xref: /openbmc/linux/kernel/sched/fair.c (revision 66f3fc74)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51 
52 #include <asm/switch_to.h>
53 
54 #include <linux/sched/cond_resched.h>
55 
56 #include "sched.h"
57 #include "stats.h"
58 #include "autogroup.h"
59 
60 /*
61  * The initial- and re-scaling of tunables is configurable
62  *
63  * Options are:
64  *
65  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
66  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
67  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
68  *
69  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
70  */
71 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
72 
73 /*
74  * Minimal preemption granularity for CPU-bound tasks:
75  *
76  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
77  */
78 unsigned int sysctl_sched_base_slice			= 750000ULL;
79 static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL;
80 
81 /*
82  * After fork, child runs first. If set to 0 (default) then
83  * parent will (try to) run first.
84  */
85 unsigned int sysctl_sched_child_runs_first __read_mostly;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 int sched_thermal_decay_shift;
90 static int __init setup_sched_thermal_decay_shift(char *str)
91 {
92 	int _shift = 0;
93 
94 	if (kstrtoint(str, 0, &_shift))
95 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
96 
97 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
98 	return 1;
99 }
100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
101 
102 #ifdef CONFIG_SMP
103 /*
104  * For asym packing, by default the lower numbered CPU has higher priority.
105  */
106 int __weak arch_asym_cpu_priority(int cpu)
107 {
108 	return -cpu;
109 }
110 
111 /*
112  * The margin used when comparing utilization with CPU capacity.
113  *
114  * (default: ~20%)
115  */
116 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
117 
118 /*
119  * The margin used when comparing CPU capacities.
120  * is 'cap1' noticeably greater than 'cap2'
121  *
122  * (default: ~5%)
123  */
124 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
125 #endif
126 
127 #ifdef CONFIG_CFS_BANDWIDTH
128 /*
129  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
130  * each time a cfs_rq requests quota.
131  *
132  * Note: in the case that the slice exceeds the runtime remaining (either due
133  * to consumption or the quota being specified to be smaller than the slice)
134  * we will always only issue the remaining available time.
135  *
136  * (default: 5 msec, units: microseconds)
137  */
138 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
139 #endif
140 
141 #ifdef CONFIG_NUMA_BALANCING
142 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
143 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
144 #endif
145 
146 #ifdef CONFIG_SYSCTL
147 static struct ctl_table sched_fair_sysctls[] = {
148 	{
149 		.procname       = "sched_child_runs_first",
150 		.data           = &sysctl_sched_child_runs_first,
151 		.maxlen         = sizeof(unsigned int),
152 		.mode           = 0644,
153 		.proc_handler   = proc_dointvec,
154 	},
155 #ifdef CONFIG_CFS_BANDWIDTH
156 	{
157 		.procname       = "sched_cfs_bandwidth_slice_us",
158 		.data           = &sysctl_sched_cfs_bandwidth_slice,
159 		.maxlen         = sizeof(unsigned int),
160 		.mode           = 0644,
161 		.proc_handler   = proc_dointvec_minmax,
162 		.extra1         = SYSCTL_ONE,
163 	},
164 #endif
165 #ifdef CONFIG_NUMA_BALANCING
166 	{
167 		.procname	= "numa_balancing_promote_rate_limit_MBps",
168 		.data		= &sysctl_numa_balancing_promote_rate_limit,
169 		.maxlen		= sizeof(unsigned int),
170 		.mode		= 0644,
171 		.proc_handler	= proc_dointvec_minmax,
172 		.extra1		= SYSCTL_ZERO,
173 	},
174 #endif /* CONFIG_NUMA_BALANCING */
175 	{}
176 };
177 
178 static int __init sched_fair_sysctl_init(void)
179 {
180 	register_sysctl_init("kernel", sched_fair_sysctls);
181 	return 0;
182 }
183 late_initcall(sched_fair_sysctl_init);
184 #endif
185 
186 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
187 {
188 	lw->weight += inc;
189 	lw->inv_weight = 0;
190 }
191 
192 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
193 {
194 	lw->weight -= dec;
195 	lw->inv_weight = 0;
196 }
197 
198 static inline void update_load_set(struct load_weight *lw, unsigned long w)
199 {
200 	lw->weight = w;
201 	lw->inv_weight = 0;
202 }
203 
204 /*
205  * Increase the granularity value when there are more CPUs,
206  * because with more CPUs the 'effective latency' as visible
207  * to users decreases. But the relationship is not linear,
208  * so pick a second-best guess by going with the log2 of the
209  * number of CPUs.
210  *
211  * This idea comes from the SD scheduler of Con Kolivas:
212  */
213 static unsigned int get_update_sysctl_factor(void)
214 {
215 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
216 	unsigned int factor;
217 
218 	switch (sysctl_sched_tunable_scaling) {
219 	case SCHED_TUNABLESCALING_NONE:
220 		factor = 1;
221 		break;
222 	case SCHED_TUNABLESCALING_LINEAR:
223 		factor = cpus;
224 		break;
225 	case SCHED_TUNABLESCALING_LOG:
226 	default:
227 		factor = 1 + ilog2(cpus);
228 		break;
229 	}
230 
231 	return factor;
232 }
233 
234 static void update_sysctl(void)
235 {
236 	unsigned int factor = get_update_sysctl_factor();
237 
238 #define SET_SYSCTL(name) \
239 	(sysctl_##name = (factor) * normalized_sysctl_##name)
240 	SET_SYSCTL(sched_base_slice);
241 #undef SET_SYSCTL
242 }
243 
244 void __init sched_init_granularity(void)
245 {
246 	update_sysctl();
247 }
248 
249 #define WMULT_CONST	(~0U)
250 #define WMULT_SHIFT	32
251 
252 static void __update_inv_weight(struct load_weight *lw)
253 {
254 	unsigned long w;
255 
256 	if (likely(lw->inv_weight))
257 		return;
258 
259 	w = scale_load_down(lw->weight);
260 
261 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
262 		lw->inv_weight = 1;
263 	else if (unlikely(!w))
264 		lw->inv_weight = WMULT_CONST;
265 	else
266 		lw->inv_weight = WMULT_CONST / w;
267 }
268 
269 /*
270  * delta_exec * weight / lw.weight
271  *   OR
272  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
273  *
274  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
275  * we're guaranteed shift stays positive because inv_weight is guaranteed to
276  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
277  *
278  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
279  * weight/lw.weight <= 1, and therefore our shift will also be positive.
280  */
281 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
282 {
283 	u64 fact = scale_load_down(weight);
284 	u32 fact_hi = (u32)(fact >> 32);
285 	int shift = WMULT_SHIFT;
286 	int fs;
287 
288 	__update_inv_weight(lw);
289 
290 	if (unlikely(fact_hi)) {
291 		fs = fls(fact_hi);
292 		shift -= fs;
293 		fact >>= fs;
294 	}
295 
296 	fact = mul_u32_u32(fact, lw->inv_weight);
297 
298 	fact_hi = (u32)(fact >> 32);
299 	if (fact_hi) {
300 		fs = fls(fact_hi);
301 		shift -= fs;
302 		fact >>= fs;
303 	}
304 
305 	return mul_u64_u32_shr(delta_exec, fact, shift);
306 }
307 
308 /*
309  * delta /= w
310  */
311 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
312 {
313 	if (unlikely(se->load.weight != NICE_0_LOAD))
314 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
315 
316 	return delta;
317 }
318 
319 const struct sched_class fair_sched_class;
320 
321 /**************************************************************
322  * CFS operations on generic schedulable entities:
323  */
324 
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 
327 /* Walk up scheduling entities hierarchy */
328 #define for_each_sched_entity(se) \
329 		for (; se; se = se->parent)
330 
331 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
332 {
333 	struct rq *rq = rq_of(cfs_rq);
334 	int cpu = cpu_of(rq);
335 
336 	if (cfs_rq->on_list)
337 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
338 
339 	cfs_rq->on_list = 1;
340 
341 	/*
342 	 * Ensure we either appear before our parent (if already
343 	 * enqueued) or force our parent to appear after us when it is
344 	 * enqueued. The fact that we always enqueue bottom-up
345 	 * reduces this to two cases and a special case for the root
346 	 * cfs_rq. Furthermore, it also means that we will always reset
347 	 * tmp_alone_branch either when the branch is connected
348 	 * to a tree or when we reach the top of the tree
349 	 */
350 	if (cfs_rq->tg->parent &&
351 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
352 		/*
353 		 * If parent is already on the list, we add the child
354 		 * just before. Thanks to circular linked property of
355 		 * the list, this means to put the child at the tail
356 		 * of the list that starts by parent.
357 		 */
358 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
359 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
360 		/*
361 		 * The branch is now connected to its tree so we can
362 		 * reset tmp_alone_branch to the beginning of the
363 		 * list.
364 		 */
365 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
366 		return true;
367 	}
368 
369 	if (!cfs_rq->tg->parent) {
370 		/*
371 		 * cfs rq without parent should be put
372 		 * at the tail of the list.
373 		 */
374 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
375 			&rq->leaf_cfs_rq_list);
376 		/*
377 		 * We have reach the top of a tree so we can reset
378 		 * tmp_alone_branch to the beginning of the list.
379 		 */
380 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
381 		return true;
382 	}
383 
384 	/*
385 	 * The parent has not already been added so we want to
386 	 * make sure that it will be put after us.
387 	 * tmp_alone_branch points to the begin of the branch
388 	 * where we will add parent.
389 	 */
390 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
391 	/*
392 	 * update tmp_alone_branch to points to the new begin
393 	 * of the branch
394 	 */
395 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
396 	return false;
397 }
398 
399 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
400 {
401 	if (cfs_rq->on_list) {
402 		struct rq *rq = rq_of(cfs_rq);
403 
404 		/*
405 		 * With cfs_rq being unthrottled/throttled during an enqueue,
406 		 * it can happen the tmp_alone_branch points the a leaf that
407 		 * we finally want to del. In this case, tmp_alone_branch moves
408 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
409 		 * at the end of the enqueue.
410 		 */
411 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
412 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
413 
414 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
415 		cfs_rq->on_list = 0;
416 	}
417 }
418 
419 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
420 {
421 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
422 }
423 
424 /* Iterate thr' all leaf cfs_rq's on a runqueue */
425 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
426 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
427 				 leaf_cfs_rq_list)
428 
429 /* Do the two (enqueued) entities belong to the same group ? */
430 static inline struct cfs_rq *
431 is_same_group(struct sched_entity *se, struct sched_entity *pse)
432 {
433 	if (se->cfs_rq == pse->cfs_rq)
434 		return se->cfs_rq;
435 
436 	return NULL;
437 }
438 
439 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
440 {
441 	return se->parent;
442 }
443 
444 static void
445 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
446 {
447 	int se_depth, pse_depth;
448 
449 	/*
450 	 * preemption test can be made between sibling entities who are in the
451 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
452 	 * both tasks until we find their ancestors who are siblings of common
453 	 * parent.
454 	 */
455 
456 	/* First walk up until both entities are at same depth */
457 	se_depth = (*se)->depth;
458 	pse_depth = (*pse)->depth;
459 
460 	while (se_depth > pse_depth) {
461 		se_depth--;
462 		*se = parent_entity(*se);
463 	}
464 
465 	while (pse_depth > se_depth) {
466 		pse_depth--;
467 		*pse = parent_entity(*pse);
468 	}
469 
470 	while (!is_same_group(*se, *pse)) {
471 		*se = parent_entity(*se);
472 		*pse = parent_entity(*pse);
473 	}
474 }
475 
476 static int tg_is_idle(struct task_group *tg)
477 {
478 	return tg->idle > 0;
479 }
480 
481 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
482 {
483 	return cfs_rq->idle > 0;
484 }
485 
486 static int se_is_idle(struct sched_entity *se)
487 {
488 	if (entity_is_task(se))
489 		return task_has_idle_policy(task_of(se));
490 	return cfs_rq_is_idle(group_cfs_rq(se));
491 }
492 
493 #else	/* !CONFIG_FAIR_GROUP_SCHED */
494 
495 #define for_each_sched_entity(se) \
496 		for (; se; se = NULL)
497 
498 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
499 {
500 	return true;
501 }
502 
503 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
504 {
505 }
506 
507 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
508 {
509 }
510 
511 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
512 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
513 
514 static inline struct sched_entity *parent_entity(struct sched_entity *se)
515 {
516 	return NULL;
517 }
518 
519 static inline void
520 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
521 {
522 }
523 
524 static inline int tg_is_idle(struct task_group *tg)
525 {
526 	return 0;
527 }
528 
529 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
530 {
531 	return 0;
532 }
533 
534 static int se_is_idle(struct sched_entity *se)
535 {
536 	return task_has_idle_policy(task_of(se));
537 }
538 
539 #endif	/* CONFIG_FAIR_GROUP_SCHED */
540 
541 static __always_inline
542 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
543 
544 /**************************************************************
545  * Scheduling class tree data structure manipulation methods:
546  */
547 
548 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
549 {
550 	s64 delta = (s64)(vruntime - max_vruntime);
551 	if (delta > 0)
552 		max_vruntime = vruntime;
553 
554 	return max_vruntime;
555 }
556 
557 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
558 {
559 	s64 delta = (s64)(vruntime - min_vruntime);
560 	if (delta < 0)
561 		min_vruntime = vruntime;
562 
563 	return min_vruntime;
564 }
565 
566 static inline bool entity_before(const struct sched_entity *a,
567 				 const struct sched_entity *b)
568 {
569 	return (s64)(a->vruntime - b->vruntime) < 0;
570 }
571 
572 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
573 {
574 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
575 }
576 
577 #define __node_2_se(node) \
578 	rb_entry((node), struct sched_entity, run_node)
579 
580 /*
581  * Compute virtual time from the per-task service numbers:
582  *
583  * Fair schedulers conserve lag:
584  *
585  *   \Sum lag_i = 0
586  *
587  * Where lag_i is given by:
588  *
589  *   lag_i = S - s_i = w_i * (V - v_i)
590  *
591  * Where S is the ideal service time and V is it's virtual time counterpart.
592  * Therefore:
593  *
594  *   \Sum lag_i = 0
595  *   \Sum w_i * (V - v_i) = 0
596  *   \Sum w_i * V - w_i * v_i = 0
597  *
598  * From which we can solve an expression for V in v_i (which we have in
599  * se->vruntime):
600  *
601  *       \Sum v_i * w_i   \Sum v_i * w_i
602  *   V = -------------- = --------------
603  *          \Sum w_i            W
604  *
605  * Specifically, this is the weighted average of all entity virtual runtimes.
606  *
607  * [[ NOTE: this is only equal to the ideal scheduler under the condition
608  *          that join/leave operations happen at lag_i = 0, otherwise the
609  *          virtual time has non-continguous motion equivalent to:
610  *
611  *	      V +-= lag_i / W
612  *
613  *	    Also see the comment in place_entity() that deals with this. ]]
614  *
615  * However, since v_i is u64, and the multiplcation could easily overflow
616  * transform it into a relative form that uses smaller quantities:
617  *
618  * Substitute: v_i == (v_i - v0) + v0
619  *
620  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
621  * V = ---------------------------- = --------------------- + v0
622  *                  W                            W
623  *
624  * Which we track using:
625  *
626  *                    v0 := cfs_rq->min_vruntime
627  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
628  *              \Sum w_i := cfs_rq->avg_load
629  *
630  * Since min_vruntime is a monotonic increasing variable that closely tracks
631  * the per-task service, these deltas: (v_i - v), will be in the order of the
632  * maximal (virtual) lag induced in the system due to quantisation.
633  *
634  * Also, we use scale_load_down() to reduce the size.
635  *
636  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
637  */
638 static void
639 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
640 {
641 	unsigned long weight = scale_load_down(se->load.weight);
642 	s64 key = entity_key(cfs_rq, se);
643 
644 	cfs_rq->avg_vruntime += key * weight;
645 	cfs_rq->avg_load += weight;
646 }
647 
648 static void
649 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
650 {
651 	unsigned long weight = scale_load_down(se->load.weight);
652 	s64 key = entity_key(cfs_rq, se);
653 
654 	cfs_rq->avg_vruntime -= key * weight;
655 	cfs_rq->avg_load -= weight;
656 }
657 
658 static inline
659 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
660 {
661 	/*
662 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
663 	 */
664 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
665 }
666 
667 /*
668  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
669  * For this to be so, the result of this function must have a left bias.
670  */
671 u64 avg_vruntime(struct cfs_rq *cfs_rq)
672 {
673 	struct sched_entity *curr = cfs_rq->curr;
674 	s64 avg = cfs_rq->avg_vruntime;
675 	long load = cfs_rq->avg_load;
676 
677 	if (curr && curr->on_rq) {
678 		unsigned long weight = scale_load_down(curr->load.weight);
679 
680 		avg += entity_key(cfs_rq, curr) * weight;
681 		load += weight;
682 	}
683 
684 	if (load) {
685 		/* sign flips effective floor / ceil */
686 		if (avg < 0)
687 			avg -= (load - 1);
688 		avg = div_s64(avg, load);
689 	}
690 
691 	return cfs_rq->min_vruntime + avg;
692 }
693 
694 /*
695  * lag_i = S - s_i = w_i * (V - v_i)
696  *
697  * However, since V is approximated by the weighted average of all entities it
698  * is possible -- by addition/removal/reweight to the tree -- to move V around
699  * and end up with a larger lag than we started with.
700  *
701  * Limit this to either double the slice length with a minimum of TICK_NSEC
702  * since that is the timing granularity.
703  *
704  * EEVDF gives the following limit for a steady state system:
705  *
706  *   -r_max < lag < max(r_max, q)
707  *
708  * XXX could add max_slice to the augmented data to track this.
709  */
710 static s64 entity_lag(u64 avruntime, struct sched_entity *se)
711 {
712 	s64 vlag, limit;
713 
714 	vlag = avruntime - se->vruntime;
715 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
716 
717 	return clamp(vlag, -limit, limit);
718 }
719 
720 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
721 {
722 	SCHED_WARN_ON(!se->on_rq);
723 
724 	se->vlag = entity_lag(avg_vruntime(cfs_rq), se);
725 }
726 
727 /*
728  * Entity is eligible once it received less service than it ought to have,
729  * eg. lag >= 0.
730  *
731  * lag_i = S - s_i = w_i*(V - v_i)
732  *
733  * lag_i >= 0 -> V >= v_i
734  *
735  *     \Sum (v_i - v)*w_i
736  * V = ------------------ + v
737  *          \Sum w_i
738  *
739  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
740  *
741  * Note: using 'avg_vruntime() > se->vruntime' is inacurate due
742  *       to the loss in precision caused by the division.
743  */
744 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
745 {
746 	struct sched_entity *curr = cfs_rq->curr;
747 	s64 avg = cfs_rq->avg_vruntime;
748 	long load = cfs_rq->avg_load;
749 
750 	if (curr && curr->on_rq) {
751 		unsigned long weight = scale_load_down(curr->load.weight);
752 
753 		avg += entity_key(cfs_rq, curr) * weight;
754 		load += weight;
755 	}
756 
757 	return avg >= entity_key(cfs_rq, se) * load;
758 }
759 
760 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
761 {
762 	u64 min_vruntime = cfs_rq->min_vruntime;
763 	/*
764 	 * open coded max_vruntime() to allow updating avg_vruntime
765 	 */
766 	s64 delta = (s64)(vruntime - min_vruntime);
767 	if (delta > 0) {
768 		avg_vruntime_update(cfs_rq, delta);
769 		min_vruntime = vruntime;
770 	}
771 	return min_vruntime;
772 }
773 
774 static void update_min_vruntime(struct cfs_rq *cfs_rq)
775 {
776 	struct sched_entity *se = __pick_first_entity(cfs_rq);
777 	struct sched_entity *curr = cfs_rq->curr;
778 
779 	u64 vruntime = cfs_rq->min_vruntime;
780 
781 	if (curr) {
782 		if (curr->on_rq)
783 			vruntime = curr->vruntime;
784 		else
785 			curr = NULL;
786 	}
787 
788 	if (se) {
789 		if (!curr)
790 			vruntime = se->vruntime;
791 		else
792 			vruntime = min_vruntime(vruntime, se->vruntime);
793 	}
794 
795 	/* ensure we never gain time by being placed backwards. */
796 	u64_u32_store(cfs_rq->min_vruntime,
797 		      __update_min_vruntime(cfs_rq, vruntime));
798 }
799 
800 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
801 {
802 	return entity_before(__node_2_se(a), __node_2_se(b));
803 }
804 
805 #define deadline_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
806 
807 static inline void __update_min_deadline(struct sched_entity *se, struct rb_node *node)
808 {
809 	if (node) {
810 		struct sched_entity *rse = __node_2_se(node);
811 		if (deadline_gt(min_deadline, se, rse))
812 			se->min_deadline = rse->min_deadline;
813 	}
814 }
815 
816 /*
817  * se->min_deadline = min(se->deadline, left->min_deadline, right->min_deadline)
818  */
819 static inline bool min_deadline_update(struct sched_entity *se, bool exit)
820 {
821 	u64 old_min_deadline = se->min_deadline;
822 	struct rb_node *node = &se->run_node;
823 
824 	se->min_deadline = se->deadline;
825 	__update_min_deadline(se, node->rb_right);
826 	__update_min_deadline(se, node->rb_left);
827 
828 	return se->min_deadline == old_min_deadline;
829 }
830 
831 RB_DECLARE_CALLBACKS(static, min_deadline_cb, struct sched_entity,
832 		     run_node, min_deadline, min_deadline_update);
833 
834 /*
835  * Enqueue an entity into the rb-tree:
836  */
837 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
838 {
839 	avg_vruntime_add(cfs_rq, se);
840 	se->min_deadline = se->deadline;
841 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
842 				__entity_less, &min_deadline_cb);
843 }
844 
845 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
846 {
847 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
848 				  &min_deadline_cb);
849 	avg_vruntime_sub(cfs_rq, se);
850 }
851 
852 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
853 {
854 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
855 
856 	if (!left)
857 		return NULL;
858 
859 	return __node_2_se(left);
860 }
861 
862 /*
863  * Earliest Eligible Virtual Deadline First
864  *
865  * In order to provide latency guarantees for different request sizes
866  * EEVDF selects the best runnable task from two criteria:
867  *
868  *  1) the task must be eligible (must be owed service)
869  *
870  *  2) from those tasks that meet 1), we select the one
871  *     with the earliest virtual deadline.
872  *
873  * We can do this in O(log n) time due to an augmented RB-tree. The
874  * tree keeps the entries sorted on service, but also functions as a
875  * heap based on the deadline by keeping:
876  *
877  *  se->min_deadline = min(se->deadline, se->{left,right}->min_deadline)
878  *
879  * Which allows an EDF like search on (sub)trees.
880  */
881 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq)
882 {
883 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
884 	struct sched_entity *curr = cfs_rq->curr;
885 	struct sched_entity *best = NULL;
886 	struct sched_entity *best_left = NULL;
887 
888 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
889 		curr = NULL;
890 	best = curr;
891 
892 	/*
893 	 * Once selected, run a task until it either becomes non-eligible or
894 	 * until it gets a new slice. See the HACK in set_next_entity().
895 	 */
896 	if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
897 		return curr;
898 
899 	while (node) {
900 		struct sched_entity *se = __node_2_se(node);
901 
902 		/*
903 		 * If this entity is not eligible, try the left subtree.
904 		 */
905 		if (!entity_eligible(cfs_rq, se)) {
906 			node = node->rb_left;
907 			continue;
908 		}
909 
910 		/*
911 		 * Now we heap search eligible trees for the best (min_)deadline
912 		 */
913 		if (!best || deadline_gt(deadline, best, se))
914 			best = se;
915 
916 		/*
917 		 * Every se in a left branch is eligible, keep track of the
918 		 * branch with the best min_deadline
919 		 */
920 		if (node->rb_left) {
921 			struct sched_entity *left = __node_2_se(node->rb_left);
922 
923 			if (!best_left || deadline_gt(min_deadline, best_left, left))
924 				best_left = left;
925 
926 			/*
927 			 * min_deadline is in the left branch. rb_left and all
928 			 * descendants are eligible, so immediately switch to the second
929 			 * loop.
930 			 */
931 			if (left->min_deadline == se->min_deadline)
932 				break;
933 		}
934 
935 		/* min_deadline is at this node, no need to look right */
936 		if (se->deadline == se->min_deadline)
937 			break;
938 
939 		/* else min_deadline is in the right branch. */
940 		node = node->rb_right;
941 	}
942 
943 	/*
944 	 * We ran into an eligible node which is itself the best.
945 	 * (Or nr_running == 0 and both are NULL)
946 	 */
947 	if (!best_left || (s64)(best_left->min_deadline - best->deadline) > 0)
948 		return best;
949 
950 	/*
951 	 * Now best_left and all of its children are eligible, and we are just
952 	 * looking for deadline == min_deadline
953 	 */
954 	node = &best_left->run_node;
955 	while (node) {
956 		struct sched_entity *se = __node_2_se(node);
957 
958 		/* min_deadline is the current node */
959 		if (se->deadline == se->min_deadline)
960 			return se;
961 
962 		/* min_deadline is in the left branch */
963 		if (node->rb_left &&
964 		    __node_2_se(node->rb_left)->min_deadline == se->min_deadline) {
965 			node = node->rb_left;
966 			continue;
967 		}
968 
969 		/* else min_deadline is in the right branch */
970 		node = node->rb_right;
971 	}
972 	return NULL;
973 }
974 
975 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
976 {
977 	struct sched_entity *se = __pick_eevdf(cfs_rq);
978 
979 	if (!se) {
980 		struct sched_entity *left = __pick_first_entity(cfs_rq);
981 		if (left) {
982 			pr_err("EEVDF scheduling fail, picking leftmost\n");
983 			return left;
984 		}
985 	}
986 
987 	return se;
988 }
989 
990 #ifdef CONFIG_SCHED_DEBUG
991 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
992 {
993 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
994 
995 	if (!last)
996 		return NULL;
997 
998 	return __node_2_se(last);
999 }
1000 
1001 /**************************************************************
1002  * Scheduling class statistics methods:
1003  */
1004 #ifdef CONFIG_SMP
1005 int sched_update_scaling(void)
1006 {
1007 	unsigned int factor = get_update_sysctl_factor();
1008 
1009 #define WRT_SYSCTL(name) \
1010 	(normalized_sysctl_##name = sysctl_##name / (factor))
1011 	WRT_SYSCTL(sched_base_slice);
1012 #undef WRT_SYSCTL
1013 
1014 	return 0;
1015 }
1016 #endif
1017 #endif
1018 
1019 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1020 
1021 /*
1022  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1023  * this is probably good enough.
1024  */
1025 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1026 {
1027 	if ((s64)(se->vruntime - se->deadline) < 0)
1028 		return;
1029 
1030 	/*
1031 	 * For EEVDF the virtual time slope is determined by w_i (iow.
1032 	 * nice) while the request time r_i is determined by
1033 	 * sysctl_sched_base_slice.
1034 	 */
1035 	se->slice = sysctl_sched_base_slice;
1036 
1037 	/*
1038 	 * EEVDF: vd_i = ve_i + r_i / w_i
1039 	 */
1040 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1041 
1042 	/*
1043 	 * The task has consumed its request, reschedule.
1044 	 */
1045 	if (cfs_rq->nr_running > 1) {
1046 		resched_curr(rq_of(cfs_rq));
1047 		clear_buddies(cfs_rq, se);
1048 	}
1049 }
1050 
1051 #include "pelt.h"
1052 #ifdef CONFIG_SMP
1053 
1054 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1055 static unsigned long task_h_load(struct task_struct *p);
1056 static unsigned long capacity_of(int cpu);
1057 
1058 /* Give new sched_entity start runnable values to heavy its load in infant time */
1059 void init_entity_runnable_average(struct sched_entity *se)
1060 {
1061 	struct sched_avg *sa = &se->avg;
1062 
1063 	memset(sa, 0, sizeof(*sa));
1064 
1065 	/*
1066 	 * Tasks are initialized with full load to be seen as heavy tasks until
1067 	 * they get a chance to stabilize to their real load level.
1068 	 * Group entities are initialized with zero load to reflect the fact that
1069 	 * nothing has been attached to the task group yet.
1070 	 */
1071 	if (entity_is_task(se))
1072 		sa->load_avg = scale_load_down(se->load.weight);
1073 
1074 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
1075 }
1076 
1077 /*
1078  * With new tasks being created, their initial util_avgs are extrapolated
1079  * based on the cfs_rq's current util_avg:
1080  *
1081  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
1082  *
1083  * However, in many cases, the above util_avg does not give a desired
1084  * value. Moreover, the sum of the util_avgs may be divergent, such
1085  * as when the series is a harmonic series.
1086  *
1087  * To solve this problem, we also cap the util_avg of successive tasks to
1088  * only 1/2 of the left utilization budget:
1089  *
1090  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1091  *
1092  * where n denotes the nth task and cpu_scale the CPU capacity.
1093  *
1094  * For example, for a CPU with 1024 of capacity, a simplest series from
1095  * the beginning would be like:
1096  *
1097  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1098  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1099  *
1100  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1101  * if util_avg > util_avg_cap.
1102  */
1103 void post_init_entity_util_avg(struct task_struct *p)
1104 {
1105 	struct sched_entity *se = &p->se;
1106 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1107 	struct sched_avg *sa = &se->avg;
1108 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1109 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1110 
1111 	if (p->sched_class != &fair_sched_class) {
1112 		/*
1113 		 * For !fair tasks do:
1114 		 *
1115 		update_cfs_rq_load_avg(now, cfs_rq);
1116 		attach_entity_load_avg(cfs_rq, se);
1117 		switched_from_fair(rq, p);
1118 		 *
1119 		 * such that the next switched_to_fair() has the
1120 		 * expected state.
1121 		 */
1122 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1123 		return;
1124 	}
1125 
1126 	if (cap > 0) {
1127 		if (cfs_rq->avg.util_avg != 0) {
1128 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
1129 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1130 
1131 			if (sa->util_avg > cap)
1132 				sa->util_avg = cap;
1133 		} else {
1134 			sa->util_avg = cap;
1135 		}
1136 	}
1137 
1138 	sa->runnable_avg = sa->util_avg;
1139 }
1140 
1141 #else /* !CONFIG_SMP */
1142 void init_entity_runnable_average(struct sched_entity *se)
1143 {
1144 }
1145 void post_init_entity_util_avg(struct task_struct *p)
1146 {
1147 }
1148 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1149 {
1150 }
1151 #endif /* CONFIG_SMP */
1152 
1153 /*
1154  * Update the current task's runtime statistics.
1155  */
1156 static void update_curr(struct cfs_rq *cfs_rq)
1157 {
1158 	struct sched_entity *curr = cfs_rq->curr;
1159 	u64 now = rq_clock_task(rq_of(cfs_rq));
1160 	u64 delta_exec;
1161 
1162 	if (unlikely(!curr))
1163 		return;
1164 
1165 	delta_exec = now - curr->exec_start;
1166 	if (unlikely((s64)delta_exec <= 0))
1167 		return;
1168 
1169 	curr->exec_start = now;
1170 
1171 	if (schedstat_enabled()) {
1172 		struct sched_statistics *stats;
1173 
1174 		stats = __schedstats_from_se(curr);
1175 		__schedstat_set(stats->exec_max,
1176 				max(delta_exec, stats->exec_max));
1177 	}
1178 
1179 	curr->sum_exec_runtime += delta_exec;
1180 	schedstat_add(cfs_rq->exec_clock, delta_exec);
1181 
1182 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1183 	update_deadline(cfs_rq, curr);
1184 	update_min_vruntime(cfs_rq);
1185 
1186 	if (entity_is_task(curr)) {
1187 		struct task_struct *curtask = task_of(curr);
1188 
1189 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
1190 		cgroup_account_cputime(curtask, delta_exec);
1191 		account_group_exec_runtime(curtask, delta_exec);
1192 	}
1193 
1194 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1195 }
1196 
1197 static void update_curr_fair(struct rq *rq)
1198 {
1199 	update_curr(cfs_rq_of(&rq->curr->se));
1200 }
1201 
1202 static inline void
1203 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1204 {
1205 	struct sched_statistics *stats;
1206 	struct task_struct *p = NULL;
1207 
1208 	if (!schedstat_enabled())
1209 		return;
1210 
1211 	stats = __schedstats_from_se(se);
1212 
1213 	if (entity_is_task(se))
1214 		p = task_of(se);
1215 
1216 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1217 }
1218 
1219 static inline void
1220 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1221 {
1222 	struct sched_statistics *stats;
1223 	struct task_struct *p = NULL;
1224 
1225 	if (!schedstat_enabled())
1226 		return;
1227 
1228 	stats = __schedstats_from_se(se);
1229 
1230 	/*
1231 	 * When the sched_schedstat changes from 0 to 1, some sched se
1232 	 * maybe already in the runqueue, the se->statistics.wait_start
1233 	 * will be 0.So it will let the delta wrong. We need to avoid this
1234 	 * scenario.
1235 	 */
1236 	if (unlikely(!schedstat_val(stats->wait_start)))
1237 		return;
1238 
1239 	if (entity_is_task(se))
1240 		p = task_of(se);
1241 
1242 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1243 }
1244 
1245 static inline void
1246 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1247 {
1248 	struct sched_statistics *stats;
1249 	struct task_struct *tsk = NULL;
1250 
1251 	if (!schedstat_enabled())
1252 		return;
1253 
1254 	stats = __schedstats_from_se(se);
1255 
1256 	if (entity_is_task(se))
1257 		tsk = task_of(se);
1258 
1259 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1260 }
1261 
1262 /*
1263  * Task is being enqueued - update stats:
1264  */
1265 static inline void
1266 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1267 {
1268 	if (!schedstat_enabled())
1269 		return;
1270 
1271 	/*
1272 	 * Are we enqueueing a waiting task? (for current tasks
1273 	 * a dequeue/enqueue event is a NOP)
1274 	 */
1275 	if (se != cfs_rq->curr)
1276 		update_stats_wait_start_fair(cfs_rq, se);
1277 
1278 	if (flags & ENQUEUE_WAKEUP)
1279 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1280 }
1281 
1282 static inline void
1283 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1284 {
1285 
1286 	if (!schedstat_enabled())
1287 		return;
1288 
1289 	/*
1290 	 * Mark the end of the wait period if dequeueing a
1291 	 * waiting task:
1292 	 */
1293 	if (se != cfs_rq->curr)
1294 		update_stats_wait_end_fair(cfs_rq, se);
1295 
1296 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1297 		struct task_struct *tsk = task_of(se);
1298 		unsigned int state;
1299 
1300 		/* XXX racy against TTWU */
1301 		state = READ_ONCE(tsk->__state);
1302 		if (state & TASK_INTERRUPTIBLE)
1303 			__schedstat_set(tsk->stats.sleep_start,
1304 				      rq_clock(rq_of(cfs_rq)));
1305 		if (state & TASK_UNINTERRUPTIBLE)
1306 			__schedstat_set(tsk->stats.block_start,
1307 				      rq_clock(rq_of(cfs_rq)));
1308 	}
1309 }
1310 
1311 /*
1312  * We are picking a new current task - update its stats:
1313  */
1314 static inline void
1315 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1316 {
1317 	/*
1318 	 * We are starting a new run period:
1319 	 */
1320 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1321 }
1322 
1323 /**************************************************
1324  * Scheduling class queueing methods:
1325  */
1326 
1327 static inline bool is_core_idle(int cpu)
1328 {
1329 #ifdef CONFIG_SCHED_SMT
1330 	int sibling;
1331 
1332 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1333 		if (cpu == sibling)
1334 			continue;
1335 
1336 		if (!idle_cpu(sibling))
1337 			return false;
1338 	}
1339 #endif
1340 
1341 	return true;
1342 }
1343 
1344 #ifdef CONFIG_NUMA
1345 #define NUMA_IMBALANCE_MIN 2
1346 
1347 static inline long
1348 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1349 {
1350 	/*
1351 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1352 	 * threshold. Above this threshold, individual tasks may be contending
1353 	 * for both memory bandwidth and any shared HT resources.  This is an
1354 	 * approximation as the number of running tasks may not be related to
1355 	 * the number of busy CPUs due to sched_setaffinity.
1356 	 */
1357 	if (dst_running > imb_numa_nr)
1358 		return imbalance;
1359 
1360 	/*
1361 	 * Allow a small imbalance based on a simple pair of communicating
1362 	 * tasks that remain local when the destination is lightly loaded.
1363 	 */
1364 	if (imbalance <= NUMA_IMBALANCE_MIN)
1365 		return 0;
1366 
1367 	return imbalance;
1368 }
1369 #endif /* CONFIG_NUMA */
1370 
1371 #ifdef CONFIG_NUMA_BALANCING
1372 /*
1373  * Approximate time to scan a full NUMA task in ms. The task scan period is
1374  * calculated based on the tasks virtual memory size and
1375  * numa_balancing_scan_size.
1376  */
1377 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1378 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1379 
1380 /* Portion of address space to scan in MB */
1381 unsigned int sysctl_numa_balancing_scan_size = 256;
1382 
1383 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1384 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1385 
1386 /* The page with hint page fault latency < threshold in ms is considered hot */
1387 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1388 
1389 struct numa_group {
1390 	refcount_t refcount;
1391 
1392 	spinlock_t lock; /* nr_tasks, tasks */
1393 	int nr_tasks;
1394 	pid_t gid;
1395 	int active_nodes;
1396 
1397 	struct rcu_head rcu;
1398 	unsigned long total_faults;
1399 	unsigned long max_faults_cpu;
1400 	/*
1401 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1402 	 *
1403 	 * Faults_cpu is used to decide whether memory should move
1404 	 * towards the CPU. As a consequence, these stats are weighted
1405 	 * more by CPU use than by memory faults.
1406 	 */
1407 	unsigned long faults[];
1408 };
1409 
1410 /*
1411  * For functions that can be called in multiple contexts that permit reading
1412  * ->numa_group (see struct task_struct for locking rules).
1413  */
1414 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1415 {
1416 	return rcu_dereference_check(p->numa_group, p == current ||
1417 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1418 }
1419 
1420 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1421 {
1422 	return rcu_dereference_protected(p->numa_group, p == current);
1423 }
1424 
1425 static inline unsigned long group_faults_priv(struct numa_group *ng);
1426 static inline unsigned long group_faults_shared(struct numa_group *ng);
1427 
1428 static unsigned int task_nr_scan_windows(struct task_struct *p)
1429 {
1430 	unsigned long rss = 0;
1431 	unsigned long nr_scan_pages;
1432 
1433 	/*
1434 	 * Calculations based on RSS as non-present and empty pages are skipped
1435 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1436 	 * on resident pages
1437 	 */
1438 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1439 	rss = get_mm_rss(p->mm);
1440 	if (!rss)
1441 		rss = nr_scan_pages;
1442 
1443 	rss = round_up(rss, nr_scan_pages);
1444 	return rss / nr_scan_pages;
1445 }
1446 
1447 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1448 #define MAX_SCAN_WINDOW 2560
1449 
1450 static unsigned int task_scan_min(struct task_struct *p)
1451 {
1452 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1453 	unsigned int scan, floor;
1454 	unsigned int windows = 1;
1455 
1456 	if (scan_size < MAX_SCAN_WINDOW)
1457 		windows = MAX_SCAN_WINDOW / scan_size;
1458 	floor = 1000 / windows;
1459 
1460 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1461 	return max_t(unsigned int, floor, scan);
1462 }
1463 
1464 static unsigned int task_scan_start(struct task_struct *p)
1465 {
1466 	unsigned long smin = task_scan_min(p);
1467 	unsigned long period = smin;
1468 	struct numa_group *ng;
1469 
1470 	/* Scale the maximum scan period with the amount of shared memory. */
1471 	rcu_read_lock();
1472 	ng = rcu_dereference(p->numa_group);
1473 	if (ng) {
1474 		unsigned long shared = group_faults_shared(ng);
1475 		unsigned long private = group_faults_priv(ng);
1476 
1477 		period *= refcount_read(&ng->refcount);
1478 		period *= shared + 1;
1479 		period /= private + shared + 1;
1480 	}
1481 	rcu_read_unlock();
1482 
1483 	return max(smin, period);
1484 }
1485 
1486 static unsigned int task_scan_max(struct task_struct *p)
1487 {
1488 	unsigned long smin = task_scan_min(p);
1489 	unsigned long smax;
1490 	struct numa_group *ng;
1491 
1492 	/* Watch for min being lower than max due to floor calculations */
1493 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1494 
1495 	/* Scale the maximum scan period with the amount of shared memory. */
1496 	ng = deref_curr_numa_group(p);
1497 	if (ng) {
1498 		unsigned long shared = group_faults_shared(ng);
1499 		unsigned long private = group_faults_priv(ng);
1500 		unsigned long period = smax;
1501 
1502 		period *= refcount_read(&ng->refcount);
1503 		period *= shared + 1;
1504 		period /= private + shared + 1;
1505 
1506 		smax = max(smax, period);
1507 	}
1508 
1509 	return max(smin, smax);
1510 }
1511 
1512 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1513 {
1514 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1515 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1516 }
1517 
1518 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1519 {
1520 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1521 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1522 }
1523 
1524 /* Shared or private faults. */
1525 #define NR_NUMA_HINT_FAULT_TYPES 2
1526 
1527 /* Memory and CPU locality */
1528 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1529 
1530 /* Averaged statistics, and temporary buffers. */
1531 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1532 
1533 pid_t task_numa_group_id(struct task_struct *p)
1534 {
1535 	struct numa_group *ng;
1536 	pid_t gid = 0;
1537 
1538 	rcu_read_lock();
1539 	ng = rcu_dereference(p->numa_group);
1540 	if (ng)
1541 		gid = ng->gid;
1542 	rcu_read_unlock();
1543 
1544 	return gid;
1545 }
1546 
1547 /*
1548  * The averaged statistics, shared & private, memory & CPU,
1549  * occupy the first half of the array. The second half of the
1550  * array is for current counters, which are averaged into the
1551  * first set by task_numa_placement.
1552  */
1553 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1554 {
1555 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1556 }
1557 
1558 static inline unsigned long task_faults(struct task_struct *p, int nid)
1559 {
1560 	if (!p->numa_faults)
1561 		return 0;
1562 
1563 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1564 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1565 }
1566 
1567 static inline unsigned long group_faults(struct task_struct *p, int nid)
1568 {
1569 	struct numa_group *ng = deref_task_numa_group(p);
1570 
1571 	if (!ng)
1572 		return 0;
1573 
1574 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1575 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1576 }
1577 
1578 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1579 {
1580 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1581 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1582 }
1583 
1584 static inline unsigned long group_faults_priv(struct numa_group *ng)
1585 {
1586 	unsigned long faults = 0;
1587 	int node;
1588 
1589 	for_each_online_node(node) {
1590 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1591 	}
1592 
1593 	return faults;
1594 }
1595 
1596 static inline unsigned long group_faults_shared(struct numa_group *ng)
1597 {
1598 	unsigned long faults = 0;
1599 	int node;
1600 
1601 	for_each_online_node(node) {
1602 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1603 	}
1604 
1605 	return faults;
1606 }
1607 
1608 /*
1609  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1610  * considered part of a numa group's pseudo-interleaving set. Migrations
1611  * between these nodes are slowed down, to allow things to settle down.
1612  */
1613 #define ACTIVE_NODE_FRACTION 3
1614 
1615 static bool numa_is_active_node(int nid, struct numa_group *ng)
1616 {
1617 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1618 }
1619 
1620 /* Handle placement on systems where not all nodes are directly connected. */
1621 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1622 					int lim_dist, bool task)
1623 {
1624 	unsigned long score = 0;
1625 	int node, max_dist;
1626 
1627 	/*
1628 	 * All nodes are directly connected, and the same distance
1629 	 * from each other. No need for fancy placement algorithms.
1630 	 */
1631 	if (sched_numa_topology_type == NUMA_DIRECT)
1632 		return 0;
1633 
1634 	/* sched_max_numa_distance may be changed in parallel. */
1635 	max_dist = READ_ONCE(sched_max_numa_distance);
1636 	/*
1637 	 * This code is called for each node, introducing N^2 complexity,
1638 	 * which should be ok given the number of nodes rarely exceeds 8.
1639 	 */
1640 	for_each_online_node(node) {
1641 		unsigned long faults;
1642 		int dist = node_distance(nid, node);
1643 
1644 		/*
1645 		 * The furthest away nodes in the system are not interesting
1646 		 * for placement; nid was already counted.
1647 		 */
1648 		if (dist >= max_dist || node == nid)
1649 			continue;
1650 
1651 		/*
1652 		 * On systems with a backplane NUMA topology, compare groups
1653 		 * of nodes, and move tasks towards the group with the most
1654 		 * memory accesses. When comparing two nodes at distance
1655 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1656 		 * of each group. Skip other nodes.
1657 		 */
1658 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1659 			continue;
1660 
1661 		/* Add up the faults from nearby nodes. */
1662 		if (task)
1663 			faults = task_faults(p, node);
1664 		else
1665 			faults = group_faults(p, node);
1666 
1667 		/*
1668 		 * On systems with a glueless mesh NUMA topology, there are
1669 		 * no fixed "groups of nodes". Instead, nodes that are not
1670 		 * directly connected bounce traffic through intermediate
1671 		 * nodes; a numa_group can occupy any set of nodes.
1672 		 * The further away a node is, the less the faults count.
1673 		 * This seems to result in good task placement.
1674 		 */
1675 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1676 			faults *= (max_dist - dist);
1677 			faults /= (max_dist - LOCAL_DISTANCE);
1678 		}
1679 
1680 		score += faults;
1681 	}
1682 
1683 	return score;
1684 }
1685 
1686 /*
1687  * These return the fraction of accesses done by a particular task, or
1688  * task group, on a particular numa node.  The group weight is given a
1689  * larger multiplier, in order to group tasks together that are almost
1690  * evenly spread out between numa nodes.
1691  */
1692 static inline unsigned long task_weight(struct task_struct *p, int nid,
1693 					int dist)
1694 {
1695 	unsigned long faults, total_faults;
1696 
1697 	if (!p->numa_faults)
1698 		return 0;
1699 
1700 	total_faults = p->total_numa_faults;
1701 
1702 	if (!total_faults)
1703 		return 0;
1704 
1705 	faults = task_faults(p, nid);
1706 	faults += score_nearby_nodes(p, nid, dist, true);
1707 
1708 	return 1000 * faults / total_faults;
1709 }
1710 
1711 static inline unsigned long group_weight(struct task_struct *p, int nid,
1712 					 int dist)
1713 {
1714 	struct numa_group *ng = deref_task_numa_group(p);
1715 	unsigned long faults, total_faults;
1716 
1717 	if (!ng)
1718 		return 0;
1719 
1720 	total_faults = ng->total_faults;
1721 
1722 	if (!total_faults)
1723 		return 0;
1724 
1725 	faults = group_faults(p, nid);
1726 	faults += score_nearby_nodes(p, nid, dist, false);
1727 
1728 	return 1000 * faults / total_faults;
1729 }
1730 
1731 /*
1732  * If memory tiering mode is enabled, cpupid of slow memory page is
1733  * used to record scan time instead of CPU and PID.  When tiering mode
1734  * is disabled at run time, the scan time (in cpupid) will be
1735  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1736  * access out of array bound.
1737  */
1738 static inline bool cpupid_valid(int cpupid)
1739 {
1740 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1741 }
1742 
1743 /*
1744  * For memory tiering mode, if there are enough free pages (more than
1745  * enough watermark defined here) in fast memory node, to take full
1746  * advantage of fast memory capacity, all recently accessed slow
1747  * memory pages will be migrated to fast memory node without
1748  * considering hot threshold.
1749  */
1750 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1751 {
1752 	int z;
1753 	unsigned long enough_wmark;
1754 
1755 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1756 			   pgdat->node_present_pages >> 4);
1757 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1758 		struct zone *zone = pgdat->node_zones + z;
1759 
1760 		if (!populated_zone(zone))
1761 			continue;
1762 
1763 		if (zone_watermark_ok(zone, 0,
1764 				      wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1765 				      ZONE_MOVABLE, 0))
1766 			return true;
1767 	}
1768 	return false;
1769 }
1770 
1771 /*
1772  * For memory tiering mode, when page tables are scanned, the scan
1773  * time will be recorded in struct page in addition to make page
1774  * PROT_NONE for slow memory page.  So when the page is accessed, in
1775  * hint page fault handler, the hint page fault latency is calculated
1776  * via,
1777  *
1778  *	hint page fault latency = hint page fault time - scan time
1779  *
1780  * The smaller the hint page fault latency, the higher the possibility
1781  * for the page to be hot.
1782  */
1783 static int numa_hint_fault_latency(struct page *page)
1784 {
1785 	int last_time, time;
1786 
1787 	time = jiffies_to_msecs(jiffies);
1788 	last_time = xchg_page_access_time(page, time);
1789 
1790 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1791 }
1792 
1793 /*
1794  * For memory tiering mode, too high promotion/demotion throughput may
1795  * hurt application latency.  So we provide a mechanism to rate limit
1796  * the number of pages that are tried to be promoted.
1797  */
1798 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1799 				      unsigned long rate_limit, int nr)
1800 {
1801 	unsigned long nr_cand;
1802 	unsigned int now, start;
1803 
1804 	now = jiffies_to_msecs(jiffies);
1805 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1806 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1807 	start = pgdat->nbp_rl_start;
1808 	if (now - start > MSEC_PER_SEC &&
1809 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1810 		pgdat->nbp_rl_nr_cand = nr_cand;
1811 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1812 		return true;
1813 	return false;
1814 }
1815 
1816 #define NUMA_MIGRATION_ADJUST_STEPS	16
1817 
1818 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1819 					    unsigned long rate_limit,
1820 					    unsigned int ref_th)
1821 {
1822 	unsigned int now, start, th_period, unit_th, th;
1823 	unsigned long nr_cand, ref_cand, diff_cand;
1824 
1825 	now = jiffies_to_msecs(jiffies);
1826 	th_period = sysctl_numa_balancing_scan_period_max;
1827 	start = pgdat->nbp_th_start;
1828 	if (now - start > th_period &&
1829 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1830 		ref_cand = rate_limit *
1831 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1832 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1833 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1834 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1835 		th = pgdat->nbp_threshold ? : ref_th;
1836 		if (diff_cand > ref_cand * 11 / 10)
1837 			th = max(th - unit_th, unit_th);
1838 		else if (diff_cand < ref_cand * 9 / 10)
1839 			th = min(th + unit_th, ref_th * 2);
1840 		pgdat->nbp_th_nr_cand = nr_cand;
1841 		pgdat->nbp_threshold = th;
1842 	}
1843 }
1844 
1845 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1846 				int src_nid, int dst_cpu)
1847 {
1848 	struct numa_group *ng = deref_curr_numa_group(p);
1849 	int dst_nid = cpu_to_node(dst_cpu);
1850 	int last_cpupid, this_cpupid;
1851 
1852 	/*
1853 	 * The pages in slow memory node should be migrated according
1854 	 * to hot/cold instead of private/shared.
1855 	 */
1856 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1857 	    !node_is_toptier(src_nid)) {
1858 		struct pglist_data *pgdat;
1859 		unsigned long rate_limit;
1860 		unsigned int latency, th, def_th;
1861 
1862 		pgdat = NODE_DATA(dst_nid);
1863 		if (pgdat_free_space_enough(pgdat)) {
1864 			/* workload changed, reset hot threshold */
1865 			pgdat->nbp_threshold = 0;
1866 			return true;
1867 		}
1868 
1869 		def_th = sysctl_numa_balancing_hot_threshold;
1870 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1871 			(20 - PAGE_SHIFT);
1872 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1873 
1874 		th = pgdat->nbp_threshold ? : def_th;
1875 		latency = numa_hint_fault_latency(page);
1876 		if (latency >= th)
1877 			return false;
1878 
1879 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1880 						  thp_nr_pages(page));
1881 	}
1882 
1883 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1884 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1885 
1886 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1887 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1888 		return false;
1889 
1890 	/*
1891 	 * Allow first faults or private faults to migrate immediately early in
1892 	 * the lifetime of a task. The magic number 4 is based on waiting for
1893 	 * two full passes of the "multi-stage node selection" test that is
1894 	 * executed below.
1895 	 */
1896 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1897 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1898 		return true;
1899 
1900 	/*
1901 	 * Multi-stage node selection is used in conjunction with a periodic
1902 	 * migration fault to build a temporal task<->page relation. By using
1903 	 * a two-stage filter we remove short/unlikely relations.
1904 	 *
1905 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1906 	 * a task's usage of a particular page (n_p) per total usage of this
1907 	 * page (n_t) (in a given time-span) to a probability.
1908 	 *
1909 	 * Our periodic faults will sample this probability and getting the
1910 	 * same result twice in a row, given these samples are fully
1911 	 * independent, is then given by P(n)^2, provided our sample period
1912 	 * is sufficiently short compared to the usage pattern.
1913 	 *
1914 	 * This quadric squishes small probabilities, making it less likely we
1915 	 * act on an unlikely task<->page relation.
1916 	 */
1917 	if (!cpupid_pid_unset(last_cpupid) &&
1918 				cpupid_to_nid(last_cpupid) != dst_nid)
1919 		return false;
1920 
1921 	/* Always allow migrate on private faults */
1922 	if (cpupid_match_pid(p, last_cpupid))
1923 		return true;
1924 
1925 	/* A shared fault, but p->numa_group has not been set up yet. */
1926 	if (!ng)
1927 		return true;
1928 
1929 	/*
1930 	 * Destination node is much more heavily used than the source
1931 	 * node? Allow migration.
1932 	 */
1933 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1934 					ACTIVE_NODE_FRACTION)
1935 		return true;
1936 
1937 	/*
1938 	 * Distribute memory according to CPU & memory use on each node,
1939 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1940 	 *
1941 	 * faults_cpu(dst)   3   faults_cpu(src)
1942 	 * --------------- * - > ---------------
1943 	 * faults_mem(dst)   4   faults_mem(src)
1944 	 */
1945 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1946 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1947 }
1948 
1949 /*
1950  * 'numa_type' describes the node at the moment of load balancing.
1951  */
1952 enum numa_type {
1953 	/* The node has spare capacity that can be used to run more tasks.  */
1954 	node_has_spare = 0,
1955 	/*
1956 	 * The node is fully used and the tasks don't compete for more CPU
1957 	 * cycles. Nevertheless, some tasks might wait before running.
1958 	 */
1959 	node_fully_busy,
1960 	/*
1961 	 * The node is overloaded and can't provide expected CPU cycles to all
1962 	 * tasks.
1963 	 */
1964 	node_overloaded
1965 };
1966 
1967 /* Cached statistics for all CPUs within a node */
1968 struct numa_stats {
1969 	unsigned long load;
1970 	unsigned long runnable;
1971 	unsigned long util;
1972 	/* Total compute capacity of CPUs on a node */
1973 	unsigned long compute_capacity;
1974 	unsigned int nr_running;
1975 	unsigned int weight;
1976 	enum numa_type node_type;
1977 	int idle_cpu;
1978 };
1979 
1980 struct task_numa_env {
1981 	struct task_struct *p;
1982 
1983 	int src_cpu, src_nid;
1984 	int dst_cpu, dst_nid;
1985 	int imb_numa_nr;
1986 
1987 	struct numa_stats src_stats, dst_stats;
1988 
1989 	int imbalance_pct;
1990 	int dist;
1991 
1992 	struct task_struct *best_task;
1993 	long best_imp;
1994 	int best_cpu;
1995 };
1996 
1997 static unsigned long cpu_load(struct rq *rq);
1998 static unsigned long cpu_runnable(struct rq *rq);
1999 
2000 static inline enum
2001 numa_type numa_classify(unsigned int imbalance_pct,
2002 			 struct numa_stats *ns)
2003 {
2004 	if ((ns->nr_running > ns->weight) &&
2005 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2006 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2007 		return node_overloaded;
2008 
2009 	if ((ns->nr_running < ns->weight) ||
2010 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2011 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2012 		return node_has_spare;
2013 
2014 	return node_fully_busy;
2015 }
2016 
2017 #ifdef CONFIG_SCHED_SMT
2018 /* Forward declarations of select_idle_sibling helpers */
2019 static inline bool test_idle_cores(int cpu);
2020 static inline int numa_idle_core(int idle_core, int cpu)
2021 {
2022 	if (!static_branch_likely(&sched_smt_present) ||
2023 	    idle_core >= 0 || !test_idle_cores(cpu))
2024 		return idle_core;
2025 
2026 	/*
2027 	 * Prefer cores instead of packing HT siblings
2028 	 * and triggering future load balancing.
2029 	 */
2030 	if (is_core_idle(cpu))
2031 		idle_core = cpu;
2032 
2033 	return idle_core;
2034 }
2035 #else
2036 static inline int numa_idle_core(int idle_core, int cpu)
2037 {
2038 	return idle_core;
2039 }
2040 #endif
2041 
2042 /*
2043  * Gather all necessary information to make NUMA balancing placement
2044  * decisions that are compatible with standard load balancer. This
2045  * borrows code and logic from update_sg_lb_stats but sharing a
2046  * common implementation is impractical.
2047  */
2048 static void update_numa_stats(struct task_numa_env *env,
2049 			      struct numa_stats *ns, int nid,
2050 			      bool find_idle)
2051 {
2052 	int cpu, idle_core = -1;
2053 
2054 	memset(ns, 0, sizeof(*ns));
2055 	ns->idle_cpu = -1;
2056 
2057 	rcu_read_lock();
2058 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2059 		struct rq *rq = cpu_rq(cpu);
2060 
2061 		ns->load += cpu_load(rq);
2062 		ns->runnable += cpu_runnable(rq);
2063 		ns->util += cpu_util_cfs(cpu);
2064 		ns->nr_running += rq->cfs.h_nr_running;
2065 		ns->compute_capacity += capacity_of(cpu);
2066 
2067 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2068 			if (READ_ONCE(rq->numa_migrate_on) ||
2069 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2070 				continue;
2071 
2072 			if (ns->idle_cpu == -1)
2073 				ns->idle_cpu = cpu;
2074 
2075 			idle_core = numa_idle_core(idle_core, cpu);
2076 		}
2077 	}
2078 	rcu_read_unlock();
2079 
2080 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2081 
2082 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2083 
2084 	if (idle_core >= 0)
2085 		ns->idle_cpu = idle_core;
2086 }
2087 
2088 static void task_numa_assign(struct task_numa_env *env,
2089 			     struct task_struct *p, long imp)
2090 {
2091 	struct rq *rq = cpu_rq(env->dst_cpu);
2092 
2093 	/* Check if run-queue part of active NUMA balance. */
2094 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2095 		int cpu;
2096 		int start = env->dst_cpu;
2097 
2098 		/* Find alternative idle CPU. */
2099 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2100 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2101 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2102 				continue;
2103 			}
2104 
2105 			env->dst_cpu = cpu;
2106 			rq = cpu_rq(env->dst_cpu);
2107 			if (!xchg(&rq->numa_migrate_on, 1))
2108 				goto assign;
2109 		}
2110 
2111 		/* Failed to find an alternative idle CPU */
2112 		return;
2113 	}
2114 
2115 assign:
2116 	/*
2117 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2118 	 * found a better CPU to move/swap.
2119 	 */
2120 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2121 		rq = cpu_rq(env->best_cpu);
2122 		WRITE_ONCE(rq->numa_migrate_on, 0);
2123 	}
2124 
2125 	if (env->best_task)
2126 		put_task_struct(env->best_task);
2127 	if (p)
2128 		get_task_struct(p);
2129 
2130 	env->best_task = p;
2131 	env->best_imp = imp;
2132 	env->best_cpu = env->dst_cpu;
2133 }
2134 
2135 static bool load_too_imbalanced(long src_load, long dst_load,
2136 				struct task_numa_env *env)
2137 {
2138 	long imb, old_imb;
2139 	long orig_src_load, orig_dst_load;
2140 	long src_capacity, dst_capacity;
2141 
2142 	/*
2143 	 * The load is corrected for the CPU capacity available on each node.
2144 	 *
2145 	 * src_load        dst_load
2146 	 * ------------ vs ---------
2147 	 * src_capacity    dst_capacity
2148 	 */
2149 	src_capacity = env->src_stats.compute_capacity;
2150 	dst_capacity = env->dst_stats.compute_capacity;
2151 
2152 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2153 
2154 	orig_src_load = env->src_stats.load;
2155 	orig_dst_load = env->dst_stats.load;
2156 
2157 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2158 
2159 	/* Would this change make things worse? */
2160 	return (imb > old_imb);
2161 }
2162 
2163 /*
2164  * Maximum NUMA importance can be 1998 (2*999);
2165  * SMALLIMP @ 30 would be close to 1998/64.
2166  * Used to deter task migration.
2167  */
2168 #define SMALLIMP	30
2169 
2170 /*
2171  * This checks if the overall compute and NUMA accesses of the system would
2172  * be improved if the source tasks was migrated to the target dst_cpu taking
2173  * into account that it might be best if task running on the dst_cpu should
2174  * be exchanged with the source task
2175  */
2176 static bool task_numa_compare(struct task_numa_env *env,
2177 			      long taskimp, long groupimp, bool maymove)
2178 {
2179 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2180 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2181 	long imp = p_ng ? groupimp : taskimp;
2182 	struct task_struct *cur;
2183 	long src_load, dst_load;
2184 	int dist = env->dist;
2185 	long moveimp = imp;
2186 	long load;
2187 	bool stopsearch = false;
2188 
2189 	if (READ_ONCE(dst_rq->numa_migrate_on))
2190 		return false;
2191 
2192 	rcu_read_lock();
2193 	cur = rcu_dereference(dst_rq->curr);
2194 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2195 		cur = NULL;
2196 
2197 	/*
2198 	 * Because we have preemption enabled we can get migrated around and
2199 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2200 	 */
2201 	if (cur == env->p) {
2202 		stopsearch = true;
2203 		goto unlock;
2204 	}
2205 
2206 	if (!cur) {
2207 		if (maymove && moveimp >= env->best_imp)
2208 			goto assign;
2209 		else
2210 			goto unlock;
2211 	}
2212 
2213 	/* Skip this swap candidate if cannot move to the source cpu. */
2214 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2215 		goto unlock;
2216 
2217 	/*
2218 	 * Skip this swap candidate if it is not moving to its preferred
2219 	 * node and the best task is.
2220 	 */
2221 	if (env->best_task &&
2222 	    env->best_task->numa_preferred_nid == env->src_nid &&
2223 	    cur->numa_preferred_nid != env->src_nid) {
2224 		goto unlock;
2225 	}
2226 
2227 	/*
2228 	 * "imp" is the fault differential for the source task between the
2229 	 * source and destination node. Calculate the total differential for
2230 	 * the source task and potential destination task. The more negative
2231 	 * the value is, the more remote accesses that would be expected to
2232 	 * be incurred if the tasks were swapped.
2233 	 *
2234 	 * If dst and source tasks are in the same NUMA group, or not
2235 	 * in any group then look only at task weights.
2236 	 */
2237 	cur_ng = rcu_dereference(cur->numa_group);
2238 	if (cur_ng == p_ng) {
2239 		/*
2240 		 * Do not swap within a group or between tasks that have
2241 		 * no group if there is spare capacity. Swapping does
2242 		 * not address the load imbalance and helps one task at
2243 		 * the cost of punishing another.
2244 		 */
2245 		if (env->dst_stats.node_type == node_has_spare)
2246 			goto unlock;
2247 
2248 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2249 		      task_weight(cur, env->dst_nid, dist);
2250 		/*
2251 		 * Add some hysteresis to prevent swapping the
2252 		 * tasks within a group over tiny differences.
2253 		 */
2254 		if (cur_ng)
2255 			imp -= imp / 16;
2256 	} else {
2257 		/*
2258 		 * Compare the group weights. If a task is all by itself
2259 		 * (not part of a group), use the task weight instead.
2260 		 */
2261 		if (cur_ng && p_ng)
2262 			imp += group_weight(cur, env->src_nid, dist) -
2263 			       group_weight(cur, env->dst_nid, dist);
2264 		else
2265 			imp += task_weight(cur, env->src_nid, dist) -
2266 			       task_weight(cur, env->dst_nid, dist);
2267 	}
2268 
2269 	/* Discourage picking a task already on its preferred node */
2270 	if (cur->numa_preferred_nid == env->dst_nid)
2271 		imp -= imp / 16;
2272 
2273 	/*
2274 	 * Encourage picking a task that moves to its preferred node.
2275 	 * This potentially makes imp larger than it's maximum of
2276 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2277 	 * case, it does not matter.
2278 	 */
2279 	if (cur->numa_preferred_nid == env->src_nid)
2280 		imp += imp / 8;
2281 
2282 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2283 		imp = moveimp;
2284 		cur = NULL;
2285 		goto assign;
2286 	}
2287 
2288 	/*
2289 	 * Prefer swapping with a task moving to its preferred node over a
2290 	 * task that is not.
2291 	 */
2292 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2293 	    env->best_task->numa_preferred_nid != env->src_nid) {
2294 		goto assign;
2295 	}
2296 
2297 	/*
2298 	 * If the NUMA importance is less than SMALLIMP,
2299 	 * task migration might only result in ping pong
2300 	 * of tasks and also hurt performance due to cache
2301 	 * misses.
2302 	 */
2303 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2304 		goto unlock;
2305 
2306 	/*
2307 	 * In the overloaded case, try and keep the load balanced.
2308 	 */
2309 	load = task_h_load(env->p) - task_h_load(cur);
2310 	if (!load)
2311 		goto assign;
2312 
2313 	dst_load = env->dst_stats.load + load;
2314 	src_load = env->src_stats.load - load;
2315 
2316 	if (load_too_imbalanced(src_load, dst_load, env))
2317 		goto unlock;
2318 
2319 assign:
2320 	/* Evaluate an idle CPU for a task numa move. */
2321 	if (!cur) {
2322 		int cpu = env->dst_stats.idle_cpu;
2323 
2324 		/* Nothing cached so current CPU went idle since the search. */
2325 		if (cpu < 0)
2326 			cpu = env->dst_cpu;
2327 
2328 		/*
2329 		 * If the CPU is no longer truly idle and the previous best CPU
2330 		 * is, keep using it.
2331 		 */
2332 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2333 		    idle_cpu(env->best_cpu)) {
2334 			cpu = env->best_cpu;
2335 		}
2336 
2337 		env->dst_cpu = cpu;
2338 	}
2339 
2340 	task_numa_assign(env, cur, imp);
2341 
2342 	/*
2343 	 * If a move to idle is allowed because there is capacity or load
2344 	 * balance improves then stop the search. While a better swap
2345 	 * candidate may exist, a search is not free.
2346 	 */
2347 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2348 		stopsearch = true;
2349 
2350 	/*
2351 	 * If a swap candidate must be identified and the current best task
2352 	 * moves its preferred node then stop the search.
2353 	 */
2354 	if (!maymove && env->best_task &&
2355 	    env->best_task->numa_preferred_nid == env->src_nid) {
2356 		stopsearch = true;
2357 	}
2358 unlock:
2359 	rcu_read_unlock();
2360 
2361 	return stopsearch;
2362 }
2363 
2364 static void task_numa_find_cpu(struct task_numa_env *env,
2365 				long taskimp, long groupimp)
2366 {
2367 	bool maymove = false;
2368 	int cpu;
2369 
2370 	/*
2371 	 * If dst node has spare capacity, then check if there is an
2372 	 * imbalance that would be overruled by the load balancer.
2373 	 */
2374 	if (env->dst_stats.node_type == node_has_spare) {
2375 		unsigned int imbalance;
2376 		int src_running, dst_running;
2377 
2378 		/*
2379 		 * Would movement cause an imbalance? Note that if src has
2380 		 * more running tasks that the imbalance is ignored as the
2381 		 * move improves the imbalance from the perspective of the
2382 		 * CPU load balancer.
2383 		 * */
2384 		src_running = env->src_stats.nr_running - 1;
2385 		dst_running = env->dst_stats.nr_running + 1;
2386 		imbalance = max(0, dst_running - src_running);
2387 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2388 						  env->imb_numa_nr);
2389 
2390 		/* Use idle CPU if there is no imbalance */
2391 		if (!imbalance) {
2392 			maymove = true;
2393 			if (env->dst_stats.idle_cpu >= 0) {
2394 				env->dst_cpu = env->dst_stats.idle_cpu;
2395 				task_numa_assign(env, NULL, 0);
2396 				return;
2397 			}
2398 		}
2399 	} else {
2400 		long src_load, dst_load, load;
2401 		/*
2402 		 * If the improvement from just moving env->p direction is better
2403 		 * than swapping tasks around, check if a move is possible.
2404 		 */
2405 		load = task_h_load(env->p);
2406 		dst_load = env->dst_stats.load + load;
2407 		src_load = env->src_stats.load - load;
2408 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2409 	}
2410 
2411 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2412 		/* Skip this CPU if the source task cannot migrate */
2413 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2414 			continue;
2415 
2416 		env->dst_cpu = cpu;
2417 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2418 			break;
2419 	}
2420 }
2421 
2422 static int task_numa_migrate(struct task_struct *p)
2423 {
2424 	struct task_numa_env env = {
2425 		.p = p,
2426 
2427 		.src_cpu = task_cpu(p),
2428 		.src_nid = task_node(p),
2429 
2430 		.imbalance_pct = 112,
2431 
2432 		.best_task = NULL,
2433 		.best_imp = 0,
2434 		.best_cpu = -1,
2435 	};
2436 	unsigned long taskweight, groupweight;
2437 	struct sched_domain *sd;
2438 	long taskimp, groupimp;
2439 	struct numa_group *ng;
2440 	struct rq *best_rq;
2441 	int nid, ret, dist;
2442 
2443 	/*
2444 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2445 	 * imbalance and would be the first to start moving tasks about.
2446 	 *
2447 	 * And we want to avoid any moving of tasks about, as that would create
2448 	 * random movement of tasks -- counter the numa conditions we're trying
2449 	 * to satisfy here.
2450 	 */
2451 	rcu_read_lock();
2452 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2453 	if (sd) {
2454 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2455 		env.imb_numa_nr = sd->imb_numa_nr;
2456 	}
2457 	rcu_read_unlock();
2458 
2459 	/*
2460 	 * Cpusets can break the scheduler domain tree into smaller
2461 	 * balance domains, some of which do not cross NUMA boundaries.
2462 	 * Tasks that are "trapped" in such domains cannot be migrated
2463 	 * elsewhere, so there is no point in (re)trying.
2464 	 */
2465 	if (unlikely(!sd)) {
2466 		sched_setnuma(p, task_node(p));
2467 		return -EINVAL;
2468 	}
2469 
2470 	env.dst_nid = p->numa_preferred_nid;
2471 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2472 	taskweight = task_weight(p, env.src_nid, dist);
2473 	groupweight = group_weight(p, env.src_nid, dist);
2474 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2475 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2476 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2477 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2478 
2479 	/* Try to find a spot on the preferred nid. */
2480 	task_numa_find_cpu(&env, taskimp, groupimp);
2481 
2482 	/*
2483 	 * Look at other nodes in these cases:
2484 	 * - there is no space available on the preferred_nid
2485 	 * - the task is part of a numa_group that is interleaved across
2486 	 *   multiple NUMA nodes; in order to better consolidate the group,
2487 	 *   we need to check other locations.
2488 	 */
2489 	ng = deref_curr_numa_group(p);
2490 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2491 		for_each_node_state(nid, N_CPU) {
2492 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2493 				continue;
2494 
2495 			dist = node_distance(env.src_nid, env.dst_nid);
2496 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2497 						dist != env.dist) {
2498 				taskweight = task_weight(p, env.src_nid, dist);
2499 				groupweight = group_weight(p, env.src_nid, dist);
2500 			}
2501 
2502 			/* Only consider nodes where both task and groups benefit */
2503 			taskimp = task_weight(p, nid, dist) - taskweight;
2504 			groupimp = group_weight(p, nid, dist) - groupweight;
2505 			if (taskimp < 0 && groupimp < 0)
2506 				continue;
2507 
2508 			env.dist = dist;
2509 			env.dst_nid = nid;
2510 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2511 			task_numa_find_cpu(&env, taskimp, groupimp);
2512 		}
2513 	}
2514 
2515 	/*
2516 	 * If the task is part of a workload that spans multiple NUMA nodes,
2517 	 * and is migrating into one of the workload's active nodes, remember
2518 	 * this node as the task's preferred numa node, so the workload can
2519 	 * settle down.
2520 	 * A task that migrated to a second choice node will be better off
2521 	 * trying for a better one later. Do not set the preferred node here.
2522 	 */
2523 	if (ng) {
2524 		if (env.best_cpu == -1)
2525 			nid = env.src_nid;
2526 		else
2527 			nid = cpu_to_node(env.best_cpu);
2528 
2529 		if (nid != p->numa_preferred_nid)
2530 			sched_setnuma(p, nid);
2531 	}
2532 
2533 	/* No better CPU than the current one was found. */
2534 	if (env.best_cpu == -1) {
2535 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2536 		return -EAGAIN;
2537 	}
2538 
2539 	best_rq = cpu_rq(env.best_cpu);
2540 	if (env.best_task == NULL) {
2541 		ret = migrate_task_to(p, env.best_cpu);
2542 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2543 		if (ret != 0)
2544 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2545 		return ret;
2546 	}
2547 
2548 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2549 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2550 
2551 	if (ret != 0)
2552 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2553 	put_task_struct(env.best_task);
2554 	return ret;
2555 }
2556 
2557 /* Attempt to migrate a task to a CPU on the preferred node. */
2558 static void numa_migrate_preferred(struct task_struct *p)
2559 {
2560 	unsigned long interval = HZ;
2561 
2562 	/* This task has no NUMA fault statistics yet */
2563 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2564 		return;
2565 
2566 	/* Periodically retry migrating the task to the preferred node */
2567 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2568 	p->numa_migrate_retry = jiffies + interval;
2569 
2570 	/* Success if task is already running on preferred CPU */
2571 	if (task_node(p) == p->numa_preferred_nid)
2572 		return;
2573 
2574 	/* Otherwise, try migrate to a CPU on the preferred node */
2575 	task_numa_migrate(p);
2576 }
2577 
2578 /*
2579  * Find out how many nodes the workload is actively running on. Do this by
2580  * tracking the nodes from which NUMA hinting faults are triggered. This can
2581  * be different from the set of nodes where the workload's memory is currently
2582  * located.
2583  */
2584 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2585 {
2586 	unsigned long faults, max_faults = 0;
2587 	int nid, active_nodes = 0;
2588 
2589 	for_each_node_state(nid, N_CPU) {
2590 		faults = group_faults_cpu(numa_group, nid);
2591 		if (faults > max_faults)
2592 			max_faults = faults;
2593 	}
2594 
2595 	for_each_node_state(nid, N_CPU) {
2596 		faults = group_faults_cpu(numa_group, nid);
2597 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2598 			active_nodes++;
2599 	}
2600 
2601 	numa_group->max_faults_cpu = max_faults;
2602 	numa_group->active_nodes = active_nodes;
2603 }
2604 
2605 /*
2606  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2607  * increments. The more local the fault statistics are, the higher the scan
2608  * period will be for the next scan window. If local/(local+remote) ratio is
2609  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2610  * the scan period will decrease. Aim for 70% local accesses.
2611  */
2612 #define NUMA_PERIOD_SLOTS 10
2613 #define NUMA_PERIOD_THRESHOLD 7
2614 
2615 /*
2616  * Increase the scan period (slow down scanning) if the majority of
2617  * our memory is already on our local node, or if the majority of
2618  * the page accesses are shared with other processes.
2619  * Otherwise, decrease the scan period.
2620  */
2621 static void update_task_scan_period(struct task_struct *p,
2622 			unsigned long shared, unsigned long private)
2623 {
2624 	unsigned int period_slot;
2625 	int lr_ratio, ps_ratio;
2626 	int diff;
2627 
2628 	unsigned long remote = p->numa_faults_locality[0];
2629 	unsigned long local = p->numa_faults_locality[1];
2630 
2631 	/*
2632 	 * If there were no record hinting faults then either the task is
2633 	 * completely idle or all activity is in areas that are not of interest
2634 	 * to automatic numa balancing. Related to that, if there were failed
2635 	 * migration then it implies we are migrating too quickly or the local
2636 	 * node is overloaded. In either case, scan slower
2637 	 */
2638 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2639 		p->numa_scan_period = min(p->numa_scan_period_max,
2640 			p->numa_scan_period << 1);
2641 
2642 		p->mm->numa_next_scan = jiffies +
2643 			msecs_to_jiffies(p->numa_scan_period);
2644 
2645 		return;
2646 	}
2647 
2648 	/*
2649 	 * Prepare to scale scan period relative to the current period.
2650 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2651 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2652 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2653 	 */
2654 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2655 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2656 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2657 
2658 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2659 		/*
2660 		 * Most memory accesses are local. There is no need to
2661 		 * do fast NUMA scanning, since memory is already local.
2662 		 */
2663 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2664 		if (!slot)
2665 			slot = 1;
2666 		diff = slot * period_slot;
2667 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2668 		/*
2669 		 * Most memory accesses are shared with other tasks.
2670 		 * There is no point in continuing fast NUMA scanning,
2671 		 * since other tasks may just move the memory elsewhere.
2672 		 */
2673 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2674 		if (!slot)
2675 			slot = 1;
2676 		diff = slot * period_slot;
2677 	} else {
2678 		/*
2679 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2680 		 * yet they are not on the local NUMA node. Speed up
2681 		 * NUMA scanning to get the memory moved over.
2682 		 */
2683 		int ratio = max(lr_ratio, ps_ratio);
2684 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2685 	}
2686 
2687 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2688 			task_scan_min(p), task_scan_max(p));
2689 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2690 }
2691 
2692 /*
2693  * Get the fraction of time the task has been running since the last
2694  * NUMA placement cycle. The scheduler keeps similar statistics, but
2695  * decays those on a 32ms period, which is orders of magnitude off
2696  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2697  * stats only if the task is so new there are no NUMA statistics yet.
2698  */
2699 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2700 {
2701 	u64 runtime, delta, now;
2702 	/* Use the start of this time slice to avoid calculations. */
2703 	now = p->se.exec_start;
2704 	runtime = p->se.sum_exec_runtime;
2705 
2706 	if (p->last_task_numa_placement) {
2707 		delta = runtime - p->last_sum_exec_runtime;
2708 		*period = now - p->last_task_numa_placement;
2709 
2710 		/* Avoid time going backwards, prevent potential divide error: */
2711 		if (unlikely((s64)*period < 0))
2712 			*period = 0;
2713 	} else {
2714 		delta = p->se.avg.load_sum;
2715 		*period = LOAD_AVG_MAX;
2716 	}
2717 
2718 	p->last_sum_exec_runtime = runtime;
2719 	p->last_task_numa_placement = now;
2720 
2721 	return delta;
2722 }
2723 
2724 /*
2725  * Determine the preferred nid for a task in a numa_group. This needs to
2726  * be done in a way that produces consistent results with group_weight,
2727  * otherwise workloads might not converge.
2728  */
2729 static int preferred_group_nid(struct task_struct *p, int nid)
2730 {
2731 	nodemask_t nodes;
2732 	int dist;
2733 
2734 	/* Direct connections between all NUMA nodes. */
2735 	if (sched_numa_topology_type == NUMA_DIRECT)
2736 		return nid;
2737 
2738 	/*
2739 	 * On a system with glueless mesh NUMA topology, group_weight
2740 	 * scores nodes according to the number of NUMA hinting faults on
2741 	 * both the node itself, and on nearby nodes.
2742 	 */
2743 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2744 		unsigned long score, max_score = 0;
2745 		int node, max_node = nid;
2746 
2747 		dist = sched_max_numa_distance;
2748 
2749 		for_each_node_state(node, N_CPU) {
2750 			score = group_weight(p, node, dist);
2751 			if (score > max_score) {
2752 				max_score = score;
2753 				max_node = node;
2754 			}
2755 		}
2756 		return max_node;
2757 	}
2758 
2759 	/*
2760 	 * Finding the preferred nid in a system with NUMA backplane
2761 	 * interconnect topology is more involved. The goal is to locate
2762 	 * tasks from numa_groups near each other in the system, and
2763 	 * untangle workloads from different sides of the system. This requires
2764 	 * searching down the hierarchy of node groups, recursively searching
2765 	 * inside the highest scoring group of nodes. The nodemask tricks
2766 	 * keep the complexity of the search down.
2767 	 */
2768 	nodes = node_states[N_CPU];
2769 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2770 		unsigned long max_faults = 0;
2771 		nodemask_t max_group = NODE_MASK_NONE;
2772 		int a, b;
2773 
2774 		/* Are there nodes at this distance from each other? */
2775 		if (!find_numa_distance(dist))
2776 			continue;
2777 
2778 		for_each_node_mask(a, nodes) {
2779 			unsigned long faults = 0;
2780 			nodemask_t this_group;
2781 			nodes_clear(this_group);
2782 
2783 			/* Sum group's NUMA faults; includes a==b case. */
2784 			for_each_node_mask(b, nodes) {
2785 				if (node_distance(a, b) < dist) {
2786 					faults += group_faults(p, b);
2787 					node_set(b, this_group);
2788 					node_clear(b, nodes);
2789 				}
2790 			}
2791 
2792 			/* Remember the top group. */
2793 			if (faults > max_faults) {
2794 				max_faults = faults;
2795 				max_group = this_group;
2796 				/*
2797 				 * subtle: at the smallest distance there is
2798 				 * just one node left in each "group", the
2799 				 * winner is the preferred nid.
2800 				 */
2801 				nid = a;
2802 			}
2803 		}
2804 		/* Next round, evaluate the nodes within max_group. */
2805 		if (!max_faults)
2806 			break;
2807 		nodes = max_group;
2808 	}
2809 	return nid;
2810 }
2811 
2812 static void task_numa_placement(struct task_struct *p)
2813 {
2814 	int seq, nid, max_nid = NUMA_NO_NODE;
2815 	unsigned long max_faults = 0;
2816 	unsigned long fault_types[2] = { 0, 0 };
2817 	unsigned long total_faults;
2818 	u64 runtime, period;
2819 	spinlock_t *group_lock = NULL;
2820 	struct numa_group *ng;
2821 
2822 	/*
2823 	 * The p->mm->numa_scan_seq field gets updated without
2824 	 * exclusive access. Use READ_ONCE() here to ensure
2825 	 * that the field is read in a single access:
2826 	 */
2827 	seq = READ_ONCE(p->mm->numa_scan_seq);
2828 	if (p->numa_scan_seq == seq)
2829 		return;
2830 	p->numa_scan_seq = seq;
2831 	p->numa_scan_period_max = task_scan_max(p);
2832 
2833 	total_faults = p->numa_faults_locality[0] +
2834 		       p->numa_faults_locality[1];
2835 	runtime = numa_get_avg_runtime(p, &period);
2836 
2837 	/* If the task is part of a group prevent parallel updates to group stats */
2838 	ng = deref_curr_numa_group(p);
2839 	if (ng) {
2840 		group_lock = &ng->lock;
2841 		spin_lock_irq(group_lock);
2842 	}
2843 
2844 	/* Find the node with the highest number of faults */
2845 	for_each_online_node(nid) {
2846 		/* Keep track of the offsets in numa_faults array */
2847 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2848 		unsigned long faults = 0, group_faults = 0;
2849 		int priv;
2850 
2851 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2852 			long diff, f_diff, f_weight;
2853 
2854 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2855 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2856 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2857 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2858 
2859 			/* Decay existing window, copy faults since last scan */
2860 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2861 			fault_types[priv] += p->numa_faults[membuf_idx];
2862 			p->numa_faults[membuf_idx] = 0;
2863 
2864 			/*
2865 			 * Normalize the faults_from, so all tasks in a group
2866 			 * count according to CPU use, instead of by the raw
2867 			 * number of faults. Tasks with little runtime have
2868 			 * little over-all impact on throughput, and thus their
2869 			 * faults are less important.
2870 			 */
2871 			f_weight = div64_u64(runtime << 16, period + 1);
2872 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2873 				   (total_faults + 1);
2874 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2875 			p->numa_faults[cpubuf_idx] = 0;
2876 
2877 			p->numa_faults[mem_idx] += diff;
2878 			p->numa_faults[cpu_idx] += f_diff;
2879 			faults += p->numa_faults[mem_idx];
2880 			p->total_numa_faults += diff;
2881 			if (ng) {
2882 				/*
2883 				 * safe because we can only change our own group
2884 				 *
2885 				 * mem_idx represents the offset for a given
2886 				 * nid and priv in a specific region because it
2887 				 * is at the beginning of the numa_faults array.
2888 				 */
2889 				ng->faults[mem_idx] += diff;
2890 				ng->faults[cpu_idx] += f_diff;
2891 				ng->total_faults += diff;
2892 				group_faults += ng->faults[mem_idx];
2893 			}
2894 		}
2895 
2896 		if (!ng) {
2897 			if (faults > max_faults) {
2898 				max_faults = faults;
2899 				max_nid = nid;
2900 			}
2901 		} else if (group_faults > max_faults) {
2902 			max_faults = group_faults;
2903 			max_nid = nid;
2904 		}
2905 	}
2906 
2907 	/* Cannot migrate task to CPU-less node */
2908 	if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
2909 		int near_nid = max_nid;
2910 		int distance, near_distance = INT_MAX;
2911 
2912 		for_each_node_state(nid, N_CPU) {
2913 			distance = node_distance(max_nid, nid);
2914 			if (distance < near_distance) {
2915 				near_nid = nid;
2916 				near_distance = distance;
2917 			}
2918 		}
2919 		max_nid = near_nid;
2920 	}
2921 
2922 	if (ng) {
2923 		numa_group_count_active_nodes(ng);
2924 		spin_unlock_irq(group_lock);
2925 		max_nid = preferred_group_nid(p, max_nid);
2926 	}
2927 
2928 	if (max_faults) {
2929 		/* Set the new preferred node */
2930 		if (max_nid != p->numa_preferred_nid)
2931 			sched_setnuma(p, max_nid);
2932 	}
2933 
2934 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2935 }
2936 
2937 static inline int get_numa_group(struct numa_group *grp)
2938 {
2939 	return refcount_inc_not_zero(&grp->refcount);
2940 }
2941 
2942 static inline void put_numa_group(struct numa_group *grp)
2943 {
2944 	if (refcount_dec_and_test(&grp->refcount))
2945 		kfree_rcu(grp, rcu);
2946 }
2947 
2948 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2949 			int *priv)
2950 {
2951 	struct numa_group *grp, *my_grp;
2952 	struct task_struct *tsk;
2953 	bool join = false;
2954 	int cpu = cpupid_to_cpu(cpupid);
2955 	int i;
2956 
2957 	if (unlikely(!deref_curr_numa_group(p))) {
2958 		unsigned int size = sizeof(struct numa_group) +
2959 				    NR_NUMA_HINT_FAULT_STATS *
2960 				    nr_node_ids * sizeof(unsigned long);
2961 
2962 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2963 		if (!grp)
2964 			return;
2965 
2966 		refcount_set(&grp->refcount, 1);
2967 		grp->active_nodes = 1;
2968 		grp->max_faults_cpu = 0;
2969 		spin_lock_init(&grp->lock);
2970 		grp->gid = p->pid;
2971 
2972 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2973 			grp->faults[i] = p->numa_faults[i];
2974 
2975 		grp->total_faults = p->total_numa_faults;
2976 
2977 		grp->nr_tasks++;
2978 		rcu_assign_pointer(p->numa_group, grp);
2979 	}
2980 
2981 	rcu_read_lock();
2982 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2983 
2984 	if (!cpupid_match_pid(tsk, cpupid))
2985 		goto no_join;
2986 
2987 	grp = rcu_dereference(tsk->numa_group);
2988 	if (!grp)
2989 		goto no_join;
2990 
2991 	my_grp = deref_curr_numa_group(p);
2992 	if (grp == my_grp)
2993 		goto no_join;
2994 
2995 	/*
2996 	 * Only join the other group if its bigger; if we're the bigger group,
2997 	 * the other task will join us.
2998 	 */
2999 	if (my_grp->nr_tasks > grp->nr_tasks)
3000 		goto no_join;
3001 
3002 	/*
3003 	 * Tie-break on the grp address.
3004 	 */
3005 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3006 		goto no_join;
3007 
3008 	/* Always join threads in the same process. */
3009 	if (tsk->mm == current->mm)
3010 		join = true;
3011 
3012 	/* Simple filter to avoid false positives due to PID collisions */
3013 	if (flags & TNF_SHARED)
3014 		join = true;
3015 
3016 	/* Update priv based on whether false sharing was detected */
3017 	*priv = !join;
3018 
3019 	if (join && !get_numa_group(grp))
3020 		goto no_join;
3021 
3022 	rcu_read_unlock();
3023 
3024 	if (!join)
3025 		return;
3026 
3027 	WARN_ON_ONCE(irqs_disabled());
3028 	double_lock_irq(&my_grp->lock, &grp->lock);
3029 
3030 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3031 		my_grp->faults[i] -= p->numa_faults[i];
3032 		grp->faults[i] += p->numa_faults[i];
3033 	}
3034 	my_grp->total_faults -= p->total_numa_faults;
3035 	grp->total_faults += p->total_numa_faults;
3036 
3037 	my_grp->nr_tasks--;
3038 	grp->nr_tasks++;
3039 
3040 	spin_unlock(&my_grp->lock);
3041 	spin_unlock_irq(&grp->lock);
3042 
3043 	rcu_assign_pointer(p->numa_group, grp);
3044 
3045 	put_numa_group(my_grp);
3046 	return;
3047 
3048 no_join:
3049 	rcu_read_unlock();
3050 	return;
3051 }
3052 
3053 /*
3054  * Get rid of NUMA statistics associated with a task (either current or dead).
3055  * If @final is set, the task is dead and has reached refcount zero, so we can
3056  * safely free all relevant data structures. Otherwise, there might be
3057  * concurrent reads from places like load balancing and procfs, and we should
3058  * reset the data back to default state without freeing ->numa_faults.
3059  */
3060 void task_numa_free(struct task_struct *p, bool final)
3061 {
3062 	/* safe: p either is current or is being freed by current */
3063 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3064 	unsigned long *numa_faults = p->numa_faults;
3065 	unsigned long flags;
3066 	int i;
3067 
3068 	if (!numa_faults)
3069 		return;
3070 
3071 	if (grp) {
3072 		spin_lock_irqsave(&grp->lock, flags);
3073 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3074 			grp->faults[i] -= p->numa_faults[i];
3075 		grp->total_faults -= p->total_numa_faults;
3076 
3077 		grp->nr_tasks--;
3078 		spin_unlock_irqrestore(&grp->lock, flags);
3079 		RCU_INIT_POINTER(p->numa_group, NULL);
3080 		put_numa_group(grp);
3081 	}
3082 
3083 	if (final) {
3084 		p->numa_faults = NULL;
3085 		kfree(numa_faults);
3086 	} else {
3087 		p->total_numa_faults = 0;
3088 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3089 			numa_faults[i] = 0;
3090 	}
3091 }
3092 
3093 /*
3094  * Got a PROT_NONE fault for a page on @node.
3095  */
3096 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3097 {
3098 	struct task_struct *p = current;
3099 	bool migrated = flags & TNF_MIGRATED;
3100 	int cpu_node = task_node(current);
3101 	int local = !!(flags & TNF_FAULT_LOCAL);
3102 	struct numa_group *ng;
3103 	int priv;
3104 
3105 	if (!static_branch_likely(&sched_numa_balancing))
3106 		return;
3107 
3108 	/* for example, ksmd faulting in a user's mm */
3109 	if (!p->mm)
3110 		return;
3111 
3112 	/*
3113 	 * NUMA faults statistics are unnecessary for the slow memory
3114 	 * node for memory tiering mode.
3115 	 */
3116 	if (!node_is_toptier(mem_node) &&
3117 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3118 	     !cpupid_valid(last_cpupid)))
3119 		return;
3120 
3121 	/* Allocate buffer to track faults on a per-node basis */
3122 	if (unlikely(!p->numa_faults)) {
3123 		int size = sizeof(*p->numa_faults) *
3124 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3125 
3126 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3127 		if (!p->numa_faults)
3128 			return;
3129 
3130 		p->total_numa_faults = 0;
3131 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3132 	}
3133 
3134 	/*
3135 	 * First accesses are treated as private, otherwise consider accesses
3136 	 * to be private if the accessing pid has not changed
3137 	 */
3138 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3139 		priv = 1;
3140 	} else {
3141 		priv = cpupid_match_pid(p, last_cpupid);
3142 		if (!priv && !(flags & TNF_NO_GROUP))
3143 			task_numa_group(p, last_cpupid, flags, &priv);
3144 	}
3145 
3146 	/*
3147 	 * If a workload spans multiple NUMA nodes, a shared fault that
3148 	 * occurs wholly within the set of nodes that the workload is
3149 	 * actively using should be counted as local. This allows the
3150 	 * scan rate to slow down when a workload has settled down.
3151 	 */
3152 	ng = deref_curr_numa_group(p);
3153 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3154 				numa_is_active_node(cpu_node, ng) &&
3155 				numa_is_active_node(mem_node, ng))
3156 		local = 1;
3157 
3158 	/*
3159 	 * Retry to migrate task to preferred node periodically, in case it
3160 	 * previously failed, or the scheduler moved us.
3161 	 */
3162 	if (time_after(jiffies, p->numa_migrate_retry)) {
3163 		task_numa_placement(p);
3164 		numa_migrate_preferred(p);
3165 	}
3166 
3167 	if (migrated)
3168 		p->numa_pages_migrated += pages;
3169 	if (flags & TNF_MIGRATE_FAIL)
3170 		p->numa_faults_locality[2] += pages;
3171 
3172 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3173 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3174 	p->numa_faults_locality[local] += pages;
3175 }
3176 
3177 static void reset_ptenuma_scan(struct task_struct *p)
3178 {
3179 	/*
3180 	 * We only did a read acquisition of the mmap sem, so
3181 	 * p->mm->numa_scan_seq is written to without exclusive access
3182 	 * and the update is not guaranteed to be atomic. That's not
3183 	 * much of an issue though, since this is just used for
3184 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3185 	 * expensive, to avoid any form of compiler optimizations:
3186 	 */
3187 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3188 	p->mm->numa_scan_offset = 0;
3189 }
3190 
3191 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3192 {
3193 	unsigned long pids;
3194 	/*
3195 	 * Allow unconditional access first two times, so that all the (pages)
3196 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3197 	 * This is also done to avoid any side effect of task scanning
3198 	 * amplifying the unfairness of disjoint set of VMAs' access.
3199 	 */
3200 	if (READ_ONCE(current->mm->numa_scan_seq) < 2)
3201 		return true;
3202 
3203 	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3204 	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3205 		return true;
3206 
3207 	/*
3208 	 * Complete a scan that has already started regardless of PID access, or
3209 	 * some VMAs may never be scanned in multi-threaded applications:
3210 	 */
3211 	if (mm->numa_scan_offset > vma->vm_start) {
3212 		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3213 		return true;
3214 	}
3215 
3216 	/*
3217 	 * This vma has not been accessed for a while, and if the number
3218 	 * the threads in the same process is low, which means no other
3219 	 * threads can help scan this vma, force a vma scan.
3220 	 */
3221 	if (READ_ONCE(mm->numa_scan_seq) >
3222 	   (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3223 		return true;
3224 
3225 	return false;
3226 }
3227 
3228 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3229 
3230 /*
3231  * The expensive part of numa migration is done from task_work context.
3232  * Triggered from task_tick_numa().
3233  */
3234 static void task_numa_work(struct callback_head *work)
3235 {
3236 	unsigned long migrate, next_scan, now = jiffies;
3237 	struct task_struct *p = current;
3238 	struct mm_struct *mm = p->mm;
3239 	u64 runtime = p->se.sum_exec_runtime;
3240 	struct vm_area_struct *vma;
3241 	unsigned long start, end;
3242 	unsigned long nr_pte_updates = 0;
3243 	long pages, virtpages;
3244 	struct vma_iterator vmi;
3245 	bool vma_pids_skipped;
3246 	bool vma_pids_forced = false;
3247 
3248 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3249 
3250 	work->next = work;
3251 	/*
3252 	 * Who cares about NUMA placement when they're dying.
3253 	 *
3254 	 * NOTE: make sure not to dereference p->mm before this check,
3255 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3256 	 * without p->mm even though we still had it when we enqueued this
3257 	 * work.
3258 	 */
3259 	if (p->flags & PF_EXITING)
3260 		return;
3261 
3262 	if (!mm->numa_next_scan) {
3263 		mm->numa_next_scan = now +
3264 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3265 	}
3266 
3267 	/*
3268 	 * Enforce maximal scan/migration frequency..
3269 	 */
3270 	migrate = mm->numa_next_scan;
3271 	if (time_before(now, migrate))
3272 		return;
3273 
3274 	if (p->numa_scan_period == 0) {
3275 		p->numa_scan_period_max = task_scan_max(p);
3276 		p->numa_scan_period = task_scan_start(p);
3277 	}
3278 
3279 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3280 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3281 		return;
3282 
3283 	/*
3284 	 * Delay this task enough that another task of this mm will likely win
3285 	 * the next time around.
3286 	 */
3287 	p->node_stamp += 2 * TICK_NSEC;
3288 
3289 	pages = sysctl_numa_balancing_scan_size;
3290 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3291 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3292 	if (!pages)
3293 		return;
3294 
3295 
3296 	if (!mmap_read_trylock(mm))
3297 		return;
3298 
3299 	/*
3300 	 * VMAs are skipped if the current PID has not trapped a fault within
3301 	 * the VMA recently. Allow scanning to be forced if there is no
3302 	 * suitable VMA remaining.
3303 	 */
3304 	vma_pids_skipped = false;
3305 
3306 retry_pids:
3307 	start = mm->numa_scan_offset;
3308 	vma_iter_init(&vmi, mm, start);
3309 	vma = vma_next(&vmi);
3310 	if (!vma) {
3311 		reset_ptenuma_scan(p);
3312 		start = 0;
3313 		vma_iter_set(&vmi, start);
3314 		vma = vma_next(&vmi);
3315 	}
3316 
3317 	do {
3318 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3319 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3320 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3321 			continue;
3322 		}
3323 
3324 		/*
3325 		 * Shared library pages mapped by multiple processes are not
3326 		 * migrated as it is expected they are cache replicated. Avoid
3327 		 * hinting faults in read-only file-backed mappings or the vdso
3328 		 * as migrating the pages will be of marginal benefit.
3329 		 */
3330 		if (!vma->vm_mm ||
3331 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3332 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3333 			continue;
3334 		}
3335 
3336 		/*
3337 		 * Skip inaccessible VMAs to avoid any confusion between
3338 		 * PROT_NONE and NUMA hinting ptes
3339 		 */
3340 		if (!vma_is_accessible(vma)) {
3341 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3342 			continue;
3343 		}
3344 
3345 		/* Initialise new per-VMA NUMAB state. */
3346 		if (!vma->numab_state) {
3347 			vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3348 				GFP_KERNEL);
3349 			if (!vma->numab_state)
3350 				continue;
3351 
3352 			vma->numab_state->next_scan = now +
3353 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3354 
3355 			/* Reset happens after 4 times scan delay of scan start */
3356 			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
3357 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3358 
3359 			/*
3360 			 * Ensure prev_scan_seq does not match numa_scan_seq,
3361 			 * to prevent VMAs being skipped prematurely on the
3362 			 * first scan:
3363 			 */
3364 			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3365 		}
3366 
3367 		/*
3368 		 * Scanning the VMA's of short lived tasks add more overhead. So
3369 		 * delay the scan for new VMAs.
3370 		 */
3371 		if (mm->numa_scan_seq && time_before(jiffies,
3372 						vma->numab_state->next_scan)) {
3373 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3374 			continue;
3375 		}
3376 
3377 		/* RESET access PIDs regularly for old VMAs. */
3378 		if (mm->numa_scan_seq &&
3379 				time_after(jiffies, vma->numab_state->pids_active_reset)) {
3380 			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3381 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3382 			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3383 			vma->numab_state->pids_active[1] = 0;
3384 		}
3385 
3386 		/* Do not rescan VMAs twice within the same sequence. */
3387 		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3388 			mm->numa_scan_offset = vma->vm_end;
3389 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3390 			continue;
3391 		}
3392 
3393 		/*
3394 		 * Do not scan the VMA if task has not accessed it, unless no other
3395 		 * VMA candidate exists.
3396 		 */
3397 		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3398 			vma_pids_skipped = true;
3399 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3400 			continue;
3401 		}
3402 
3403 		do {
3404 			start = max(start, vma->vm_start);
3405 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3406 			end = min(end, vma->vm_end);
3407 			nr_pte_updates = change_prot_numa(vma, start, end);
3408 
3409 			/*
3410 			 * Try to scan sysctl_numa_balancing_size worth of
3411 			 * hpages that have at least one present PTE that
3412 			 * is not already pte-numa. If the VMA contains
3413 			 * areas that are unused or already full of prot_numa
3414 			 * PTEs, scan up to virtpages, to skip through those
3415 			 * areas faster.
3416 			 */
3417 			if (nr_pte_updates)
3418 				pages -= (end - start) >> PAGE_SHIFT;
3419 			virtpages -= (end - start) >> PAGE_SHIFT;
3420 
3421 			start = end;
3422 			if (pages <= 0 || virtpages <= 0)
3423 				goto out;
3424 
3425 			cond_resched();
3426 		} while (end != vma->vm_end);
3427 
3428 		/* VMA scan is complete, do not scan until next sequence. */
3429 		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3430 
3431 		/*
3432 		 * Only force scan within one VMA at a time, to limit the
3433 		 * cost of scanning a potentially uninteresting VMA.
3434 		 */
3435 		if (vma_pids_forced)
3436 			break;
3437 	} for_each_vma(vmi, vma);
3438 
3439 	/*
3440 	 * If no VMAs are remaining and VMAs were skipped due to the PID
3441 	 * not accessing the VMA previously, then force a scan to ensure
3442 	 * forward progress:
3443 	 */
3444 	if (!vma && !vma_pids_forced && vma_pids_skipped) {
3445 		vma_pids_forced = true;
3446 		goto retry_pids;
3447 	}
3448 
3449 out:
3450 	/*
3451 	 * It is possible to reach the end of the VMA list but the last few
3452 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3453 	 * would find the !migratable VMA on the next scan but not reset the
3454 	 * scanner to the start so check it now.
3455 	 */
3456 	if (vma)
3457 		mm->numa_scan_offset = start;
3458 	else
3459 		reset_ptenuma_scan(p);
3460 	mmap_read_unlock(mm);
3461 
3462 	/*
3463 	 * Make sure tasks use at least 32x as much time to run other code
3464 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3465 	 * Usually update_task_scan_period slows down scanning enough; on an
3466 	 * overloaded system we need to limit overhead on a per task basis.
3467 	 */
3468 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3469 		u64 diff = p->se.sum_exec_runtime - runtime;
3470 		p->node_stamp += 32 * diff;
3471 	}
3472 }
3473 
3474 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3475 {
3476 	int mm_users = 0;
3477 	struct mm_struct *mm = p->mm;
3478 
3479 	if (mm) {
3480 		mm_users = atomic_read(&mm->mm_users);
3481 		if (mm_users == 1) {
3482 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3483 			mm->numa_scan_seq = 0;
3484 		}
3485 	}
3486 	p->node_stamp			= 0;
3487 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3488 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3489 	p->numa_migrate_retry		= 0;
3490 	/* Protect against double add, see task_tick_numa and task_numa_work */
3491 	p->numa_work.next		= &p->numa_work;
3492 	p->numa_faults			= NULL;
3493 	p->numa_pages_migrated		= 0;
3494 	p->total_numa_faults		= 0;
3495 	RCU_INIT_POINTER(p->numa_group, NULL);
3496 	p->last_task_numa_placement	= 0;
3497 	p->last_sum_exec_runtime	= 0;
3498 
3499 	init_task_work(&p->numa_work, task_numa_work);
3500 
3501 	/* New address space, reset the preferred nid */
3502 	if (!(clone_flags & CLONE_VM)) {
3503 		p->numa_preferred_nid = NUMA_NO_NODE;
3504 		return;
3505 	}
3506 
3507 	/*
3508 	 * New thread, keep existing numa_preferred_nid which should be copied
3509 	 * already by arch_dup_task_struct but stagger when scans start.
3510 	 */
3511 	if (mm) {
3512 		unsigned int delay;
3513 
3514 		delay = min_t(unsigned int, task_scan_max(current),
3515 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3516 		delay += 2 * TICK_NSEC;
3517 		p->node_stamp = delay;
3518 	}
3519 }
3520 
3521 /*
3522  * Drive the periodic memory faults..
3523  */
3524 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3525 {
3526 	struct callback_head *work = &curr->numa_work;
3527 	u64 period, now;
3528 
3529 	/*
3530 	 * We don't care about NUMA placement if we don't have memory.
3531 	 */
3532 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3533 		return;
3534 
3535 	/*
3536 	 * Using runtime rather than walltime has the dual advantage that
3537 	 * we (mostly) drive the selection from busy threads and that the
3538 	 * task needs to have done some actual work before we bother with
3539 	 * NUMA placement.
3540 	 */
3541 	now = curr->se.sum_exec_runtime;
3542 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3543 
3544 	if (now > curr->node_stamp + period) {
3545 		if (!curr->node_stamp)
3546 			curr->numa_scan_period = task_scan_start(curr);
3547 		curr->node_stamp += period;
3548 
3549 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3550 			task_work_add(curr, work, TWA_RESUME);
3551 	}
3552 }
3553 
3554 static void update_scan_period(struct task_struct *p, int new_cpu)
3555 {
3556 	int src_nid = cpu_to_node(task_cpu(p));
3557 	int dst_nid = cpu_to_node(new_cpu);
3558 
3559 	if (!static_branch_likely(&sched_numa_balancing))
3560 		return;
3561 
3562 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3563 		return;
3564 
3565 	if (src_nid == dst_nid)
3566 		return;
3567 
3568 	/*
3569 	 * Allow resets if faults have been trapped before one scan
3570 	 * has completed. This is most likely due to a new task that
3571 	 * is pulled cross-node due to wakeups or load balancing.
3572 	 */
3573 	if (p->numa_scan_seq) {
3574 		/*
3575 		 * Avoid scan adjustments if moving to the preferred
3576 		 * node or if the task was not previously running on
3577 		 * the preferred node.
3578 		 */
3579 		if (dst_nid == p->numa_preferred_nid ||
3580 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3581 			src_nid != p->numa_preferred_nid))
3582 			return;
3583 	}
3584 
3585 	p->numa_scan_period = task_scan_start(p);
3586 }
3587 
3588 #else
3589 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3590 {
3591 }
3592 
3593 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3594 {
3595 }
3596 
3597 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3598 {
3599 }
3600 
3601 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3602 {
3603 }
3604 
3605 #endif /* CONFIG_NUMA_BALANCING */
3606 
3607 static void
3608 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3609 {
3610 	update_load_add(&cfs_rq->load, se->load.weight);
3611 #ifdef CONFIG_SMP
3612 	if (entity_is_task(se)) {
3613 		struct rq *rq = rq_of(cfs_rq);
3614 
3615 		account_numa_enqueue(rq, task_of(se));
3616 		list_add(&se->group_node, &rq->cfs_tasks);
3617 	}
3618 #endif
3619 	cfs_rq->nr_running++;
3620 	if (se_is_idle(se))
3621 		cfs_rq->idle_nr_running++;
3622 }
3623 
3624 static void
3625 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3626 {
3627 	update_load_sub(&cfs_rq->load, se->load.weight);
3628 #ifdef CONFIG_SMP
3629 	if (entity_is_task(se)) {
3630 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3631 		list_del_init(&se->group_node);
3632 	}
3633 #endif
3634 	cfs_rq->nr_running--;
3635 	if (se_is_idle(se))
3636 		cfs_rq->idle_nr_running--;
3637 }
3638 
3639 /*
3640  * Signed add and clamp on underflow.
3641  *
3642  * Explicitly do a load-store to ensure the intermediate value never hits
3643  * memory. This allows lockless observations without ever seeing the negative
3644  * values.
3645  */
3646 #define add_positive(_ptr, _val) do {                           \
3647 	typeof(_ptr) ptr = (_ptr);                              \
3648 	typeof(_val) val = (_val);                              \
3649 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3650 								\
3651 	res = var + val;                                        \
3652 								\
3653 	if (val < 0 && res > var)                               \
3654 		res = 0;                                        \
3655 								\
3656 	WRITE_ONCE(*ptr, res);                                  \
3657 } while (0)
3658 
3659 /*
3660  * Unsigned subtract and clamp on underflow.
3661  *
3662  * Explicitly do a load-store to ensure the intermediate value never hits
3663  * memory. This allows lockless observations without ever seeing the negative
3664  * values.
3665  */
3666 #define sub_positive(_ptr, _val) do {				\
3667 	typeof(_ptr) ptr = (_ptr);				\
3668 	typeof(*ptr) val = (_val);				\
3669 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3670 	res = var - val;					\
3671 	if (res > var)						\
3672 		res = 0;					\
3673 	WRITE_ONCE(*ptr, res);					\
3674 } while (0)
3675 
3676 /*
3677  * Remove and clamp on negative, from a local variable.
3678  *
3679  * A variant of sub_positive(), which does not use explicit load-store
3680  * and is thus optimized for local variable updates.
3681  */
3682 #define lsub_positive(_ptr, _val) do {				\
3683 	typeof(_ptr) ptr = (_ptr);				\
3684 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3685 } while (0)
3686 
3687 #ifdef CONFIG_SMP
3688 static inline void
3689 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3690 {
3691 	cfs_rq->avg.load_avg += se->avg.load_avg;
3692 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3693 }
3694 
3695 static inline void
3696 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3697 {
3698 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3699 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3700 	/* See update_cfs_rq_load_avg() */
3701 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3702 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3703 }
3704 #else
3705 static inline void
3706 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3707 static inline void
3708 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3709 #endif
3710 
3711 static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
3712 			   unsigned long weight)
3713 {
3714 	unsigned long old_weight = se->load.weight;
3715 	s64 vlag, vslice;
3716 
3717 	/*
3718 	 * VRUNTIME
3719 	 * ========
3720 	 *
3721 	 * COROLLARY #1: The virtual runtime of the entity needs to be
3722 	 * adjusted if re-weight at !0-lag point.
3723 	 *
3724 	 * Proof: For contradiction assume this is not true, so we can
3725 	 * re-weight without changing vruntime at !0-lag point.
3726 	 *
3727 	 *             Weight	VRuntime   Avg-VRuntime
3728 	 *     before    w          v            V
3729 	 *      after    w'         v'           V'
3730 	 *
3731 	 * Since lag needs to be preserved through re-weight:
3732 	 *
3733 	 *	lag = (V - v)*w = (V'- v')*w', where v = v'
3734 	 *	==>	V' = (V - v)*w/w' + v		(1)
3735 	 *
3736 	 * Let W be the total weight of the entities before reweight,
3737 	 * since V' is the new weighted average of entities:
3738 	 *
3739 	 *	V' = (WV + w'v - wv) / (W + w' - w)	(2)
3740 	 *
3741 	 * by using (1) & (2) we obtain:
3742 	 *
3743 	 *	(WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3744 	 *	==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3745 	 *	==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3746 	 *	==>	(V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3747 	 *
3748 	 * Since we are doing at !0-lag point which means V != v, we
3749 	 * can simplify (3):
3750 	 *
3751 	 *	==>	W / (W + w' - w) = w / w'
3752 	 *	==>	Ww' = Ww + ww' - ww
3753 	 *	==>	W * (w' - w) = w * (w' - w)
3754 	 *	==>	W = w	(re-weight indicates w' != w)
3755 	 *
3756 	 * So the cfs_rq contains only one entity, hence vruntime of
3757 	 * the entity @v should always equal to the cfs_rq's weighted
3758 	 * average vruntime @V, which means we will always re-weight
3759 	 * at 0-lag point, thus breach assumption. Proof completed.
3760 	 *
3761 	 *
3762 	 * COROLLARY #2: Re-weight does NOT affect weighted average
3763 	 * vruntime of all the entities.
3764 	 *
3765 	 * Proof: According to corollary #1, Eq. (1) should be:
3766 	 *
3767 	 *	(V - v)*w = (V' - v')*w'
3768 	 *	==>    v' = V' - (V - v)*w/w'		(4)
3769 	 *
3770 	 * According to the weighted average formula, we have:
3771 	 *
3772 	 *	V' = (WV - wv + w'v') / (W - w + w')
3773 	 *	   = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3774 	 *	   = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3775 	 *	   = (WV + w'V' - Vw) / (W - w + w')
3776 	 *
3777 	 *	==>  V'*(W - w + w') = WV + w'V' - Vw
3778 	 *	==>	V' * (W - w) = (W - w) * V	(5)
3779 	 *
3780 	 * If the entity is the only one in the cfs_rq, then reweight
3781 	 * always occurs at 0-lag point, so V won't change. Or else
3782 	 * there are other entities, hence W != w, then Eq. (5) turns
3783 	 * into V' = V. So V won't change in either case, proof done.
3784 	 *
3785 	 *
3786 	 * So according to corollary #1 & #2, the effect of re-weight
3787 	 * on vruntime should be:
3788 	 *
3789 	 *	v' = V' - (V - v) * w / w'		(4)
3790 	 *	   = V  - (V - v) * w / w'
3791 	 *	   = V  - vl * w / w'
3792 	 *	   = V  - vl'
3793 	 */
3794 	if (avruntime != se->vruntime) {
3795 		vlag = entity_lag(avruntime, se);
3796 		vlag = div_s64(vlag * old_weight, weight);
3797 		se->vruntime = avruntime - vlag;
3798 	}
3799 
3800 	/*
3801 	 * DEADLINE
3802 	 * ========
3803 	 *
3804 	 * When the weight changes, the virtual time slope changes and
3805 	 * we should adjust the relative virtual deadline accordingly.
3806 	 *
3807 	 *	d' = v' + (d - v)*w/w'
3808 	 *	   = V' - (V - v)*w/w' + (d - v)*w/w'
3809 	 *	   = V  - (V - v)*w/w' + (d - v)*w/w'
3810 	 *	   = V  + (d - V)*w/w'
3811 	 */
3812 	vslice = (s64)(se->deadline - avruntime);
3813 	vslice = div_s64(vslice * old_weight, weight);
3814 	se->deadline = avruntime + vslice;
3815 }
3816 
3817 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3818 			    unsigned long weight)
3819 {
3820 	bool curr = cfs_rq->curr == se;
3821 	u64 avruntime;
3822 
3823 	if (se->on_rq) {
3824 		/* commit outstanding execution time */
3825 		update_curr(cfs_rq);
3826 		avruntime = avg_vruntime(cfs_rq);
3827 		if (!curr)
3828 			__dequeue_entity(cfs_rq, se);
3829 		update_load_sub(&cfs_rq->load, se->load.weight);
3830 	}
3831 	dequeue_load_avg(cfs_rq, se);
3832 
3833 	if (se->on_rq) {
3834 		reweight_eevdf(se, avruntime, weight);
3835 	} else {
3836 		/*
3837 		 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3838 		 * we need to scale se->vlag when w_i changes.
3839 		 */
3840 		se->vlag = div_s64(se->vlag * se->load.weight, weight);
3841 	}
3842 
3843 	update_load_set(&se->load, weight);
3844 
3845 #ifdef CONFIG_SMP
3846 	do {
3847 		u32 divider = get_pelt_divider(&se->avg);
3848 
3849 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3850 	} while (0);
3851 #endif
3852 
3853 	enqueue_load_avg(cfs_rq, se);
3854 	if (se->on_rq) {
3855 		update_load_add(&cfs_rq->load, se->load.weight);
3856 		if (!curr)
3857 			__enqueue_entity(cfs_rq, se);
3858 
3859 		/*
3860 		 * The entity's vruntime has been adjusted, so let's check
3861 		 * whether the rq-wide min_vruntime needs updated too. Since
3862 		 * the calculations above require stable min_vruntime rather
3863 		 * than up-to-date one, we do the update at the end of the
3864 		 * reweight process.
3865 		 */
3866 		update_min_vruntime(cfs_rq);
3867 	}
3868 }
3869 
3870 void reweight_task(struct task_struct *p, const struct load_weight *lw)
3871 {
3872 	struct sched_entity *se = &p->se;
3873 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3874 	struct load_weight *load = &se->load;
3875 
3876 	reweight_entity(cfs_rq, se, lw->weight);
3877 	load->inv_weight = lw->inv_weight;
3878 }
3879 
3880 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3881 
3882 #ifdef CONFIG_FAIR_GROUP_SCHED
3883 #ifdef CONFIG_SMP
3884 /*
3885  * All this does is approximate the hierarchical proportion which includes that
3886  * global sum we all love to hate.
3887  *
3888  * That is, the weight of a group entity, is the proportional share of the
3889  * group weight based on the group runqueue weights. That is:
3890  *
3891  *                     tg->weight * grq->load.weight
3892  *   ge->load.weight = -----------------------------               (1)
3893  *                       \Sum grq->load.weight
3894  *
3895  * Now, because computing that sum is prohibitively expensive to compute (been
3896  * there, done that) we approximate it with this average stuff. The average
3897  * moves slower and therefore the approximation is cheaper and more stable.
3898  *
3899  * So instead of the above, we substitute:
3900  *
3901  *   grq->load.weight -> grq->avg.load_avg                         (2)
3902  *
3903  * which yields the following:
3904  *
3905  *                     tg->weight * grq->avg.load_avg
3906  *   ge->load.weight = ------------------------------              (3)
3907  *                             tg->load_avg
3908  *
3909  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3910  *
3911  * That is shares_avg, and it is right (given the approximation (2)).
3912  *
3913  * The problem with it is that because the average is slow -- it was designed
3914  * to be exactly that of course -- this leads to transients in boundary
3915  * conditions. In specific, the case where the group was idle and we start the
3916  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3917  * yielding bad latency etc..
3918  *
3919  * Now, in that special case (1) reduces to:
3920  *
3921  *                     tg->weight * grq->load.weight
3922  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3923  *                         grp->load.weight
3924  *
3925  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3926  *
3927  * So what we do is modify our approximation (3) to approach (4) in the (near)
3928  * UP case, like:
3929  *
3930  *   ge->load.weight =
3931  *
3932  *              tg->weight * grq->load.weight
3933  *     ---------------------------------------------------         (5)
3934  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3935  *
3936  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3937  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3938  *
3939  *
3940  *                     tg->weight * grq->load.weight
3941  *   ge->load.weight = -----------------------------		   (6)
3942  *                             tg_load_avg'
3943  *
3944  * Where:
3945  *
3946  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3947  *                  max(grq->load.weight, grq->avg.load_avg)
3948  *
3949  * And that is shares_weight and is icky. In the (near) UP case it approaches
3950  * (4) while in the normal case it approaches (3). It consistently
3951  * overestimates the ge->load.weight and therefore:
3952  *
3953  *   \Sum ge->load.weight >= tg->weight
3954  *
3955  * hence icky!
3956  */
3957 static long calc_group_shares(struct cfs_rq *cfs_rq)
3958 {
3959 	long tg_weight, tg_shares, load, shares;
3960 	struct task_group *tg = cfs_rq->tg;
3961 
3962 	tg_shares = READ_ONCE(tg->shares);
3963 
3964 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3965 
3966 	tg_weight = atomic_long_read(&tg->load_avg);
3967 
3968 	/* Ensure tg_weight >= load */
3969 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3970 	tg_weight += load;
3971 
3972 	shares = (tg_shares * load);
3973 	if (tg_weight)
3974 		shares /= tg_weight;
3975 
3976 	/*
3977 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3978 	 * of a group with small tg->shares value. It is a floor value which is
3979 	 * assigned as a minimum load.weight to the sched_entity representing
3980 	 * the group on a CPU.
3981 	 *
3982 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3983 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3984 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3985 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3986 	 * instead of 0.
3987 	 */
3988 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3989 }
3990 #endif /* CONFIG_SMP */
3991 
3992 /*
3993  * Recomputes the group entity based on the current state of its group
3994  * runqueue.
3995  */
3996 static void update_cfs_group(struct sched_entity *se)
3997 {
3998 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3999 	long shares;
4000 
4001 	if (!gcfs_rq)
4002 		return;
4003 
4004 	if (throttled_hierarchy(gcfs_rq))
4005 		return;
4006 
4007 #ifndef CONFIG_SMP
4008 	shares = READ_ONCE(gcfs_rq->tg->shares);
4009 #else
4010 	shares = calc_group_shares(gcfs_rq);
4011 #endif
4012 	if (unlikely(se->load.weight != shares))
4013 		reweight_entity(cfs_rq_of(se), se, shares);
4014 }
4015 
4016 #else /* CONFIG_FAIR_GROUP_SCHED */
4017 static inline void update_cfs_group(struct sched_entity *se)
4018 {
4019 }
4020 #endif /* CONFIG_FAIR_GROUP_SCHED */
4021 
4022 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
4023 {
4024 	struct rq *rq = rq_of(cfs_rq);
4025 
4026 	if (&rq->cfs == cfs_rq) {
4027 		/*
4028 		 * There are a few boundary cases this might miss but it should
4029 		 * get called often enough that that should (hopefully) not be
4030 		 * a real problem.
4031 		 *
4032 		 * It will not get called when we go idle, because the idle
4033 		 * thread is a different class (!fair), nor will the utilization
4034 		 * number include things like RT tasks.
4035 		 *
4036 		 * As is, the util number is not freq-invariant (we'd have to
4037 		 * implement arch_scale_freq_capacity() for that).
4038 		 *
4039 		 * See cpu_util_cfs().
4040 		 */
4041 		cpufreq_update_util(rq, flags);
4042 	}
4043 }
4044 
4045 #ifdef CONFIG_SMP
4046 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4047 {
4048 	if (sa->load_sum)
4049 		return false;
4050 
4051 	if (sa->util_sum)
4052 		return false;
4053 
4054 	if (sa->runnable_sum)
4055 		return false;
4056 
4057 	/*
4058 	 * _avg must be null when _sum are null because _avg = _sum / divider
4059 	 * Make sure that rounding and/or propagation of PELT values never
4060 	 * break this.
4061 	 */
4062 	SCHED_WARN_ON(sa->load_avg ||
4063 		      sa->util_avg ||
4064 		      sa->runnable_avg);
4065 
4066 	return true;
4067 }
4068 
4069 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4070 {
4071 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4072 				 cfs_rq->last_update_time_copy);
4073 }
4074 #ifdef CONFIG_FAIR_GROUP_SCHED
4075 /*
4076  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4077  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4078  * bottom-up, we only have to test whether the cfs_rq before us on the list
4079  * is our child.
4080  * If cfs_rq is not on the list, test whether a child needs its to be added to
4081  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4082  */
4083 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4084 {
4085 	struct cfs_rq *prev_cfs_rq;
4086 	struct list_head *prev;
4087 
4088 	if (cfs_rq->on_list) {
4089 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4090 	} else {
4091 		struct rq *rq = rq_of(cfs_rq);
4092 
4093 		prev = rq->tmp_alone_branch;
4094 	}
4095 
4096 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4097 
4098 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4099 }
4100 
4101 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4102 {
4103 	if (cfs_rq->load.weight)
4104 		return false;
4105 
4106 	if (!load_avg_is_decayed(&cfs_rq->avg))
4107 		return false;
4108 
4109 	if (child_cfs_rq_on_list(cfs_rq))
4110 		return false;
4111 
4112 	return true;
4113 }
4114 
4115 /**
4116  * update_tg_load_avg - update the tg's load avg
4117  * @cfs_rq: the cfs_rq whose avg changed
4118  *
4119  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4120  * However, because tg->load_avg is a global value there are performance
4121  * considerations.
4122  *
4123  * In order to avoid having to look at the other cfs_rq's, we use a
4124  * differential update where we store the last value we propagated. This in
4125  * turn allows skipping updates if the differential is 'small'.
4126  *
4127  * Updating tg's load_avg is necessary before update_cfs_share().
4128  */
4129 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4130 {
4131 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4132 
4133 	/*
4134 	 * No need to update load_avg for root_task_group as it is not used.
4135 	 */
4136 	if (cfs_rq->tg == &root_task_group)
4137 		return;
4138 
4139 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4140 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4141 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4142 	}
4143 }
4144 
4145 /*
4146  * Called within set_task_rq() right before setting a task's CPU. The
4147  * caller only guarantees p->pi_lock is held; no other assumptions,
4148  * including the state of rq->lock, should be made.
4149  */
4150 void set_task_rq_fair(struct sched_entity *se,
4151 		      struct cfs_rq *prev, struct cfs_rq *next)
4152 {
4153 	u64 p_last_update_time;
4154 	u64 n_last_update_time;
4155 
4156 	if (!sched_feat(ATTACH_AGE_LOAD))
4157 		return;
4158 
4159 	/*
4160 	 * We are supposed to update the task to "current" time, then its up to
4161 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4162 	 * getting what current time is, so simply throw away the out-of-date
4163 	 * time. This will result in the wakee task is less decayed, but giving
4164 	 * the wakee more load sounds not bad.
4165 	 */
4166 	if (!(se->avg.last_update_time && prev))
4167 		return;
4168 
4169 	p_last_update_time = cfs_rq_last_update_time(prev);
4170 	n_last_update_time = cfs_rq_last_update_time(next);
4171 
4172 	__update_load_avg_blocked_se(p_last_update_time, se);
4173 	se->avg.last_update_time = n_last_update_time;
4174 }
4175 
4176 /*
4177  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4178  * propagate its contribution. The key to this propagation is the invariant
4179  * that for each group:
4180  *
4181  *   ge->avg == grq->avg						(1)
4182  *
4183  * _IFF_ we look at the pure running and runnable sums. Because they
4184  * represent the very same entity, just at different points in the hierarchy.
4185  *
4186  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4187  * and simply copies the running/runnable sum over (but still wrong, because
4188  * the group entity and group rq do not have their PELT windows aligned).
4189  *
4190  * However, update_tg_cfs_load() is more complex. So we have:
4191  *
4192  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4193  *
4194  * And since, like util, the runnable part should be directly transferable,
4195  * the following would _appear_ to be the straight forward approach:
4196  *
4197  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4198  *
4199  * And per (1) we have:
4200  *
4201  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4202  *
4203  * Which gives:
4204  *
4205  *                      ge->load.weight * grq->avg.load_avg
4206  *   ge->avg.load_avg = -----------------------------------		(4)
4207  *                               grq->load.weight
4208  *
4209  * Except that is wrong!
4210  *
4211  * Because while for entities historical weight is not important and we
4212  * really only care about our future and therefore can consider a pure
4213  * runnable sum, runqueues can NOT do this.
4214  *
4215  * We specifically want runqueues to have a load_avg that includes
4216  * historical weights. Those represent the blocked load, the load we expect
4217  * to (shortly) return to us. This only works by keeping the weights as
4218  * integral part of the sum. We therefore cannot decompose as per (3).
4219  *
4220  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4221  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4222  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4223  * runnable section of these tasks overlap (or not). If they were to perfectly
4224  * align the rq as a whole would be runnable 2/3 of the time. If however we
4225  * always have at least 1 runnable task, the rq as a whole is always runnable.
4226  *
4227  * So we'll have to approximate.. :/
4228  *
4229  * Given the constraint:
4230  *
4231  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4232  *
4233  * We can construct a rule that adds runnable to a rq by assuming minimal
4234  * overlap.
4235  *
4236  * On removal, we'll assume each task is equally runnable; which yields:
4237  *
4238  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4239  *
4240  * XXX: only do this for the part of runnable > running ?
4241  *
4242  */
4243 static inline void
4244 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4245 {
4246 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4247 	u32 new_sum, divider;
4248 
4249 	/* Nothing to update */
4250 	if (!delta_avg)
4251 		return;
4252 
4253 	/*
4254 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4255 	 * See ___update_load_avg() for details.
4256 	 */
4257 	divider = get_pelt_divider(&cfs_rq->avg);
4258 
4259 
4260 	/* Set new sched_entity's utilization */
4261 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4262 	new_sum = se->avg.util_avg * divider;
4263 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4264 	se->avg.util_sum = new_sum;
4265 
4266 	/* Update parent cfs_rq utilization */
4267 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4268 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4269 
4270 	/* See update_cfs_rq_load_avg() */
4271 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4272 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4273 }
4274 
4275 static inline void
4276 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4277 {
4278 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4279 	u32 new_sum, divider;
4280 
4281 	/* Nothing to update */
4282 	if (!delta_avg)
4283 		return;
4284 
4285 	/*
4286 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4287 	 * See ___update_load_avg() for details.
4288 	 */
4289 	divider = get_pelt_divider(&cfs_rq->avg);
4290 
4291 	/* Set new sched_entity's runnable */
4292 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4293 	new_sum = se->avg.runnable_avg * divider;
4294 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4295 	se->avg.runnable_sum = new_sum;
4296 
4297 	/* Update parent cfs_rq runnable */
4298 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4299 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4300 	/* See update_cfs_rq_load_avg() */
4301 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4302 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4303 }
4304 
4305 static inline void
4306 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4307 {
4308 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4309 	unsigned long load_avg;
4310 	u64 load_sum = 0;
4311 	s64 delta_sum;
4312 	u32 divider;
4313 
4314 	if (!runnable_sum)
4315 		return;
4316 
4317 	gcfs_rq->prop_runnable_sum = 0;
4318 
4319 	/*
4320 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4321 	 * See ___update_load_avg() for details.
4322 	 */
4323 	divider = get_pelt_divider(&cfs_rq->avg);
4324 
4325 	if (runnable_sum >= 0) {
4326 		/*
4327 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4328 		 * the CPU is saturated running == runnable.
4329 		 */
4330 		runnable_sum += se->avg.load_sum;
4331 		runnable_sum = min_t(long, runnable_sum, divider);
4332 	} else {
4333 		/*
4334 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4335 		 * assuming all tasks are equally runnable.
4336 		 */
4337 		if (scale_load_down(gcfs_rq->load.weight)) {
4338 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4339 				scale_load_down(gcfs_rq->load.weight));
4340 		}
4341 
4342 		/* But make sure to not inflate se's runnable */
4343 		runnable_sum = min(se->avg.load_sum, load_sum);
4344 	}
4345 
4346 	/*
4347 	 * runnable_sum can't be lower than running_sum
4348 	 * Rescale running sum to be in the same range as runnable sum
4349 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4350 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4351 	 */
4352 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4353 	runnable_sum = max(runnable_sum, running_sum);
4354 
4355 	load_sum = se_weight(se) * runnable_sum;
4356 	load_avg = div_u64(load_sum, divider);
4357 
4358 	delta_avg = load_avg - se->avg.load_avg;
4359 	if (!delta_avg)
4360 		return;
4361 
4362 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4363 
4364 	se->avg.load_sum = runnable_sum;
4365 	se->avg.load_avg = load_avg;
4366 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4367 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4368 	/* See update_cfs_rq_load_avg() */
4369 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4370 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4371 }
4372 
4373 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4374 {
4375 	cfs_rq->propagate = 1;
4376 	cfs_rq->prop_runnable_sum += runnable_sum;
4377 }
4378 
4379 /* Update task and its cfs_rq load average */
4380 static inline int propagate_entity_load_avg(struct sched_entity *se)
4381 {
4382 	struct cfs_rq *cfs_rq, *gcfs_rq;
4383 
4384 	if (entity_is_task(se))
4385 		return 0;
4386 
4387 	gcfs_rq = group_cfs_rq(se);
4388 	if (!gcfs_rq->propagate)
4389 		return 0;
4390 
4391 	gcfs_rq->propagate = 0;
4392 
4393 	cfs_rq = cfs_rq_of(se);
4394 
4395 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4396 
4397 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4398 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4399 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4400 
4401 	trace_pelt_cfs_tp(cfs_rq);
4402 	trace_pelt_se_tp(se);
4403 
4404 	return 1;
4405 }
4406 
4407 /*
4408  * Check if we need to update the load and the utilization of a blocked
4409  * group_entity:
4410  */
4411 static inline bool skip_blocked_update(struct sched_entity *se)
4412 {
4413 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4414 
4415 	/*
4416 	 * If sched_entity still have not zero load or utilization, we have to
4417 	 * decay it:
4418 	 */
4419 	if (se->avg.load_avg || se->avg.util_avg)
4420 		return false;
4421 
4422 	/*
4423 	 * If there is a pending propagation, we have to update the load and
4424 	 * the utilization of the sched_entity:
4425 	 */
4426 	if (gcfs_rq->propagate)
4427 		return false;
4428 
4429 	/*
4430 	 * Otherwise, the load and the utilization of the sched_entity is
4431 	 * already zero and there is no pending propagation, so it will be a
4432 	 * waste of time to try to decay it:
4433 	 */
4434 	return true;
4435 }
4436 
4437 #else /* CONFIG_FAIR_GROUP_SCHED */
4438 
4439 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4440 
4441 static inline int propagate_entity_load_avg(struct sched_entity *se)
4442 {
4443 	return 0;
4444 }
4445 
4446 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4447 
4448 #endif /* CONFIG_FAIR_GROUP_SCHED */
4449 
4450 #ifdef CONFIG_NO_HZ_COMMON
4451 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4452 {
4453 	u64 throttled = 0, now, lut;
4454 	struct cfs_rq *cfs_rq;
4455 	struct rq *rq;
4456 	bool is_idle;
4457 
4458 	if (load_avg_is_decayed(&se->avg))
4459 		return;
4460 
4461 	cfs_rq = cfs_rq_of(se);
4462 	rq = rq_of(cfs_rq);
4463 
4464 	rcu_read_lock();
4465 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4466 	rcu_read_unlock();
4467 
4468 	/*
4469 	 * The lag estimation comes with a cost we don't want to pay all the
4470 	 * time. Hence, limiting to the case where the source CPU is idle and
4471 	 * we know we are at the greatest risk to have an outdated clock.
4472 	 */
4473 	if (!is_idle)
4474 		return;
4475 
4476 	/*
4477 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4478 	 *
4479 	 *   last_update_time (the cfs_rq's last_update_time)
4480 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4481 	 *      = rq_clock_pelt()@cfs_rq_idle
4482 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4483 	 *
4484 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4485 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4486 	 *
4487 	 *   rq_idle_lag (delta between now and rq's update)
4488 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4489 	 *
4490 	 * We can then write:
4491 	 *
4492 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4493 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4494 	 * Where:
4495 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4496 	 *      rq_clock()@rq_idle      is rq->clock_idle
4497 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4498 	 *                              is cfs_rq->throttled_pelt_idle
4499 	 */
4500 
4501 #ifdef CONFIG_CFS_BANDWIDTH
4502 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4503 	/* The clock has been stopped for throttling */
4504 	if (throttled == U64_MAX)
4505 		return;
4506 #endif
4507 	now = u64_u32_load(rq->clock_pelt_idle);
4508 	/*
4509 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4510 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4511 	 * which lead to an underestimation. The opposite would lead to an
4512 	 * overestimation.
4513 	 */
4514 	smp_rmb();
4515 	lut = cfs_rq_last_update_time(cfs_rq);
4516 
4517 	now -= throttled;
4518 	if (now < lut)
4519 		/*
4520 		 * cfs_rq->avg.last_update_time is more recent than our
4521 		 * estimation, let's use it.
4522 		 */
4523 		now = lut;
4524 	else
4525 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4526 
4527 	__update_load_avg_blocked_se(now, se);
4528 }
4529 #else
4530 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4531 #endif
4532 
4533 /**
4534  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4535  * @now: current time, as per cfs_rq_clock_pelt()
4536  * @cfs_rq: cfs_rq to update
4537  *
4538  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4539  * avg. The immediate corollary is that all (fair) tasks must be attached.
4540  *
4541  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4542  *
4543  * Return: true if the load decayed or we removed load.
4544  *
4545  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4546  * call update_tg_load_avg() when this function returns true.
4547  */
4548 static inline int
4549 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4550 {
4551 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4552 	struct sched_avg *sa = &cfs_rq->avg;
4553 	int decayed = 0;
4554 
4555 	if (cfs_rq->removed.nr) {
4556 		unsigned long r;
4557 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4558 
4559 		raw_spin_lock(&cfs_rq->removed.lock);
4560 		swap(cfs_rq->removed.util_avg, removed_util);
4561 		swap(cfs_rq->removed.load_avg, removed_load);
4562 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4563 		cfs_rq->removed.nr = 0;
4564 		raw_spin_unlock(&cfs_rq->removed.lock);
4565 
4566 		r = removed_load;
4567 		sub_positive(&sa->load_avg, r);
4568 		sub_positive(&sa->load_sum, r * divider);
4569 		/* See sa->util_sum below */
4570 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4571 
4572 		r = removed_util;
4573 		sub_positive(&sa->util_avg, r);
4574 		sub_positive(&sa->util_sum, r * divider);
4575 		/*
4576 		 * Because of rounding, se->util_sum might ends up being +1 more than
4577 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4578 		 * a lot of tasks with the rounding problem between 2 updates of
4579 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4580 		 * cfs_util_avg is not.
4581 		 * Check that util_sum is still above its lower bound for the new
4582 		 * util_avg. Given that period_contrib might have moved since the last
4583 		 * sync, we are only sure that util_sum must be above or equal to
4584 		 *    util_avg * minimum possible divider
4585 		 */
4586 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4587 
4588 		r = removed_runnable;
4589 		sub_positive(&sa->runnable_avg, r);
4590 		sub_positive(&sa->runnable_sum, r * divider);
4591 		/* See sa->util_sum above */
4592 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4593 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4594 
4595 		/*
4596 		 * removed_runnable is the unweighted version of removed_load so we
4597 		 * can use it to estimate removed_load_sum.
4598 		 */
4599 		add_tg_cfs_propagate(cfs_rq,
4600 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4601 
4602 		decayed = 1;
4603 	}
4604 
4605 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4606 	u64_u32_store_copy(sa->last_update_time,
4607 			   cfs_rq->last_update_time_copy,
4608 			   sa->last_update_time);
4609 	return decayed;
4610 }
4611 
4612 /**
4613  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4614  * @cfs_rq: cfs_rq to attach to
4615  * @se: sched_entity to attach
4616  *
4617  * Must call update_cfs_rq_load_avg() before this, since we rely on
4618  * cfs_rq->avg.last_update_time being current.
4619  */
4620 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4621 {
4622 	/*
4623 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4624 	 * See ___update_load_avg() for details.
4625 	 */
4626 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4627 
4628 	/*
4629 	 * When we attach the @se to the @cfs_rq, we must align the decay
4630 	 * window because without that, really weird and wonderful things can
4631 	 * happen.
4632 	 *
4633 	 * XXX illustrate
4634 	 */
4635 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4636 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4637 
4638 	/*
4639 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4640 	 * period_contrib. This isn't strictly correct, but since we're
4641 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4642 	 * _sum a little.
4643 	 */
4644 	se->avg.util_sum = se->avg.util_avg * divider;
4645 
4646 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4647 
4648 	se->avg.load_sum = se->avg.load_avg * divider;
4649 	if (se_weight(se) < se->avg.load_sum)
4650 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4651 	else
4652 		se->avg.load_sum = 1;
4653 
4654 	enqueue_load_avg(cfs_rq, se);
4655 	cfs_rq->avg.util_avg += se->avg.util_avg;
4656 	cfs_rq->avg.util_sum += se->avg.util_sum;
4657 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4658 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4659 
4660 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4661 
4662 	cfs_rq_util_change(cfs_rq, 0);
4663 
4664 	trace_pelt_cfs_tp(cfs_rq);
4665 }
4666 
4667 /**
4668  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4669  * @cfs_rq: cfs_rq to detach from
4670  * @se: sched_entity to detach
4671  *
4672  * Must call update_cfs_rq_load_avg() before this, since we rely on
4673  * cfs_rq->avg.last_update_time being current.
4674  */
4675 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4676 {
4677 	dequeue_load_avg(cfs_rq, se);
4678 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4679 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4680 	/* See update_cfs_rq_load_avg() */
4681 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4682 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4683 
4684 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4685 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4686 	/* See update_cfs_rq_load_avg() */
4687 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4688 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4689 
4690 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4691 
4692 	cfs_rq_util_change(cfs_rq, 0);
4693 
4694 	trace_pelt_cfs_tp(cfs_rq);
4695 }
4696 
4697 /*
4698  * Optional action to be done while updating the load average
4699  */
4700 #define UPDATE_TG	0x1
4701 #define SKIP_AGE_LOAD	0x2
4702 #define DO_ATTACH	0x4
4703 #define DO_DETACH	0x8
4704 
4705 /* Update task and its cfs_rq load average */
4706 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4707 {
4708 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4709 	int decayed;
4710 
4711 	/*
4712 	 * Track task load average for carrying it to new CPU after migrated, and
4713 	 * track group sched_entity load average for task_h_load calc in migration
4714 	 */
4715 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4716 		__update_load_avg_se(now, cfs_rq, se);
4717 
4718 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4719 	decayed |= propagate_entity_load_avg(se);
4720 
4721 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4722 
4723 		/*
4724 		 * DO_ATTACH means we're here from enqueue_entity().
4725 		 * !last_update_time means we've passed through
4726 		 * migrate_task_rq_fair() indicating we migrated.
4727 		 *
4728 		 * IOW we're enqueueing a task on a new CPU.
4729 		 */
4730 		attach_entity_load_avg(cfs_rq, se);
4731 		update_tg_load_avg(cfs_rq);
4732 
4733 	} else if (flags & DO_DETACH) {
4734 		/*
4735 		 * DO_DETACH means we're here from dequeue_entity()
4736 		 * and we are migrating task out of the CPU.
4737 		 */
4738 		detach_entity_load_avg(cfs_rq, se);
4739 		update_tg_load_avg(cfs_rq);
4740 	} else if (decayed) {
4741 		cfs_rq_util_change(cfs_rq, 0);
4742 
4743 		if (flags & UPDATE_TG)
4744 			update_tg_load_avg(cfs_rq);
4745 	}
4746 }
4747 
4748 /*
4749  * Synchronize entity load avg of dequeued entity without locking
4750  * the previous rq.
4751  */
4752 static void sync_entity_load_avg(struct sched_entity *se)
4753 {
4754 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4755 	u64 last_update_time;
4756 
4757 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4758 	__update_load_avg_blocked_se(last_update_time, se);
4759 }
4760 
4761 /*
4762  * Task first catches up with cfs_rq, and then subtract
4763  * itself from the cfs_rq (task must be off the queue now).
4764  */
4765 static void remove_entity_load_avg(struct sched_entity *se)
4766 {
4767 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4768 	unsigned long flags;
4769 
4770 	/*
4771 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4772 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4773 	 * so we can remove unconditionally.
4774 	 */
4775 
4776 	sync_entity_load_avg(se);
4777 
4778 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4779 	++cfs_rq->removed.nr;
4780 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4781 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4782 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4783 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4784 }
4785 
4786 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4787 {
4788 	return cfs_rq->avg.runnable_avg;
4789 }
4790 
4791 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4792 {
4793 	return cfs_rq->avg.load_avg;
4794 }
4795 
4796 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4797 
4798 static inline unsigned long task_util(struct task_struct *p)
4799 {
4800 	return READ_ONCE(p->se.avg.util_avg);
4801 }
4802 
4803 static inline unsigned long _task_util_est(struct task_struct *p)
4804 {
4805 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
4806 
4807 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4808 }
4809 
4810 static inline unsigned long task_util_est(struct task_struct *p)
4811 {
4812 	return max(task_util(p), _task_util_est(p));
4813 }
4814 
4815 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4816 				    struct task_struct *p)
4817 {
4818 	unsigned int enqueued;
4819 
4820 	if (!sched_feat(UTIL_EST))
4821 		return;
4822 
4823 	/* Update root cfs_rq's estimated utilization */
4824 	enqueued  = cfs_rq->avg.util_est.enqueued;
4825 	enqueued += _task_util_est(p);
4826 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4827 
4828 	trace_sched_util_est_cfs_tp(cfs_rq);
4829 }
4830 
4831 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4832 				    struct task_struct *p)
4833 {
4834 	unsigned int enqueued;
4835 
4836 	if (!sched_feat(UTIL_EST))
4837 		return;
4838 
4839 	/* Update root cfs_rq's estimated utilization */
4840 	enqueued  = cfs_rq->avg.util_est.enqueued;
4841 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4842 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4843 
4844 	trace_sched_util_est_cfs_tp(cfs_rq);
4845 }
4846 
4847 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4848 
4849 /*
4850  * Check if a (signed) value is within a specified (unsigned) margin,
4851  * based on the observation that:
4852  *
4853  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4854  *
4855  * NOTE: this only works when value + margin < INT_MAX.
4856  */
4857 static inline bool within_margin(int value, int margin)
4858 {
4859 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4860 }
4861 
4862 static inline void util_est_update(struct cfs_rq *cfs_rq,
4863 				   struct task_struct *p,
4864 				   bool task_sleep)
4865 {
4866 	long last_ewma_diff, last_enqueued_diff;
4867 	struct util_est ue;
4868 
4869 	if (!sched_feat(UTIL_EST))
4870 		return;
4871 
4872 	/*
4873 	 * Skip update of task's estimated utilization when the task has not
4874 	 * yet completed an activation, e.g. being migrated.
4875 	 */
4876 	if (!task_sleep)
4877 		return;
4878 
4879 	/*
4880 	 * If the PELT values haven't changed since enqueue time,
4881 	 * skip the util_est update.
4882 	 */
4883 	ue = p->se.avg.util_est;
4884 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4885 		return;
4886 
4887 	last_enqueued_diff = ue.enqueued;
4888 
4889 	/*
4890 	 * Reset EWMA on utilization increases, the moving average is used only
4891 	 * to smooth utilization decreases.
4892 	 */
4893 	ue.enqueued = task_util(p);
4894 	if (sched_feat(UTIL_EST_FASTUP)) {
4895 		if (ue.ewma < ue.enqueued) {
4896 			ue.ewma = ue.enqueued;
4897 			goto done;
4898 		}
4899 	}
4900 
4901 	/*
4902 	 * Skip update of task's estimated utilization when its members are
4903 	 * already ~1% close to its last activation value.
4904 	 */
4905 	last_ewma_diff = ue.enqueued - ue.ewma;
4906 	last_enqueued_diff -= ue.enqueued;
4907 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4908 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4909 			goto done;
4910 
4911 		return;
4912 	}
4913 
4914 	/*
4915 	 * To avoid overestimation of actual task utilization, skip updates if
4916 	 * we cannot grant there is idle time in this CPU.
4917 	 */
4918 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4919 		return;
4920 
4921 	/*
4922 	 * Update Task's estimated utilization
4923 	 *
4924 	 * When *p completes an activation we can consolidate another sample
4925 	 * of the task size. This is done by storing the current PELT value
4926 	 * as ue.enqueued and by using this value to update the Exponential
4927 	 * Weighted Moving Average (EWMA):
4928 	 *
4929 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4930 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4931 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4932 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4933 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4934 	 *
4935 	 * Where 'w' is the weight of new samples, which is configured to be
4936 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4937 	 */
4938 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4939 	ue.ewma  += last_ewma_diff;
4940 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4941 done:
4942 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4943 	WRITE_ONCE(p->se.avg.util_est, ue);
4944 
4945 	trace_sched_util_est_se_tp(&p->se);
4946 }
4947 
4948 static inline int util_fits_cpu(unsigned long util,
4949 				unsigned long uclamp_min,
4950 				unsigned long uclamp_max,
4951 				int cpu)
4952 {
4953 	unsigned long capacity_orig, capacity_orig_thermal;
4954 	unsigned long capacity = capacity_of(cpu);
4955 	bool fits, uclamp_max_fits;
4956 
4957 	/*
4958 	 * Check if the real util fits without any uclamp boost/cap applied.
4959 	 */
4960 	fits = fits_capacity(util, capacity);
4961 
4962 	if (!uclamp_is_used())
4963 		return fits;
4964 
4965 	/*
4966 	 * We must use capacity_orig_of() for comparing against uclamp_min and
4967 	 * uclamp_max. We only care about capacity pressure (by using
4968 	 * capacity_of()) for comparing against the real util.
4969 	 *
4970 	 * If a task is boosted to 1024 for example, we don't want a tiny
4971 	 * pressure to skew the check whether it fits a CPU or not.
4972 	 *
4973 	 * Similarly if a task is capped to capacity_orig_of(little_cpu), it
4974 	 * should fit a little cpu even if there's some pressure.
4975 	 *
4976 	 * Only exception is for thermal pressure since it has a direct impact
4977 	 * on available OPP of the system.
4978 	 *
4979 	 * We honour it for uclamp_min only as a drop in performance level
4980 	 * could result in not getting the requested minimum performance level.
4981 	 *
4982 	 * For uclamp_max, we can tolerate a drop in performance level as the
4983 	 * goal is to cap the task. So it's okay if it's getting less.
4984 	 */
4985 	capacity_orig = capacity_orig_of(cpu);
4986 	capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
4987 
4988 	/*
4989 	 * We want to force a task to fit a cpu as implied by uclamp_max.
4990 	 * But we do have some corner cases to cater for..
4991 	 *
4992 	 *
4993 	 *                                 C=z
4994 	 *   |                             ___
4995 	 *   |                  C=y       |   |
4996 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
4997 	 *   |      C=x        |   |      |   |
4998 	 *   |      ___        |   |      |   |
4999 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
5000 	 *   |     |   |       |   |      |   |
5001 	 *   |     |   |       |   |      |   |
5002 	 *   +----------------------------------------
5003 	 *         cpu0        cpu1       cpu2
5004 	 *
5005 	 *   In the above example if a task is capped to a specific performance
5006 	 *   point, y, then when:
5007 	 *
5008 	 *   * util = 80% of x then it does not fit on cpu0 and should migrate
5009 	 *     to cpu1
5010 	 *   * util = 80% of y then it is forced to fit on cpu1 to honour
5011 	 *     uclamp_max request.
5012 	 *
5013 	 *   which is what we're enforcing here. A task always fits if
5014 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5015 	 *   the normal upmigration rules should withhold still.
5016 	 *
5017 	 *   Only exception is when we are on max capacity, then we need to be
5018 	 *   careful not to block overutilized state. This is so because:
5019 	 *
5020 	 *     1. There's no concept of capping at max_capacity! We can't go
5021 	 *        beyond this performance level anyway.
5022 	 *     2. The system is being saturated when we're operating near
5023 	 *        max capacity, it doesn't make sense to block overutilized.
5024 	 */
5025 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5026 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5027 	fits = fits || uclamp_max_fits;
5028 
5029 	/*
5030 	 *
5031 	 *                                 C=z
5032 	 *   |                             ___       (region a, capped, util >= uclamp_max)
5033 	 *   |                  C=y       |   |
5034 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5035 	 *   |      C=x        |   |      |   |
5036 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
5037 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5038 	 *   |     |   |       |   |      |   |
5039 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
5040 	 *   +----------------------------------------
5041 	 *         cpu0        cpu1       cpu2
5042 	 *
5043 	 * a) If util > uclamp_max, then we're capped, we don't care about
5044 	 *    actual fitness value here. We only care if uclamp_max fits
5045 	 *    capacity without taking margin/pressure into account.
5046 	 *    See comment above.
5047 	 *
5048 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5049 	 *    fits_capacity() rules apply. Except we need to ensure that we
5050 	 *    enforce we remain within uclamp_max, see comment above.
5051 	 *
5052 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5053 	 *    need to take into account the boosted value fits the CPU without
5054 	 *    taking margin/pressure into account.
5055 	 *
5056 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5057 	 * just need to consider an extra check for case (c) after ensuring we
5058 	 * handle the case uclamp_min > uclamp_max.
5059 	 */
5060 	uclamp_min = min(uclamp_min, uclamp_max);
5061 	if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
5062 		return -1;
5063 
5064 	return fits;
5065 }
5066 
5067 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5068 {
5069 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5070 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5071 	unsigned long util = task_util_est(p);
5072 	/*
5073 	 * Return true only if the cpu fully fits the task requirements, which
5074 	 * include the utilization but also the performance hints.
5075 	 */
5076 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5077 }
5078 
5079 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5080 {
5081 	if (!sched_asym_cpucap_active())
5082 		return;
5083 
5084 	if (!p || p->nr_cpus_allowed == 1) {
5085 		rq->misfit_task_load = 0;
5086 		return;
5087 	}
5088 
5089 	if (task_fits_cpu(p, cpu_of(rq))) {
5090 		rq->misfit_task_load = 0;
5091 		return;
5092 	}
5093 
5094 	/*
5095 	 * Make sure that misfit_task_load will not be null even if
5096 	 * task_h_load() returns 0.
5097 	 */
5098 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5099 }
5100 
5101 #else /* CONFIG_SMP */
5102 
5103 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5104 {
5105 	return !cfs_rq->nr_running;
5106 }
5107 
5108 #define UPDATE_TG	0x0
5109 #define SKIP_AGE_LOAD	0x0
5110 #define DO_ATTACH	0x0
5111 #define DO_DETACH	0x0
5112 
5113 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5114 {
5115 	cfs_rq_util_change(cfs_rq, 0);
5116 }
5117 
5118 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5119 
5120 static inline void
5121 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5122 static inline void
5123 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5124 
5125 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
5126 {
5127 	return 0;
5128 }
5129 
5130 static inline void
5131 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5132 
5133 static inline void
5134 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5135 
5136 static inline void
5137 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5138 		bool task_sleep) {}
5139 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5140 
5141 #endif /* CONFIG_SMP */
5142 
5143 static void
5144 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5145 {
5146 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5147 	s64 lag = 0;
5148 
5149 	se->slice = sysctl_sched_base_slice;
5150 	vslice = calc_delta_fair(se->slice, se);
5151 
5152 	/*
5153 	 * Due to how V is constructed as the weighted average of entities,
5154 	 * adding tasks with positive lag, or removing tasks with negative lag
5155 	 * will move 'time' backwards, this can screw around with the lag of
5156 	 * other tasks.
5157 	 *
5158 	 * EEVDF: placement strategy #1 / #2
5159 	 */
5160 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
5161 		struct sched_entity *curr = cfs_rq->curr;
5162 		unsigned long load;
5163 
5164 		lag = se->vlag;
5165 
5166 		/*
5167 		 * If we want to place a task and preserve lag, we have to
5168 		 * consider the effect of the new entity on the weighted
5169 		 * average and compensate for this, otherwise lag can quickly
5170 		 * evaporate.
5171 		 *
5172 		 * Lag is defined as:
5173 		 *
5174 		 *   lag_i = S - s_i = w_i * (V - v_i)
5175 		 *
5176 		 * To avoid the 'w_i' term all over the place, we only track
5177 		 * the virtual lag:
5178 		 *
5179 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5180 		 *
5181 		 * And we take V to be the weighted average of all v:
5182 		 *
5183 		 *   V = (\Sum w_j*v_j) / W
5184 		 *
5185 		 * Where W is: \Sum w_j
5186 		 *
5187 		 * Then, the weighted average after adding an entity with lag
5188 		 * vl_i is given by:
5189 		 *
5190 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5191 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5192 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5193 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
5194 		 *      = V - w_i*vl_i / (W + w_i)
5195 		 *
5196 		 * And the actual lag after adding an entity with vl_i is:
5197 		 *
5198 		 *   vl'_i = V' - v_i
5199 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5200 		 *         = vl_i - w_i*vl_i / (W + w_i)
5201 		 *
5202 		 * Which is strictly less than vl_i. So in order to preserve lag
5203 		 * we should inflate the lag before placement such that the
5204 		 * effective lag after placement comes out right.
5205 		 *
5206 		 * As such, invert the above relation for vl'_i to get the vl_i
5207 		 * we need to use such that the lag after placement is the lag
5208 		 * we computed before dequeue.
5209 		 *
5210 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5211 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5212 		 *
5213 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5214 		 *                   = W*vl_i
5215 		 *
5216 		 *   vl_i = (W + w_i)*vl'_i / W
5217 		 */
5218 		load = cfs_rq->avg_load;
5219 		if (curr && curr->on_rq)
5220 			load += scale_load_down(curr->load.weight);
5221 
5222 		lag *= load + scale_load_down(se->load.weight);
5223 		if (WARN_ON_ONCE(!load))
5224 			load = 1;
5225 		lag = div_s64(lag, load);
5226 	}
5227 
5228 	se->vruntime = vruntime - lag;
5229 
5230 	/*
5231 	 * When joining the competition; the exisiting tasks will be,
5232 	 * on average, halfway through their slice, as such start tasks
5233 	 * off with half a slice to ease into the competition.
5234 	 */
5235 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5236 		vslice /= 2;
5237 
5238 	/*
5239 	 * EEVDF: vd_i = ve_i + r_i/w_i
5240 	 */
5241 	se->deadline = se->vruntime + vslice;
5242 }
5243 
5244 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5245 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5246 
5247 static inline bool cfs_bandwidth_used(void);
5248 
5249 static void
5250 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5251 {
5252 	bool curr = cfs_rq->curr == se;
5253 
5254 	/*
5255 	 * If we're the current task, we must renormalise before calling
5256 	 * update_curr().
5257 	 */
5258 	if (curr)
5259 		place_entity(cfs_rq, se, flags);
5260 
5261 	update_curr(cfs_rq);
5262 
5263 	/*
5264 	 * When enqueuing a sched_entity, we must:
5265 	 *   - Update loads to have both entity and cfs_rq synced with now.
5266 	 *   - For group_entity, update its runnable_weight to reflect the new
5267 	 *     h_nr_running of its group cfs_rq.
5268 	 *   - For group_entity, update its weight to reflect the new share of
5269 	 *     its group cfs_rq
5270 	 *   - Add its new weight to cfs_rq->load.weight
5271 	 */
5272 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5273 	se_update_runnable(se);
5274 	/*
5275 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5276 	 * but update_cfs_group() here will re-adjust the weight and have to
5277 	 * undo/redo all that. Seems wasteful.
5278 	 */
5279 	update_cfs_group(se);
5280 
5281 	/*
5282 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5283 	 * we can place the entity.
5284 	 */
5285 	if (!curr)
5286 		place_entity(cfs_rq, se, flags);
5287 
5288 	account_entity_enqueue(cfs_rq, se);
5289 
5290 	/* Entity has migrated, no longer consider this task hot */
5291 	if (flags & ENQUEUE_MIGRATED)
5292 		se->exec_start = 0;
5293 
5294 	check_schedstat_required();
5295 	update_stats_enqueue_fair(cfs_rq, se, flags);
5296 	if (!curr)
5297 		__enqueue_entity(cfs_rq, se);
5298 	se->on_rq = 1;
5299 
5300 	if (cfs_rq->nr_running == 1) {
5301 		check_enqueue_throttle(cfs_rq);
5302 		if (!throttled_hierarchy(cfs_rq)) {
5303 			list_add_leaf_cfs_rq(cfs_rq);
5304 		} else {
5305 #ifdef CONFIG_CFS_BANDWIDTH
5306 			struct rq *rq = rq_of(cfs_rq);
5307 
5308 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5309 				cfs_rq->throttled_clock = rq_clock(rq);
5310 			if (!cfs_rq->throttled_clock_self)
5311 				cfs_rq->throttled_clock_self = rq_clock(rq);
5312 #endif
5313 		}
5314 	}
5315 }
5316 
5317 static void __clear_buddies_next(struct sched_entity *se)
5318 {
5319 	for_each_sched_entity(se) {
5320 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5321 		if (cfs_rq->next != se)
5322 			break;
5323 
5324 		cfs_rq->next = NULL;
5325 	}
5326 }
5327 
5328 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5329 {
5330 	if (cfs_rq->next == se)
5331 		__clear_buddies_next(se);
5332 }
5333 
5334 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5335 
5336 static void
5337 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5338 {
5339 	int action = UPDATE_TG;
5340 
5341 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5342 		action |= DO_DETACH;
5343 
5344 	/*
5345 	 * Update run-time statistics of the 'current'.
5346 	 */
5347 	update_curr(cfs_rq);
5348 
5349 	/*
5350 	 * When dequeuing a sched_entity, we must:
5351 	 *   - Update loads to have both entity and cfs_rq synced with now.
5352 	 *   - For group_entity, update its runnable_weight to reflect the new
5353 	 *     h_nr_running of its group cfs_rq.
5354 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5355 	 *   - For group entity, update its weight to reflect the new share
5356 	 *     of its group cfs_rq.
5357 	 */
5358 	update_load_avg(cfs_rq, se, action);
5359 	se_update_runnable(se);
5360 
5361 	update_stats_dequeue_fair(cfs_rq, se, flags);
5362 
5363 	clear_buddies(cfs_rq, se);
5364 
5365 	update_entity_lag(cfs_rq, se);
5366 	if (se != cfs_rq->curr)
5367 		__dequeue_entity(cfs_rq, se);
5368 	se->on_rq = 0;
5369 	account_entity_dequeue(cfs_rq, se);
5370 
5371 	/* return excess runtime on last dequeue */
5372 	return_cfs_rq_runtime(cfs_rq);
5373 
5374 	update_cfs_group(se);
5375 
5376 	/*
5377 	 * Now advance min_vruntime if @se was the entity holding it back,
5378 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5379 	 * put back on, and if we advance min_vruntime, we'll be placed back
5380 	 * further than we started -- ie. we'll be penalized.
5381 	 */
5382 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5383 		update_min_vruntime(cfs_rq);
5384 
5385 	if (cfs_rq->nr_running == 0)
5386 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5387 }
5388 
5389 static void
5390 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5391 {
5392 	clear_buddies(cfs_rq, se);
5393 
5394 	/* 'current' is not kept within the tree. */
5395 	if (se->on_rq) {
5396 		/*
5397 		 * Any task has to be enqueued before it get to execute on
5398 		 * a CPU. So account for the time it spent waiting on the
5399 		 * runqueue.
5400 		 */
5401 		update_stats_wait_end_fair(cfs_rq, se);
5402 		__dequeue_entity(cfs_rq, se);
5403 		update_load_avg(cfs_rq, se, UPDATE_TG);
5404 		/*
5405 		 * HACK, stash a copy of deadline at the point of pick in vlag,
5406 		 * which isn't used until dequeue.
5407 		 */
5408 		se->vlag = se->deadline;
5409 	}
5410 
5411 	update_stats_curr_start(cfs_rq, se);
5412 	cfs_rq->curr = se;
5413 
5414 	/*
5415 	 * Track our maximum slice length, if the CPU's load is at
5416 	 * least twice that of our own weight (i.e. dont track it
5417 	 * when there are only lesser-weight tasks around):
5418 	 */
5419 	if (schedstat_enabled() &&
5420 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5421 		struct sched_statistics *stats;
5422 
5423 		stats = __schedstats_from_se(se);
5424 		__schedstat_set(stats->slice_max,
5425 				max((u64)stats->slice_max,
5426 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5427 	}
5428 
5429 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5430 }
5431 
5432 /*
5433  * Pick the next process, keeping these things in mind, in this order:
5434  * 1) keep things fair between processes/task groups
5435  * 2) pick the "next" process, since someone really wants that to run
5436  * 3) pick the "last" process, for cache locality
5437  * 4) do not run the "skip" process, if something else is available
5438  */
5439 static struct sched_entity *
5440 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
5441 {
5442 	/*
5443 	 * Enabling NEXT_BUDDY will affect latency but not fairness.
5444 	 */
5445 	if (sched_feat(NEXT_BUDDY) &&
5446 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
5447 		return cfs_rq->next;
5448 
5449 	return pick_eevdf(cfs_rq);
5450 }
5451 
5452 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5453 
5454 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5455 {
5456 	/*
5457 	 * If still on the runqueue then deactivate_task()
5458 	 * was not called and update_curr() has to be done:
5459 	 */
5460 	if (prev->on_rq)
5461 		update_curr(cfs_rq);
5462 
5463 	/* throttle cfs_rqs exceeding runtime */
5464 	check_cfs_rq_runtime(cfs_rq);
5465 
5466 	if (prev->on_rq) {
5467 		update_stats_wait_start_fair(cfs_rq, prev);
5468 		/* Put 'current' back into the tree. */
5469 		__enqueue_entity(cfs_rq, prev);
5470 		/* in !on_rq case, update occurred at dequeue */
5471 		update_load_avg(cfs_rq, prev, 0);
5472 	}
5473 	cfs_rq->curr = NULL;
5474 }
5475 
5476 static void
5477 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5478 {
5479 	/*
5480 	 * Update run-time statistics of the 'current'.
5481 	 */
5482 	update_curr(cfs_rq);
5483 
5484 	/*
5485 	 * Ensure that runnable average is periodically updated.
5486 	 */
5487 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5488 	update_cfs_group(curr);
5489 
5490 #ifdef CONFIG_SCHED_HRTICK
5491 	/*
5492 	 * queued ticks are scheduled to match the slice, so don't bother
5493 	 * validating it and just reschedule.
5494 	 */
5495 	if (queued) {
5496 		resched_curr(rq_of(cfs_rq));
5497 		return;
5498 	}
5499 	/*
5500 	 * don't let the period tick interfere with the hrtick preemption
5501 	 */
5502 	if (!sched_feat(DOUBLE_TICK) &&
5503 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5504 		return;
5505 #endif
5506 }
5507 
5508 
5509 /**************************************************
5510  * CFS bandwidth control machinery
5511  */
5512 
5513 #ifdef CONFIG_CFS_BANDWIDTH
5514 
5515 #ifdef CONFIG_JUMP_LABEL
5516 static struct static_key __cfs_bandwidth_used;
5517 
5518 static inline bool cfs_bandwidth_used(void)
5519 {
5520 	return static_key_false(&__cfs_bandwidth_used);
5521 }
5522 
5523 void cfs_bandwidth_usage_inc(void)
5524 {
5525 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5526 }
5527 
5528 void cfs_bandwidth_usage_dec(void)
5529 {
5530 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5531 }
5532 #else /* CONFIG_JUMP_LABEL */
5533 static bool cfs_bandwidth_used(void)
5534 {
5535 	return true;
5536 }
5537 
5538 void cfs_bandwidth_usage_inc(void) {}
5539 void cfs_bandwidth_usage_dec(void) {}
5540 #endif /* CONFIG_JUMP_LABEL */
5541 
5542 /*
5543  * default period for cfs group bandwidth.
5544  * default: 0.1s, units: nanoseconds
5545  */
5546 static inline u64 default_cfs_period(void)
5547 {
5548 	return 100000000ULL;
5549 }
5550 
5551 static inline u64 sched_cfs_bandwidth_slice(void)
5552 {
5553 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5554 }
5555 
5556 /*
5557  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5558  * directly instead of rq->clock to avoid adding additional synchronization
5559  * around rq->lock.
5560  *
5561  * requires cfs_b->lock
5562  */
5563 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5564 {
5565 	s64 runtime;
5566 
5567 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5568 		return;
5569 
5570 	cfs_b->runtime += cfs_b->quota;
5571 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5572 	if (runtime > 0) {
5573 		cfs_b->burst_time += runtime;
5574 		cfs_b->nr_burst++;
5575 	}
5576 
5577 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5578 	cfs_b->runtime_snap = cfs_b->runtime;
5579 }
5580 
5581 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5582 {
5583 	return &tg->cfs_bandwidth;
5584 }
5585 
5586 /* returns 0 on failure to allocate runtime */
5587 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5588 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5589 {
5590 	u64 min_amount, amount = 0;
5591 
5592 	lockdep_assert_held(&cfs_b->lock);
5593 
5594 	/* note: this is a positive sum as runtime_remaining <= 0 */
5595 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5596 
5597 	if (cfs_b->quota == RUNTIME_INF)
5598 		amount = min_amount;
5599 	else {
5600 		start_cfs_bandwidth(cfs_b);
5601 
5602 		if (cfs_b->runtime > 0) {
5603 			amount = min(cfs_b->runtime, min_amount);
5604 			cfs_b->runtime -= amount;
5605 			cfs_b->idle = 0;
5606 		}
5607 	}
5608 
5609 	cfs_rq->runtime_remaining += amount;
5610 
5611 	return cfs_rq->runtime_remaining > 0;
5612 }
5613 
5614 /* returns 0 on failure to allocate runtime */
5615 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5616 {
5617 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5618 	int ret;
5619 
5620 	raw_spin_lock(&cfs_b->lock);
5621 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5622 	raw_spin_unlock(&cfs_b->lock);
5623 
5624 	return ret;
5625 }
5626 
5627 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5628 {
5629 	/* dock delta_exec before expiring quota (as it could span periods) */
5630 	cfs_rq->runtime_remaining -= delta_exec;
5631 
5632 	if (likely(cfs_rq->runtime_remaining > 0))
5633 		return;
5634 
5635 	if (cfs_rq->throttled)
5636 		return;
5637 	/*
5638 	 * if we're unable to extend our runtime we resched so that the active
5639 	 * hierarchy can be throttled
5640 	 */
5641 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5642 		resched_curr(rq_of(cfs_rq));
5643 }
5644 
5645 static __always_inline
5646 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5647 {
5648 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5649 		return;
5650 
5651 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5652 }
5653 
5654 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5655 {
5656 	return cfs_bandwidth_used() && cfs_rq->throttled;
5657 }
5658 
5659 /* check whether cfs_rq, or any parent, is throttled */
5660 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5661 {
5662 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5663 }
5664 
5665 /*
5666  * Ensure that neither of the group entities corresponding to src_cpu or
5667  * dest_cpu are members of a throttled hierarchy when performing group
5668  * load-balance operations.
5669  */
5670 static inline int throttled_lb_pair(struct task_group *tg,
5671 				    int src_cpu, int dest_cpu)
5672 {
5673 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5674 
5675 	src_cfs_rq = tg->cfs_rq[src_cpu];
5676 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5677 
5678 	return throttled_hierarchy(src_cfs_rq) ||
5679 	       throttled_hierarchy(dest_cfs_rq);
5680 }
5681 
5682 static int tg_unthrottle_up(struct task_group *tg, void *data)
5683 {
5684 	struct rq *rq = data;
5685 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5686 
5687 	cfs_rq->throttle_count--;
5688 	if (!cfs_rq->throttle_count) {
5689 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5690 					     cfs_rq->throttled_clock_pelt;
5691 
5692 		/* Add cfs_rq with load or one or more already running entities to the list */
5693 		if (!cfs_rq_is_decayed(cfs_rq))
5694 			list_add_leaf_cfs_rq(cfs_rq);
5695 
5696 		if (cfs_rq->throttled_clock_self) {
5697 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5698 
5699 			cfs_rq->throttled_clock_self = 0;
5700 
5701 			if (SCHED_WARN_ON((s64)delta < 0))
5702 				delta = 0;
5703 
5704 			cfs_rq->throttled_clock_self_time += delta;
5705 		}
5706 	}
5707 
5708 	return 0;
5709 }
5710 
5711 static int tg_throttle_down(struct task_group *tg, void *data)
5712 {
5713 	struct rq *rq = data;
5714 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5715 
5716 	/* group is entering throttled state, stop time */
5717 	if (!cfs_rq->throttle_count) {
5718 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5719 		list_del_leaf_cfs_rq(cfs_rq);
5720 
5721 		SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5722 		if (cfs_rq->nr_running)
5723 			cfs_rq->throttled_clock_self = rq_clock(rq);
5724 	}
5725 	cfs_rq->throttle_count++;
5726 
5727 	return 0;
5728 }
5729 
5730 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5731 {
5732 	struct rq *rq = rq_of(cfs_rq);
5733 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5734 	struct sched_entity *se;
5735 	long task_delta, idle_task_delta, dequeue = 1;
5736 
5737 	raw_spin_lock(&cfs_b->lock);
5738 	/* This will start the period timer if necessary */
5739 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5740 		/*
5741 		 * We have raced with bandwidth becoming available, and if we
5742 		 * actually throttled the timer might not unthrottle us for an
5743 		 * entire period. We additionally needed to make sure that any
5744 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5745 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5746 		 * for 1ns of runtime rather than just check cfs_b.
5747 		 */
5748 		dequeue = 0;
5749 	} else {
5750 		list_add_tail_rcu(&cfs_rq->throttled_list,
5751 				  &cfs_b->throttled_cfs_rq);
5752 	}
5753 	raw_spin_unlock(&cfs_b->lock);
5754 
5755 	if (!dequeue)
5756 		return false;  /* Throttle no longer required. */
5757 
5758 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5759 
5760 	/* freeze hierarchy runnable averages while throttled */
5761 	rcu_read_lock();
5762 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5763 	rcu_read_unlock();
5764 
5765 	task_delta = cfs_rq->h_nr_running;
5766 	idle_task_delta = cfs_rq->idle_h_nr_running;
5767 	for_each_sched_entity(se) {
5768 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5769 		/* throttled entity or throttle-on-deactivate */
5770 		if (!se->on_rq)
5771 			goto done;
5772 
5773 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5774 
5775 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5776 			idle_task_delta = cfs_rq->h_nr_running;
5777 
5778 		qcfs_rq->h_nr_running -= task_delta;
5779 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5780 
5781 		if (qcfs_rq->load.weight) {
5782 			/* Avoid re-evaluating load for this entity: */
5783 			se = parent_entity(se);
5784 			break;
5785 		}
5786 	}
5787 
5788 	for_each_sched_entity(se) {
5789 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5790 		/* throttled entity or throttle-on-deactivate */
5791 		if (!se->on_rq)
5792 			goto done;
5793 
5794 		update_load_avg(qcfs_rq, se, 0);
5795 		se_update_runnable(se);
5796 
5797 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5798 			idle_task_delta = cfs_rq->h_nr_running;
5799 
5800 		qcfs_rq->h_nr_running -= task_delta;
5801 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5802 	}
5803 
5804 	/* At this point se is NULL and we are at root level*/
5805 	sub_nr_running(rq, task_delta);
5806 
5807 done:
5808 	/*
5809 	 * Note: distribution will already see us throttled via the
5810 	 * throttled-list.  rq->lock protects completion.
5811 	 */
5812 	cfs_rq->throttled = 1;
5813 	SCHED_WARN_ON(cfs_rq->throttled_clock);
5814 	if (cfs_rq->nr_running)
5815 		cfs_rq->throttled_clock = rq_clock(rq);
5816 	return true;
5817 }
5818 
5819 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5820 {
5821 	struct rq *rq = rq_of(cfs_rq);
5822 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5823 	struct sched_entity *se;
5824 	long task_delta, idle_task_delta;
5825 
5826 	se = cfs_rq->tg->se[cpu_of(rq)];
5827 
5828 	cfs_rq->throttled = 0;
5829 
5830 	update_rq_clock(rq);
5831 
5832 	raw_spin_lock(&cfs_b->lock);
5833 	if (cfs_rq->throttled_clock) {
5834 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5835 		cfs_rq->throttled_clock = 0;
5836 	}
5837 	list_del_rcu(&cfs_rq->throttled_list);
5838 	raw_spin_unlock(&cfs_b->lock);
5839 
5840 	/* update hierarchical throttle state */
5841 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5842 
5843 	if (!cfs_rq->load.weight) {
5844 		if (!cfs_rq->on_list)
5845 			return;
5846 		/*
5847 		 * Nothing to run but something to decay (on_list)?
5848 		 * Complete the branch.
5849 		 */
5850 		for_each_sched_entity(se) {
5851 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5852 				break;
5853 		}
5854 		goto unthrottle_throttle;
5855 	}
5856 
5857 	task_delta = cfs_rq->h_nr_running;
5858 	idle_task_delta = cfs_rq->idle_h_nr_running;
5859 	for_each_sched_entity(se) {
5860 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5861 
5862 		if (se->on_rq)
5863 			break;
5864 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5865 
5866 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5867 			idle_task_delta = cfs_rq->h_nr_running;
5868 
5869 		qcfs_rq->h_nr_running += task_delta;
5870 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5871 
5872 		/* end evaluation on encountering a throttled cfs_rq */
5873 		if (cfs_rq_throttled(qcfs_rq))
5874 			goto unthrottle_throttle;
5875 	}
5876 
5877 	for_each_sched_entity(se) {
5878 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5879 
5880 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5881 		se_update_runnable(se);
5882 
5883 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5884 			idle_task_delta = cfs_rq->h_nr_running;
5885 
5886 		qcfs_rq->h_nr_running += task_delta;
5887 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5888 
5889 		/* end evaluation on encountering a throttled cfs_rq */
5890 		if (cfs_rq_throttled(qcfs_rq))
5891 			goto unthrottle_throttle;
5892 	}
5893 
5894 	/* At this point se is NULL and we are at root level*/
5895 	add_nr_running(rq, task_delta);
5896 
5897 unthrottle_throttle:
5898 	assert_list_leaf_cfs_rq(rq);
5899 
5900 	/* Determine whether we need to wake up potentially idle CPU: */
5901 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5902 		resched_curr(rq);
5903 }
5904 
5905 #ifdef CONFIG_SMP
5906 static void __cfsb_csd_unthrottle(void *arg)
5907 {
5908 	struct cfs_rq *cursor, *tmp;
5909 	struct rq *rq = arg;
5910 	struct rq_flags rf;
5911 
5912 	rq_lock(rq, &rf);
5913 
5914 	/*
5915 	 * Iterating over the list can trigger several call to
5916 	 * update_rq_clock() in unthrottle_cfs_rq().
5917 	 * Do it once and skip the potential next ones.
5918 	 */
5919 	update_rq_clock(rq);
5920 	rq_clock_start_loop_update(rq);
5921 
5922 	/*
5923 	 * Since we hold rq lock we're safe from concurrent manipulation of
5924 	 * the CSD list. However, this RCU critical section annotates the
5925 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
5926 	 * race with group being freed in the window between removing it
5927 	 * from the list and advancing to the next entry in the list.
5928 	 */
5929 	rcu_read_lock();
5930 
5931 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
5932 				 throttled_csd_list) {
5933 		list_del_init(&cursor->throttled_csd_list);
5934 
5935 		if (cfs_rq_throttled(cursor))
5936 			unthrottle_cfs_rq(cursor);
5937 	}
5938 
5939 	rcu_read_unlock();
5940 
5941 	rq_clock_stop_loop_update(rq);
5942 	rq_unlock(rq, &rf);
5943 }
5944 
5945 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5946 {
5947 	struct rq *rq = rq_of(cfs_rq);
5948 	bool first;
5949 
5950 	if (rq == this_rq()) {
5951 		unthrottle_cfs_rq(cfs_rq);
5952 		return;
5953 	}
5954 
5955 	/* Already enqueued */
5956 	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
5957 		return;
5958 
5959 	first = list_empty(&rq->cfsb_csd_list);
5960 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
5961 	if (first)
5962 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
5963 }
5964 #else
5965 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5966 {
5967 	unthrottle_cfs_rq(cfs_rq);
5968 }
5969 #endif
5970 
5971 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5972 {
5973 	lockdep_assert_rq_held(rq_of(cfs_rq));
5974 
5975 	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
5976 	    cfs_rq->runtime_remaining <= 0))
5977 		return;
5978 
5979 	__unthrottle_cfs_rq_async(cfs_rq);
5980 }
5981 
5982 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5983 {
5984 	struct cfs_rq *local_unthrottle = NULL;
5985 	int this_cpu = smp_processor_id();
5986 	u64 runtime, remaining = 1;
5987 	bool throttled = false;
5988 	struct cfs_rq *cfs_rq;
5989 	struct rq_flags rf;
5990 	struct rq *rq;
5991 
5992 	rcu_read_lock();
5993 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5994 				throttled_list) {
5995 		rq = rq_of(cfs_rq);
5996 
5997 		if (!remaining) {
5998 			throttled = true;
5999 			break;
6000 		}
6001 
6002 		rq_lock_irqsave(rq, &rf);
6003 		if (!cfs_rq_throttled(cfs_rq))
6004 			goto next;
6005 
6006 #ifdef CONFIG_SMP
6007 		/* Already queued for async unthrottle */
6008 		if (!list_empty(&cfs_rq->throttled_csd_list))
6009 			goto next;
6010 #endif
6011 
6012 		/* By the above checks, this should never be true */
6013 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6014 
6015 		raw_spin_lock(&cfs_b->lock);
6016 		runtime = -cfs_rq->runtime_remaining + 1;
6017 		if (runtime > cfs_b->runtime)
6018 			runtime = cfs_b->runtime;
6019 		cfs_b->runtime -= runtime;
6020 		remaining = cfs_b->runtime;
6021 		raw_spin_unlock(&cfs_b->lock);
6022 
6023 		cfs_rq->runtime_remaining += runtime;
6024 
6025 		/* we check whether we're throttled above */
6026 		if (cfs_rq->runtime_remaining > 0) {
6027 			if (cpu_of(rq) != this_cpu ||
6028 			    SCHED_WARN_ON(local_unthrottle))
6029 				unthrottle_cfs_rq_async(cfs_rq);
6030 			else
6031 				local_unthrottle = cfs_rq;
6032 		} else {
6033 			throttled = true;
6034 		}
6035 
6036 next:
6037 		rq_unlock_irqrestore(rq, &rf);
6038 	}
6039 	rcu_read_unlock();
6040 
6041 	if (local_unthrottle) {
6042 		rq = cpu_rq(this_cpu);
6043 		rq_lock_irqsave(rq, &rf);
6044 		if (cfs_rq_throttled(local_unthrottle))
6045 			unthrottle_cfs_rq(local_unthrottle);
6046 		rq_unlock_irqrestore(rq, &rf);
6047 	}
6048 
6049 	return throttled;
6050 }
6051 
6052 /*
6053  * Responsible for refilling a task_group's bandwidth and unthrottling its
6054  * cfs_rqs as appropriate. If there has been no activity within the last
6055  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6056  * used to track this state.
6057  */
6058 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6059 {
6060 	int throttled;
6061 
6062 	/* no need to continue the timer with no bandwidth constraint */
6063 	if (cfs_b->quota == RUNTIME_INF)
6064 		goto out_deactivate;
6065 
6066 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6067 	cfs_b->nr_periods += overrun;
6068 
6069 	/* Refill extra burst quota even if cfs_b->idle */
6070 	__refill_cfs_bandwidth_runtime(cfs_b);
6071 
6072 	/*
6073 	 * idle depends on !throttled (for the case of a large deficit), and if
6074 	 * we're going inactive then everything else can be deferred
6075 	 */
6076 	if (cfs_b->idle && !throttled)
6077 		goto out_deactivate;
6078 
6079 	if (!throttled) {
6080 		/* mark as potentially idle for the upcoming period */
6081 		cfs_b->idle = 1;
6082 		return 0;
6083 	}
6084 
6085 	/* account preceding periods in which throttling occurred */
6086 	cfs_b->nr_throttled += overrun;
6087 
6088 	/*
6089 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6090 	 */
6091 	while (throttled && cfs_b->runtime > 0) {
6092 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6093 		/* we can't nest cfs_b->lock while distributing bandwidth */
6094 		throttled = distribute_cfs_runtime(cfs_b);
6095 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6096 	}
6097 
6098 	/*
6099 	 * While we are ensured activity in the period following an
6100 	 * unthrottle, this also covers the case in which the new bandwidth is
6101 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6102 	 * timer to remain active while there are any throttled entities.)
6103 	 */
6104 	cfs_b->idle = 0;
6105 
6106 	return 0;
6107 
6108 out_deactivate:
6109 	return 1;
6110 }
6111 
6112 /* a cfs_rq won't donate quota below this amount */
6113 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6114 /* minimum remaining period time to redistribute slack quota */
6115 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6116 /* how long we wait to gather additional slack before distributing */
6117 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6118 
6119 /*
6120  * Are we near the end of the current quota period?
6121  *
6122  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6123  * hrtimer base being cleared by hrtimer_start. In the case of
6124  * migrate_hrtimers, base is never cleared, so we are fine.
6125  */
6126 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6127 {
6128 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6129 	s64 remaining;
6130 
6131 	/* if the call-back is running a quota refresh is already occurring */
6132 	if (hrtimer_callback_running(refresh_timer))
6133 		return 1;
6134 
6135 	/* is a quota refresh about to occur? */
6136 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6137 	if (remaining < (s64)min_expire)
6138 		return 1;
6139 
6140 	return 0;
6141 }
6142 
6143 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6144 {
6145 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6146 
6147 	/* if there's a quota refresh soon don't bother with slack */
6148 	if (runtime_refresh_within(cfs_b, min_left))
6149 		return;
6150 
6151 	/* don't push forwards an existing deferred unthrottle */
6152 	if (cfs_b->slack_started)
6153 		return;
6154 	cfs_b->slack_started = true;
6155 
6156 	hrtimer_start(&cfs_b->slack_timer,
6157 			ns_to_ktime(cfs_bandwidth_slack_period),
6158 			HRTIMER_MODE_REL);
6159 }
6160 
6161 /* we know any runtime found here is valid as update_curr() precedes return */
6162 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6163 {
6164 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6165 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6166 
6167 	if (slack_runtime <= 0)
6168 		return;
6169 
6170 	raw_spin_lock(&cfs_b->lock);
6171 	if (cfs_b->quota != RUNTIME_INF) {
6172 		cfs_b->runtime += slack_runtime;
6173 
6174 		/* we are under rq->lock, defer unthrottling using a timer */
6175 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6176 		    !list_empty(&cfs_b->throttled_cfs_rq))
6177 			start_cfs_slack_bandwidth(cfs_b);
6178 	}
6179 	raw_spin_unlock(&cfs_b->lock);
6180 
6181 	/* even if it's not valid for return we don't want to try again */
6182 	cfs_rq->runtime_remaining -= slack_runtime;
6183 }
6184 
6185 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6186 {
6187 	if (!cfs_bandwidth_used())
6188 		return;
6189 
6190 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6191 		return;
6192 
6193 	__return_cfs_rq_runtime(cfs_rq);
6194 }
6195 
6196 /*
6197  * This is done with a timer (instead of inline with bandwidth return) since
6198  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6199  */
6200 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6201 {
6202 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6203 	unsigned long flags;
6204 
6205 	/* confirm we're still not at a refresh boundary */
6206 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6207 	cfs_b->slack_started = false;
6208 
6209 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6210 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6211 		return;
6212 	}
6213 
6214 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6215 		runtime = cfs_b->runtime;
6216 
6217 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6218 
6219 	if (!runtime)
6220 		return;
6221 
6222 	distribute_cfs_runtime(cfs_b);
6223 }
6224 
6225 /*
6226  * When a group wakes up we want to make sure that its quota is not already
6227  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6228  * runtime as update_curr() throttling can not trigger until it's on-rq.
6229  */
6230 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6231 {
6232 	if (!cfs_bandwidth_used())
6233 		return;
6234 
6235 	/* an active group must be handled by the update_curr()->put() path */
6236 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6237 		return;
6238 
6239 	/* ensure the group is not already throttled */
6240 	if (cfs_rq_throttled(cfs_rq))
6241 		return;
6242 
6243 	/* update runtime allocation */
6244 	account_cfs_rq_runtime(cfs_rq, 0);
6245 	if (cfs_rq->runtime_remaining <= 0)
6246 		throttle_cfs_rq(cfs_rq);
6247 }
6248 
6249 static void sync_throttle(struct task_group *tg, int cpu)
6250 {
6251 	struct cfs_rq *pcfs_rq, *cfs_rq;
6252 
6253 	if (!cfs_bandwidth_used())
6254 		return;
6255 
6256 	if (!tg->parent)
6257 		return;
6258 
6259 	cfs_rq = tg->cfs_rq[cpu];
6260 	pcfs_rq = tg->parent->cfs_rq[cpu];
6261 
6262 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6263 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6264 }
6265 
6266 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6267 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6268 {
6269 	if (!cfs_bandwidth_used())
6270 		return false;
6271 
6272 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6273 		return false;
6274 
6275 	/*
6276 	 * it's possible for a throttled entity to be forced into a running
6277 	 * state (e.g. set_curr_task), in this case we're finished.
6278 	 */
6279 	if (cfs_rq_throttled(cfs_rq))
6280 		return true;
6281 
6282 	return throttle_cfs_rq(cfs_rq);
6283 }
6284 
6285 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6286 {
6287 	struct cfs_bandwidth *cfs_b =
6288 		container_of(timer, struct cfs_bandwidth, slack_timer);
6289 
6290 	do_sched_cfs_slack_timer(cfs_b);
6291 
6292 	return HRTIMER_NORESTART;
6293 }
6294 
6295 extern const u64 max_cfs_quota_period;
6296 
6297 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6298 {
6299 	struct cfs_bandwidth *cfs_b =
6300 		container_of(timer, struct cfs_bandwidth, period_timer);
6301 	unsigned long flags;
6302 	int overrun;
6303 	int idle = 0;
6304 	int count = 0;
6305 
6306 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6307 	for (;;) {
6308 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6309 		if (!overrun)
6310 			break;
6311 
6312 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6313 
6314 		if (++count > 3) {
6315 			u64 new, old = ktime_to_ns(cfs_b->period);
6316 
6317 			/*
6318 			 * Grow period by a factor of 2 to avoid losing precision.
6319 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6320 			 * to fail.
6321 			 */
6322 			new = old * 2;
6323 			if (new < max_cfs_quota_period) {
6324 				cfs_b->period = ns_to_ktime(new);
6325 				cfs_b->quota *= 2;
6326 				cfs_b->burst *= 2;
6327 
6328 				pr_warn_ratelimited(
6329 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6330 					smp_processor_id(),
6331 					div_u64(new, NSEC_PER_USEC),
6332 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6333 			} else {
6334 				pr_warn_ratelimited(
6335 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6336 					smp_processor_id(),
6337 					div_u64(old, NSEC_PER_USEC),
6338 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6339 			}
6340 
6341 			/* reset count so we don't come right back in here */
6342 			count = 0;
6343 		}
6344 	}
6345 	if (idle)
6346 		cfs_b->period_active = 0;
6347 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6348 
6349 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6350 }
6351 
6352 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6353 {
6354 	raw_spin_lock_init(&cfs_b->lock);
6355 	cfs_b->runtime = 0;
6356 	cfs_b->quota = RUNTIME_INF;
6357 	cfs_b->period = ns_to_ktime(default_cfs_period());
6358 	cfs_b->burst = 0;
6359 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6360 
6361 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6362 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6363 	cfs_b->period_timer.function = sched_cfs_period_timer;
6364 
6365 	/* Add a random offset so that timers interleave */
6366 	hrtimer_set_expires(&cfs_b->period_timer,
6367 			    get_random_u32_below(cfs_b->period));
6368 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6369 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6370 	cfs_b->slack_started = false;
6371 }
6372 
6373 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6374 {
6375 	cfs_rq->runtime_enabled = 0;
6376 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6377 #ifdef CONFIG_SMP
6378 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6379 #endif
6380 }
6381 
6382 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6383 {
6384 	lockdep_assert_held(&cfs_b->lock);
6385 
6386 	if (cfs_b->period_active)
6387 		return;
6388 
6389 	cfs_b->period_active = 1;
6390 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6391 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6392 }
6393 
6394 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6395 {
6396 	int __maybe_unused i;
6397 
6398 	/* init_cfs_bandwidth() was not called */
6399 	if (!cfs_b->throttled_cfs_rq.next)
6400 		return;
6401 
6402 	hrtimer_cancel(&cfs_b->period_timer);
6403 	hrtimer_cancel(&cfs_b->slack_timer);
6404 
6405 	/*
6406 	 * It is possible that we still have some cfs_rq's pending on a CSD
6407 	 * list, though this race is very rare. In order for this to occur, we
6408 	 * must have raced with the last task leaving the group while there
6409 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6410 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6411 	 * we can simply flush all pending CSD work inline here. We're
6412 	 * guaranteed at this point that no additional cfs_rq of this group can
6413 	 * join a CSD list.
6414 	 */
6415 #ifdef CONFIG_SMP
6416 	for_each_possible_cpu(i) {
6417 		struct rq *rq = cpu_rq(i);
6418 		unsigned long flags;
6419 
6420 		if (list_empty(&rq->cfsb_csd_list))
6421 			continue;
6422 
6423 		local_irq_save(flags);
6424 		__cfsb_csd_unthrottle(rq);
6425 		local_irq_restore(flags);
6426 	}
6427 #endif
6428 }
6429 
6430 /*
6431  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6432  *
6433  * The race is harmless, since modifying bandwidth settings of unhooked group
6434  * bits doesn't do much.
6435  */
6436 
6437 /* cpu online callback */
6438 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6439 {
6440 	struct task_group *tg;
6441 
6442 	lockdep_assert_rq_held(rq);
6443 
6444 	rcu_read_lock();
6445 	list_for_each_entry_rcu(tg, &task_groups, list) {
6446 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6447 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6448 
6449 		raw_spin_lock(&cfs_b->lock);
6450 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6451 		raw_spin_unlock(&cfs_b->lock);
6452 	}
6453 	rcu_read_unlock();
6454 }
6455 
6456 /* cpu offline callback */
6457 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6458 {
6459 	struct task_group *tg;
6460 
6461 	lockdep_assert_rq_held(rq);
6462 
6463 	/*
6464 	 * The rq clock has already been updated in the
6465 	 * set_rq_offline(), so we should skip updating
6466 	 * the rq clock again in unthrottle_cfs_rq().
6467 	 */
6468 	rq_clock_start_loop_update(rq);
6469 
6470 	rcu_read_lock();
6471 	list_for_each_entry_rcu(tg, &task_groups, list) {
6472 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6473 
6474 		if (!cfs_rq->runtime_enabled)
6475 			continue;
6476 
6477 		/*
6478 		 * clock_task is not advancing so we just need to make sure
6479 		 * there's some valid quota amount
6480 		 */
6481 		cfs_rq->runtime_remaining = 1;
6482 		/*
6483 		 * Offline rq is schedulable till CPU is completely disabled
6484 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6485 		 */
6486 		cfs_rq->runtime_enabled = 0;
6487 
6488 		if (cfs_rq_throttled(cfs_rq))
6489 			unthrottle_cfs_rq(cfs_rq);
6490 	}
6491 	rcu_read_unlock();
6492 
6493 	rq_clock_stop_loop_update(rq);
6494 }
6495 
6496 bool cfs_task_bw_constrained(struct task_struct *p)
6497 {
6498 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6499 
6500 	if (!cfs_bandwidth_used())
6501 		return false;
6502 
6503 	if (cfs_rq->runtime_enabled ||
6504 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6505 		return true;
6506 
6507 	return false;
6508 }
6509 
6510 #ifdef CONFIG_NO_HZ_FULL
6511 /* called from pick_next_task_fair() */
6512 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6513 {
6514 	int cpu = cpu_of(rq);
6515 
6516 	if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
6517 		return;
6518 
6519 	if (!tick_nohz_full_cpu(cpu))
6520 		return;
6521 
6522 	if (rq->nr_running != 1)
6523 		return;
6524 
6525 	/*
6526 	 *  We know there is only one task runnable and we've just picked it. The
6527 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6528 	 *  be otherwise able to stop the tick. Just need to check if we are using
6529 	 *  bandwidth control.
6530 	 */
6531 	if (cfs_task_bw_constrained(p))
6532 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6533 }
6534 #endif
6535 
6536 #else /* CONFIG_CFS_BANDWIDTH */
6537 
6538 static inline bool cfs_bandwidth_used(void)
6539 {
6540 	return false;
6541 }
6542 
6543 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6544 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6545 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6546 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6547 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6548 
6549 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6550 {
6551 	return 0;
6552 }
6553 
6554 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6555 {
6556 	return 0;
6557 }
6558 
6559 static inline int throttled_lb_pair(struct task_group *tg,
6560 				    int src_cpu, int dest_cpu)
6561 {
6562 	return 0;
6563 }
6564 
6565 #ifdef CONFIG_FAIR_GROUP_SCHED
6566 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6567 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6568 #endif
6569 
6570 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6571 {
6572 	return NULL;
6573 }
6574 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6575 static inline void update_runtime_enabled(struct rq *rq) {}
6576 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6577 #ifdef CONFIG_CGROUP_SCHED
6578 bool cfs_task_bw_constrained(struct task_struct *p)
6579 {
6580 	return false;
6581 }
6582 #endif
6583 #endif /* CONFIG_CFS_BANDWIDTH */
6584 
6585 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6586 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6587 #endif
6588 
6589 /**************************************************
6590  * CFS operations on tasks:
6591  */
6592 
6593 #ifdef CONFIG_SCHED_HRTICK
6594 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6595 {
6596 	struct sched_entity *se = &p->se;
6597 
6598 	SCHED_WARN_ON(task_rq(p) != rq);
6599 
6600 	if (rq->cfs.h_nr_running > 1) {
6601 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6602 		u64 slice = se->slice;
6603 		s64 delta = slice - ran;
6604 
6605 		if (delta < 0) {
6606 			if (task_current(rq, p))
6607 				resched_curr(rq);
6608 			return;
6609 		}
6610 		hrtick_start(rq, delta);
6611 	}
6612 }
6613 
6614 /*
6615  * called from enqueue/dequeue and updates the hrtick when the
6616  * current task is from our class and nr_running is low enough
6617  * to matter.
6618  */
6619 static void hrtick_update(struct rq *rq)
6620 {
6621 	struct task_struct *curr = rq->curr;
6622 
6623 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6624 		return;
6625 
6626 	hrtick_start_fair(rq, curr);
6627 }
6628 #else /* !CONFIG_SCHED_HRTICK */
6629 static inline void
6630 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6631 {
6632 }
6633 
6634 static inline void hrtick_update(struct rq *rq)
6635 {
6636 }
6637 #endif
6638 
6639 #ifdef CONFIG_SMP
6640 static inline bool cpu_overutilized(int cpu)
6641 {
6642 	unsigned long  rq_util_min, rq_util_max;
6643 
6644 	if (!sched_energy_enabled())
6645 		return false;
6646 
6647 	rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6648 	rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6649 
6650 	/* Return true only if the utilization doesn't fit CPU's capacity */
6651 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6652 }
6653 
6654 static inline void set_rd_overutilized_status(struct root_domain *rd,
6655 					      unsigned int status)
6656 {
6657 	if (!sched_energy_enabled())
6658 		return;
6659 
6660 	WRITE_ONCE(rd->overutilized, status);
6661 	trace_sched_overutilized_tp(rd, !!status);
6662 }
6663 
6664 static inline void check_update_overutilized_status(struct rq *rq)
6665 {
6666 	/*
6667 	 * overutilized field is used for load balancing decisions only
6668 	 * if energy aware scheduler is being used
6669 	 */
6670 	if (!sched_energy_enabled())
6671 		return;
6672 
6673 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu))
6674 		set_rd_overutilized_status(rq->rd, SG_OVERUTILIZED);
6675 }
6676 #else
6677 static inline void check_update_overutilized_status(struct rq *rq) { }
6678 #endif
6679 
6680 /* Runqueue only has SCHED_IDLE tasks enqueued */
6681 static int sched_idle_rq(struct rq *rq)
6682 {
6683 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6684 			rq->nr_running);
6685 }
6686 
6687 #ifdef CONFIG_SMP
6688 static int sched_idle_cpu(int cpu)
6689 {
6690 	return sched_idle_rq(cpu_rq(cpu));
6691 }
6692 #endif
6693 
6694 /*
6695  * The enqueue_task method is called before nr_running is
6696  * increased. Here we update the fair scheduling stats and
6697  * then put the task into the rbtree:
6698  */
6699 static void
6700 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6701 {
6702 	struct cfs_rq *cfs_rq;
6703 	struct sched_entity *se = &p->se;
6704 	int idle_h_nr_running = task_has_idle_policy(p);
6705 	int task_new = !(flags & ENQUEUE_WAKEUP);
6706 
6707 	/*
6708 	 * The code below (indirectly) updates schedutil which looks at
6709 	 * the cfs_rq utilization to select a frequency.
6710 	 * Let's add the task's estimated utilization to the cfs_rq's
6711 	 * estimated utilization, before we update schedutil.
6712 	 */
6713 	util_est_enqueue(&rq->cfs, p);
6714 
6715 	/*
6716 	 * If in_iowait is set, the code below may not trigger any cpufreq
6717 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6718 	 * passed.
6719 	 */
6720 	if (p->in_iowait)
6721 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6722 
6723 	for_each_sched_entity(se) {
6724 		if (se->on_rq)
6725 			break;
6726 		cfs_rq = cfs_rq_of(se);
6727 		enqueue_entity(cfs_rq, se, flags);
6728 
6729 		cfs_rq->h_nr_running++;
6730 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6731 
6732 		if (cfs_rq_is_idle(cfs_rq))
6733 			idle_h_nr_running = 1;
6734 
6735 		/* end evaluation on encountering a throttled cfs_rq */
6736 		if (cfs_rq_throttled(cfs_rq))
6737 			goto enqueue_throttle;
6738 
6739 		flags = ENQUEUE_WAKEUP;
6740 	}
6741 
6742 	for_each_sched_entity(se) {
6743 		cfs_rq = cfs_rq_of(se);
6744 
6745 		update_load_avg(cfs_rq, se, UPDATE_TG);
6746 		se_update_runnable(se);
6747 		update_cfs_group(se);
6748 
6749 		cfs_rq->h_nr_running++;
6750 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6751 
6752 		if (cfs_rq_is_idle(cfs_rq))
6753 			idle_h_nr_running = 1;
6754 
6755 		/* end evaluation on encountering a throttled cfs_rq */
6756 		if (cfs_rq_throttled(cfs_rq))
6757 			goto enqueue_throttle;
6758 	}
6759 
6760 	/* At this point se is NULL and we are at root level*/
6761 	add_nr_running(rq, 1);
6762 
6763 	/*
6764 	 * Since new tasks are assigned an initial util_avg equal to
6765 	 * half of the spare capacity of their CPU, tiny tasks have the
6766 	 * ability to cross the overutilized threshold, which will
6767 	 * result in the load balancer ruining all the task placement
6768 	 * done by EAS. As a way to mitigate that effect, do not account
6769 	 * for the first enqueue operation of new tasks during the
6770 	 * overutilized flag detection.
6771 	 *
6772 	 * A better way of solving this problem would be to wait for
6773 	 * the PELT signals of tasks to converge before taking them
6774 	 * into account, but that is not straightforward to implement,
6775 	 * and the following generally works well enough in practice.
6776 	 */
6777 	if (!task_new)
6778 		check_update_overutilized_status(rq);
6779 
6780 enqueue_throttle:
6781 	assert_list_leaf_cfs_rq(rq);
6782 
6783 	hrtick_update(rq);
6784 }
6785 
6786 static void set_next_buddy(struct sched_entity *se);
6787 
6788 /*
6789  * The dequeue_task method is called before nr_running is
6790  * decreased. We remove the task from the rbtree and
6791  * update the fair scheduling stats:
6792  */
6793 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6794 {
6795 	struct cfs_rq *cfs_rq;
6796 	struct sched_entity *se = &p->se;
6797 	int task_sleep = flags & DEQUEUE_SLEEP;
6798 	int idle_h_nr_running = task_has_idle_policy(p);
6799 	bool was_sched_idle = sched_idle_rq(rq);
6800 
6801 	util_est_dequeue(&rq->cfs, p);
6802 
6803 	for_each_sched_entity(se) {
6804 		cfs_rq = cfs_rq_of(se);
6805 		dequeue_entity(cfs_rq, se, flags);
6806 
6807 		cfs_rq->h_nr_running--;
6808 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6809 
6810 		if (cfs_rq_is_idle(cfs_rq))
6811 			idle_h_nr_running = 1;
6812 
6813 		/* end evaluation on encountering a throttled cfs_rq */
6814 		if (cfs_rq_throttled(cfs_rq))
6815 			goto dequeue_throttle;
6816 
6817 		/* Don't dequeue parent if it has other entities besides us */
6818 		if (cfs_rq->load.weight) {
6819 			/* Avoid re-evaluating load for this entity: */
6820 			se = parent_entity(se);
6821 			/*
6822 			 * Bias pick_next to pick a task from this cfs_rq, as
6823 			 * p is sleeping when it is within its sched_slice.
6824 			 */
6825 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6826 				set_next_buddy(se);
6827 			break;
6828 		}
6829 		flags |= DEQUEUE_SLEEP;
6830 	}
6831 
6832 	for_each_sched_entity(se) {
6833 		cfs_rq = cfs_rq_of(se);
6834 
6835 		update_load_avg(cfs_rq, se, UPDATE_TG);
6836 		se_update_runnable(se);
6837 		update_cfs_group(se);
6838 
6839 		cfs_rq->h_nr_running--;
6840 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6841 
6842 		if (cfs_rq_is_idle(cfs_rq))
6843 			idle_h_nr_running = 1;
6844 
6845 		/* end evaluation on encountering a throttled cfs_rq */
6846 		if (cfs_rq_throttled(cfs_rq))
6847 			goto dequeue_throttle;
6848 
6849 	}
6850 
6851 	/* At this point se is NULL and we are at root level*/
6852 	sub_nr_running(rq, 1);
6853 
6854 	/* balance early to pull high priority tasks */
6855 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6856 		rq->next_balance = jiffies;
6857 
6858 dequeue_throttle:
6859 	util_est_update(&rq->cfs, p, task_sleep);
6860 	hrtick_update(rq);
6861 }
6862 
6863 #ifdef CONFIG_SMP
6864 
6865 /* Working cpumask for: load_balance, load_balance_newidle. */
6866 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6867 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6868 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
6869 
6870 #ifdef CONFIG_NO_HZ_COMMON
6871 
6872 static struct {
6873 	cpumask_var_t idle_cpus_mask;
6874 	atomic_t nr_cpus;
6875 	int has_blocked;		/* Idle CPUS has blocked load */
6876 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
6877 	unsigned long next_balance;     /* in jiffy units */
6878 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
6879 } nohz ____cacheline_aligned;
6880 
6881 #endif /* CONFIG_NO_HZ_COMMON */
6882 
6883 static unsigned long cpu_load(struct rq *rq)
6884 {
6885 	return cfs_rq_load_avg(&rq->cfs);
6886 }
6887 
6888 /*
6889  * cpu_load_without - compute CPU load without any contributions from *p
6890  * @cpu: the CPU which load is requested
6891  * @p: the task which load should be discounted
6892  *
6893  * The load of a CPU is defined by the load of tasks currently enqueued on that
6894  * CPU as well as tasks which are currently sleeping after an execution on that
6895  * CPU.
6896  *
6897  * This method returns the load of the specified CPU by discounting the load of
6898  * the specified task, whenever the task is currently contributing to the CPU
6899  * load.
6900  */
6901 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6902 {
6903 	struct cfs_rq *cfs_rq;
6904 	unsigned int load;
6905 
6906 	/* Task has no contribution or is new */
6907 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6908 		return cpu_load(rq);
6909 
6910 	cfs_rq = &rq->cfs;
6911 	load = READ_ONCE(cfs_rq->avg.load_avg);
6912 
6913 	/* Discount task's util from CPU's util */
6914 	lsub_positive(&load, task_h_load(p));
6915 
6916 	return load;
6917 }
6918 
6919 static unsigned long cpu_runnable(struct rq *rq)
6920 {
6921 	return cfs_rq_runnable_avg(&rq->cfs);
6922 }
6923 
6924 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6925 {
6926 	struct cfs_rq *cfs_rq;
6927 	unsigned int runnable;
6928 
6929 	/* Task has no contribution or is new */
6930 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6931 		return cpu_runnable(rq);
6932 
6933 	cfs_rq = &rq->cfs;
6934 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6935 
6936 	/* Discount task's runnable from CPU's runnable */
6937 	lsub_positive(&runnable, p->se.avg.runnable_avg);
6938 
6939 	return runnable;
6940 }
6941 
6942 static unsigned long capacity_of(int cpu)
6943 {
6944 	return cpu_rq(cpu)->cpu_capacity;
6945 }
6946 
6947 static void record_wakee(struct task_struct *p)
6948 {
6949 	/*
6950 	 * Only decay a single time; tasks that have less then 1 wakeup per
6951 	 * jiffy will not have built up many flips.
6952 	 */
6953 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6954 		current->wakee_flips >>= 1;
6955 		current->wakee_flip_decay_ts = jiffies;
6956 	}
6957 
6958 	if (current->last_wakee != p) {
6959 		current->last_wakee = p;
6960 		current->wakee_flips++;
6961 	}
6962 }
6963 
6964 /*
6965  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6966  *
6967  * A waker of many should wake a different task than the one last awakened
6968  * at a frequency roughly N times higher than one of its wakees.
6969  *
6970  * In order to determine whether we should let the load spread vs consolidating
6971  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6972  * partner, and a factor of lls_size higher frequency in the other.
6973  *
6974  * With both conditions met, we can be relatively sure that the relationship is
6975  * non-monogamous, with partner count exceeding socket size.
6976  *
6977  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6978  * whatever is irrelevant, spread criteria is apparent partner count exceeds
6979  * socket size.
6980  */
6981 static int wake_wide(struct task_struct *p)
6982 {
6983 	unsigned int master = current->wakee_flips;
6984 	unsigned int slave = p->wakee_flips;
6985 	int factor = __this_cpu_read(sd_llc_size);
6986 
6987 	if (master < slave)
6988 		swap(master, slave);
6989 	if (slave < factor || master < slave * factor)
6990 		return 0;
6991 	return 1;
6992 }
6993 
6994 /*
6995  * The purpose of wake_affine() is to quickly determine on which CPU we can run
6996  * soonest. For the purpose of speed we only consider the waking and previous
6997  * CPU.
6998  *
6999  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7000  *			cache-affine and is (or	will be) idle.
7001  *
7002  * wake_affine_weight() - considers the weight to reflect the average
7003  *			  scheduling latency of the CPUs. This seems to work
7004  *			  for the overloaded case.
7005  */
7006 static int
7007 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7008 {
7009 	/*
7010 	 * If this_cpu is idle, it implies the wakeup is from interrupt
7011 	 * context. Only allow the move if cache is shared. Otherwise an
7012 	 * interrupt intensive workload could force all tasks onto one
7013 	 * node depending on the IO topology or IRQ affinity settings.
7014 	 *
7015 	 * If the prev_cpu is idle and cache affine then avoid a migration.
7016 	 * There is no guarantee that the cache hot data from an interrupt
7017 	 * is more important than cache hot data on the prev_cpu and from
7018 	 * a cpufreq perspective, it's better to have higher utilisation
7019 	 * on one CPU.
7020 	 */
7021 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7022 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7023 
7024 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
7025 		return this_cpu;
7026 
7027 	if (available_idle_cpu(prev_cpu))
7028 		return prev_cpu;
7029 
7030 	return nr_cpumask_bits;
7031 }
7032 
7033 static int
7034 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7035 		   int this_cpu, int prev_cpu, int sync)
7036 {
7037 	s64 this_eff_load, prev_eff_load;
7038 	unsigned long task_load;
7039 
7040 	this_eff_load = cpu_load(cpu_rq(this_cpu));
7041 
7042 	if (sync) {
7043 		unsigned long current_load = task_h_load(current);
7044 
7045 		if (current_load > this_eff_load)
7046 			return this_cpu;
7047 
7048 		this_eff_load -= current_load;
7049 	}
7050 
7051 	task_load = task_h_load(p);
7052 
7053 	this_eff_load += task_load;
7054 	if (sched_feat(WA_BIAS))
7055 		this_eff_load *= 100;
7056 	this_eff_load *= capacity_of(prev_cpu);
7057 
7058 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7059 	prev_eff_load -= task_load;
7060 	if (sched_feat(WA_BIAS))
7061 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7062 	prev_eff_load *= capacity_of(this_cpu);
7063 
7064 	/*
7065 	 * If sync, adjust the weight of prev_eff_load such that if
7066 	 * prev_eff == this_eff that select_idle_sibling() will consider
7067 	 * stacking the wakee on top of the waker if no other CPU is
7068 	 * idle.
7069 	 */
7070 	if (sync)
7071 		prev_eff_load += 1;
7072 
7073 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7074 }
7075 
7076 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7077 		       int this_cpu, int prev_cpu, int sync)
7078 {
7079 	int target = nr_cpumask_bits;
7080 
7081 	if (sched_feat(WA_IDLE))
7082 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7083 
7084 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7085 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7086 
7087 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7088 	if (target != this_cpu)
7089 		return prev_cpu;
7090 
7091 	schedstat_inc(sd->ttwu_move_affine);
7092 	schedstat_inc(p->stats.nr_wakeups_affine);
7093 	return target;
7094 }
7095 
7096 static struct sched_group *
7097 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7098 
7099 /*
7100  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
7101  */
7102 static int
7103 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7104 {
7105 	unsigned long load, min_load = ULONG_MAX;
7106 	unsigned int min_exit_latency = UINT_MAX;
7107 	u64 latest_idle_timestamp = 0;
7108 	int least_loaded_cpu = this_cpu;
7109 	int shallowest_idle_cpu = -1;
7110 	int i;
7111 
7112 	/* Check if we have any choice: */
7113 	if (group->group_weight == 1)
7114 		return cpumask_first(sched_group_span(group));
7115 
7116 	/* Traverse only the allowed CPUs */
7117 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7118 		struct rq *rq = cpu_rq(i);
7119 
7120 		if (!sched_core_cookie_match(rq, p))
7121 			continue;
7122 
7123 		if (sched_idle_cpu(i))
7124 			return i;
7125 
7126 		if (available_idle_cpu(i)) {
7127 			struct cpuidle_state *idle = idle_get_state(rq);
7128 			if (idle && idle->exit_latency < min_exit_latency) {
7129 				/*
7130 				 * We give priority to a CPU whose idle state
7131 				 * has the smallest exit latency irrespective
7132 				 * of any idle timestamp.
7133 				 */
7134 				min_exit_latency = idle->exit_latency;
7135 				latest_idle_timestamp = rq->idle_stamp;
7136 				shallowest_idle_cpu = i;
7137 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7138 				   rq->idle_stamp > latest_idle_timestamp) {
7139 				/*
7140 				 * If equal or no active idle state, then
7141 				 * the most recently idled CPU might have
7142 				 * a warmer cache.
7143 				 */
7144 				latest_idle_timestamp = rq->idle_stamp;
7145 				shallowest_idle_cpu = i;
7146 			}
7147 		} else if (shallowest_idle_cpu == -1) {
7148 			load = cpu_load(cpu_rq(i));
7149 			if (load < min_load) {
7150 				min_load = load;
7151 				least_loaded_cpu = i;
7152 			}
7153 		}
7154 	}
7155 
7156 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7157 }
7158 
7159 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
7160 				  int cpu, int prev_cpu, int sd_flag)
7161 {
7162 	int new_cpu = cpu;
7163 
7164 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7165 		return prev_cpu;
7166 
7167 	/*
7168 	 * We need task's util for cpu_util_without, sync it up to
7169 	 * prev_cpu's last_update_time.
7170 	 */
7171 	if (!(sd_flag & SD_BALANCE_FORK))
7172 		sync_entity_load_avg(&p->se);
7173 
7174 	while (sd) {
7175 		struct sched_group *group;
7176 		struct sched_domain *tmp;
7177 		int weight;
7178 
7179 		if (!(sd->flags & sd_flag)) {
7180 			sd = sd->child;
7181 			continue;
7182 		}
7183 
7184 		group = find_idlest_group(sd, p, cpu);
7185 		if (!group) {
7186 			sd = sd->child;
7187 			continue;
7188 		}
7189 
7190 		new_cpu = find_idlest_group_cpu(group, p, cpu);
7191 		if (new_cpu == cpu) {
7192 			/* Now try balancing at a lower domain level of 'cpu': */
7193 			sd = sd->child;
7194 			continue;
7195 		}
7196 
7197 		/* Now try balancing at a lower domain level of 'new_cpu': */
7198 		cpu = new_cpu;
7199 		weight = sd->span_weight;
7200 		sd = NULL;
7201 		for_each_domain(cpu, tmp) {
7202 			if (weight <= tmp->span_weight)
7203 				break;
7204 			if (tmp->flags & sd_flag)
7205 				sd = tmp;
7206 		}
7207 	}
7208 
7209 	return new_cpu;
7210 }
7211 
7212 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7213 {
7214 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7215 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7216 		return cpu;
7217 
7218 	return -1;
7219 }
7220 
7221 #ifdef CONFIG_SCHED_SMT
7222 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7223 EXPORT_SYMBOL_GPL(sched_smt_present);
7224 
7225 static inline void set_idle_cores(int cpu, int val)
7226 {
7227 	struct sched_domain_shared *sds;
7228 
7229 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7230 	if (sds)
7231 		WRITE_ONCE(sds->has_idle_cores, val);
7232 }
7233 
7234 static inline bool test_idle_cores(int cpu)
7235 {
7236 	struct sched_domain_shared *sds;
7237 
7238 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7239 	if (sds)
7240 		return READ_ONCE(sds->has_idle_cores);
7241 
7242 	return false;
7243 }
7244 
7245 /*
7246  * Scans the local SMT mask to see if the entire core is idle, and records this
7247  * information in sd_llc_shared->has_idle_cores.
7248  *
7249  * Since SMT siblings share all cache levels, inspecting this limited remote
7250  * state should be fairly cheap.
7251  */
7252 void __update_idle_core(struct rq *rq)
7253 {
7254 	int core = cpu_of(rq);
7255 	int cpu;
7256 
7257 	rcu_read_lock();
7258 	if (test_idle_cores(core))
7259 		goto unlock;
7260 
7261 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7262 		if (cpu == core)
7263 			continue;
7264 
7265 		if (!available_idle_cpu(cpu))
7266 			goto unlock;
7267 	}
7268 
7269 	set_idle_cores(core, 1);
7270 unlock:
7271 	rcu_read_unlock();
7272 }
7273 
7274 /*
7275  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7276  * there are no idle cores left in the system; tracked through
7277  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7278  */
7279 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7280 {
7281 	bool idle = true;
7282 	int cpu;
7283 
7284 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7285 		if (!available_idle_cpu(cpu)) {
7286 			idle = false;
7287 			if (*idle_cpu == -1) {
7288 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7289 					*idle_cpu = cpu;
7290 					break;
7291 				}
7292 				continue;
7293 			}
7294 			break;
7295 		}
7296 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7297 			*idle_cpu = cpu;
7298 	}
7299 
7300 	if (idle)
7301 		return core;
7302 
7303 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7304 	return -1;
7305 }
7306 
7307 /*
7308  * Scan the local SMT mask for idle CPUs.
7309  */
7310 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7311 {
7312 	int cpu;
7313 
7314 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7315 		if (cpu == target)
7316 			continue;
7317 		/*
7318 		 * Check if the CPU is in the LLC scheduling domain of @target.
7319 		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7320 		 */
7321 		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7322 			continue;
7323 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7324 			return cpu;
7325 	}
7326 
7327 	return -1;
7328 }
7329 
7330 #else /* CONFIG_SCHED_SMT */
7331 
7332 static inline void set_idle_cores(int cpu, int val)
7333 {
7334 }
7335 
7336 static inline bool test_idle_cores(int cpu)
7337 {
7338 	return false;
7339 }
7340 
7341 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7342 {
7343 	return __select_idle_cpu(core, p);
7344 }
7345 
7346 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7347 {
7348 	return -1;
7349 }
7350 
7351 #endif /* CONFIG_SCHED_SMT */
7352 
7353 /*
7354  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7355  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7356  * average idle time for this rq (as found in rq->avg_idle).
7357  */
7358 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7359 {
7360 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7361 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7362 	struct sched_domain_shared *sd_share;
7363 	struct rq *this_rq = this_rq();
7364 	int this = smp_processor_id();
7365 	struct sched_domain *this_sd = NULL;
7366 	u64 time = 0;
7367 
7368 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7369 
7370 	if (sched_feat(SIS_PROP) && !has_idle_core) {
7371 		u64 avg_cost, avg_idle, span_avg;
7372 		unsigned long now = jiffies;
7373 
7374 		this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
7375 		if (!this_sd)
7376 			return -1;
7377 
7378 		/*
7379 		 * If we're busy, the assumption that the last idle period
7380 		 * predicts the future is flawed; age away the remaining
7381 		 * predicted idle time.
7382 		 */
7383 		if (unlikely(this_rq->wake_stamp < now)) {
7384 			while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
7385 				this_rq->wake_stamp++;
7386 				this_rq->wake_avg_idle >>= 1;
7387 			}
7388 		}
7389 
7390 		avg_idle = this_rq->wake_avg_idle;
7391 		avg_cost = this_sd->avg_scan_cost + 1;
7392 
7393 		span_avg = sd->span_weight * avg_idle;
7394 		if (span_avg > 4*avg_cost)
7395 			nr = div_u64(span_avg, avg_cost);
7396 		else
7397 			nr = 4;
7398 
7399 		time = cpu_clock(this);
7400 	}
7401 
7402 	if (sched_feat(SIS_UTIL)) {
7403 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7404 		if (sd_share) {
7405 			/* because !--nr is the condition to stop scan */
7406 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7407 			/* overloaded LLC is unlikely to have idle cpu/core */
7408 			if (nr == 1)
7409 				return -1;
7410 		}
7411 	}
7412 
7413 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7414 		if (has_idle_core) {
7415 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7416 			if ((unsigned int)i < nr_cpumask_bits)
7417 				return i;
7418 
7419 		} else {
7420 			if (!--nr)
7421 				return -1;
7422 			idle_cpu = __select_idle_cpu(cpu, p);
7423 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7424 				break;
7425 		}
7426 	}
7427 
7428 	if (has_idle_core)
7429 		set_idle_cores(target, false);
7430 
7431 	if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) {
7432 		time = cpu_clock(this) - time;
7433 
7434 		/*
7435 		 * Account for the scan cost of wakeups against the average
7436 		 * idle time.
7437 		 */
7438 		this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
7439 
7440 		update_avg(&this_sd->avg_scan_cost, time);
7441 	}
7442 
7443 	return idle_cpu;
7444 }
7445 
7446 /*
7447  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7448  * the task fits. If no CPU is big enough, but there are idle ones, try to
7449  * maximize capacity.
7450  */
7451 static int
7452 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7453 {
7454 	unsigned long task_util, util_min, util_max, best_cap = 0;
7455 	int fits, best_fits = 0;
7456 	int cpu, best_cpu = -1;
7457 	struct cpumask *cpus;
7458 
7459 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7460 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7461 
7462 	task_util = task_util_est(p);
7463 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7464 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7465 
7466 	for_each_cpu_wrap(cpu, cpus, target) {
7467 		unsigned long cpu_cap = capacity_of(cpu);
7468 
7469 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7470 			continue;
7471 
7472 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7473 
7474 		/* This CPU fits with all requirements */
7475 		if (fits > 0)
7476 			return cpu;
7477 		/*
7478 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7479 		 * Look for the CPU with best capacity.
7480 		 */
7481 		else if (fits < 0)
7482 			cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu));
7483 
7484 		/*
7485 		 * First, select CPU which fits better (-1 being better than 0).
7486 		 * Then, select the one with best capacity at same level.
7487 		 */
7488 		if ((fits < best_fits) ||
7489 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7490 			best_cap = cpu_cap;
7491 			best_cpu = cpu;
7492 			best_fits = fits;
7493 		}
7494 	}
7495 
7496 	return best_cpu;
7497 }
7498 
7499 static inline bool asym_fits_cpu(unsigned long util,
7500 				 unsigned long util_min,
7501 				 unsigned long util_max,
7502 				 int cpu)
7503 {
7504 	if (sched_asym_cpucap_active())
7505 		/*
7506 		 * Return true only if the cpu fully fits the task requirements
7507 		 * which include the utilization and the performance hints.
7508 		 */
7509 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7510 
7511 	return true;
7512 }
7513 
7514 /*
7515  * Try and locate an idle core/thread in the LLC cache domain.
7516  */
7517 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7518 {
7519 	bool has_idle_core = false;
7520 	struct sched_domain *sd;
7521 	unsigned long task_util, util_min, util_max;
7522 	int i, recent_used_cpu;
7523 
7524 	/*
7525 	 * On asymmetric system, update task utilization because we will check
7526 	 * that the task fits with cpu's capacity.
7527 	 */
7528 	if (sched_asym_cpucap_active()) {
7529 		sync_entity_load_avg(&p->se);
7530 		task_util = task_util_est(p);
7531 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7532 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7533 	}
7534 
7535 	/*
7536 	 * per-cpu select_rq_mask usage
7537 	 */
7538 	lockdep_assert_irqs_disabled();
7539 
7540 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7541 	    asym_fits_cpu(task_util, util_min, util_max, target))
7542 		return target;
7543 
7544 	/*
7545 	 * If the previous CPU is cache affine and idle, don't be stupid:
7546 	 */
7547 	if (prev != target && cpus_share_cache(prev, target) &&
7548 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7549 	    asym_fits_cpu(task_util, util_min, util_max, prev))
7550 		return prev;
7551 
7552 	/*
7553 	 * Allow a per-cpu kthread to stack with the wakee if the
7554 	 * kworker thread and the tasks previous CPUs are the same.
7555 	 * The assumption is that the wakee queued work for the
7556 	 * per-cpu kthread that is now complete and the wakeup is
7557 	 * essentially a sync wakeup. An obvious example of this
7558 	 * pattern is IO completions.
7559 	 */
7560 	if (is_per_cpu_kthread(current) &&
7561 	    in_task() &&
7562 	    prev == smp_processor_id() &&
7563 	    this_rq()->nr_running <= 1 &&
7564 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7565 		return prev;
7566 	}
7567 
7568 	/* Check a recently used CPU as a potential idle candidate: */
7569 	recent_used_cpu = p->recent_used_cpu;
7570 	p->recent_used_cpu = prev;
7571 	if (recent_used_cpu != prev &&
7572 	    recent_used_cpu != target &&
7573 	    cpus_share_cache(recent_used_cpu, target) &&
7574 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7575 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7576 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7577 		return recent_used_cpu;
7578 	}
7579 
7580 	/*
7581 	 * For asymmetric CPU capacity systems, our domain of interest is
7582 	 * sd_asym_cpucapacity rather than sd_llc.
7583 	 */
7584 	if (sched_asym_cpucap_active()) {
7585 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7586 		/*
7587 		 * On an asymmetric CPU capacity system where an exclusive
7588 		 * cpuset defines a symmetric island (i.e. one unique
7589 		 * capacity_orig value through the cpuset), the key will be set
7590 		 * but the CPUs within that cpuset will not have a domain with
7591 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7592 		 * capacity path.
7593 		 */
7594 		if (sd) {
7595 			i = select_idle_capacity(p, sd, target);
7596 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7597 		}
7598 	}
7599 
7600 	sd = rcu_dereference(per_cpu(sd_llc, target));
7601 	if (!sd)
7602 		return target;
7603 
7604 	if (sched_smt_active()) {
7605 		has_idle_core = test_idle_cores(target);
7606 
7607 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7608 			i = select_idle_smt(p, sd, prev);
7609 			if ((unsigned int)i < nr_cpumask_bits)
7610 				return i;
7611 		}
7612 	}
7613 
7614 	i = select_idle_cpu(p, sd, has_idle_core, target);
7615 	if ((unsigned)i < nr_cpumask_bits)
7616 		return i;
7617 
7618 	return target;
7619 }
7620 
7621 /**
7622  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7623  * @cpu: the CPU to get the utilization for
7624  * @p: task for which the CPU utilization should be predicted or NULL
7625  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7626  * @boost: 1 to enable boosting, otherwise 0
7627  *
7628  * The unit of the return value must be the same as the one of CPU capacity
7629  * so that CPU utilization can be compared with CPU capacity.
7630  *
7631  * CPU utilization is the sum of running time of runnable tasks plus the
7632  * recent utilization of currently non-runnable tasks on that CPU.
7633  * It represents the amount of CPU capacity currently used by CFS tasks in
7634  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7635  * capacity at f_max.
7636  *
7637  * The estimated CPU utilization is defined as the maximum between CPU
7638  * utilization and sum of the estimated utilization of the currently
7639  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7640  * previously-executed tasks, which helps better deduce how busy a CPU will
7641  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7642  * of such a task would be significantly decayed at this point of time.
7643  *
7644  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7645  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7646  * utilization. Boosting is implemented in cpu_util() so that internal
7647  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7648  * latter via cpu_util_cfs_boost().
7649  *
7650  * CPU utilization can be higher than the current CPU capacity
7651  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7652  * of rounding errors as well as task migrations or wakeups of new tasks.
7653  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7654  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7655  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7656  * capacity. CPU utilization is allowed to overshoot current CPU capacity
7657  * though since this is useful for predicting the CPU capacity required
7658  * after task migrations (scheduler-driven DVFS).
7659  *
7660  * Return: (Boosted) (estimated) utilization for the specified CPU.
7661  */
7662 static unsigned long
7663 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7664 {
7665 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7666 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7667 	unsigned long runnable;
7668 
7669 	if (boost) {
7670 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7671 		util = max(util, runnable);
7672 	}
7673 
7674 	/*
7675 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7676 	 * contribution. If @p migrates from another CPU to @cpu add its
7677 	 * contribution. In all the other cases @cpu is not impacted by the
7678 	 * migration so its util_avg is already correct.
7679 	 */
7680 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7681 		lsub_positive(&util, task_util(p));
7682 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7683 		util += task_util(p);
7684 
7685 	if (sched_feat(UTIL_EST)) {
7686 		unsigned long util_est;
7687 
7688 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
7689 
7690 		/*
7691 		 * During wake-up @p isn't enqueued yet and doesn't contribute
7692 		 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
7693 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7694 		 * has been enqueued.
7695 		 *
7696 		 * During exec (@dst_cpu = -1) @p is enqueued and does
7697 		 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
7698 		 * Remove it to "simulate" cpu_util without @p's contribution.
7699 		 *
7700 		 * Despite the task_on_rq_queued(@p) check there is still a
7701 		 * small window for a possible race when an exec
7702 		 * select_task_rq_fair() races with LB's detach_task().
7703 		 *
7704 		 *   detach_task()
7705 		 *     deactivate_task()
7706 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
7707 		 *       -------------------------------- A
7708 		 *       dequeue_task()                    \
7709 		 *         dequeue_task_fair()              + Race Time
7710 		 *           util_est_dequeue()            /
7711 		 *       -------------------------------- B
7712 		 *
7713 		 * The additional check "current == p" is required to further
7714 		 * reduce the race window.
7715 		 */
7716 		if (dst_cpu == cpu)
7717 			util_est += _task_util_est(p);
7718 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
7719 			lsub_positive(&util_est, _task_util_est(p));
7720 
7721 		util = max(util, util_est);
7722 	}
7723 
7724 	return min(util, capacity_orig_of(cpu));
7725 }
7726 
7727 unsigned long cpu_util_cfs(int cpu)
7728 {
7729 	return cpu_util(cpu, NULL, -1, 0);
7730 }
7731 
7732 unsigned long cpu_util_cfs_boost(int cpu)
7733 {
7734 	return cpu_util(cpu, NULL, -1, 1);
7735 }
7736 
7737 /*
7738  * cpu_util_without: compute cpu utilization without any contributions from *p
7739  * @cpu: the CPU which utilization is requested
7740  * @p: the task which utilization should be discounted
7741  *
7742  * The utilization of a CPU is defined by the utilization of tasks currently
7743  * enqueued on that CPU as well as tasks which are currently sleeping after an
7744  * execution on that CPU.
7745  *
7746  * This method returns the utilization of the specified CPU by discounting the
7747  * utilization of the specified task, whenever the task is currently
7748  * contributing to the CPU utilization.
7749  */
7750 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7751 {
7752 	/* Task has no contribution or is new */
7753 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7754 		p = NULL;
7755 
7756 	return cpu_util(cpu, p, -1, 0);
7757 }
7758 
7759 /*
7760  * energy_env - Utilization landscape for energy estimation.
7761  * @task_busy_time: Utilization contribution by the task for which we test the
7762  *                  placement. Given by eenv_task_busy_time().
7763  * @pd_busy_time:   Utilization of the whole perf domain without the task
7764  *                  contribution. Given by eenv_pd_busy_time().
7765  * @cpu_cap:        Maximum CPU capacity for the perf domain.
7766  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7767  */
7768 struct energy_env {
7769 	unsigned long task_busy_time;
7770 	unsigned long pd_busy_time;
7771 	unsigned long cpu_cap;
7772 	unsigned long pd_cap;
7773 };
7774 
7775 /*
7776  * Compute the task busy time for compute_energy(). This time cannot be
7777  * injected directly into effective_cpu_util() because of the IRQ scaling.
7778  * The latter only makes sense with the most recent CPUs where the task has
7779  * run.
7780  */
7781 static inline void eenv_task_busy_time(struct energy_env *eenv,
7782 				       struct task_struct *p, int prev_cpu)
7783 {
7784 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7785 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7786 
7787 	if (unlikely(irq >= max_cap))
7788 		busy_time = max_cap;
7789 	else
7790 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7791 
7792 	eenv->task_busy_time = busy_time;
7793 }
7794 
7795 /*
7796  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7797  * utilization for each @pd_cpus, it however doesn't take into account
7798  * clamping since the ratio (utilization / cpu_capacity) is already enough to
7799  * scale the EM reported power consumption at the (eventually clamped)
7800  * cpu_capacity.
7801  *
7802  * The contribution of the task @p for which we want to estimate the
7803  * energy cost is removed (by cpu_util()) and must be calculated
7804  * separately (see eenv_task_busy_time). This ensures:
7805  *
7806  *   - A stable PD utilization, no matter which CPU of that PD we want to place
7807  *     the task on.
7808  *
7809  *   - A fair comparison between CPUs as the task contribution (task_util())
7810  *     will always be the same no matter which CPU utilization we rely on
7811  *     (util_avg or util_est).
7812  *
7813  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7814  * exceed @eenv->pd_cap.
7815  */
7816 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7817 				     struct cpumask *pd_cpus,
7818 				     struct task_struct *p)
7819 {
7820 	unsigned long busy_time = 0;
7821 	int cpu;
7822 
7823 	for_each_cpu(cpu, pd_cpus) {
7824 		unsigned long util = cpu_util(cpu, p, -1, 0);
7825 
7826 		busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
7827 	}
7828 
7829 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7830 }
7831 
7832 /*
7833  * Compute the maximum utilization for compute_energy() when the task @p
7834  * is placed on the cpu @dst_cpu.
7835  *
7836  * Returns the maximum utilization among @eenv->cpus. This utilization can't
7837  * exceed @eenv->cpu_cap.
7838  */
7839 static inline unsigned long
7840 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7841 		 struct task_struct *p, int dst_cpu)
7842 {
7843 	unsigned long max_util = 0;
7844 	int cpu;
7845 
7846 	for_each_cpu(cpu, pd_cpus) {
7847 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7848 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
7849 		unsigned long eff_util;
7850 
7851 		/*
7852 		 * Performance domain frequency: utilization clamping
7853 		 * must be considered since it affects the selection
7854 		 * of the performance domain frequency.
7855 		 * NOTE: in case RT tasks are running, by default the
7856 		 * FREQUENCY_UTIL's utilization can be max OPP.
7857 		 */
7858 		eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
7859 		max_util = max(max_util, eff_util);
7860 	}
7861 
7862 	return min(max_util, eenv->cpu_cap);
7863 }
7864 
7865 /*
7866  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7867  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7868  * contribution is ignored.
7869  */
7870 static inline unsigned long
7871 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7872 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7873 {
7874 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7875 	unsigned long busy_time = eenv->pd_busy_time;
7876 
7877 	if (dst_cpu >= 0)
7878 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7879 
7880 	return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7881 }
7882 
7883 /*
7884  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7885  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7886  * spare capacity in each performance domain and uses it as a potential
7887  * candidate to execute the task. Then, it uses the Energy Model to figure
7888  * out which of the CPU candidates is the most energy-efficient.
7889  *
7890  * The rationale for this heuristic is as follows. In a performance domain,
7891  * all the most energy efficient CPU candidates (according to the Energy
7892  * Model) are those for which we'll request a low frequency. When there are
7893  * several CPUs for which the frequency request will be the same, we don't
7894  * have enough data to break the tie between them, because the Energy Model
7895  * only includes active power costs. With this model, if we assume that
7896  * frequency requests follow utilization (e.g. using schedutil), the CPU with
7897  * the maximum spare capacity in a performance domain is guaranteed to be among
7898  * the best candidates of the performance domain.
7899  *
7900  * In practice, it could be preferable from an energy standpoint to pack
7901  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7902  * but that could also hurt our chances to go cluster idle, and we have no
7903  * ways to tell with the current Energy Model if this is actually a good
7904  * idea or not. So, find_energy_efficient_cpu() basically favors
7905  * cluster-packing, and spreading inside a cluster. That should at least be
7906  * a good thing for latency, and this is consistent with the idea that most
7907  * of the energy savings of EAS come from the asymmetry of the system, and
7908  * not so much from breaking the tie between identical CPUs. That's also the
7909  * reason why EAS is enabled in the topology code only for systems where
7910  * SD_ASYM_CPUCAPACITY is set.
7911  *
7912  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7913  * they don't have any useful utilization data yet and it's not possible to
7914  * forecast their impact on energy consumption. Consequently, they will be
7915  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7916  * to be energy-inefficient in some use-cases. The alternative would be to
7917  * bias new tasks towards specific types of CPUs first, or to try to infer
7918  * their util_avg from the parent task, but those heuristics could hurt
7919  * other use-cases too. So, until someone finds a better way to solve this,
7920  * let's keep things simple by re-using the existing slow path.
7921  */
7922 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7923 {
7924 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7925 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7926 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7927 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7928 	struct root_domain *rd = this_rq()->rd;
7929 	int cpu, best_energy_cpu, target = -1;
7930 	int prev_fits = -1, best_fits = -1;
7931 	unsigned long best_thermal_cap = 0;
7932 	unsigned long prev_thermal_cap = 0;
7933 	struct sched_domain *sd;
7934 	struct perf_domain *pd;
7935 	struct energy_env eenv;
7936 
7937 	rcu_read_lock();
7938 	pd = rcu_dereference(rd->pd);
7939 	if (!pd || READ_ONCE(rd->overutilized))
7940 		goto unlock;
7941 
7942 	/*
7943 	 * Energy-aware wake-up happens on the lowest sched_domain starting
7944 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7945 	 */
7946 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7947 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7948 		sd = sd->parent;
7949 	if (!sd)
7950 		goto unlock;
7951 
7952 	target = prev_cpu;
7953 
7954 	sync_entity_load_avg(&p->se);
7955 	if (!task_util_est(p) && p_util_min == 0)
7956 		goto unlock;
7957 
7958 	eenv_task_busy_time(&eenv, p, prev_cpu);
7959 
7960 	for (; pd; pd = pd->next) {
7961 		unsigned long util_min = p_util_min, util_max = p_util_max;
7962 		unsigned long cpu_cap, cpu_thermal_cap, util;
7963 		long prev_spare_cap = -1, max_spare_cap = -1;
7964 		unsigned long rq_util_min, rq_util_max;
7965 		unsigned long cur_delta, base_energy;
7966 		int max_spare_cap_cpu = -1;
7967 		int fits, max_fits = -1;
7968 
7969 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
7970 
7971 		if (cpumask_empty(cpus))
7972 			continue;
7973 
7974 		/* Account thermal pressure for the energy estimation */
7975 		cpu = cpumask_first(cpus);
7976 		cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
7977 		cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
7978 
7979 		eenv.cpu_cap = cpu_thermal_cap;
7980 		eenv.pd_cap = 0;
7981 
7982 		for_each_cpu(cpu, cpus) {
7983 			struct rq *rq = cpu_rq(cpu);
7984 
7985 			eenv.pd_cap += cpu_thermal_cap;
7986 
7987 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7988 				continue;
7989 
7990 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
7991 				continue;
7992 
7993 			util = cpu_util(cpu, p, cpu, 0);
7994 			cpu_cap = capacity_of(cpu);
7995 
7996 			/*
7997 			 * Skip CPUs that cannot satisfy the capacity request.
7998 			 * IOW, placing the task there would make the CPU
7999 			 * overutilized. Take uclamp into account to see how
8000 			 * much capacity we can get out of the CPU; this is
8001 			 * aligned with sched_cpu_util().
8002 			 */
8003 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8004 				/*
8005 				 * Open code uclamp_rq_util_with() except for
8006 				 * the clamp() part. Ie: apply max aggregation
8007 				 * only. util_fits_cpu() logic requires to
8008 				 * operate on non clamped util but must use the
8009 				 * max-aggregated uclamp_{min, max}.
8010 				 */
8011 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8012 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8013 
8014 				util_min = max(rq_util_min, p_util_min);
8015 				util_max = max(rq_util_max, p_util_max);
8016 			}
8017 
8018 			fits = util_fits_cpu(util, util_min, util_max, cpu);
8019 			if (!fits)
8020 				continue;
8021 
8022 			lsub_positive(&cpu_cap, util);
8023 
8024 			if (cpu == prev_cpu) {
8025 				/* Always use prev_cpu as a candidate. */
8026 				prev_spare_cap = cpu_cap;
8027 				prev_fits = fits;
8028 			} else if ((fits > max_fits) ||
8029 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8030 				/*
8031 				 * Find the CPU with the maximum spare capacity
8032 				 * among the remaining CPUs in the performance
8033 				 * domain.
8034 				 */
8035 				max_spare_cap = cpu_cap;
8036 				max_spare_cap_cpu = cpu;
8037 				max_fits = fits;
8038 			}
8039 		}
8040 
8041 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8042 			continue;
8043 
8044 		eenv_pd_busy_time(&eenv, cpus, p);
8045 		/* Compute the 'base' energy of the pd, without @p */
8046 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8047 
8048 		/* Evaluate the energy impact of using prev_cpu. */
8049 		if (prev_spare_cap > -1) {
8050 			prev_delta = compute_energy(&eenv, pd, cpus, p,
8051 						    prev_cpu);
8052 			/* CPU utilization has changed */
8053 			if (prev_delta < base_energy)
8054 				goto unlock;
8055 			prev_delta -= base_energy;
8056 			prev_thermal_cap = cpu_thermal_cap;
8057 			best_delta = min(best_delta, prev_delta);
8058 		}
8059 
8060 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8061 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8062 			/* Current best energy cpu fits better */
8063 			if (max_fits < best_fits)
8064 				continue;
8065 
8066 			/*
8067 			 * Both don't fit performance hint (i.e. uclamp_min)
8068 			 * but best energy cpu has better capacity.
8069 			 */
8070 			if ((max_fits < 0) &&
8071 			    (cpu_thermal_cap <= best_thermal_cap))
8072 				continue;
8073 
8074 			cur_delta = compute_energy(&eenv, pd, cpus, p,
8075 						   max_spare_cap_cpu);
8076 			/* CPU utilization has changed */
8077 			if (cur_delta < base_energy)
8078 				goto unlock;
8079 			cur_delta -= base_energy;
8080 
8081 			/*
8082 			 * Both fit for the task but best energy cpu has lower
8083 			 * energy impact.
8084 			 */
8085 			if ((max_fits > 0) && (best_fits > 0) &&
8086 			    (cur_delta >= best_delta))
8087 				continue;
8088 
8089 			best_delta = cur_delta;
8090 			best_energy_cpu = max_spare_cap_cpu;
8091 			best_fits = max_fits;
8092 			best_thermal_cap = cpu_thermal_cap;
8093 		}
8094 	}
8095 	rcu_read_unlock();
8096 
8097 	if ((best_fits > prev_fits) ||
8098 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8099 	    ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
8100 		target = best_energy_cpu;
8101 
8102 	return target;
8103 
8104 unlock:
8105 	rcu_read_unlock();
8106 
8107 	return target;
8108 }
8109 
8110 /*
8111  * select_task_rq_fair: Select target runqueue for the waking task in domains
8112  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8113  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8114  *
8115  * Balances load by selecting the idlest CPU in the idlest group, or under
8116  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8117  *
8118  * Returns the target CPU number.
8119  */
8120 static int
8121 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8122 {
8123 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8124 	struct sched_domain *tmp, *sd = NULL;
8125 	int cpu = smp_processor_id();
8126 	int new_cpu = prev_cpu;
8127 	int want_affine = 0;
8128 	/* SD_flags and WF_flags share the first nibble */
8129 	int sd_flag = wake_flags & 0xF;
8130 
8131 	/*
8132 	 * required for stable ->cpus_allowed
8133 	 */
8134 	lockdep_assert_held(&p->pi_lock);
8135 	if (wake_flags & WF_TTWU) {
8136 		record_wakee(p);
8137 
8138 		if ((wake_flags & WF_CURRENT_CPU) &&
8139 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8140 			return cpu;
8141 
8142 		if (sched_energy_enabled()) {
8143 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8144 			if (new_cpu >= 0)
8145 				return new_cpu;
8146 			new_cpu = prev_cpu;
8147 		}
8148 
8149 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8150 	}
8151 
8152 	rcu_read_lock();
8153 	for_each_domain(cpu, tmp) {
8154 		/*
8155 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8156 		 * cpu is a valid SD_WAKE_AFFINE target.
8157 		 */
8158 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8159 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8160 			if (cpu != prev_cpu)
8161 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8162 
8163 			sd = NULL; /* Prefer wake_affine over balance flags */
8164 			break;
8165 		}
8166 
8167 		/*
8168 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8169 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8170 		 * will usually go to the fast path.
8171 		 */
8172 		if (tmp->flags & sd_flag)
8173 			sd = tmp;
8174 		else if (!want_affine)
8175 			break;
8176 	}
8177 
8178 	if (unlikely(sd)) {
8179 		/* Slow path */
8180 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
8181 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8182 		/* Fast path */
8183 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8184 	}
8185 	rcu_read_unlock();
8186 
8187 	return new_cpu;
8188 }
8189 
8190 /*
8191  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8192  * cfs_rq_of(p) references at time of call are still valid and identify the
8193  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8194  */
8195 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8196 {
8197 	struct sched_entity *se = &p->se;
8198 
8199 	if (!task_on_rq_migrating(p)) {
8200 		remove_entity_load_avg(se);
8201 
8202 		/*
8203 		 * Here, the task's PELT values have been updated according to
8204 		 * the current rq's clock. But if that clock hasn't been
8205 		 * updated in a while, a substantial idle time will be missed,
8206 		 * leading to an inflation after wake-up on the new rq.
8207 		 *
8208 		 * Estimate the missing time from the cfs_rq last_update_time
8209 		 * and update sched_avg to improve the PELT continuity after
8210 		 * migration.
8211 		 */
8212 		migrate_se_pelt_lag(se);
8213 	}
8214 
8215 	/* Tell new CPU we are migrated */
8216 	se->avg.last_update_time = 0;
8217 
8218 	update_scan_period(p, new_cpu);
8219 }
8220 
8221 static void task_dead_fair(struct task_struct *p)
8222 {
8223 	remove_entity_load_avg(&p->se);
8224 }
8225 
8226 static int
8227 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8228 {
8229 	if (rq->nr_running)
8230 		return 1;
8231 
8232 	return newidle_balance(rq, rf) != 0;
8233 }
8234 #endif /* CONFIG_SMP */
8235 
8236 static void set_next_buddy(struct sched_entity *se)
8237 {
8238 	for_each_sched_entity(se) {
8239 		if (SCHED_WARN_ON(!se->on_rq))
8240 			return;
8241 		if (se_is_idle(se))
8242 			return;
8243 		cfs_rq_of(se)->next = se;
8244 	}
8245 }
8246 
8247 /*
8248  * Preempt the current task with a newly woken task if needed:
8249  */
8250 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
8251 {
8252 	struct task_struct *curr = rq->curr;
8253 	struct sched_entity *se = &curr->se, *pse = &p->se;
8254 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8255 	int next_buddy_marked = 0;
8256 	int cse_is_idle, pse_is_idle;
8257 
8258 	if (unlikely(se == pse))
8259 		return;
8260 
8261 	/*
8262 	 * This is possible from callers such as attach_tasks(), in which we
8263 	 * unconditionally check_preempt_curr() after an enqueue (which may have
8264 	 * lead to a throttle).  This both saves work and prevents false
8265 	 * next-buddy nomination below.
8266 	 */
8267 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8268 		return;
8269 
8270 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8271 		set_next_buddy(pse);
8272 		next_buddy_marked = 1;
8273 	}
8274 
8275 	/*
8276 	 * We can come here with TIF_NEED_RESCHED already set from new task
8277 	 * wake up path.
8278 	 *
8279 	 * Note: this also catches the edge-case of curr being in a throttled
8280 	 * group (e.g. via set_curr_task), since update_curr() (in the
8281 	 * enqueue of curr) will have resulted in resched being set.  This
8282 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8283 	 * below.
8284 	 */
8285 	if (test_tsk_need_resched(curr))
8286 		return;
8287 
8288 	if (!sched_feat(WAKEUP_PREEMPTION))
8289 		return;
8290 
8291 	find_matching_se(&se, &pse);
8292 	WARN_ON_ONCE(!pse);
8293 
8294 	cse_is_idle = se_is_idle(se);
8295 	pse_is_idle = se_is_idle(pse);
8296 
8297 	/*
8298 	 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8299 	 * in the inverse case).
8300 	 */
8301 	if (cse_is_idle && !pse_is_idle)
8302 		goto preempt;
8303 	if (cse_is_idle != pse_is_idle)
8304 		return;
8305 
8306 	/*
8307 	 * BATCH and IDLE tasks do not preempt others.
8308 	 */
8309 	if (unlikely(p->policy != SCHED_NORMAL))
8310 		return;
8311 
8312 	cfs_rq = cfs_rq_of(se);
8313 	update_curr(cfs_rq);
8314 	/*
8315 	 * XXX pick_eevdf(cfs_rq) != se ?
8316 	 */
8317 	if (pick_eevdf(cfs_rq) == pse)
8318 		goto preempt;
8319 
8320 	return;
8321 
8322 preempt:
8323 	resched_curr(rq);
8324 }
8325 
8326 #ifdef CONFIG_SMP
8327 static struct task_struct *pick_task_fair(struct rq *rq)
8328 {
8329 	struct sched_entity *se;
8330 	struct cfs_rq *cfs_rq;
8331 
8332 again:
8333 	cfs_rq = &rq->cfs;
8334 	if (!cfs_rq->nr_running)
8335 		return NULL;
8336 
8337 	do {
8338 		struct sched_entity *curr = cfs_rq->curr;
8339 
8340 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
8341 		if (curr) {
8342 			if (curr->on_rq)
8343 				update_curr(cfs_rq);
8344 			else
8345 				curr = NULL;
8346 
8347 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8348 				goto again;
8349 		}
8350 
8351 		se = pick_next_entity(cfs_rq, curr);
8352 		cfs_rq = group_cfs_rq(se);
8353 	} while (cfs_rq);
8354 
8355 	return task_of(se);
8356 }
8357 #endif
8358 
8359 struct task_struct *
8360 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8361 {
8362 	struct cfs_rq *cfs_rq = &rq->cfs;
8363 	struct sched_entity *se;
8364 	struct task_struct *p;
8365 	int new_tasks;
8366 
8367 again:
8368 	if (!sched_fair_runnable(rq))
8369 		goto idle;
8370 
8371 #ifdef CONFIG_FAIR_GROUP_SCHED
8372 	if (!prev || prev->sched_class != &fair_sched_class)
8373 		goto simple;
8374 
8375 	/*
8376 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8377 	 * likely that a next task is from the same cgroup as the current.
8378 	 *
8379 	 * Therefore attempt to avoid putting and setting the entire cgroup
8380 	 * hierarchy, only change the part that actually changes.
8381 	 */
8382 
8383 	do {
8384 		struct sched_entity *curr = cfs_rq->curr;
8385 
8386 		/*
8387 		 * Since we got here without doing put_prev_entity() we also
8388 		 * have to consider cfs_rq->curr. If it is still a runnable
8389 		 * entity, update_curr() will update its vruntime, otherwise
8390 		 * forget we've ever seen it.
8391 		 */
8392 		if (curr) {
8393 			if (curr->on_rq)
8394 				update_curr(cfs_rq);
8395 			else
8396 				curr = NULL;
8397 
8398 			/*
8399 			 * This call to check_cfs_rq_runtime() will do the
8400 			 * throttle and dequeue its entity in the parent(s).
8401 			 * Therefore the nr_running test will indeed
8402 			 * be correct.
8403 			 */
8404 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8405 				cfs_rq = &rq->cfs;
8406 
8407 				if (!cfs_rq->nr_running)
8408 					goto idle;
8409 
8410 				goto simple;
8411 			}
8412 		}
8413 
8414 		se = pick_next_entity(cfs_rq, curr);
8415 		cfs_rq = group_cfs_rq(se);
8416 	} while (cfs_rq);
8417 
8418 	p = task_of(se);
8419 
8420 	/*
8421 	 * Since we haven't yet done put_prev_entity and if the selected task
8422 	 * is a different task than we started out with, try and touch the
8423 	 * least amount of cfs_rqs.
8424 	 */
8425 	if (prev != p) {
8426 		struct sched_entity *pse = &prev->se;
8427 
8428 		while (!(cfs_rq = is_same_group(se, pse))) {
8429 			int se_depth = se->depth;
8430 			int pse_depth = pse->depth;
8431 
8432 			if (se_depth <= pse_depth) {
8433 				put_prev_entity(cfs_rq_of(pse), pse);
8434 				pse = parent_entity(pse);
8435 			}
8436 			if (se_depth >= pse_depth) {
8437 				set_next_entity(cfs_rq_of(se), se);
8438 				se = parent_entity(se);
8439 			}
8440 		}
8441 
8442 		put_prev_entity(cfs_rq, pse);
8443 		set_next_entity(cfs_rq, se);
8444 	}
8445 
8446 	goto done;
8447 simple:
8448 #endif
8449 	if (prev)
8450 		put_prev_task(rq, prev);
8451 
8452 	do {
8453 		se = pick_next_entity(cfs_rq, NULL);
8454 		set_next_entity(cfs_rq, se);
8455 		cfs_rq = group_cfs_rq(se);
8456 	} while (cfs_rq);
8457 
8458 	p = task_of(se);
8459 
8460 done: __maybe_unused;
8461 #ifdef CONFIG_SMP
8462 	/*
8463 	 * Move the next running task to the front of
8464 	 * the list, so our cfs_tasks list becomes MRU
8465 	 * one.
8466 	 */
8467 	list_move(&p->se.group_node, &rq->cfs_tasks);
8468 #endif
8469 
8470 	if (hrtick_enabled_fair(rq))
8471 		hrtick_start_fair(rq, p);
8472 
8473 	update_misfit_status(p, rq);
8474 	sched_fair_update_stop_tick(rq, p);
8475 
8476 	return p;
8477 
8478 idle:
8479 	if (!rf)
8480 		return NULL;
8481 
8482 	new_tasks = newidle_balance(rq, rf);
8483 
8484 	/*
8485 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
8486 	 * possible for any higher priority task to appear. In that case we
8487 	 * must re-start the pick_next_entity() loop.
8488 	 */
8489 	if (new_tasks < 0)
8490 		return RETRY_TASK;
8491 
8492 	if (new_tasks > 0)
8493 		goto again;
8494 
8495 	/*
8496 	 * rq is about to be idle, check if we need to update the
8497 	 * lost_idle_time of clock_pelt
8498 	 */
8499 	update_idle_rq_clock_pelt(rq);
8500 
8501 	return NULL;
8502 }
8503 
8504 static struct task_struct *__pick_next_task_fair(struct rq *rq)
8505 {
8506 	return pick_next_task_fair(rq, NULL, NULL);
8507 }
8508 
8509 /*
8510  * Account for a descheduled task:
8511  */
8512 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8513 {
8514 	struct sched_entity *se = &prev->se;
8515 	struct cfs_rq *cfs_rq;
8516 
8517 	for_each_sched_entity(se) {
8518 		cfs_rq = cfs_rq_of(se);
8519 		put_prev_entity(cfs_rq, se);
8520 	}
8521 }
8522 
8523 /*
8524  * sched_yield() is very simple
8525  */
8526 static void yield_task_fair(struct rq *rq)
8527 {
8528 	struct task_struct *curr = rq->curr;
8529 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8530 	struct sched_entity *se = &curr->se;
8531 
8532 	/*
8533 	 * Are we the only task in the tree?
8534 	 */
8535 	if (unlikely(rq->nr_running == 1))
8536 		return;
8537 
8538 	clear_buddies(cfs_rq, se);
8539 
8540 	update_rq_clock(rq);
8541 	/*
8542 	 * Update run-time statistics of the 'current'.
8543 	 */
8544 	update_curr(cfs_rq);
8545 	/*
8546 	 * Tell update_rq_clock() that we've just updated,
8547 	 * so we don't do microscopic update in schedule()
8548 	 * and double the fastpath cost.
8549 	 */
8550 	rq_clock_skip_update(rq);
8551 
8552 	se->deadline += calc_delta_fair(se->slice, se);
8553 }
8554 
8555 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8556 {
8557 	struct sched_entity *se = &p->se;
8558 
8559 	/* throttled hierarchies are not runnable */
8560 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8561 		return false;
8562 
8563 	/* Tell the scheduler that we'd really like pse to run next. */
8564 	set_next_buddy(se);
8565 
8566 	yield_task_fair(rq);
8567 
8568 	return true;
8569 }
8570 
8571 #ifdef CONFIG_SMP
8572 /**************************************************
8573  * Fair scheduling class load-balancing methods.
8574  *
8575  * BASICS
8576  *
8577  * The purpose of load-balancing is to achieve the same basic fairness the
8578  * per-CPU scheduler provides, namely provide a proportional amount of compute
8579  * time to each task. This is expressed in the following equation:
8580  *
8581  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
8582  *
8583  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8584  * W_i,0 is defined as:
8585  *
8586  *   W_i,0 = \Sum_j w_i,j                                             (2)
8587  *
8588  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8589  * is derived from the nice value as per sched_prio_to_weight[].
8590  *
8591  * The weight average is an exponential decay average of the instantaneous
8592  * weight:
8593  *
8594  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
8595  *
8596  * C_i is the compute capacity of CPU i, typically it is the
8597  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8598  * can also include other factors [XXX].
8599  *
8600  * To achieve this balance we define a measure of imbalance which follows
8601  * directly from (1):
8602  *
8603  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
8604  *
8605  * We them move tasks around to minimize the imbalance. In the continuous
8606  * function space it is obvious this converges, in the discrete case we get
8607  * a few fun cases generally called infeasible weight scenarios.
8608  *
8609  * [XXX expand on:
8610  *     - infeasible weights;
8611  *     - local vs global optima in the discrete case. ]
8612  *
8613  *
8614  * SCHED DOMAINS
8615  *
8616  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8617  * for all i,j solution, we create a tree of CPUs that follows the hardware
8618  * topology where each level pairs two lower groups (or better). This results
8619  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8620  * tree to only the first of the previous level and we decrease the frequency
8621  * of load-balance at each level inv. proportional to the number of CPUs in
8622  * the groups.
8623  *
8624  * This yields:
8625  *
8626  *     log_2 n     1     n
8627  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
8628  *     i = 0      2^i   2^i
8629  *                               `- size of each group
8630  *         |         |     `- number of CPUs doing load-balance
8631  *         |         `- freq
8632  *         `- sum over all levels
8633  *
8634  * Coupled with a limit on how many tasks we can migrate every balance pass,
8635  * this makes (5) the runtime complexity of the balancer.
8636  *
8637  * An important property here is that each CPU is still (indirectly) connected
8638  * to every other CPU in at most O(log n) steps:
8639  *
8640  * The adjacency matrix of the resulting graph is given by:
8641  *
8642  *             log_2 n
8643  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
8644  *             k = 0
8645  *
8646  * And you'll find that:
8647  *
8648  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
8649  *
8650  * Showing there's indeed a path between every CPU in at most O(log n) steps.
8651  * The task movement gives a factor of O(m), giving a convergence complexity
8652  * of:
8653  *
8654  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
8655  *
8656  *
8657  * WORK CONSERVING
8658  *
8659  * In order to avoid CPUs going idle while there's still work to do, new idle
8660  * balancing is more aggressive and has the newly idle CPU iterate up the domain
8661  * tree itself instead of relying on other CPUs to bring it work.
8662  *
8663  * This adds some complexity to both (5) and (8) but it reduces the total idle
8664  * time.
8665  *
8666  * [XXX more?]
8667  *
8668  *
8669  * CGROUPS
8670  *
8671  * Cgroups make a horror show out of (2), instead of a simple sum we get:
8672  *
8673  *                                s_k,i
8674  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
8675  *                                 S_k
8676  *
8677  * Where
8678  *
8679  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
8680  *
8681  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8682  *
8683  * The big problem is S_k, its a global sum needed to compute a local (W_i)
8684  * property.
8685  *
8686  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8687  *      rewrite all of this once again.]
8688  */
8689 
8690 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8691 
8692 enum fbq_type { regular, remote, all };
8693 
8694 /*
8695  * 'group_type' describes the group of CPUs at the moment of load balancing.
8696  *
8697  * The enum is ordered by pulling priority, with the group with lowest priority
8698  * first so the group_type can simply be compared when selecting the busiest
8699  * group. See update_sd_pick_busiest().
8700  */
8701 enum group_type {
8702 	/* The group has spare capacity that can be used to run more tasks.  */
8703 	group_has_spare = 0,
8704 	/*
8705 	 * The group is fully used and the tasks don't compete for more CPU
8706 	 * cycles. Nevertheless, some tasks might wait before running.
8707 	 */
8708 	group_fully_busy,
8709 	/*
8710 	 * One task doesn't fit with CPU's capacity and must be migrated to a
8711 	 * more powerful CPU.
8712 	 */
8713 	group_misfit_task,
8714 	/*
8715 	 * Balance SMT group that's fully busy. Can benefit from migration
8716 	 * a task on SMT with busy sibling to another CPU on idle core.
8717 	 */
8718 	group_smt_balance,
8719 	/*
8720 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8721 	 * and the task should be migrated to it instead of running on the
8722 	 * current CPU.
8723 	 */
8724 	group_asym_packing,
8725 	/*
8726 	 * The tasks' affinity constraints previously prevented the scheduler
8727 	 * from balancing the load across the system.
8728 	 */
8729 	group_imbalanced,
8730 	/*
8731 	 * The CPU is overloaded and can't provide expected CPU cycles to all
8732 	 * tasks.
8733 	 */
8734 	group_overloaded
8735 };
8736 
8737 enum migration_type {
8738 	migrate_load = 0,
8739 	migrate_util,
8740 	migrate_task,
8741 	migrate_misfit
8742 };
8743 
8744 #define LBF_ALL_PINNED	0x01
8745 #define LBF_NEED_BREAK	0x02
8746 #define LBF_DST_PINNED  0x04
8747 #define LBF_SOME_PINNED	0x08
8748 #define LBF_ACTIVE_LB	0x10
8749 
8750 struct lb_env {
8751 	struct sched_domain	*sd;
8752 
8753 	struct rq		*src_rq;
8754 	int			src_cpu;
8755 
8756 	int			dst_cpu;
8757 	struct rq		*dst_rq;
8758 
8759 	struct cpumask		*dst_grpmask;
8760 	int			new_dst_cpu;
8761 	enum cpu_idle_type	idle;
8762 	long			imbalance;
8763 	/* The set of CPUs under consideration for load-balancing */
8764 	struct cpumask		*cpus;
8765 
8766 	unsigned int		flags;
8767 
8768 	unsigned int		loop;
8769 	unsigned int		loop_break;
8770 	unsigned int		loop_max;
8771 
8772 	enum fbq_type		fbq_type;
8773 	enum migration_type	migration_type;
8774 	struct list_head	tasks;
8775 };
8776 
8777 /*
8778  * Is this task likely cache-hot:
8779  */
8780 static int task_hot(struct task_struct *p, struct lb_env *env)
8781 {
8782 	s64 delta;
8783 
8784 	lockdep_assert_rq_held(env->src_rq);
8785 
8786 	if (p->sched_class != &fair_sched_class)
8787 		return 0;
8788 
8789 	if (unlikely(task_has_idle_policy(p)))
8790 		return 0;
8791 
8792 	/* SMT siblings share cache */
8793 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8794 		return 0;
8795 
8796 	/*
8797 	 * Buddy candidates are cache hot:
8798 	 */
8799 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8800 	    (&p->se == cfs_rq_of(&p->se)->next))
8801 		return 1;
8802 
8803 	if (sysctl_sched_migration_cost == -1)
8804 		return 1;
8805 
8806 	/*
8807 	 * Don't migrate task if the task's cookie does not match
8808 	 * with the destination CPU's core cookie.
8809 	 */
8810 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8811 		return 1;
8812 
8813 	if (sysctl_sched_migration_cost == 0)
8814 		return 0;
8815 
8816 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8817 
8818 	return delta < (s64)sysctl_sched_migration_cost;
8819 }
8820 
8821 #ifdef CONFIG_NUMA_BALANCING
8822 /*
8823  * Returns 1, if task migration degrades locality
8824  * Returns 0, if task migration improves locality i.e migration preferred.
8825  * Returns -1, if task migration is not affected by locality.
8826  */
8827 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8828 {
8829 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
8830 	unsigned long src_weight, dst_weight;
8831 	int src_nid, dst_nid, dist;
8832 
8833 	if (!static_branch_likely(&sched_numa_balancing))
8834 		return -1;
8835 
8836 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8837 		return -1;
8838 
8839 	src_nid = cpu_to_node(env->src_cpu);
8840 	dst_nid = cpu_to_node(env->dst_cpu);
8841 
8842 	if (src_nid == dst_nid)
8843 		return -1;
8844 
8845 	/* Migrating away from the preferred node is always bad. */
8846 	if (src_nid == p->numa_preferred_nid) {
8847 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8848 			return 1;
8849 		else
8850 			return -1;
8851 	}
8852 
8853 	/* Encourage migration to the preferred node. */
8854 	if (dst_nid == p->numa_preferred_nid)
8855 		return 0;
8856 
8857 	/* Leaving a core idle is often worse than degrading locality. */
8858 	if (env->idle == CPU_IDLE)
8859 		return -1;
8860 
8861 	dist = node_distance(src_nid, dst_nid);
8862 	if (numa_group) {
8863 		src_weight = group_weight(p, src_nid, dist);
8864 		dst_weight = group_weight(p, dst_nid, dist);
8865 	} else {
8866 		src_weight = task_weight(p, src_nid, dist);
8867 		dst_weight = task_weight(p, dst_nid, dist);
8868 	}
8869 
8870 	return dst_weight < src_weight;
8871 }
8872 
8873 #else
8874 static inline int migrate_degrades_locality(struct task_struct *p,
8875 					     struct lb_env *env)
8876 {
8877 	return -1;
8878 }
8879 #endif
8880 
8881 /*
8882  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8883  */
8884 static
8885 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8886 {
8887 	int tsk_cache_hot;
8888 
8889 	lockdep_assert_rq_held(env->src_rq);
8890 
8891 	/*
8892 	 * We do not migrate tasks that are:
8893 	 * 1) throttled_lb_pair, or
8894 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8895 	 * 3) running (obviously), or
8896 	 * 4) are cache-hot on their current CPU.
8897 	 */
8898 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8899 		return 0;
8900 
8901 	/* Disregard pcpu kthreads; they are where they need to be. */
8902 	if (kthread_is_per_cpu(p))
8903 		return 0;
8904 
8905 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8906 		int cpu;
8907 
8908 		schedstat_inc(p->stats.nr_failed_migrations_affine);
8909 
8910 		env->flags |= LBF_SOME_PINNED;
8911 
8912 		/*
8913 		 * Remember if this task can be migrated to any other CPU in
8914 		 * our sched_group. We may want to revisit it if we couldn't
8915 		 * meet load balance goals by pulling other tasks on src_cpu.
8916 		 *
8917 		 * Avoid computing new_dst_cpu
8918 		 * - for NEWLY_IDLE
8919 		 * - if we have already computed one in current iteration
8920 		 * - if it's an active balance
8921 		 */
8922 		if (env->idle == CPU_NEWLY_IDLE ||
8923 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8924 			return 0;
8925 
8926 		/* Prevent to re-select dst_cpu via env's CPUs: */
8927 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8928 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8929 				env->flags |= LBF_DST_PINNED;
8930 				env->new_dst_cpu = cpu;
8931 				break;
8932 			}
8933 		}
8934 
8935 		return 0;
8936 	}
8937 
8938 	/* Record that we found at least one task that could run on dst_cpu */
8939 	env->flags &= ~LBF_ALL_PINNED;
8940 
8941 	if (task_on_cpu(env->src_rq, p)) {
8942 		schedstat_inc(p->stats.nr_failed_migrations_running);
8943 		return 0;
8944 	}
8945 
8946 	/*
8947 	 * Aggressive migration if:
8948 	 * 1) active balance
8949 	 * 2) destination numa is preferred
8950 	 * 3) task is cache cold, or
8951 	 * 4) too many balance attempts have failed.
8952 	 */
8953 	if (env->flags & LBF_ACTIVE_LB)
8954 		return 1;
8955 
8956 	tsk_cache_hot = migrate_degrades_locality(p, env);
8957 	if (tsk_cache_hot == -1)
8958 		tsk_cache_hot = task_hot(p, env);
8959 
8960 	if (tsk_cache_hot <= 0 ||
8961 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8962 		if (tsk_cache_hot == 1) {
8963 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8964 			schedstat_inc(p->stats.nr_forced_migrations);
8965 		}
8966 		return 1;
8967 	}
8968 
8969 	schedstat_inc(p->stats.nr_failed_migrations_hot);
8970 	return 0;
8971 }
8972 
8973 /*
8974  * detach_task() -- detach the task for the migration specified in env
8975  */
8976 static void detach_task(struct task_struct *p, struct lb_env *env)
8977 {
8978 	lockdep_assert_rq_held(env->src_rq);
8979 
8980 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
8981 	set_task_cpu(p, env->dst_cpu);
8982 }
8983 
8984 /*
8985  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
8986  * part of active balancing operations within "domain".
8987  *
8988  * Returns a task if successful and NULL otherwise.
8989  */
8990 static struct task_struct *detach_one_task(struct lb_env *env)
8991 {
8992 	struct task_struct *p;
8993 
8994 	lockdep_assert_rq_held(env->src_rq);
8995 
8996 	list_for_each_entry_reverse(p,
8997 			&env->src_rq->cfs_tasks, se.group_node) {
8998 		if (!can_migrate_task(p, env))
8999 			continue;
9000 
9001 		detach_task(p, env);
9002 
9003 		/*
9004 		 * Right now, this is only the second place where
9005 		 * lb_gained[env->idle] is updated (other is detach_tasks)
9006 		 * so we can safely collect stats here rather than
9007 		 * inside detach_tasks().
9008 		 */
9009 		schedstat_inc(env->sd->lb_gained[env->idle]);
9010 		return p;
9011 	}
9012 	return NULL;
9013 }
9014 
9015 /*
9016  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9017  * busiest_rq, as part of a balancing operation within domain "sd".
9018  *
9019  * Returns number of detached tasks if successful and 0 otherwise.
9020  */
9021 static int detach_tasks(struct lb_env *env)
9022 {
9023 	struct list_head *tasks = &env->src_rq->cfs_tasks;
9024 	unsigned long util, load;
9025 	struct task_struct *p;
9026 	int detached = 0;
9027 
9028 	lockdep_assert_rq_held(env->src_rq);
9029 
9030 	/*
9031 	 * Source run queue has been emptied by another CPU, clear
9032 	 * LBF_ALL_PINNED flag as we will not test any task.
9033 	 */
9034 	if (env->src_rq->nr_running <= 1) {
9035 		env->flags &= ~LBF_ALL_PINNED;
9036 		return 0;
9037 	}
9038 
9039 	if (env->imbalance <= 0)
9040 		return 0;
9041 
9042 	while (!list_empty(tasks)) {
9043 		/*
9044 		 * We don't want to steal all, otherwise we may be treated likewise,
9045 		 * which could at worst lead to a livelock crash.
9046 		 */
9047 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
9048 			break;
9049 
9050 		env->loop++;
9051 		/* We've more or less seen every task there is, call it quits */
9052 		if (env->loop > env->loop_max)
9053 			break;
9054 
9055 		/* take a breather every nr_migrate tasks */
9056 		if (env->loop > env->loop_break) {
9057 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9058 			env->flags |= LBF_NEED_BREAK;
9059 			break;
9060 		}
9061 
9062 		p = list_last_entry(tasks, struct task_struct, se.group_node);
9063 
9064 		if (!can_migrate_task(p, env))
9065 			goto next;
9066 
9067 		switch (env->migration_type) {
9068 		case migrate_load:
9069 			/*
9070 			 * Depending of the number of CPUs and tasks and the
9071 			 * cgroup hierarchy, task_h_load() can return a null
9072 			 * value. Make sure that env->imbalance decreases
9073 			 * otherwise detach_tasks() will stop only after
9074 			 * detaching up to loop_max tasks.
9075 			 */
9076 			load = max_t(unsigned long, task_h_load(p), 1);
9077 
9078 			if (sched_feat(LB_MIN) &&
9079 			    load < 16 && !env->sd->nr_balance_failed)
9080 				goto next;
9081 
9082 			/*
9083 			 * Make sure that we don't migrate too much load.
9084 			 * Nevertheless, let relax the constraint if
9085 			 * scheduler fails to find a good waiting task to
9086 			 * migrate.
9087 			 */
9088 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9089 				goto next;
9090 
9091 			env->imbalance -= load;
9092 			break;
9093 
9094 		case migrate_util:
9095 			util = task_util_est(p);
9096 
9097 			if (util > env->imbalance)
9098 				goto next;
9099 
9100 			env->imbalance -= util;
9101 			break;
9102 
9103 		case migrate_task:
9104 			env->imbalance--;
9105 			break;
9106 
9107 		case migrate_misfit:
9108 			/* This is not a misfit task */
9109 			if (task_fits_cpu(p, env->src_cpu))
9110 				goto next;
9111 
9112 			env->imbalance = 0;
9113 			break;
9114 		}
9115 
9116 		detach_task(p, env);
9117 		list_add(&p->se.group_node, &env->tasks);
9118 
9119 		detached++;
9120 
9121 #ifdef CONFIG_PREEMPTION
9122 		/*
9123 		 * NEWIDLE balancing is a source of latency, so preemptible
9124 		 * kernels will stop after the first task is detached to minimize
9125 		 * the critical section.
9126 		 */
9127 		if (env->idle == CPU_NEWLY_IDLE)
9128 			break;
9129 #endif
9130 
9131 		/*
9132 		 * We only want to steal up to the prescribed amount of
9133 		 * load/util/tasks.
9134 		 */
9135 		if (env->imbalance <= 0)
9136 			break;
9137 
9138 		continue;
9139 next:
9140 		list_move(&p->se.group_node, tasks);
9141 	}
9142 
9143 	/*
9144 	 * Right now, this is one of only two places we collect this stat
9145 	 * so we can safely collect detach_one_task() stats here rather
9146 	 * than inside detach_one_task().
9147 	 */
9148 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9149 
9150 	return detached;
9151 }
9152 
9153 /*
9154  * attach_task() -- attach the task detached by detach_task() to its new rq.
9155  */
9156 static void attach_task(struct rq *rq, struct task_struct *p)
9157 {
9158 	lockdep_assert_rq_held(rq);
9159 
9160 	WARN_ON_ONCE(task_rq(p) != rq);
9161 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9162 	check_preempt_curr(rq, p, 0);
9163 }
9164 
9165 /*
9166  * attach_one_task() -- attaches the task returned from detach_one_task() to
9167  * its new rq.
9168  */
9169 static void attach_one_task(struct rq *rq, struct task_struct *p)
9170 {
9171 	struct rq_flags rf;
9172 
9173 	rq_lock(rq, &rf);
9174 	update_rq_clock(rq);
9175 	attach_task(rq, p);
9176 	rq_unlock(rq, &rf);
9177 }
9178 
9179 /*
9180  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9181  * new rq.
9182  */
9183 static void attach_tasks(struct lb_env *env)
9184 {
9185 	struct list_head *tasks = &env->tasks;
9186 	struct task_struct *p;
9187 	struct rq_flags rf;
9188 
9189 	rq_lock(env->dst_rq, &rf);
9190 	update_rq_clock(env->dst_rq);
9191 
9192 	while (!list_empty(tasks)) {
9193 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9194 		list_del_init(&p->se.group_node);
9195 
9196 		attach_task(env->dst_rq, p);
9197 	}
9198 
9199 	rq_unlock(env->dst_rq, &rf);
9200 }
9201 
9202 #ifdef CONFIG_NO_HZ_COMMON
9203 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9204 {
9205 	if (cfs_rq->avg.load_avg)
9206 		return true;
9207 
9208 	if (cfs_rq->avg.util_avg)
9209 		return true;
9210 
9211 	return false;
9212 }
9213 
9214 static inline bool others_have_blocked(struct rq *rq)
9215 {
9216 	if (READ_ONCE(rq->avg_rt.util_avg))
9217 		return true;
9218 
9219 	if (READ_ONCE(rq->avg_dl.util_avg))
9220 		return true;
9221 
9222 	if (thermal_load_avg(rq))
9223 		return true;
9224 
9225 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9226 	if (READ_ONCE(rq->avg_irq.util_avg))
9227 		return true;
9228 #endif
9229 
9230 	return false;
9231 }
9232 
9233 static inline void update_blocked_load_tick(struct rq *rq)
9234 {
9235 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9236 }
9237 
9238 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9239 {
9240 	if (!has_blocked)
9241 		rq->has_blocked_load = 0;
9242 }
9243 #else
9244 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9245 static inline bool others_have_blocked(struct rq *rq) { return false; }
9246 static inline void update_blocked_load_tick(struct rq *rq) {}
9247 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9248 #endif
9249 
9250 static bool __update_blocked_others(struct rq *rq, bool *done)
9251 {
9252 	const struct sched_class *curr_class;
9253 	u64 now = rq_clock_pelt(rq);
9254 	unsigned long thermal_pressure;
9255 	bool decayed;
9256 
9257 	/*
9258 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9259 	 * DL and IRQ signals have been updated before updating CFS.
9260 	 */
9261 	curr_class = rq->curr->sched_class;
9262 
9263 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
9264 
9265 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
9266 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
9267 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
9268 		  update_irq_load_avg(rq, 0);
9269 
9270 	if (others_have_blocked(rq))
9271 		*done = false;
9272 
9273 	return decayed;
9274 }
9275 
9276 #ifdef CONFIG_FAIR_GROUP_SCHED
9277 
9278 static bool __update_blocked_fair(struct rq *rq, bool *done)
9279 {
9280 	struct cfs_rq *cfs_rq, *pos;
9281 	bool decayed = false;
9282 	int cpu = cpu_of(rq);
9283 
9284 	/*
9285 	 * Iterates the task_group tree in a bottom up fashion, see
9286 	 * list_add_leaf_cfs_rq() for details.
9287 	 */
9288 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9289 		struct sched_entity *se;
9290 
9291 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9292 			update_tg_load_avg(cfs_rq);
9293 
9294 			if (cfs_rq->nr_running == 0)
9295 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9296 
9297 			if (cfs_rq == &rq->cfs)
9298 				decayed = true;
9299 		}
9300 
9301 		/* Propagate pending load changes to the parent, if any: */
9302 		se = cfs_rq->tg->se[cpu];
9303 		if (se && !skip_blocked_update(se))
9304 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9305 
9306 		/*
9307 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9308 		 * decayed cfs_rqs linger on the list.
9309 		 */
9310 		if (cfs_rq_is_decayed(cfs_rq))
9311 			list_del_leaf_cfs_rq(cfs_rq);
9312 
9313 		/* Don't need periodic decay once load/util_avg are null */
9314 		if (cfs_rq_has_blocked(cfs_rq))
9315 			*done = false;
9316 	}
9317 
9318 	return decayed;
9319 }
9320 
9321 /*
9322  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9323  * This needs to be done in a top-down fashion because the load of a child
9324  * group is a fraction of its parents load.
9325  */
9326 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9327 {
9328 	struct rq *rq = rq_of(cfs_rq);
9329 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9330 	unsigned long now = jiffies;
9331 	unsigned long load;
9332 
9333 	if (cfs_rq->last_h_load_update == now)
9334 		return;
9335 
9336 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9337 	for_each_sched_entity(se) {
9338 		cfs_rq = cfs_rq_of(se);
9339 		WRITE_ONCE(cfs_rq->h_load_next, se);
9340 		if (cfs_rq->last_h_load_update == now)
9341 			break;
9342 	}
9343 
9344 	if (!se) {
9345 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9346 		cfs_rq->last_h_load_update = now;
9347 	}
9348 
9349 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9350 		load = cfs_rq->h_load;
9351 		load = div64_ul(load * se->avg.load_avg,
9352 			cfs_rq_load_avg(cfs_rq) + 1);
9353 		cfs_rq = group_cfs_rq(se);
9354 		cfs_rq->h_load = load;
9355 		cfs_rq->last_h_load_update = now;
9356 	}
9357 }
9358 
9359 static unsigned long task_h_load(struct task_struct *p)
9360 {
9361 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9362 
9363 	update_cfs_rq_h_load(cfs_rq);
9364 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9365 			cfs_rq_load_avg(cfs_rq) + 1);
9366 }
9367 #else
9368 static bool __update_blocked_fair(struct rq *rq, bool *done)
9369 {
9370 	struct cfs_rq *cfs_rq = &rq->cfs;
9371 	bool decayed;
9372 
9373 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9374 	if (cfs_rq_has_blocked(cfs_rq))
9375 		*done = false;
9376 
9377 	return decayed;
9378 }
9379 
9380 static unsigned long task_h_load(struct task_struct *p)
9381 {
9382 	return p->se.avg.load_avg;
9383 }
9384 #endif
9385 
9386 static void update_blocked_averages(int cpu)
9387 {
9388 	bool decayed = false, done = true;
9389 	struct rq *rq = cpu_rq(cpu);
9390 	struct rq_flags rf;
9391 
9392 	rq_lock_irqsave(rq, &rf);
9393 	update_blocked_load_tick(rq);
9394 	update_rq_clock(rq);
9395 
9396 	decayed |= __update_blocked_others(rq, &done);
9397 	decayed |= __update_blocked_fair(rq, &done);
9398 
9399 	update_blocked_load_status(rq, !done);
9400 	if (decayed)
9401 		cpufreq_update_util(rq, 0);
9402 	rq_unlock_irqrestore(rq, &rf);
9403 }
9404 
9405 /********** Helpers for find_busiest_group ************************/
9406 
9407 /*
9408  * sg_lb_stats - stats of a sched_group required for load_balancing
9409  */
9410 struct sg_lb_stats {
9411 	unsigned long avg_load; /*Avg load across the CPUs of the group */
9412 	unsigned long group_load; /* Total load over the CPUs of the group */
9413 	unsigned long group_capacity;
9414 	unsigned long group_util; /* Total utilization over the CPUs of the group */
9415 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9416 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
9417 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9418 	unsigned int idle_cpus;
9419 	unsigned int group_weight;
9420 	enum group_type group_type;
9421 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9422 	unsigned int group_smt_balance;  /* Task on busy SMT be moved */
9423 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9424 #ifdef CONFIG_NUMA_BALANCING
9425 	unsigned int nr_numa_running;
9426 	unsigned int nr_preferred_running;
9427 #endif
9428 };
9429 
9430 /*
9431  * sd_lb_stats - Structure to store the statistics of a sched_domain
9432  *		 during load balancing.
9433  */
9434 struct sd_lb_stats {
9435 	struct sched_group *busiest;	/* Busiest group in this sd */
9436 	struct sched_group *local;	/* Local group in this sd */
9437 	unsigned long total_load;	/* Total load of all groups in sd */
9438 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
9439 	unsigned long avg_load;	/* Average load across all groups in sd */
9440 	unsigned int prefer_sibling; /* tasks should go to sibling first */
9441 
9442 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
9443 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
9444 };
9445 
9446 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9447 {
9448 	/*
9449 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9450 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9451 	 * We must however set busiest_stat::group_type and
9452 	 * busiest_stat::idle_cpus to the worst busiest group because
9453 	 * update_sd_pick_busiest() reads these before assignment.
9454 	 */
9455 	*sds = (struct sd_lb_stats){
9456 		.busiest = NULL,
9457 		.local = NULL,
9458 		.total_load = 0UL,
9459 		.total_capacity = 0UL,
9460 		.busiest_stat = {
9461 			.idle_cpus = UINT_MAX,
9462 			.group_type = group_has_spare,
9463 		},
9464 	};
9465 }
9466 
9467 static unsigned long scale_rt_capacity(int cpu)
9468 {
9469 	struct rq *rq = cpu_rq(cpu);
9470 	unsigned long max = arch_scale_cpu_capacity(cpu);
9471 	unsigned long used, free;
9472 	unsigned long irq;
9473 
9474 	irq = cpu_util_irq(rq);
9475 
9476 	if (unlikely(irq >= max))
9477 		return 1;
9478 
9479 	/*
9480 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9481 	 * (running and not running) with weights 0 and 1024 respectively.
9482 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
9483 	 * average uses the actual delta max capacity(load).
9484 	 */
9485 	used = READ_ONCE(rq->avg_rt.util_avg);
9486 	used += READ_ONCE(rq->avg_dl.util_avg);
9487 	used += thermal_load_avg(rq);
9488 
9489 	if (unlikely(used >= max))
9490 		return 1;
9491 
9492 	free = max - used;
9493 
9494 	return scale_irq_capacity(free, irq, max);
9495 }
9496 
9497 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9498 {
9499 	unsigned long capacity = scale_rt_capacity(cpu);
9500 	struct sched_group *sdg = sd->groups;
9501 
9502 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
9503 
9504 	if (!capacity)
9505 		capacity = 1;
9506 
9507 	cpu_rq(cpu)->cpu_capacity = capacity;
9508 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9509 
9510 	sdg->sgc->capacity = capacity;
9511 	sdg->sgc->min_capacity = capacity;
9512 	sdg->sgc->max_capacity = capacity;
9513 }
9514 
9515 void update_group_capacity(struct sched_domain *sd, int cpu)
9516 {
9517 	struct sched_domain *child = sd->child;
9518 	struct sched_group *group, *sdg = sd->groups;
9519 	unsigned long capacity, min_capacity, max_capacity;
9520 	unsigned long interval;
9521 
9522 	interval = msecs_to_jiffies(sd->balance_interval);
9523 	interval = clamp(interval, 1UL, max_load_balance_interval);
9524 	sdg->sgc->next_update = jiffies + interval;
9525 
9526 	if (!child) {
9527 		update_cpu_capacity(sd, cpu);
9528 		return;
9529 	}
9530 
9531 	capacity = 0;
9532 	min_capacity = ULONG_MAX;
9533 	max_capacity = 0;
9534 
9535 	if (child->flags & SD_OVERLAP) {
9536 		/*
9537 		 * SD_OVERLAP domains cannot assume that child groups
9538 		 * span the current group.
9539 		 */
9540 
9541 		for_each_cpu(cpu, sched_group_span(sdg)) {
9542 			unsigned long cpu_cap = capacity_of(cpu);
9543 
9544 			capacity += cpu_cap;
9545 			min_capacity = min(cpu_cap, min_capacity);
9546 			max_capacity = max(cpu_cap, max_capacity);
9547 		}
9548 	} else  {
9549 		/*
9550 		 * !SD_OVERLAP domains can assume that child groups
9551 		 * span the current group.
9552 		 */
9553 
9554 		group = child->groups;
9555 		do {
9556 			struct sched_group_capacity *sgc = group->sgc;
9557 
9558 			capacity += sgc->capacity;
9559 			min_capacity = min(sgc->min_capacity, min_capacity);
9560 			max_capacity = max(sgc->max_capacity, max_capacity);
9561 			group = group->next;
9562 		} while (group != child->groups);
9563 	}
9564 
9565 	sdg->sgc->capacity = capacity;
9566 	sdg->sgc->min_capacity = min_capacity;
9567 	sdg->sgc->max_capacity = max_capacity;
9568 }
9569 
9570 /*
9571  * Check whether the capacity of the rq has been noticeably reduced by side
9572  * activity. The imbalance_pct is used for the threshold.
9573  * Return true is the capacity is reduced
9574  */
9575 static inline int
9576 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9577 {
9578 	return ((rq->cpu_capacity * sd->imbalance_pct) <
9579 				(rq->cpu_capacity_orig * 100));
9580 }
9581 
9582 /*
9583  * Check whether a rq has a misfit task and if it looks like we can actually
9584  * help that task: we can migrate the task to a CPU of higher capacity, or
9585  * the task's current CPU is heavily pressured.
9586  */
9587 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
9588 {
9589 	return rq->misfit_task_load &&
9590 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
9591 		 check_cpu_capacity(rq, sd));
9592 }
9593 
9594 /*
9595  * Group imbalance indicates (and tries to solve) the problem where balancing
9596  * groups is inadequate due to ->cpus_ptr constraints.
9597  *
9598  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9599  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9600  * Something like:
9601  *
9602  *	{ 0 1 2 3 } { 4 5 6 7 }
9603  *	        *     * * *
9604  *
9605  * If we were to balance group-wise we'd place two tasks in the first group and
9606  * two tasks in the second group. Clearly this is undesired as it will overload
9607  * cpu 3 and leave one of the CPUs in the second group unused.
9608  *
9609  * The current solution to this issue is detecting the skew in the first group
9610  * by noticing the lower domain failed to reach balance and had difficulty
9611  * moving tasks due to affinity constraints.
9612  *
9613  * When this is so detected; this group becomes a candidate for busiest; see
9614  * update_sd_pick_busiest(). And calculate_imbalance() and
9615  * find_busiest_group() avoid some of the usual balance conditions to allow it
9616  * to create an effective group imbalance.
9617  *
9618  * This is a somewhat tricky proposition since the next run might not find the
9619  * group imbalance and decide the groups need to be balanced again. A most
9620  * subtle and fragile situation.
9621  */
9622 
9623 static inline int sg_imbalanced(struct sched_group *group)
9624 {
9625 	return group->sgc->imbalance;
9626 }
9627 
9628 /*
9629  * group_has_capacity returns true if the group has spare capacity that could
9630  * be used by some tasks.
9631  * We consider that a group has spare capacity if the number of task is
9632  * smaller than the number of CPUs or if the utilization is lower than the
9633  * available capacity for CFS tasks.
9634  * For the latter, we use a threshold to stabilize the state, to take into
9635  * account the variance of the tasks' load and to return true if the available
9636  * capacity in meaningful for the load balancer.
9637  * As an example, an available capacity of 1% can appear but it doesn't make
9638  * any benefit for the load balance.
9639  */
9640 static inline bool
9641 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9642 {
9643 	if (sgs->sum_nr_running < sgs->group_weight)
9644 		return true;
9645 
9646 	if ((sgs->group_capacity * imbalance_pct) <
9647 			(sgs->group_runnable * 100))
9648 		return false;
9649 
9650 	if ((sgs->group_capacity * 100) >
9651 			(sgs->group_util * imbalance_pct))
9652 		return true;
9653 
9654 	return false;
9655 }
9656 
9657 /*
9658  *  group_is_overloaded returns true if the group has more tasks than it can
9659  *  handle.
9660  *  group_is_overloaded is not equals to !group_has_capacity because a group
9661  *  with the exact right number of tasks, has no more spare capacity but is not
9662  *  overloaded so both group_has_capacity and group_is_overloaded return
9663  *  false.
9664  */
9665 static inline bool
9666 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9667 {
9668 	if (sgs->sum_nr_running <= sgs->group_weight)
9669 		return false;
9670 
9671 	if ((sgs->group_capacity * 100) <
9672 			(sgs->group_util * imbalance_pct))
9673 		return true;
9674 
9675 	if ((sgs->group_capacity * imbalance_pct) <
9676 			(sgs->group_runnable * 100))
9677 		return true;
9678 
9679 	return false;
9680 }
9681 
9682 static inline enum
9683 group_type group_classify(unsigned int imbalance_pct,
9684 			  struct sched_group *group,
9685 			  struct sg_lb_stats *sgs)
9686 {
9687 	if (group_is_overloaded(imbalance_pct, sgs))
9688 		return group_overloaded;
9689 
9690 	if (sg_imbalanced(group))
9691 		return group_imbalanced;
9692 
9693 	if (sgs->group_asym_packing)
9694 		return group_asym_packing;
9695 
9696 	if (sgs->group_smt_balance)
9697 		return group_smt_balance;
9698 
9699 	if (sgs->group_misfit_task_load)
9700 		return group_misfit_task;
9701 
9702 	if (!group_has_capacity(imbalance_pct, sgs))
9703 		return group_fully_busy;
9704 
9705 	return group_has_spare;
9706 }
9707 
9708 /**
9709  * sched_use_asym_prio - Check whether asym_packing priority must be used
9710  * @sd:		The scheduling domain of the load balancing
9711  * @cpu:	A CPU
9712  *
9713  * Always use CPU priority when balancing load between SMT siblings. When
9714  * balancing load between cores, it is not sufficient that @cpu is idle. Only
9715  * use CPU priority if the whole core is idle.
9716  *
9717  * Returns: True if the priority of @cpu must be followed. False otherwise.
9718  */
9719 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
9720 {
9721 	if (!sched_smt_active())
9722 		return true;
9723 
9724 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
9725 }
9726 
9727 /**
9728  * sched_asym - Check if the destination CPU can do asym_packing load balance
9729  * @env:	The load balancing environment
9730  * @sds:	Load-balancing data with statistics of the local group
9731  * @sgs:	Load-balancing statistics of the candidate busiest group
9732  * @group:	The candidate busiest group
9733  *
9734  * @env::dst_cpu can do asym_packing if it has higher priority than the
9735  * preferred CPU of @group.
9736  *
9737  * SMT is a special case. If we are balancing load between cores, @env::dst_cpu
9738  * can do asym_packing balance only if all its SMT siblings are idle. Also, it
9739  * can only do it if @group is an SMT group and has exactly on busy CPU. Larger
9740  * imbalances in the number of CPUS are dealt with in find_busiest_group().
9741  *
9742  * If we are balancing load within an SMT core, or at DIE domain level, always
9743  * proceed.
9744  *
9745  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
9746  * otherwise.
9747  */
9748 static inline bool
9749 sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
9750 	   struct sched_group *group)
9751 {
9752 	/* Ensure that the whole local core is idle, if applicable. */
9753 	if (!sched_use_asym_prio(env->sd, env->dst_cpu))
9754 		return false;
9755 
9756 	/*
9757 	 * CPU priorities does not make sense for SMT cores with more than one
9758 	 * busy sibling.
9759 	 */
9760 	if (group->flags & SD_SHARE_CPUCAPACITY) {
9761 		if (sgs->group_weight - sgs->idle_cpus != 1)
9762 			return false;
9763 	}
9764 
9765 	return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
9766 }
9767 
9768 /* One group has more than one SMT CPU while the other group does not */
9769 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
9770 				    struct sched_group *sg2)
9771 {
9772 	if (!sg1 || !sg2)
9773 		return false;
9774 
9775 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
9776 		(sg2->flags & SD_SHARE_CPUCAPACITY);
9777 }
9778 
9779 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
9780 			       struct sched_group *group)
9781 {
9782 	if (env->idle == CPU_NOT_IDLE)
9783 		return false;
9784 
9785 	/*
9786 	 * For SMT source group, it is better to move a task
9787 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
9788 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
9789 	 * will not be on.
9790 	 */
9791 	if (group->flags & SD_SHARE_CPUCAPACITY &&
9792 	    sgs->sum_h_nr_running > 1)
9793 		return true;
9794 
9795 	return false;
9796 }
9797 
9798 static inline long sibling_imbalance(struct lb_env *env,
9799 				    struct sd_lb_stats *sds,
9800 				    struct sg_lb_stats *busiest,
9801 				    struct sg_lb_stats *local)
9802 {
9803 	int ncores_busiest, ncores_local;
9804 	long imbalance;
9805 
9806 	if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running)
9807 		return 0;
9808 
9809 	ncores_busiest = sds->busiest->cores;
9810 	ncores_local = sds->local->cores;
9811 
9812 	if (ncores_busiest == ncores_local) {
9813 		imbalance = busiest->sum_nr_running;
9814 		lsub_positive(&imbalance, local->sum_nr_running);
9815 		return imbalance;
9816 	}
9817 
9818 	/* Balance such that nr_running/ncores ratio are same on both groups */
9819 	imbalance = ncores_local * busiest->sum_nr_running;
9820 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
9821 	/* Normalize imbalance and do rounding on normalization */
9822 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
9823 	imbalance /= ncores_local + ncores_busiest;
9824 
9825 	/* Take advantage of resource in an empty sched group */
9826 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
9827 	    busiest->sum_nr_running > 1)
9828 		imbalance = 2;
9829 
9830 	return imbalance;
9831 }
9832 
9833 static inline bool
9834 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9835 {
9836 	/*
9837 	 * When there is more than 1 task, the group_overloaded case already
9838 	 * takes care of cpu with reduced capacity
9839 	 */
9840 	if (rq->cfs.h_nr_running != 1)
9841 		return false;
9842 
9843 	return check_cpu_capacity(rq, sd);
9844 }
9845 
9846 /**
9847  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9848  * @env: The load balancing environment.
9849  * @sds: Load-balancing data with statistics of the local group.
9850  * @group: sched_group whose statistics are to be updated.
9851  * @sgs: variable to hold the statistics for this group.
9852  * @sg_status: Holds flag indicating the status of the sched_group
9853  */
9854 static inline void update_sg_lb_stats(struct lb_env *env,
9855 				      struct sd_lb_stats *sds,
9856 				      struct sched_group *group,
9857 				      struct sg_lb_stats *sgs,
9858 				      int *sg_status)
9859 {
9860 	int i, nr_running, local_group;
9861 
9862 	memset(sgs, 0, sizeof(*sgs));
9863 
9864 	local_group = group == sds->local;
9865 
9866 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9867 		struct rq *rq = cpu_rq(i);
9868 		unsigned long load = cpu_load(rq);
9869 
9870 		sgs->group_load += load;
9871 		sgs->group_util += cpu_util_cfs(i);
9872 		sgs->group_runnable += cpu_runnable(rq);
9873 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9874 
9875 		nr_running = rq->nr_running;
9876 		sgs->sum_nr_running += nr_running;
9877 
9878 		if (nr_running > 1)
9879 			*sg_status |= SG_OVERLOAD;
9880 
9881 		if (cpu_overutilized(i))
9882 			*sg_status |= SG_OVERUTILIZED;
9883 
9884 #ifdef CONFIG_NUMA_BALANCING
9885 		sgs->nr_numa_running += rq->nr_numa_running;
9886 		sgs->nr_preferred_running += rq->nr_preferred_running;
9887 #endif
9888 		/*
9889 		 * No need to call idle_cpu() if nr_running is not 0
9890 		 */
9891 		if (!nr_running && idle_cpu(i)) {
9892 			sgs->idle_cpus++;
9893 			/* Idle cpu can't have misfit task */
9894 			continue;
9895 		}
9896 
9897 		if (local_group)
9898 			continue;
9899 
9900 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9901 			/* Check for a misfit task on the cpu */
9902 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9903 				sgs->group_misfit_task_load = rq->misfit_task_load;
9904 				*sg_status |= SG_OVERLOAD;
9905 			}
9906 		} else if ((env->idle != CPU_NOT_IDLE) &&
9907 			   sched_reduced_capacity(rq, env->sd)) {
9908 			/* Check for a task running on a CPU with reduced capacity */
9909 			if (sgs->group_misfit_task_load < load)
9910 				sgs->group_misfit_task_load = load;
9911 		}
9912 	}
9913 
9914 	sgs->group_capacity = group->sgc->capacity;
9915 
9916 	sgs->group_weight = group->group_weight;
9917 
9918 	/* Check if dst CPU is idle and preferred to this group */
9919 	if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
9920 	    env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9921 	    sched_asym(env, sds, sgs, group)) {
9922 		sgs->group_asym_packing = 1;
9923 	}
9924 
9925 	/* Check for loaded SMT group to be balanced to dst CPU */
9926 	if (!local_group && smt_balance(env, sgs, group))
9927 		sgs->group_smt_balance = 1;
9928 
9929 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9930 
9931 	/* Computing avg_load makes sense only when group is overloaded */
9932 	if (sgs->group_type == group_overloaded)
9933 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9934 				sgs->group_capacity;
9935 }
9936 
9937 /**
9938  * update_sd_pick_busiest - return 1 on busiest group
9939  * @env: The load balancing environment.
9940  * @sds: sched_domain statistics
9941  * @sg: sched_group candidate to be checked for being the busiest
9942  * @sgs: sched_group statistics
9943  *
9944  * Determine if @sg is a busier group than the previously selected
9945  * busiest group.
9946  *
9947  * Return: %true if @sg is a busier group than the previously selected
9948  * busiest group. %false otherwise.
9949  */
9950 static bool update_sd_pick_busiest(struct lb_env *env,
9951 				   struct sd_lb_stats *sds,
9952 				   struct sched_group *sg,
9953 				   struct sg_lb_stats *sgs)
9954 {
9955 	struct sg_lb_stats *busiest = &sds->busiest_stat;
9956 
9957 	/* Make sure that there is at least one task to pull */
9958 	if (!sgs->sum_h_nr_running)
9959 		return false;
9960 
9961 	/*
9962 	 * Don't try to pull misfit tasks we can't help.
9963 	 * We can use max_capacity here as reduction in capacity on some
9964 	 * CPUs in the group should either be possible to resolve
9965 	 * internally or be covered by avg_load imbalance (eventually).
9966 	 */
9967 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9968 	    (sgs->group_type == group_misfit_task) &&
9969 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
9970 	     sds->local_stat.group_type != group_has_spare))
9971 		return false;
9972 
9973 	if (sgs->group_type > busiest->group_type)
9974 		return true;
9975 
9976 	if (sgs->group_type < busiest->group_type)
9977 		return false;
9978 
9979 	/*
9980 	 * The candidate and the current busiest group are the same type of
9981 	 * group. Let check which one is the busiest according to the type.
9982 	 */
9983 
9984 	switch (sgs->group_type) {
9985 	case group_overloaded:
9986 		/* Select the overloaded group with highest avg_load. */
9987 		if (sgs->avg_load <= busiest->avg_load)
9988 			return false;
9989 		break;
9990 
9991 	case group_imbalanced:
9992 		/*
9993 		 * Select the 1st imbalanced group as we don't have any way to
9994 		 * choose one more than another.
9995 		 */
9996 		return false;
9997 
9998 	case group_asym_packing:
9999 		/* Prefer to move from lowest priority CPU's work */
10000 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
10001 			return false;
10002 		break;
10003 
10004 	case group_misfit_task:
10005 		/*
10006 		 * If we have more than one misfit sg go with the biggest
10007 		 * misfit.
10008 		 */
10009 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
10010 			return false;
10011 		break;
10012 
10013 	case group_smt_balance:
10014 		/*
10015 		 * Check if we have spare CPUs on either SMT group to
10016 		 * choose has spare or fully busy handling.
10017 		 */
10018 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10019 			goto has_spare;
10020 
10021 		fallthrough;
10022 
10023 	case group_fully_busy:
10024 		/*
10025 		 * Select the fully busy group with highest avg_load. In
10026 		 * theory, there is no need to pull task from such kind of
10027 		 * group because tasks have all compute capacity that they need
10028 		 * but we can still improve the overall throughput by reducing
10029 		 * contention when accessing shared HW resources.
10030 		 *
10031 		 * XXX for now avg_load is not computed and always 0 so we
10032 		 * select the 1st one, except if @sg is composed of SMT
10033 		 * siblings.
10034 		 */
10035 
10036 		if (sgs->avg_load < busiest->avg_load)
10037 			return false;
10038 
10039 		if (sgs->avg_load == busiest->avg_load) {
10040 			/*
10041 			 * SMT sched groups need more help than non-SMT groups.
10042 			 * If @sg happens to also be SMT, either choice is good.
10043 			 */
10044 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10045 				return false;
10046 		}
10047 
10048 		break;
10049 
10050 	case group_has_spare:
10051 		/*
10052 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10053 		 * as we do not want to pull task off SMT core with one task
10054 		 * and make the core idle.
10055 		 */
10056 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10057 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10058 				return false;
10059 			else
10060 				return true;
10061 		}
10062 has_spare:
10063 
10064 		/*
10065 		 * Select not overloaded group with lowest number of idle cpus
10066 		 * and highest number of running tasks. We could also compare
10067 		 * the spare capacity which is more stable but it can end up
10068 		 * that the group has less spare capacity but finally more idle
10069 		 * CPUs which means less opportunity to pull tasks.
10070 		 */
10071 		if (sgs->idle_cpus > busiest->idle_cpus)
10072 			return false;
10073 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10074 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10075 			return false;
10076 
10077 		break;
10078 	}
10079 
10080 	/*
10081 	 * Candidate sg has no more than one task per CPU and has higher
10082 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10083 	 * throughput. Maximize throughput, power/energy consequences are not
10084 	 * considered.
10085 	 */
10086 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10087 	    (sgs->group_type <= group_fully_busy) &&
10088 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10089 		return false;
10090 
10091 	return true;
10092 }
10093 
10094 #ifdef CONFIG_NUMA_BALANCING
10095 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10096 {
10097 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10098 		return regular;
10099 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10100 		return remote;
10101 	return all;
10102 }
10103 
10104 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10105 {
10106 	if (rq->nr_running > rq->nr_numa_running)
10107 		return regular;
10108 	if (rq->nr_running > rq->nr_preferred_running)
10109 		return remote;
10110 	return all;
10111 }
10112 #else
10113 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10114 {
10115 	return all;
10116 }
10117 
10118 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10119 {
10120 	return regular;
10121 }
10122 #endif /* CONFIG_NUMA_BALANCING */
10123 
10124 
10125 struct sg_lb_stats;
10126 
10127 /*
10128  * task_running_on_cpu - return 1 if @p is running on @cpu.
10129  */
10130 
10131 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10132 {
10133 	/* Task has no contribution or is new */
10134 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10135 		return 0;
10136 
10137 	if (task_on_rq_queued(p))
10138 		return 1;
10139 
10140 	return 0;
10141 }
10142 
10143 /**
10144  * idle_cpu_without - would a given CPU be idle without p ?
10145  * @cpu: the processor on which idleness is tested.
10146  * @p: task which should be ignored.
10147  *
10148  * Return: 1 if the CPU would be idle. 0 otherwise.
10149  */
10150 static int idle_cpu_without(int cpu, struct task_struct *p)
10151 {
10152 	struct rq *rq = cpu_rq(cpu);
10153 
10154 	if (rq->curr != rq->idle && rq->curr != p)
10155 		return 0;
10156 
10157 	/*
10158 	 * rq->nr_running can't be used but an updated version without the
10159 	 * impact of p on cpu must be used instead. The updated nr_running
10160 	 * be computed and tested before calling idle_cpu_without().
10161 	 */
10162 
10163 #ifdef CONFIG_SMP
10164 	if (rq->ttwu_pending)
10165 		return 0;
10166 #endif
10167 
10168 	return 1;
10169 }
10170 
10171 /*
10172  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10173  * @sd: The sched_domain level to look for idlest group.
10174  * @group: sched_group whose statistics are to be updated.
10175  * @sgs: variable to hold the statistics for this group.
10176  * @p: The task for which we look for the idlest group/CPU.
10177  */
10178 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10179 					  struct sched_group *group,
10180 					  struct sg_lb_stats *sgs,
10181 					  struct task_struct *p)
10182 {
10183 	int i, nr_running;
10184 
10185 	memset(sgs, 0, sizeof(*sgs));
10186 
10187 	/* Assume that task can't fit any CPU of the group */
10188 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10189 		sgs->group_misfit_task_load = 1;
10190 
10191 	for_each_cpu(i, sched_group_span(group)) {
10192 		struct rq *rq = cpu_rq(i);
10193 		unsigned int local;
10194 
10195 		sgs->group_load += cpu_load_without(rq, p);
10196 		sgs->group_util += cpu_util_without(i, p);
10197 		sgs->group_runnable += cpu_runnable_without(rq, p);
10198 		local = task_running_on_cpu(i, p);
10199 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10200 
10201 		nr_running = rq->nr_running - local;
10202 		sgs->sum_nr_running += nr_running;
10203 
10204 		/*
10205 		 * No need to call idle_cpu_without() if nr_running is not 0
10206 		 */
10207 		if (!nr_running && idle_cpu_without(i, p))
10208 			sgs->idle_cpus++;
10209 
10210 		/* Check if task fits in the CPU */
10211 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10212 		    sgs->group_misfit_task_load &&
10213 		    task_fits_cpu(p, i))
10214 			sgs->group_misfit_task_load = 0;
10215 
10216 	}
10217 
10218 	sgs->group_capacity = group->sgc->capacity;
10219 
10220 	sgs->group_weight = group->group_weight;
10221 
10222 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10223 
10224 	/*
10225 	 * Computing avg_load makes sense only when group is fully busy or
10226 	 * overloaded
10227 	 */
10228 	if (sgs->group_type == group_fully_busy ||
10229 		sgs->group_type == group_overloaded)
10230 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10231 				sgs->group_capacity;
10232 }
10233 
10234 static bool update_pick_idlest(struct sched_group *idlest,
10235 			       struct sg_lb_stats *idlest_sgs,
10236 			       struct sched_group *group,
10237 			       struct sg_lb_stats *sgs)
10238 {
10239 	if (sgs->group_type < idlest_sgs->group_type)
10240 		return true;
10241 
10242 	if (sgs->group_type > idlest_sgs->group_type)
10243 		return false;
10244 
10245 	/*
10246 	 * The candidate and the current idlest group are the same type of
10247 	 * group. Let check which one is the idlest according to the type.
10248 	 */
10249 
10250 	switch (sgs->group_type) {
10251 	case group_overloaded:
10252 	case group_fully_busy:
10253 		/* Select the group with lowest avg_load. */
10254 		if (idlest_sgs->avg_load <= sgs->avg_load)
10255 			return false;
10256 		break;
10257 
10258 	case group_imbalanced:
10259 	case group_asym_packing:
10260 	case group_smt_balance:
10261 		/* Those types are not used in the slow wakeup path */
10262 		return false;
10263 
10264 	case group_misfit_task:
10265 		/* Select group with the highest max capacity */
10266 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10267 			return false;
10268 		break;
10269 
10270 	case group_has_spare:
10271 		/* Select group with most idle CPUs */
10272 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10273 			return false;
10274 
10275 		/* Select group with lowest group_util */
10276 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10277 			idlest_sgs->group_util <= sgs->group_util)
10278 			return false;
10279 
10280 		break;
10281 	}
10282 
10283 	return true;
10284 }
10285 
10286 /*
10287  * find_idlest_group() finds and returns the least busy CPU group within the
10288  * domain.
10289  *
10290  * Assumes p is allowed on at least one CPU in sd.
10291  */
10292 static struct sched_group *
10293 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10294 {
10295 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10296 	struct sg_lb_stats local_sgs, tmp_sgs;
10297 	struct sg_lb_stats *sgs;
10298 	unsigned long imbalance;
10299 	struct sg_lb_stats idlest_sgs = {
10300 			.avg_load = UINT_MAX,
10301 			.group_type = group_overloaded,
10302 	};
10303 
10304 	do {
10305 		int local_group;
10306 
10307 		/* Skip over this group if it has no CPUs allowed */
10308 		if (!cpumask_intersects(sched_group_span(group),
10309 					p->cpus_ptr))
10310 			continue;
10311 
10312 		/* Skip over this group if no cookie matched */
10313 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10314 			continue;
10315 
10316 		local_group = cpumask_test_cpu(this_cpu,
10317 					       sched_group_span(group));
10318 
10319 		if (local_group) {
10320 			sgs = &local_sgs;
10321 			local = group;
10322 		} else {
10323 			sgs = &tmp_sgs;
10324 		}
10325 
10326 		update_sg_wakeup_stats(sd, group, sgs, p);
10327 
10328 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10329 			idlest = group;
10330 			idlest_sgs = *sgs;
10331 		}
10332 
10333 	} while (group = group->next, group != sd->groups);
10334 
10335 
10336 	/* There is no idlest group to push tasks to */
10337 	if (!idlest)
10338 		return NULL;
10339 
10340 	/* The local group has been skipped because of CPU affinity */
10341 	if (!local)
10342 		return idlest;
10343 
10344 	/*
10345 	 * If the local group is idler than the selected idlest group
10346 	 * don't try and push the task.
10347 	 */
10348 	if (local_sgs.group_type < idlest_sgs.group_type)
10349 		return NULL;
10350 
10351 	/*
10352 	 * If the local group is busier than the selected idlest group
10353 	 * try and push the task.
10354 	 */
10355 	if (local_sgs.group_type > idlest_sgs.group_type)
10356 		return idlest;
10357 
10358 	switch (local_sgs.group_type) {
10359 	case group_overloaded:
10360 	case group_fully_busy:
10361 
10362 		/* Calculate allowed imbalance based on load */
10363 		imbalance = scale_load_down(NICE_0_LOAD) *
10364 				(sd->imbalance_pct-100) / 100;
10365 
10366 		/*
10367 		 * When comparing groups across NUMA domains, it's possible for
10368 		 * the local domain to be very lightly loaded relative to the
10369 		 * remote domains but "imbalance" skews the comparison making
10370 		 * remote CPUs look much more favourable. When considering
10371 		 * cross-domain, add imbalance to the load on the remote node
10372 		 * and consider staying local.
10373 		 */
10374 
10375 		if ((sd->flags & SD_NUMA) &&
10376 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10377 			return NULL;
10378 
10379 		/*
10380 		 * If the local group is less loaded than the selected
10381 		 * idlest group don't try and push any tasks.
10382 		 */
10383 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10384 			return NULL;
10385 
10386 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10387 			return NULL;
10388 		break;
10389 
10390 	case group_imbalanced:
10391 	case group_asym_packing:
10392 	case group_smt_balance:
10393 		/* Those type are not used in the slow wakeup path */
10394 		return NULL;
10395 
10396 	case group_misfit_task:
10397 		/* Select group with the highest max capacity */
10398 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10399 			return NULL;
10400 		break;
10401 
10402 	case group_has_spare:
10403 #ifdef CONFIG_NUMA
10404 		if (sd->flags & SD_NUMA) {
10405 			int imb_numa_nr = sd->imb_numa_nr;
10406 #ifdef CONFIG_NUMA_BALANCING
10407 			int idlest_cpu;
10408 			/*
10409 			 * If there is spare capacity at NUMA, try to select
10410 			 * the preferred node
10411 			 */
10412 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10413 				return NULL;
10414 
10415 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10416 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10417 				return idlest;
10418 #endif /* CONFIG_NUMA_BALANCING */
10419 			/*
10420 			 * Otherwise, keep the task close to the wakeup source
10421 			 * and improve locality if the number of running tasks
10422 			 * would remain below threshold where an imbalance is
10423 			 * allowed while accounting for the possibility the
10424 			 * task is pinned to a subset of CPUs. If there is a
10425 			 * real need of migration, periodic load balance will
10426 			 * take care of it.
10427 			 */
10428 			if (p->nr_cpus_allowed != NR_CPUS) {
10429 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10430 
10431 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10432 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10433 			}
10434 
10435 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10436 			if (!adjust_numa_imbalance(imbalance,
10437 						   local_sgs.sum_nr_running + 1,
10438 						   imb_numa_nr)) {
10439 				return NULL;
10440 			}
10441 		}
10442 #endif /* CONFIG_NUMA */
10443 
10444 		/*
10445 		 * Select group with highest number of idle CPUs. We could also
10446 		 * compare the utilization which is more stable but it can end
10447 		 * up that the group has less spare capacity but finally more
10448 		 * idle CPUs which means more opportunity to run task.
10449 		 */
10450 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10451 			return NULL;
10452 		break;
10453 	}
10454 
10455 	return idlest;
10456 }
10457 
10458 static void update_idle_cpu_scan(struct lb_env *env,
10459 				 unsigned long sum_util)
10460 {
10461 	struct sched_domain_shared *sd_share;
10462 	int llc_weight, pct;
10463 	u64 x, y, tmp;
10464 	/*
10465 	 * Update the number of CPUs to scan in LLC domain, which could
10466 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10467 	 * could be expensive because it is within a shared cache line.
10468 	 * So the write of this hint only occurs during periodic load
10469 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10470 	 * can fire way more frequently than the former.
10471 	 */
10472 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10473 		return;
10474 
10475 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10476 	if (env->sd->span_weight != llc_weight)
10477 		return;
10478 
10479 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10480 	if (!sd_share)
10481 		return;
10482 
10483 	/*
10484 	 * The number of CPUs to search drops as sum_util increases, when
10485 	 * sum_util hits 85% or above, the scan stops.
10486 	 * The reason to choose 85% as the threshold is because this is the
10487 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10488 	 *
10489 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10490 	 * and y'= y / SCHED_CAPACITY_SCALE
10491 	 *
10492 	 * x is the ratio of sum_util compared to the CPU capacity:
10493 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10494 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10495 	 * and the number of CPUs to scan is calculated by:
10496 	 *
10497 	 * nr_scan = llc_weight * y'                                    [2]
10498 	 *
10499 	 * When x hits the threshold of overloaded, AKA, when
10500 	 * x = 100 / pct, y drops to 0. According to [1],
10501 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10502 	 *
10503 	 * Scale x by SCHED_CAPACITY_SCALE:
10504 	 * x' = sum_util / llc_weight;                                  [3]
10505 	 *
10506 	 * and finally [1] becomes:
10507 	 * y = SCHED_CAPACITY_SCALE -
10508 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10509 	 *
10510 	 */
10511 	/* equation [3] */
10512 	x = sum_util;
10513 	do_div(x, llc_weight);
10514 
10515 	/* equation [4] */
10516 	pct = env->sd->imbalance_pct;
10517 	tmp = x * x * pct * pct;
10518 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10519 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10520 	y = SCHED_CAPACITY_SCALE - tmp;
10521 
10522 	/* equation [2] */
10523 	y *= llc_weight;
10524 	do_div(y, SCHED_CAPACITY_SCALE);
10525 	if ((int)y != sd_share->nr_idle_scan)
10526 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10527 }
10528 
10529 /**
10530  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10531  * @env: The load balancing environment.
10532  * @sds: variable to hold the statistics for this sched_domain.
10533  */
10534 
10535 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10536 {
10537 	struct sched_group *sg = env->sd->groups;
10538 	struct sg_lb_stats *local = &sds->local_stat;
10539 	struct sg_lb_stats tmp_sgs;
10540 	unsigned long sum_util = 0;
10541 	int sg_status = 0;
10542 
10543 	do {
10544 		struct sg_lb_stats *sgs = &tmp_sgs;
10545 		int local_group;
10546 
10547 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10548 		if (local_group) {
10549 			sds->local = sg;
10550 			sgs = local;
10551 
10552 			if (env->idle != CPU_NEWLY_IDLE ||
10553 			    time_after_eq(jiffies, sg->sgc->next_update))
10554 				update_group_capacity(env->sd, env->dst_cpu);
10555 		}
10556 
10557 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
10558 
10559 		if (local_group)
10560 			goto next_group;
10561 
10562 
10563 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
10564 			sds->busiest = sg;
10565 			sds->busiest_stat = *sgs;
10566 		}
10567 
10568 next_group:
10569 		/* Now, start updating sd_lb_stats */
10570 		sds->total_load += sgs->group_load;
10571 		sds->total_capacity += sgs->group_capacity;
10572 
10573 		sum_util += sgs->group_util;
10574 		sg = sg->next;
10575 	} while (sg != env->sd->groups);
10576 
10577 	/*
10578 	 * Indicate that the child domain of the busiest group prefers tasks
10579 	 * go to a child's sibling domains first. NB the flags of a sched group
10580 	 * are those of the child domain.
10581 	 */
10582 	if (sds->busiest)
10583 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10584 
10585 
10586 	if (env->sd->flags & SD_NUMA)
10587 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10588 
10589 	if (!env->sd->parent) {
10590 		/* update overload indicator if we are at root domain */
10591 		WRITE_ONCE(env->dst_rq->rd->overload, sg_status & SG_OVERLOAD);
10592 
10593 		/* Update over-utilization (tipping point, U >= 0) indicator */
10594 		set_rd_overutilized_status(env->dst_rq->rd,
10595 					   sg_status & SG_OVERUTILIZED);
10596 	} else if (sg_status & SG_OVERUTILIZED) {
10597 		set_rd_overutilized_status(env->dst_rq->rd, SG_OVERUTILIZED);
10598 	}
10599 
10600 	update_idle_cpu_scan(env, sum_util);
10601 }
10602 
10603 /**
10604  * calculate_imbalance - Calculate the amount of imbalance present within the
10605  *			 groups of a given sched_domain during load balance.
10606  * @env: load balance environment
10607  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10608  */
10609 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10610 {
10611 	struct sg_lb_stats *local, *busiest;
10612 
10613 	local = &sds->local_stat;
10614 	busiest = &sds->busiest_stat;
10615 
10616 	if (busiest->group_type == group_misfit_task) {
10617 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10618 			/* Set imbalance to allow misfit tasks to be balanced. */
10619 			env->migration_type = migrate_misfit;
10620 			env->imbalance = 1;
10621 		} else {
10622 			/*
10623 			 * Set load imbalance to allow moving task from cpu
10624 			 * with reduced capacity.
10625 			 */
10626 			env->migration_type = migrate_load;
10627 			env->imbalance = busiest->group_misfit_task_load;
10628 		}
10629 		return;
10630 	}
10631 
10632 	if (busiest->group_type == group_asym_packing) {
10633 		/*
10634 		 * In case of asym capacity, we will try to migrate all load to
10635 		 * the preferred CPU.
10636 		 */
10637 		env->migration_type = migrate_task;
10638 		env->imbalance = busiest->sum_h_nr_running;
10639 		return;
10640 	}
10641 
10642 	if (busiest->group_type == group_smt_balance) {
10643 		/* Reduce number of tasks sharing CPU capacity */
10644 		env->migration_type = migrate_task;
10645 		env->imbalance = 1;
10646 		return;
10647 	}
10648 
10649 	if (busiest->group_type == group_imbalanced) {
10650 		/*
10651 		 * In the group_imb case we cannot rely on group-wide averages
10652 		 * to ensure CPU-load equilibrium, try to move any task to fix
10653 		 * the imbalance. The next load balance will take care of
10654 		 * balancing back the system.
10655 		 */
10656 		env->migration_type = migrate_task;
10657 		env->imbalance = 1;
10658 		return;
10659 	}
10660 
10661 	/*
10662 	 * Try to use spare capacity of local group without overloading it or
10663 	 * emptying busiest.
10664 	 */
10665 	if (local->group_type == group_has_spare) {
10666 		if ((busiest->group_type > group_fully_busy) &&
10667 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
10668 			/*
10669 			 * If busiest is overloaded, try to fill spare
10670 			 * capacity. This might end up creating spare capacity
10671 			 * in busiest or busiest still being overloaded but
10672 			 * there is no simple way to directly compute the
10673 			 * amount of load to migrate in order to balance the
10674 			 * system.
10675 			 */
10676 			env->migration_type = migrate_util;
10677 			env->imbalance = max(local->group_capacity, local->group_util) -
10678 					 local->group_util;
10679 
10680 			/*
10681 			 * In some cases, the group's utilization is max or even
10682 			 * higher than capacity because of migrations but the
10683 			 * local CPU is (newly) idle. There is at least one
10684 			 * waiting task in this overloaded busiest group. Let's
10685 			 * try to pull it.
10686 			 */
10687 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
10688 				env->migration_type = migrate_task;
10689 				env->imbalance = 1;
10690 			}
10691 
10692 			return;
10693 		}
10694 
10695 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
10696 			/*
10697 			 * When prefer sibling, evenly spread running tasks on
10698 			 * groups.
10699 			 */
10700 			env->migration_type = migrate_task;
10701 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
10702 		} else {
10703 
10704 			/*
10705 			 * If there is no overload, we just want to even the number of
10706 			 * idle cpus.
10707 			 */
10708 			env->migration_type = migrate_task;
10709 			env->imbalance = max_t(long, 0,
10710 					       (local->idle_cpus - busiest->idle_cpus));
10711 		}
10712 
10713 #ifdef CONFIG_NUMA
10714 		/* Consider allowing a small imbalance between NUMA groups */
10715 		if (env->sd->flags & SD_NUMA) {
10716 			env->imbalance = adjust_numa_imbalance(env->imbalance,
10717 							       local->sum_nr_running + 1,
10718 							       env->sd->imb_numa_nr);
10719 		}
10720 #endif
10721 
10722 		/* Number of tasks to move to restore balance */
10723 		env->imbalance >>= 1;
10724 
10725 		return;
10726 	}
10727 
10728 	/*
10729 	 * Local is fully busy but has to take more load to relieve the
10730 	 * busiest group
10731 	 */
10732 	if (local->group_type < group_overloaded) {
10733 		/*
10734 		 * Local will become overloaded so the avg_load metrics are
10735 		 * finally needed.
10736 		 */
10737 
10738 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10739 				  local->group_capacity;
10740 
10741 		/*
10742 		 * If the local group is more loaded than the selected
10743 		 * busiest group don't try to pull any tasks.
10744 		 */
10745 		if (local->avg_load >= busiest->avg_load) {
10746 			env->imbalance = 0;
10747 			return;
10748 		}
10749 
10750 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10751 				sds->total_capacity;
10752 
10753 		/*
10754 		 * If the local group is more loaded than the average system
10755 		 * load, don't try to pull any tasks.
10756 		 */
10757 		if (local->avg_load >= sds->avg_load) {
10758 			env->imbalance = 0;
10759 			return;
10760 		}
10761 
10762 	}
10763 
10764 	/*
10765 	 * Both group are or will become overloaded and we're trying to get all
10766 	 * the CPUs to the average_load, so we don't want to push ourselves
10767 	 * above the average load, nor do we wish to reduce the max loaded CPU
10768 	 * below the average load. At the same time, we also don't want to
10769 	 * reduce the group load below the group capacity. Thus we look for
10770 	 * the minimum possible imbalance.
10771 	 */
10772 	env->migration_type = migrate_load;
10773 	env->imbalance = min(
10774 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10775 		(sds->avg_load - local->avg_load) * local->group_capacity
10776 	) / SCHED_CAPACITY_SCALE;
10777 }
10778 
10779 /******* find_busiest_group() helpers end here *********************/
10780 
10781 /*
10782  * Decision matrix according to the local and busiest group type:
10783  *
10784  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10785  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
10786  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
10787  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
10788  * asym_packing     force     force      N/A    N/A  force      force
10789  * imbalanced       force     force      N/A    N/A  force      force
10790  * overloaded       force     force      N/A    N/A  force      avg_load
10791  *
10792  * N/A :      Not Applicable because already filtered while updating
10793  *            statistics.
10794  * balanced : The system is balanced for these 2 groups.
10795  * force :    Calculate the imbalance as load migration is probably needed.
10796  * avg_load : Only if imbalance is significant enough.
10797  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
10798  *            different in groups.
10799  */
10800 
10801 /**
10802  * find_busiest_group - Returns the busiest group within the sched_domain
10803  * if there is an imbalance.
10804  * @env: The load balancing environment.
10805  *
10806  * Also calculates the amount of runnable load which should be moved
10807  * to restore balance.
10808  *
10809  * Return:	- The busiest group if imbalance exists.
10810  */
10811 static struct sched_group *find_busiest_group(struct lb_env *env)
10812 {
10813 	struct sg_lb_stats *local, *busiest;
10814 	struct sd_lb_stats sds;
10815 
10816 	init_sd_lb_stats(&sds);
10817 
10818 	/*
10819 	 * Compute the various statistics relevant for load balancing at
10820 	 * this level.
10821 	 */
10822 	update_sd_lb_stats(env, &sds);
10823 
10824 	/* There is no busy sibling group to pull tasks from */
10825 	if (!sds.busiest)
10826 		goto out_balanced;
10827 
10828 	busiest = &sds.busiest_stat;
10829 
10830 	/* Misfit tasks should be dealt with regardless of the avg load */
10831 	if (busiest->group_type == group_misfit_task)
10832 		goto force_balance;
10833 
10834 	if (sched_energy_enabled()) {
10835 		struct root_domain *rd = env->dst_rq->rd;
10836 
10837 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
10838 			goto out_balanced;
10839 	}
10840 
10841 	/* ASYM feature bypasses nice load balance check */
10842 	if (busiest->group_type == group_asym_packing)
10843 		goto force_balance;
10844 
10845 	/*
10846 	 * If the busiest group is imbalanced the below checks don't
10847 	 * work because they assume all things are equal, which typically
10848 	 * isn't true due to cpus_ptr constraints and the like.
10849 	 */
10850 	if (busiest->group_type == group_imbalanced)
10851 		goto force_balance;
10852 
10853 	local = &sds.local_stat;
10854 	/*
10855 	 * If the local group is busier than the selected busiest group
10856 	 * don't try and pull any tasks.
10857 	 */
10858 	if (local->group_type > busiest->group_type)
10859 		goto out_balanced;
10860 
10861 	/*
10862 	 * When groups are overloaded, use the avg_load to ensure fairness
10863 	 * between tasks.
10864 	 */
10865 	if (local->group_type == group_overloaded) {
10866 		/*
10867 		 * If the local group is more loaded than the selected
10868 		 * busiest group don't try to pull any tasks.
10869 		 */
10870 		if (local->avg_load >= busiest->avg_load)
10871 			goto out_balanced;
10872 
10873 		/* XXX broken for overlapping NUMA groups */
10874 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10875 				sds.total_capacity;
10876 
10877 		/*
10878 		 * Don't pull any tasks if this group is already above the
10879 		 * domain average load.
10880 		 */
10881 		if (local->avg_load >= sds.avg_load)
10882 			goto out_balanced;
10883 
10884 		/*
10885 		 * If the busiest group is more loaded, use imbalance_pct to be
10886 		 * conservative.
10887 		 */
10888 		if (100 * busiest->avg_load <=
10889 				env->sd->imbalance_pct * local->avg_load)
10890 			goto out_balanced;
10891 	}
10892 
10893 	/*
10894 	 * Try to move all excess tasks to a sibling domain of the busiest
10895 	 * group's child domain.
10896 	 */
10897 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
10898 	    sibling_imbalance(env, &sds, busiest, local) > 1)
10899 		goto force_balance;
10900 
10901 	if (busiest->group_type != group_overloaded) {
10902 		if (env->idle == CPU_NOT_IDLE) {
10903 			/*
10904 			 * If the busiest group is not overloaded (and as a
10905 			 * result the local one too) but this CPU is already
10906 			 * busy, let another idle CPU try to pull task.
10907 			 */
10908 			goto out_balanced;
10909 		}
10910 
10911 		if (busiest->group_type == group_smt_balance &&
10912 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
10913 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
10914 			goto force_balance;
10915 		}
10916 
10917 		if (busiest->group_weight > 1 &&
10918 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
10919 			/*
10920 			 * If the busiest group is not overloaded
10921 			 * and there is no imbalance between this and busiest
10922 			 * group wrt idle CPUs, it is balanced. The imbalance
10923 			 * becomes significant if the diff is greater than 1
10924 			 * otherwise we might end up to just move the imbalance
10925 			 * on another group. Of course this applies only if
10926 			 * there is more than 1 CPU per group.
10927 			 */
10928 			goto out_balanced;
10929 		}
10930 
10931 		if (busiest->sum_h_nr_running == 1) {
10932 			/*
10933 			 * busiest doesn't have any tasks waiting to run
10934 			 */
10935 			goto out_balanced;
10936 		}
10937 	}
10938 
10939 force_balance:
10940 	/* Looks like there is an imbalance. Compute it */
10941 	calculate_imbalance(env, &sds);
10942 	return env->imbalance ? sds.busiest : NULL;
10943 
10944 out_balanced:
10945 	env->imbalance = 0;
10946 	return NULL;
10947 }
10948 
10949 /*
10950  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10951  */
10952 static struct rq *find_busiest_queue(struct lb_env *env,
10953 				     struct sched_group *group)
10954 {
10955 	struct rq *busiest = NULL, *rq;
10956 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10957 	unsigned int busiest_nr = 0;
10958 	int i;
10959 
10960 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10961 		unsigned long capacity, load, util;
10962 		unsigned int nr_running;
10963 		enum fbq_type rt;
10964 
10965 		rq = cpu_rq(i);
10966 		rt = fbq_classify_rq(rq);
10967 
10968 		/*
10969 		 * We classify groups/runqueues into three groups:
10970 		 *  - regular: there are !numa tasks
10971 		 *  - remote:  there are numa tasks that run on the 'wrong' node
10972 		 *  - all:     there is no distinction
10973 		 *
10974 		 * In order to avoid migrating ideally placed numa tasks,
10975 		 * ignore those when there's better options.
10976 		 *
10977 		 * If we ignore the actual busiest queue to migrate another
10978 		 * task, the next balance pass can still reduce the busiest
10979 		 * queue by moving tasks around inside the node.
10980 		 *
10981 		 * If we cannot move enough load due to this classification
10982 		 * the next pass will adjust the group classification and
10983 		 * allow migration of more tasks.
10984 		 *
10985 		 * Both cases only affect the total convergence complexity.
10986 		 */
10987 		if (rt > env->fbq_type)
10988 			continue;
10989 
10990 		nr_running = rq->cfs.h_nr_running;
10991 		if (!nr_running)
10992 			continue;
10993 
10994 		capacity = capacity_of(i);
10995 
10996 		/*
10997 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
10998 		 * eventually lead to active_balancing high->low capacity.
10999 		 * Higher per-CPU capacity is considered better than balancing
11000 		 * average load.
11001 		 */
11002 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11003 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11004 		    nr_running == 1)
11005 			continue;
11006 
11007 		/*
11008 		 * Make sure we only pull tasks from a CPU of lower priority
11009 		 * when balancing between SMT siblings.
11010 		 *
11011 		 * If balancing between cores, let lower priority CPUs help
11012 		 * SMT cores with more than one busy sibling.
11013 		 */
11014 		if ((env->sd->flags & SD_ASYM_PACKING) &&
11015 		    sched_use_asym_prio(env->sd, i) &&
11016 		    sched_asym_prefer(i, env->dst_cpu) &&
11017 		    nr_running == 1)
11018 			continue;
11019 
11020 		switch (env->migration_type) {
11021 		case migrate_load:
11022 			/*
11023 			 * When comparing with load imbalance, use cpu_load()
11024 			 * which is not scaled with the CPU capacity.
11025 			 */
11026 			load = cpu_load(rq);
11027 
11028 			if (nr_running == 1 && load > env->imbalance &&
11029 			    !check_cpu_capacity(rq, env->sd))
11030 				break;
11031 
11032 			/*
11033 			 * For the load comparisons with the other CPUs,
11034 			 * consider the cpu_load() scaled with the CPU
11035 			 * capacity, so that the load can be moved away
11036 			 * from the CPU that is potentially running at a
11037 			 * lower capacity.
11038 			 *
11039 			 * Thus we're looking for max(load_i / capacity_i),
11040 			 * crosswise multiplication to rid ourselves of the
11041 			 * division works out to:
11042 			 * load_i * capacity_j > load_j * capacity_i;
11043 			 * where j is our previous maximum.
11044 			 */
11045 			if (load * busiest_capacity > busiest_load * capacity) {
11046 				busiest_load = load;
11047 				busiest_capacity = capacity;
11048 				busiest = rq;
11049 			}
11050 			break;
11051 
11052 		case migrate_util:
11053 			util = cpu_util_cfs_boost(i);
11054 
11055 			/*
11056 			 * Don't try to pull utilization from a CPU with one
11057 			 * running task. Whatever its utilization, we will fail
11058 			 * detach the task.
11059 			 */
11060 			if (nr_running <= 1)
11061 				continue;
11062 
11063 			if (busiest_util < util) {
11064 				busiest_util = util;
11065 				busiest = rq;
11066 			}
11067 			break;
11068 
11069 		case migrate_task:
11070 			if (busiest_nr < nr_running) {
11071 				busiest_nr = nr_running;
11072 				busiest = rq;
11073 			}
11074 			break;
11075 
11076 		case migrate_misfit:
11077 			/*
11078 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11079 			 * simply seek the "biggest" misfit task.
11080 			 */
11081 			if (rq->misfit_task_load > busiest_load) {
11082 				busiest_load = rq->misfit_task_load;
11083 				busiest = rq;
11084 			}
11085 
11086 			break;
11087 
11088 		}
11089 	}
11090 
11091 	return busiest;
11092 }
11093 
11094 /*
11095  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11096  * so long as it is large enough.
11097  */
11098 #define MAX_PINNED_INTERVAL	512
11099 
11100 static inline bool
11101 asym_active_balance(struct lb_env *env)
11102 {
11103 	/*
11104 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11105 	 * priority CPUs in order to pack all tasks in the highest priority
11106 	 * CPUs. When done between cores, do it only if the whole core if the
11107 	 * whole core is idle.
11108 	 *
11109 	 * If @env::src_cpu is an SMT core with busy siblings, let
11110 	 * the lower priority @env::dst_cpu help it. Do not follow
11111 	 * CPU priority.
11112 	 */
11113 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
11114 	       sched_use_asym_prio(env->sd, env->dst_cpu) &&
11115 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11116 		!sched_use_asym_prio(env->sd, env->src_cpu));
11117 }
11118 
11119 static inline bool
11120 imbalanced_active_balance(struct lb_env *env)
11121 {
11122 	struct sched_domain *sd = env->sd;
11123 
11124 	/*
11125 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11126 	 * distribution of the load on the system but also the even distribution of the
11127 	 * threads on a system with spare capacity
11128 	 */
11129 	if ((env->migration_type == migrate_task) &&
11130 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11131 		return 1;
11132 
11133 	return 0;
11134 }
11135 
11136 static int need_active_balance(struct lb_env *env)
11137 {
11138 	struct sched_domain *sd = env->sd;
11139 
11140 	if (asym_active_balance(env))
11141 		return 1;
11142 
11143 	if (imbalanced_active_balance(env))
11144 		return 1;
11145 
11146 	/*
11147 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11148 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11149 	 * because of other sched_class or IRQs if more capacity stays
11150 	 * available on dst_cpu.
11151 	 */
11152 	if ((env->idle != CPU_NOT_IDLE) &&
11153 	    (env->src_rq->cfs.h_nr_running == 1)) {
11154 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11155 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11156 			return 1;
11157 	}
11158 
11159 	if (env->migration_type == migrate_misfit)
11160 		return 1;
11161 
11162 	return 0;
11163 }
11164 
11165 static int active_load_balance_cpu_stop(void *data);
11166 
11167 static int should_we_balance(struct lb_env *env)
11168 {
11169 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11170 	struct sched_group *sg = env->sd->groups;
11171 	int cpu, idle_smt = -1;
11172 
11173 	/*
11174 	 * Ensure the balancing environment is consistent; can happen
11175 	 * when the softirq triggers 'during' hotplug.
11176 	 */
11177 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11178 		return 0;
11179 
11180 	/*
11181 	 * In the newly idle case, we will allow all the CPUs
11182 	 * to do the newly idle load balance.
11183 	 *
11184 	 * However, we bail out if we already have tasks or a wakeup pending,
11185 	 * to optimize wakeup latency.
11186 	 */
11187 	if (env->idle == CPU_NEWLY_IDLE) {
11188 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11189 			return 0;
11190 		return 1;
11191 	}
11192 
11193 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11194 	/* Try to find first idle CPU */
11195 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11196 		if (!idle_cpu(cpu))
11197 			continue;
11198 
11199 		/*
11200 		 * Don't balance to idle SMT in busy core right away when
11201 		 * balancing cores, but remember the first idle SMT CPU for
11202 		 * later consideration.  Find CPU on an idle core first.
11203 		 */
11204 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11205 			if (idle_smt == -1)
11206 				idle_smt = cpu;
11207 			/*
11208 			 * If the core is not idle, and first SMT sibling which is
11209 			 * idle has been found, then its not needed to check other
11210 			 * SMT siblings for idleness:
11211 			 */
11212 #ifdef CONFIG_SCHED_SMT
11213 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11214 #endif
11215 			continue;
11216 		}
11217 
11218 		/*
11219 		 * Are we the first idle core in a non-SMT domain or higher,
11220 		 * or the first idle CPU in a SMT domain?
11221 		 */
11222 		return cpu == env->dst_cpu;
11223 	}
11224 
11225 	/* Are we the first idle CPU with busy siblings? */
11226 	if (idle_smt != -1)
11227 		return idle_smt == env->dst_cpu;
11228 
11229 	/* Are we the first CPU of this group ? */
11230 	return group_balance_cpu(sg) == env->dst_cpu;
11231 }
11232 
11233 /*
11234  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11235  * tasks if there is an imbalance.
11236  */
11237 static int load_balance(int this_cpu, struct rq *this_rq,
11238 			struct sched_domain *sd, enum cpu_idle_type idle,
11239 			int *continue_balancing)
11240 {
11241 	int ld_moved, cur_ld_moved, active_balance = 0;
11242 	struct sched_domain *sd_parent = sd->parent;
11243 	struct sched_group *group;
11244 	struct rq *busiest;
11245 	struct rq_flags rf;
11246 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11247 	struct lb_env env = {
11248 		.sd		= sd,
11249 		.dst_cpu	= this_cpu,
11250 		.dst_rq		= this_rq,
11251 		.dst_grpmask    = group_balance_mask(sd->groups),
11252 		.idle		= idle,
11253 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11254 		.cpus		= cpus,
11255 		.fbq_type	= all,
11256 		.tasks		= LIST_HEAD_INIT(env.tasks),
11257 	};
11258 
11259 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11260 
11261 	schedstat_inc(sd->lb_count[idle]);
11262 
11263 redo:
11264 	if (!should_we_balance(&env)) {
11265 		*continue_balancing = 0;
11266 		goto out_balanced;
11267 	}
11268 
11269 	group = find_busiest_group(&env);
11270 	if (!group) {
11271 		schedstat_inc(sd->lb_nobusyg[idle]);
11272 		goto out_balanced;
11273 	}
11274 
11275 	busiest = find_busiest_queue(&env, group);
11276 	if (!busiest) {
11277 		schedstat_inc(sd->lb_nobusyq[idle]);
11278 		goto out_balanced;
11279 	}
11280 
11281 	WARN_ON_ONCE(busiest == env.dst_rq);
11282 
11283 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11284 
11285 	env.src_cpu = busiest->cpu;
11286 	env.src_rq = busiest;
11287 
11288 	ld_moved = 0;
11289 	/* Clear this flag as soon as we find a pullable task */
11290 	env.flags |= LBF_ALL_PINNED;
11291 	if (busiest->nr_running > 1) {
11292 		/*
11293 		 * Attempt to move tasks. If find_busiest_group has found
11294 		 * an imbalance but busiest->nr_running <= 1, the group is
11295 		 * still unbalanced. ld_moved simply stays zero, so it is
11296 		 * correctly treated as an imbalance.
11297 		 */
11298 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11299 
11300 more_balance:
11301 		rq_lock_irqsave(busiest, &rf);
11302 		update_rq_clock(busiest);
11303 
11304 		/*
11305 		 * cur_ld_moved - load moved in current iteration
11306 		 * ld_moved     - cumulative load moved across iterations
11307 		 */
11308 		cur_ld_moved = detach_tasks(&env);
11309 
11310 		/*
11311 		 * We've detached some tasks from busiest_rq. Every
11312 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11313 		 * unlock busiest->lock, and we are able to be sure
11314 		 * that nobody can manipulate the tasks in parallel.
11315 		 * See task_rq_lock() family for the details.
11316 		 */
11317 
11318 		rq_unlock(busiest, &rf);
11319 
11320 		if (cur_ld_moved) {
11321 			attach_tasks(&env);
11322 			ld_moved += cur_ld_moved;
11323 		}
11324 
11325 		local_irq_restore(rf.flags);
11326 
11327 		if (env.flags & LBF_NEED_BREAK) {
11328 			env.flags &= ~LBF_NEED_BREAK;
11329 			goto more_balance;
11330 		}
11331 
11332 		/*
11333 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11334 		 * us and move them to an alternate dst_cpu in our sched_group
11335 		 * where they can run. The upper limit on how many times we
11336 		 * iterate on same src_cpu is dependent on number of CPUs in our
11337 		 * sched_group.
11338 		 *
11339 		 * This changes load balance semantics a bit on who can move
11340 		 * load to a given_cpu. In addition to the given_cpu itself
11341 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11342 		 * nohz-idle), we now have balance_cpu in a position to move
11343 		 * load to given_cpu. In rare situations, this may cause
11344 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11345 		 * _independently_ and at _same_ time to move some load to
11346 		 * given_cpu) causing excess load to be moved to given_cpu.
11347 		 * This however should not happen so much in practice and
11348 		 * moreover subsequent load balance cycles should correct the
11349 		 * excess load moved.
11350 		 */
11351 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11352 
11353 			/* Prevent to re-select dst_cpu via env's CPUs */
11354 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11355 
11356 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11357 			env.dst_cpu	 = env.new_dst_cpu;
11358 			env.flags	&= ~LBF_DST_PINNED;
11359 			env.loop	 = 0;
11360 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11361 
11362 			/*
11363 			 * Go back to "more_balance" rather than "redo" since we
11364 			 * need to continue with same src_cpu.
11365 			 */
11366 			goto more_balance;
11367 		}
11368 
11369 		/*
11370 		 * We failed to reach balance because of affinity.
11371 		 */
11372 		if (sd_parent) {
11373 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11374 
11375 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11376 				*group_imbalance = 1;
11377 		}
11378 
11379 		/* All tasks on this runqueue were pinned by CPU affinity */
11380 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11381 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11382 			/*
11383 			 * Attempting to continue load balancing at the current
11384 			 * sched_domain level only makes sense if there are
11385 			 * active CPUs remaining as possible busiest CPUs to
11386 			 * pull load from which are not contained within the
11387 			 * destination group that is receiving any migrated
11388 			 * load.
11389 			 */
11390 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11391 				env.loop = 0;
11392 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11393 				goto redo;
11394 			}
11395 			goto out_all_pinned;
11396 		}
11397 	}
11398 
11399 	if (!ld_moved) {
11400 		schedstat_inc(sd->lb_failed[idle]);
11401 		/*
11402 		 * Increment the failure counter only on periodic balance.
11403 		 * We do not want newidle balance, which can be very
11404 		 * frequent, pollute the failure counter causing
11405 		 * excessive cache_hot migrations and active balances.
11406 		 */
11407 		if (idle != CPU_NEWLY_IDLE)
11408 			sd->nr_balance_failed++;
11409 
11410 		if (need_active_balance(&env)) {
11411 			unsigned long flags;
11412 
11413 			raw_spin_rq_lock_irqsave(busiest, flags);
11414 
11415 			/*
11416 			 * Don't kick the active_load_balance_cpu_stop,
11417 			 * if the curr task on busiest CPU can't be
11418 			 * moved to this_cpu:
11419 			 */
11420 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11421 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11422 				goto out_one_pinned;
11423 			}
11424 
11425 			/* Record that we found at least one task that could run on this_cpu */
11426 			env.flags &= ~LBF_ALL_PINNED;
11427 
11428 			/*
11429 			 * ->active_balance synchronizes accesses to
11430 			 * ->active_balance_work.  Once set, it's cleared
11431 			 * only after active load balance is finished.
11432 			 */
11433 			if (!busiest->active_balance) {
11434 				busiest->active_balance = 1;
11435 				busiest->push_cpu = this_cpu;
11436 				active_balance = 1;
11437 			}
11438 
11439 			preempt_disable();
11440 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11441 			if (active_balance) {
11442 				stop_one_cpu_nowait(cpu_of(busiest),
11443 					active_load_balance_cpu_stop, busiest,
11444 					&busiest->active_balance_work);
11445 			}
11446 			preempt_enable();
11447 		}
11448 	} else {
11449 		sd->nr_balance_failed = 0;
11450 	}
11451 
11452 	if (likely(!active_balance) || need_active_balance(&env)) {
11453 		/* We were unbalanced, so reset the balancing interval */
11454 		sd->balance_interval = sd->min_interval;
11455 	}
11456 
11457 	goto out;
11458 
11459 out_balanced:
11460 	/*
11461 	 * We reach balance although we may have faced some affinity
11462 	 * constraints. Clear the imbalance flag only if other tasks got
11463 	 * a chance to move and fix the imbalance.
11464 	 */
11465 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11466 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11467 
11468 		if (*group_imbalance)
11469 			*group_imbalance = 0;
11470 	}
11471 
11472 out_all_pinned:
11473 	/*
11474 	 * We reach balance because all tasks are pinned at this level so
11475 	 * we can't migrate them. Let the imbalance flag set so parent level
11476 	 * can try to migrate them.
11477 	 */
11478 	schedstat_inc(sd->lb_balanced[idle]);
11479 
11480 	sd->nr_balance_failed = 0;
11481 
11482 out_one_pinned:
11483 	ld_moved = 0;
11484 
11485 	/*
11486 	 * newidle_balance() disregards balance intervals, so we could
11487 	 * repeatedly reach this code, which would lead to balance_interval
11488 	 * skyrocketing in a short amount of time. Skip the balance_interval
11489 	 * increase logic to avoid that.
11490 	 */
11491 	if (env.idle == CPU_NEWLY_IDLE)
11492 		goto out;
11493 
11494 	/* tune up the balancing interval */
11495 	if ((env.flags & LBF_ALL_PINNED &&
11496 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11497 	    sd->balance_interval < sd->max_interval)
11498 		sd->balance_interval *= 2;
11499 out:
11500 	return ld_moved;
11501 }
11502 
11503 static inline unsigned long
11504 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11505 {
11506 	unsigned long interval = sd->balance_interval;
11507 
11508 	if (cpu_busy)
11509 		interval *= sd->busy_factor;
11510 
11511 	/* scale ms to jiffies */
11512 	interval = msecs_to_jiffies(interval);
11513 
11514 	/*
11515 	 * Reduce likelihood of busy balancing at higher domains racing with
11516 	 * balancing at lower domains by preventing their balancing periods
11517 	 * from being multiples of each other.
11518 	 */
11519 	if (cpu_busy)
11520 		interval -= 1;
11521 
11522 	interval = clamp(interval, 1UL, max_load_balance_interval);
11523 
11524 	return interval;
11525 }
11526 
11527 static inline void
11528 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11529 {
11530 	unsigned long interval, next;
11531 
11532 	/* used by idle balance, so cpu_busy = 0 */
11533 	interval = get_sd_balance_interval(sd, 0);
11534 	next = sd->last_balance + interval;
11535 
11536 	if (time_after(*next_balance, next))
11537 		*next_balance = next;
11538 }
11539 
11540 /*
11541  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11542  * running tasks off the busiest CPU onto idle CPUs. It requires at
11543  * least 1 task to be running on each physical CPU where possible, and
11544  * avoids physical / logical imbalances.
11545  */
11546 static int active_load_balance_cpu_stop(void *data)
11547 {
11548 	struct rq *busiest_rq = data;
11549 	int busiest_cpu = cpu_of(busiest_rq);
11550 	int target_cpu = busiest_rq->push_cpu;
11551 	struct rq *target_rq = cpu_rq(target_cpu);
11552 	struct sched_domain *sd;
11553 	struct task_struct *p = NULL;
11554 	struct rq_flags rf;
11555 
11556 	rq_lock_irq(busiest_rq, &rf);
11557 	/*
11558 	 * Between queueing the stop-work and running it is a hole in which
11559 	 * CPUs can become inactive. We should not move tasks from or to
11560 	 * inactive CPUs.
11561 	 */
11562 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11563 		goto out_unlock;
11564 
11565 	/* Make sure the requested CPU hasn't gone down in the meantime: */
11566 	if (unlikely(busiest_cpu != smp_processor_id() ||
11567 		     !busiest_rq->active_balance))
11568 		goto out_unlock;
11569 
11570 	/* Is there any task to move? */
11571 	if (busiest_rq->nr_running <= 1)
11572 		goto out_unlock;
11573 
11574 	/*
11575 	 * This condition is "impossible", if it occurs
11576 	 * we need to fix it. Originally reported by
11577 	 * Bjorn Helgaas on a 128-CPU setup.
11578 	 */
11579 	WARN_ON_ONCE(busiest_rq == target_rq);
11580 
11581 	/* Search for an sd spanning us and the target CPU. */
11582 	rcu_read_lock();
11583 	for_each_domain(target_cpu, sd) {
11584 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11585 			break;
11586 	}
11587 
11588 	if (likely(sd)) {
11589 		struct lb_env env = {
11590 			.sd		= sd,
11591 			.dst_cpu	= target_cpu,
11592 			.dst_rq		= target_rq,
11593 			.src_cpu	= busiest_rq->cpu,
11594 			.src_rq		= busiest_rq,
11595 			.idle		= CPU_IDLE,
11596 			.flags		= LBF_ACTIVE_LB,
11597 		};
11598 
11599 		schedstat_inc(sd->alb_count);
11600 		update_rq_clock(busiest_rq);
11601 
11602 		p = detach_one_task(&env);
11603 		if (p) {
11604 			schedstat_inc(sd->alb_pushed);
11605 			/* Active balancing done, reset the failure counter. */
11606 			sd->nr_balance_failed = 0;
11607 		} else {
11608 			schedstat_inc(sd->alb_failed);
11609 		}
11610 	}
11611 	rcu_read_unlock();
11612 out_unlock:
11613 	busiest_rq->active_balance = 0;
11614 	rq_unlock(busiest_rq, &rf);
11615 
11616 	if (p)
11617 		attach_one_task(target_rq, p);
11618 
11619 	local_irq_enable();
11620 
11621 	return 0;
11622 }
11623 
11624 static DEFINE_SPINLOCK(balancing);
11625 
11626 /*
11627  * Scale the max load_balance interval with the number of CPUs in the system.
11628  * This trades load-balance latency on larger machines for less cross talk.
11629  */
11630 void update_max_interval(void)
11631 {
11632 	max_load_balance_interval = HZ*num_online_cpus()/10;
11633 }
11634 
11635 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11636 {
11637 	if (cost > sd->max_newidle_lb_cost) {
11638 		/*
11639 		 * Track max cost of a domain to make sure to not delay the
11640 		 * next wakeup on the CPU.
11641 		 */
11642 		sd->max_newidle_lb_cost = cost;
11643 		sd->last_decay_max_lb_cost = jiffies;
11644 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11645 		/*
11646 		 * Decay the newidle max times by ~1% per second to ensure that
11647 		 * it is not outdated and the current max cost is actually
11648 		 * shorter.
11649 		 */
11650 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11651 		sd->last_decay_max_lb_cost = jiffies;
11652 
11653 		return true;
11654 	}
11655 
11656 	return false;
11657 }
11658 
11659 /*
11660  * It checks each scheduling domain to see if it is due to be balanced,
11661  * and initiates a balancing operation if so.
11662  *
11663  * Balancing parameters are set up in init_sched_domains.
11664  */
11665 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
11666 {
11667 	int continue_balancing = 1;
11668 	int cpu = rq->cpu;
11669 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11670 	unsigned long interval;
11671 	struct sched_domain *sd;
11672 	/* Earliest time when we have to do rebalance again */
11673 	unsigned long next_balance = jiffies + 60*HZ;
11674 	int update_next_balance = 0;
11675 	int need_serialize, need_decay = 0;
11676 	u64 max_cost = 0;
11677 
11678 	rcu_read_lock();
11679 	for_each_domain(cpu, sd) {
11680 		/*
11681 		 * Decay the newidle max times here because this is a regular
11682 		 * visit to all the domains.
11683 		 */
11684 		need_decay = update_newidle_cost(sd, 0);
11685 		max_cost += sd->max_newidle_lb_cost;
11686 
11687 		/*
11688 		 * Stop the load balance at this level. There is another
11689 		 * CPU in our sched group which is doing load balancing more
11690 		 * actively.
11691 		 */
11692 		if (!continue_balancing) {
11693 			if (need_decay)
11694 				continue;
11695 			break;
11696 		}
11697 
11698 		interval = get_sd_balance_interval(sd, busy);
11699 
11700 		need_serialize = sd->flags & SD_SERIALIZE;
11701 		if (need_serialize) {
11702 			if (!spin_trylock(&balancing))
11703 				goto out;
11704 		}
11705 
11706 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
11707 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
11708 				/*
11709 				 * The LBF_DST_PINNED logic could have changed
11710 				 * env->dst_cpu, so we can't know our idle
11711 				 * state even if we migrated tasks. Update it.
11712 				 */
11713 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
11714 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11715 			}
11716 			sd->last_balance = jiffies;
11717 			interval = get_sd_balance_interval(sd, busy);
11718 		}
11719 		if (need_serialize)
11720 			spin_unlock(&balancing);
11721 out:
11722 		if (time_after(next_balance, sd->last_balance + interval)) {
11723 			next_balance = sd->last_balance + interval;
11724 			update_next_balance = 1;
11725 		}
11726 	}
11727 	if (need_decay) {
11728 		/*
11729 		 * Ensure the rq-wide value also decays but keep it at a
11730 		 * reasonable floor to avoid funnies with rq->avg_idle.
11731 		 */
11732 		rq->max_idle_balance_cost =
11733 			max((u64)sysctl_sched_migration_cost, max_cost);
11734 	}
11735 	rcu_read_unlock();
11736 
11737 	/*
11738 	 * next_balance will be updated only when there is a need.
11739 	 * When the cpu is attached to null domain for ex, it will not be
11740 	 * updated.
11741 	 */
11742 	if (likely(update_next_balance))
11743 		rq->next_balance = next_balance;
11744 
11745 }
11746 
11747 static inline int on_null_domain(struct rq *rq)
11748 {
11749 	return unlikely(!rcu_dereference_sched(rq->sd));
11750 }
11751 
11752 #ifdef CONFIG_NO_HZ_COMMON
11753 /*
11754  * idle load balancing details
11755  * - When one of the busy CPUs notice that there may be an idle rebalancing
11756  *   needed, they will kick the idle load balancer, which then does idle
11757  *   load balancing for all the idle CPUs.
11758  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
11759  *   anywhere yet.
11760  */
11761 
11762 static inline int find_new_ilb(void)
11763 {
11764 	int ilb;
11765 	const struct cpumask *hk_mask;
11766 
11767 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11768 
11769 	for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
11770 
11771 		if (ilb == smp_processor_id())
11772 			continue;
11773 
11774 		if (idle_cpu(ilb))
11775 			return ilb;
11776 	}
11777 
11778 	return nr_cpu_ids;
11779 }
11780 
11781 /*
11782  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
11783  * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11784  */
11785 static void kick_ilb(unsigned int flags)
11786 {
11787 	int ilb_cpu;
11788 
11789 	/*
11790 	 * Increase nohz.next_balance only when if full ilb is triggered but
11791 	 * not if we only update stats.
11792 	 */
11793 	if (flags & NOHZ_BALANCE_KICK)
11794 		nohz.next_balance = jiffies+1;
11795 
11796 	ilb_cpu = find_new_ilb();
11797 
11798 	if (ilb_cpu >= nr_cpu_ids)
11799 		return;
11800 
11801 	/*
11802 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11803 	 * the first flag owns it; cleared by nohz_csd_func().
11804 	 */
11805 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11806 	if (flags & NOHZ_KICK_MASK)
11807 		return;
11808 
11809 	/*
11810 	 * This way we generate an IPI on the target CPU which
11811 	 * is idle. And the softirq performing nohz idle load balance
11812 	 * will be run before returning from the IPI.
11813 	 */
11814 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11815 }
11816 
11817 /*
11818  * Current decision point for kicking the idle load balancer in the presence
11819  * of idle CPUs in the system.
11820  */
11821 static void nohz_balancer_kick(struct rq *rq)
11822 {
11823 	unsigned long now = jiffies;
11824 	struct sched_domain_shared *sds;
11825 	struct sched_domain *sd;
11826 	int nr_busy, i, cpu = rq->cpu;
11827 	unsigned int flags = 0;
11828 
11829 	if (unlikely(rq->idle_balance))
11830 		return;
11831 
11832 	/*
11833 	 * We may be recently in ticked or tickless idle mode. At the first
11834 	 * busy tick after returning from idle, we will update the busy stats.
11835 	 */
11836 	nohz_balance_exit_idle(rq);
11837 
11838 	/*
11839 	 * None are in tickless mode and hence no need for NOHZ idle load
11840 	 * balancing.
11841 	 */
11842 	if (likely(!atomic_read(&nohz.nr_cpus)))
11843 		return;
11844 
11845 	if (READ_ONCE(nohz.has_blocked) &&
11846 	    time_after(now, READ_ONCE(nohz.next_blocked)))
11847 		flags = NOHZ_STATS_KICK;
11848 
11849 	if (time_before(now, nohz.next_balance))
11850 		goto out;
11851 
11852 	if (rq->nr_running >= 2) {
11853 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11854 		goto out;
11855 	}
11856 
11857 	rcu_read_lock();
11858 
11859 	sd = rcu_dereference(rq->sd);
11860 	if (sd) {
11861 		/*
11862 		 * If there's a CFS task and the current CPU has reduced
11863 		 * capacity; kick the ILB to see if there's a better CPU to run
11864 		 * on.
11865 		 */
11866 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11867 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11868 			goto unlock;
11869 		}
11870 	}
11871 
11872 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11873 	if (sd) {
11874 		/*
11875 		 * When ASYM_PACKING; see if there's a more preferred CPU
11876 		 * currently idle; in which case, kick the ILB to move tasks
11877 		 * around.
11878 		 *
11879 		 * When balancing betwen cores, all the SMT siblings of the
11880 		 * preferred CPU must be idle.
11881 		 */
11882 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11883 			if (sched_use_asym_prio(sd, i) &&
11884 			    sched_asym_prefer(i, cpu)) {
11885 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11886 				goto unlock;
11887 			}
11888 		}
11889 	}
11890 
11891 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11892 	if (sd) {
11893 		/*
11894 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11895 		 * to run the misfit task on.
11896 		 */
11897 		if (check_misfit_status(rq, sd)) {
11898 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11899 			goto unlock;
11900 		}
11901 
11902 		/*
11903 		 * For asymmetric systems, we do not want to nicely balance
11904 		 * cache use, instead we want to embrace asymmetry and only
11905 		 * ensure tasks have enough CPU capacity.
11906 		 *
11907 		 * Skip the LLC logic because it's not relevant in that case.
11908 		 */
11909 		goto unlock;
11910 	}
11911 
11912 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11913 	if (sds) {
11914 		/*
11915 		 * If there is an imbalance between LLC domains (IOW we could
11916 		 * increase the overall cache use), we need some less-loaded LLC
11917 		 * domain to pull some load. Likewise, we may need to spread
11918 		 * load within the current LLC domain (e.g. packed SMT cores but
11919 		 * other CPUs are idle). We can't really know from here how busy
11920 		 * the others are - so just get a nohz balance going if it looks
11921 		 * like this LLC domain has tasks we could move.
11922 		 */
11923 		nr_busy = atomic_read(&sds->nr_busy_cpus);
11924 		if (nr_busy > 1) {
11925 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11926 			goto unlock;
11927 		}
11928 	}
11929 unlock:
11930 	rcu_read_unlock();
11931 out:
11932 	if (READ_ONCE(nohz.needs_update))
11933 		flags |= NOHZ_NEXT_KICK;
11934 
11935 	if (flags)
11936 		kick_ilb(flags);
11937 }
11938 
11939 static void set_cpu_sd_state_busy(int cpu)
11940 {
11941 	struct sched_domain *sd;
11942 
11943 	rcu_read_lock();
11944 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11945 
11946 	if (!sd || !sd->nohz_idle)
11947 		goto unlock;
11948 	sd->nohz_idle = 0;
11949 
11950 	atomic_inc(&sd->shared->nr_busy_cpus);
11951 unlock:
11952 	rcu_read_unlock();
11953 }
11954 
11955 void nohz_balance_exit_idle(struct rq *rq)
11956 {
11957 	SCHED_WARN_ON(rq != this_rq());
11958 
11959 	if (likely(!rq->nohz_tick_stopped))
11960 		return;
11961 
11962 	rq->nohz_tick_stopped = 0;
11963 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
11964 	atomic_dec(&nohz.nr_cpus);
11965 
11966 	set_cpu_sd_state_busy(rq->cpu);
11967 }
11968 
11969 static void set_cpu_sd_state_idle(int cpu)
11970 {
11971 	struct sched_domain *sd;
11972 
11973 	rcu_read_lock();
11974 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11975 
11976 	if (!sd || sd->nohz_idle)
11977 		goto unlock;
11978 	sd->nohz_idle = 1;
11979 
11980 	atomic_dec(&sd->shared->nr_busy_cpus);
11981 unlock:
11982 	rcu_read_unlock();
11983 }
11984 
11985 /*
11986  * This routine will record that the CPU is going idle with tick stopped.
11987  * This info will be used in performing idle load balancing in the future.
11988  */
11989 void nohz_balance_enter_idle(int cpu)
11990 {
11991 	struct rq *rq = cpu_rq(cpu);
11992 
11993 	SCHED_WARN_ON(cpu != smp_processor_id());
11994 
11995 	/* If this CPU is going down, then nothing needs to be done: */
11996 	if (!cpu_active(cpu))
11997 		return;
11998 
11999 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
12000 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12001 		return;
12002 
12003 	/*
12004 	 * Can be set safely without rq->lock held
12005 	 * If a clear happens, it will have evaluated last additions because
12006 	 * rq->lock is held during the check and the clear
12007 	 */
12008 	rq->has_blocked_load = 1;
12009 
12010 	/*
12011 	 * The tick is still stopped but load could have been added in the
12012 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
12013 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12014 	 * of nohz.has_blocked can only happen after checking the new load
12015 	 */
12016 	if (rq->nohz_tick_stopped)
12017 		goto out;
12018 
12019 	/* If we're a completely isolated CPU, we don't play: */
12020 	if (on_null_domain(rq))
12021 		return;
12022 
12023 	rq->nohz_tick_stopped = 1;
12024 
12025 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12026 	atomic_inc(&nohz.nr_cpus);
12027 
12028 	/*
12029 	 * Ensures that if nohz_idle_balance() fails to observe our
12030 	 * @idle_cpus_mask store, it must observe the @has_blocked
12031 	 * and @needs_update stores.
12032 	 */
12033 	smp_mb__after_atomic();
12034 
12035 	set_cpu_sd_state_idle(cpu);
12036 
12037 	WRITE_ONCE(nohz.needs_update, 1);
12038 out:
12039 	/*
12040 	 * Each time a cpu enter idle, we assume that it has blocked load and
12041 	 * enable the periodic update of the load of idle cpus
12042 	 */
12043 	WRITE_ONCE(nohz.has_blocked, 1);
12044 }
12045 
12046 static bool update_nohz_stats(struct rq *rq)
12047 {
12048 	unsigned int cpu = rq->cpu;
12049 
12050 	if (!rq->has_blocked_load)
12051 		return false;
12052 
12053 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12054 		return false;
12055 
12056 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12057 		return true;
12058 
12059 	update_blocked_averages(cpu);
12060 
12061 	return rq->has_blocked_load;
12062 }
12063 
12064 /*
12065  * Internal function that runs load balance for all idle cpus. The load balance
12066  * can be a simple update of blocked load or a complete load balance with
12067  * tasks movement depending of flags.
12068  */
12069 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12070 {
12071 	/* Earliest time when we have to do rebalance again */
12072 	unsigned long now = jiffies;
12073 	unsigned long next_balance = now + 60*HZ;
12074 	bool has_blocked_load = false;
12075 	int update_next_balance = 0;
12076 	int this_cpu = this_rq->cpu;
12077 	int balance_cpu;
12078 	struct rq *rq;
12079 
12080 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12081 
12082 	/*
12083 	 * We assume there will be no idle load after this update and clear
12084 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12085 	 * set the has_blocked flag and trigger another update of idle load.
12086 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12087 	 * setting the flag, we are sure to not clear the state and not
12088 	 * check the load of an idle cpu.
12089 	 *
12090 	 * Same applies to idle_cpus_mask vs needs_update.
12091 	 */
12092 	if (flags & NOHZ_STATS_KICK)
12093 		WRITE_ONCE(nohz.has_blocked, 0);
12094 	if (flags & NOHZ_NEXT_KICK)
12095 		WRITE_ONCE(nohz.needs_update, 0);
12096 
12097 	/*
12098 	 * Ensures that if we miss the CPU, we must see the has_blocked
12099 	 * store from nohz_balance_enter_idle().
12100 	 */
12101 	smp_mb();
12102 
12103 	/*
12104 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12105 	 * chance for other idle cpu to pull load.
12106 	 */
12107 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12108 		if (!idle_cpu(balance_cpu))
12109 			continue;
12110 
12111 		/*
12112 		 * If this CPU gets work to do, stop the load balancing
12113 		 * work being done for other CPUs. Next load
12114 		 * balancing owner will pick it up.
12115 		 */
12116 		if (need_resched()) {
12117 			if (flags & NOHZ_STATS_KICK)
12118 				has_blocked_load = true;
12119 			if (flags & NOHZ_NEXT_KICK)
12120 				WRITE_ONCE(nohz.needs_update, 1);
12121 			goto abort;
12122 		}
12123 
12124 		rq = cpu_rq(balance_cpu);
12125 
12126 		if (flags & NOHZ_STATS_KICK)
12127 			has_blocked_load |= update_nohz_stats(rq);
12128 
12129 		/*
12130 		 * If time for next balance is due,
12131 		 * do the balance.
12132 		 */
12133 		if (time_after_eq(jiffies, rq->next_balance)) {
12134 			struct rq_flags rf;
12135 
12136 			rq_lock_irqsave(rq, &rf);
12137 			update_rq_clock(rq);
12138 			rq_unlock_irqrestore(rq, &rf);
12139 
12140 			if (flags & NOHZ_BALANCE_KICK)
12141 				rebalance_domains(rq, CPU_IDLE);
12142 		}
12143 
12144 		if (time_after(next_balance, rq->next_balance)) {
12145 			next_balance = rq->next_balance;
12146 			update_next_balance = 1;
12147 		}
12148 	}
12149 
12150 	/*
12151 	 * next_balance will be updated only when there is a need.
12152 	 * When the CPU is attached to null domain for ex, it will not be
12153 	 * updated.
12154 	 */
12155 	if (likely(update_next_balance))
12156 		nohz.next_balance = next_balance;
12157 
12158 	if (flags & NOHZ_STATS_KICK)
12159 		WRITE_ONCE(nohz.next_blocked,
12160 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12161 
12162 abort:
12163 	/* There is still blocked load, enable periodic update */
12164 	if (has_blocked_load)
12165 		WRITE_ONCE(nohz.has_blocked, 1);
12166 }
12167 
12168 /*
12169  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12170  * rebalancing for all the cpus for whom scheduler ticks are stopped.
12171  */
12172 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12173 {
12174 	unsigned int flags = this_rq->nohz_idle_balance;
12175 
12176 	if (!flags)
12177 		return false;
12178 
12179 	this_rq->nohz_idle_balance = 0;
12180 
12181 	if (idle != CPU_IDLE)
12182 		return false;
12183 
12184 	_nohz_idle_balance(this_rq, flags);
12185 
12186 	return true;
12187 }
12188 
12189 /*
12190  * Check if we need to run the ILB for updating blocked load before entering
12191  * idle state.
12192  */
12193 void nohz_run_idle_balance(int cpu)
12194 {
12195 	unsigned int flags;
12196 
12197 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12198 
12199 	/*
12200 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12201 	 * (ie NOHZ_STATS_KICK set) and will do the same.
12202 	 */
12203 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12204 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12205 }
12206 
12207 static void nohz_newidle_balance(struct rq *this_rq)
12208 {
12209 	int this_cpu = this_rq->cpu;
12210 
12211 	/*
12212 	 * This CPU doesn't want to be disturbed by scheduler
12213 	 * housekeeping
12214 	 */
12215 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12216 		return;
12217 
12218 	/* Will wake up very soon. No time for doing anything else*/
12219 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12220 		return;
12221 
12222 	/* Don't need to update blocked load of idle CPUs*/
12223 	if (!READ_ONCE(nohz.has_blocked) ||
12224 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12225 		return;
12226 
12227 	/*
12228 	 * Set the need to trigger ILB in order to update blocked load
12229 	 * before entering idle state.
12230 	 */
12231 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12232 }
12233 
12234 #else /* !CONFIG_NO_HZ_COMMON */
12235 static inline void nohz_balancer_kick(struct rq *rq) { }
12236 
12237 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12238 {
12239 	return false;
12240 }
12241 
12242 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12243 #endif /* CONFIG_NO_HZ_COMMON */
12244 
12245 /*
12246  * newidle_balance is called by schedule() if this_cpu is about to become
12247  * idle. Attempts to pull tasks from other CPUs.
12248  *
12249  * Returns:
12250  *   < 0 - we released the lock and there are !fair tasks present
12251  *     0 - failed, no new tasks
12252  *   > 0 - success, new (fair) tasks present
12253  */
12254 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
12255 {
12256 	unsigned long next_balance = jiffies + HZ;
12257 	int this_cpu = this_rq->cpu;
12258 	u64 t0, t1, curr_cost = 0;
12259 	struct sched_domain *sd;
12260 	int pulled_task = 0;
12261 
12262 	update_misfit_status(NULL, this_rq);
12263 
12264 	/*
12265 	 * There is a task waiting to run. No need to search for one.
12266 	 * Return 0; the task will be enqueued when switching to idle.
12267 	 */
12268 	if (this_rq->ttwu_pending)
12269 		return 0;
12270 
12271 	/*
12272 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
12273 	 * measure the duration of idle_balance() as idle time.
12274 	 */
12275 	this_rq->idle_stamp = rq_clock(this_rq);
12276 
12277 	/*
12278 	 * Do not pull tasks towards !active CPUs...
12279 	 */
12280 	if (!cpu_active(this_cpu))
12281 		return 0;
12282 
12283 	/*
12284 	 * This is OK, because current is on_cpu, which avoids it being picked
12285 	 * for load-balance and preemption/IRQs are still disabled avoiding
12286 	 * further scheduler activity on it and we're being very careful to
12287 	 * re-start the picking loop.
12288 	 */
12289 	rq_unpin_lock(this_rq, rf);
12290 
12291 	rcu_read_lock();
12292 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12293 
12294 	if (!READ_ONCE(this_rq->rd->overload) ||
12295 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12296 
12297 		if (sd)
12298 			update_next_balance(sd, &next_balance);
12299 		rcu_read_unlock();
12300 
12301 		goto out;
12302 	}
12303 	rcu_read_unlock();
12304 
12305 	raw_spin_rq_unlock(this_rq);
12306 
12307 	t0 = sched_clock_cpu(this_cpu);
12308 	update_blocked_averages(this_cpu);
12309 
12310 	rcu_read_lock();
12311 	for_each_domain(this_cpu, sd) {
12312 		int continue_balancing = 1;
12313 		u64 domain_cost;
12314 
12315 		update_next_balance(sd, &next_balance);
12316 
12317 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12318 			break;
12319 
12320 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12321 
12322 			pulled_task = load_balance(this_cpu, this_rq,
12323 						   sd, CPU_NEWLY_IDLE,
12324 						   &continue_balancing);
12325 
12326 			t1 = sched_clock_cpu(this_cpu);
12327 			domain_cost = t1 - t0;
12328 			update_newidle_cost(sd, domain_cost);
12329 
12330 			curr_cost += domain_cost;
12331 			t0 = t1;
12332 		}
12333 
12334 		/*
12335 		 * Stop searching for tasks to pull if there are
12336 		 * now runnable tasks on this rq.
12337 		 */
12338 		if (pulled_task || this_rq->nr_running > 0 ||
12339 		    this_rq->ttwu_pending)
12340 			break;
12341 	}
12342 	rcu_read_unlock();
12343 
12344 	raw_spin_rq_lock(this_rq);
12345 
12346 	if (curr_cost > this_rq->max_idle_balance_cost)
12347 		this_rq->max_idle_balance_cost = curr_cost;
12348 
12349 	/*
12350 	 * While browsing the domains, we released the rq lock, a task could
12351 	 * have been enqueued in the meantime. Since we're not going idle,
12352 	 * pretend we pulled a task.
12353 	 */
12354 	if (this_rq->cfs.h_nr_running && !pulled_task)
12355 		pulled_task = 1;
12356 
12357 	/* Is there a task of a high priority class? */
12358 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12359 		pulled_task = -1;
12360 
12361 out:
12362 	/* Move the next balance forward */
12363 	if (time_after(this_rq->next_balance, next_balance))
12364 		this_rq->next_balance = next_balance;
12365 
12366 	if (pulled_task)
12367 		this_rq->idle_stamp = 0;
12368 	else
12369 		nohz_newidle_balance(this_rq);
12370 
12371 	rq_repin_lock(this_rq, rf);
12372 
12373 	return pulled_task;
12374 }
12375 
12376 /*
12377  * run_rebalance_domains is triggered when needed from the scheduler tick.
12378  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
12379  */
12380 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
12381 {
12382 	struct rq *this_rq = this_rq();
12383 	enum cpu_idle_type idle = this_rq->idle_balance ?
12384 						CPU_IDLE : CPU_NOT_IDLE;
12385 
12386 	/*
12387 	 * If this CPU has a pending nohz_balance_kick, then do the
12388 	 * balancing on behalf of the other idle CPUs whose ticks are
12389 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
12390 	 * give the idle CPUs a chance to load balance. Else we may
12391 	 * load balance only within the local sched_domain hierarchy
12392 	 * and abort nohz_idle_balance altogether if we pull some load.
12393 	 */
12394 	if (nohz_idle_balance(this_rq, idle))
12395 		return;
12396 
12397 	/* normal load balance */
12398 	update_blocked_averages(this_rq->cpu);
12399 	rebalance_domains(this_rq, idle);
12400 }
12401 
12402 /*
12403  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12404  */
12405 void trigger_load_balance(struct rq *rq)
12406 {
12407 	/*
12408 	 * Don't need to rebalance while attached to NULL domain or
12409 	 * runqueue CPU is not active
12410 	 */
12411 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12412 		return;
12413 
12414 	if (time_after_eq(jiffies, rq->next_balance))
12415 		raise_softirq(SCHED_SOFTIRQ);
12416 
12417 	nohz_balancer_kick(rq);
12418 }
12419 
12420 static void rq_online_fair(struct rq *rq)
12421 {
12422 	update_sysctl();
12423 
12424 	update_runtime_enabled(rq);
12425 }
12426 
12427 static void rq_offline_fair(struct rq *rq)
12428 {
12429 	update_sysctl();
12430 
12431 	/* Ensure any throttled groups are reachable by pick_next_task */
12432 	unthrottle_offline_cfs_rqs(rq);
12433 }
12434 
12435 #endif /* CONFIG_SMP */
12436 
12437 #ifdef CONFIG_SCHED_CORE
12438 static inline bool
12439 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12440 {
12441 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12442 	u64 slice = se->slice;
12443 
12444 	return (rtime * min_nr_tasks > slice);
12445 }
12446 
12447 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
12448 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12449 {
12450 	if (!sched_core_enabled(rq))
12451 		return;
12452 
12453 	/*
12454 	 * If runqueue has only one task which used up its slice and
12455 	 * if the sibling is forced idle, then trigger schedule to
12456 	 * give forced idle task a chance.
12457 	 *
12458 	 * sched_slice() considers only this active rq and it gets the
12459 	 * whole slice. But during force idle, we have siblings acting
12460 	 * like a single runqueue and hence we need to consider runnable
12461 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12462 	 * go through the forced idle rq, but that would be a perf hit.
12463 	 * We can assume that the forced idle CPU has at least
12464 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12465 	 * if we need to give up the CPU.
12466 	 */
12467 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12468 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12469 		resched_curr(rq);
12470 }
12471 
12472 /*
12473  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12474  */
12475 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12476 			 bool forceidle)
12477 {
12478 	for_each_sched_entity(se) {
12479 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12480 
12481 		if (forceidle) {
12482 			if (cfs_rq->forceidle_seq == fi_seq)
12483 				break;
12484 			cfs_rq->forceidle_seq = fi_seq;
12485 		}
12486 
12487 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12488 	}
12489 }
12490 
12491 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12492 {
12493 	struct sched_entity *se = &p->se;
12494 
12495 	if (p->sched_class != &fair_sched_class)
12496 		return;
12497 
12498 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12499 }
12500 
12501 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12502 			bool in_fi)
12503 {
12504 	struct rq *rq = task_rq(a);
12505 	const struct sched_entity *sea = &a->se;
12506 	const struct sched_entity *seb = &b->se;
12507 	struct cfs_rq *cfs_rqa;
12508 	struct cfs_rq *cfs_rqb;
12509 	s64 delta;
12510 
12511 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
12512 
12513 #ifdef CONFIG_FAIR_GROUP_SCHED
12514 	/*
12515 	 * Find an se in the hierarchy for tasks a and b, such that the se's
12516 	 * are immediate siblings.
12517 	 */
12518 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12519 		int sea_depth = sea->depth;
12520 		int seb_depth = seb->depth;
12521 
12522 		if (sea_depth >= seb_depth)
12523 			sea = parent_entity(sea);
12524 		if (sea_depth <= seb_depth)
12525 			seb = parent_entity(seb);
12526 	}
12527 
12528 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12529 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12530 
12531 	cfs_rqa = sea->cfs_rq;
12532 	cfs_rqb = seb->cfs_rq;
12533 #else
12534 	cfs_rqa = &task_rq(a)->cfs;
12535 	cfs_rqb = &task_rq(b)->cfs;
12536 #endif
12537 
12538 	/*
12539 	 * Find delta after normalizing se's vruntime with its cfs_rq's
12540 	 * min_vruntime_fi, which would have been updated in prior calls
12541 	 * to se_fi_update().
12542 	 */
12543 	delta = (s64)(sea->vruntime - seb->vruntime) +
12544 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12545 
12546 	return delta > 0;
12547 }
12548 
12549 static int task_is_throttled_fair(struct task_struct *p, int cpu)
12550 {
12551 	struct cfs_rq *cfs_rq;
12552 
12553 #ifdef CONFIG_FAIR_GROUP_SCHED
12554 	cfs_rq = task_group(p)->cfs_rq[cpu];
12555 #else
12556 	cfs_rq = &cpu_rq(cpu)->cfs;
12557 #endif
12558 	return throttled_hierarchy(cfs_rq);
12559 }
12560 #else
12561 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12562 #endif
12563 
12564 /*
12565  * scheduler tick hitting a task of our scheduling class.
12566  *
12567  * NOTE: This function can be called remotely by the tick offload that
12568  * goes along full dynticks. Therefore no local assumption can be made
12569  * and everything must be accessed through the @rq and @curr passed in
12570  * parameters.
12571  */
12572 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12573 {
12574 	struct cfs_rq *cfs_rq;
12575 	struct sched_entity *se = &curr->se;
12576 
12577 	for_each_sched_entity(se) {
12578 		cfs_rq = cfs_rq_of(se);
12579 		entity_tick(cfs_rq, se, queued);
12580 	}
12581 
12582 	if (static_branch_unlikely(&sched_numa_balancing))
12583 		task_tick_numa(rq, curr);
12584 
12585 	update_misfit_status(curr, rq);
12586 	check_update_overutilized_status(task_rq(curr));
12587 
12588 	task_tick_core(rq, curr);
12589 }
12590 
12591 /*
12592  * called on fork with the child task as argument from the parent's context
12593  *  - child not yet on the tasklist
12594  *  - preemption disabled
12595  */
12596 static void task_fork_fair(struct task_struct *p)
12597 {
12598 	struct sched_entity *se = &p->se, *curr;
12599 	struct cfs_rq *cfs_rq;
12600 	struct rq *rq = this_rq();
12601 	struct rq_flags rf;
12602 
12603 	rq_lock(rq, &rf);
12604 	update_rq_clock(rq);
12605 
12606 	cfs_rq = task_cfs_rq(current);
12607 	curr = cfs_rq->curr;
12608 	if (curr)
12609 		update_curr(cfs_rq);
12610 	place_entity(cfs_rq, se, ENQUEUE_INITIAL);
12611 	rq_unlock(rq, &rf);
12612 }
12613 
12614 /*
12615  * Priority of the task has changed. Check to see if we preempt
12616  * the current task.
12617  */
12618 static void
12619 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12620 {
12621 	if (!task_on_rq_queued(p))
12622 		return;
12623 
12624 	if (rq->cfs.nr_running == 1)
12625 		return;
12626 
12627 	/*
12628 	 * Reschedule if we are currently running on this runqueue and
12629 	 * our priority decreased, or if we are not currently running on
12630 	 * this runqueue and our priority is higher than the current's
12631 	 */
12632 	if (task_current(rq, p)) {
12633 		if (p->prio > oldprio)
12634 			resched_curr(rq);
12635 	} else
12636 		check_preempt_curr(rq, p, 0);
12637 }
12638 
12639 #ifdef CONFIG_FAIR_GROUP_SCHED
12640 /*
12641  * Propagate the changes of the sched_entity across the tg tree to make it
12642  * visible to the root
12643  */
12644 static void propagate_entity_cfs_rq(struct sched_entity *se)
12645 {
12646 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12647 
12648 	if (cfs_rq_throttled(cfs_rq))
12649 		return;
12650 
12651 	if (!throttled_hierarchy(cfs_rq))
12652 		list_add_leaf_cfs_rq(cfs_rq);
12653 
12654 	/* Start to propagate at parent */
12655 	se = se->parent;
12656 
12657 	for_each_sched_entity(se) {
12658 		cfs_rq = cfs_rq_of(se);
12659 
12660 		update_load_avg(cfs_rq, se, UPDATE_TG);
12661 
12662 		if (cfs_rq_throttled(cfs_rq))
12663 			break;
12664 
12665 		if (!throttled_hierarchy(cfs_rq))
12666 			list_add_leaf_cfs_rq(cfs_rq);
12667 	}
12668 }
12669 #else
12670 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12671 #endif
12672 
12673 static void detach_entity_cfs_rq(struct sched_entity *se)
12674 {
12675 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12676 
12677 #ifdef CONFIG_SMP
12678 	/*
12679 	 * In case the task sched_avg hasn't been attached:
12680 	 * - A forked task which hasn't been woken up by wake_up_new_task().
12681 	 * - A task which has been woken up by try_to_wake_up() but is
12682 	 *   waiting for actually being woken up by sched_ttwu_pending().
12683 	 */
12684 	if (!se->avg.last_update_time)
12685 		return;
12686 #endif
12687 
12688 	/* Catch up with the cfs_rq and remove our load when we leave */
12689 	update_load_avg(cfs_rq, se, 0);
12690 	detach_entity_load_avg(cfs_rq, se);
12691 	update_tg_load_avg(cfs_rq);
12692 	propagate_entity_cfs_rq(se);
12693 }
12694 
12695 static void attach_entity_cfs_rq(struct sched_entity *se)
12696 {
12697 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12698 
12699 	/* Synchronize entity with its cfs_rq */
12700 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
12701 	attach_entity_load_avg(cfs_rq, se);
12702 	update_tg_load_avg(cfs_rq);
12703 	propagate_entity_cfs_rq(se);
12704 }
12705 
12706 static void detach_task_cfs_rq(struct task_struct *p)
12707 {
12708 	struct sched_entity *se = &p->se;
12709 
12710 	detach_entity_cfs_rq(se);
12711 }
12712 
12713 static void attach_task_cfs_rq(struct task_struct *p)
12714 {
12715 	struct sched_entity *se = &p->se;
12716 
12717 	attach_entity_cfs_rq(se);
12718 }
12719 
12720 static void switched_from_fair(struct rq *rq, struct task_struct *p)
12721 {
12722 	detach_task_cfs_rq(p);
12723 }
12724 
12725 static void switched_to_fair(struct rq *rq, struct task_struct *p)
12726 {
12727 	attach_task_cfs_rq(p);
12728 
12729 	if (task_on_rq_queued(p)) {
12730 		/*
12731 		 * We were most likely switched from sched_rt, so
12732 		 * kick off the schedule if running, otherwise just see
12733 		 * if we can still preempt the current task.
12734 		 */
12735 		if (task_current(rq, p))
12736 			resched_curr(rq);
12737 		else
12738 			check_preempt_curr(rq, p, 0);
12739 	}
12740 }
12741 
12742 /* Account for a task changing its policy or group.
12743  *
12744  * This routine is mostly called to set cfs_rq->curr field when a task
12745  * migrates between groups/classes.
12746  */
12747 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12748 {
12749 	struct sched_entity *se = &p->se;
12750 
12751 #ifdef CONFIG_SMP
12752 	if (task_on_rq_queued(p)) {
12753 		/*
12754 		 * Move the next running task to the front of the list, so our
12755 		 * cfs_tasks list becomes MRU one.
12756 		 */
12757 		list_move(&se->group_node, &rq->cfs_tasks);
12758 	}
12759 #endif
12760 
12761 	for_each_sched_entity(se) {
12762 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12763 
12764 		set_next_entity(cfs_rq, se);
12765 		/* ensure bandwidth has been allocated on our new cfs_rq */
12766 		account_cfs_rq_runtime(cfs_rq, 0);
12767 	}
12768 }
12769 
12770 void init_cfs_rq(struct cfs_rq *cfs_rq)
12771 {
12772 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12773 	u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12774 #ifdef CONFIG_SMP
12775 	raw_spin_lock_init(&cfs_rq->removed.lock);
12776 #endif
12777 }
12778 
12779 #ifdef CONFIG_FAIR_GROUP_SCHED
12780 static void task_change_group_fair(struct task_struct *p)
12781 {
12782 	/*
12783 	 * We couldn't detach or attach a forked task which
12784 	 * hasn't been woken up by wake_up_new_task().
12785 	 */
12786 	if (READ_ONCE(p->__state) == TASK_NEW)
12787 		return;
12788 
12789 	detach_task_cfs_rq(p);
12790 
12791 #ifdef CONFIG_SMP
12792 	/* Tell se's cfs_rq has been changed -- migrated */
12793 	p->se.avg.last_update_time = 0;
12794 #endif
12795 	set_task_rq(p, task_cpu(p));
12796 	attach_task_cfs_rq(p);
12797 }
12798 
12799 void free_fair_sched_group(struct task_group *tg)
12800 {
12801 	int i;
12802 
12803 	for_each_possible_cpu(i) {
12804 		if (tg->cfs_rq)
12805 			kfree(tg->cfs_rq[i]);
12806 		if (tg->se)
12807 			kfree(tg->se[i]);
12808 	}
12809 
12810 	kfree(tg->cfs_rq);
12811 	kfree(tg->se);
12812 }
12813 
12814 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12815 {
12816 	struct sched_entity *se;
12817 	struct cfs_rq *cfs_rq;
12818 	int i;
12819 
12820 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12821 	if (!tg->cfs_rq)
12822 		goto err;
12823 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12824 	if (!tg->se)
12825 		goto err;
12826 
12827 	tg->shares = NICE_0_LOAD;
12828 
12829 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
12830 
12831 	for_each_possible_cpu(i) {
12832 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12833 				      GFP_KERNEL, cpu_to_node(i));
12834 		if (!cfs_rq)
12835 			goto err;
12836 
12837 		se = kzalloc_node(sizeof(struct sched_entity_stats),
12838 				  GFP_KERNEL, cpu_to_node(i));
12839 		if (!se)
12840 			goto err_free_rq;
12841 
12842 		init_cfs_rq(cfs_rq);
12843 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12844 		init_entity_runnable_average(se);
12845 	}
12846 
12847 	return 1;
12848 
12849 err_free_rq:
12850 	kfree(cfs_rq);
12851 err:
12852 	return 0;
12853 }
12854 
12855 void online_fair_sched_group(struct task_group *tg)
12856 {
12857 	struct sched_entity *se;
12858 	struct rq_flags rf;
12859 	struct rq *rq;
12860 	int i;
12861 
12862 	for_each_possible_cpu(i) {
12863 		rq = cpu_rq(i);
12864 		se = tg->se[i];
12865 		rq_lock_irq(rq, &rf);
12866 		update_rq_clock(rq);
12867 		attach_entity_cfs_rq(se);
12868 		sync_throttle(tg, i);
12869 		rq_unlock_irq(rq, &rf);
12870 	}
12871 }
12872 
12873 void unregister_fair_sched_group(struct task_group *tg)
12874 {
12875 	unsigned long flags;
12876 	struct rq *rq;
12877 	int cpu;
12878 
12879 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12880 
12881 	for_each_possible_cpu(cpu) {
12882 		if (tg->se[cpu])
12883 			remove_entity_load_avg(tg->se[cpu]);
12884 
12885 		/*
12886 		 * Only empty task groups can be destroyed; so we can speculatively
12887 		 * check on_list without danger of it being re-added.
12888 		 */
12889 		if (!tg->cfs_rq[cpu]->on_list)
12890 			continue;
12891 
12892 		rq = cpu_rq(cpu);
12893 
12894 		raw_spin_rq_lock_irqsave(rq, flags);
12895 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
12896 		raw_spin_rq_unlock_irqrestore(rq, flags);
12897 	}
12898 }
12899 
12900 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12901 			struct sched_entity *se, int cpu,
12902 			struct sched_entity *parent)
12903 {
12904 	struct rq *rq = cpu_rq(cpu);
12905 
12906 	cfs_rq->tg = tg;
12907 	cfs_rq->rq = rq;
12908 	init_cfs_rq_runtime(cfs_rq);
12909 
12910 	tg->cfs_rq[cpu] = cfs_rq;
12911 	tg->se[cpu] = se;
12912 
12913 	/* se could be NULL for root_task_group */
12914 	if (!se)
12915 		return;
12916 
12917 	if (!parent) {
12918 		se->cfs_rq = &rq->cfs;
12919 		se->depth = 0;
12920 	} else {
12921 		se->cfs_rq = parent->my_q;
12922 		se->depth = parent->depth + 1;
12923 	}
12924 
12925 	se->my_q = cfs_rq;
12926 	/* guarantee group entities always have weight */
12927 	update_load_set(&se->load, NICE_0_LOAD);
12928 	se->parent = parent;
12929 }
12930 
12931 static DEFINE_MUTEX(shares_mutex);
12932 
12933 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
12934 {
12935 	int i;
12936 
12937 	lockdep_assert_held(&shares_mutex);
12938 
12939 	/*
12940 	 * We can't change the weight of the root cgroup.
12941 	 */
12942 	if (!tg->se[0])
12943 		return -EINVAL;
12944 
12945 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12946 
12947 	if (tg->shares == shares)
12948 		return 0;
12949 
12950 	tg->shares = shares;
12951 	for_each_possible_cpu(i) {
12952 		struct rq *rq = cpu_rq(i);
12953 		struct sched_entity *se = tg->se[i];
12954 		struct rq_flags rf;
12955 
12956 		/* Propagate contribution to hierarchy */
12957 		rq_lock_irqsave(rq, &rf);
12958 		update_rq_clock(rq);
12959 		for_each_sched_entity(se) {
12960 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
12961 			update_cfs_group(se);
12962 		}
12963 		rq_unlock_irqrestore(rq, &rf);
12964 	}
12965 
12966 	return 0;
12967 }
12968 
12969 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
12970 {
12971 	int ret;
12972 
12973 	mutex_lock(&shares_mutex);
12974 	if (tg_is_idle(tg))
12975 		ret = -EINVAL;
12976 	else
12977 		ret = __sched_group_set_shares(tg, shares);
12978 	mutex_unlock(&shares_mutex);
12979 
12980 	return ret;
12981 }
12982 
12983 int sched_group_set_idle(struct task_group *tg, long idle)
12984 {
12985 	int i;
12986 
12987 	if (tg == &root_task_group)
12988 		return -EINVAL;
12989 
12990 	if (idle < 0 || idle > 1)
12991 		return -EINVAL;
12992 
12993 	mutex_lock(&shares_mutex);
12994 
12995 	if (tg->idle == idle) {
12996 		mutex_unlock(&shares_mutex);
12997 		return 0;
12998 	}
12999 
13000 	tg->idle = idle;
13001 
13002 	for_each_possible_cpu(i) {
13003 		struct rq *rq = cpu_rq(i);
13004 		struct sched_entity *se = tg->se[i];
13005 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13006 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13007 		long idle_task_delta;
13008 		struct rq_flags rf;
13009 
13010 		rq_lock_irqsave(rq, &rf);
13011 
13012 		grp_cfs_rq->idle = idle;
13013 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13014 			goto next_cpu;
13015 
13016 		if (se->on_rq) {
13017 			parent_cfs_rq = cfs_rq_of(se);
13018 			if (cfs_rq_is_idle(grp_cfs_rq))
13019 				parent_cfs_rq->idle_nr_running++;
13020 			else
13021 				parent_cfs_rq->idle_nr_running--;
13022 		}
13023 
13024 		idle_task_delta = grp_cfs_rq->h_nr_running -
13025 				  grp_cfs_rq->idle_h_nr_running;
13026 		if (!cfs_rq_is_idle(grp_cfs_rq))
13027 			idle_task_delta *= -1;
13028 
13029 		for_each_sched_entity(se) {
13030 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13031 
13032 			if (!se->on_rq)
13033 				break;
13034 
13035 			cfs_rq->idle_h_nr_running += idle_task_delta;
13036 
13037 			/* Already accounted at parent level and above. */
13038 			if (cfs_rq_is_idle(cfs_rq))
13039 				break;
13040 		}
13041 
13042 next_cpu:
13043 		rq_unlock_irqrestore(rq, &rf);
13044 	}
13045 
13046 	/* Idle groups have minimum weight. */
13047 	if (tg_is_idle(tg))
13048 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13049 	else
13050 		__sched_group_set_shares(tg, NICE_0_LOAD);
13051 
13052 	mutex_unlock(&shares_mutex);
13053 	return 0;
13054 }
13055 
13056 #else /* CONFIG_FAIR_GROUP_SCHED */
13057 
13058 void free_fair_sched_group(struct task_group *tg) { }
13059 
13060 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13061 {
13062 	return 1;
13063 }
13064 
13065 void online_fair_sched_group(struct task_group *tg) { }
13066 
13067 void unregister_fair_sched_group(struct task_group *tg) { }
13068 
13069 #endif /* CONFIG_FAIR_GROUP_SCHED */
13070 
13071 
13072 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13073 {
13074 	struct sched_entity *se = &task->se;
13075 	unsigned int rr_interval = 0;
13076 
13077 	/*
13078 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13079 	 * idle runqueue:
13080 	 */
13081 	if (rq->cfs.load.weight)
13082 		rr_interval = NS_TO_JIFFIES(se->slice);
13083 
13084 	return rr_interval;
13085 }
13086 
13087 /*
13088  * All the scheduling class methods:
13089  */
13090 DEFINE_SCHED_CLASS(fair) = {
13091 
13092 	.enqueue_task		= enqueue_task_fair,
13093 	.dequeue_task		= dequeue_task_fair,
13094 	.yield_task		= yield_task_fair,
13095 	.yield_to_task		= yield_to_task_fair,
13096 
13097 	.check_preempt_curr	= check_preempt_wakeup,
13098 
13099 	.pick_next_task		= __pick_next_task_fair,
13100 	.put_prev_task		= put_prev_task_fair,
13101 	.set_next_task          = set_next_task_fair,
13102 
13103 #ifdef CONFIG_SMP
13104 	.balance		= balance_fair,
13105 	.pick_task		= pick_task_fair,
13106 	.select_task_rq		= select_task_rq_fair,
13107 	.migrate_task_rq	= migrate_task_rq_fair,
13108 
13109 	.rq_online		= rq_online_fair,
13110 	.rq_offline		= rq_offline_fair,
13111 
13112 	.task_dead		= task_dead_fair,
13113 	.set_cpus_allowed	= set_cpus_allowed_common,
13114 #endif
13115 
13116 	.task_tick		= task_tick_fair,
13117 	.task_fork		= task_fork_fair,
13118 
13119 	.prio_changed		= prio_changed_fair,
13120 	.switched_from		= switched_from_fair,
13121 	.switched_to		= switched_to_fair,
13122 
13123 	.get_rr_interval	= get_rr_interval_fair,
13124 
13125 	.update_curr		= update_curr_fair,
13126 
13127 #ifdef CONFIG_FAIR_GROUP_SCHED
13128 	.task_change_group	= task_change_group_fair,
13129 #endif
13130 
13131 #ifdef CONFIG_SCHED_CORE
13132 	.task_is_throttled	= task_is_throttled_fair,
13133 #endif
13134 
13135 #ifdef CONFIG_UCLAMP_TASK
13136 	.uclamp_enabled		= 1,
13137 #endif
13138 };
13139 
13140 #ifdef CONFIG_SCHED_DEBUG
13141 void print_cfs_stats(struct seq_file *m, int cpu)
13142 {
13143 	struct cfs_rq *cfs_rq, *pos;
13144 
13145 	rcu_read_lock();
13146 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13147 		print_cfs_rq(m, cpu, cfs_rq);
13148 	rcu_read_unlock();
13149 }
13150 
13151 #ifdef CONFIG_NUMA_BALANCING
13152 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13153 {
13154 	int node;
13155 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13156 	struct numa_group *ng;
13157 
13158 	rcu_read_lock();
13159 	ng = rcu_dereference(p->numa_group);
13160 	for_each_online_node(node) {
13161 		if (p->numa_faults) {
13162 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13163 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13164 		}
13165 		if (ng) {
13166 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13167 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13168 		}
13169 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13170 	}
13171 	rcu_read_unlock();
13172 }
13173 #endif /* CONFIG_NUMA_BALANCING */
13174 #endif /* CONFIG_SCHED_DEBUG */
13175 
13176 __init void init_sched_fair_class(void)
13177 {
13178 #ifdef CONFIG_SMP
13179 	int i;
13180 
13181 	for_each_possible_cpu(i) {
13182 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13183 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13184 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13185 					GFP_KERNEL, cpu_to_node(i));
13186 
13187 #ifdef CONFIG_CFS_BANDWIDTH
13188 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13189 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13190 #endif
13191 	}
13192 
13193 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
13194 
13195 #ifdef CONFIG_NO_HZ_COMMON
13196 	nohz.next_balance = jiffies;
13197 	nohz.next_blocked = jiffies;
13198 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13199 #endif
13200 #endif /* SMP */
13201 
13202 }
13203