 imbalance = 2;
9863
9864 return imbalance;
9865 }
9866
9867 static inline bool
sched_reduced_capacity(struct rq * rq,struct sched_domain * sd)9868 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9869 {
9870 /*
9871 * When there is more than 1 task, the group_overloaded case already
9872 * takes care of cpu with reduced capacity
9873 */
9874 if (rq->cfs.h_nr_running != 1)
9875 return false;
9876
9877 return check_cpu_capacity(rq, sd);
9878 }
9879
9880 /**
9881 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9882 * @env: The load balancing environment.
9883 * @sds: Load-balancing data with statistics of the local group.
9884 * @group: sched_group whose statistics are to be updated.
9885 * @sgs: variable to hold the statistics for this group.
9886 * @sg_status: Holds flag indicating the status of the sched_group
9887 */
update_sg_lb_stats(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * group,struct sg_lb_stats * sgs,int * sg_status)9888 static inline void update_sg_lb_stats(struct lb_env *env,
9889 struct sd_lb_stats *sds,
9890 struct sched_group *group,
9891 struct sg_lb_stats *sgs,
9892 int *sg_status)
9893 {
9894 int i, nr_running, local_group;
9895
9896 memset(sgs, 0, sizeof(*sgs));
9897
9898 local_group = group == sds->local;
9899
9900 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9901 struct rq *rq = cpu_rq(i);
9902 unsigned long load = cpu_load(rq);
9903
9904 sgs->group_load += load;
9905 sgs->group_util += cpu_util_cfs(i);
9906 sgs->group_runnable += cpu_runnable(rq);
9907 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9908
9909 nr_running = rq->nr_running;
9910 sgs->sum_nr_running += nr_running;
9911
9912 if (nr_running > 1)
9913 *sg_status |= SG_OVERLOAD;
9914
9915 if (cpu_overutilized(i))
9916 *sg_status |= SG_OVERUTILIZED;
9917
9918 #ifdef CONFIG_NUMA_BALANCING
9919 sgs->nr_numa_running += rq->nr_numa_running;
9920 sgs->nr_preferred_running += rq->nr_preferred_running;
9921 #endif
9922 /*
9923 * No need to call idle_cpu() if nr_running is not 0
9924 */
9925 if (!nr_running && idle_cpu(i)) {
9926 sgs->idle_cpus++;
9927 /* Idle cpu can't have misfit task */
9928 continue;
9929 }
9930
9931 if (local_group)
9932 continue;
9933
9934 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9935 /* Check for a misfit task on the cpu */
9936 if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9937 sgs->group_misfit_task_load = rq->misfit_task_load;
9938 *sg_status |= SG_OVERLOAD;
9939 }
9940 } else if ((env->idle != CPU_NOT_IDLE) &&
9941 sched_reduced_capacity(rq, env->sd)) {
9942 /* Check for a task running on a CPU with reduced capacity */
9943 if (sgs->group_misfit_task_load < load)
9944 sgs->group_misfit_task_load = load;
9945 }
9946 }
9947
9948 sgs->group_capacity = group->sgc->capacity;
9949
9950 sgs->group_weight = group->group_weight;
9951
9952 /* Check if dst CPU is idle and preferred to this group */
9953 if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
9954 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9955 sched_asym(env, sds, sgs, group)) {
9956 sgs->group_asym_packing = 1;
9957 }
9958
9959 /* Check for loaded SMT group to be balanced to dst CPU */
9960 if (!local_group && smt_balance(env, sgs, group))
9961 sgs->group_smt_balance = 1;
9962
9963 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9964
9965 /* Computing avg_load makes sense only when group is overloaded */
9966 if (sgs->group_type == group_overloaded)
9967 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9968 sgs->group_capacity;
9969 }
9970
9971 /**
9972 * update_sd_pick_busiest - return 1 on busiest group
9973 * @env: The load balancing environment.
9974 * @sds: sched_domain statistics
9975 * @sg: sched_group candidate to be checked for being the busiest
9976 * @sgs: sched_group statistics
9977 *
9978 * Determine if @sg is a busier group than the previously selected
9979 * busiest group.
9980 *
9981 * Return: %true if @sg is a busier group than the previously selected
9982 * busiest group. %false otherwise.
9983 */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)9984 static bool update_sd_pick_busiest(struct lb_env *env,
9985 struct sd_lb_stats *sds,
9986 struct sched_group *sg,
9987 struct sg_lb_stats *sgs)
9988 {
9989 struct sg_lb_stats *busiest = &sds->busiest_stat;
9990
9991 /* Make sure that there is at least one task to pull */
9992 if (!sgs->sum_h_nr_running)
9993 return false;
9994
9995 /*
9996 * Don't try to pull misfit tasks we can't help.
9997 * We can use max_capacity here as reduction in capacity on some
9998 * CPUs in the group should either be possible to resolve
9999 * internally or be covered by avg_load imbalance (eventually).
10000 */
10001 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10002 (sgs->group_type == group_misfit_task) &&
10003 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10004 sds->local_stat.group_type != group_has_spare))
10005 return false;
10006
10007 if (sgs->group_type > busiest->group_type)
10008 return true;
10009
10010 if (sgs->group_type < busiest->group_type)
10011 return false;
10012
10013 /*
10014 * The candidate and the current busiest group are the same type of
10015 * group. Let check which one is the busiest according to the type.
10016 */
10017
10018 switch (sgs->group_type) {
10019 case group_overloaded:
10020 /* Select the overloaded group with highest avg_load. */
10021 if (sgs->avg_load <= busiest->avg_load)
10022 return false;
10023 break;
10024
10025 case group_imbalanced:
10026 /*
10027 * Select the 1st imbalanced group as we don't have any way to
10028 * choose one more than another.
10029 */
10030 return false;
10031
10032 case group_asym_packing:
10033 /* Prefer to move from lowest priority CPU's work */
10034 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
10035 return false;
10036 break;
10037
10038 case group_misfit_task:
10039 /*
10040 * If we have more than one misfit sg go with the biggest
10041 * misfit.
10042 */
10043 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
10044 return false;
10045 break;
10046
10047 case group_smt_balance:
10048 /*
10049 * Check if we have spare CPUs on either SMT group to
10050 * choose has spare or fully busy handling.
10051 */
10052 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10053 goto has_spare;
10054
10055 fallthrough;
10056
10057 case group_fully_busy:
10058 /*
10059 * Select the fully busy group with highest avg_load. In
10060 * theory, there is no need to pull task from such kind of
10061 * group because tasks have all compute capacity that they need
10062 * but we can still improve the overall throughput by reducing
10063 * contention when accessing shared HW resources.
10064 *
10065 * XXX for now avg_load is not computed and always 0 so we
10066 * select the 1st one, except if @sg is composed of SMT
10067 * siblings.
10068 */
10069
10070 if (sgs->avg_load < busiest->avg_load)
10071 return false;
10072
10073 if (sgs->avg_load == busiest->avg_load) {
10074 /*
10075 * SMT sched groups need more help than non-SMT groups.
10076 * If @sg happens to also be SMT, either choice is good.
10077 */
10078 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10079 return false;
10080 }
10081
10082 break;
10083
10084 case group_has_spare:
10085 /*
10086 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10087 * as we do not want to pull task off SMT core with one task
10088 * and make the core idle.
10089 */
10090 if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10091 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10092 return false;
10093 else
10094 return true;
10095 }
10096 has_spare:
10097
10098 /*
10099 * Select not overloaded group with lowest number of idle cpus
10100 * and highest number of running tasks. We could also compare
10101 * the spare capacity which is more stable but it can end up
10102 * that the group has less spare capacity but finally more idle
10103 * CPUs which means less opportunity to pull tasks.
10104 */
10105 if (sgs->idle_cpus > busiest->idle_cpus)
10106 return false;
10107 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10108 (sgs->sum_nr_running <= busiest->sum_nr_running))
10109 return false;
10110
10111 break;
10112 }
10113
10114 /*
10115 * Candidate sg has no more than one task per CPU and has higher
10116 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10117 * throughput. Maximize throughput, power/energy consequences are not
10118 * considered.
10119 */
10120 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10121 (sgs->group_type <= group_fully_busy) &&
10122 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10123 return false;
10124
10125 return true;
10126 }
10127
10128 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)10129 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10130 {
10131 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10132 return regular;
10133 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10134 return remote;
10135 return all;
10136 }
10137
fbq_classify_rq(struct rq * rq)10138 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10139 {
10140 if (rq->nr_running > rq->nr_numa_running)
10141 return regular;
10142 if (rq->nr_running > rq->nr_preferred_running)
10143 return remote;
10144 return all;
10145 }
10146 #else
fbq_classify_group(struct sg_lb_stats * sgs)10147 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10148 {
10149 return all;
10150 }
10151
fbq_classify_rq(struct rq * rq)10152 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10153 {
10154 return regular;
10155 }
10156 #endif /* CONFIG_NUMA_BALANCING */
10157
10158
10159 struct sg_lb_stats;
10160
10161 /*
10162 * task_running_on_cpu - return 1 if @p is running on @cpu.
10163 */
10164
task_running_on_cpu(int cpu,struct task_struct * p)10165 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10166 {
10167 /* Task has no contribution or is new */
10168 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10169 return 0;
10170
10171 if (task_on_rq_queued(p))
10172 return 1;
10173
10174 return 0;
10175 }
10176
10177 /**
10178 * idle_cpu_without - would a given CPU be idle without p ?
10179 * @cpu: the processor on which idleness is tested.
10180 * @p: task which should be ignored.
10181 *
10182 * Return: 1 if the CPU would be idle. 0 otherwise.
10183 */
idle_cpu_without(int cpu,struct task_struct * p)10184 static int idle_cpu_without(int cpu, struct task_struct *p)
10185 {
10186 struct rq *rq = cpu_rq(cpu);
10187
10188 if (rq->curr != rq->idle && rq->curr != p)
10189 return 0;
10190
10191 /*
10192 * rq->nr_running can't be used but an updated version without the
10193 * impact of p on cpu must be used instead. The updated nr_running
10194 * be computed and tested before calling idle_cpu_without().
10195 */
10196
10197 #ifdef CONFIG_SMP
10198 if (rq->ttwu_pending)
10199 return 0;
10200 #endif
10201
10202 return 1;
10203 }
10204
10205 /*
10206 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10207 * @sd: The sched_domain level to look for idlest group.
10208 * @group: sched_group whose statistics are to be updated.
10209 * @sgs: variable to hold the statistics for this group.
10210 * @p: The task for which we look for the idlest group/CPU.
10211 */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)10212 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10213 struct sched_group *group,
10214 struct sg_lb_stats *sgs,
10215 struct task_struct *p)
10216 {
10217 int i, nr_running;
10218
10219 memset(sgs, 0, sizeof(*sgs));
10220
10221 /* Assume that task can't fit any CPU of the group */
10222 if (sd->flags & SD_ASYM_CPUCAPACITY)
10223 sgs->group_misfit_task_load = 1;
10224
10225 for_each_cpu(i, sched_group_span(group)) {
10226 struct rq *rq = cpu_rq(i);
10227 unsigned int local;
10228
10229 sgs->group_load += cpu_load_without(rq, p);
10230 sgs->group_util += cpu_util_without(i, p);
10231 sgs->group_runnable += cpu_runnable_without(rq, p);
10232 local = task_running_on_cpu(i, p);
10233 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10234
10235 nr_running = rq->nr_running - local;
10236 sgs->sum_nr_running += nr_running;
10237
10238 /*
10239 * No need to call idle_cpu_without() if nr_running is not 0
10240 */
10241 if (!nr_running && idle_cpu_without(i, p))
10242 sgs->idle_cpus++;
10243
10244 /* Check if task fits in the CPU */
10245 if (sd->flags & SD_ASYM_CPUCAPACITY &&
10246 sgs->group_misfit_task_load &&
10247 task_fits_cpu(p, i))
10248 sgs->group_misfit_task_load = 0;
10249
10250 }
10251
10252 sgs->group_capacity = group->sgc->capacity;
10253
10254 sgs->group_weight = group->group_weight;
10255
10256 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10257
10258 /*
10259 * Computing avg_load makes sense only when group is fully busy or
10260 * overloaded
10261 */
10262 if (sgs->group_type == group_fully_busy ||
10263 sgs->group_type == group_overloaded)
10264 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10265 sgs->group_capacity;
10266 }
10267
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)10268 static bool update_pick_idlest(struct sched_group *idlest,
10269 struct sg_lb_stats *idlest_sgs,
10270 struct sched_group *group,
10271 struct sg_lb_stats *sgs)
10272 {
10273 if (sgs->group_type < idlest_sgs->group_type)
10274 return true;
10275
10276 if (sgs->group_type > idlest_sgs->group_type)
10277 return false;
10278
10279 /*
10280 * The candidate and the current idlest group are the same type of
10281 * group. Let check which one is the idlest according to the type.
10282 */
10283
10284 switch (sgs->group_type) {
10285 case group_overloaded:
10286 case group_fully_busy:
10287 /* Select the group with lowest avg_load. */
10288 if (idlest_sgs->avg_load <= sgs->avg_load)
10289 return false;
10290 break;
10291
10292 case group_imbalanced:
10293 case group_asym_packing:
10294 case group_smt_balance:
10295 /* Those types are not used in the slow wakeup path */
10296 return false;
10297
10298 case group_misfit_task:
10299 /* Select group with the highest max capacity */
10300 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10301 return false;
10302 break;
10303
10304 case group_has_spare:
10305 /* Select group with most idle CPUs */
10306 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10307 return false;
10308
10309 /* Select group with lowest group_util */
10310 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10311 idlest_sgs->group_util <= sgs->group_util)
10312 return false;
10313
10314 break;
10315 }
10316
10317 return true;
10318 }
10319
10320 /*
10321 * find_idlest_group() finds and returns the least busy CPU group within the
10322 * domain.
10323 *
10324 * Assumes p is allowed on at least one CPU in sd.
10325 */
10326 static struct sched_group *
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)10327 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10328 {
10329 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10330 struct sg_lb_stats local_sgs, tmp_sgs;
10331 struct sg_lb_stats *sgs;
10332 unsigned long imbalance;
10333 struct sg_lb_stats idlest_sgs = {
10334 .avg_load = UINT_MAX,
10335 .group_type = group_overloaded,
10336 };
10337
10338 do {
10339 int local_group;
10340
10341 /* Skip over this group if it has no CPUs allowed */
10342 if (!cpumask_intersects(sched_group_span(group),
10343 p->cpus_ptr))
10344 continue;
10345
10346 /* Skip over this group if no cookie matched */
10347 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10348 continue;
10349
10350 local_group = cpumask_test_cpu(this_cpu,
10351 sched_group_span(group));
10352
10353 if (local_group) {
10354 sgs = &local_sgs;
10355 local = group;
10356 } else {
10357 sgs = &tmp_sgs;
10358 }
10359
10360 update_sg_wakeup_stats(sd, group, sgs, p);
10361
10362 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10363 idlest = group;
10364 idlest_sgs = *sgs;
10365 }
10366
10367 } while (group = group->next, group != sd->groups);
10368
10369
10370 /* There is no idlest group to push tasks to */
10371 if (!idlest)
10372 return NULL;
10373
10374 /* The local group has been skipped because of CPU affinity */
10375 if (!local)
10376 return idlest;
10377
10378 /*
10379 * If the local group is idler than the selected idlest group
10380 * don't try and push the task.
10381 */
10382 if (local_sgs.group_type < idlest_sgs.group_type)
10383 return NULL;
10384
10385 /*
10386 * If the local group is busier than the selected idlest group
10387 * try and push the task.
10388 */
10389 if (local_sgs.group_type > idlest_sgs.group_type)
10390 return idlest;
10391
10392 switch (local_sgs.group_type) {
10393 case group_overloaded:
10394 case group_fully_busy:
10395
10396 /* Calculate allowed imbalance based on load */
10397 imbalance = scale_load_down(NICE_0_LOAD) *
10398 (sd->imbalance_pct-100) / 100;
10399
10400 /*
10401 * When comparing groups across NUMA domains, it's possible for
10402 * the local domain to be very lightly loaded relative to the
10403 * remote domains but "imbalance" skews the comparison making
10404 * remote CPUs look much more favourable. When considering
10405 * cross-domain, add imbalance to the load on the remote node
10406 * and consider staying local.
10407 */
10408
10409 if ((sd->flags & SD_NUMA) &&
10410 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10411 return NULL;
10412
10413 /*
10414 * If the local group is less loaded than the selected
10415 * idlest group don't try and push any tasks.
10416 */
10417 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10418 return NULL;
10419
10420 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10421 return NULL;
10422 break;
10423
10424 case group_imbalanced:
10425 case group_asym_packing:
10426 case group_smt_balance:
10427 /* Those type are not used in the slow wakeup path */
10428 return NULL;
10429
10430 case group_misfit_task:
10431 /* Select group with the highest max capacity */
10432 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10433 return NULL;
10434 break;
10435
10436 case group_has_spare:
10437 #ifdef CONFIG_NUMA
10438 if (sd->flags & SD_NUMA) {
10439 int imb_numa_nr = sd->imb_numa_nr;
10440 #ifdef CONFIG_NUMA_BALANCING
10441 int idlest_cpu;
10442 /*
10443 * If there is spare capacity at NUMA, try to select
10444 * the preferred node
10445 */
10446 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10447 return NULL;
10448
10449 idlest_cpu = cpumask_first(sched_group_span(idlest));
10450 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10451 return idlest;
10452 #endif /* CONFIG_NUMA_BALANCING */
10453 /*
10454 * Otherwise, keep the task close to the wakeup source
10455 * and improve locality if the number of running tasks
10456 * would remain below threshold where an imbalance is
10457 * allowed while accounting for the possibility the
10458 * task is pinned to a subset of CPUs. If there is a
10459 * real need of migration, periodic load balance will
10460 * take care of it.
10461 */
10462 if (p->nr_cpus_allowed != NR_CPUS) {
10463 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10464
10465 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10466 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10467 }
10468
10469 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10470 if (!adjust_numa_imbalance(imbalance,
10471 local_sgs.sum_nr_running + 1,
10472 imb_numa_nr)) {
10473 return NULL;
10474 }
10475 }
10476 #endif /* CONFIG_NUMA */
10477
10478 /*
10479 * Select group with highest number of idle CPUs. We could also
10480 * compare the utilization which is more stable but it can end
10481 * up that the group has less spare capacity but finally more
10482 * idle CPUs which means more opportunity to run task.
10483 */
10484 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10485 return NULL;
10486 break;
10487 }
10488
10489 return idlest;
10490 }
10491
update_idle_cpu_scan(struct lb_env * env,unsigned long sum_util)10492 static void update_idle_cpu_scan(struct lb_env *env,
10493 unsigned long sum_util)
10494 {
10495 struct sched_domain_shared *sd_share;
10496 int llc_weight, pct;
10497 u64 x, y, tmp;
10498 /*
10499 * Update the number of CPUs to scan in LLC domain, which could
10500 * be used as a hint in select_idle_cpu(). The update of sd_share
10501 * could be expensive because it is within a shared cache line.
10502 * So the write of this hint only occurs during periodic load
10503 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10504 * can fire way more frequently than the former.
10505 */
10506 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10507 return;
10508
10509 llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10510 if (env->sd->span_weight != llc_weight)
10511 return;
10512
10513 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10514 if (!sd_share)
10515 return;
10516
10517 /*
10518 * The number of CPUs to search drops as sum_util increases, when
10519 * sum_util hits 85% or above, the scan stops.
10520 * The reason to choose 85% as the threshold is because this is the
10521 * imbalance_pct(117) when a LLC sched group is overloaded.
10522 *
10523 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1]
10524 * and y'= y / SCHED_CAPACITY_SCALE
10525 *
10526 * x is the ratio of sum_util compared to the CPU capacity:
10527 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10528 * y' is the ratio of CPUs to be scanned in the LLC domain,
10529 * and the number of CPUs to scan is calculated by:
10530 *
10531 * nr_scan = llc_weight * y' [2]
10532 *
10533 * When x hits the threshold of overloaded, AKA, when
10534 * x = 100 / pct, y drops to 0. According to [1],
10535 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10536 *
10537 * Scale x by SCHED_CAPACITY_SCALE:
10538 * x' = sum_util / llc_weight; [3]
10539 *
10540 * and finally [1] becomes:
10541 * y = SCHED_CAPACITY_SCALE -
10542 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4]
10543 *
10544 */
10545 /* equation [3] */
10546 x = sum_util;
10547 do_div(x, llc_weight);
10548
10549 /* equation [4] */
10550 pct = env->sd->imbalance_pct;
10551 tmp = x * x * pct * pct;
10552 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10553 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10554 y = SCHED_CAPACITY_SCALE - tmp;
10555
10556 /* equation [2] */
10557 y *= llc_weight;
10558 do_div(y, SCHED_CAPACITY_SCALE);
10559 if ((int)y != sd_share->nr_idle_scan)
10560 WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10561 }
10562
10563 /**
10564 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10565 * @env: The load balancing environment.
10566 * @sds: variable to hold the statistics for this sched_domain.
10567 */
10568
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)10569 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10570 {
10571 struct sched_group *sg = env->sd->groups;
10572 struct sg_lb_stats *local = &sds->local_stat;
10573 struct sg_lb_stats tmp_sgs;
10574 unsigned long sum_util = 0;
10575 int sg_status = 0;
10576
10577 do {
10578 struct sg_lb_stats *sgs = &tmp_sgs;
10579 int local_group;
10580
10581 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10582 if (local_group) {
10583 sds->local = sg;
10584 sgs = local;
10585
10586 if (env->idle != CPU_NEWLY_IDLE ||
10587 time_after_eq(jiffies, sg->sgc->next_update))
10588 update_group_capacity(env->sd, env->dst_cpu);
10589 }
10590
10591 update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
10592
10593 if (local_group)
10594 goto next_group;
10595
10596
10597 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
10598 sds->busiest = sg;
10599 sds->busiest_stat = *sgs;
10600 }
10601
10602 next_group:
10603 /* Now, start updating sd_lb_stats */
10604 sds->total_load += sgs->group_load;
10605 sds->total_capacity += sgs->group_capacity;
10606
10607 sum_util += sgs->group_util;
10608 sg = sg->next;
10609 } while (sg != env->sd->groups);
10610
10611 /*
10612 * Indicate that the child domain of the busiest group prefers tasks
10613 * go to a child's sibling domains first. NB the flags of a sched group
10614 * are those of the child domain.
10615 */
10616 if (sds->busiest)
10617 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10618
10619
10620 if (env->sd->flags & SD_NUMA)
10621 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10622
10623 if (!env->sd->parent) {
10624 /* update overload indicator if we are at root domain */
10625 WRITE_ONCE(env->dst_rq->rd->overload, sg_status & SG_OVERLOAD);
10626
10627 /* Update over-utilization (tipping point, U >= 0) indicator */
10628 set_rd_overutilized_status(env->dst_rq->rd,
10629 sg_status & SG_OVERUTILIZED);
10630 } else if (sg_status & SG_OVERUTILIZED) {
10631 set_rd_overutilized_status(env->dst_rq->rd, SG_OVERUTILIZED);
10632 }
10633
10634 update_idle_cpu_scan(env, sum_util);
10635 }
10636
10637 /**
10638 * calculate_imbalance - Calculate the amount of imbalance present within the
10639 * groups of a given sched_domain during load balance.
10640 * @env: load balance environment
10641 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10642 */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)10643 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10644 {
10645 struct sg_lb_stats *local, *busiest;
10646
10647 local = &sds->local_stat;
10648 busiest = &sds->busiest_stat;
10649
10650 if (busiest->group_type == group_misfit_task) {
10651 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10652 /* Set imbalance to allow misfit tasks to be balanced. */
10653 env->migration_type = migrate_misfit;
10654 env->imbalance = 1;
10655 } else {
10656 /*
10657 * Set load imbalance to allow moving task from cpu
10658 * with reduced capacity.
10659 */
10660 env->migration_type = migrate_load;
10661 env->imbalance = busiest->group_misfit_task_load;
10662 }
10663 return;
10664 }
10665
10666 if (busiest->group_type == group_asym_packing) {
10667 /*
10668 * In case of asym capacity, we will try to migrate all load to
10669 * the preferred CPU.
10670 */
10671 env->migration_type = migrate_task;
10672 env->imbalance = busiest->sum_h_nr_running;
10673 return;
10674 }
10675
10676 if (busiest->group_type == group_smt_balance) {
10677 /* Reduce number of tasks sharing CPU capacity */
10678 env->migration_type = migrate_task;
10679 env->imbalance = 1;
10680 return;
10681 }
10682
10683 if (busiest->group_type == group_imbalanced) {
10684 /*
10685 * In the group_imb case we cannot rely on group-wide averages
10686 * to ensure CPU-load equilibrium, try to move any task to fix
10687 * the imbalance. The next load balance will take care of
10688 * balancing back the system.
10689 */
10690 env->migration_type = migrate_task;
10691 env->imbalance = 1;
10692 return;
10693 }
10694
10695 /*
10696 * Try to use spare capacity of local group without overloading it or
10697 * emptying busiest.
10698 */
10699 if (local->group_type == group_has_spare) {
10700 if ((busiest->group_type > group_fully_busy) &&
10701 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
10702 /*
10703 * If busiest is overloaded, try to fill spare
10704 * capacity. This might end up creating spare capacity
10705 * in busiest or busiest still being overloaded but
10706 * there is no simple way to directly compute the
10707 * amount of load to migrate in order to balance the
10708 * system.
10709 */
10710 env->migration_type = migrate_util;
10711 env->imbalance = max(local->group_capacity, local->group_util) -
10712 local->group_util;
10713
10714 /*
10715 * In some cases, the group's utilization is max or even
10716 * higher than capacity because of migrations but the
10717 * local CPU is (newly) idle. There is at least one
10718 * waiting task in this overloaded busiest group. Let's
10719 * try to pull it.
10720 */
10721 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
10722 env->migration_type = migrate_task;
10723 env->imbalance = 1;
10724 }
10725
10726 return;
10727 }
10728
10729 if (busiest->group_weight == 1 || sds->prefer_sibling) {
10730 /*
10731 * When prefer sibling, evenly spread running tasks on
10732 * groups.
10733 */
10734 env->migration_type = migrate_task;
10735 env->imbalance = sibling_imbalance(env, sds, busiest, local);
10736 } else {
10737
10738 /*
10739 * If there is no overload, we just want to even the number of
10740 * idle cpus.
10741 */
10742 env->migration_type = migrate_task;
10743 env->imbalance = max_t(long, 0,
10744 (local->idle_cpus - busiest->idle_cpus));
10745 }
10746
10747 #ifdef CONFIG_NUMA
10748 /* Consider allowing a small imbalance between NUMA groups */
10749 if (env->sd->flags & SD_NUMA) {
10750 env->imbalance = adjust_numa_imbalance(env->imbalance,
10751 local->sum_nr_running + 1,
10752 env->sd->imb_numa_nr);
10753 }
10754 #endif
10755
10756 /* Number of tasks to move to restore balance */
10757 env->imbalance >>= 1;
10758
10759 return;
10760 }
10761
10762 /*
10763 * Local is fully busy but has to take more load to relieve the
10764 * busiest group
10765 */
10766 if (local->group_type < group_overloaded) {
10767 /*
10768 * Local will become overloaded so the avg_load metrics are
10769 * finally needed.
10770 */
10771
10772 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10773 local->group_capacity;
10774
10775 /*
10776 * If the local group is more loaded than the selected
10777 * busiest group don't try to pull any tasks.
10778 */
10779 if (local->avg_load >= busiest->avg_load) {
10780 env->imbalance = 0;
10781 return;
10782 }
10783
10784 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10785 sds->total_capacity;
10786
10787 /*
10788 * If the local group is more loaded than the average system
10789 * load, don't try to pull any tasks.
10790 */
10791 if (local->avg_load >= sds->avg_load) {
10792 env->imbalance = 0;
10793 return;
10794 }
10795
10796 }
10797
10798 /*
10799 * Both group are or will become overloaded and we're trying to get all
10800 * the CPUs to the average_load, so we don't want to push ourselves
10801 * above the average load, nor do we wish to reduce the max loaded CPU
10802 * below the average load. At the same time, we also don't want to
10803 * reduce the group load below the group capacity. Thus we look for
10804 * the minimum possible imbalance.
10805 */
10806 env->migration_type = migrate_load;
10807 env->imbalance = min(
10808 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10809 (sds->avg_load - local->avg_load) * local->group_capacity
10810 ) / SCHED_CAPACITY_SCALE;
10811 }
10812
10813 /******* find_busiest_group() helpers end here *********************/
10814
10815 /*
10816 * Decision matrix according to the local and busiest group type:
10817 *
10818 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10819 * has_spare nr_idle balanced N/A N/A balanced balanced
10820 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
10821 * misfit_task force N/A N/A N/A N/A N/A
10822 * asym_packing force force N/A N/A force force
10823 * imbalanced force force N/A N/A force force
10824 * overloaded force force N/A N/A force avg_load
10825 *
10826 * N/A : Not Applicable because already filtered while updating
10827 * statistics.
10828 * balanced : The system is balanced for these 2 groups.
10829 * force : Calculate the imbalance as load migration is probably needed.
10830 * avg_load : Only if imbalance is significant enough.
10831 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
10832 * different in groups.
10833 */
10834
10835 /**
10836 * find_busiest_group - Returns the busiest group within the sched_domain
10837 * if there is an imbalance.
10838 * @env: The load balancing environment.
10839 *
10840 * Also calculates the amount of runnable load which should be moved
10841 * to restore balance.
10842 *
10843 * Return: - The busiest group if imbalance exists.
10844 */
find_busiest_group(struct lb_env * env)10845 static struct sched_group *find_busiest_group(struct lb_env *env)
10846 {
10847 struct sg_lb_stats *local, *busiest;
10848 struct sd_lb_stats sds;
10849
10850 init_sd_lb_stats(&sds);
10851
10852 /*
10853 * Compute the various statistics relevant for load balancing at
10854 * this level.
10855 */
10856 update_sd_lb_stats(env, &sds);
10857
10858 /* There is no busy sibling group to pull tasks from */
10859 if (!sds.busiest)
10860 goto out_balanced;
10861
10862 busiest = &sds.busiest_stat;
10863
10864 /* Misfit tasks should be dealt with regardless of the avg load */
10865 if (busiest->group_type == group_misfit_task)
10866 goto force_balance;
10867
10868 if (sched_energy_enabled()) {
10869 struct root_domain *rd = env->dst_rq->rd;
10870
10871 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
10872 goto out_balanced;
10873 }
10874
10875 /* ASYM feature bypasses nice load balance check */
10876 if (busiest->group_type == group_asym_packing)
10877 goto force_balance;
10878
10879 /*
10880 * If the busiest group is imbalanced the below checks don't
10881 * work because they assume all things are equal, which typically
10882 * isn't true due to cpus_ptr constraints and the like.
10883 */
10884 if (busiest->group_type == group_imbalanced)
10885 goto force_balance;
10886
10887 local = &sds.local_stat;
10888 /*
10889 * If the local group is busier than the selected busiest group
10890 * don't try and pull any tasks.
10891 */
10892 if (local->group_type > busiest->group_type)
10893 goto out_balanced;
10894
10895 /*
10896 * When groups are overloaded, use the avg_load to ensure fairness
10897 * between tasks.
10898 */
10899 if (local->group_type == group_overloaded) {
10900 /*
10901 * If the local group is more loaded than the selected
10902 * busiest group don't try to pull any tasks.
10903 */
10904 if (local->avg_load >= busiest->avg_load)
10905 goto out_balanced;
10906
10907 /* XXX broken for overlapping NUMA groups */
10908 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10909 sds.total_capacity;
10910
10911 /*
10912 * Don't pull any tasks if this group is already above the
10913 * domain average load.
10914 */
10915 if (local->avg_load >= sds.avg_load)
10916 goto out_balanced;
10917
10918 /*
10919 * If the busiest group is more loaded, use imbalance_pct to be
10920 * conservative.
10921 */
10922 if (100 * busiest->avg_load <=
10923 env->sd->imbalance_pct * local->avg_load)
10924 goto out_balanced;
10925 }
10926
10927 /*
10928 * Try to move all excess tasks to a sibling domain of the busiest
10929 * group's child domain.
10930 */
10931 if (sds.prefer_sibling && local->group_type == group_has_spare &&
10932 sibling_imbalance(env, &sds, busiest, local) > 1)
10933 goto force_balance;
10934
10935 if (busiest->group_type != group_overloaded) {
10936 if (env->idle == CPU_NOT_IDLE) {
10937 /*
10938 * If the busiest group is not overloaded (and as a
10939 * result the local one too) but this CPU is already
10940 * busy, let another idle CPU try to pull task.
10941 */
10942 goto out_balanced;
10943 }
10944
10945 if (busiest->group_type == group_smt_balance &&
10946 smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
10947 /* Let non SMT CPU pull from SMT CPU sharing with sibling */
10948 goto force_balance;
10949 }
10950
10951 if (busiest->group_weight > 1 &&
10952 local->idle_cpus <= (busiest->idle_cpus + 1)) {
10953 /*
10954 * If the busiest group is not overloaded
10955 * and there is no imbalance between this and busiest
10956 * group wrt idle CPUs, it is balanced. The imbalance
10957 * becomes significant if the diff is greater than 1
10958 * otherwise we might end up to just move the imbalance
10959 * on another group. Of course this applies only if
10960 * there is more than 1 CPU per group.
10961 */
10962 goto out_balanced;
10963 }
10964
10965 if (busiest->sum_h_nr_running == 1) {
10966 /*
10967 * busiest doesn't have any tasks waiting to run
10968 */
10969 goto out_balanced;
10970 }
10971 }
10972
10973 force_balance:
10974 /* Looks like there is an imbalance. Compute it */
10975 calculate_imbalance(env, &sds);
10976 return env->imbalance ? sds.busiest : NULL;
10977
10978 out_balanced:
10979 env->imbalance = 0;
10980 return NULL;
10981 }
10982
10983 /*
10984 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10985 */
find_busiest_queue(struct lb_env * env,struct sched_group * group)10986 static struct rq *find_busiest_queue(struct lb_env *env,
10987 struct sched_group *group)
10988 {
10989 struct rq *busiest = NULL, *rq;
10990 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10991 unsigned int busiest_nr = 0;
10992 int i;
10993
10994 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10995 unsigned long capacity, load, util;
10996 unsigned int nr_running;
10997 enum fbq_type rt;
10998
10999 rq = cpu_rq(i);
11000 rt = fbq_classify_rq(rq);
11001
11002 /*
11003 * We classify groups/runqueues into three groups:
11004 * - regular: there are !numa tasks
11005 * - remote: there are numa tasks that run on the 'wrong' node
11006 * - all: there is no distinction
11007 *
11008 * In order to avoid migrating ideally placed numa tasks,
11009 * ignore those when there's better options.
11010 *
11011 * If we ignore the actual busiest queue to migrate another
11012 * task, the next balance pass can still reduce the busiest
11013 * queue by moving tasks around inside the node.
11014 *
11015 * If we cannot move enough load due to this classification
11016 * the next pass will adjust the group classification and
11017 * allow migration of more tasks.
11018 *
11019 * Both cases only affect the total convergence complexity.
11020 */
11021 if (rt > env->fbq_type)
11022 continue;
11023
11024 nr_running = rq->cfs.h_nr_running;
11025 if (!nr_running)
11026 continue;
11027
11028 capacity = capacity_of(i);
11029
11030 /*
11031 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11032 * eventually lead to active_balancing high->low capacity.
11033 * Higher per-CPU capacity is considered better than balancing
11034 * average load.
11035 */
11036 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11037 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11038 nr_running == 1)
11039 continue;
11040
11041 /*
11042 * Make sure we only pull tasks from a CPU of lower priority
11043 * when balancing between SMT siblings.
11044 *
11045 * If balancing between cores, let lower priority CPUs help
11046 * SMT cores with more than one busy sibling.
11047 */
11048 if ((env->sd->flags & SD_ASYM_PACKING) &&
11049 sched_use_asym_prio(env->sd, i) &&
11050 sched_asym_prefer(i, env->dst_cpu) &&
11051 nr_running == 1)
11052 continue;
11053
11054 switch (env->migration_type) {
11055 case migrate_load:
11056 /*
11057 * When comparing with load imbalance, use cpu_load()
11058 * which is not scaled with the CPU capacity.
11059 */
11060 load = cpu_load(rq);
11061
11062 if (nr_running == 1 && load > env->imbalance &&
11063 !check_cpu_capacity(rq, env->sd))
11064 break;
11065
11066 /*
11067 * For the load comparisons with the other CPUs,
11068 * consider the cpu_load() scaled with the CPU
11069 * capacity, so that the load can be moved away
11070 * from the CPU that is potentially running at a
11071 * lower capacity.
11072 *
11073 * Thus we're looking for max(load_i / capacity_i),
11074 * crosswise multiplication to rid ourselves of the
11075 * division works out to:
11076 * load_i * capacity_j > load_j * capacity_i;
11077 * where j is our previous maximum.
11078 */
11079 if (load * busiest_capacity > busiest_load * capacity) {
11080 busiest_load = load;
11081 busiest_capacity = capacity;
11082 busiest = rq;
11083 }
11084 break;
11085
11086 case migrate_util:
11087 util = cpu_util_cfs_boost(i);
11088
11089 /*
11090 * Don't try to pull utilization from a CPU with one
11091 * running task. Whatever its utilization, we will fail
11092 * detach the task.
11093 */
11094 if (nr_running <= 1)
11095 continue;
11096
11097 if (busiest_util < util) {
11098 busiest_util = util;
11099 busiest = rq;
11100 }
11101 break;
11102
11103 case migrate_task:
11104 if (busiest_nr < nr_running) {
11105 busiest_nr = nr_running;
11106 busiest = rq;
11107 }
11108 break;
11109
11110 case migrate_misfit:
11111 /*
11112 * For ASYM_CPUCAPACITY domains with misfit tasks we
11113 * simply seek the "biggest" misfit task.
11114 */
11115 if (rq->misfit_task_load > busiest_load) {
11116 busiest_load = rq->misfit_task_load;
11117 busiest = rq;
11118 }
11119
11120 break;
11121
11122 }
11123 }
11124
11125 return busiest;
11126 }
11127
11128 /*
11129 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11130 * so long as it is large enough.
11131 */
11132 #define MAX_PINNED_INTERVAL 512
11133
11134 static inline bool
asym_active_balance(struct lb_env * env)11135 asym_active_balance(struct lb_env *env)
11136 {
11137 /*
11138 * ASYM_PACKING needs to force migrate tasks from busy but lower
11139 * priority CPUs in order to pack all tasks in the highest priority
11140 * CPUs. When done between cores, do it only if the whole core if the
11141 * whole core is idle.
11142 *
11143 * If @env::src_cpu is an SMT core with busy siblings, let
11144 * the lower priority @env::dst_cpu help it. Do not follow
11145 * CPU priority.
11146 */
11147 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
11148 sched_use_asym_prio(env->sd, env->dst_cpu) &&
11149 (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11150 !sched_use_asym_prio(env->sd, env->src_cpu));
11151 }
11152
11153 static inline bool
imbalanced_active_balance(struct lb_env * env)11154 imbalanced_active_balance(struct lb_env *env)
11155 {
11156 struct sched_domain *sd = env->sd;
11157
11158 /*
11159 * The imbalanced case includes the case of pinned tasks preventing a fair
11160 * distribution of the load on the system but also the even distribution of the
11161 * threads on a system with spare capacity
11162 */
11163 if ((env->migration_type == migrate_task) &&
11164 (sd->nr_balance_failed > sd->cache_nice_tries+2))
11165 return 1;
11166
11167 return 0;
11168 }
11169
need_active_balance(struct lb_env * env)11170 static int need_active_balance(struct lb_env *env)
11171 {
11172 struct sched_domain *sd = env->sd;
11173
11174 if (asym_active_balance(env))
11175 return 1;
11176
11177 if (imbalanced_active_balance(env))
11178 return 1;
11179
11180 /*
11181 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11182 * It's worth migrating the task if the src_cpu's capacity is reduced
11183 * because of other sched_class or IRQs if more capacity stays
11184 * available on dst_cpu.
11185 */
11186 if ((env->idle != CPU_NOT_IDLE) &&
11187 (env->src_rq->cfs.h_nr_running == 1)) {
11188 if ((check_cpu_capacity(env->src_rq, sd)) &&
11189 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11190 return 1;
11191 }
11192
11193 if (env->migration_type == migrate_misfit)
11194 return 1;
11195
11196 return 0;
11197 }
11198
11199 static int active_load_balance_cpu_stop(void *data);
11200
should_we_balance(struct lb_env * env)11201 static int should_we_balance(struct lb_env *env)
11202 {
11203 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11204 struct sched_group *sg = env->sd->groups;
11205 int cpu, idle_smt = -1;
11206
11207 /*
11208 * Ensure the balancing environment is consistent; can happen
11209 * when the softirq triggers 'during' hotplug.
11210 */
11211 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11212 return 0;
11213
11214 /*
11215 * In the newly idle case, we will allow all the CPUs
11216 * to do the newly idle load balance.
11217 *
11218 * However, we bail out if we already have tasks or a wakeup pending,
11219 * to optimize wakeup latency.
11220 */
11221 if (env->idle == CPU_NEWLY_IDLE) {
11222 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11223 return 0;
11224 return 1;
11225 }
11226
11227 cpumask_copy(swb_cpus, group_balance_mask(sg));
11228 /* Try to find first idle CPU */
11229 for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11230 if (!idle_cpu(cpu))
11231 continue;
11232
11233 /*
11234 * Don't balance to idle SMT in busy core right away when
11235 * balancing cores, but remember the first idle SMT CPU for
11236 * later consideration. Find CPU on an idle core first.
11237 */
11238 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11239 if (idle_smt == -1)
11240 idle_smt = cpu;
11241 /*
11242 * If the core is not idle, and first SMT sibling which is
11243 * idle has been found, then its not needed to check other
11244 * SMT siblings for idleness:
11245 */
11246 #ifdef CONFIG_SCHED_SMT
11247 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11248 #endif
11249 continue;
11250 }
11251
11252 /*
11253 * Are we the first idle core in a non-SMT domain or higher,
11254 * or the first idle CPU in a SMT domain?
11255 */
11256 return cpu == env->dst_cpu;
11257 }
11258
11259 /* Are we the first idle CPU with busy siblings? */
11260 if (idle_smt != -1)
11261 return idle_smt == env->dst_cpu;
11262
11263 /* Are we the first CPU of this group ? */
11264 return group_balance_cpu(sg) == env->dst_cpu;
11265 }
11266
11267 /*
11268 * Check this_cpu to ensure it is balanced within domain. Attempt to move
11269 * tasks if there is an imbalance.
11270 */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)11271 static int load_balance(int this_cpu, struct rq *this_rq,
11272 struct sched_domain *sd, enum cpu_idle_type idle,
11273 int *continue_balancing)
11274 {
11275 int ld_moved, cur_ld_moved, active_balance = 0;
11276 struct sched_domain *sd_parent = sd->parent;
11277 struct sched_group *group;
11278 struct rq *busiest;
11279 struct rq_flags rf;
11280 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11281 struct lb_env env = {
11282 .sd = sd,
11283 .dst_cpu = this_cpu,
11284 .dst_rq = this_rq,
11285 .dst_grpmask = group_balance_mask(sd->groups),
11286 .idle = idle,
11287 .loop_break = SCHED_NR_MIGRATE_BREAK,
11288 .cpus = cpus,
11289 .fbq_type = all,
11290 .tasks = LIST_HEAD_INIT(env.tasks),
11291 };
11292
11293 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11294
11295 schedstat_inc(sd->lb_count[idle]);
11296
11297 redo:
11298 if (!should_we_balance(&env)) {
11299 *continue_balancing = 0;
11300 goto out_balanced;
11301 }
11302
11303 group = find_busiest_group(&env);
11304 if (!group) {
11305 schedstat_inc(sd->lb_nobusyg[idle]);
11306 goto out_balanced;
11307 }
11308
11309 busiest = find_busiest_queue(&env, group);
11310 if (!busiest) {
11311 schedstat_inc(sd->lb_nobusyq[idle]);
11312 goto out_balanced;
11313 }
11314
11315 WARN_ON_ONCE(busiest == env.dst_rq);
11316
11317 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11318
11319 env.src_cpu = busiest->cpu;
11320 env.src_rq = busiest;
11321
11322 ld_moved = 0;
11323 /* Clear this flag as soon as we find a pullable task */
11324 env.flags |= LBF_ALL_PINNED;
11325 if (busiest->nr_running > 1) {
11326 /*
11327 * Attempt to move tasks. If find_busiest_group has found
11328 * an imbalance but busiest->nr_running <= 1, the group is
11329 * still unbalanced. ld_moved simply stays zero, so it is
11330 * correctly treated as an imbalance.
11331 */
11332 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
11333
11334 more_balance:
11335 rq_lock_irqsave(busiest, &rf);
11336 update_rq_clock(busiest);
11337
11338 /*
11339 * cur_ld_moved - load moved in current iteration
11340 * ld_moved - cumulative load moved across iterations
11341 */
11342 cur_ld_moved = detach_tasks(&env);
11343
11344 /*
11345 * We've detached some tasks from busiest_rq. Every
11346 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11347 * unlock busiest->lock, and we are able to be sure
11348 * that nobody can manipulate the tasks in parallel.
11349 * See task_rq_lock() family for the details.
11350 */
11351
11352 rq_unlock(busiest, &rf);
11353
11354 if (cur_ld_moved) {
11355 attach_tasks(&env);
11356 ld_moved += cur_ld_moved;
11357 }
11358
11359 local_irq_restore(rf.flags);
11360
11361 if (env.flags & LBF_NEED_BREAK) {
11362 env.flags &= ~LBF_NEED_BREAK;
11363 goto more_balance;
11364 }
11365
11366 /*
11367 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11368 * us and move them to an alternate dst_cpu in our sched_group
11369 * where they can run. The upper limit on how many times we
11370 * iterate on same src_cpu is dependent on number of CPUs in our
11371 * sched_group.
11372 *
11373 * This changes load balance semantics a bit on who can move
11374 * load to a given_cpu. In addition to the given_cpu itself
11375 * (or a ilb_cpu acting on its behalf where given_cpu is
11376 * nohz-idle), we now have balance_cpu in a position to move
11377 * load to given_cpu. In rare situations, this may cause
11378 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11379 * _independently_ and at _same_ time to move some load to
11380 * given_cpu) causing excess load to be moved to given_cpu.
11381 * This however should not happen so much in practice and
11382 * moreover subsequent load balance cycles should correct the
11383 * excess load moved.
11384 */
11385 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11386
11387 /* Prevent to re-select dst_cpu via env's CPUs */
11388 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
11389
11390 env.dst_rq = cpu_rq(env.new_dst_cpu);
11391 env.dst_cpu = env.new_dst_cpu;
11392 env.flags &= ~LBF_DST_PINNED;
11393 env.loop = 0;
11394 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11395
11396 /*
11397 * Go back to "more_balance" rather than "redo" since we
11398 * need to continue with same src_cpu.
11399 */
11400 goto more_balance;
11401 }
11402
11403 /*
11404 * We failed to reach balance because of affinity.
11405 */
11406 if (sd_parent) {
11407 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11408
11409 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11410 *group_imbalance = 1;
11411 }
11412
11413 /* All tasks on this runqueue were pinned by CPU affinity */
11414 if (unlikely(env.flags & LBF_ALL_PINNED)) {
11415 __cpumask_clear_cpu(cpu_of(busiest), cpus);
11416 /*
11417 * Attempting to continue load balancing at the current
11418 * sched_domain level only makes sense if there are
11419 * active CPUs remaining as possible busiest CPUs to
11420 * pull load from which are not contained within the
11421 * destination group that is receiving any migrated
11422 * load.
11423 */
11424 if (!cpumask_subset(cpus, env.dst_grpmask)) {
11425 env.loop = 0;
11426 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11427 goto redo;
11428 }
11429 goto out_all_pinned;
11430 }
11431 }
11432
11433 if (!ld_moved) {
11434 schedstat_inc(sd->lb_failed[idle]);
11435 /*
11436 * Increment the failure counter only on periodic balance.
11437 * We do not want newidle balance, which can be very
11438 * frequent, pollute the failure counter causing
11439 * excessive cache_hot migrations and active balances.
11440 */
11441 if (idle != CPU_NEWLY_IDLE)
11442 sd->nr_balance_failed++;
11443
11444 if (need_active_balance(&env)) {
11445 unsigned long flags;
11446
11447 raw_spin_rq_lock_irqsave(busiest, flags);
11448
11449 /*
11450 * Don't kick the active_load_balance_cpu_stop,
11451 * if the curr task on busiest CPU can't be
11452 * moved to this_cpu:
11453 */
11454 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11455 raw_spin_rq_unlock_irqrestore(busiest, flags);
11456 goto out_one_pinned;
11457 }
11458
11459 /* Record that we found at least one task that could run on this_cpu */
11460 env.flags &= ~LBF_ALL_PINNED;
11461
11462 /*
11463 * ->active_balance synchronizes accesses to
11464 * ->active_balance_work. Once set, it's cleared
11465 * only after active load balance is finished.
11466 */
11467 if (!busiest->active_balance) {
11468 busiest->active_balance = 1;
11469 busiest->push_cpu = this_cpu;
11470 active_balance = 1;
11471 }
11472
11473 preempt_disable();
11474 raw_spin_rq_unlock_irqrestore(busiest, flags);
11475 if (active_balance) {
11476 stop_one_cpu_nowait(cpu_of(busiest),
11477 active_load_balance_cpu_stop, busiest,
11478 &busiest->active_balance_work);
11479 }
11480 preempt_enable();
11481 }
11482 } else {
11483 sd->nr_balance_failed = 0;
11484 }
11485
11486 if (likely(!active_balance) || need_active_balance(&env)) {
11487 /* We were unbalanced, so reset the balancing interval */
11488 sd->balance_interval = sd->min_interval;
11489 }
11490
11491 goto out;
11492
11493 out_balanced:
11494 /*
11495 * We reach balance although we may have faced some affinity
11496 * constraints. Clear the imbalance flag only if other tasks got
11497 * a chance to move and fix the imbalance.
11498 */
11499 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11500 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11501
11502 if (*group_imbalance)
11503 *group_imbalance = 0;
11504 }
11505
11506 out_all_pinned:
11507 /*
11508 * We reach balance because all tasks are pinned at this level so
11509 * we can't migrate them. Let the imbalance flag set so parent level
11510 * can try to migrate them.
11511 */
11512 schedstat_inc(sd->lb_balanced[idle]);
11513
11514 sd->nr_balance_failed = 0;
11515
11516 out_one_pinned:
11517 ld_moved = 0;
11518
11519 /*
11520 * newidle_balance() disregards balance intervals, so we could
11521 * repeatedly reach this code, which would lead to balance_interval
11522 * skyrocketing in a short amount of time. Skip the balance_interval
11523 * increase logic to avoid that.
11524 */
11525 if (env.idle == CPU_NEWLY_IDLE)
11526 goto out;
11527
11528 /* tune up the balancing interval */
11529 if ((env.flags & LBF_ALL_PINNED &&
11530 sd->balance_interval < MAX_PINNED_INTERVAL) ||
11531 sd->balance_interval < sd->max_interval)
11532 sd->balance_interval *= 2;
11533 out:
11534 return ld_moved;
11535 }
11536
11537 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)11538 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11539 {
11540 unsigned long interval = sd->balance_interval;
11541
11542 if (cpu_busy)
11543 interval *= sd->busy_factor;
11544
11545 /* scale ms to jiffies */
11546 interval = msecs_to_jiffies(interval);
11547
11548 /*
11549 * Reduce likelihood of busy balancing at higher domains racing with
11550 * balancing at lower domains by preventing their balancing periods
11551 * from being multiples of each other.
11552 */
11553 if (cpu_busy)
11554 interval -= 1;
11555
11556 interval = clamp(interval, 1UL, max_load_balance_interval);
11557
11558 return interval;
11559 }
11560
11561 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)11562 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11563 {
11564 unsigned long interval, next;
11565
11566 /* used by idle balance, so cpu_busy = 0 */
11567 interval = get_sd_balance_interval(sd, 0);
11568 next = sd->last_balance + interval;
11569
11570 if (time_after(*next_balance, next))
11571 *next_balance = next;
11572 }
11573
11574 /*
11575 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11576 * running tasks off the busiest CPU onto idle CPUs. It requires at
11577 * least 1 task to be running on each physical CPU where possible, and
11578 * avoids physical / logical imbalances.
11579 */
active_load_balance_cpu_stop(void * data)11580 static int active_load_balance_cpu_stop(void *data)
11581 {
11582 struct rq *busiest_rq = data;
11583 int busiest_cpu = cpu_of(busiest_rq);
11584 int target_cpu = busiest_rq->push_cpu;
11585 struct rq *target_rq = cpu_rq(target_cpu);
11586 struct sched_domain *sd;
11587 struct task_struct *p = NULL;
11588 struct rq_flags rf;
11589
11590 rq_lock_irq(busiest_rq, &rf);
11591 /*
11592 * Between queueing the stop-work and running it is a hole in which
11593 * CPUs can become inactive. We should not move tasks from or to
11594 * inactive CPUs.
11595 */
11596 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11597 goto out_unlock;
11598
11599 /* Make sure the requested CPU hasn't gone down in the meantime: */
11600 if (unlikely(busiest_cpu != smp_processor_id() ||
11601 !busiest_rq->active_balance))
11602 goto out_unlock;
11603
11604 /* Is there any task to move? */
11605 if (busiest_rq->nr_running <= 1)
11606 goto out_unlock;
11607
11608 /*
11609 * This condition is "impossible", if it occurs
11610 * we need to fix it. Originally reported by
11611 * Bjorn Helgaas on a 128-CPU setup.
11612 */
11613 WARN_ON_ONCE(busiest_rq == target_rq);
11614
11615 /* Search for an sd spanning us and the target CPU. */
11616 rcu_read_lock();
11617 for_each_domain(target_cpu, sd) {
11618 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11619 break;
11620 }
11621
11622 if (likely(sd)) {
11623 struct lb_env env = {
11624 .sd = sd,
11625 .dst_cpu = target_cpu,
11626 .dst_rq = target_rq,
11627 .src_cpu = busiest_rq->cpu,
11628 .src_rq = busiest_rq,
11629 .idle = CPU_IDLE,
11630 .flags = LBF_ACTIVE_LB,
11631 };
11632
11633 schedstat_inc(sd->alb_count);
11634 update_rq_clock(busiest_rq);
11635
11636 p = detach_one_task(&env);
11637 if (p) {
11638 schedstat_inc(sd->alb_pushed);
11639 /* Active balancing done, reset the failure counter. */
11640 sd->nr_balance_failed = 0;
11641 } else {
11642 schedstat_inc(sd->alb_failed);
11643 }
11644 }
11645 rcu_read_unlock();
11646 out_unlock:
11647 busiest_rq->active_balance = 0;
11648 rq_unlock(busiest_rq, &rf);
11649
11650 if (p)
11651 attach_one_task(target_rq, p);
11652
11653 local_irq_enable();
11654
11655 return 0;
11656 }
11657
11658 static DEFINE_SPINLOCK(balancing);
11659
11660 /*
11661 * Scale the max load_balance interval with the number of CPUs in the system.
11662 * This trades load-balance latency on larger machines for less cross talk.
11663 */
update_max_interval(void)11664 void update_max_interval(void)
11665 {
11666 max_load_balance_interval = HZ*num_online_cpus()/10;
11667 }
11668
update_newidle_cost(struct sched_domain * sd,u64 cost)11669 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11670 {
11671 if (cost > sd->max_newidle_lb_cost) {
11672 /*
11673 * Track max cost of a domain to make sure to not delay the
11674 * next wakeup on the CPU.
11675 */
11676 sd->max_newidle_lb_cost = cost;
11677 sd->last_decay_max_lb_cost = jiffies;
11678 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11679 /*
11680 * Decay the newidle max times by ~1% per second to ensure that
11681 * it is not outdated and the current max cost is actually
11682 * shorter.
11683 */
11684 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11685 sd->last_decay_max_lb_cost = jiffies;
11686
11687 return true;
11688 }
11689
11690 return false;
11691 }
11692
11693 /*
11694 * It checks each scheduling domain to see if it is due to be balanced,
11695 * and initiates a balancing operation if so.
11696 *
11697 * Balancing parameters are set up in init_sched_domains.
11698 */
rebalance_domains(struct rq * rq,enum cpu_idle_type idle)11699 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
11700 {
11701 int continue_balancing = 1;
11702 int cpu = rq->cpu;
11703 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11704 unsigned long interval;
11705 struct sched_domain *sd;
11706 /* Earliest time when we have to do rebalance again */
11707 unsigned long next_balance = jiffies + 60*HZ;
11708 int update_next_balance = 0;
11709 int need_serialize, need_decay = 0;
11710 u64 max_cost = 0;
11711
11712 rcu_read_lock();
11713 for_each_domain(cpu, sd) {
11714 /*
11715 * Decay the newidle max times here because this is a regular
11716 * visit to all the domains.
11717 */
11718 need_decay = update_newidle_cost(sd, 0);
11719 max_cost += sd->max_newidle_lb_cost;
11720
11721 /*
11722 * Stop the load balance at this level. There is another
11723 * CPU in our sched group which is doing load balancing more
11724 * actively.
11725 */
11726 if (!continue_balancing) {
11727 if (need_decay)
11728 continue;
11729 break;
11730 }
11731
11732 interval = get_sd_balance_interval(sd, busy);
11733
11734 need_serialize = sd->flags & SD_SERIALIZE;
11735 if (need_serialize) {
11736 if (!spin_trylock(&balancing))
11737 goto out;
11738 }
11739
11740 if (time_after_eq(jiffies, sd->last_balance + interval)) {
11741 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
11742 /*
11743 * The LBF_DST_PINNED logic could have changed
11744 * env->dst_cpu, so we can't know our idle
11745 * state even if we migrated tasks. Update it.
11746 */
11747 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
11748 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11749 }
11750 sd->last_balance = jiffies;
11751 interval = get_sd_balance_interval(sd, busy);
11752 }
11753 if (need_serialize)
11754 spin_unlock(&balancing);
11755 out:
11756 if (time_after(next_balance, sd->last_balance + interval)) {
11757 next_balance = sd->last_balance + interval;
11758 update_next_balance = 1;
11759 }
11760 }
11761 if (need_decay) {
11762 /*
11763 * Ensure the rq-wide value also decays but keep it at a
11764 * reasonable floor to avoid funnies with rq->avg_idle.
11765 */
11766 rq->max_idle_balance_cost =
11767 max((u64)sysctl_sched_migration_cost, max_cost);
11768 }
11769 rcu_read_unlock();
11770
11771 /*
11772 * next_balance will be updated only when there is a need.
11773 * When the cpu is attached to null domain for ex, it will not be
11774 * updated.
11775 */
11776 if (likely(update_next_balance))
11777 rq->next_balance = next_balance;
11778
11779 }
11780
on_null_domain(struct rq * rq)11781 static inline int on_null_domain(struct rq *rq)
11782 {
11783 return unlikely(!rcu_dereference_sched(rq->sd));
11784 }
11785
11786 #ifdef CONFIG_NO_HZ_COMMON
11787 /*
11788 * idle load balancing details
11789 * - When one of the busy CPUs notice that there may be an idle rebalancing
11790 * needed, they will kick the idle load balancer, which then does idle
11791 * load balancing for all the idle CPUs.
11792 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
11793 * anywhere yet.
11794 */
11795
find_new_ilb(void)11796 static inline int find_new_ilb(void)
11797 {
11798 int ilb;
11799 const struct cpumask *hk_mask;
11800
11801 hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11802
11803 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
11804
11805 if (ilb == smp_processor_id())
11806 continue;
11807
11808 if (idle_cpu(ilb))
11809 return ilb;
11810 }
11811
11812 return nr_cpu_ids;
11813 }
11814
11815 /*
11816 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
11817 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11818 */
kick_ilb(unsigned int flags)11819 static void kick_ilb(unsigned int flags)
11820 {
11821 int ilb_cpu;
11822
11823 /*
11824 * Increase nohz.next_balance only when if full ilb is triggered but
11825 * not if we only update stats.
11826 */
11827 if (flags & NOHZ_BALANCE_KICK)
11828 nohz.next_balance = jiffies+1;
11829
11830 ilb_cpu = find_new_ilb();
11831
11832 if (ilb_cpu >= nr_cpu_ids)
11833 return;
11834
11835 /*
11836 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11837 * the first flag owns it; cleared by nohz_csd_func().
11838 */
11839 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11840 if (flags & NOHZ_KICK_MASK)
11841 return;
11842
11843 /*
11844 * This way we generate an IPI on the target CPU which
11845 * is idle. And the softirq performing nohz idle load balance
11846 * will be run before returning from the IPI.
11847 */
11848 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11849 }
11850
11851 /*
11852 * Current decision point for kicking the idle load balancer in the presence
11853 * of idle CPUs in the system.
11854 */
nohz_balancer_kick(struct rq * rq)11855 static void nohz_balancer_kick(struct rq *rq)
11856 {
11857 unsigned long now = jiffies;
11858 struct sched_domain_shared *sds;
11859 struct sched_domain *sd;
11860 int nr_busy, i, cpu = rq->cpu;
11861 unsigned int flags = 0;
11862
11863 if (unlikely(rq->idle_balance))
11864 return;
11865
11866 /*
11867 * We may be recently in ticked or tickless idle mode. At the first
11868 * busy tick after returning from idle, we will update the busy stats.
11869 */
11870 nohz_balance_exit_idle(rq);
11871
11872 /*
11873 * None are in tickless mode and hence no need for NOHZ idle load
11874 * balancing.
11875 */
11876 if (likely(!atomic_read(&nohz.nr_cpus)))
11877 return;
11878
11879 if (READ_ONCE(nohz.has_blocked) &&
11880 time_after(now, READ_ONCE(nohz.next_blocked)))
11881 flags = NOHZ_STATS_KICK;
11882
11883 if (time_before(now, nohz.next_balance))
11884 goto out;
11885
11886 if (rq->nr_running >= 2) {
11887 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11888 goto out;
11889 }
11890
11891 rcu_read_lock();
11892
11893 sd = rcu_dereference(rq->sd);
11894 if (sd) {
11895 /*
11896 * If there's a CFS task and the current CPU has reduced
11897 * capacity; kick the ILB to see if there's a better CPU to run
11898 * on.
11899 */
11900 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11901 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11902 goto unlock;
11903 }
11904 }
11905
11906 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11907 if (sd) {
11908 /*
11909 * When ASYM_PACKING; see if there's a more preferred CPU
11910 * currently idle; in which case, kick the ILB to move tasks
11911 * around.
11912 *
11913 * When balancing betwen cores, all the SMT siblings of the
11914 * preferred CPU must be idle.
11915 */
11916 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11917 if (sched_use_asym_prio(sd, i) &&
11918 sched_asym_prefer(i, cpu)) {
11919 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11920 goto unlock;
11921 }
11922 }
11923 }
11924
11925 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11926 if (sd) {
11927 /*
11928 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11929 * to run the misfit task on.
11930 */
11931 if (check_misfit_status(rq, sd)) {
11932 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11933 goto unlock;
11934 }
11935
11936 /*
11937 * For asymmetric systems, we do not want to nicely balance
11938 * cache use, instead we want to embrace asymmetry and only
11939 * ensure tasks have enough CPU capacity.
11940 *
11941 * Skip the LLC logic because it's not relevant in that case.
11942 */
11943 goto unlock;
11944 }
11945
11946 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11947 if (sds) {
11948 /*
11949 * If there is an imbalance between LLC domains (IOW we could
11950 * increase the overall cache use), we need some less-loaded LLC
11951 * domain to pull some load. Likewise, we may need to spread
11952 * load within the current LLC domain (e.g. packed SMT cores but
11953 * other CPUs are idle). We can't really know from here how busy
11954 * the others are - so just get a nohz balance going if it looks
11955 * like this LLC domain has tasks we could move.
11956 */
11957 nr_busy = atomic_read(&sds->nr_busy_cpus);
11958 if (nr_busy > 1) {
11959 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11960 goto unlock;
11961 }
11962 }
11963 unlock:
11964 rcu_read_unlock();
11965 out:
11966 if (READ_ONCE(nohz.needs_update))
11967 flags |= NOHZ_NEXT_KICK;
11968
11969 if (flags)
11970 kick_ilb(flags);
11971 }
11972
set_cpu_sd_state_busy(int cpu)11973 static void set_cpu_sd_state_busy(int cpu)
11974 {
11975 struct sched_domain *sd;
11976
11977 rcu_read_lock();
11978 sd = rcu_dereference(per_cpu(sd_llc, cpu));
11979
11980 if (!sd || !sd->nohz_idle)
11981 goto unlock;
11982 sd->nohz_idle = 0;
11983
11984 atomic_inc(&sd->shared->nr_busy_cpus);
11985 unlock:
11986 rcu_read_unlock();
11987 }
11988
nohz_balance_exit_idle(struct rq * rq)11989 void nohz_balance_exit_idle(struct rq *rq)
11990 {
11991 SCHED_WARN_ON(rq != this_rq());
11992
11993 if (likely(!rq->nohz_tick_stopped))
11994 return;
11995
11996 rq->nohz_tick_stopped = 0;
11997 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
11998 atomic_dec(&nohz.nr_cpus);
11999
12000 set_cpu_sd_state_busy(rq->cpu);
12001 }
12002
set_cpu_sd_state_idle(int cpu)12003 static void set_cpu_sd_state_idle(int cpu)
12004 {
12005 struct sched_domain *sd;
12006
12007 rcu_read_lock();
12008 sd = rcu_dereference(per_cpu(sd_llc, cpu));
12009
12010 if (!sd || sd->nohz_idle)
12011 goto unlock;
12012 sd->nohz_idle = 1;
12013
12014 atomic_dec(&sd->shared->nr_busy_cpus);
12015 unlock:
12016 rcu_read_unlock();
12017 }
12018
12019 /*
12020 * This routine will record that the CPU is going idle with tick stopped.
12021 * This info will be used in performing idle load balancing in the future.
12022 */
nohz_balance_enter_idle(int cpu)12023 void nohz_balance_enter_idle(int cpu)
12024 {
12025 struct rq *rq = cpu_rq(cpu);
12026
12027 SCHED_WARN_ON(cpu != smp_processor_id());
12028
12029 /* If this CPU is going down, then nothing needs to be done: */
12030 if (!cpu_active(cpu))
12031 return;
12032
12033 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
12034 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12035 return;
12036
12037 /*
12038 * Can be set safely without rq->lock held
12039 * If a clear happens, it will have evaluated last additions because
12040 * rq->lock is held during the check and the clear
12041 */
12042 rq->has_blocked_load = 1;
12043
12044 /*
12045 * The tick is still stopped but load could have been added in the
12046 * meantime. We set the nohz.has_blocked flag to trig a check of the
12047 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12048 * of nohz.has_blocked can only happen after checking the new load
12049 */
12050 if (rq->nohz_tick_stopped)
12051 goto out;
12052
12053 /* If we're a completely isolated CPU, we don't play: */
12054 if (on_null_domain(rq))
12055 return;
12056
12057 rq->nohz_tick_stopped = 1;
12058
12059 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12060 atomic_inc(&nohz.nr_cpus);
12061
12062 /*
12063 * Ensures that if nohz_idle_balance() fails to observe our
12064 * @idle_cpus_mask store, it must observe the @has_blocked
12065 * and @needs_update stores.
12066 */
12067 smp_mb__after_atomic();
12068
12069 set_cpu_sd_state_idle(cpu);
12070
12071 WRITE_ONCE(nohz.needs_update, 1);
12072 out:
12073 /*
12074 * Each time a cpu enter idle, we assume that it has blocked load and
12075 * enable the periodic update of the load of idle cpus
12076 */
12077 WRITE_ONCE(nohz.has_blocked, 1);
12078 }
12079
update_nohz_stats(struct rq * rq)12080 static bool update_nohz_stats(struct rq *rq)
12081 {
12082 unsigned int cpu = rq->cpu;
12083
12084 if (!rq->has_blocked_load)
12085 return false;
12086
12087 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12088 return false;
12089
12090 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12091 return true;
12092
12093 update_blocked_averages(cpu);
12094
12095 return rq->has_blocked_load;
12096 }
12097
12098 /*
12099 * Internal function that runs load balance for all idle cpus. The load balance
12100 * can be a simple update of blocked load or a complete load balance with
12101 * tasks movement depending of flags.
12102 */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags)12103 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12104 {
12105 /* Earliest time when we have to do rebalance again */
12106 unsigned long now = jiffies;
12107 unsigned long next_balance = now + 60*HZ;
12108 bool has_blocked_load = false;
12109 int update_next_balance = 0;
12110 int this_cpu = this_rq->cpu;
12111 int balance_cpu;
12112 struct rq *rq;
12113
12114 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12115
12116 /*
12117 * We assume there will be no idle load after this update and clear
12118 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12119 * set the has_blocked flag and trigger another update of idle load.
12120 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12121 * setting the flag, we are sure to not clear the state and not
12122 * check the load of an idle cpu.
12123 *
12124 * Same applies to idle_cpus_mask vs needs_update.
12125 */
12126 if (flags & NOHZ_STATS_KICK)
12127 WRITE_ONCE(nohz.has_blocked, 0);
12128 if (flags & NOHZ_NEXT_KICK)
12129 WRITE_ONCE(nohz.needs_update, 0);
12130
12131 /*
12132 * Ensures that if we miss the CPU, we must see the has_blocked
12133 * store from nohz_balance_enter_idle().
12134 */
12135 smp_mb();
12136
12137 /*
12138 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12139 * chance for other idle cpu to pull load.
12140 */
12141 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
12142 if (!idle_cpu(balance_cpu))
12143 continue;
12144
12145 /*
12146 * If this CPU gets work to do, stop the load balancing
12147 * work being done for other CPUs. Next load
12148 * balancing owner will pick it up.
12149 */
12150 if (!idle_cpu(this_cpu) && need_resched()) {
12151 if (flags & NOHZ_STATS_KICK)
12152 has_blocked_load = true;
12153 if (flags & NOHZ_NEXT_KICK)
12154 WRITE_ONCE(nohz.needs_update, 1);
12155 goto abort;
12156 }
12157
12158 rq = cpu_rq(balance_cpu);
12159
12160 if (flags & NOHZ_STATS_KICK)
12161 has_blocked_load |= update_nohz_stats(rq);
12162
12163 /*
12164 * If time for next balance is due,
12165 * do the balance.
12166 */
12167 if (time_after_eq(jiffies, rq->next_balance)) {
12168 struct rq_flags rf;
12169
12170 rq_lock_irqsave(rq, &rf);
12171 update_rq_clock(rq);
12172 rq_unlock_irqrestore(rq, &rf);
12173
12174 if (flags & NOHZ_BALANCE_KICK)
12175 rebalance_domains(rq, CPU_IDLE);
12176 }
12177
12178 if (time_after(next_balance, rq->next_balance)) {
12179 next_balance = rq->next_balance;
12180 update_next_balance = 1;
12181 }
12182 }
12183
12184 /*
12185 * next_balance will be updated only when there is a need.
12186 * When the CPU is attached to null domain for ex, it will not be
12187 * updated.
12188 */
12189 if (likely(update_next_balance))
12190 nohz.next_balance = next_balance;
12191
12192 if (flags & NOHZ_STATS_KICK)
12193 WRITE_ONCE(nohz.next_blocked,
12194 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12195
12196 abort:
12197 /* There is still blocked load, enable periodic update */
12198 if (has_blocked_load)
12199 WRITE_ONCE(nohz.has_blocked, 1);
12200 }
12201
12202 /*
12203 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12204 * rebalancing for all the cpus for whom scheduler ticks are stopped.
12205 */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12206 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12207 {
12208 unsigned int flags = this_rq->nohz_idle_balance;
12209
12210 if (!flags)
12211 return false;
12212
12213 this_rq->nohz_idle_balance = 0;
12214
12215 if (idle != CPU_IDLE)
12216 return false;
12217
12218 _nohz_idle_balance(this_rq, flags);
12219
12220 return true;
12221 }
12222
12223 /*
12224 * Check if we need to run the ILB for updating blocked load before entering
12225 * idle state.
12226 */
nohz_run_idle_balance(int cpu)12227 void nohz_run_idle_balance(int cpu)
12228 {
12229 unsigned int flags;
12230
12231 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12232
12233 /*
12234 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12235 * (ie NOHZ_STATS_KICK set) and will do the same.
12236 */
12237 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12238 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12239 }
12240
nohz_newidle_balance(struct rq * this_rq)12241 static void nohz_newidle_balance(struct rq *this_rq)
12242 {
12243 int this_cpu = this_rq->cpu;
12244
12245 /*
12246 * This CPU doesn't want to be disturbed by scheduler
12247 * housekeeping
12248 */
12249 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12250 return;
12251
12252 /* Will wake up very soon. No time for doing anything else*/
12253 if (this_rq->avg_idle < sysctl_sched_migration_cost)
12254 return;
12255
12256 /* Don't need to update blocked load of idle CPUs*/
12257 if (!READ_ONCE(nohz.has_blocked) ||
12258 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12259 return;
12260
12261 /*
12262 * Set the need to trigger ILB in order to update blocked load
12263 * before entering idle state.
12264 */
12265 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12266 }
12267
12268 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)12269 static inline void nohz_balancer_kick(struct rq *rq) { }
12270
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12271 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12272 {
12273 return false;
12274 }
12275
nohz_newidle_balance(struct rq * this_rq)12276 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12277 #endif /* CONFIG_NO_HZ_COMMON */
12278
12279 /*
12280 * newidle_balance is called by schedule() if this_cpu is about to become
12281 * idle. Attempts to pull tasks from other CPUs.
12282 *
12283 * Returns:
12284 * < 0 - we released the lock and there are !fair tasks present
12285 * 0 - failed, no new tasks
12286 * > 0 - success, new (fair) tasks present
12287 */
newidle_balance(struct rq * this_rq,struct rq_flags * rf)12288 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
12289 {
12290 unsigned long next_balance = jiffies + HZ;
12291 int this_cpu = this_rq->cpu;
12292 u64 t0, t1, curr_cost = 0;
12293 struct sched_domain *sd;
12294 int pulled_task = 0;
12295
12296 update_misfit_status(NULL, this_rq);
12297
12298 /*
12299 * There is a task waiting to run. No need to search for one.
12300 * Return 0; the task will be enqueued when switching to idle.
12301 */
12302 if (this_rq->ttwu_pending)
12303 return 0;
12304
12305 /*
12306 * We must set idle_stamp _before_ calling idle_balance(), such that we
12307 * measure the duration of idle_balance() as idle time.
12308 */
12309 this_rq->idle_stamp = rq_clock(this_rq);
12310
12311 /*
12312 * Do not pull tasks towards !active CPUs...
12313 */
12314 if (!cpu_active(this_cpu))
12315 return 0;
12316
12317 /*
12318 * This is OK, because current is on_cpu, which avoids it being picked
12319 * for load-balance and preemption/IRQs are still disabled avoiding
12320 * further scheduler activity on it and we're being very careful to
12321 * re-start the picking loop.
12322 */
12323 rq_unpin_lock(this_rq, rf);
12324
12325 rcu_read_lock();
12326 sd = rcu_dereference_check_sched_domain(this_rq->sd);
12327
12328 if (!READ_ONCE(this_rq->rd->overload) ||
12329 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12330
12331 if (sd)
12332 update_next_balance(sd, &next_balance);
12333 rcu_read_unlock();
12334
12335 goto out;
12336 }
12337 rcu_read_unlock();
12338
12339 raw_spin_rq_unlock(this_rq);
12340
12341 t0 = sched_clock_cpu(this_cpu);
12342 update_blocked_averages(this_cpu);
12343
12344 rcu_read_lock();
12345 for_each_domain(this_cpu, sd) {
12346 int continue_balancing = 1;
12347 u64 domain_cost;
12348
12349 update_next_balance(sd, &next_balance);
12350
12351 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12352 break;
12353
12354 if (sd->flags & SD_BALANCE_NEWIDLE) {
12355
12356 pulled_task = load_balance(this_cpu, this_rq,
12357 sd, CPU_NEWLY_IDLE,
12358 &continue_balancing);
12359
12360 t1 = sched_clock_cpu(this_cpu);
12361 domain_cost = t1 - t0;
12362 update_newidle_cost(sd, domain_cost);
12363
12364 curr_cost += domain_cost;
12365 t0 = t1;
12366 }
12367
12368 /*
12369 * Stop searching for tasks to pull if there are
12370 * now runnable tasks on this rq.
12371 */
12372 if (pulled_task || this_rq->nr_running > 0 ||
12373 this_rq->ttwu_pending)
12374 break;
12375 }
12376 rcu_read_unlock();
12377
12378 raw_spin_rq_lock(this_rq);
12379
12380 if (curr_cost > this_rq->max_idle_balance_cost)
12381 this_rq->max_idle_balance_cost = curr_cost;
12382
12383 /*
12384 * While browsing the domains, we released the rq lock, a task could
12385 * have been enqueued in the meantime. Since we're not going idle,
12386 * pretend we pulled a task.
12387 */
12388 if (this_rq->cfs.h_nr_running && !pulled_task)
12389 pulled_task = 1;
12390
12391 /* Is there a task of a high priority class? */
12392 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12393 pulled_task = -1;
12394
12395 out:
12396 /* Move the next balance forward */
12397 if (time_after(this_rq->next_balance, next_balance))
12398 this_rq->next_balance = next_balance;
12399
12400 if (pulled_task)
12401 this_rq->idle_stamp = 0;
12402 else
12403 nohz_newidle_balance(this_rq);
12404
12405 rq_repin_lock(this_rq, rf);
12406
12407 return pulled_task;
12408 }
12409
12410 /*
12411 * run_rebalance_domains is triggered when needed from the scheduler tick.
12412 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
12413 */
run_rebalance_domains(struct softirq_action * h)12414 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
12415 {
12416 struct rq *this_rq = this_rq();
12417 enum cpu_idle_type idle = this_rq->idle_balance ?
12418 CPU_IDLE : CPU_NOT_IDLE;
12419
12420 /*
12421 * If this CPU has a pending nohz_balance_kick, then do the
12422 * balancing on behalf of the other idle CPUs whose ticks are
12423 * stopped. Do nohz_idle_balance *before* rebalance_domains to
12424 * give the idle CPUs a chance to load balance. Else we may
12425 * load balance only within the local sched_domain hierarchy
12426 * and abort nohz_idle_balance altogether if we pull some load.
12427 */
12428 if (nohz_idle_balance(this_rq, idle))
12429 return;
12430
12431 /* normal load balance */
12432 update_blocked_averages(this_rq->cpu);
12433 rebalance_domains(this_rq, idle);
12434 }
12435
12436 /*
12437 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12438 */
trigger_load_balance(struct rq * rq)12439 void trigger_load_balance(struct rq *rq)
12440 {
12441 /*
12442 * Don't need to rebalance while attached to NULL domain or
12443 * runqueue CPU is not active
12444 */
12445 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12446 return;
12447
12448 if (time_after_eq(jiffies, rq->next_balance))
12449 raise_softirq(SCHED_SOFTIRQ);
12450
12451 nohz_balancer_kick(rq);
12452 }
12453
rq_online_fair(struct rq * rq)12454 static void rq_online_fair(struct rq *rq)
12455 {
12456 update_sysctl();
12457
12458 update_runtime_enabled(rq);
12459 }
12460
rq_offline_fair(struct rq * rq)12461 static void rq_offline_fair(struct rq *rq)
12462 {
12463 update_sysctl();
12464
12465 /* Ensure any throttled groups are reachable by pick_next_task */
12466 unthrottle_offline_cfs_rqs(rq);
12467 }
12468
12469 #endif /* CONFIG_SMP */
12470
12471 #ifdef CONFIG_SCHED_CORE
12472 static inline bool
__entity_slice_used(struct sched_entity * se,int min_nr_tasks)12473 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12474 {
12475 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12476 u64 slice = se->slice;
12477
12478 return (rtime * min_nr_tasks > slice);
12479 }
12480
12481 #define MIN_NR_TASKS_DURING_FORCEIDLE 2
task_tick_core(struct rq * rq,struct task_struct * curr)12482 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12483 {
12484 if (!sched_core_enabled(rq))
12485 return;
12486
12487 /*
12488 * If runqueue has only one task which used up its slice and
12489 * if the sibling is forced idle, then trigger schedule to
12490 * give forced idle task a chance.
12491 *
12492 * sched_slice() considers only this active rq and it gets the
12493 * whole slice. But during force idle, we have siblings acting
12494 * like a single runqueue and hence we need to consider runnable
12495 * tasks on this CPU and the forced idle CPU. Ideally, we should
12496 * go through the forced idle rq, but that would be a perf hit.
12497 * We can assume that the forced idle CPU has at least
12498 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12499 * if we need to give up the CPU.
12500 */
12501 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12502 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12503 resched_curr(rq);
12504 }
12505
12506 /*
12507 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12508 */
se_fi_update(const struct sched_entity * se,unsigned int fi_seq,bool forceidle)12509 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12510 bool forceidle)
12511 {
12512 for_each_sched_entity(se) {
12513 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12514
12515 if (forceidle) {
12516 if (cfs_rq->forceidle_seq == fi_seq)
12517 break;
12518 cfs_rq->forceidle_seq = fi_seq;
12519 }
12520
12521 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12522 }
12523 }
12524
task_vruntime_update(struct rq * rq,struct task_struct * p,bool in_fi)12525 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12526 {
12527 struct sched_entity *se = &p->se;
12528
12529 if (p->sched_class != &fair_sched_class)
12530 return;
12531
12532 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12533 }
12534
cfs_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)12535 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12536 bool in_fi)
12537 {
12538 struct rq *rq = task_rq(a);
12539 const struct sched_entity *sea = &a->se;
12540 const struct sched_entity *seb = &b->se;
12541 struct cfs_rq *cfs_rqa;
12542 struct cfs_rq *cfs_rqb;
12543 s64 delta;
12544
12545 SCHED_WARN_ON(task_rq(b)->core != rq->core);
12546
12547 #ifdef CONFIG_FAIR_GROUP_SCHED
12548 /*
12549 * Find an se in the hierarchy for tasks a and b, such that the se's
12550 * are immediate siblings.
12551 */
12552 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12553 int sea_depth = sea->depth;
12554 int seb_depth = seb->depth;
12555
12556 if (sea_depth >= seb_depth)
12557 sea = parent_entity(sea);
12558 if (sea_depth <= seb_depth)
12559 seb = parent_entity(seb);
12560 }
12561
12562 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12563 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12564
12565 cfs_rqa = sea->cfs_rq;
12566 cfs_rqb = seb->cfs_rq;
12567 #else
12568 cfs_rqa = &task_rq(a)->cfs;
12569 cfs_rqb = &task_rq(b)->cfs;
12570 #endif
12571
12572 /*
12573 * Find delta after normalizing se's vruntime with its cfs_rq's
12574 * min_vruntime_fi, which would have been updated in prior calls
12575 * to se_fi_update().
12576 */
12577 delta = (s64)(sea->vruntime - seb->vruntime) +
12578 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12579
12580 return delta > 0;
12581 }
12582
task_is_throttled_fair(struct task_struct * p,int cpu)12583 static int task_is_throttled_fair(struct task_struct *p, int cpu)
12584 {
12585 struct cfs_rq *cfs_rq;
12586
12587 #ifdef CONFIG_FAIR_GROUP_SCHED
12588 cfs_rq = task_group(p)->cfs_rq[cpu];
12589 #else
12590 cfs_rq = &cpu_rq(cpu)->cfs;
12591 #endif
12592 return throttled_hierarchy(cfs_rq);
12593 }
12594 #else
task_tick_core(struct rq * rq,struct task_struct * curr)12595 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12596 #endif
12597
12598 /*
12599 * scheduler tick hitting a task of our scheduling class.
12600 *
12601 * NOTE: This function can be called remotely by the tick offload that
12602 * goes along full dynticks. Therefore no local assumption can be made
12603 * and everything must be accessed through the @rq and @curr passed in
12604 * parameters.
12605 */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)12606 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12607 {
12608 struct cfs_rq *cfs_rq;
12609 struct sched_entity *se = &curr->se;
12610
12611 for_each_sched_entity(se) {
12612 cfs_rq = cfs_rq_of(se);
12613 entity_tick(cfs_rq, se, queued);
12614 }
12615
12616 if (static_branch_unlikely(&sched_numa_balancing))
12617 task_tick_numa(rq, curr);
12618
12619 update_misfit_status(curr, rq);
12620 check_update_overutilized_status(task_rq(curr));
12621
12622 task_tick_core(rq, curr);
12623 }
12624
12625 /*
12626 * called on fork with the child task as argument from the parent's context
12627 * - child not yet on the tasklist
12628 * - preemption disabled
12629 */
task_fork_fair(struct task_struct * p)12630 static void task_fork_fair(struct task_struct *p)
12631 {
12632 struct sched_entity *se = &p->se, *curr;
12633 struct cfs_rq *cfs_rq;
12634 struct rq *rq = this_rq();
12635 struct rq_flags rf;
12636
12637 rq_lock(rq, &rf);
12638 update_rq_clock(rq);
12639
12640 cfs_rq = task_cfs_rq(current);
12641 curr = cfs_rq->curr;
12642 if (curr)
12643 update_curr(cfs_rq);
12644 place_entity(cfs_rq, se, ENQUEUE_INITIAL);
12645 rq_unlock(rq, &rf);
12646 }
12647
12648 /*
12649 * Priority of the task has changed. Check to see if we preempt
12650 * the current task.
12651 */
12652 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)12653 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12654 {
12655 if (!task_on_rq_queued(p))
12656 return;
12657
12658 if (rq->cfs.nr_running == 1)
12659 return;
12660
12661 /*
12662 * Reschedule if we are currently running on this runqueue and
12663 * our priority decreased, or if we are not currently running on
12664 * this runqueue and our priority is higher than the current's
12665 */
12666 if (task_current(rq, p)) {
12667 if (p->prio > oldprio)
12668 resched_curr(rq);
12669 } else
12670 wakeup_preempt(rq, p, 0);
12671 }
12672
12673 #ifdef CONFIG_FAIR_GROUP_SCHED
12674 /*
12675 * Propagate the changes of the sched_entity across the tg tree to make it
12676 * visible to the root
12677 */
propagate_entity_cfs_rq(struct sched_entity * se)12678 static void propagate_entity_cfs_rq(struct sched_entity *se)
12679 {
12680 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12681
12682 if (cfs_rq_throttled(cfs_rq))
12683 return;
12684
12685 if (!throttled_hierarchy(cfs_rq))
12686 list_add_leaf_cfs_rq(cfs_rq);
12687
12688 /* Start to propagate at parent */
12689 se = se->parent;
12690
12691 for_each_sched_entity(se) {
12692 cfs_rq = cfs_rq_of(se);
12693
12694 update_load_avg(cfs_rq, se, UPDATE_TG);
12695
12696 if (cfs_rq_throttled(cfs_rq))
12697 break;
12698
12699 if (!throttled_hierarchy(cfs_rq))
12700 list_add_leaf_cfs_rq(cfs_rq);
12701 }
12702 }
12703 #else
propagate_entity_cfs_rq(struct sched_entity * se)12704 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12705 #endif
12706
detach_entity_cfs_rq(struct sched_entity * se)12707 static void detach_entity_cfs_rq(struct sched_entity *se)
12708 {
12709 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12710
12711 #ifdef CONFIG_SMP
12712 /*
12713 * In case the task sched_avg hasn't been attached:
12714 * - A forked task which hasn't been woken up by wake_up_new_task().
12715 * - A task which has been woken up by try_to_wake_up() but is
12716 * waiting for actually being woken up by sched_ttwu_pending().
12717 */
12718 if (!se->avg.last_update_time)
12719 return;
12720 #endif
12721
12722 /* Catch up with the cfs_rq and remove our load when we leave */
12723 update_load_avg(cfs_rq, se, 0);
12724 detach_entity_load_avg(cfs_rq, se);
12725 update_tg_load_avg(cfs_rq);
12726 propagate_entity_cfs_rq(se);
12727 }
12728
attach_entity_cfs_rq(struct sched_entity * se)12729 static void attach_entity_cfs_rq(struct sched_entity *se)
12730 {
12731 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12732
12733 /* Synchronize entity with its cfs_rq */
12734 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
12735 attach_entity_load_avg(cfs_rq, se);
12736 update_tg_load_avg(cfs_rq);
12737 propagate_entity_cfs_rq(se);
12738 }
12739
detach_task_cfs_rq(struct task_struct * p)12740 static void detach_task_cfs_rq(struct task_struct *p)
12741 {
12742 struct sched_entity *se = &p->se;
12743
12744 detach_entity_cfs_rq(se);
12745 }
12746
attach_task_cfs_rq(struct task_struct * p)12747 static void attach_task_cfs_rq(struct task_struct *p)
12748 {
12749 struct sched_entity *se = &p->se;
12750
12751 attach_entity_cfs_rq(se);
12752 }
12753
switched_from_fair(struct rq * rq,struct task_struct * p)12754 static void switched_from_fair(struct rq *rq, struct task_struct *p)
12755 {
12756 detach_task_cfs_rq(p);
12757 }
12758
switched_to_fair(struct rq * rq,struct task_struct * p)12759 static void switched_to_fair(struct rq *rq, struct task_struct *p)
12760 {
12761 attach_task_cfs_rq(p);
12762
12763 if (task_on_rq_queued(p)) {
12764 /*
12765 * We were most likely switched from sched_rt, so
12766 * kick off the schedule if running, otherwise just see
12767 * if we can still preempt the current task.
12768 */
12769 if (task_current(rq, p))
12770 resched_curr(rq);
12771 else
12772 wakeup_preempt(rq, p, 0);
12773 }
12774 }
12775
12776 /* Account for a task changing its policy or group.
12777 *
12778 * This routine is mostly called to set cfs_rq->curr field when a task
12779 * migrates between groups/classes.
12780 */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)12781 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12782 {
12783 struct sched_entity *se = &p->se;
12784
12785 #ifdef CONFIG_SMP
12786 if (task_on_rq_queued(p)) {
12787 /*
12788 * Move the next running task to the front of the list, so our
12789 * cfs_tasks list becomes MRU one.
12790 */
12791 list_move(&se->group_node, &rq->cfs_tasks);
12792 }
12793 #endif
12794
12795 for_each_sched_entity(se) {
12796 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12797
12798 set_next_entity(cfs_rq, se);
12799 /* ensure bandwidth has been allocated on our new cfs_rq */
12800 account_cfs_rq_runtime(cfs_rq, 0);
12801 }
12802 }
12803
init_cfs_rq(struct cfs_rq * cfs_rq)12804 void init_cfs_rq(struct cfs_rq *cfs_rq)
12805 {
12806 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12807 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12808 #ifdef CONFIG_SMP
12809 raw_spin_lock_init(&cfs_rq->removed.lock);
12810 #endif
12811 }
12812
12813 #ifdef CONFIG_FAIR_GROUP_SCHED
task_change_group_fair(struct task_struct * p)12814 static void task_change_group_fair(struct task_struct *p)
12815 {
12816 /*
12817 * We couldn't detach or attach a forked task which
12818 * hasn't been woken up by wake_up_new_task().
12819 */
12820 if (READ_ONCE(p->__state) == TASK_NEW)
12821 return;
12822
12823 detach_task_cfs_rq(p);
12824
12825 #ifdef CONFIG_SMP
12826 /* Tell se's cfs_rq has been changed -- migrated */
12827 p->se.avg.last_update_time = 0;
12828 #endif
12829 set_task_rq(p, task_cpu(p));
12830 attach_task_cfs_rq(p);
12831 }
12832
free_fair_sched_group(struct task_group * tg)12833 void free_fair_sched_group(struct task_group *tg)
12834 {
12835 int i;
12836
12837 for_each_possible_cpu(i) {
12838 if (tg->cfs_rq)
12839 kfree(tg->cfs_rq[i]);
12840 if (tg->se)
12841 kfree(tg->se[i]);
12842 }
12843
12844 kfree(tg->cfs_rq);
12845 kfree(tg->se);
12846 }
12847
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)12848 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12849 {
12850 struct sched_entity *se;
12851 struct cfs_rq *cfs_rq;
12852 int i;
12853
12854 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12855 if (!tg->cfs_rq)
12856 goto err;
12857 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12858 if (!tg->se)
12859 goto err;
12860
12861 tg->shares = NICE_0_LOAD;
12862
12863 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
12864
12865 for_each_possible_cpu(i) {
12866 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12867 GFP_KERNEL, cpu_to_node(i));
12868 if (!cfs_rq)
12869 goto err;
12870
12871 se = kzalloc_node(sizeof(struct sched_entity_stats),
12872 GFP_KERNEL, cpu_to_node(i));
12873 if (!se)
12874 goto err_free_rq;
12875
12876 init_cfs_rq(cfs_rq);
12877 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12878 init_entity_runnable_average(se);
12879 }
12880
12881 return 1;
12882
12883 err_free_rq:
12884 kfree(cfs_rq);
12885 err:
12886 return 0;
12887 }
12888
online_fair_sched_group(struct task_group * tg)12889 void online_fair_sched_group(struct task_group *tg)
12890 {
12891 struct sched_entity *se;
12892 struct rq_flags rf;
12893 struct rq *rq;
12894 int i;
12895
12896 for_each_possible_cpu(i) {
12897 rq = cpu_rq(i);
12898 se = tg->se[i];
12899 rq_lock_irq(rq, &rf);
12900 update_rq_clock(rq);
12901 attach_entity_cfs_rq(se);
12902 sync_throttle(tg, i);
12903 rq_unlock_irq(rq, &rf);
12904 }
12905 }
12906
unregister_fair_sched_group(struct task_group * tg)12907 void unregister_fair_sched_group(struct task_group *tg)
12908 {
12909 unsigned long flags;
12910 struct rq *rq;
12911 int cpu;
12912
12913 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12914
12915 for_each_possible_cpu(cpu) {
12916 if (tg->se[cpu])
12917 remove_entity_load_avg(tg->se[cpu]);
12918
12919 /*
12920 * Only empty task groups can be destroyed; so we can speculatively
12921 * check on_list without danger of it being re-added.
12922 */
12923 if (!tg->cfs_rq[cpu]->on_list)
12924 continue;
12925
12926 rq = cpu_rq(cpu);
12927
12928 raw_spin_rq_lock_irqsave(rq, flags);
12929 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
12930 raw_spin_rq_unlock_irqrestore(rq, flags);
12931 }
12932 }
12933
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)12934 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12935 struct sched_entity *se, int cpu,
12936 struct sched_entity *parent)
12937 {
12938 struct rq *rq = cpu_rq(cpu);
12939
12940 cfs_rq->tg = tg;
12941 cfs_rq->rq = rq;
12942 init_cfs_rq_runtime(cfs_rq);
12943
12944 tg->cfs_rq[cpu] = cfs_rq;
12945 tg->se[cpu] = se;
12946
12947 /* se could be NULL for root_task_group */
12948 if (!se)
12949 return;
12950
12951 if (!parent) {
12952 se->cfs_rq = &rq->cfs;
12953 se->depth = 0;
12954 } else {
12955 se->cfs_rq = parent->my_q;
12956 se->depth = parent->depth + 1;
12957 }
12958
12959 se->my_q = cfs_rq;
12960 /* guarantee group entities always have weight */
12961 update_load_set(&se->load, NICE_0_LOAD);
12962 se->parent = parent;
12963 }
12964
12965 static DEFINE_MUTEX(shares_mutex);
12966
__sched_group_set_shares(struct task_group * tg,unsigned long shares)12967 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
12968 {
12969 int i;
12970
12971 lockdep_assert_held(&shares_mutex);
12972
12973 /*
12974 * We can't change the weight of the root cgroup.
12975 */
12976 if (!tg->se[0])
12977 return -EINVAL;
12978
12979 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12980
12981 if (tg->shares == shares)
12982 return 0;
12983
12984 tg->shares = shares;
12985 for_each_possible_cpu(i) {
12986 struct rq *rq = cpu_rq(i);
12987 struct sched_entity *se = tg->se[i];
12988 struct rq_flags rf;
12989
12990 /* Propagate contribution to hierarchy */
12991 rq_lock_irqsave(rq, &rf);
12992 update_rq_clock(rq);
12993 for_each_sched_entity(se) {
12994 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
12995 update_cfs_group(se);
12996 }
12997 rq_unlock_irqrestore(rq, &rf);
12998 }
12999
13000 return 0;
13001 }
13002
sched_group_set_shares(struct task_group * tg,unsigned long shares)13003 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13004 {
13005 int ret;
13006
13007 mutex_lock(&shares_mutex);
13008 if (tg_is_idle(tg))
13009 ret = -EINVAL;
13010 else
13011 ret = __sched_group_set_shares(tg, shares);
13012 mutex_unlock(&shares_mutex);
13013
13014 return ret;
13015 }
13016
sched_group_set_idle(struct task_group * tg,long idle)13017 int sched_group_set_idle(struct task_group *tg, long idle)
13018 {
13019 int i;
13020
13021 if (tg == &root_task_group)
13022 return -EINVAL;
13023
13024 if (idle < 0 || idle > 1)
13025 return -EINVAL;
13026
13027 mutex_lock(&shares_mutex);
13028
13029 if (tg->idle == idle) {
13030 mutex_unlock(&shares_mutex);
13031 return 0;
13032 }
13033
13034 tg->idle = idle;
13035
13036 for_each_possible_cpu(i) {
13037 struct rq *rq = cpu_rq(i);
13038 struct sched_entity *se = tg->se[i];
13039 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13040 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13041 long idle_task_delta;
13042 struct rq_flags rf;
13043
13044 rq_lock_irqsave(rq, &rf);
13045
13046 grp_cfs_rq->idle = idle;
13047 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13048 goto next_cpu;
13049
13050 if (se->on_rq) {
13051 parent_cfs_rq = cfs_rq_of(se);
13052 if (cfs_rq_is_idle(grp_cfs_rq))
13053 parent_cfs_rq->idle_nr_running++;
13054 else
13055 parent_cfs_rq->idle_nr_running--;
13056 }
13057
13058 idle_task_delta = grp_cfs_rq->h_nr_running -
13059 grp_cfs_rq->idle_h_nr_running;
13060 if (!cfs_rq_is_idle(grp_cfs_rq))
13061 idle_task_delta *= -1;
13062
13063 for_each_sched_entity(se) {
13064 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13065
13066 if (!se->on_rq)
13067 break;
13068
13069 cfs_rq->idle_h_nr_running += idle_task_delta;
13070
13071 /* Already accounted at parent level and above. */
13072 if (cfs_rq_is_idle(cfs_rq))
13073 break;
13074 }
13075
13076 next_cpu:
13077 rq_unlock_irqrestore(rq, &rf);
13078 }
13079
13080 /* Idle groups have minimum weight. */
13081 if (tg_is_idle(tg))
13082 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13083 else
13084 __sched_group_set_shares(tg, NICE_0_LOAD);
13085
13086 mutex_unlock(&shares_mutex);
13087 return 0;
13088 }
13089
13090 #else /* CONFIG_FAIR_GROUP_SCHED */
13091
free_fair_sched_group(struct task_group * tg)13092 void free_fair_sched_group(struct task_group *tg) { }
13093
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)13094 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13095 {
13096 return 1;
13097 }
13098
online_fair_sched_group(struct task_group * tg)13099 void online_fair_sched_group(struct task_group *tg) { }
13100
unregister_fair_sched_group(struct task_group * tg)13101 void unregister_fair_sched_group(struct task_group *tg) { }
13102
13103 #endif /* CONFIG_FAIR_GROUP_SCHED */
13104
13105
get_rr_interval_fair(struct rq * rq,struct task_struct * task)13106 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13107 {
13108 struct sched_entity *se = &task->se;
13109 unsigned int rr_interval = 0;
13110
13111 /*
13112 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13113 * idle runqueue:
13114 */
13115 if (rq->cfs.load.weight)
13116 rr_interval = NS_TO_JIFFIES(se->slice);
13117
13118 return rr_interval;
13119 }
13120
13121 /*
13122 * All the scheduling class methods:
13123 */
13124 DEFINE_SCHED_CLASS(fair) = {
13125
13126 .enqueue_task = enqueue_task_fair,
13127 .dequeue_task = dequeue_task_fair,
13128 .yield_task = yield_task_fair,
13129 .yield_to_task = yield_to_task_fair,
13130
13131 .wakeup_preempt = check_preempt_wakeup_fair,
13132
13133 .pick_next_task = __pick_next_task_fair,
13134 .put_prev_task = put_prev_task_fair,
13135 .set_next_task = set_next_task_fair,
13136
13137 #ifdef CONFIG_SMP
13138 .balance = balance_fair,
13139 .pick_task = pick_task_fair,
13140 .select_task_rq = select_task_rq_fair,
13141 .migrate_task_rq = migrate_task_rq_fair,
13142
13143 .rq_online = rq_online_fair,
13144 .rq_offline = rq_offline_fair,
13145
13146 .task_dead = task_dead_fair,
13147 .set_cpus_allowed = set_cpus_allowed_common,
13148 #endif
13149
13150 .task_tick = task_tick_fair,
13151 .task_fork = task_fork_fair,
13152
13153 .prio_changed = prio_changed_fair,
13154 .switched_from = switched_from_fair,
13155 .switched_to = switched_to_fair,
13156
13157 .get_rr_interval = get_rr_interval_fair,
13158
13159 .update_curr = update_curr_fair,
13160
13161 #ifdef CONFIG_FAIR_GROUP_SCHED
13162 .task_change_group = task_change_group_fair,
13163 #endif
13164
13165 #ifdef CONFIG_SCHED_CORE
13166 .task_is_throttled = task_is_throttled_fair,
13167 #endif
13168
13169 #ifdef CONFIG_UCLAMP_TASK
13170 .uclamp_enabled = 1,
13171 #endif
13172 };
13173
13174 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)13175 void print_cfs_stats(struct seq_file *m, int cpu)
13176 {
13177 struct cfs_rq *cfs_rq, *pos;
13178
13179 rcu_read_lock();
13180 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13181 print_cfs_rq(m, cpu, cfs_rq);
13182 rcu_read_unlock();
13183 }
13184
13185 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)13186 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13187 {
13188 int node;
13189 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13190 struct numa_group *ng;
13191
13192 rcu_read_lock();
13193 ng = rcu_dereference(p->numa_group);
13194 for_each_online_node(node) {
13195 if (p->numa_faults) {
13196 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13197 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13198 }
13199 if (ng) {
13200 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13201 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13202 }
13203 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13204 }
13205 rcu_read_unlock();
13206 }
13207 #endif /* CONFIG_NUMA_BALANCING */
13208 #endif /* CONFIG_SCHED_DEBUG */
13209
init_sched_fair_class(void)13210 __init void init_sched_fair_class(void)
13211 {
13212 #ifdef CONFIG_SMP
13213 int i;
13214
13215 for_each_possible_cpu(i) {
13216 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13217 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i));
13218 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13219 GFP_KERNEL, cpu_to_node(i));
13220
13221 #ifdef CONFIG_CFS_BANDWIDTH
13222 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13223 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13224 #endif
13225 }
13226
13227 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
13228
13229 #ifdef CONFIG_NO_HZ_COMMON
13230 nohz.next_balance = jiffies;
13231 nohz.next_blocked = jiffies;
13232 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13233 #endif
13234 #endif /* SMP */
13235
13236 }
13237