1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 #include <linux/rbtree_augmented.h> 51 52 #include <asm/switch_to.h> 53 54 #include <linux/sched/cond_resched.h> 55 56 #include "sched.h" 57 #include "stats.h" 58 #include "autogroup.h" 59 60 /* 61 * The initial- and re-scaling of tunables is configurable 62 * 63 * Options are: 64 * 65 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 66 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 67 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 68 * 69 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 70 */ 71 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 72 73 /* 74 * Minimal preemption granularity for CPU-bound tasks: 75 * 76 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 77 */ 78 unsigned int sysctl_sched_base_slice = 750000ULL; 79 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; 80 81 /* 82 * After fork, child runs first. If set to 0 (default) then 83 * parent will (try to) run first. 84 */ 85 unsigned int sysctl_sched_child_runs_first __read_mostly; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 int sched_thermal_decay_shift; 90 static int __init setup_sched_thermal_decay_shift(char *str) 91 { 92 int _shift = 0; 93 94 if (kstrtoint(str, 0, &_shift)) 95 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 96 97 sched_thermal_decay_shift = clamp(_shift, 0, 10); 98 return 1; 99 } 100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 101 102 #ifdef CONFIG_SMP 103 /* 104 * For asym packing, by default the lower numbered CPU has higher priority. 105 */ 106 int __weak arch_asym_cpu_priority(int cpu) 107 { 108 return -cpu; 109 } 110 111 /* 112 * The margin used when comparing utilization with CPU capacity. 113 * 114 * (default: ~20%) 115 */ 116 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 117 118 /* 119 * The margin used when comparing CPU capacities. 120 * is 'cap1' noticeably greater than 'cap2' 121 * 122 * (default: ~5%) 123 */ 124 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 125 #endif 126 127 #ifdef CONFIG_CFS_BANDWIDTH 128 /* 129 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 130 * each time a cfs_rq requests quota. 131 * 132 * Note: in the case that the slice exceeds the runtime remaining (either due 133 * to consumption or the quota being specified to be smaller than the slice) 134 * we will always only issue the remaining available time. 135 * 136 * (default: 5 msec, units: microseconds) 137 */ 138 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 139 #endif 140 141 #ifdef CONFIG_NUMA_BALANCING 142 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 143 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 144 #endif 145 146 #ifdef CONFIG_SYSCTL 147 static struct ctl_table sched_fair_sysctls[] = { 148 { 149 .procname = "sched_child_runs_first", 150 .data = &sysctl_sched_child_runs_first, 151 .maxlen = sizeof(unsigned int), 152 .mode = 0644, 153 .proc_handler = proc_dointvec, 154 }, 155 #ifdef CONFIG_CFS_BANDWIDTH 156 { 157 .procname = "sched_cfs_bandwidth_slice_us", 158 .data = &sysctl_sched_cfs_bandwidth_slice, 159 .maxlen = sizeof(unsigned int), 160 .mode = 0644, 161 .proc_handler = proc_dointvec_minmax, 162 .extra1 = SYSCTL_ONE, 163 }, 164 #endif 165 #ifdef CONFIG_NUMA_BALANCING 166 { 167 .procname = "numa_balancing_promote_rate_limit_MBps", 168 .data = &sysctl_numa_balancing_promote_rate_limit, 169 .maxlen = sizeof(unsigned int), 170 .mode = 0644, 171 .proc_handler = proc_dointvec_minmax, 172 .extra1 = SYSCTL_ZERO, 173 }, 174 #endif /* CONFIG_NUMA_BALANCING */ 175 {} 176 }; 177 178 static int __init sched_fair_sysctl_init(void) 179 { 180 register_sysctl_init("kernel", sched_fair_sysctls); 181 return 0; 182 } 183 late_initcall(sched_fair_sysctl_init); 184 #endif 185 186 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 187 { 188 lw->weight += inc; 189 lw->inv_weight = 0; 190 } 191 192 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 193 { 194 lw->weight -= dec; 195 lw->inv_weight = 0; 196 } 197 198 static inline void update_load_set(struct load_weight *lw, unsigned long w) 199 { 200 lw->weight = w; 201 lw->inv_weight = 0; 202 } 203 204 /* 205 * Increase the granularity value when there are more CPUs, 206 * because with more CPUs the 'effective latency' as visible 207 * to users decreases. But the relationship is not linear, 208 * so pick a second-best guess by going with the log2 of the 209 * number of CPUs. 210 * 211 * This idea comes from the SD scheduler of Con Kolivas: 212 */ 213 static unsigned int get_update_sysctl_factor(void) 214 { 215 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 216 unsigned int factor; 217 218 switch (sysctl_sched_tunable_scaling) { 219 case SCHED_TUNABLESCALING_NONE: 220 factor = 1; 221 break; 222 case SCHED_TUNABLESCALING_LINEAR: 223 factor = cpus; 224 break; 225 case SCHED_TUNABLESCALING_LOG: 226 default: 227 factor = 1 + ilog2(cpus); 228 break; 229 } 230 231 return factor; 232 } 233 234 static void update_sysctl(void) 235 { 236 unsigned int factor = get_update_sysctl_factor(); 237 238 #define SET_SYSCTL(name) \ 239 (sysctl_##name = (factor) * normalized_sysctl_##name) 240 SET_SYSCTL(sched_base_slice); 241 #undef SET_SYSCTL 242 } 243 244 void __init sched_init_granularity(void) 245 { 246 update_sysctl(); 247 } 248 249 #define WMULT_CONST (~0U) 250 #define WMULT_SHIFT 32 251 252 static void __update_inv_weight(struct load_weight *lw) 253 { 254 unsigned long w; 255 256 if (likely(lw->inv_weight)) 257 return; 258 259 w = scale_load_down(lw->weight); 260 261 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 262 lw->inv_weight = 1; 263 else if (unlikely(!w)) 264 lw->inv_weight = WMULT_CONST; 265 else 266 lw->inv_weight = WMULT_CONST / w; 267 } 268 269 /* 270 * delta_exec * weight / lw.weight 271 * OR 272 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 273 * 274 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 275 * we're guaranteed shift stays positive because inv_weight is guaranteed to 276 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 277 * 278 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 279 * weight/lw.weight <= 1, and therefore our shift will also be positive. 280 */ 281 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 282 { 283 u64 fact = scale_load_down(weight); 284 u32 fact_hi = (u32)(fact >> 32); 285 int shift = WMULT_SHIFT; 286 int fs; 287 288 __update_inv_weight(lw); 289 290 if (unlikely(fact_hi)) { 291 fs = fls(fact_hi); 292 shift -= fs; 293 fact >>= fs; 294 } 295 296 fact = mul_u32_u32(fact, lw->inv_weight); 297 298 fact_hi = (u32)(fact >> 32); 299 if (fact_hi) { 300 fs = fls(fact_hi); 301 shift -= fs; 302 fact >>= fs; 303 } 304 305 return mul_u64_u32_shr(delta_exec, fact, shift); 306 } 307 308 /* 309 * delta /= w 310 */ 311 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 312 { 313 if (unlikely(se->load.weight != NICE_0_LOAD)) 314 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 315 316 return delta; 317 } 318 319 const struct sched_class fair_sched_class; 320 321 /************************************************************** 322 * CFS operations on generic schedulable entities: 323 */ 324 325 #ifdef CONFIG_FAIR_GROUP_SCHED 326 327 /* Walk up scheduling entities hierarchy */ 328 #define for_each_sched_entity(se) \ 329 for (; se; se = se->parent) 330 331 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 332 { 333 struct rq *rq = rq_of(cfs_rq); 334 int cpu = cpu_of(rq); 335 336 if (cfs_rq->on_list) 337 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 338 339 cfs_rq->on_list = 1; 340 341 /* 342 * Ensure we either appear before our parent (if already 343 * enqueued) or force our parent to appear after us when it is 344 * enqueued. The fact that we always enqueue bottom-up 345 * reduces this to two cases and a special case for the root 346 * cfs_rq. Furthermore, it also means that we will always reset 347 * tmp_alone_branch either when the branch is connected 348 * to a tree or when we reach the top of the tree 349 */ 350 if (cfs_rq->tg->parent && 351 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 352 /* 353 * If parent is already on the list, we add the child 354 * just before. Thanks to circular linked property of 355 * the list, this means to put the child at the tail 356 * of the list that starts by parent. 357 */ 358 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 359 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 360 /* 361 * The branch is now connected to its tree so we can 362 * reset tmp_alone_branch to the beginning of the 363 * list. 364 */ 365 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 366 return true; 367 } 368 369 if (!cfs_rq->tg->parent) { 370 /* 371 * cfs rq without parent should be put 372 * at the tail of the list. 373 */ 374 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 375 &rq->leaf_cfs_rq_list); 376 /* 377 * We have reach the top of a tree so we can reset 378 * tmp_alone_branch to the beginning of the list. 379 */ 380 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 381 return true; 382 } 383 384 /* 385 * The parent has not already been added so we want to 386 * make sure that it will be put after us. 387 * tmp_alone_branch points to the begin of the branch 388 * where we will add parent. 389 */ 390 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 391 /* 392 * update tmp_alone_branch to points to the new begin 393 * of the branch 394 */ 395 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 396 return false; 397 } 398 399 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 400 { 401 if (cfs_rq->on_list) { 402 struct rq *rq = rq_of(cfs_rq); 403 404 /* 405 * With cfs_rq being unthrottled/throttled during an enqueue, 406 * it can happen the tmp_alone_branch points the a leaf that 407 * we finally want to del. In this case, tmp_alone_branch moves 408 * to the prev element but it will point to rq->leaf_cfs_rq_list 409 * at the end of the enqueue. 410 */ 411 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 412 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 413 414 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 415 cfs_rq->on_list = 0; 416 } 417 } 418 419 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 420 { 421 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 422 } 423 424 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 425 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 426 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 427 leaf_cfs_rq_list) 428 429 /* Do the two (enqueued) entities belong to the same group ? */ 430 static inline struct cfs_rq * 431 is_same_group(struct sched_entity *se, struct sched_entity *pse) 432 { 433 if (se->cfs_rq == pse->cfs_rq) 434 return se->cfs_rq; 435 436 return NULL; 437 } 438 439 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 440 { 441 return se->parent; 442 } 443 444 static void 445 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 446 { 447 int se_depth, pse_depth; 448 449 /* 450 * preemption test can be made between sibling entities who are in the 451 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 452 * both tasks until we find their ancestors who are siblings of common 453 * parent. 454 */ 455 456 /* First walk up until both entities are at same depth */ 457 se_depth = (*se)->depth; 458 pse_depth = (*pse)->depth; 459 460 while (se_depth > pse_depth) { 461 se_depth--; 462 *se = parent_entity(*se); 463 } 464 465 while (pse_depth > se_depth) { 466 pse_depth--; 467 *pse = parent_entity(*pse); 468 } 469 470 while (!is_same_group(*se, *pse)) { 471 *se = parent_entity(*se); 472 *pse = parent_entity(*pse); 473 } 474 } 475 476 static int tg_is_idle(struct task_group *tg) 477 { 478 return tg->idle > 0; 479 } 480 481 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 482 { 483 return cfs_rq->idle > 0; 484 } 485 486 static int se_is_idle(struct sched_entity *se) 487 { 488 if (entity_is_task(se)) 489 return task_has_idle_policy(task_of(se)); 490 return cfs_rq_is_idle(group_cfs_rq(se)); 491 } 492 493 #else /* !CONFIG_FAIR_GROUP_SCHED */ 494 495 #define for_each_sched_entity(se) \ 496 for (; se; se = NULL) 497 498 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 499 { 500 return true; 501 } 502 503 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 504 { 505 } 506 507 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 508 { 509 } 510 511 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 512 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 513 514 static inline struct sched_entity *parent_entity(struct sched_entity *se) 515 { 516 return NULL; 517 } 518 519 static inline void 520 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 521 { 522 } 523 524 static inline int tg_is_idle(struct task_group *tg) 525 { 526 return 0; 527 } 528 529 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 530 { 531 return 0; 532 } 533 534 static int se_is_idle(struct sched_entity *se) 535 { 536 return task_has_idle_policy(task_of(se)); 537 } 538 539 #endif /* CONFIG_FAIR_GROUP_SCHED */ 540 541 static __always_inline 542 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 543 544 /************************************************************** 545 * Scheduling class tree data structure manipulation methods: 546 */ 547 548 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 549 { 550 s64 delta = (s64)(vruntime - max_vruntime); 551 if (delta > 0) 552 max_vruntime = vruntime; 553 554 return max_vruntime; 555 } 556 557 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 558 { 559 s64 delta = (s64)(vruntime - min_vruntime); 560 if (delta < 0) 561 min_vruntime = vruntime; 562 563 return min_vruntime; 564 } 565 566 static inline bool entity_before(const struct sched_entity *a, 567 const struct sched_entity *b) 568 { 569 return (s64)(a->vruntime - b->vruntime) < 0; 570 } 571 572 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 573 { 574 return (s64)(se->vruntime - cfs_rq->min_vruntime); 575 } 576 577 #define __node_2_se(node) \ 578 rb_entry((node), struct sched_entity, run_node) 579 580 /* 581 * Compute virtual time from the per-task service numbers: 582 * 583 * Fair schedulers conserve lag: 584 * 585 * \Sum lag_i = 0 586 * 587 * Where lag_i is given by: 588 * 589 * lag_i = S - s_i = w_i * (V - v_i) 590 * 591 * Where S is the ideal service time and V is it's virtual time counterpart. 592 * Therefore: 593 * 594 * \Sum lag_i = 0 595 * \Sum w_i * (V - v_i) = 0 596 * \Sum w_i * V - w_i * v_i = 0 597 * 598 * From which we can solve an expression for V in v_i (which we have in 599 * se->vruntime): 600 * 601 * \Sum v_i * w_i \Sum v_i * w_i 602 * V = -------------- = -------------- 603 * \Sum w_i W 604 * 605 * Specifically, this is the weighted average of all entity virtual runtimes. 606 * 607 * [[ NOTE: this is only equal to the ideal scheduler under the condition 608 * that join/leave operations happen at lag_i = 0, otherwise the 609 * virtual time has non-continguous motion equivalent to: 610 * 611 * V +-= lag_i / W 612 * 613 * Also see the comment in place_entity() that deals with this. ]] 614 * 615 * However, since v_i is u64, and the multiplcation could easily overflow 616 * transform it into a relative form that uses smaller quantities: 617 * 618 * Substitute: v_i == (v_i - v0) + v0 619 * 620 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 621 * V = ---------------------------- = --------------------- + v0 622 * W W 623 * 624 * Which we track using: 625 * 626 * v0 := cfs_rq->min_vruntime 627 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 628 * \Sum w_i := cfs_rq->avg_load 629 * 630 * Since min_vruntime is a monotonic increasing variable that closely tracks 631 * the per-task service, these deltas: (v_i - v), will be in the order of the 632 * maximal (virtual) lag induced in the system due to quantisation. 633 * 634 * Also, we use scale_load_down() to reduce the size. 635 * 636 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 637 */ 638 static void 639 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 640 { 641 unsigned long weight = scale_load_down(se->load.weight); 642 s64 key = entity_key(cfs_rq, se); 643 644 cfs_rq->avg_vruntime += key * weight; 645 cfs_rq->avg_load += weight; 646 } 647 648 static void 649 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 650 { 651 unsigned long weight = scale_load_down(se->load.weight); 652 s64 key = entity_key(cfs_rq, se); 653 654 cfs_rq->avg_vruntime -= key * weight; 655 cfs_rq->avg_load -= weight; 656 } 657 658 static inline 659 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 660 { 661 /* 662 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 663 */ 664 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 665 } 666 667 /* 668 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 669 * For this to be so, the result of this function must have a left bias. 670 */ 671 u64 avg_vruntime(struct cfs_rq *cfs_rq) 672 { 673 struct sched_entity *curr = cfs_rq->curr; 674 s64 avg = cfs_rq->avg_vruntime; 675 long load = cfs_rq->avg_load; 676 677 if (curr && curr->on_rq) { 678 unsigned long weight = scale_load_down(curr->load.weight); 679 680 avg += entity_key(cfs_rq, curr) * weight; 681 load += weight; 682 } 683 684 if (load) { 685 /* sign flips effective floor / ceil */ 686 if (avg < 0) 687 avg -= (load - 1); 688 avg = div_s64(avg, load); 689 } 690 691 return cfs_rq->min_vruntime + avg; 692 } 693 694 /* 695 * lag_i = S - s_i = w_i * (V - v_i) 696 * 697 * However, since V is approximated by the weighted average of all entities it 698 * is possible -- by addition/removal/reweight to the tree -- to move V around 699 * and end up with a larger lag than we started with. 700 * 701 * Limit this to either double the slice length with a minimum of TICK_NSEC 702 * since that is the timing granularity. 703 * 704 * EEVDF gives the following limit for a steady state system: 705 * 706 * -r_max < lag < max(r_max, q) 707 * 708 * XXX could add max_slice to the augmented data to track this. 709 */ 710 static s64 entity_lag(u64 avruntime, struct sched_entity *se) 711 { 712 s64 vlag, limit; 713 714 vlag = avruntime - se->vruntime; 715 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 716 717 return clamp(vlag, -limit, limit); 718 } 719 720 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 721 { 722 SCHED_WARN_ON(!se->on_rq); 723 724 se->vlag = entity_lag(avg_vruntime(cfs_rq), se); 725 } 726 727 /* 728 * Entity is eligible once it received less service than it ought to have, 729 * eg. lag >= 0. 730 * 731 * lag_i = S - s_i = w_i*(V - v_i) 732 * 733 * lag_i >= 0 -> V >= v_i 734 * 735 * \Sum (v_i - v)*w_i 736 * V = ------------------ + v 737 * \Sum w_i 738 * 739 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 740 * 741 * Note: using 'avg_vruntime() > se->vruntime' is inacurate due 742 * to the loss in precision caused by the division. 743 */ 744 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 745 { 746 struct sched_entity *curr = cfs_rq->curr; 747 s64 avg = cfs_rq->avg_vruntime; 748 long load = cfs_rq->avg_load; 749 750 if (curr && curr->on_rq) { 751 unsigned long weight = scale_load_down(curr->load.weight); 752 753 avg += entity_key(cfs_rq, curr) * weight; 754 load += weight; 755 } 756 757 return avg >= entity_key(cfs_rq, se) * load; 758 } 759 760 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 761 { 762 u64 min_vruntime = cfs_rq->min_vruntime; 763 /* 764 * open coded max_vruntime() to allow updating avg_vruntime 765 */ 766 s64 delta = (s64)(vruntime - min_vruntime); 767 if (delta > 0) { 768 avg_vruntime_update(cfs_rq, delta); 769 min_vruntime = vruntime; 770 } 771 return min_vruntime; 772 } 773 774 static void update_min_vruntime(struct cfs_rq *cfs_rq) 775 { 776 struct sched_entity *se = __pick_first_entity(cfs_rq); 777 struct sched_entity *curr = cfs_rq->curr; 778 779 u64 vruntime = cfs_rq->min_vruntime; 780 781 if (curr) { 782 if (curr->on_rq) 783 vruntime = curr->vruntime; 784 else 785 curr = NULL; 786 } 787 788 if (se) { 789 if (!curr) 790 vruntime = se->vruntime; 791 else 792 vruntime = min_vruntime(vruntime, se->vruntime); 793 } 794 795 /* ensure we never gain time by being placed backwards. */ 796 u64_u32_store(cfs_rq->min_vruntime, 797 __update_min_vruntime(cfs_rq, vruntime)); 798 } 799 800 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 801 { 802 return entity_before(__node_2_se(a), __node_2_se(b)); 803 } 804 805 #define deadline_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 806 807 static inline void __update_min_deadline(struct sched_entity *se, struct rb_node *node) 808 { 809 if (node) { 810 struct sched_entity *rse = __node_2_se(node); 811 if (deadline_gt(min_deadline, se, rse)) 812 se->min_deadline = rse->min_deadline; 813 } 814 } 815 816 /* 817 * se->min_deadline = min(se->deadline, left->min_deadline, right->min_deadline) 818 */ 819 static inline bool min_deadline_update(struct sched_entity *se, bool exit) 820 { 821 u64 old_min_deadline = se->min_deadline; 822 struct rb_node *node = &se->run_node; 823 824 se->min_deadline = se->deadline; 825 __update_min_deadline(se, node->rb_right); 826 __update_min_deadline(se, node->rb_left); 827 828 return se->min_deadline == old_min_deadline; 829 } 830 831 RB_DECLARE_CALLBACKS(static, min_deadline_cb, struct sched_entity, 832 run_node, min_deadline, min_deadline_update); 833 834 /* 835 * Enqueue an entity into the rb-tree: 836 */ 837 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 838 { 839 avg_vruntime_add(cfs_rq, se); 840 se->min_deadline = se->deadline; 841 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 842 __entity_less, &min_deadline_cb); 843 } 844 845 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 846 { 847 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 848 &min_deadline_cb); 849 avg_vruntime_sub(cfs_rq, se); 850 } 851 852 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 853 { 854 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 855 856 if (!left) 857 return NULL; 858 859 return __node_2_se(left); 860 } 861 862 /* 863 * Earliest Eligible Virtual Deadline First 864 * 865 * In order to provide latency guarantees for different request sizes 866 * EEVDF selects the best runnable task from two criteria: 867 * 868 * 1) the task must be eligible (must be owed service) 869 * 870 * 2) from those tasks that meet 1), we select the one 871 * with the earliest virtual deadline. 872 * 873 * We can do this in O(log n) time due to an augmented RB-tree. The 874 * tree keeps the entries sorted on service, but also functions as a 875 * heap based on the deadline by keeping: 876 * 877 * se->min_deadline = min(se->deadline, se->{left,right}->min_deadline) 878 * 879 * Which allows an EDF like search on (sub)trees. 880 */ 881 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq) 882 { 883 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 884 struct sched_entity *curr = cfs_rq->curr; 885 struct sched_entity *best = NULL; 886 struct sched_entity *best_left = NULL; 887 888 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 889 curr = NULL; 890 best = curr; 891 892 /* 893 * Once selected, run a task until it either becomes non-eligible or 894 * until it gets a new slice. See the HACK in set_next_entity(). 895 */ 896 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) 897 return curr; 898 899 while (node) { 900 struct sched_entity *se = __node_2_se(node); 901 902 /* 903 * If this entity is not eligible, try the left subtree. 904 */ 905 if (!entity_eligible(cfs_rq, se)) { 906 node = node->rb_left; 907 continue; 908 } 909 910 /* 911 * Now we heap search eligible trees for the best (min_)deadline 912 */ 913 if (!best || deadline_gt(deadline, best, se)) 914 best = se; 915 916 /* 917 * Every se in a left branch is eligible, keep track of the 918 * branch with the best min_deadline 919 */ 920 if (node->rb_left) { 921 struct sched_entity *left = __node_2_se(node->rb_left); 922 923 if (!best_left || deadline_gt(min_deadline, best_left, left)) 924 best_left = left; 925 926 /* 927 * min_deadline is in the left branch. rb_left and all 928 * descendants are eligible, so immediately switch to the second 929 * loop. 930 */ 931 if (left->min_deadline == se->min_deadline) 932 break; 933 } 934 935 /* min_deadline is at this node, no need to look right */ 936 if (se->deadline == se->min_deadline) 937 break; 938 939 /* else min_deadline is in the right branch. */ 940 node = node->rb_right; 941 } 942 943 /* 944 * We ran into an eligible node which is itself the best. 945 * (Or nr_running == 0 and both are NULL) 946 */ 947 if (!best_left || (s64)(best_left->min_deadline - best->deadline) > 0) 948 return best; 949 950 /* 951 * Now best_left and all of its children are eligible, and we are just 952 * looking for deadline == min_deadline 953 */ 954 node = &best_left->run_node; 955 while (node) { 956 struct sched_entity *se = __node_2_se(node); 957 958 /* min_deadline is the current node */ 959 if (se->deadline == se->min_deadline) 960 return se; 961 962 /* min_deadline is in the left branch */ 963 if (node->rb_left && 964 __node_2_se(node->rb_left)->min_deadline == se->min_deadline) { 965 node = node->rb_left; 966 continue; 967 } 968 969 /* else min_deadline is in the right branch */ 970 node = node->rb_right; 971 } 972 return NULL; 973 } 974 975 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 976 { 977 struct sched_entity *se = __pick_eevdf(cfs_rq); 978 979 if (!se) { 980 struct sched_entity *left = __pick_first_entity(cfs_rq); 981 if (left) { 982 pr_err("EEVDF scheduling fail, picking leftmost\n"); 983 return left; 984 } 985 } 986 987 return se; 988 } 989 990 #ifdef CONFIG_SCHED_DEBUG 991 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 992 { 993 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 994 995 if (!last) 996 return NULL; 997 998 return __node_2_se(last); 999 } 1000 1001 /************************************************************** 1002 * Scheduling class statistics methods: 1003 */ 1004 #ifdef CONFIG_SMP 1005 int sched_update_scaling(void) 1006 { 1007 unsigned int factor = get_update_sysctl_factor(); 1008 1009 #define WRT_SYSCTL(name) \ 1010 (normalized_sysctl_##name = sysctl_##name / (factor)) 1011 WRT_SYSCTL(sched_base_slice); 1012 #undef WRT_SYSCTL 1013 1014 return 0; 1015 } 1016 #endif 1017 #endif 1018 1019 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 1020 1021 /* 1022 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1023 * this is probably good enough. 1024 */ 1025 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1026 { 1027 if ((s64)(se->vruntime - se->deadline) < 0) 1028 return; 1029 1030 /* 1031 * For EEVDF the virtual time slope is determined by w_i (iow. 1032 * nice) while the request time r_i is determined by 1033 * sysctl_sched_base_slice. 1034 */ 1035 se->slice = sysctl_sched_base_slice; 1036 1037 /* 1038 * EEVDF: vd_i = ve_i + r_i / w_i 1039 */ 1040 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1041 1042 /* 1043 * The task has consumed its request, reschedule. 1044 */ 1045 if (cfs_rq->nr_running > 1) { 1046 resched_curr(rq_of(cfs_rq)); 1047 clear_buddies(cfs_rq, se); 1048 } 1049 } 1050 1051 #include "pelt.h" 1052 #ifdef CONFIG_SMP 1053 1054 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1055 static unsigned long task_h_load(struct task_struct *p); 1056 static unsigned long capacity_of(int cpu); 1057 1058 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1059 void init_entity_runnable_average(struct sched_entity *se) 1060 { 1061 struct sched_avg *sa = &se->avg; 1062 1063 memset(sa, 0, sizeof(*sa)); 1064 1065 /* 1066 * Tasks are initialized with full load to be seen as heavy tasks until 1067 * they get a chance to stabilize to their real load level. 1068 * Group entities are initialized with zero load to reflect the fact that 1069 * nothing has been attached to the task group yet. 1070 */ 1071 if (entity_is_task(se)) 1072 sa->load_avg = scale_load_down(se->load.weight); 1073 1074 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 1075 } 1076 1077 /* 1078 * With new tasks being created, their initial util_avgs are extrapolated 1079 * based on the cfs_rq's current util_avg: 1080 * 1081 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 1082 * 1083 * However, in many cases, the above util_avg does not give a desired 1084 * value. Moreover, the sum of the util_avgs may be divergent, such 1085 * as when the series is a harmonic series. 1086 * 1087 * To solve this problem, we also cap the util_avg of successive tasks to 1088 * only 1/2 of the left utilization budget: 1089 * 1090 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1091 * 1092 * where n denotes the nth task and cpu_scale the CPU capacity. 1093 * 1094 * For example, for a CPU with 1024 of capacity, a simplest series from 1095 * the beginning would be like: 1096 * 1097 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1098 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1099 * 1100 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1101 * if util_avg > util_avg_cap. 1102 */ 1103 void post_init_entity_util_avg(struct task_struct *p) 1104 { 1105 struct sched_entity *se = &p->se; 1106 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1107 struct sched_avg *sa = &se->avg; 1108 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1109 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1110 1111 if (p->sched_class != &fair_sched_class) { 1112 /* 1113 * For !fair tasks do: 1114 * 1115 update_cfs_rq_load_avg(now, cfs_rq); 1116 attach_entity_load_avg(cfs_rq, se); 1117 switched_from_fair(rq, p); 1118 * 1119 * such that the next switched_to_fair() has the 1120 * expected state. 1121 */ 1122 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1123 return; 1124 } 1125 1126 if (cap > 0) { 1127 if (cfs_rq->avg.util_avg != 0) { 1128 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 1129 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1130 1131 if (sa->util_avg > cap) 1132 sa->util_avg = cap; 1133 } else { 1134 sa->util_avg = cap; 1135 } 1136 } 1137 1138 sa->runnable_avg = sa->util_avg; 1139 } 1140 1141 #else /* !CONFIG_SMP */ 1142 void init_entity_runnable_average(struct sched_entity *se) 1143 { 1144 } 1145 void post_init_entity_util_avg(struct task_struct *p) 1146 { 1147 } 1148 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1149 { 1150 } 1151 #endif /* CONFIG_SMP */ 1152 1153 /* 1154 * Update the current task's runtime statistics. 1155 */ 1156 static void update_curr(struct cfs_rq *cfs_rq) 1157 { 1158 struct sched_entity *curr = cfs_rq->curr; 1159 u64 now = rq_clock_task(rq_of(cfs_rq)); 1160 u64 delta_exec; 1161 1162 if (unlikely(!curr)) 1163 return; 1164 1165 delta_exec = now - curr->exec_start; 1166 if (unlikely((s64)delta_exec <= 0)) 1167 return; 1168 1169 curr->exec_start = now; 1170 1171 if (schedstat_enabled()) { 1172 struct sched_statistics *stats; 1173 1174 stats = __schedstats_from_se(curr); 1175 __schedstat_set(stats->exec_max, 1176 max(delta_exec, stats->exec_max)); 1177 } 1178 1179 curr->sum_exec_runtime += delta_exec; 1180 schedstat_add(cfs_rq->exec_clock, delta_exec); 1181 1182 curr->vruntime += calc_delta_fair(delta_exec, curr); 1183 update_deadline(cfs_rq, curr); 1184 update_min_vruntime(cfs_rq); 1185 1186 if (entity_is_task(curr)) { 1187 struct task_struct *curtask = task_of(curr); 1188 1189 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 1190 cgroup_account_cputime(curtask, delta_exec); 1191 account_group_exec_runtime(curtask, delta_exec); 1192 } 1193 1194 account_cfs_rq_runtime(cfs_rq, delta_exec); 1195 } 1196 1197 static void update_curr_fair(struct rq *rq) 1198 { 1199 update_curr(cfs_rq_of(&rq->curr->se)); 1200 } 1201 1202 static inline void 1203 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1204 { 1205 struct sched_statistics *stats; 1206 struct task_struct *p = NULL; 1207 1208 if (!schedstat_enabled()) 1209 return; 1210 1211 stats = __schedstats_from_se(se); 1212 1213 if (entity_is_task(se)) 1214 p = task_of(se); 1215 1216 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1217 } 1218 1219 static inline void 1220 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1221 { 1222 struct sched_statistics *stats; 1223 struct task_struct *p = NULL; 1224 1225 if (!schedstat_enabled()) 1226 return; 1227 1228 stats = __schedstats_from_se(se); 1229 1230 /* 1231 * When the sched_schedstat changes from 0 to 1, some sched se 1232 * maybe already in the runqueue, the se->statistics.wait_start 1233 * will be 0.So it will let the delta wrong. We need to avoid this 1234 * scenario. 1235 */ 1236 if (unlikely(!schedstat_val(stats->wait_start))) 1237 return; 1238 1239 if (entity_is_task(se)) 1240 p = task_of(se); 1241 1242 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1243 } 1244 1245 static inline void 1246 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1247 { 1248 struct sched_statistics *stats; 1249 struct task_struct *tsk = NULL; 1250 1251 if (!schedstat_enabled()) 1252 return; 1253 1254 stats = __schedstats_from_se(se); 1255 1256 if (entity_is_task(se)) 1257 tsk = task_of(se); 1258 1259 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1260 } 1261 1262 /* 1263 * Task is being enqueued - update stats: 1264 */ 1265 static inline void 1266 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1267 { 1268 if (!schedstat_enabled()) 1269 return; 1270 1271 /* 1272 * Are we enqueueing a waiting task? (for current tasks 1273 * a dequeue/enqueue event is a NOP) 1274 */ 1275 if (se != cfs_rq->curr) 1276 update_stats_wait_start_fair(cfs_rq, se); 1277 1278 if (flags & ENQUEUE_WAKEUP) 1279 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1280 } 1281 1282 static inline void 1283 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1284 { 1285 1286 if (!schedstat_enabled()) 1287 return; 1288 1289 /* 1290 * Mark the end of the wait period if dequeueing a 1291 * waiting task: 1292 */ 1293 if (se != cfs_rq->curr) 1294 update_stats_wait_end_fair(cfs_rq, se); 1295 1296 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1297 struct task_struct *tsk = task_of(se); 1298 unsigned int state; 1299 1300 /* XXX racy against TTWU */ 1301 state = READ_ONCE(tsk->__state); 1302 if (state & TASK_INTERRUPTIBLE) 1303 __schedstat_set(tsk->stats.sleep_start, 1304 rq_clock(rq_of(cfs_rq))); 1305 if (state & TASK_UNINTERRUPTIBLE) 1306 __schedstat_set(tsk->stats.block_start, 1307 rq_clock(rq_of(cfs_rq))); 1308 } 1309 } 1310 1311 /* 1312 * We are picking a new current task - update its stats: 1313 */ 1314 static inline void 1315 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1316 { 1317 /* 1318 * We are starting a new run period: 1319 */ 1320 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1321 } 1322 1323 /************************************************** 1324 * Scheduling class queueing methods: 1325 */ 1326 1327 static inline bool is_core_idle(int cpu) 1328 { 1329 #ifdef CONFIG_SCHED_SMT 1330 int sibling; 1331 1332 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1333 if (cpu == sibling) 1334 continue; 1335 1336 if (!idle_cpu(sibling)) 1337 return false; 1338 } 1339 #endif 1340 1341 return true; 1342 } 1343 1344 #ifdef CONFIG_NUMA 1345 #define NUMA_IMBALANCE_MIN 2 1346 1347 static inline long 1348 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1349 { 1350 /* 1351 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1352 * threshold. Above this threshold, individual tasks may be contending 1353 * for both memory bandwidth and any shared HT resources. This is an 1354 * approximation as the number of running tasks may not be related to 1355 * the number of busy CPUs due to sched_setaffinity. 1356 */ 1357 if (dst_running > imb_numa_nr) 1358 return imbalance; 1359 1360 /* 1361 * Allow a small imbalance based on a simple pair of communicating 1362 * tasks that remain local when the destination is lightly loaded. 1363 */ 1364 if (imbalance <= NUMA_IMBALANCE_MIN) 1365 return 0; 1366 1367 return imbalance; 1368 } 1369 #endif /* CONFIG_NUMA */ 1370 1371 #ifdef CONFIG_NUMA_BALANCING 1372 /* 1373 * Approximate time to scan a full NUMA task in ms. The task scan period is 1374 * calculated based on the tasks virtual memory size and 1375 * numa_balancing_scan_size. 1376 */ 1377 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1378 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1379 1380 /* Portion of address space to scan in MB */ 1381 unsigned int sysctl_numa_balancing_scan_size = 256; 1382 1383 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1384 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1385 1386 /* The page with hint page fault latency < threshold in ms is considered hot */ 1387 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1388 1389 struct numa_group { 1390 refcount_t refcount; 1391 1392 spinlock_t lock; /* nr_tasks, tasks */ 1393 int nr_tasks; 1394 pid_t gid; 1395 int active_nodes; 1396 1397 struct rcu_head rcu; 1398 unsigned long total_faults; 1399 unsigned long max_faults_cpu; 1400 /* 1401 * faults[] array is split into two regions: faults_mem and faults_cpu. 1402 * 1403 * Faults_cpu is used to decide whether memory should move 1404 * towards the CPU. As a consequence, these stats are weighted 1405 * more by CPU use than by memory faults. 1406 */ 1407 unsigned long faults[]; 1408 }; 1409 1410 /* 1411 * For functions that can be called in multiple contexts that permit reading 1412 * ->numa_group (see struct task_struct for locking rules). 1413 */ 1414 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1415 { 1416 return rcu_dereference_check(p->numa_group, p == current || 1417 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1418 } 1419 1420 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1421 { 1422 return rcu_dereference_protected(p->numa_group, p == current); 1423 } 1424 1425 static inline unsigned long group_faults_priv(struct numa_group *ng); 1426 static inline unsigned long group_faults_shared(struct numa_group *ng); 1427 1428 static unsigned int task_nr_scan_windows(struct task_struct *p) 1429 { 1430 unsigned long rss = 0; 1431 unsigned long nr_scan_pages; 1432 1433 /* 1434 * Calculations based on RSS as non-present and empty pages are skipped 1435 * by the PTE scanner and NUMA hinting faults should be trapped based 1436 * on resident pages 1437 */ 1438 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1439 rss = get_mm_rss(p->mm); 1440 if (!rss) 1441 rss = nr_scan_pages; 1442 1443 rss = round_up(rss, nr_scan_pages); 1444 return rss / nr_scan_pages; 1445 } 1446 1447 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1448 #define MAX_SCAN_WINDOW 2560 1449 1450 static unsigned int task_scan_min(struct task_struct *p) 1451 { 1452 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1453 unsigned int scan, floor; 1454 unsigned int windows = 1; 1455 1456 if (scan_size < MAX_SCAN_WINDOW) 1457 windows = MAX_SCAN_WINDOW / scan_size; 1458 floor = 1000 / windows; 1459 1460 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1461 return max_t(unsigned int, floor, scan); 1462 } 1463 1464 static unsigned int task_scan_start(struct task_struct *p) 1465 { 1466 unsigned long smin = task_scan_min(p); 1467 unsigned long period = smin; 1468 struct numa_group *ng; 1469 1470 /* Scale the maximum scan period with the amount of shared memory. */ 1471 rcu_read_lock(); 1472 ng = rcu_dereference(p->numa_group); 1473 if (ng) { 1474 unsigned long shared = group_faults_shared(ng); 1475 unsigned long private = group_faults_priv(ng); 1476 1477 period *= refcount_read(&ng->refcount); 1478 period *= shared + 1; 1479 period /= private + shared + 1; 1480 } 1481 rcu_read_unlock(); 1482 1483 return max(smin, period); 1484 } 1485 1486 static unsigned int task_scan_max(struct task_struct *p) 1487 { 1488 unsigned long smin = task_scan_min(p); 1489 unsigned long smax; 1490 struct numa_group *ng; 1491 1492 /* Watch for min being lower than max due to floor calculations */ 1493 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1494 1495 /* Scale the maximum scan period with the amount of shared memory. */ 1496 ng = deref_curr_numa_group(p); 1497 if (ng) { 1498 unsigned long shared = group_faults_shared(ng); 1499 unsigned long private = group_faults_priv(ng); 1500 unsigned long period = smax; 1501 1502 period *= refcount_read(&ng->refcount); 1503 period *= shared + 1; 1504 period /= private + shared + 1; 1505 1506 smax = max(smax, period); 1507 } 1508 1509 return max(smin, smax); 1510 } 1511 1512 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1513 { 1514 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1515 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1516 } 1517 1518 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1519 { 1520 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1521 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1522 } 1523 1524 /* Shared or private faults. */ 1525 #define NR_NUMA_HINT_FAULT_TYPES 2 1526 1527 /* Memory and CPU locality */ 1528 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1529 1530 /* Averaged statistics, and temporary buffers. */ 1531 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1532 1533 pid_t task_numa_group_id(struct task_struct *p) 1534 { 1535 struct numa_group *ng; 1536 pid_t gid = 0; 1537 1538 rcu_read_lock(); 1539 ng = rcu_dereference(p->numa_group); 1540 if (ng) 1541 gid = ng->gid; 1542 rcu_read_unlock(); 1543 1544 return gid; 1545 } 1546 1547 /* 1548 * The averaged statistics, shared & private, memory & CPU, 1549 * occupy the first half of the array. The second half of the 1550 * array is for current counters, which are averaged into the 1551 * first set by task_numa_placement. 1552 */ 1553 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1554 { 1555 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1556 } 1557 1558 static inline unsigned long task_faults(struct task_struct *p, int nid) 1559 { 1560 if (!p->numa_faults) 1561 return 0; 1562 1563 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1564 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1565 } 1566 1567 static inline unsigned long group_faults(struct task_struct *p, int nid) 1568 { 1569 struct numa_group *ng = deref_task_numa_group(p); 1570 1571 if (!ng) 1572 return 0; 1573 1574 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1575 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1576 } 1577 1578 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1579 { 1580 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1581 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1582 } 1583 1584 static inline unsigned long group_faults_priv(struct numa_group *ng) 1585 { 1586 unsigned long faults = 0; 1587 int node; 1588 1589 for_each_online_node(node) { 1590 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1591 } 1592 1593 return faults; 1594 } 1595 1596 static inline unsigned long group_faults_shared(struct numa_group *ng) 1597 { 1598 unsigned long faults = 0; 1599 int node; 1600 1601 for_each_online_node(node) { 1602 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1603 } 1604 1605 return faults; 1606 } 1607 1608 /* 1609 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1610 * considered part of a numa group's pseudo-interleaving set. Migrations 1611 * between these nodes are slowed down, to allow things to settle down. 1612 */ 1613 #define ACTIVE_NODE_FRACTION 3 1614 1615 static bool numa_is_active_node(int nid, struct numa_group *ng) 1616 { 1617 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1618 } 1619 1620 /* Handle placement on systems where not all nodes are directly connected. */ 1621 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1622 int lim_dist, bool task) 1623 { 1624 unsigned long score = 0; 1625 int node, max_dist; 1626 1627 /* 1628 * All nodes are directly connected, and the same distance 1629 * from each other. No need for fancy placement algorithms. 1630 */ 1631 if (sched_numa_topology_type == NUMA_DIRECT) 1632 return 0; 1633 1634 /* sched_max_numa_distance may be changed in parallel. */ 1635 max_dist = READ_ONCE(sched_max_numa_distance); 1636 /* 1637 * This code is called for each node, introducing N^2 complexity, 1638 * which should be ok given the number of nodes rarely exceeds 8. 1639 */ 1640 for_each_online_node(node) { 1641 unsigned long faults; 1642 int dist = node_distance(nid, node); 1643 1644 /* 1645 * The furthest away nodes in the system are not interesting 1646 * for placement; nid was already counted. 1647 */ 1648 if (dist >= max_dist || node == nid) 1649 continue; 1650 1651 /* 1652 * On systems with a backplane NUMA topology, compare groups 1653 * of nodes, and move tasks towards the group with the most 1654 * memory accesses. When comparing two nodes at distance 1655 * "hoplimit", only nodes closer by than "hoplimit" are part 1656 * of each group. Skip other nodes. 1657 */ 1658 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1659 continue; 1660 1661 /* Add up the faults from nearby nodes. */ 1662 if (task) 1663 faults = task_faults(p, node); 1664 else 1665 faults = group_faults(p, node); 1666 1667 /* 1668 * On systems with a glueless mesh NUMA topology, there are 1669 * no fixed "groups of nodes". Instead, nodes that are not 1670 * directly connected bounce traffic through intermediate 1671 * nodes; a numa_group can occupy any set of nodes. 1672 * The further away a node is, the less the faults count. 1673 * This seems to result in good task placement. 1674 */ 1675 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1676 faults *= (max_dist - dist); 1677 faults /= (max_dist - LOCAL_DISTANCE); 1678 } 1679 1680 score += faults; 1681 } 1682 1683 return score; 1684 } 1685 1686 /* 1687 * These return the fraction of accesses done by a particular task, or 1688 * task group, on a particular numa node. The group weight is given a 1689 * larger multiplier, in order to group tasks together that are almost 1690 * evenly spread out between numa nodes. 1691 */ 1692 static inline unsigned long task_weight(struct task_struct *p, int nid, 1693 int dist) 1694 { 1695 unsigned long faults, total_faults; 1696 1697 if (!p->numa_faults) 1698 return 0; 1699 1700 total_faults = p->total_numa_faults; 1701 1702 if (!total_faults) 1703 return 0; 1704 1705 faults = task_faults(p, nid); 1706 faults += score_nearby_nodes(p, nid, dist, true); 1707 1708 return 1000 * faults / total_faults; 1709 } 1710 1711 static inline unsigned long group_weight(struct task_struct *p, int nid, 1712 int dist) 1713 { 1714 struct numa_group *ng = deref_task_numa_group(p); 1715 unsigned long faults, total_faults; 1716 1717 if (!ng) 1718 return 0; 1719 1720 total_faults = ng->total_faults; 1721 1722 if (!total_faults) 1723 return 0; 1724 1725 faults = group_faults(p, nid); 1726 faults += score_nearby_nodes(p, nid, dist, false); 1727 1728 return 1000 * faults / total_faults; 1729 } 1730 1731 /* 1732 * If memory tiering mode is enabled, cpupid of slow memory page is 1733 * used to record scan time instead of CPU and PID. When tiering mode 1734 * is disabled at run time, the scan time (in cpupid) will be 1735 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1736 * access out of array bound. 1737 */ 1738 static inline bool cpupid_valid(int cpupid) 1739 { 1740 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1741 } 1742 1743 /* 1744 * For memory tiering mode, if there are enough free pages (more than 1745 * enough watermark defined here) in fast memory node, to take full 1746 * advantage of fast memory capacity, all recently accessed slow 1747 * memory pages will be migrated to fast memory node without 1748 * considering hot threshold. 1749 */ 1750 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1751 { 1752 int z; 1753 unsigned long enough_wmark; 1754 1755 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1756 pgdat->node_present_pages >> 4); 1757 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1758 struct zone *zone = pgdat->node_zones + z; 1759 1760 if (!populated_zone(zone)) 1761 continue; 1762 1763 if (zone_watermark_ok(zone, 0, 1764 wmark_pages(zone, WMARK_PROMO) + enough_wmark, 1765 ZONE_MOVABLE, 0)) 1766 return true; 1767 } 1768 return false; 1769 } 1770 1771 /* 1772 * For memory tiering mode, when page tables are scanned, the scan 1773 * time will be recorded in struct page in addition to make page 1774 * PROT_NONE for slow memory page. So when the page is accessed, in 1775 * hint page fault handler, the hint page fault latency is calculated 1776 * via, 1777 * 1778 * hint page fault latency = hint page fault time - scan time 1779 * 1780 * The smaller the hint page fault latency, the higher the possibility 1781 * for the page to be hot. 1782 */ 1783 static int numa_hint_fault_latency(struct page *page) 1784 { 1785 int last_time, time; 1786 1787 time = jiffies_to_msecs(jiffies); 1788 last_time = xchg_page_access_time(page, time); 1789 1790 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1791 } 1792 1793 /* 1794 * For memory tiering mode, too high promotion/demotion throughput may 1795 * hurt application latency. So we provide a mechanism to rate limit 1796 * the number of pages that are tried to be promoted. 1797 */ 1798 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1799 unsigned long rate_limit, int nr) 1800 { 1801 unsigned long nr_cand; 1802 unsigned int now, start; 1803 1804 now = jiffies_to_msecs(jiffies); 1805 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1806 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1807 start = pgdat->nbp_rl_start; 1808 if (now - start > MSEC_PER_SEC && 1809 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1810 pgdat->nbp_rl_nr_cand = nr_cand; 1811 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1812 return true; 1813 return false; 1814 } 1815 1816 #define NUMA_MIGRATION_ADJUST_STEPS 16 1817 1818 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1819 unsigned long rate_limit, 1820 unsigned int ref_th) 1821 { 1822 unsigned int now, start, th_period, unit_th, th; 1823 unsigned long nr_cand, ref_cand, diff_cand; 1824 1825 now = jiffies_to_msecs(jiffies); 1826 th_period = sysctl_numa_balancing_scan_period_max; 1827 start = pgdat->nbp_th_start; 1828 if (now - start > th_period && 1829 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1830 ref_cand = rate_limit * 1831 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1832 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1833 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1834 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1835 th = pgdat->nbp_threshold ? : ref_th; 1836 if (diff_cand > ref_cand * 11 / 10) 1837 th = max(th - unit_th, unit_th); 1838 else if (diff_cand < ref_cand * 9 / 10) 1839 th = min(th + unit_th, ref_th * 2); 1840 pgdat->nbp_th_nr_cand = nr_cand; 1841 pgdat->nbp_threshold = th; 1842 } 1843 } 1844 1845 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1846 int src_nid, int dst_cpu) 1847 { 1848 struct numa_group *ng = deref_curr_numa_group(p); 1849 int dst_nid = cpu_to_node(dst_cpu); 1850 int last_cpupid, this_cpupid; 1851 1852 /* 1853 * The pages in slow memory node should be migrated according 1854 * to hot/cold instead of private/shared. 1855 */ 1856 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1857 !node_is_toptier(src_nid)) { 1858 struct pglist_data *pgdat; 1859 unsigned long rate_limit; 1860 unsigned int latency, th, def_th; 1861 1862 pgdat = NODE_DATA(dst_nid); 1863 if (pgdat_free_space_enough(pgdat)) { 1864 /* workload changed, reset hot threshold */ 1865 pgdat->nbp_threshold = 0; 1866 return true; 1867 } 1868 1869 def_th = sysctl_numa_balancing_hot_threshold; 1870 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1871 (20 - PAGE_SHIFT); 1872 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1873 1874 th = pgdat->nbp_threshold ? : def_th; 1875 latency = numa_hint_fault_latency(page); 1876 if (latency >= th) 1877 return false; 1878 1879 return !numa_promotion_rate_limit(pgdat, rate_limit, 1880 thp_nr_pages(page)); 1881 } 1882 1883 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1884 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1885 1886 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1887 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1888 return false; 1889 1890 /* 1891 * Allow first faults or private faults to migrate immediately early in 1892 * the lifetime of a task. The magic number 4 is based on waiting for 1893 * two full passes of the "multi-stage node selection" test that is 1894 * executed below. 1895 */ 1896 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1897 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1898 return true; 1899 1900 /* 1901 * Multi-stage node selection is used in conjunction with a periodic 1902 * migration fault to build a temporal task<->page relation. By using 1903 * a two-stage filter we remove short/unlikely relations. 1904 * 1905 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1906 * a task's usage of a particular page (n_p) per total usage of this 1907 * page (n_t) (in a given time-span) to a probability. 1908 * 1909 * Our periodic faults will sample this probability and getting the 1910 * same result twice in a row, given these samples are fully 1911 * independent, is then given by P(n)^2, provided our sample period 1912 * is sufficiently short compared to the usage pattern. 1913 * 1914 * This quadric squishes small probabilities, making it less likely we 1915 * act on an unlikely task<->page relation. 1916 */ 1917 if (!cpupid_pid_unset(last_cpupid) && 1918 cpupid_to_nid(last_cpupid) != dst_nid) 1919 return false; 1920 1921 /* Always allow migrate on private faults */ 1922 if (cpupid_match_pid(p, last_cpupid)) 1923 return true; 1924 1925 /* A shared fault, but p->numa_group has not been set up yet. */ 1926 if (!ng) 1927 return true; 1928 1929 /* 1930 * Destination node is much more heavily used than the source 1931 * node? Allow migration. 1932 */ 1933 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1934 ACTIVE_NODE_FRACTION) 1935 return true; 1936 1937 /* 1938 * Distribute memory according to CPU & memory use on each node, 1939 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1940 * 1941 * faults_cpu(dst) 3 faults_cpu(src) 1942 * --------------- * - > --------------- 1943 * faults_mem(dst) 4 faults_mem(src) 1944 */ 1945 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1946 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1947 } 1948 1949 /* 1950 * 'numa_type' describes the node at the moment of load balancing. 1951 */ 1952 enum numa_type { 1953 /* The node has spare capacity that can be used to run more tasks. */ 1954 node_has_spare = 0, 1955 /* 1956 * The node is fully used and the tasks don't compete for more CPU 1957 * cycles. Nevertheless, some tasks might wait before running. 1958 */ 1959 node_fully_busy, 1960 /* 1961 * The node is overloaded and can't provide expected CPU cycles to all 1962 * tasks. 1963 */ 1964 node_overloaded 1965 }; 1966 1967 /* Cached statistics for all CPUs within a node */ 1968 struct numa_stats { 1969 unsigned long load; 1970 unsigned long runnable; 1971 unsigned long util; 1972 /* Total compute capacity of CPUs on a node */ 1973 unsigned long compute_capacity; 1974 unsigned int nr_running; 1975 unsigned int weight; 1976 enum numa_type node_type; 1977 int idle_cpu; 1978 }; 1979 1980 struct task_numa_env { 1981 struct task_struct *p; 1982 1983 int src_cpu, src_nid; 1984 int dst_cpu, dst_nid; 1985 int imb_numa_nr; 1986 1987 struct numa_stats src_stats, dst_stats; 1988 1989 int imbalance_pct; 1990 int dist; 1991 1992 struct task_struct *best_task; 1993 long best_imp; 1994 int best_cpu; 1995 }; 1996 1997 static unsigned long cpu_load(struct rq *rq); 1998 static unsigned long cpu_runnable(struct rq *rq); 1999 2000 static inline enum 2001 numa_type numa_classify(unsigned int imbalance_pct, 2002 struct numa_stats *ns) 2003 { 2004 if ((ns->nr_running > ns->weight) && 2005 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 2006 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 2007 return node_overloaded; 2008 2009 if ((ns->nr_running < ns->weight) || 2010 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 2011 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 2012 return node_has_spare; 2013 2014 return node_fully_busy; 2015 } 2016 2017 #ifdef CONFIG_SCHED_SMT 2018 /* Forward declarations of select_idle_sibling helpers */ 2019 static inline bool test_idle_cores(int cpu); 2020 static inline int numa_idle_core(int idle_core, int cpu) 2021 { 2022 if (!static_branch_likely(&sched_smt_present) || 2023 idle_core >= 0 || !test_idle_cores(cpu)) 2024 return idle_core; 2025 2026 /* 2027 * Prefer cores instead of packing HT siblings 2028 * and triggering future load balancing. 2029 */ 2030 if (is_core_idle(cpu)) 2031 idle_core = cpu; 2032 2033 return idle_core; 2034 } 2035 #else 2036 static inline int numa_idle_core(int idle_core, int cpu) 2037 { 2038 return idle_core; 2039 } 2040 #endif 2041 2042 /* 2043 * Gather all necessary information to make NUMA balancing placement 2044 * decisions that are compatible with standard load balancer. This 2045 * borrows code and logic from update_sg_lb_stats but sharing a 2046 * common implementation is impractical. 2047 */ 2048 static void update_numa_stats(struct task_numa_env *env, 2049 struct numa_stats *ns, int nid, 2050 bool find_idle) 2051 { 2052 int cpu, idle_core = -1; 2053 2054 memset(ns, 0, sizeof(*ns)); 2055 ns->idle_cpu = -1; 2056 2057 rcu_read_lock(); 2058 for_each_cpu(cpu, cpumask_of_node(nid)) { 2059 struct rq *rq = cpu_rq(cpu); 2060 2061 ns->load += cpu_load(rq); 2062 ns->runnable += cpu_runnable(rq); 2063 ns->util += cpu_util_cfs(cpu); 2064 ns->nr_running += rq->cfs.h_nr_running; 2065 ns->compute_capacity += capacity_of(cpu); 2066 2067 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2068 if (READ_ONCE(rq->numa_migrate_on) || 2069 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2070 continue; 2071 2072 if (ns->idle_cpu == -1) 2073 ns->idle_cpu = cpu; 2074 2075 idle_core = numa_idle_core(idle_core, cpu); 2076 } 2077 } 2078 rcu_read_unlock(); 2079 2080 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2081 2082 ns->node_type = numa_classify(env->imbalance_pct, ns); 2083 2084 if (idle_core >= 0) 2085 ns->idle_cpu = idle_core; 2086 } 2087 2088 static void task_numa_assign(struct task_numa_env *env, 2089 struct task_struct *p, long imp) 2090 { 2091 struct rq *rq = cpu_rq(env->dst_cpu); 2092 2093 /* Check if run-queue part of active NUMA balance. */ 2094 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2095 int cpu; 2096 int start = env->dst_cpu; 2097 2098 /* Find alternative idle CPU. */ 2099 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2100 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2101 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2102 continue; 2103 } 2104 2105 env->dst_cpu = cpu; 2106 rq = cpu_rq(env->dst_cpu); 2107 if (!xchg(&rq->numa_migrate_on, 1)) 2108 goto assign; 2109 } 2110 2111 /* Failed to find an alternative idle CPU */ 2112 return; 2113 } 2114 2115 assign: 2116 /* 2117 * Clear previous best_cpu/rq numa-migrate flag, since task now 2118 * found a better CPU to move/swap. 2119 */ 2120 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2121 rq = cpu_rq(env->best_cpu); 2122 WRITE_ONCE(rq->numa_migrate_on, 0); 2123 } 2124 2125 if (env->best_task) 2126 put_task_struct(env->best_task); 2127 if (p) 2128 get_task_struct(p); 2129 2130 env->best_task = p; 2131 env->best_imp = imp; 2132 env->best_cpu = env->dst_cpu; 2133 } 2134 2135 static bool load_too_imbalanced(long src_load, long dst_load, 2136 struct task_numa_env *env) 2137 { 2138 long imb, old_imb; 2139 long orig_src_load, orig_dst_load; 2140 long src_capacity, dst_capacity; 2141 2142 /* 2143 * The load is corrected for the CPU capacity available on each node. 2144 * 2145 * src_load dst_load 2146 * ------------ vs --------- 2147 * src_capacity dst_capacity 2148 */ 2149 src_capacity = env->src_stats.compute_capacity; 2150 dst_capacity = env->dst_stats.compute_capacity; 2151 2152 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2153 2154 orig_src_load = env->src_stats.load; 2155 orig_dst_load = env->dst_stats.load; 2156 2157 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2158 2159 /* Would this change make things worse? */ 2160 return (imb > old_imb); 2161 } 2162 2163 /* 2164 * Maximum NUMA importance can be 1998 (2*999); 2165 * SMALLIMP @ 30 would be close to 1998/64. 2166 * Used to deter task migration. 2167 */ 2168 #define SMALLIMP 30 2169 2170 /* 2171 * This checks if the overall compute and NUMA accesses of the system would 2172 * be improved if the source tasks was migrated to the target dst_cpu taking 2173 * into account that it might be best if task running on the dst_cpu should 2174 * be exchanged with the source task 2175 */ 2176 static bool task_numa_compare(struct task_numa_env *env, 2177 long taskimp, long groupimp, bool maymove) 2178 { 2179 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2180 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2181 long imp = p_ng ? groupimp : taskimp; 2182 struct task_struct *cur; 2183 long src_load, dst_load; 2184 int dist = env->dist; 2185 long moveimp = imp; 2186 long load; 2187 bool stopsearch = false; 2188 2189 if (READ_ONCE(dst_rq->numa_migrate_on)) 2190 return false; 2191 2192 rcu_read_lock(); 2193 cur = rcu_dereference(dst_rq->curr); 2194 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2195 cur = NULL; 2196 2197 /* 2198 * Because we have preemption enabled we can get migrated around and 2199 * end try selecting ourselves (current == env->p) as a swap candidate. 2200 */ 2201 if (cur == env->p) { 2202 stopsearch = true; 2203 goto unlock; 2204 } 2205 2206 if (!cur) { 2207 if (maymove && moveimp >= env->best_imp) 2208 goto assign; 2209 else 2210 goto unlock; 2211 } 2212 2213 /* Skip this swap candidate if cannot move to the source cpu. */ 2214 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2215 goto unlock; 2216 2217 /* 2218 * Skip this swap candidate if it is not moving to its preferred 2219 * node and the best task is. 2220 */ 2221 if (env->best_task && 2222 env->best_task->numa_preferred_nid == env->src_nid && 2223 cur->numa_preferred_nid != env->src_nid) { 2224 goto unlock; 2225 } 2226 2227 /* 2228 * "imp" is the fault differential for the source task between the 2229 * source and destination node. Calculate the total differential for 2230 * the source task and potential destination task. The more negative 2231 * the value is, the more remote accesses that would be expected to 2232 * be incurred if the tasks were swapped. 2233 * 2234 * If dst and source tasks are in the same NUMA group, or not 2235 * in any group then look only at task weights. 2236 */ 2237 cur_ng = rcu_dereference(cur->numa_group); 2238 if (cur_ng == p_ng) { 2239 /* 2240 * Do not swap within a group or between tasks that have 2241 * no group if there is spare capacity. Swapping does 2242 * not address the load imbalance and helps one task at 2243 * the cost of punishing another. 2244 */ 2245 if (env->dst_stats.node_type == node_has_spare) 2246 goto unlock; 2247 2248 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2249 task_weight(cur, env->dst_nid, dist); 2250 /* 2251 * Add some hysteresis to prevent swapping the 2252 * tasks within a group over tiny differences. 2253 */ 2254 if (cur_ng) 2255 imp -= imp / 16; 2256 } else { 2257 /* 2258 * Compare the group weights. If a task is all by itself 2259 * (not part of a group), use the task weight instead. 2260 */ 2261 if (cur_ng && p_ng) 2262 imp += group_weight(cur, env->src_nid, dist) - 2263 group_weight(cur, env->dst_nid, dist); 2264 else 2265 imp += task_weight(cur, env->src_nid, dist) - 2266 task_weight(cur, env->dst_nid, dist); 2267 } 2268 2269 /* Discourage picking a task already on its preferred node */ 2270 if (cur->numa_preferred_nid == env->dst_nid) 2271 imp -= imp / 16; 2272 2273 /* 2274 * Encourage picking a task that moves to its preferred node. 2275 * This potentially makes imp larger than it's maximum of 2276 * 1998 (see SMALLIMP and task_weight for why) but in this 2277 * case, it does not matter. 2278 */ 2279 if (cur->numa_preferred_nid == env->src_nid) 2280 imp += imp / 8; 2281 2282 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2283 imp = moveimp; 2284 cur = NULL; 2285 goto assign; 2286 } 2287 2288 /* 2289 * Prefer swapping with a task moving to its preferred node over a 2290 * task that is not. 2291 */ 2292 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2293 env->best_task->numa_preferred_nid != env->src_nid) { 2294 goto assign; 2295 } 2296 2297 /* 2298 * If the NUMA importance is less than SMALLIMP, 2299 * task migration might only result in ping pong 2300 * of tasks and also hurt performance due to cache 2301 * misses. 2302 */ 2303 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2304 goto unlock; 2305 2306 /* 2307 * In the overloaded case, try and keep the load balanced. 2308 */ 2309 load = task_h_load(env->p) - task_h_load(cur); 2310 if (!load) 2311 goto assign; 2312 2313 dst_load = env->dst_stats.load + load; 2314 src_load = env->src_stats.load - load; 2315 2316 if (load_too_imbalanced(src_load, dst_load, env)) 2317 goto unlock; 2318 2319 assign: 2320 /* Evaluate an idle CPU for a task numa move. */ 2321 if (!cur) { 2322 int cpu = env->dst_stats.idle_cpu; 2323 2324 /* Nothing cached so current CPU went idle since the search. */ 2325 if (cpu < 0) 2326 cpu = env->dst_cpu; 2327 2328 /* 2329 * If the CPU is no longer truly idle and the previous best CPU 2330 * is, keep using it. 2331 */ 2332 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2333 idle_cpu(env->best_cpu)) { 2334 cpu = env->best_cpu; 2335 } 2336 2337 env->dst_cpu = cpu; 2338 } 2339 2340 task_numa_assign(env, cur, imp); 2341 2342 /* 2343 * If a move to idle is allowed because there is capacity or load 2344 * balance improves then stop the search. While a better swap 2345 * candidate may exist, a search is not free. 2346 */ 2347 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2348 stopsearch = true; 2349 2350 /* 2351 * If a swap candidate must be identified and the current best task 2352 * moves its preferred node then stop the search. 2353 */ 2354 if (!maymove && env->best_task && 2355 env->best_task->numa_preferred_nid == env->src_nid) { 2356 stopsearch = true; 2357 } 2358 unlock: 2359 rcu_read_unlock(); 2360 2361 return stopsearch; 2362 } 2363 2364 static void task_numa_find_cpu(struct task_numa_env *env, 2365 long taskimp, long groupimp) 2366 { 2367 bool maymove = false; 2368 int cpu; 2369 2370 /* 2371 * If dst node has spare capacity, then check if there is an 2372 * imbalance that would be overruled by the load balancer. 2373 */ 2374 if (env->dst_stats.node_type == node_has_spare) { 2375 unsigned int imbalance; 2376 int src_running, dst_running; 2377 2378 /* 2379 * Would movement cause an imbalance? Note that if src has 2380 * more running tasks that the imbalance is ignored as the 2381 * move improves the imbalance from the perspective of the 2382 * CPU load balancer. 2383 * */ 2384 src_running = env->src_stats.nr_running - 1; 2385 dst_running = env->dst_stats.nr_running + 1; 2386 imbalance = max(0, dst_running - src_running); 2387 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2388 env->imb_numa_nr); 2389 2390 /* Use idle CPU if there is no imbalance */ 2391 if (!imbalance) { 2392 maymove = true; 2393 if (env->dst_stats.idle_cpu >= 0) { 2394 env->dst_cpu = env->dst_stats.idle_cpu; 2395 task_numa_assign(env, NULL, 0); 2396 return; 2397 } 2398 } 2399 } else { 2400 long src_load, dst_load, load; 2401 /* 2402 * If the improvement from just moving env->p direction is better 2403 * than swapping tasks around, check if a move is possible. 2404 */ 2405 load = task_h_load(env->p); 2406 dst_load = env->dst_stats.load + load; 2407 src_load = env->src_stats.load - load; 2408 maymove = !load_too_imbalanced(src_load, dst_load, env); 2409 } 2410 2411 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2412 /* Skip this CPU if the source task cannot migrate */ 2413 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2414 continue; 2415 2416 env->dst_cpu = cpu; 2417 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2418 break; 2419 } 2420 } 2421 2422 static int task_numa_migrate(struct task_struct *p) 2423 { 2424 struct task_numa_env env = { 2425 .p = p, 2426 2427 .src_cpu = task_cpu(p), 2428 .src_nid = task_node(p), 2429 2430 .imbalance_pct = 112, 2431 2432 .best_task = NULL, 2433 .best_imp = 0, 2434 .best_cpu = -1, 2435 }; 2436 unsigned long taskweight, groupweight; 2437 struct sched_domain *sd; 2438 long taskimp, groupimp; 2439 struct numa_group *ng; 2440 struct rq *best_rq; 2441 int nid, ret, dist; 2442 2443 /* 2444 * Pick the lowest SD_NUMA domain, as that would have the smallest 2445 * imbalance and would be the first to start moving tasks about. 2446 * 2447 * And we want to avoid any moving of tasks about, as that would create 2448 * random movement of tasks -- counter the numa conditions we're trying 2449 * to satisfy here. 2450 */ 2451 rcu_read_lock(); 2452 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2453 if (sd) { 2454 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2455 env.imb_numa_nr = sd->imb_numa_nr; 2456 } 2457 rcu_read_unlock(); 2458 2459 /* 2460 * Cpusets can break the scheduler domain tree into smaller 2461 * balance domains, some of which do not cross NUMA boundaries. 2462 * Tasks that are "trapped" in such domains cannot be migrated 2463 * elsewhere, so there is no point in (re)trying. 2464 */ 2465 if (unlikely(!sd)) { 2466 sched_setnuma(p, task_node(p)); 2467 return -EINVAL; 2468 } 2469 2470 env.dst_nid = p->numa_preferred_nid; 2471 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2472 taskweight = task_weight(p, env.src_nid, dist); 2473 groupweight = group_weight(p, env.src_nid, dist); 2474 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2475 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2476 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2477 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2478 2479 /* Try to find a spot on the preferred nid. */ 2480 task_numa_find_cpu(&env, taskimp, groupimp); 2481 2482 /* 2483 * Look at other nodes in these cases: 2484 * - there is no space available on the preferred_nid 2485 * - the task is part of a numa_group that is interleaved across 2486 * multiple NUMA nodes; in order to better consolidate the group, 2487 * we need to check other locations. 2488 */ 2489 ng = deref_curr_numa_group(p); 2490 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2491 for_each_node_state(nid, N_CPU) { 2492 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2493 continue; 2494 2495 dist = node_distance(env.src_nid, env.dst_nid); 2496 if (sched_numa_topology_type == NUMA_BACKPLANE && 2497 dist != env.dist) { 2498 taskweight = task_weight(p, env.src_nid, dist); 2499 groupweight = group_weight(p, env.src_nid, dist); 2500 } 2501 2502 /* Only consider nodes where both task and groups benefit */ 2503 taskimp = task_weight(p, nid, dist) - taskweight; 2504 groupimp = group_weight(p, nid, dist) - groupweight; 2505 if (taskimp < 0 && groupimp < 0) 2506 continue; 2507 2508 env.dist = dist; 2509 env.dst_nid = nid; 2510 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2511 task_numa_find_cpu(&env, taskimp, groupimp); 2512 } 2513 } 2514 2515 /* 2516 * If the task is part of a workload that spans multiple NUMA nodes, 2517 * and is migrating into one of the workload's active nodes, remember 2518 * this node as the task's preferred numa node, so the workload can 2519 * settle down. 2520 * A task that migrated to a second choice node will be better off 2521 * trying for a better one later. Do not set the preferred node here. 2522 */ 2523 if (ng) { 2524 if (env.best_cpu == -1) 2525 nid = env.src_nid; 2526 else 2527 nid = cpu_to_node(env.best_cpu); 2528 2529 if (nid != p->numa_preferred_nid) 2530 sched_setnuma(p, nid); 2531 } 2532 2533 /* No better CPU than the current one was found. */ 2534 if (env.best_cpu == -1) { 2535 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2536 return -EAGAIN; 2537 } 2538 2539 best_rq = cpu_rq(env.best_cpu); 2540 if (env.best_task == NULL) { 2541 ret = migrate_task_to(p, env.best_cpu); 2542 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2543 if (ret != 0) 2544 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2545 return ret; 2546 } 2547 2548 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2549 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2550 2551 if (ret != 0) 2552 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2553 put_task_struct(env.best_task); 2554 return ret; 2555 } 2556 2557 /* Attempt to migrate a task to a CPU on the preferred node. */ 2558 static void numa_migrate_preferred(struct task_struct *p) 2559 { 2560 unsigned long interval = HZ; 2561 2562 /* This task has no NUMA fault statistics yet */ 2563 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2564 return; 2565 2566 /* Periodically retry migrating the task to the preferred node */ 2567 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2568 p->numa_migrate_retry = jiffies + interval; 2569 2570 /* Success if task is already running on preferred CPU */ 2571 if (task_node(p) == p->numa_preferred_nid) 2572 return; 2573 2574 /* Otherwise, try migrate to a CPU on the preferred node */ 2575 task_numa_migrate(p); 2576 } 2577 2578 /* 2579 * Find out how many nodes the workload is actively running on. Do this by 2580 * tracking the nodes from which NUMA hinting faults are triggered. This can 2581 * be different from the set of nodes where the workload's memory is currently 2582 * located. 2583 */ 2584 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2585 { 2586 unsigned long faults, max_faults = 0; 2587 int nid, active_nodes = 0; 2588 2589 for_each_node_state(nid, N_CPU) { 2590 faults = group_faults_cpu(numa_group, nid); 2591 if (faults > max_faults) 2592 max_faults = faults; 2593 } 2594 2595 for_each_node_state(nid, N_CPU) { 2596 faults = group_faults_cpu(numa_group, nid); 2597 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2598 active_nodes++; 2599 } 2600 2601 numa_group->max_faults_cpu = max_faults; 2602 numa_group->active_nodes = active_nodes; 2603 } 2604 2605 /* 2606 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2607 * increments. The more local the fault statistics are, the higher the scan 2608 * period will be for the next scan window. If local/(local+remote) ratio is 2609 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2610 * the scan period will decrease. Aim for 70% local accesses. 2611 */ 2612 #define NUMA_PERIOD_SLOTS 10 2613 #define NUMA_PERIOD_THRESHOLD 7 2614 2615 /* 2616 * Increase the scan period (slow down scanning) if the majority of 2617 * our memory is already on our local node, or if the majority of 2618 * the page accesses are shared with other processes. 2619 * Otherwise, decrease the scan period. 2620 */ 2621 static void update_task_scan_period(struct task_struct *p, 2622 unsigned long shared, unsigned long private) 2623 { 2624 unsigned int period_slot; 2625 int lr_ratio, ps_ratio; 2626 int diff; 2627 2628 unsigned long remote = p->numa_faults_locality[0]; 2629 unsigned long local = p->numa_faults_locality[1]; 2630 2631 /* 2632 * If there were no record hinting faults then either the task is 2633 * completely idle or all activity is in areas that are not of interest 2634 * to automatic numa balancing. Related to that, if there were failed 2635 * migration then it implies we are migrating too quickly or the local 2636 * node is overloaded. In either case, scan slower 2637 */ 2638 if (local + shared == 0 || p->numa_faults_locality[2]) { 2639 p->numa_scan_period = min(p->numa_scan_period_max, 2640 p->numa_scan_period << 1); 2641 2642 p->mm->numa_next_scan = jiffies + 2643 msecs_to_jiffies(p->numa_scan_period); 2644 2645 return; 2646 } 2647 2648 /* 2649 * Prepare to scale scan period relative to the current period. 2650 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2651 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2652 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2653 */ 2654 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2655 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2656 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2657 2658 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2659 /* 2660 * Most memory accesses are local. There is no need to 2661 * do fast NUMA scanning, since memory is already local. 2662 */ 2663 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2664 if (!slot) 2665 slot = 1; 2666 diff = slot * period_slot; 2667 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2668 /* 2669 * Most memory accesses are shared with other tasks. 2670 * There is no point in continuing fast NUMA scanning, 2671 * since other tasks may just move the memory elsewhere. 2672 */ 2673 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2674 if (!slot) 2675 slot = 1; 2676 diff = slot * period_slot; 2677 } else { 2678 /* 2679 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2680 * yet they are not on the local NUMA node. Speed up 2681 * NUMA scanning to get the memory moved over. 2682 */ 2683 int ratio = max(lr_ratio, ps_ratio); 2684 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2685 } 2686 2687 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2688 task_scan_min(p), task_scan_max(p)); 2689 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2690 } 2691 2692 /* 2693 * Get the fraction of time the task has been running since the last 2694 * NUMA placement cycle. The scheduler keeps similar statistics, but 2695 * decays those on a 32ms period, which is orders of magnitude off 2696 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2697 * stats only if the task is so new there are no NUMA statistics yet. 2698 */ 2699 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2700 { 2701 u64 runtime, delta, now; 2702 /* Use the start of this time slice to avoid calculations. */ 2703 now = p->se.exec_start; 2704 runtime = p->se.sum_exec_runtime; 2705 2706 if (p->last_task_numa_placement) { 2707 delta = runtime - p->last_sum_exec_runtime; 2708 *period = now - p->last_task_numa_placement; 2709 2710 /* Avoid time going backwards, prevent potential divide error: */ 2711 if (unlikely((s64)*period < 0)) 2712 *period = 0; 2713 } else { 2714 delta = p->se.avg.load_sum; 2715 *period = LOAD_AVG_MAX; 2716 } 2717 2718 p->last_sum_exec_runtime = runtime; 2719 p->last_task_numa_placement = now; 2720 2721 return delta; 2722 } 2723 2724 /* 2725 * Determine the preferred nid for a task in a numa_group. This needs to 2726 * be done in a way that produces consistent results with group_weight, 2727 * otherwise workloads might not converge. 2728 */ 2729 static int preferred_group_nid(struct task_struct *p, int nid) 2730 { 2731 nodemask_t nodes; 2732 int dist; 2733 2734 /* Direct connections between all NUMA nodes. */ 2735 if (sched_numa_topology_type == NUMA_DIRECT) 2736 return nid; 2737 2738 /* 2739 * On a system with glueless mesh NUMA topology, group_weight 2740 * scores nodes according to the number of NUMA hinting faults on 2741 * both the node itself, and on nearby nodes. 2742 */ 2743 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2744 unsigned long score, max_score = 0; 2745 int node, max_node = nid; 2746 2747 dist = sched_max_numa_distance; 2748 2749 for_each_node_state(node, N_CPU) { 2750 score = group_weight(p, node, dist); 2751 if (score > max_score) { 2752 max_score = score; 2753 max_node = node; 2754 } 2755 } 2756 return max_node; 2757 } 2758 2759 /* 2760 * Finding the preferred nid in a system with NUMA backplane 2761 * interconnect topology is more involved. The goal is to locate 2762 * tasks from numa_groups near each other in the system, and 2763 * untangle workloads from different sides of the system. This requires 2764 * searching down the hierarchy of node groups, recursively searching 2765 * inside the highest scoring group of nodes. The nodemask tricks 2766 * keep the complexity of the search down. 2767 */ 2768 nodes = node_states[N_CPU]; 2769 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2770 unsigned long max_faults = 0; 2771 nodemask_t max_group = NODE_MASK_NONE; 2772 int a, b; 2773 2774 /* Are there nodes at this distance from each other? */ 2775 if (!find_numa_distance(dist)) 2776 continue; 2777 2778 for_each_node_mask(a, nodes) { 2779 unsigned long faults = 0; 2780 nodemask_t this_group; 2781 nodes_clear(this_group); 2782 2783 /* Sum group's NUMA faults; includes a==b case. */ 2784 for_each_node_mask(b, nodes) { 2785 if (node_distance(a, b) < dist) { 2786 faults += group_faults(p, b); 2787 node_set(b, this_group); 2788 node_clear(b, nodes); 2789 } 2790 } 2791 2792 /* Remember the top group. */ 2793 if (faults > max_faults) { 2794 max_faults = faults; 2795 max_group = this_group; 2796 /* 2797 * subtle: at the smallest distance there is 2798 * just one node left in each "group", the 2799 * winner is the preferred nid. 2800 */ 2801 nid = a; 2802 } 2803 } 2804 /* Next round, evaluate the nodes within max_group. */ 2805 if (!max_faults) 2806 break; 2807 nodes = max_group; 2808 } 2809 return nid; 2810 } 2811 2812 static void task_numa_placement(struct task_struct *p) 2813 { 2814 int seq, nid, max_nid = NUMA_NO_NODE; 2815 unsigned long max_faults = 0; 2816 unsigned long fault_types[2] = { 0, 0 }; 2817 unsigned long total_faults; 2818 u64 runtime, period; 2819 spinlock_t *group_lock = NULL; 2820 struct numa_group *ng; 2821 2822 /* 2823 * The p->mm->numa_scan_seq field gets updated without 2824 * exclusive access. Use READ_ONCE() here to ensure 2825 * that the field is read in a single access: 2826 */ 2827 seq = READ_ONCE(p->mm->numa_scan_seq); 2828 if (p->numa_scan_seq == seq) 2829 return; 2830 p->numa_scan_seq = seq; 2831 p->numa_scan_period_max = task_scan_max(p); 2832 2833 total_faults = p->numa_faults_locality[0] + 2834 p->numa_faults_locality[1]; 2835 runtime = numa_get_avg_runtime(p, &period); 2836 2837 /* If the task is part of a group prevent parallel updates to group stats */ 2838 ng = deref_curr_numa_group(p); 2839 if (ng) { 2840 group_lock = &ng->lock; 2841 spin_lock_irq(group_lock); 2842 } 2843 2844 /* Find the node with the highest number of faults */ 2845 for_each_online_node(nid) { 2846 /* Keep track of the offsets in numa_faults array */ 2847 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2848 unsigned long faults = 0, group_faults = 0; 2849 int priv; 2850 2851 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2852 long diff, f_diff, f_weight; 2853 2854 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2855 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2856 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2857 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2858 2859 /* Decay existing window, copy faults since last scan */ 2860 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2861 fault_types[priv] += p->numa_faults[membuf_idx]; 2862 p->numa_faults[membuf_idx] = 0; 2863 2864 /* 2865 * Normalize the faults_from, so all tasks in a group 2866 * count according to CPU use, instead of by the raw 2867 * number of faults. Tasks with little runtime have 2868 * little over-all impact on throughput, and thus their 2869 * faults are less important. 2870 */ 2871 f_weight = div64_u64(runtime << 16, period + 1); 2872 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2873 (total_faults + 1); 2874 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2875 p->numa_faults[cpubuf_idx] = 0; 2876 2877 p->numa_faults[mem_idx] += diff; 2878 p->numa_faults[cpu_idx] += f_diff; 2879 faults += p->numa_faults[mem_idx]; 2880 p->total_numa_faults += diff; 2881 if (ng) { 2882 /* 2883 * safe because we can only change our own group 2884 * 2885 * mem_idx represents the offset for a given 2886 * nid and priv in a specific region because it 2887 * is at the beginning of the numa_faults array. 2888 */ 2889 ng->faults[mem_idx] += diff; 2890 ng->faults[cpu_idx] += f_diff; 2891 ng->total_faults += diff; 2892 group_faults += ng->faults[mem_idx]; 2893 } 2894 } 2895 2896 if (!ng) { 2897 if (faults > max_faults) { 2898 max_faults = faults; 2899 max_nid = nid; 2900 } 2901 } else if (group_faults > max_faults) { 2902 max_faults = group_faults; 2903 max_nid = nid; 2904 } 2905 } 2906 2907 /* Cannot migrate task to CPU-less node */ 2908 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) { 2909 int near_nid = max_nid; 2910 int distance, near_distance = INT_MAX; 2911 2912 for_each_node_state(nid, N_CPU) { 2913 distance = node_distance(max_nid, nid); 2914 if (distance < near_distance) { 2915 near_nid = nid; 2916 near_distance = distance; 2917 } 2918 } 2919 max_nid = near_nid; 2920 } 2921 2922 if (ng) { 2923 numa_group_count_active_nodes(ng); 2924 spin_unlock_irq(group_lock); 2925 max_nid = preferred_group_nid(p, max_nid); 2926 } 2927 2928 if (max_faults) { 2929 /* Set the new preferred node */ 2930 if (max_nid != p->numa_preferred_nid) 2931 sched_setnuma(p, max_nid); 2932 } 2933 2934 update_task_scan_period(p, fault_types[0], fault_types[1]); 2935 } 2936 2937 static inline int get_numa_group(struct numa_group *grp) 2938 { 2939 return refcount_inc_not_zero(&grp->refcount); 2940 } 2941 2942 static inline void put_numa_group(struct numa_group *grp) 2943 { 2944 if (refcount_dec_and_test(&grp->refcount)) 2945 kfree_rcu(grp, rcu); 2946 } 2947 2948 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2949 int *priv) 2950 { 2951 struct numa_group *grp, *my_grp; 2952 struct task_struct *tsk; 2953 bool join = false; 2954 int cpu = cpupid_to_cpu(cpupid); 2955 int i; 2956 2957 if (unlikely(!deref_curr_numa_group(p))) { 2958 unsigned int size = sizeof(struct numa_group) + 2959 NR_NUMA_HINT_FAULT_STATS * 2960 nr_node_ids * sizeof(unsigned long); 2961 2962 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2963 if (!grp) 2964 return; 2965 2966 refcount_set(&grp->refcount, 1); 2967 grp->active_nodes = 1; 2968 grp->max_faults_cpu = 0; 2969 spin_lock_init(&grp->lock); 2970 grp->gid = p->pid; 2971 2972 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2973 grp->faults[i] = p->numa_faults[i]; 2974 2975 grp->total_faults = p->total_numa_faults; 2976 2977 grp->nr_tasks++; 2978 rcu_assign_pointer(p->numa_group, grp); 2979 } 2980 2981 rcu_read_lock(); 2982 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2983 2984 if (!cpupid_match_pid(tsk, cpupid)) 2985 goto no_join; 2986 2987 grp = rcu_dereference(tsk->numa_group); 2988 if (!grp) 2989 goto no_join; 2990 2991 my_grp = deref_curr_numa_group(p); 2992 if (grp == my_grp) 2993 goto no_join; 2994 2995 /* 2996 * Only join the other group if its bigger; if we're the bigger group, 2997 * the other task will join us. 2998 */ 2999 if (my_grp->nr_tasks > grp->nr_tasks) 3000 goto no_join; 3001 3002 /* 3003 * Tie-break on the grp address. 3004 */ 3005 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 3006 goto no_join; 3007 3008 /* Always join threads in the same process. */ 3009 if (tsk->mm == current->mm) 3010 join = true; 3011 3012 /* Simple filter to avoid false positives due to PID collisions */ 3013 if (flags & TNF_SHARED) 3014 join = true; 3015 3016 /* Update priv based on whether false sharing was detected */ 3017 *priv = !join; 3018 3019 if (join && !get_numa_group(grp)) 3020 goto no_join; 3021 3022 rcu_read_unlock(); 3023 3024 if (!join) 3025 return; 3026 3027 WARN_ON_ONCE(irqs_disabled()); 3028 double_lock_irq(&my_grp->lock, &grp->lock); 3029 3030 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3031 my_grp->faults[i] -= p->numa_faults[i]; 3032 grp->faults[i] += p->numa_faults[i]; 3033 } 3034 my_grp->total_faults -= p->total_numa_faults; 3035 grp->total_faults += p->total_numa_faults; 3036 3037 my_grp->nr_tasks--; 3038 grp->nr_tasks++; 3039 3040 spin_unlock(&my_grp->lock); 3041 spin_unlock_irq(&grp->lock); 3042 3043 rcu_assign_pointer(p->numa_group, grp); 3044 3045 put_numa_group(my_grp); 3046 return; 3047 3048 no_join: 3049 rcu_read_unlock(); 3050 return; 3051 } 3052 3053 /* 3054 * Get rid of NUMA statistics associated with a task (either current or dead). 3055 * If @final is set, the task is dead and has reached refcount zero, so we can 3056 * safely free all relevant data structures. Otherwise, there might be 3057 * concurrent reads from places like load balancing and procfs, and we should 3058 * reset the data back to default state without freeing ->numa_faults. 3059 */ 3060 void task_numa_free(struct task_struct *p, bool final) 3061 { 3062 /* safe: p either is current or is being freed by current */ 3063 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3064 unsigned long *numa_faults = p->numa_faults; 3065 unsigned long flags; 3066 int i; 3067 3068 if (!numa_faults) 3069 return; 3070 3071 if (grp) { 3072 spin_lock_irqsave(&grp->lock, flags); 3073 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3074 grp->faults[i] -= p->numa_faults[i]; 3075 grp->total_faults -= p->total_numa_faults; 3076 3077 grp->nr_tasks--; 3078 spin_unlock_irqrestore(&grp->lock, flags); 3079 RCU_INIT_POINTER(p->numa_group, NULL); 3080 put_numa_group(grp); 3081 } 3082 3083 if (final) { 3084 p->numa_faults = NULL; 3085 kfree(numa_faults); 3086 } else { 3087 p->total_numa_faults = 0; 3088 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3089 numa_faults[i] = 0; 3090 } 3091 } 3092 3093 /* 3094 * Got a PROT_NONE fault for a page on @node. 3095 */ 3096 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3097 { 3098 struct task_struct *p = current; 3099 bool migrated = flags & TNF_MIGRATED; 3100 int cpu_node = task_node(current); 3101 int local = !!(flags & TNF_FAULT_LOCAL); 3102 struct numa_group *ng; 3103 int priv; 3104 3105 if (!static_branch_likely(&sched_numa_balancing)) 3106 return; 3107 3108 /* for example, ksmd faulting in a user's mm */ 3109 if (!p->mm) 3110 return; 3111 3112 /* 3113 * NUMA faults statistics are unnecessary for the slow memory 3114 * node for memory tiering mode. 3115 */ 3116 if (!node_is_toptier(mem_node) && 3117 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3118 !cpupid_valid(last_cpupid))) 3119 return; 3120 3121 /* Allocate buffer to track faults on a per-node basis */ 3122 if (unlikely(!p->numa_faults)) { 3123 int size = sizeof(*p->numa_faults) * 3124 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3125 3126 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3127 if (!p->numa_faults) 3128 return; 3129 3130 p->total_numa_faults = 0; 3131 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3132 } 3133 3134 /* 3135 * First accesses are treated as private, otherwise consider accesses 3136 * to be private if the accessing pid has not changed 3137 */ 3138 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3139 priv = 1; 3140 } else { 3141 priv = cpupid_match_pid(p, last_cpupid); 3142 if (!priv && !(flags & TNF_NO_GROUP)) 3143 task_numa_group(p, last_cpupid, flags, &priv); 3144 } 3145 3146 /* 3147 * If a workload spans multiple NUMA nodes, a shared fault that 3148 * occurs wholly within the set of nodes that the workload is 3149 * actively using should be counted as local. This allows the 3150 * scan rate to slow down when a workload has settled down. 3151 */ 3152 ng = deref_curr_numa_group(p); 3153 if (!priv && !local && ng && ng->active_nodes > 1 && 3154 numa_is_active_node(cpu_node, ng) && 3155 numa_is_active_node(mem_node, ng)) 3156 local = 1; 3157 3158 /* 3159 * Retry to migrate task to preferred node periodically, in case it 3160 * previously failed, or the scheduler moved us. 3161 */ 3162 if (time_after(jiffies, p->numa_migrate_retry)) { 3163 task_numa_placement(p); 3164 numa_migrate_preferred(p); 3165 } 3166 3167 if (migrated) 3168 p->numa_pages_migrated += pages; 3169 if (flags & TNF_MIGRATE_FAIL) 3170 p->numa_faults_locality[2] += pages; 3171 3172 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3173 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3174 p->numa_faults_locality[local] += pages; 3175 } 3176 3177 static void reset_ptenuma_scan(struct task_struct *p) 3178 { 3179 /* 3180 * We only did a read acquisition of the mmap sem, so 3181 * p->mm->numa_scan_seq is written to without exclusive access 3182 * and the update is not guaranteed to be atomic. That's not 3183 * much of an issue though, since this is just used for 3184 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3185 * expensive, to avoid any form of compiler optimizations: 3186 */ 3187 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3188 p->mm->numa_scan_offset = 0; 3189 } 3190 3191 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3192 { 3193 unsigned long pids; 3194 /* 3195 * Allow unconditional access first two times, so that all the (pages) 3196 * of VMAs get prot_none fault introduced irrespective of accesses. 3197 * This is also done to avoid any side effect of task scanning 3198 * amplifying the unfairness of disjoint set of VMAs' access. 3199 */ 3200 if (READ_ONCE(current->mm->numa_scan_seq) < 2) 3201 return true; 3202 3203 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3204 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3205 return true; 3206 3207 /* 3208 * Complete a scan that has already started regardless of PID access, or 3209 * some VMAs may never be scanned in multi-threaded applications: 3210 */ 3211 if (mm->numa_scan_offset > vma->vm_start) { 3212 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3213 return true; 3214 } 3215 3216 /* 3217 * This vma has not been accessed for a while, and if the number 3218 * the threads in the same process is low, which means no other 3219 * threads can help scan this vma, force a vma scan. 3220 */ 3221 if (READ_ONCE(mm->numa_scan_seq) > 3222 (vma->numab_state->prev_scan_seq + get_nr_threads(current))) 3223 return true; 3224 3225 return false; 3226 } 3227 3228 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3229 3230 /* 3231 * The expensive part of numa migration is done from task_work context. 3232 * Triggered from task_tick_numa(). 3233 */ 3234 static void task_numa_work(struct callback_head *work) 3235 { 3236 unsigned long migrate, next_scan, now = jiffies; 3237 struct task_struct *p = current; 3238 struct mm_struct *mm = p->mm; 3239 u64 runtime = p->se.sum_exec_runtime; 3240 struct vm_area_struct *vma; 3241 unsigned long start, end; 3242 unsigned long nr_pte_updates = 0; 3243 long pages, virtpages; 3244 struct vma_iterator vmi; 3245 bool vma_pids_skipped; 3246 bool vma_pids_forced = false; 3247 3248 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 3249 3250 work->next = work; 3251 /* 3252 * Who cares about NUMA placement when they're dying. 3253 * 3254 * NOTE: make sure not to dereference p->mm before this check, 3255 * exit_task_work() happens _after_ exit_mm() so we could be called 3256 * without p->mm even though we still had it when we enqueued this 3257 * work. 3258 */ 3259 if (p->flags & PF_EXITING) 3260 return; 3261 3262 if (!mm->numa_next_scan) { 3263 mm->numa_next_scan = now + 3264 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3265 } 3266 3267 /* 3268 * Enforce maximal scan/migration frequency.. 3269 */ 3270 migrate = mm->numa_next_scan; 3271 if (time_before(now, migrate)) 3272 return; 3273 3274 if (p->numa_scan_period == 0) { 3275 p->numa_scan_period_max = task_scan_max(p); 3276 p->numa_scan_period = task_scan_start(p); 3277 } 3278 3279 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3280 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3281 return; 3282 3283 /* 3284 * Delay this task enough that another task of this mm will likely win 3285 * the next time around. 3286 */ 3287 p->node_stamp += 2 * TICK_NSEC; 3288 3289 pages = sysctl_numa_balancing_scan_size; 3290 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3291 virtpages = pages * 8; /* Scan up to this much virtual space */ 3292 if (!pages) 3293 return; 3294 3295 3296 if (!mmap_read_trylock(mm)) 3297 return; 3298 3299 /* 3300 * VMAs are skipped if the current PID has not trapped a fault within 3301 * the VMA recently. Allow scanning to be forced if there is no 3302 * suitable VMA remaining. 3303 */ 3304 vma_pids_skipped = false; 3305 3306 retry_pids: 3307 start = mm->numa_scan_offset; 3308 vma_iter_init(&vmi, mm, start); 3309 vma = vma_next(&vmi); 3310 if (!vma) { 3311 reset_ptenuma_scan(p); 3312 start = 0; 3313 vma_iter_set(&vmi, start); 3314 vma = vma_next(&vmi); 3315 } 3316 3317 do { 3318 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3319 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3320 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3321 continue; 3322 } 3323 3324 /* 3325 * Shared library pages mapped by multiple processes are not 3326 * migrated as it is expected they are cache replicated. Avoid 3327 * hinting faults in read-only file-backed mappings or the vdso 3328 * as migrating the pages will be of marginal benefit. 3329 */ 3330 if (!vma->vm_mm || 3331 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3332 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3333 continue; 3334 } 3335 3336 /* 3337 * Skip inaccessible VMAs to avoid any confusion between 3338 * PROT_NONE and NUMA hinting ptes 3339 */ 3340 if (!vma_is_accessible(vma)) { 3341 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3342 continue; 3343 } 3344 3345 /* Initialise new per-VMA NUMAB state. */ 3346 if (!vma->numab_state) { 3347 vma->numab_state = kzalloc(sizeof(struct vma_numab_state), 3348 GFP_KERNEL); 3349 if (!vma->numab_state) 3350 continue; 3351 3352 vma->numab_state->next_scan = now + 3353 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3354 3355 /* Reset happens after 4 times scan delay of scan start */ 3356 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3357 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3358 3359 /* 3360 * Ensure prev_scan_seq does not match numa_scan_seq, 3361 * to prevent VMAs being skipped prematurely on the 3362 * first scan: 3363 */ 3364 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3365 } 3366 3367 /* 3368 * Scanning the VMA's of short lived tasks add more overhead. So 3369 * delay the scan for new VMAs. 3370 */ 3371 if (mm->numa_scan_seq && time_before(jiffies, 3372 vma->numab_state->next_scan)) { 3373 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3374 continue; 3375 } 3376 3377 /* RESET access PIDs regularly for old VMAs. */ 3378 if (mm->numa_scan_seq && 3379 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3380 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3381 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3382 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3383 vma->numab_state->pids_active[1] = 0; 3384 } 3385 3386 /* Do not rescan VMAs twice within the same sequence. */ 3387 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3388 mm->numa_scan_offset = vma->vm_end; 3389 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3390 continue; 3391 } 3392 3393 /* 3394 * Do not scan the VMA if task has not accessed it, unless no other 3395 * VMA candidate exists. 3396 */ 3397 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3398 vma_pids_skipped = true; 3399 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3400 continue; 3401 } 3402 3403 do { 3404 start = max(start, vma->vm_start); 3405 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3406 end = min(end, vma->vm_end); 3407 nr_pte_updates = change_prot_numa(vma, start, end); 3408 3409 /* 3410 * Try to scan sysctl_numa_balancing_size worth of 3411 * hpages that have at least one present PTE that 3412 * is not already pte-numa. If the VMA contains 3413 * areas that are unused or already full of prot_numa 3414 * PTEs, scan up to virtpages, to skip through those 3415 * areas faster. 3416 */ 3417 if (nr_pte_updates) 3418 pages -= (end - start) >> PAGE_SHIFT; 3419 virtpages -= (end - start) >> PAGE_SHIFT; 3420 3421 start = end; 3422 if (pages <= 0 || virtpages <= 0) 3423 goto out; 3424 3425 cond_resched(); 3426 } while (end != vma->vm_end); 3427 3428 /* VMA scan is complete, do not scan until next sequence. */ 3429 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3430 3431 /* 3432 * Only force scan within one VMA at a time, to limit the 3433 * cost of scanning a potentially uninteresting VMA. 3434 */ 3435 if (vma_pids_forced) 3436 break; 3437 } for_each_vma(vmi, vma); 3438 3439 /* 3440 * If no VMAs are remaining and VMAs were skipped due to the PID 3441 * not accessing the VMA previously, then force a scan to ensure 3442 * forward progress: 3443 */ 3444 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3445 vma_pids_forced = true; 3446 goto retry_pids; 3447 } 3448 3449 out: 3450 /* 3451 * It is possible to reach the end of the VMA list but the last few 3452 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3453 * would find the !migratable VMA on the next scan but not reset the 3454 * scanner to the start so check it now. 3455 */ 3456 if (vma) 3457 mm->numa_scan_offset = start; 3458 else 3459 reset_ptenuma_scan(p); 3460 mmap_read_unlock(mm); 3461 3462 /* 3463 * Make sure tasks use at least 32x as much time to run other code 3464 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3465 * Usually update_task_scan_period slows down scanning enough; on an 3466 * overloaded system we need to limit overhead on a per task basis. 3467 */ 3468 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3469 u64 diff = p->se.sum_exec_runtime - runtime; 3470 p->node_stamp += 32 * diff; 3471 } 3472 } 3473 3474 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3475 { 3476 int mm_users = 0; 3477 struct mm_struct *mm = p->mm; 3478 3479 if (mm) { 3480 mm_users = atomic_read(&mm->mm_users); 3481 if (mm_users == 1) { 3482 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3483 mm->numa_scan_seq = 0; 3484 } 3485 } 3486 p->node_stamp = 0; 3487 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3488 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3489 p->numa_migrate_retry = 0; 3490 /* Protect against double add, see task_tick_numa and task_numa_work */ 3491 p->numa_work.next = &p->numa_work; 3492 p->numa_faults = NULL; 3493 p->numa_pages_migrated = 0; 3494 p->total_numa_faults = 0; 3495 RCU_INIT_POINTER(p->numa_group, NULL); 3496 p->last_task_numa_placement = 0; 3497 p->last_sum_exec_runtime = 0; 3498 3499 init_task_work(&p->numa_work, task_numa_work); 3500 3501 /* New address space, reset the preferred nid */ 3502 if (!(clone_flags & CLONE_VM)) { 3503 p->numa_preferred_nid = NUMA_NO_NODE; 3504 return; 3505 } 3506 3507 /* 3508 * New thread, keep existing numa_preferred_nid which should be copied 3509 * already by arch_dup_task_struct but stagger when scans start. 3510 */ 3511 if (mm) { 3512 unsigned int delay; 3513 3514 delay = min_t(unsigned int, task_scan_max(current), 3515 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3516 delay += 2 * TICK_NSEC; 3517 p->node_stamp = delay; 3518 } 3519 } 3520 3521 /* 3522 * Drive the periodic memory faults.. 3523 */ 3524 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3525 { 3526 struct callback_head *work = &curr->numa_work; 3527 u64 period, now; 3528 3529 /* 3530 * We don't care about NUMA placement if we don't have memory. 3531 */ 3532 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3533 return; 3534 3535 /* 3536 * Using runtime rather than walltime has the dual advantage that 3537 * we (mostly) drive the selection from busy threads and that the 3538 * task needs to have done some actual work before we bother with 3539 * NUMA placement. 3540 */ 3541 now = curr->se.sum_exec_runtime; 3542 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3543 3544 if (now > curr->node_stamp + period) { 3545 if (!curr->node_stamp) 3546 curr->numa_scan_period = task_scan_start(curr); 3547 curr->node_stamp += period; 3548 3549 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3550 task_work_add(curr, work, TWA_RESUME); 3551 } 3552 } 3553 3554 static void update_scan_period(struct task_struct *p, int new_cpu) 3555 { 3556 int src_nid = cpu_to_node(task_cpu(p)); 3557 int dst_nid = cpu_to_node(new_cpu); 3558 3559 if (!static_branch_likely(&sched_numa_balancing)) 3560 return; 3561 3562 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3563 return; 3564 3565 if (src_nid == dst_nid) 3566 return; 3567 3568 /* 3569 * Allow resets if faults have been trapped before one scan 3570 * has completed. This is most likely due to a new task that 3571 * is pulled cross-node due to wakeups or load balancing. 3572 */ 3573 if (p->numa_scan_seq) { 3574 /* 3575 * Avoid scan adjustments if moving to the preferred 3576 * node or if the task was not previously running on 3577 * the preferred node. 3578 */ 3579 if (dst_nid == p->numa_preferred_nid || 3580 (p->numa_preferred_nid != NUMA_NO_NODE && 3581 src_nid != p->numa_preferred_nid)) 3582 return; 3583 } 3584 3585 p->numa_scan_period = task_scan_start(p); 3586 } 3587 3588 #else 3589 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3590 { 3591 } 3592 3593 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3594 { 3595 } 3596 3597 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3598 { 3599 } 3600 3601 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3602 { 3603 } 3604 3605 #endif /* CONFIG_NUMA_BALANCING */ 3606 3607 static void 3608 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3609 { 3610 update_load_add(&cfs_rq->load, se->load.weight); 3611 #ifdef CONFIG_SMP 3612 if (entity_is_task(se)) { 3613 struct rq *rq = rq_of(cfs_rq); 3614 3615 account_numa_enqueue(rq, task_of(se)); 3616 list_add(&se->group_node, &rq->cfs_tasks); 3617 } 3618 #endif 3619 cfs_rq->nr_running++; 3620 if (se_is_idle(se)) 3621 cfs_rq->idle_nr_running++; 3622 } 3623 3624 static void 3625 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3626 { 3627 update_load_sub(&cfs_rq->load, se->load.weight); 3628 #ifdef CONFIG_SMP 3629 if (entity_is_task(se)) { 3630 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3631 list_del_init(&se->group_node); 3632 } 3633 #endif 3634 cfs_rq->nr_running--; 3635 if (se_is_idle(se)) 3636 cfs_rq->idle_nr_running--; 3637 } 3638 3639 /* 3640 * Signed add and clamp on underflow. 3641 * 3642 * Explicitly do a load-store to ensure the intermediate value never hits 3643 * memory. This allows lockless observations without ever seeing the negative 3644 * values. 3645 */ 3646 #define add_positive(_ptr, _val) do { \ 3647 typeof(_ptr) ptr = (_ptr); \ 3648 typeof(_val) val = (_val); \ 3649 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3650 \ 3651 res = var + val; \ 3652 \ 3653 if (val < 0 && res > var) \ 3654 res = 0; \ 3655 \ 3656 WRITE_ONCE(*ptr, res); \ 3657 } while (0) 3658 3659 /* 3660 * Unsigned subtract and clamp on underflow. 3661 * 3662 * Explicitly do a load-store to ensure the intermediate value never hits 3663 * memory. This allows lockless observations without ever seeing the negative 3664 * values. 3665 */ 3666 #define sub_positive(_ptr, _val) do { \ 3667 typeof(_ptr) ptr = (_ptr); \ 3668 typeof(*ptr) val = (_val); \ 3669 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3670 res = var - val; \ 3671 if (res > var) \ 3672 res = 0; \ 3673 WRITE_ONCE(*ptr, res); \ 3674 } while (0) 3675 3676 /* 3677 * Remove and clamp on negative, from a local variable. 3678 * 3679 * A variant of sub_positive(), which does not use explicit load-store 3680 * and is thus optimized for local variable updates. 3681 */ 3682 #define lsub_positive(_ptr, _val) do { \ 3683 typeof(_ptr) ptr = (_ptr); \ 3684 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3685 } while (0) 3686 3687 #ifdef CONFIG_SMP 3688 static inline void 3689 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3690 { 3691 cfs_rq->avg.load_avg += se->avg.load_avg; 3692 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3693 } 3694 3695 static inline void 3696 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3697 { 3698 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3699 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3700 /* See update_cfs_rq_load_avg() */ 3701 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3702 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3703 } 3704 #else 3705 static inline void 3706 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3707 static inline void 3708 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3709 #endif 3710 3711 static void reweight_eevdf(struct sched_entity *se, u64 avruntime, 3712 unsigned long weight) 3713 { 3714 unsigned long old_weight = se->load.weight; 3715 s64 vlag, vslice; 3716 3717 /* 3718 * VRUNTIME 3719 * ======== 3720 * 3721 * COROLLARY #1: The virtual runtime of the entity needs to be 3722 * adjusted if re-weight at !0-lag point. 3723 * 3724 * Proof: For contradiction assume this is not true, so we can 3725 * re-weight without changing vruntime at !0-lag point. 3726 * 3727 * Weight VRuntime Avg-VRuntime 3728 * before w v V 3729 * after w' v' V' 3730 * 3731 * Since lag needs to be preserved through re-weight: 3732 * 3733 * lag = (V - v)*w = (V'- v')*w', where v = v' 3734 * ==> V' = (V - v)*w/w' + v (1) 3735 * 3736 * Let W be the total weight of the entities before reweight, 3737 * since V' is the new weighted average of entities: 3738 * 3739 * V' = (WV + w'v - wv) / (W + w' - w) (2) 3740 * 3741 * by using (1) & (2) we obtain: 3742 * 3743 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v 3744 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v 3745 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v 3746 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3) 3747 * 3748 * Since we are doing at !0-lag point which means V != v, we 3749 * can simplify (3): 3750 * 3751 * ==> W / (W + w' - w) = w / w' 3752 * ==> Ww' = Ww + ww' - ww 3753 * ==> W * (w' - w) = w * (w' - w) 3754 * ==> W = w (re-weight indicates w' != w) 3755 * 3756 * So the cfs_rq contains only one entity, hence vruntime of 3757 * the entity @v should always equal to the cfs_rq's weighted 3758 * average vruntime @V, which means we will always re-weight 3759 * at 0-lag point, thus breach assumption. Proof completed. 3760 * 3761 * 3762 * COROLLARY #2: Re-weight does NOT affect weighted average 3763 * vruntime of all the entities. 3764 * 3765 * Proof: According to corollary #1, Eq. (1) should be: 3766 * 3767 * (V - v)*w = (V' - v')*w' 3768 * ==> v' = V' - (V - v)*w/w' (4) 3769 * 3770 * According to the weighted average formula, we have: 3771 * 3772 * V' = (WV - wv + w'v') / (W - w + w') 3773 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w') 3774 * = (WV - wv + w'V' - Vw + wv) / (W - w + w') 3775 * = (WV + w'V' - Vw) / (W - w + w') 3776 * 3777 * ==> V'*(W - w + w') = WV + w'V' - Vw 3778 * ==> V' * (W - w) = (W - w) * V (5) 3779 * 3780 * If the entity is the only one in the cfs_rq, then reweight 3781 * always occurs at 0-lag point, so V won't change. Or else 3782 * there are other entities, hence W != w, then Eq. (5) turns 3783 * into V' = V. So V won't change in either case, proof done. 3784 * 3785 * 3786 * So according to corollary #1 & #2, the effect of re-weight 3787 * on vruntime should be: 3788 * 3789 * v' = V' - (V - v) * w / w' (4) 3790 * = V - (V - v) * w / w' 3791 * = V - vl * w / w' 3792 * = V - vl' 3793 */ 3794 if (avruntime != se->vruntime) { 3795 vlag = entity_lag(avruntime, se); 3796 vlag = div_s64(vlag * old_weight, weight); 3797 se->vruntime = avruntime - vlag; 3798 } 3799 3800 /* 3801 * DEADLINE 3802 * ======== 3803 * 3804 * When the weight changes, the virtual time slope changes and 3805 * we should adjust the relative virtual deadline accordingly. 3806 * 3807 * d' = v' + (d - v)*w/w' 3808 * = V' - (V - v)*w/w' + (d - v)*w/w' 3809 * = V - (V - v)*w/w' + (d - v)*w/w' 3810 * = V + (d - V)*w/w' 3811 */ 3812 vslice = (s64)(se->deadline - avruntime); 3813 vslice = div_s64(vslice * old_weight, weight); 3814 se->deadline = avruntime + vslice; 3815 } 3816 3817 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3818 unsigned long weight) 3819 { 3820 bool curr = cfs_rq->curr == se; 3821 u64 avruntime; 3822 3823 if (se->on_rq) { 3824 /* commit outstanding execution time */ 3825 update_curr(cfs_rq); 3826 avruntime = avg_vruntime(cfs_rq); 3827 if (!curr) 3828 __dequeue_entity(cfs_rq, se); 3829 update_load_sub(&cfs_rq->load, se->load.weight); 3830 } 3831 dequeue_load_avg(cfs_rq, se); 3832 3833 if (se->on_rq) { 3834 reweight_eevdf(se, avruntime, weight); 3835 } else { 3836 /* 3837 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3838 * we need to scale se->vlag when w_i changes. 3839 */ 3840 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3841 } 3842 3843 update_load_set(&se->load, weight); 3844 3845 #ifdef CONFIG_SMP 3846 do { 3847 u32 divider = get_pelt_divider(&se->avg); 3848 3849 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3850 } while (0); 3851 #endif 3852 3853 enqueue_load_avg(cfs_rq, se); 3854 if (se->on_rq) { 3855 update_load_add(&cfs_rq->load, se->load.weight); 3856 if (!curr) 3857 __enqueue_entity(cfs_rq, se); 3858 3859 /* 3860 * The entity's vruntime has been adjusted, so let's check 3861 * whether the rq-wide min_vruntime needs updated too. Since 3862 * the calculations above require stable min_vruntime rather 3863 * than up-to-date one, we do the update at the end of the 3864 * reweight process. 3865 */ 3866 update_min_vruntime(cfs_rq); 3867 } 3868 } 3869 3870 void reweight_task(struct task_struct *p, const struct load_weight *lw) 3871 { 3872 struct sched_entity *se = &p->se; 3873 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3874 struct load_weight *load = &se->load; 3875 3876 reweight_entity(cfs_rq, se, lw->weight); 3877 load->inv_weight = lw->inv_weight; 3878 } 3879 3880 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3881 3882 #ifdef CONFIG_FAIR_GROUP_SCHED 3883 #ifdef CONFIG_SMP 3884 /* 3885 * All this does is approximate the hierarchical proportion which includes that 3886 * global sum we all love to hate. 3887 * 3888 * That is, the weight of a group entity, is the proportional share of the 3889 * group weight based on the group runqueue weights. That is: 3890 * 3891 * tg->weight * grq->load.weight 3892 * ge->load.weight = ----------------------------- (1) 3893 * \Sum grq->load.weight 3894 * 3895 * Now, because computing that sum is prohibitively expensive to compute (been 3896 * there, done that) we approximate it with this average stuff. The average 3897 * moves slower and therefore the approximation is cheaper and more stable. 3898 * 3899 * So instead of the above, we substitute: 3900 * 3901 * grq->load.weight -> grq->avg.load_avg (2) 3902 * 3903 * which yields the following: 3904 * 3905 * tg->weight * grq->avg.load_avg 3906 * ge->load.weight = ------------------------------ (3) 3907 * tg->load_avg 3908 * 3909 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3910 * 3911 * That is shares_avg, and it is right (given the approximation (2)). 3912 * 3913 * The problem with it is that because the average is slow -- it was designed 3914 * to be exactly that of course -- this leads to transients in boundary 3915 * conditions. In specific, the case where the group was idle and we start the 3916 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3917 * yielding bad latency etc.. 3918 * 3919 * Now, in that special case (1) reduces to: 3920 * 3921 * tg->weight * grq->load.weight 3922 * ge->load.weight = ----------------------------- = tg->weight (4) 3923 * grp->load.weight 3924 * 3925 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3926 * 3927 * So what we do is modify our approximation (3) to approach (4) in the (near) 3928 * UP case, like: 3929 * 3930 * ge->load.weight = 3931 * 3932 * tg->weight * grq->load.weight 3933 * --------------------------------------------------- (5) 3934 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3935 * 3936 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3937 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3938 * 3939 * 3940 * tg->weight * grq->load.weight 3941 * ge->load.weight = ----------------------------- (6) 3942 * tg_load_avg' 3943 * 3944 * Where: 3945 * 3946 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3947 * max(grq->load.weight, grq->avg.load_avg) 3948 * 3949 * And that is shares_weight and is icky. In the (near) UP case it approaches 3950 * (4) while in the normal case it approaches (3). It consistently 3951 * overestimates the ge->load.weight and therefore: 3952 * 3953 * \Sum ge->load.weight >= tg->weight 3954 * 3955 * hence icky! 3956 */ 3957 static long calc_group_shares(struct cfs_rq *cfs_rq) 3958 { 3959 long tg_weight, tg_shares, load, shares; 3960 struct task_group *tg = cfs_rq->tg; 3961 3962 tg_shares = READ_ONCE(tg->shares); 3963 3964 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3965 3966 tg_weight = atomic_long_read(&tg->load_avg); 3967 3968 /* Ensure tg_weight >= load */ 3969 tg_weight -= cfs_rq->tg_load_avg_contrib; 3970 tg_weight += load; 3971 3972 shares = (tg_shares * load); 3973 if (tg_weight) 3974 shares /= tg_weight; 3975 3976 /* 3977 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3978 * of a group with small tg->shares value. It is a floor value which is 3979 * assigned as a minimum load.weight to the sched_entity representing 3980 * the group on a CPU. 3981 * 3982 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3983 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3984 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3985 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3986 * instead of 0. 3987 */ 3988 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3989 } 3990 #endif /* CONFIG_SMP */ 3991 3992 /* 3993 * Recomputes the group entity based on the current state of its group 3994 * runqueue. 3995 */ 3996 static void update_cfs_group(struct sched_entity *se) 3997 { 3998 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3999 long shares; 4000 4001 if (!gcfs_rq) 4002 return; 4003 4004 if (throttled_hierarchy(gcfs_rq)) 4005 return; 4006 4007 #ifndef CONFIG_SMP 4008 shares = READ_ONCE(gcfs_rq->tg->shares); 4009 #else 4010 shares = calc_group_shares(gcfs_rq); 4011 #endif 4012 if (unlikely(se->load.weight != shares)) 4013 reweight_entity(cfs_rq_of(se), se, shares); 4014 } 4015 4016 #else /* CONFIG_FAIR_GROUP_SCHED */ 4017 static inline void update_cfs_group(struct sched_entity *se) 4018 { 4019 } 4020 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4021 4022 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 4023 { 4024 struct rq *rq = rq_of(cfs_rq); 4025 4026 if (&rq->cfs == cfs_rq) { 4027 /* 4028 * There are a few boundary cases this might miss but it should 4029 * get called often enough that that should (hopefully) not be 4030 * a real problem. 4031 * 4032 * It will not get called when we go idle, because the idle 4033 * thread is a different class (!fair), nor will the utilization 4034 * number include things like RT tasks. 4035 * 4036 * As is, the util number is not freq-invariant (we'd have to 4037 * implement arch_scale_freq_capacity() for that). 4038 * 4039 * See cpu_util_cfs(). 4040 */ 4041 cpufreq_update_util(rq, flags); 4042 } 4043 } 4044 4045 #ifdef CONFIG_SMP 4046 static inline bool load_avg_is_decayed(struct sched_avg *sa) 4047 { 4048 if (sa->load_sum) 4049 return false; 4050 4051 if (sa->util_sum) 4052 return false; 4053 4054 if (sa->runnable_sum) 4055 return false; 4056 4057 /* 4058 * _avg must be null when _sum are null because _avg = _sum / divider 4059 * Make sure that rounding and/or propagation of PELT values never 4060 * break this. 4061 */ 4062 SCHED_WARN_ON(sa->load_avg || 4063 sa->util_avg || 4064 sa->runnable_avg); 4065 4066 return true; 4067 } 4068 4069 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4070 { 4071 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4072 cfs_rq->last_update_time_copy); 4073 } 4074 #ifdef CONFIG_FAIR_GROUP_SCHED 4075 /* 4076 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4077 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4078 * bottom-up, we only have to test whether the cfs_rq before us on the list 4079 * is our child. 4080 * If cfs_rq is not on the list, test whether a child needs its to be added to 4081 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4082 */ 4083 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4084 { 4085 struct cfs_rq *prev_cfs_rq; 4086 struct list_head *prev; 4087 4088 if (cfs_rq->on_list) { 4089 prev = cfs_rq->leaf_cfs_rq_list.prev; 4090 } else { 4091 struct rq *rq = rq_of(cfs_rq); 4092 4093 prev = rq->tmp_alone_branch; 4094 } 4095 4096 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4097 4098 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4099 } 4100 4101 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4102 { 4103 if (cfs_rq->load.weight) 4104 return false; 4105 4106 if (!load_avg_is_decayed(&cfs_rq->avg)) 4107 return false; 4108 4109 if (child_cfs_rq_on_list(cfs_rq)) 4110 return false; 4111 4112 return true; 4113 } 4114 4115 /** 4116 * update_tg_load_avg - update the tg's load avg 4117 * @cfs_rq: the cfs_rq whose avg changed 4118 * 4119 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4120 * However, because tg->load_avg is a global value there are performance 4121 * considerations. 4122 * 4123 * In order to avoid having to look at the other cfs_rq's, we use a 4124 * differential update where we store the last value we propagated. This in 4125 * turn allows skipping updates if the differential is 'small'. 4126 * 4127 * Updating tg's load_avg is necessary before update_cfs_share(). 4128 */ 4129 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4130 { 4131 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4132 4133 /* 4134 * No need to update load_avg for root_task_group as it is not used. 4135 */ 4136 if (cfs_rq->tg == &root_task_group) 4137 return; 4138 4139 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4140 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4141 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4142 } 4143 } 4144 4145 /* 4146 * Called within set_task_rq() right before setting a task's CPU. The 4147 * caller only guarantees p->pi_lock is held; no other assumptions, 4148 * including the state of rq->lock, should be made. 4149 */ 4150 void set_task_rq_fair(struct sched_entity *se, 4151 struct cfs_rq *prev, struct cfs_rq *next) 4152 { 4153 u64 p_last_update_time; 4154 u64 n_last_update_time; 4155 4156 if (!sched_feat(ATTACH_AGE_LOAD)) 4157 return; 4158 4159 /* 4160 * We are supposed to update the task to "current" time, then its up to 4161 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4162 * getting what current time is, so simply throw away the out-of-date 4163 * time. This will result in the wakee task is less decayed, but giving 4164 * the wakee more load sounds not bad. 4165 */ 4166 if (!(se->avg.last_update_time && prev)) 4167 return; 4168 4169 p_last_update_time = cfs_rq_last_update_time(prev); 4170 n_last_update_time = cfs_rq_last_update_time(next); 4171 4172 __update_load_avg_blocked_se(p_last_update_time, se); 4173 se->avg.last_update_time = n_last_update_time; 4174 } 4175 4176 /* 4177 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4178 * propagate its contribution. The key to this propagation is the invariant 4179 * that for each group: 4180 * 4181 * ge->avg == grq->avg (1) 4182 * 4183 * _IFF_ we look at the pure running and runnable sums. Because they 4184 * represent the very same entity, just at different points in the hierarchy. 4185 * 4186 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4187 * and simply copies the running/runnable sum over (but still wrong, because 4188 * the group entity and group rq do not have their PELT windows aligned). 4189 * 4190 * However, update_tg_cfs_load() is more complex. So we have: 4191 * 4192 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4193 * 4194 * And since, like util, the runnable part should be directly transferable, 4195 * the following would _appear_ to be the straight forward approach: 4196 * 4197 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4198 * 4199 * And per (1) we have: 4200 * 4201 * ge->avg.runnable_avg == grq->avg.runnable_avg 4202 * 4203 * Which gives: 4204 * 4205 * ge->load.weight * grq->avg.load_avg 4206 * ge->avg.load_avg = ----------------------------------- (4) 4207 * grq->load.weight 4208 * 4209 * Except that is wrong! 4210 * 4211 * Because while for entities historical weight is not important and we 4212 * really only care about our future and therefore can consider a pure 4213 * runnable sum, runqueues can NOT do this. 4214 * 4215 * We specifically want runqueues to have a load_avg that includes 4216 * historical weights. Those represent the blocked load, the load we expect 4217 * to (shortly) return to us. This only works by keeping the weights as 4218 * integral part of the sum. We therefore cannot decompose as per (3). 4219 * 4220 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4221 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4222 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4223 * runnable section of these tasks overlap (or not). If they were to perfectly 4224 * align the rq as a whole would be runnable 2/3 of the time. If however we 4225 * always have at least 1 runnable task, the rq as a whole is always runnable. 4226 * 4227 * So we'll have to approximate.. :/ 4228 * 4229 * Given the constraint: 4230 * 4231 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4232 * 4233 * We can construct a rule that adds runnable to a rq by assuming minimal 4234 * overlap. 4235 * 4236 * On removal, we'll assume each task is equally runnable; which yields: 4237 * 4238 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4239 * 4240 * XXX: only do this for the part of runnable > running ? 4241 * 4242 */ 4243 static inline void 4244 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4245 { 4246 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4247 u32 new_sum, divider; 4248 4249 /* Nothing to update */ 4250 if (!delta_avg) 4251 return; 4252 4253 /* 4254 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4255 * See ___update_load_avg() for details. 4256 */ 4257 divider = get_pelt_divider(&cfs_rq->avg); 4258 4259 4260 /* Set new sched_entity's utilization */ 4261 se->avg.util_avg = gcfs_rq->avg.util_avg; 4262 new_sum = se->avg.util_avg * divider; 4263 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4264 se->avg.util_sum = new_sum; 4265 4266 /* Update parent cfs_rq utilization */ 4267 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4268 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4269 4270 /* See update_cfs_rq_load_avg() */ 4271 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4272 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4273 } 4274 4275 static inline void 4276 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4277 { 4278 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4279 u32 new_sum, divider; 4280 4281 /* Nothing to update */ 4282 if (!delta_avg) 4283 return; 4284 4285 /* 4286 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4287 * See ___update_load_avg() for details. 4288 */ 4289 divider = get_pelt_divider(&cfs_rq->avg); 4290 4291 /* Set new sched_entity's runnable */ 4292 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4293 new_sum = se->avg.runnable_avg * divider; 4294 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4295 se->avg.runnable_sum = new_sum; 4296 4297 /* Update parent cfs_rq runnable */ 4298 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4299 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4300 /* See update_cfs_rq_load_avg() */ 4301 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4302 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4303 } 4304 4305 static inline void 4306 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4307 { 4308 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4309 unsigned long load_avg; 4310 u64 load_sum = 0; 4311 s64 delta_sum; 4312 u32 divider; 4313 4314 if (!runnable_sum) 4315 return; 4316 4317 gcfs_rq->prop_runnable_sum = 0; 4318 4319 /* 4320 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4321 * See ___update_load_avg() for details. 4322 */ 4323 divider = get_pelt_divider(&cfs_rq->avg); 4324 4325 if (runnable_sum >= 0) { 4326 /* 4327 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4328 * the CPU is saturated running == runnable. 4329 */ 4330 runnable_sum += se->avg.load_sum; 4331 runnable_sum = min_t(long, runnable_sum, divider); 4332 } else { 4333 /* 4334 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4335 * assuming all tasks are equally runnable. 4336 */ 4337 if (scale_load_down(gcfs_rq->load.weight)) { 4338 load_sum = div_u64(gcfs_rq->avg.load_sum, 4339 scale_load_down(gcfs_rq->load.weight)); 4340 } 4341 4342 /* But make sure to not inflate se's runnable */ 4343 runnable_sum = min(se->avg.load_sum, load_sum); 4344 } 4345 4346 /* 4347 * runnable_sum can't be lower than running_sum 4348 * Rescale running sum to be in the same range as runnable sum 4349 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4350 * runnable_sum is in [0 : LOAD_AVG_MAX] 4351 */ 4352 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4353 runnable_sum = max(runnable_sum, running_sum); 4354 4355 load_sum = se_weight(se) * runnable_sum; 4356 load_avg = div_u64(load_sum, divider); 4357 4358 delta_avg = load_avg - se->avg.load_avg; 4359 if (!delta_avg) 4360 return; 4361 4362 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4363 4364 se->avg.load_sum = runnable_sum; 4365 se->avg.load_avg = load_avg; 4366 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4367 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4368 /* See update_cfs_rq_load_avg() */ 4369 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4370 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4371 } 4372 4373 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4374 { 4375 cfs_rq->propagate = 1; 4376 cfs_rq->prop_runnable_sum += runnable_sum; 4377 } 4378 4379 /* Update task and its cfs_rq load average */ 4380 static inline int propagate_entity_load_avg(struct sched_entity *se) 4381 { 4382 struct cfs_rq *cfs_rq, *gcfs_rq; 4383 4384 if (entity_is_task(se)) 4385 return 0; 4386 4387 gcfs_rq = group_cfs_rq(se); 4388 if (!gcfs_rq->propagate) 4389 return 0; 4390 4391 gcfs_rq->propagate = 0; 4392 4393 cfs_rq = cfs_rq_of(se); 4394 4395 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4396 4397 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4398 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4399 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4400 4401 trace_pelt_cfs_tp(cfs_rq); 4402 trace_pelt_se_tp(se); 4403 4404 return 1; 4405 } 4406 4407 /* 4408 * Check if we need to update the load and the utilization of a blocked 4409 * group_entity: 4410 */ 4411 static inline bool skip_blocked_update(struct sched_entity *se) 4412 { 4413 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4414 4415 /* 4416 * If sched_entity still have not zero load or utilization, we have to 4417 * decay it: 4418 */ 4419 if (se->avg.load_avg || se->avg.util_avg) 4420 return false; 4421 4422 /* 4423 * If there is a pending propagation, we have to update the load and 4424 * the utilization of the sched_entity: 4425 */ 4426 if (gcfs_rq->propagate) 4427 return false; 4428 4429 /* 4430 * Otherwise, the load and the utilization of the sched_entity is 4431 * already zero and there is no pending propagation, so it will be a 4432 * waste of time to try to decay it: 4433 */ 4434 return true; 4435 } 4436 4437 #else /* CONFIG_FAIR_GROUP_SCHED */ 4438 4439 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4440 4441 static inline int propagate_entity_load_avg(struct sched_entity *se) 4442 { 4443 return 0; 4444 } 4445 4446 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4447 4448 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4449 4450 #ifdef CONFIG_NO_HZ_COMMON 4451 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4452 { 4453 u64 throttled = 0, now, lut; 4454 struct cfs_rq *cfs_rq; 4455 struct rq *rq; 4456 bool is_idle; 4457 4458 if (load_avg_is_decayed(&se->avg)) 4459 return; 4460 4461 cfs_rq = cfs_rq_of(se); 4462 rq = rq_of(cfs_rq); 4463 4464 rcu_read_lock(); 4465 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4466 rcu_read_unlock(); 4467 4468 /* 4469 * The lag estimation comes with a cost we don't want to pay all the 4470 * time. Hence, limiting to the case where the source CPU is idle and 4471 * we know we are at the greatest risk to have an outdated clock. 4472 */ 4473 if (!is_idle) 4474 return; 4475 4476 /* 4477 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4478 * 4479 * last_update_time (the cfs_rq's last_update_time) 4480 * = cfs_rq_clock_pelt()@cfs_rq_idle 4481 * = rq_clock_pelt()@cfs_rq_idle 4482 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4483 * 4484 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4485 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4486 * 4487 * rq_idle_lag (delta between now and rq's update) 4488 * = sched_clock_cpu() - rq_clock()@rq_idle 4489 * 4490 * We can then write: 4491 * 4492 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4493 * sched_clock_cpu() - rq_clock()@rq_idle 4494 * Where: 4495 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4496 * rq_clock()@rq_idle is rq->clock_idle 4497 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4498 * is cfs_rq->throttled_pelt_idle 4499 */ 4500 4501 #ifdef CONFIG_CFS_BANDWIDTH 4502 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4503 /* The clock has been stopped for throttling */ 4504 if (throttled == U64_MAX) 4505 return; 4506 #endif 4507 now = u64_u32_load(rq->clock_pelt_idle); 4508 /* 4509 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4510 * is observed the old clock_pelt_idle value and the new clock_idle, 4511 * which lead to an underestimation. The opposite would lead to an 4512 * overestimation. 4513 */ 4514 smp_rmb(); 4515 lut = cfs_rq_last_update_time(cfs_rq); 4516 4517 now -= throttled; 4518 if (now < lut) 4519 /* 4520 * cfs_rq->avg.last_update_time is more recent than our 4521 * estimation, let's use it. 4522 */ 4523 now = lut; 4524 else 4525 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4526 4527 __update_load_avg_blocked_se(now, se); 4528 } 4529 #else 4530 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4531 #endif 4532 4533 /** 4534 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4535 * @now: current time, as per cfs_rq_clock_pelt() 4536 * @cfs_rq: cfs_rq to update 4537 * 4538 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4539 * avg. The immediate corollary is that all (fair) tasks must be attached. 4540 * 4541 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4542 * 4543 * Return: true if the load decayed or we removed load. 4544 * 4545 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4546 * call update_tg_load_avg() when this function returns true. 4547 */ 4548 static inline int 4549 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4550 { 4551 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4552 struct sched_avg *sa = &cfs_rq->avg; 4553 int decayed = 0; 4554 4555 if (cfs_rq->removed.nr) { 4556 unsigned long r; 4557 u32 divider = get_pelt_divider(&cfs_rq->avg); 4558 4559 raw_spin_lock(&cfs_rq->removed.lock); 4560 swap(cfs_rq->removed.util_avg, removed_util); 4561 swap(cfs_rq->removed.load_avg, removed_load); 4562 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4563 cfs_rq->removed.nr = 0; 4564 raw_spin_unlock(&cfs_rq->removed.lock); 4565 4566 r = removed_load; 4567 sub_positive(&sa->load_avg, r); 4568 sub_positive(&sa->load_sum, r * divider); 4569 /* See sa->util_sum below */ 4570 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4571 4572 r = removed_util; 4573 sub_positive(&sa->util_avg, r); 4574 sub_positive(&sa->util_sum, r * divider); 4575 /* 4576 * Because of rounding, se->util_sum might ends up being +1 more than 4577 * cfs->util_sum. Although this is not a problem by itself, detaching 4578 * a lot of tasks with the rounding problem between 2 updates of 4579 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4580 * cfs_util_avg is not. 4581 * Check that util_sum is still above its lower bound for the new 4582 * util_avg. Given that period_contrib might have moved since the last 4583 * sync, we are only sure that util_sum must be above or equal to 4584 * util_avg * minimum possible divider 4585 */ 4586 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4587 4588 r = removed_runnable; 4589 sub_positive(&sa->runnable_avg, r); 4590 sub_positive(&sa->runnable_sum, r * divider); 4591 /* See sa->util_sum above */ 4592 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4593 sa->runnable_avg * PELT_MIN_DIVIDER); 4594 4595 /* 4596 * removed_runnable is the unweighted version of removed_load so we 4597 * can use it to estimate removed_load_sum. 4598 */ 4599 add_tg_cfs_propagate(cfs_rq, 4600 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4601 4602 decayed = 1; 4603 } 4604 4605 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4606 u64_u32_store_copy(sa->last_update_time, 4607 cfs_rq->last_update_time_copy, 4608 sa->last_update_time); 4609 return decayed; 4610 } 4611 4612 /** 4613 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4614 * @cfs_rq: cfs_rq to attach to 4615 * @se: sched_entity to attach 4616 * 4617 * Must call update_cfs_rq_load_avg() before this, since we rely on 4618 * cfs_rq->avg.last_update_time being current. 4619 */ 4620 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4621 { 4622 /* 4623 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4624 * See ___update_load_avg() for details. 4625 */ 4626 u32 divider = get_pelt_divider(&cfs_rq->avg); 4627 4628 /* 4629 * When we attach the @se to the @cfs_rq, we must align the decay 4630 * window because without that, really weird and wonderful things can 4631 * happen. 4632 * 4633 * XXX illustrate 4634 */ 4635 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4636 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4637 4638 /* 4639 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4640 * period_contrib. This isn't strictly correct, but since we're 4641 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4642 * _sum a little. 4643 */ 4644 se->avg.util_sum = se->avg.util_avg * divider; 4645 4646 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4647 4648 se->avg.load_sum = se->avg.load_avg * divider; 4649 if (se_weight(se) < se->avg.load_sum) 4650 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4651 else 4652 se->avg.load_sum = 1; 4653 4654 enqueue_load_avg(cfs_rq, se); 4655 cfs_rq->avg.util_avg += se->avg.util_avg; 4656 cfs_rq->avg.util_sum += se->avg.util_sum; 4657 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4658 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4659 4660 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4661 4662 cfs_rq_util_change(cfs_rq, 0); 4663 4664 trace_pelt_cfs_tp(cfs_rq); 4665 } 4666 4667 /** 4668 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4669 * @cfs_rq: cfs_rq to detach from 4670 * @se: sched_entity to detach 4671 * 4672 * Must call update_cfs_rq_load_avg() before this, since we rely on 4673 * cfs_rq->avg.last_update_time being current. 4674 */ 4675 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4676 { 4677 dequeue_load_avg(cfs_rq, se); 4678 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4679 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4680 /* See update_cfs_rq_load_avg() */ 4681 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4682 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4683 4684 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4685 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4686 /* See update_cfs_rq_load_avg() */ 4687 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4688 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4689 4690 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4691 4692 cfs_rq_util_change(cfs_rq, 0); 4693 4694 trace_pelt_cfs_tp(cfs_rq); 4695 } 4696 4697 /* 4698 * Optional action to be done while updating the load average 4699 */ 4700 #define UPDATE_TG 0x1 4701 #define SKIP_AGE_LOAD 0x2 4702 #define DO_ATTACH 0x4 4703 #define DO_DETACH 0x8 4704 4705 /* Update task and its cfs_rq load average */ 4706 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4707 { 4708 u64 now = cfs_rq_clock_pelt(cfs_rq); 4709 int decayed; 4710 4711 /* 4712 * Track task load average for carrying it to new CPU after migrated, and 4713 * track group sched_entity load average for task_h_load calc in migration 4714 */ 4715 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4716 __update_load_avg_se(now, cfs_rq, se); 4717 4718 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4719 decayed |= propagate_entity_load_avg(se); 4720 4721 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4722 4723 /* 4724 * DO_ATTACH means we're here from enqueue_entity(). 4725 * !last_update_time means we've passed through 4726 * migrate_task_rq_fair() indicating we migrated. 4727 * 4728 * IOW we're enqueueing a task on a new CPU. 4729 */ 4730 attach_entity_load_avg(cfs_rq, se); 4731 update_tg_load_avg(cfs_rq); 4732 4733 } else if (flags & DO_DETACH) { 4734 /* 4735 * DO_DETACH means we're here from dequeue_entity() 4736 * and we are migrating task out of the CPU. 4737 */ 4738 detach_entity_load_avg(cfs_rq, se); 4739 update_tg_load_avg(cfs_rq); 4740 } else if (decayed) { 4741 cfs_rq_util_change(cfs_rq, 0); 4742 4743 if (flags & UPDATE_TG) 4744 update_tg_load_avg(cfs_rq); 4745 } 4746 } 4747 4748 /* 4749 * Synchronize entity load avg of dequeued entity without locking 4750 * the previous rq. 4751 */ 4752 static void sync_entity_load_avg(struct sched_entity *se) 4753 { 4754 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4755 u64 last_update_time; 4756 4757 last_update_time = cfs_rq_last_update_time(cfs_rq); 4758 __update_load_avg_blocked_se(last_update_time, se); 4759 } 4760 4761 /* 4762 * Task first catches up with cfs_rq, and then subtract 4763 * itself from the cfs_rq (task must be off the queue now). 4764 */ 4765 static void remove_entity_load_avg(struct sched_entity *se) 4766 { 4767 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4768 unsigned long flags; 4769 4770 /* 4771 * tasks cannot exit without having gone through wake_up_new_task() -> 4772 * enqueue_task_fair() which will have added things to the cfs_rq, 4773 * so we can remove unconditionally. 4774 */ 4775 4776 sync_entity_load_avg(se); 4777 4778 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4779 ++cfs_rq->removed.nr; 4780 cfs_rq->removed.util_avg += se->avg.util_avg; 4781 cfs_rq->removed.load_avg += se->avg.load_avg; 4782 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4783 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4784 } 4785 4786 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4787 { 4788 return cfs_rq->avg.runnable_avg; 4789 } 4790 4791 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4792 { 4793 return cfs_rq->avg.load_avg; 4794 } 4795 4796 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 4797 4798 static inline unsigned long task_util(struct task_struct *p) 4799 { 4800 return READ_ONCE(p->se.avg.util_avg); 4801 } 4802 4803 static inline unsigned long _task_util_est(struct task_struct *p) 4804 { 4805 struct util_est ue = READ_ONCE(p->se.avg.util_est); 4806 4807 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 4808 } 4809 4810 static inline unsigned long task_util_est(struct task_struct *p) 4811 { 4812 return max(task_util(p), _task_util_est(p)); 4813 } 4814 4815 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4816 struct task_struct *p) 4817 { 4818 unsigned int enqueued; 4819 4820 if (!sched_feat(UTIL_EST)) 4821 return; 4822 4823 /* Update root cfs_rq's estimated utilization */ 4824 enqueued = cfs_rq->avg.util_est.enqueued; 4825 enqueued += _task_util_est(p); 4826 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4827 4828 trace_sched_util_est_cfs_tp(cfs_rq); 4829 } 4830 4831 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4832 struct task_struct *p) 4833 { 4834 unsigned int enqueued; 4835 4836 if (!sched_feat(UTIL_EST)) 4837 return; 4838 4839 /* Update root cfs_rq's estimated utilization */ 4840 enqueued = cfs_rq->avg.util_est.enqueued; 4841 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4842 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4843 4844 trace_sched_util_est_cfs_tp(cfs_rq); 4845 } 4846 4847 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4848 4849 /* 4850 * Check if a (signed) value is within a specified (unsigned) margin, 4851 * based on the observation that: 4852 * 4853 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 4854 * 4855 * NOTE: this only works when value + margin < INT_MAX. 4856 */ 4857 static inline bool within_margin(int value, int margin) 4858 { 4859 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 4860 } 4861 4862 static inline void util_est_update(struct cfs_rq *cfs_rq, 4863 struct task_struct *p, 4864 bool task_sleep) 4865 { 4866 long last_ewma_diff, last_enqueued_diff; 4867 struct util_est ue; 4868 4869 if (!sched_feat(UTIL_EST)) 4870 return; 4871 4872 /* 4873 * Skip update of task's estimated utilization when the task has not 4874 * yet completed an activation, e.g. being migrated. 4875 */ 4876 if (!task_sleep) 4877 return; 4878 4879 /* 4880 * If the PELT values haven't changed since enqueue time, 4881 * skip the util_est update. 4882 */ 4883 ue = p->se.avg.util_est; 4884 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4885 return; 4886 4887 last_enqueued_diff = ue.enqueued; 4888 4889 /* 4890 * Reset EWMA on utilization increases, the moving average is used only 4891 * to smooth utilization decreases. 4892 */ 4893 ue.enqueued = task_util(p); 4894 if (sched_feat(UTIL_EST_FASTUP)) { 4895 if (ue.ewma < ue.enqueued) { 4896 ue.ewma = ue.enqueued; 4897 goto done; 4898 } 4899 } 4900 4901 /* 4902 * Skip update of task's estimated utilization when its members are 4903 * already ~1% close to its last activation value. 4904 */ 4905 last_ewma_diff = ue.enqueued - ue.ewma; 4906 last_enqueued_diff -= ue.enqueued; 4907 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4908 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4909 goto done; 4910 4911 return; 4912 } 4913 4914 /* 4915 * To avoid overestimation of actual task utilization, skip updates if 4916 * we cannot grant there is idle time in this CPU. 4917 */ 4918 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4919 return; 4920 4921 /* 4922 * Update Task's estimated utilization 4923 * 4924 * When *p completes an activation we can consolidate another sample 4925 * of the task size. This is done by storing the current PELT value 4926 * as ue.enqueued and by using this value to update the Exponential 4927 * Weighted Moving Average (EWMA): 4928 * 4929 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4930 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4931 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4932 * = w * ( last_ewma_diff ) + ewma(t-1) 4933 * = w * (last_ewma_diff + ewma(t-1) / w) 4934 * 4935 * Where 'w' is the weight of new samples, which is configured to be 4936 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4937 */ 4938 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4939 ue.ewma += last_ewma_diff; 4940 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4941 done: 4942 ue.enqueued |= UTIL_AVG_UNCHANGED; 4943 WRITE_ONCE(p->se.avg.util_est, ue); 4944 4945 trace_sched_util_est_se_tp(&p->se); 4946 } 4947 4948 static inline int util_fits_cpu(unsigned long util, 4949 unsigned long uclamp_min, 4950 unsigned long uclamp_max, 4951 int cpu) 4952 { 4953 unsigned long capacity_orig, capacity_orig_thermal; 4954 unsigned long capacity = capacity_of(cpu); 4955 bool fits, uclamp_max_fits; 4956 4957 /* 4958 * Check if the real util fits without any uclamp boost/cap applied. 4959 */ 4960 fits = fits_capacity(util, capacity); 4961 4962 if (!uclamp_is_used()) 4963 return fits; 4964 4965 /* 4966 * We must use capacity_orig_of() for comparing against uclamp_min and 4967 * uclamp_max. We only care about capacity pressure (by using 4968 * capacity_of()) for comparing against the real util. 4969 * 4970 * If a task is boosted to 1024 for example, we don't want a tiny 4971 * pressure to skew the check whether it fits a CPU or not. 4972 * 4973 * Similarly if a task is capped to capacity_orig_of(little_cpu), it 4974 * should fit a little cpu even if there's some pressure. 4975 * 4976 * Only exception is for thermal pressure since it has a direct impact 4977 * on available OPP of the system. 4978 * 4979 * We honour it for uclamp_min only as a drop in performance level 4980 * could result in not getting the requested minimum performance level. 4981 * 4982 * For uclamp_max, we can tolerate a drop in performance level as the 4983 * goal is to cap the task. So it's okay if it's getting less. 4984 */ 4985 capacity_orig = capacity_orig_of(cpu); 4986 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu); 4987 4988 /* 4989 * We want to force a task to fit a cpu as implied by uclamp_max. 4990 * But we do have some corner cases to cater for.. 4991 * 4992 * 4993 * C=z 4994 * | ___ 4995 * | C=y | | 4996 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4997 * | C=x | | | | 4998 * | ___ | | | | 4999 * | | | | | | | (util somewhere in this region) 5000 * | | | | | | | 5001 * | | | | | | | 5002 * +---------------------------------------- 5003 * cpu0 cpu1 cpu2 5004 * 5005 * In the above example if a task is capped to a specific performance 5006 * point, y, then when: 5007 * 5008 * * util = 80% of x then it does not fit on cpu0 and should migrate 5009 * to cpu1 5010 * * util = 80% of y then it is forced to fit on cpu1 to honour 5011 * uclamp_max request. 5012 * 5013 * which is what we're enforcing here. A task always fits if 5014 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 5015 * the normal upmigration rules should withhold still. 5016 * 5017 * Only exception is when we are on max capacity, then we need to be 5018 * careful not to block overutilized state. This is so because: 5019 * 5020 * 1. There's no concept of capping at max_capacity! We can't go 5021 * beyond this performance level anyway. 5022 * 2. The system is being saturated when we're operating near 5023 * max capacity, it doesn't make sense to block overutilized. 5024 */ 5025 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5026 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5027 fits = fits || uclamp_max_fits; 5028 5029 /* 5030 * 5031 * C=z 5032 * | ___ (region a, capped, util >= uclamp_max) 5033 * | C=y | | 5034 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5035 * | C=x | | | | 5036 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5037 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5038 * | | | | | | | 5039 * | | | | | | | (region c, boosted, util < uclamp_min) 5040 * +---------------------------------------- 5041 * cpu0 cpu1 cpu2 5042 * 5043 * a) If util > uclamp_max, then we're capped, we don't care about 5044 * actual fitness value here. We only care if uclamp_max fits 5045 * capacity without taking margin/pressure into account. 5046 * See comment above. 5047 * 5048 * b) If uclamp_min <= util <= uclamp_max, then the normal 5049 * fits_capacity() rules apply. Except we need to ensure that we 5050 * enforce we remain within uclamp_max, see comment above. 5051 * 5052 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5053 * need to take into account the boosted value fits the CPU without 5054 * taking margin/pressure into account. 5055 * 5056 * Cases (a) and (b) are handled in the 'fits' variable already. We 5057 * just need to consider an extra check for case (c) after ensuring we 5058 * handle the case uclamp_min > uclamp_max. 5059 */ 5060 uclamp_min = min(uclamp_min, uclamp_max); 5061 if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal)) 5062 return -1; 5063 5064 return fits; 5065 } 5066 5067 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5068 { 5069 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5070 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5071 unsigned long util = task_util_est(p); 5072 /* 5073 * Return true only if the cpu fully fits the task requirements, which 5074 * include the utilization but also the performance hints. 5075 */ 5076 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5077 } 5078 5079 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5080 { 5081 if (!sched_asym_cpucap_active()) 5082 return; 5083 5084 if (!p || p->nr_cpus_allowed == 1) { 5085 rq->misfit_task_load = 0; 5086 return; 5087 } 5088 5089 if (task_fits_cpu(p, cpu_of(rq))) { 5090 rq->misfit_task_load = 0; 5091 return; 5092 } 5093 5094 /* 5095 * Make sure that misfit_task_load will not be null even if 5096 * task_h_load() returns 0. 5097 */ 5098 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5099 } 5100 5101 #else /* CONFIG_SMP */ 5102 5103 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5104 { 5105 return !cfs_rq->nr_running; 5106 } 5107 5108 #define UPDATE_TG 0x0 5109 #define SKIP_AGE_LOAD 0x0 5110 #define DO_ATTACH 0x0 5111 #define DO_DETACH 0x0 5112 5113 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5114 { 5115 cfs_rq_util_change(cfs_rq, 0); 5116 } 5117 5118 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5119 5120 static inline void 5121 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5122 static inline void 5123 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5124 5125 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 5126 { 5127 return 0; 5128 } 5129 5130 static inline void 5131 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5132 5133 static inline void 5134 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5135 5136 static inline void 5137 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5138 bool task_sleep) {} 5139 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5140 5141 #endif /* CONFIG_SMP */ 5142 5143 static void 5144 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5145 { 5146 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5147 s64 lag = 0; 5148 5149 se->slice = sysctl_sched_base_slice; 5150 vslice = calc_delta_fair(se->slice, se); 5151 5152 /* 5153 * Due to how V is constructed as the weighted average of entities, 5154 * adding tasks with positive lag, or removing tasks with negative lag 5155 * will move 'time' backwards, this can screw around with the lag of 5156 * other tasks. 5157 * 5158 * EEVDF: placement strategy #1 / #2 5159 */ 5160 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) { 5161 struct sched_entity *curr = cfs_rq->curr; 5162 unsigned long load; 5163 5164 lag = se->vlag; 5165 5166 /* 5167 * If we want to place a task and preserve lag, we have to 5168 * consider the effect of the new entity on the weighted 5169 * average and compensate for this, otherwise lag can quickly 5170 * evaporate. 5171 * 5172 * Lag is defined as: 5173 * 5174 * lag_i = S - s_i = w_i * (V - v_i) 5175 * 5176 * To avoid the 'w_i' term all over the place, we only track 5177 * the virtual lag: 5178 * 5179 * vl_i = V - v_i <=> v_i = V - vl_i 5180 * 5181 * And we take V to be the weighted average of all v: 5182 * 5183 * V = (\Sum w_j*v_j) / W 5184 * 5185 * Where W is: \Sum w_j 5186 * 5187 * Then, the weighted average after adding an entity with lag 5188 * vl_i is given by: 5189 * 5190 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5191 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5192 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5193 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5194 * = V - w_i*vl_i / (W + w_i) 5195 * 5196 * And the actual lag after adding an entity with vl_i is: 5197 * 5198 * vl'_i = V' - v_i 5199 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5200 * = vl_i - w_i*vl_i / (W + w_i) 5201 * 5202 * Which is strictly less than vl_i. So in order to preserve lag 5203 * we should inflate the lag before placement such that the 5204 * effective lag after placement comes out right. 5205 * 5206 * As such, invert the above relation for vl'_i to get the vl_i 5207 * we need to use such that the lag after placement is the lag 5208 * we computed before dequeue. 5209 * 5210 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5211 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5212 * 5213 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5214 * = W*vl_i 5215 * 5216 * vl_i = (W + w_i)*vl'_i / W 5217 */ 5218 load = cfs_rq->avg_load; 5219 if (curr && curr->on_rq) 5220 load += scale_load_down(curr->load.weight); 5221 5222 lag *= load + scale_load_down(se->load.weight); 5223 if (WARN_ON_ONCE(!load)) 5224 load = 1; 5225 lag = div_s64(lag, load); 5226 } 5227 5228 se->vruntime = vruntime - lag; 5229 5230 /* 5231 * When joining the competition; the exisiting tasks will be, 5232 * on average, halfway through their slice, as such start tasks 5233 * off with half a slice to ease into the competition. 5234 */ 5235 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5236 vslice /= 2; 5237 5238 /* 5239 * EEVDF: vd_i = ve_i + r_i/w_i 5240 */ 5241 se->deadline = se->vruntime + vslice; 5242 } 5243 5244 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5245 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5246 5247 static inline bool cfs_bandwidth_used(void); 5248 5249 static void 5250 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5251 { 5252 bool curr = cfs_rq->curr == se; 5253 5254 /* 5255 * If we're the current task, we must renormalise before calling 5256 * update_curr(). 5257 */ 5258 if (curr) 5259 place_entity(cfs_rq, se, flags); 5260 5261 update_curr(cfs_rq); 5262 5263 /* 5264 * When enqueuing a sched_entity, we must: 5265 * - Update loads to have both entity and cfs_rq synced with now. 5266 * - For group_entity, update its runnable_weight to reflect the new 5267 * h_nr_running of its group cfs_rq. 5268 * - For group_entity, update its weight to reflect the new share of 5269 * its group cfs_rq 5270 * - Add its new weight to cfs_rq->load.weight 5271 */ 5272 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5273 se_update_runnable(se); 5274 /* 5275 * XXX update_load_avg() above will have attached us to the pelt sum; 5276 * but update_cfs_group() here will re-adjust the weight and have to 5277 * undo/redo all that. Seems wasteful. 5278 */ 5279 update_cfs_group(se); 5280 5281 /* 5282 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5283 * we can place the entity. 5284 */ 5285 if (!curr) 5286 place_entity(cfs_rq, se, flags); 5287 5288 account_entity_enqueue(cfs_rq, se); 5289 5290 /* Entity has migrated, no longer consider this task hot */ 5291 if (flags & ENQUEUE_MIGRATED) 5292 se->exec_start = 0; 5293 5294 check_schedstat_required(); 5295 update_stats_enqueue_fair(cfs_rq, se, flags); 5296 if (!curr) 5297 __enqueue_entity(cfs_rq, se); 5298 se->on_rq = 1; 5299 5300 if (cfs_rq->nr_running == 1) { 5301 check_enqueue_throttle(cfs_rq); 5302 if (!throttled_hierarchy(cfs_rq)) { 5303 list_add_leaf_cfs_rq(cfs_rq); 5304 } else { 5305 #ifdef CONFIG_CFS_BANDWIDTH 5306 struct rq *rq = rq_of(cfs_rq); 5307 5308 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5309 cfs_rq->throttled_clock = rq_clock(rq); 5310 if (!cfs_rq->throttled_clock_self) 5311 cfs_rq->throttled_clock_self = rq_clock(rq); 5312 #endif 5313 } 5314 } 5315 } 5316 5317 static void __clear_buddies_next(struct sched_entity *se) 5318 { 5319 for_each_sched_entity(se) { 5320 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5321 if (cfs_rq->next != se) 5322 break; 5323 5324 cfs_rq->next = NULL; 5325 } 5326 } 5327 5328 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5329 { 5330 if (cfs_rq->next == se) 5331 __clear_buddies_next(se); 5332 } 5333 5334 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5335 5336 static void 5337 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5338 { 5339 int action = UPDATE_TG; 5340 5341 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5342 action |= DO_DETACH; 5343 5344 /* 5345 * Update run-time statistics of the 'current'. 5346 */ 5347 update_curr(cfs_rq); 5348 5349 /* 5350 * When dequeuing a sched_entity, we must: 5351 * - Update loads to have both entity and cfs_rq synced with now. 5352 * - For group_entity, update its runnable_weight to reflect the new 5353 * h_nr_running of its group cfs_rq. 5354 * - Subtract its previous weight from cfs_rq->load.weight. 5355 * - For group entity, update its weight to reflect the new share 5356 * of its group cfs_rq. 5357 */ 5358 update_load_avg(cfs_rq, se, action); 5359 se_update_runnable(se); 5360 5361 update_stats_dequeue_fair(cfs_rq, se, flags); 5362 5363 clear_buddies(cfs_rq, se); 5364 5365 update_entity_lag(cfs_rq, se); 5366 if (se != cfs_rq->curr) 5367 __dequeue_entity(cfs_rq, se); 5368 se->on_rq = 0; 5369 account_entity_dequeue(cfs_rq, se); 5370 5371 /* return excess runtime on last dequeue */ 5372 return_cfs_rq_runtime(cfs_rq); 5373 5374 update_cfs_group(se); 5375 5376 /* 5377 * Now advance min_vruntime if @se was the entity holding it back, 5378 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5379 * put back on, and if we advance min_vruntime, we'll be placed back 5380 * further than we started -- ie. we'll be penalized. 5381 */ 5382 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5383 update_min_vruntime(cfs_rq); 5384 5385 if (cfs_rq->nr_running == 0) 5386 update_idle_cfs_rq_clock_pelt(cfs_rq); 5387 } 5388 5389 static void 5390 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5391 { 5392 clear_buddies(cfs_rq, se); 5393 5394 /* 'current' is not kept within the tree. */ 5395 if (se->on_rq) { 5396 /* 5397 * Any task has to be enqueued before it get to execute on 5398 * a CPU. So account for the time it spent waiting on the 5399 * runqueue. 5400 */ 5401 update_stats_wait_end_fair(cfs_rq, se); 5402 __dequeue_entity(cfs_rq, se); 5403 update_load_avg(cfs_rq, se, UPDATE_TG); 5404 /* 5405 * HACK, stash a copy of deadline at the point of pick in vlag, 5406 * which isn't used until dequeue. 5407 */ 5408 se->vlag = se->deadline; 5409 } 5410 5411 update_stats_curr_start(cfs_rq, se); 5412 cfs_rq->curr = se; 5413 5414 /* 5415 * Track our maximum slice length, if the CPU's load is at 5416 * least twice that of our own weight (i.e. dont track it 5417 * when there are only lesser-weight tasks around): 5418 */ 5419 if (schedstat_enabled() && 5420 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5421 struct sched_statistics *stats; 5422 5423 stats = __schedstats_from_se(se); 5424 __schedstat_set(stats->slice_max, 5425 max((u64)stats->slice_max, 5426 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5427 } 5428 5429 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5430 } 5431 5432 /* 5433 * Pick the next process, keeping these things in mind, in this order: 5434 * 1) keep things fair between processes/task groups 5435 * 2) pick the "next" process, since someone really wants that to run 5436 * 3) pick the "last" process, for cache locality 5437 * 4) do not run the "skip" process, if something else is available 5438 */ 5439 static struct sched_entity * 5440 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 5441 { 5442 /* 5443 * Enabling NEXT_BUDDY will affect latency but not fairness. 5444 */ 5445 if (sched_feat(NEXT_BUDDY) && 5446 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) 5447 return cfs_rq->next; 5448 5449 return pick_eevdf(cfs_rq); 5450 } 5451 5452 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5453 5454 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5455 { 5456 /* 5457 * If still on the runqueue then deactivate_task() 5458 * was not called and update_curr() has to be done: 5459 */ 5460 if (prev->on_rq) 5461 update_curr(cfs_rq); 5462 5463 /* throttle cfs_rqs exceeding runtime */ 5464 check_cfs_rq_runtime(cfs_rq); 5465 5466 if (prev->on_rq) { 5467 update_stats_wait_start_fair(cfs_rq, prev); 5468 /* Put 'current' back into the tree. */ 5469 __enqueue_entity(cfs_rq, prev); 5470 /* in !on_rq case, update occurred at dequeue */ 5471 update_load_avg(cfs_rq, prev, 0); 5472 } 5473 cfs_rq->curr = NULL; 5474 } 5475 5476 static void 5477 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5478 { 5479 /* 5480 * Update run-time statistics of the 'current'. 5481 */ 5482 update_curr(cfs_rq); 5483 5484 /* 5485 * Ensure that runnable average is periodically updated. 5486 */ 5487 update_load_avg(cfs_rq, curr, UPDATE_TG); 5488 update_cfs_group(curr); 5489 5490 #ifdef CONFIG_SCHED_HRTICK 5491 /* 5492 * queued ticks are scheduled to match the slice, so don't bother 5493 * validating it and just reschedule. 5494 */ 5495 if (queued) { 5496 resched_curr(rq_of(cfs_rq)); 5497 return; 5498 } 5499 /* 5500 * don't let the period tick interfere with the hrtick preemption 5501 */ 5502 if (!sched_feat(DOUBLE_TICK) && 5503 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 5504 return; 5505 #endif 5506 } 5507 5508 5509 /************************************************** 5510 * CFS bandwidth control machinery 5511 */ 5512 5513 #ifdef CONFIG_CFS_BANDWIDTH 5514 5515 #ifdef CONFIG_JUMP_LABEL 5516 static struct static_key __cfs_bandwidth_used; 5517 5518 static inline bool cfs_bandwidth_used(void) 5519 { 5520 return static_key_false(&__cfs_bandwidth_used); 5521 } 5522 5523 void cfs_bandwidth_usage_inc(void) 5524 { 5525 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5526 } 5527 5528 void cfs_bandwidth_usage_dec(void) 5529 { 5530 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5531 } 5532 #else /* CONFIG_JUMP_LABEL */ 5533 static bool cfs_bandwidth_used(void) 5534 { 5535 return true; 5536 } 5537 5538 void cfs_bandwidth_usage_inc(void) {} 5539 void cfs_bandwidth_usage_dec(void) {} 5540 #endif /* CONFIG_JUMP_LABEL */ 5541 5542 /* 5543 * default period for cfs group bandwidth. 5544 * default: 0.1s, units: nanoseconds 5545 */ 5546 static inline u64 default_cfs_period(void) 5547 { 5548 return 100000000ULL; 5549 } 5550 5551 static inline u64 sched_cfs_bandwidth_slice(void) 5552 { 5553 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5554 } 5555 5556 /* 5557 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5558 * directly instead of rq->clock to avoid adding additional synchronization 5559 * around rq->lock. 5560 * 5561 * requires cfs_b->lock 5562 */ 5563 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5564 { 5565 s64 runtime; 5566 5567 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5568 return; 5569 5570 cfs_b->runtime += cfs_b->quota; 5571 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5572 if (runtime > 0) { 5573 cfs_b->burst_time += runtime; 5574 cfs_b->nr_burst++; 5575 } 5576 5577 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5578 cfs_b->runtime_snap = cfs_b->runtime; 5579 } 5580 5581 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5582 { 5583 return &tg->cfs_bandwidth; 5584 } 5585 5586 /* returns 0 on failure to allocate runtime */ 5587 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5588 struct cfs_rq *cfs_rq, u64 target_runtime) 5589 { 5590 u64 min_amount, amount = 0; 5591 5592 lockdep_assert_held(&cfs_b->lock); 5593 5594 /* note: this is a positive sum as runtime_remaining <= 0 */ 5595 min_amount = target_runtime - cfs_rq->runtime_remaining; 5596 5597 if (cfs_b->quota == RUNTIME_INF) 5598 amount = min_amount; 5599 else { 5600 start_cfs_bandwidth(cfs_b); 5601 5602 if (cfs_b->runtime > 0) { 5603 amount = min(cfs_b->runtime, min_amount); 5604 cfs_b->runtime -= amount; 5605 cfs_b->idle = 0; 5606 } 5607 } 5608 5609 cfs_rq->runtime_remaining += amount; 5610 5611 return cfs_rq->runtime_remaining > 0; 5612 } 5613 5614 /* returns 0 on failure to allocate runtime */ 5615 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5616 { 5617 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5618 int ret; 5619 5620 raw_spin_lock(&cfs_b->lock); 5621 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5622 raw_spin_unlock(&cfs_b->lock); 5623 5624 return ret; 5625 } 5626 5627 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5628 { 5629 /* dock delta_exec before expiring quota (as it could span periods) */ 5630 cfs_rq->runtime_remaining -= delta_exec; 5631 5632 if (likely(cfs_rq->runtime_remaining > 0)) 5633 return; 5634 5635 if (cfs_rq->throttled) 5636 return; 5637 /* 5638 * if we're unable to extend our runtime we resched so that the active 5639 * hierarchy can be throttled 5640 */ 5641 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5642 resched_curr(rq_of(cfs_rq)); 5643 } 5644 5645 static __always_inline 5646 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5647 { 5648 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5649 return; 5650 5651 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5652 } 5653 5654 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5655 { 5656 return cfs_bandwidth_used() && cfs_rq->throttled; 5657 } 5658 5659 /* check whether cfs_rq, or any parent, is throttled */ 5660 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5661 { 5662 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5663 } 5664 5665 /* 5666 * Ensure that neither of the group entities corresponding to src_cpu or 5667 * dest_cpu are members of a throttled hierarchy when performing group 5668 * load-balance operations. 5669 */ 5670 static inline int throttled_lb_pair(struct task_group *tg, 5671 int src_cpu, int dest_cpu) 5672 { 5673 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5674 5675 src_cfs_rq = tg->cfs_rq[src_cpu]; 5676 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5677 5678 return throttled_hierarchy(src_cfs_rq) || 5679 throttled_hierarchy(dest_cfs_rq); 5680 } 5681 5682 static int tg_unthrottle_up(struct task_group *tg, void *data) 5683 { 5684 struct rq *rq = data; 5685 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5686 5687 cfs_rq->throttle_count--; 5688 if (!cfs_rq->throttle_count) { 5689 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5690 cfs_rq->throttled_clock_pelt; 5691 5692 /* Add cfs_rq with load or one or more already running entities to the list */ 5693 if (!cfs_rq_is_decayed(cfs_rq)) 5694 list_add_leaf_cfs_rq(cfs_rq); 5695 5696 if (cfs_rq->throttled_clock_self) { 5697 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5698 5699 cfs_rq->throttled_clock_self = 0; 5700 5701 if (SCHED_WARN_ON((s64)delta < 0)) 5702 delta = 0; 5703 5704 cfs_rq->throttled_clock_self_time += delta; 5705 } 5706 } 5707 5708 return 0; 5709 } 5710 5711 static int tg_throttle_down(struct task_group *tg, void *data) 5712 { 5713 struct rq *rq = data; 5714 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5715 5716 /* group is entering throttled state, stop time */ 5717 if (!cfs_rq->throttle_count) { 5718 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5719 list_del_leaf_cfs_rq(cfs_rq); 5720 5721 SCHED_WARN_ON(cfs_rq->throttled_clock_self); 5722 if (cfs_rq->nr_running) 5723 cfs_rq->throttled_clock_self = rq_clock(rq); 5724 } 5725 cfs_rq->throttle_count++; 5726 5727 return 0; 5728 } 5729 5730 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5731 { 5732 struct rq *rq = rq_of(cfs_rq); 5733 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5734 struct sched_entity *se; 5735 long task_delta, idle_task_delta, dequeue = 1; 5736 5737 raw_spin_lock(&cfs_b->lock); 5738 /* This will start the period timer if necessary */ 5739 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5740 /* 5741 * We have raced with bandwidth becoming available, and if we 5742 * actually throttled the timer might not unthrottle us for an 5743 * entire period. We additionally needed to make sure that any 5744 * subsequent check_cfs_rq_runtime calls agree not to throttle 5745 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5746 * for 1ns of runtime rather than just check cfs_b. 5747 */ 5748 dequeue = 0; 5749 } else { 5750 list_add_tail_rcu(&cfs_rq->throttled_list, 5751 &cfs_b->throttled_cfs_rq); 5752 } 5753 raw_spin_unlock(&cfs_b->lock); 5754 5755 if (!dequeue) 5756 return false; /* Throttle no longer required. */ 5757 5758 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5759 5760 /* freeze hierarchy runnable averages while throttled */ 5761 rcu_read_lock(); 5762 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5763 rcu_read_unlock(); 5764 5765 task_delta = cfs_rq->h_nr_running; 5766 idle_task_delta = cfs_rq->idle_h_nr_running; 5767 for_each_sched_entity(se) { 5768 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5769 /* throttled entity or throttle-on-deactivate */ 5770 if (!se->on_rq) 5771 goto done; 5772 5773 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 5774 5775 if (cfs_rq_is_idle(group_cfs_rq(se))) 5776 idle_task_delta = cfs_rq->h_nr_running; 5777 5778 qcfs_rq->h_nr_running -= task_delta; 5779 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5780 5781 if (qcfs_rq->load.weight) { 5782 /* Avoid re-evaluating load for this entity: */ 5783 se = parent_entity(se); 5784 break; 5785 } 5786 } 5787 5788 for_each_sched_entity(se) { 5789 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5790 /* throttled entity or throttle-on-deactivate */ 5791 if (!se->on_rq) 5792 goto done; 5793 5794 update_load_avg(qcfs_rq, se, 0); 5795 se_update_runnable(se); 5796 5797 if (cfs_rq_is_idle(group_cfs_rq(se))) 5798 idle_task_delta = cfs_rq->h_nr_running; 5799 5800 qcfs_rq->h_nr_running -= task_delta; 5801 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5802 } 5803 5804 /* At this point se is NULL and we are at root level*/ 5805 sub_nr_running(rq, task_delta); 5806 5807 done: 5808 /* 5809 * Note: distribution will already see us throttled via the 5810 * throttled-list. rq->lock protects completion. 5811 */ 5812 cfs_rq->throttled = 1; 5813 SCHED_WARN_ON(cfs_rq->throttled_clock); 5814 if (cfs_rq->nr_running) 5815 cfs_rq->throttled_clock = rq_clock(rq); 5816 return true; 5817 } 5818 5819 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5820 { 5821 struct rq *rq = rq_of(cfs_rq); 5822 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5823 struct sched_entity *se; 5824 long task_delta, idle_task_delta; 5825 5826 se = cfs_rq->tg->se[cpu_of(rq)]; 5827 5828 cfs_rq->throttled = 0; 5829 5830 update_rq_clock(rq); 5831 5832 raw_spin_lock(&cfs_b->lock); 5833 if (cfs_rq->throttled_clock) { 5834 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5835 cfs_rq->throttled_clock = 0; 5836 } 5837 list_del_rcu(&cfs_rq->throttled_list); 5838 raw_spin_unlock(&cfs_b->lock); 5839 5840 /* update hierarchical throttle state */ 5841 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5842 5843 if (!cfs_rq->load.weight) { 5844 if (!cfs_rq->on_list) 5845 return; 5846 /* 5847 * Nothing to run but something to decay (on_list)? 5848 * Complete the branch. 5849 */ 5850 for_each_sched_entity(se) { 5851 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5852 break; 5853 } 5854 goto unthrottle_throttle; 5855 } 5856 5857 task_delta = cfs_rq->h_nr_running; 5858 idle_task_delta = cfs_rq->idle_h_nr_running; 5859 for_each_sched_entity(se) { 5860 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5861 5862 if (se->on_rq) 5863 break; 5864 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5865 5866 if (cfs_rq_is_idle(group_cfs_rq(se))) 5867 idle_task_delta = cfs_rq->h_nr_running; 5868 5869 qcfs_rq->h_nr_running += task_delta; 5870 qcfs_rq->idle_h_nr_running += idle_task_delta; 5871 5872 /* end evaluation on encountering a throttled cfs_rq */ 5873 if (cfs_rq_throttled(qcfs_rq)) 5874 goto unthrottle_throttle; 5875 } 5876 5877 for_each_sched_entity(se) { 5878 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5879 5880 update_load_avg(qcfs_rq, se, UPDATE_TG); 5881 se_update_runnable(se); 5882 5883 if (cfs_rq_is_idle(group_cfs_rq(se))) 5884 idle_task_delta = cfs_rq->h_nr_running; 5885 5886 qcfs_rq->h_nr_running += task_delta; 5887 qcfs_rq->idle_h_nr_running += idle_task_delta; 5888 5889 /* end evaluation on encountering a throttled cfs_rq */ 5890 if (cfs_rq_throttled(qcfs_rq)) 5891 goto unthrottle_throttle; 5892 } 5893 5894 /* At this point se is NULL and we are at root level*/ 5895 add_nr_running(rq, task_delta); 5896 5897 unthrottle_throttle: 5898 assert_list_leaf_cfs_rq(rq); 5899 5900 /* Determine whether we need to wake up potentially idle CPU: */ 5901 if (rq->curr == rq->idle && rq->cfs.nr_running) 5902 resched_curr(rq); 5903 } 5904 5905 #ifdef CONFIG_SMP 5906 static void __cfsb_csd_unthrottle(void *arg) 5907 { 5908 struct cfs_rq *cursor, *tmp; 5909 struct rq *rq = arg; 5910 struct rq_flags rf; 5911 5912 rq_lock(rq, &rf); 5913 5914 /* 5915 * Iterating over the list can trigger several call to 5916 * update_rq_clock() in unthrottle_cfs_rq(). 5917 * Do it once and skip the potential next ones. 5918 */ 5919 update_rq_clock(rq); 5920 rq_clock_start_loop_update(rq); 5921 5922 /* 5923 * Since we hold rq lock we're safe from concurrent manipulation of 5924 * the CSD list. However, this RCU critical section annotates the 5925 * fact that we pair with sched_free_group_rcu(), so that we cannot 5926 * race with group being freed in the window between removing it 5927 * from the list and advancing to the next entry in the list. 5928 */ 5929 rcu_read_lock(); 5930 5931 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 5932 throttled_csd_list) { 5933 list_del_init(&cursor->throttled_csd_list); 5934 5935 if (cfs_rq_throttled(cursor)) 5936 unthrottle_cfs_rq(cursor); 5937 } 5938 5939 rcu_read_unlock(); 5940 5941 rq_clock_stop_loop_update(rq); 5942 rq_unlock(rq, &rf); 5943 } 5944 5945 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5946 { 5947 struct rq *rq = rq_of(cfs_rq); 5948 bool first; 5949 5950 if (rq == this_rq()) { 5951 unthrottle_cfs_rq(cfs_rq); 5952 return; 5953 } 5954 5955 /* Already enqueued */ 5956 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 5957 return; 5958 5959 first = list_empty(&rq->cfsb_csd_list); 5960 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 5961 if (first) 5962 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 5963 } 5964 #else 5965 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5966 { 5967 unthrottle_cfs_rq(cfs_rq); 5968 } 5969 #endif 5970 5971 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5972 { 5973 lockdep_assert_rq_held(rq_of(cfs_rq)); 5974 5975 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 5976 cfs_rq->runtime_remaining <= 0)) 5977 return; 5978 5979 __unthrottle_cfs_rq_async(cfs_rq); 5980 } 5981 5982 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 5983 { 5984 struct cfs_rq *local_unthrottle = NULL; 5985 int this_cpu = smp_processor_id(); 5986 u64 runtime, remaining = 1; 5987 bool throttled = false; 5988 struct cfs_rq *cfs_rq; 5989 struct rq_flags rf; 5990 struct rq *rq; 5991 5992 rcu_read_lock(); 5993 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 5994 throttled_list) { 5995 rq = rq_of(cfs_rq); 5996 5997 if (!remaining) { 5998 throttled = true; 5999 break; 6000 } 6001 6002 rq_lock_irqsave(rq, &rf); 6003 if (!cfs_rq_throttled(cfs_rq)) 6004 goto next; 6005 6006 #ifdef CONFIG_SMP 6007 /* Already queued for async unthrottle */ 6008 if (!list_empty(&cfs_rq->throttled_csd_list)) 6009 goto next; 6010 #endif 6011 6012 /* By the above checks, this should never be true */ 6013 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 6014 6015 raw_spin_lock(&cfs_b->lock); 6016 runtime = -cfs_rq->runtime_remaining + 1; 6017 if (runtime > cfs_b->runtime) 6018 runtime = cfs_b->runtime; 6019 cfs_b->runtime -= runtime; 6020 remaining = cfs_b->runtime; 6021 raw_spin_unlock(&cfs_b->lock); 6022 6023 cfs_rq->runtime_remaining += runtime; 6024 6025 /* we check whether we're throttled above */ 6026 if (cfs_rq->runtime_remaining > 0) { 6027 if (cpu_of(rq) != this_cpu || 6028 SCHED_WARN_ON(local_unthrottle)) 6029 unthrottle_cfs_rq_async(cfs_rq); 6030 else 6031 local_unthrottle = cfs_rq; 6032 } else { 6033 throttled = true; 6034 } 6035 6036 next: 6037 rq_unlock_irqrestore(rq, &rf); 6038 } 6039 rcu_read_unlock(); 6040 6041 if (local_unthrottle) { 6042 rq = cpu_rq(this_cpu); 6043 rq_lock_irqsave(rq, &rf); 6044 if (cfs_rq_throttled(local_unthrottle)) 6045 unthrottle_cfs_rq(local_unthrottle); 6046 rq_unlock_irqrestore(rq, &rf); 6047 } 6048 6049 return throttled; 6050 } 6051 6052 /* 6053 * Responsible for refilling a task_group's bandwidth and unthrottling its 6054 * cfs_rqs as appropriate. If there has been no activity within the last 6055 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6056 * used to track this state. 6057 */ 6058 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6059 { 6060 int throttled; 6061 6062 /* no need to continue the timer with no bandwidth constraint */ 6063 if (cfs_b->quota == RUNTIME_INF) 6064 goto out_deactivate; 6065 6066 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6067 cfs_b->nr_periods += overrun; 6068 6069 /* Refill extra burst quota even if cfs_b->idle */ 6070 __refill_cfs_bandwidth_runtime(cfs_b); 6071 6072 /* 6073 * idle depends on !throttled (for the case of a large deficit), and if 6074 * we're going inactive then everything else can be deferred 6075 */ 6076 if (cfs_b->idle && !throttled) 6077 goto out_deactivate; 6078 6079 if (!throttled) { 6080 /* mark as potentially idle for the upcoming period */ 6081 cfs_b->idle = 1; 6082 return 0; 6083 } 6084 6085 /* account preceding periods in which throttling occurred */ 6086 cfs_b->nr_throttled += overrun; 6087 6088 /* 6089 * This check is repeated as we release cfs_b->lock while we unthrottle. 6090 */ 6091 while (throttled && cfs_b->runtime > 0) { 6092 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6093 /* we can't nest cfs_b->lock while distributing bandwidth */ 6094 throttled = distribute_cfs_runtime(cfs_b); 6095 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6096 } 6097 6098 /* 6099 * While we are ensured activity in the period following an 6100 * unthrottle, this also covers the case in which the new bandwidth is 6101 * insufficient to cover the existing bandwidth deficit. (Forcing the 6102 * timer to remain active while there are any throttled entities.) 6103 */ 6104 cfs_b->idle = 0; 6105 6106 return 0; 6107 6108 out_deactivate: 6109 return 1; 6110 } 6111 6112 /* a cfs_rq won't donate quota below this amount */ 6113 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6114 /* minimum remaining period time to redistribute slack quota */ 6115 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6116 /* how long we wait to gather additional slack before distributing */ 6117 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6118 6119 /* 6120 * Are we near the end of the current quota period? 6121 * 6122 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6123 * hrtimer base being cleared by hrtimer_start. In the case of 6124 * migrate_hrtimers, base is never cleared, so we are fine. 6125 */ 6126 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6127 { 6128 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6129 s64 remaining; 6130 6131 /* if the call-back is running a quota refresh is already occurring */ 6132 if (hrtimer_callback_running(refresh_timer)) 6133 return 1; 6134 6135 /* is a quota refresh about to occur? */ 6136 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6137 if (remaining < (s64)min_expire) 6138 return 1; 6139 6140 return 0; 6141 } 6142 6143 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6144 { 6145 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6146 6147 /* if there's a quota refresh soon don't bother with slack */ 6148 if (runtime_refresh_within(cfs_b, min_left)) 6149 return; 6150 6151 /* don't push forwards an existing deferred unthrottle */ 6152 if (cfs_b->slack_started) 6153 return; 6154 cfs_b->slack_started = true; 6155 6156 hrtimer_start(&cfs_b->slack_timer, 6157 ns_to_ktime(cfs_bandwidth_slack_period), 6158 HRTIMER_MODE_REL); 6159 } 6160 6161 /* we know any runtime found here is valid as update_curr() precedes return */ 6162 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6163 { 6164 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6165 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6166 6167 if (slack_runtime <= 0) 6168 return; 6169 6170 raw_spin_lock(&cfs_b->lock); 6171 if (cfs_b->quota != RUNTIME_INF) { 6172 cfs_b->runtime += slack_runtime; 6173 6174 /* we are under rq->lock, defer unthrottling using a timer */ 6175 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6176 !list_empty(&cfs_b->throttled_cfs_rq)) 6177 start_cfs_slack_bandwidth(cfs_b); 6178 } 6179 raw_spin_unlock(&cfs_b->lock); 6180 6181 /* even if it's not valid for return we don't want to try again */ 6182 cfs_rq->runtime_remaining -= slack_runtime; 6183 } 6184 6185 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6186 { 6187 if (!cfs_bandwidth_used()) 6188 return; 6189 6190 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 6191 return; 6192 6193 __return_cfs_rq_runtime(cfs_rq); 6194 } 6195 6196 /* 6197 * This is done with a timer (instead of inline with bandwidth return) since 6198 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6199 */ 6200 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6201 { 6202 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6203 unsigned long flags; 6204 6205 /* confirm we're still not at a refresh boundary */ 6206 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6207 cfs_b->slack_started = false; 6208 6209 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6210 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6211 return; 6212 } 6213 6214 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6215 runtime = cfs_b->runtime; 6216 6217 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6218 6219 if (!runtime) 6220 return; 6221 6222 distribute_cfs_runtime(cfs_b); 6223 } 6224 6225 /* 6226 * When a group wakes up we want to make sure that its quota is not already 6227 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6228 * runtime as update_curr() throttling can not trigger until it's on-rq. 6229 */ 6230 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6231 { 6232 if (!cfs_bandwidth_used()) 6233 return; 6234 6235 /* an active group must be handled by the update_curr()->put() path */ 6236 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6237 return; 6238 6239 /* ensure the group is not already throttled */ 6240 if (cfs_rq_throttled(cfs_rq)) 6241 return; 6242 6243 /* update runtime allocation */ 6244 account_cfs_rq_runtime(cfs_rq, 0); 6245 if (cfs_rq->runtime_remaining <= 0) 6246 throttle_cfs_rq(cfs_rq); 6247 } 6248 6249 static void sync_throttle(struct task_group *tg, int cpu) 6250 { 6251 struct cfs_rq *pcfs_rq, *cfs_rq; 6252 6253 if (!cfs_bandwidth_used()) 6254 return; 6255 6256 if (!tg->parent) 6257 return; 6258 6259 cfs_rq = tg->cfs_rq[cpu]; 6260 pcfs_rq = tg->parent->cfs_rq[cpu]; 6261 6262 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6263 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6264 } 6265 6266 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6267 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6268 { 6269 if (!cfs_bandwidth_used()) 6270 return false; 6271 6272 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6273 return false; 6274 6275 /* 6276 * it's possible for a throttled entity to be forced into a running 6277 * state (e.g. set_curr_task), in this case we're finished. 6278 */ 6279 if (cfs_rq_throttled(cfs_rq)) 6280 return true; 6281 6282 return throttle_cfs_rq(cfs_rq); 6283 } 6284 6285 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6286 { 6287 struct cfs_bandwidth *cfs_b = 6288 container_of(timer, struct cfs_bandwidth, slack_timer); 6289 6290 do_sched_cfs_slack_timer(cfs_b); 6291 6292 return HRTIMER_NORESTART; 6293 } 6294 6295 extern const u64 max_cfs_quota_period; 6296 6297 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6298 { 6299 struct cfs_bandwidth *cfs_b = 6300 container_of(timer, struct cfs_bandwidth, period_timer); 6301 unsigned long flags; 6302 int overrun; 6303 int idle = 0; 6304 int count = 0; 6305 6306 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6307 for (;;) { 6308 overrun = hrtimer_forward_now(timer, cfs_b->period); 6309 if (!overrun) 6310 break; 6311 6312 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6313 6314 if (++count > 3) { 6315 u64 new, old = ktime_to_ns(cfs_b->period); 6316 6317 /* 6318 * Grow period by a factor of 2 to avoid losing precision. 6319 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6320 * to fail. 6321 */ 6322 new = old * 2; 6323 if (new < max_cfs_quota_period) { 6324 cfs_b->period = ns_to_ktime(new); 6325 cfs_b->quota *= 2; 6326 cfs_b->burst *= 2; 6327 6328 pr_warn_ratelimited( 6329 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6330 smp_processor_id(), 6331 div_u64(new, NSEC_PER_USEC), 6332 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6333 } else { 6334 pr_warn_ratelimited( 6335 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6336 smp_processor_id(), 6337 div_u64(old, NSEC_PER_USEC), 6338 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6339 } 6340 6341 /* reset count so we don't come right back in here */ 6342 count = 0; 6343 } 6344 } 6345 if (idle) 6346 cfs_b->period_active = 0; 6347 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6348 6349 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6350 } 6351 6352 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6353 { 6354 raw_spin_lock_init(&cfs_b->lock); 6355 cfs_b->runtime = 0; 6356 cfs_b->quota = RUNTIME_INF; 6357 cfs_b->period = ns_to_ktime(default_cfs_period()); 6358 cfs_b->burst = 0; 6359 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6360 6361 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6362 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6363 cfs_b->period_timer.function = sched_cfs_period_timer; 6364 6365 /* Add a random offset so that timers interleave */ 6366 hrtimer_set_expires(&cfs_b->period_timer, 6367 get_random_u32_below(cfs_b->period)); 6368 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6369 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6370 cfs_b->slack_started = false; 6371 } 6372 6373 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6374 { 6375 cfs_rq->runtime_enabled = 0; 6376 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6377 #ifdef CONFIG_SMP 6378 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6379 #endif 6380 } 6381 6382 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6383 { 6384 lockdep_assert_held(&cfs_b->lock); 6385 6386 if (cfs_b->period_active) 6387 return; 6388 6389 cfs_b->period_active = 1; 6390 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6391 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6392 } 6393 6394 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6395 { 6396 int __maybe_unused i; 6397 6398 /* init_cfs_bandwidth() was not called */ 6399 if (!cfs_b->throttled_cfs_rq.next) 6400 return; 6401 6402 hrtimer_cancel(&cfs_b->period_timer); 6403 hrtimer_cancel(&cfs_b->slack_timer); 6404 6405 /* 6406 * It is possible that we still have some cfs_rq's pending on a CSD 6407 * list, though this race is very rare. In order for this to occur, we 6408 * must have raced with the last task leaving the group while there 6409 * exist throttled cfs_rq(s), and the period_timer must have queued the 6410 * CSD item but the remote cpu has not yet processed it. To handle this, 6411 * we can simply flush all pending CSD work inline here. We're 6412 * guaranteed at this point that no additional cfs_rq of this group can 6413 * join a CSD list. 6414 */ 6415 #ifdef CONFIG_SMP 6416 for_each_possible_cpu(i) { 6417 struct rq *rq = cpu_rq(i); 6418 unsigned long flags; 6419 6420 if (list_empty(&rq->cfsb_csd_list)) 6421 continue; 6422 6423 local_irq_save(flags); 6424 __cfsb_csd_unthrottle(rq); 6425 local_irq_restore(flags); 6426 } 6427 #endif 6428 } 6429 6430 /* 6431 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6432 * 6433 * The race is harmless, since modifying bandwidth settings of unhooked group 6434 * bits doesn't do much. 6435 */ 6436 6437 /* cpu online callback */ 6438 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6439 { 6440 struct task_group *tg; 6441 6442 lockdep_assert_rq_held(rq); 6443 6444 rcu_read_lock(); 6445 list_for_each_entry_rcu(tg, &task_groups, list) { 6446 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6447 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6448 6449 raw_spin_lock(&cfs_b->lock); 6450 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6451 raw_spin_unlock(&cfs_b->lock); 6452 } 6453 rcu_read_unlock(); 6454 } 6455 6456 /* cpu offline callback */ 6457 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6458 { 6459 struct task_group *tg; 6460 6461 lockdep_assert_rq_held(rq); 6462 6463 /* 6464 * The rq clock has already been updated in the 6465 * set_rq_offline(), so we should skip updating 6466 * the rq clock again in unthrottle_cfs_rq(). 6467 */ 6468 rq_clock_start_loop_update(rq); 6469 6470 rcu_read_lock(); 6471 list_for_each_entry_rcu(tg, &task_groups, list) { 6472 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6473 6474 if (!cfs_rq->runtime_enabled) 6475 continue; 6476 6477 /* 6478 * clock_task is not advancing so we just need to make sure 6479 * there's some valid quota amount 6480 */ 6481 cfs_rq->runtime_remaining = 1; 6482 /* 6483 * Offline rq is schedulable till CPU is completely disabled 6484 * in take_cpu_down(), so we prevent new cfs throttling here. 6485 */ 6486 cfs_rq->runtime_enabled = 0; 6487 6488 if (cfs_rq_throttled(cfs_rq)) 6489 unthrottle_cfs_rq(cfs_rq); 6490 } 6491 rcu_read_unlock(); 6492 6493 rq_clock_stop_loop_update(rq); 6494 } 6495 6496 bool cfs_task_bw_constrained(struct task_struct *p) 6497 { 6498 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6499 6500 if (!cfs_bandwidth_used()) 6501 return false; 6502 6503 if (cfs_rq->runtime_enabled || 6504 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6505 return true; 6506 6507 return false; 6508 } 6509 6510 #ifdef CONFIG_NO_HZ_FULL 6511 /* called from pick_next_task_fair() */ 6512 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6513 { 6514 int cpu = cpu_of(rq); 6515 6516 if (!sched_feat(HZ_BW) || !cfs_bandwidth_used()) 6517 return; 6518 6519 if (!tick_nohz_full_cpu(cpu)) 6520 return; 6521 6522 if (rq->nr_running != 1) 6523 return; 6524 6525 /* 6526 * We know there is only one task runnable and we've just picked it. The 6527 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6528 * be otherwise able to stop the tick. Just need to check if we are using 6529 * bandwidth control. 6530 */ 6531 if (cfs_task_bw_constrained(p)) 6532 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6533 } 6534 #endif 6535 6536 #else /* CONFIG_CFS_BANDWIDTH */ 6537 6538 static inline bool cfs_bandwidth_used(void) 6539 { 6540 return false; 6541 } 6542 6543 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6544 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6545 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6546 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6547 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6548 6549 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6550 { 6551 return 0; 6552 } 6553 6554 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6555 { 6556 return 0; 6557 } 6558 6559 static inline int throttled_lb_pair(struct task_group *tg, 6560 int src_cpu, int dest_cpu) 6561 { 6562 return 0; 6563 } 6564 6565 #ifdef CONFIG_FAIR_GROUP_SCHED 6566 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6567 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6568 #endif 6569 6570 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6571 { 6572 return NULL; 6573 } 6574 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6575 static inline void update_runtime_enabled(struct rq *rq) {} 6576 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6577 #ifdef CONFIG_CGROUP_SCHED 6578 bool cfs_task_bw_constrained(struct task_struct *p) 6579 { 6580 return false; 6581 } 6582 #endif 6583 #endif /* CONFIG_CFS_BANDWIDTH */ 6584 6585 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6586 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6587 #endif 6588 6589 /************************************************** 6590 * CFS operations on tasks: 6591 */ 6592 6593 #ifdef CONFIG_SCHED_HRTICK 6594 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6595 { 6596 struct sched_entity *se = &p->se; 6597 6598 SCHED_WARN_ON(task_rq(p) != rq); 6599 6600 if (rq->cfs.h_nr_running > 1) { 6601 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6602 u64 slice = se->slice; 6603 s64 delta = slice - ran; 6604 6605 if (delta < 0) { 6606 if (task_current(rq, p)) 6607 resched_curr(rq); 6608 return; 6609 } 6610 hrtick_start(rq, delta); 6611 } 6612 } 6613 6614 /* 6615 * called from enqueue/dequeue and updates the hrtick when the 6616 * current task is from our class and nr_running is low enough 6617 * to matter. 6618 */ 6619 static void hrtick_update(struct rq *rq) 6620 { 6621 struct task_struct *curr = rq->curr; 6622 6623 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 6624 return; 6625 6626 hrtick_start_fair(rq, curr); 6627 } 6628 #else /* !CONFIG_SCHED_HRTICK */ 6629 static inline void 6630 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6631 { 6632 } 6633 6634 static inline void hrtick_update(struct rq *rq) 6635 { 6636 } 6637 #endif 6638 6639 #ifdef CONFIG_SMP 6640 static inline bool cpu_overutilized(int cpu) 6641 { 6642 unsigned long rq_util_min, rq_util_max; 6643 6644 if (!sched_energy_enabled()) 6645 return false; 6646 6647 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6648 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6649 6650 /* Return true only if the utilization doesn't fit CPU's capacity */ 6651 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6652 } 6653 6654 static inline void set_rd_overutilized_status(struct root_domain *rd, 6655 unsigned int status) 6656 { 6657 if (!sched_energy_enabled()) 6658 return; 6659 6660 WRITE_ONCE(rd->overutilized, status); 6661 trace_sched_overutilized_tp(rd, !!status); 6662 } 6663 6664 static inline void check_update_overutilized_status(struct rq *rq) 6665 { 6666 /* 6667 * overutilized field is used for load balancing decisions only 6668 * if energy aware scheduler is being used 6669 */ 6670 if (!sched_energy_enabled()) 6671 return; 6672 6673 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) 6674 set_rd_overutilized_status(rq->rd, SG_OVERUTILIZED); 6675 } 6676 #else 6677 static inline void check_update_overutilized_status(struct rq *rq) { } 6678 #endif 6679 6680 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6681 static int sched_idle_rq(struct rq *rq) 6682 { 6683 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6684 rq->nr_running); 6685 } 6686 6687 #ifdef CONFIG_SMP 6688 static int sched_idle_cpu(int cpu) 6689 { 6690 return sched_idle_rq(cpu_rq(cpu)); 6691 } 6692 #endif 6693 6694 /* 6695 * The enqueue_task method is called before nr_running is 6696 * increased. Here we update the fair scheduling stats and 6697 * then put the task into the rbtree: 6698 */ 6699 static void 6700 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6701 { 6702 struct cfs_rq *cfs_rq; 6703 struct sched_entity *se = &p->se; 6704 int idle_h_nr_running = task_has_idle_policy(p); 6705 int task_new = !(flags & ENQUEUE_WAKEUP); 6706 6707 /* 6708 * The code below (indirectly) updates schedutil which looks at 6709 * the cfs_rq utilization to select a frequency. 6710 * Let's add the task's estimated utilization to the cfs_rq's 6711 * estimated utilization, before we update schedutil. 6712 */ 6713 util_est_enqueue(&rq->cfs, p); 6714 6715 /* 6716 * If in_iowait is set, the code below may not trigger any cpufreq 6717 * utilization updates, so do it here explicitly with the IOWAIT flag 6718 * passed. 6719 */ 6720 if (p->in_iowait) 6721 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6722 6723 for_each_sched_entity(se) { 6724 if (se->on_rq) 6725 break; 6726 cfs_rq = cfs_rq_of(se); 6727 enqueue_entity(cfs_rq, se, flags); 6728 6729 cfs_rq->h_nr_running++; 6730 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6731 6732 if (cfs_rq_is_idle(cfs_rq)) 6733 idle_h_nr_running = 1; 6734 6735 /* end evaluation on encountering a throttled cfs_rq */ 6736 if (cfs_rq_throttled(cfs_rq)) 6737 goto enqueue_throttle; 6738 6739 flags = ENQUEUE_WAKEUP; 6740 } 6741 6742 for_each_sched_entity(se) { 6743 cfs_rq = cfs_rq_of(se); 6744 6745 update_load_avg(cfs_rq, se, UPDATE_TG); 6746 se_update_runnable(se); 6747 update_cfs_group(se); 6748 6749 cfs_rq->h_nr_running++; 6750 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6751 6752 if (cfs_rq_is_idle(cfs_rq)) 6753 idle_h_nr_running = 1; 6754 6755 /* end evaluation on encountering a throttled cfs_rq */ 6756 if (cfs_rq_throttled(cfs_rq)) 6757 goto enqueue_throttle; 6758 } 6759 6760 /* At this point se is NULL and we are at root level*/ 6761 add_nr_running(rq, 1); 6762 6763 /* 6764 * Since new tasks are assigned an initial util_avg equal to 6765 * half of the spare capacity of their CPU, tiny tasks have the 6766 * ability to cross the overutilized threshold, which will 6767 * result in the load balancer ruining all the task placement 6768 * done by EAS. As a way to mitigate that effect, do not account 6769 * for the first enqueue operation of new tasks during the 6770 * overutilized flag detection. 6771 * 6772 * A better way of solving this problem would be to wait for 6773 * the PELT signals of tasks to converge before taking them 6774 * into account, but that is not straightforward to implement, 6775 * and the following generally works well enough in practice. 6776 */ 6777 if (!task_new) 6778 check_update_overutilized_status(rq); 6779 6780 enqueue_throttle: 6781 assert_list_leaf_cfs_rq(rq); 6782 6783 hrtick_update(rq); 6784 } 6785 6786 static void set_next_buddy(struct sched_entity *se); 6787 6788 /* 6789 * The dequeue_task method is called before nr_running is 6790 * decreased. We remove the task from the rbtree and 6791 * update the fair scheduling stats: 6792 */ 6793 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6794 { 6795 struct cfs_rq *cfs_rq; 6796 struct sched_entity *se = &p->se; 6797 int task_sleep = flags & DEQUEUE_SLEEP; 6798 int idle_h_nr_running = task_has_idle_policy(p); 6799 bool was_sched_idle = sched_idle_rq(rq); 6800 6801 util_est_dequeue(&rq->cfs, p); 6802 6803 for_each_sched_entity(se) { 6804 cfs_rq = cfs_rq_of(se); 6805 dequeue_entity(cfs_rq, se, flags); 6806 6807 cfs_rq->h_nr_running--; 6808 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6809 6810 if (cfs_rq_is_idle(cfs_rq)) 6811 idle_h_nr_running = 1; 6812 6813 /* end evaluation on encountering a throttled cfs_rq */ 6814 if (cfs_rq_throttled(cfs_rq)) 6815 goto dequeue_throttle; 6816 6817 /* Don't dequeue parent if it has other entities besides us */ 6818 if (cfs_rq->load.weight) { 6819 /* Avoid re-evaluating load for this entity: */ 6820 se = parent_entity(se); 6821 /* 6822 * Bias pick_next to pick a task from this cfs_rq, as 6823 * p is sleeping when it is within its sched_slice. 6824 */ 6825 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 6826 set_next_buddy(se); 6827 break; 6828 } 6829 flags |= DEQUEUE_SLEEP; 6830 } 6831 6832 for_each_sched_entity(se) { 6833 cfs_rq = cfs_rq_of(se); 6834 6835 update_load_avg(cfs_rq, se, UPDATE_TG); 6836 se_update_runnable(se); 6837 update_cfs_group(se); 6838 6839 cfs_rq->h_nr_running--; 6840 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6841 6842 if (cfs_rq_is_idle(cfs_rq)) 6843 idle_h_nr_running = 1; 6844 6845 /* end evaluation on encountering a throttled cfs_rq */ 6846 if (cfs_rq_throttled(cfs_rq)) 6847 goto dequeue_throttle; 6848 6849 } 6850 6851 /* At this point se is NULL and we are at root level*/ 6852 sub_nr_running(rq, 1); 6853 6854 /* balance early to pull high priority tasks */ 6855 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 6856 rq->next_balance = jiffies; 6857 6858 dequeue_throttle: 6859 util_est_update(&rq->cfs, p, task_sleep); 6860 hrtick_update(rq); 6861 } 6862 6863 #ifdef CONFIG_SMP 6864 6865 /* Working cpumask for: load_balance, load_balance_newidle. */ 6866 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6867 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 6868 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 6869 6870 #ifdef CONFIG_NO_HZ_COMMON 6871 6872 static struct { 6873 cpumask_var_t idle_cpus_mask; 6874 atomic_t nr_cpus; 6875 int has_blocked; /* Idle CPUS has blocked load */ 6876 int needs_update; /* Newly idle CPUs need their next_balance collated */ 6877 unsigned long next_balance; /* in jiffy units */ 6878 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 6879 } nohz ____cacheline_aligned; 6880 6881 #endif /* CONFIG_NO_HZ_COMMON */ 6882 6883 static unsigned long cpu_load(struct rq *rq) 6884 { 6885 return cfs_rq_load_avg(&rq->cfs); 6886 } 6887 6888 /* 6889 * cpu_load_without - compute CPU load without any contributions from *p 6890 * @cpu: the CPU which load is requested 6891 * @p: the task which load should be discounted 6892 * 6893 * The load of a CPU is defined by the load of tasks currently enqueued on that 6894 * CPU as well as tasks which are currently sleeping after an execution on that 6895 * CPU. 6896 * 6897 * This method returns the load of the specified CPU by discounting the load of 6898 * the specified task, whenever the task is currently contributing to the CPU 6899 * load. 6900 */ 6901 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 6902 { 6903 struct cfs_rq *cfs_rq; 6904 unsigned int load; 6905 6906 /* Task has no contribution or is new */ 6907 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6908 return cpu_load(rq); 6909 6910 cfs_rq = &rq->cfs; 6911 load = READ_ONCE(cfs_rq->avg.load_avg); 6912 6913 /* Discount task's util from CPU's util */ 6914 lsub_positive(&load, task_h_load(p)); 6915 6916 return load; 6917 } 6918 6919 static unsigned long cpu_runnable(struct rq *rq) 6920 { 6921 return cfs_rq_runnable_avg(&rq->cfs); 6922 } 6923 6924 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 6925 { 6926 struct cfs_rq *cfs_rq; 6927 unsigned int runnable; 6928 6929 /* Task has no contribution or is new */ 6930 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6931 return cpu_runnable(rq); 6932 6933 cfs_rq = &rq->cfs; 6934 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 6935 6936 /* Discount task's runnable from CPU's runnable */ 6937 lsub_positive(&runnable, p->se.avg.runnable_avg); 6938 6939 return runnable; 6940 } 6941 6942 static unsigned long capacity_of(int cpu) 6943 { 6944 return cpu_rq(cpu)->cpu_capacity; 6945 } 6946 6947 static void record_wakee(struct task_struct *p) 6948 { 6949 /* 6950 * Only decay a single time; tasks that have less then 1 wakeup per 6951 * jiffy will not have built up many flips. 6952 */ 6953 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 6954 current->wakee_flips >>= 1; 6955 current->wakee_flip_decay_ts = jiffies; 6956 } 6957 6958 if (current->last_wakee != p) { 6959 current->last_wakee = p; 6960 current->wakee_flips++; 6961 } 6962 } 6963 6964 /* 6965 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 6966 * 6967 * A waker of many should wake a different task than the one last awakened 6968 * at a frequency roughly N times higher than one of its wakees. 6969 * 6970 * In order to determine whether we should let the load spread vs consolidating 6971 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 6972 * partner, and a factor of lls_size higher frequency in the other. 6973 * 6974 * With both conditions met, we can be relatively sure that the relationship is 6975 * non-monogamous, with partner count exceeding socket size. 6976 * 6977 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 6978 * whatever is irrelevant, spread criteria is apparent partner count exceeds 6979 * socket size. 6980 */ 6981 static int wake_wide(struct task_struct *p) 6982 { 6983 unsigned int master = current->wakee_flips; 6984 unsigned int slave = p->wakee_flips; 6985 int factor = __this_cpu_read(sd_llc_size); 6986 6987 if (master < slave) 6988 swap(master, slave); 6989 if (slave < factor || master < slave * factor) 6990 return 0; 6991 return 1; 6992 } 6993 6994 /* 6995 * The purpose of wake_affine() is to quickly determine on which CPU we can run 6996 * soonest. For the purpose of speed we only consider the waking and previous 6997 * CPU. 6998 * 6999 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7000 * cache-affine and is (or will be) idle. 7001 * 7002 * wake_affine_weight() - considers the weight to reflect the average 7003 * scheduling latency of the CPUs. This seems to work 7004 * for the overloaded case. 7005 */ 7006 static int 7007 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7008 { 7009 /* 7010 * If this_cpu is idle, it implies the wakeup is from interrupt 7011 * context. Only allow the move if cache is shared. Otherwise an 7012 * interrupt intensive workload could force all tasks onto one 7013 * node depending on the IO topology or IRQ affinity settings. 7014 * 7015 * If the prev_cpu is idle and cache affine then avoid a migration. 7016 * There is no guarantee that the cache hot data from an interrupt 7017 * is more important than cache hot data on the prev_cpu and from 7018 * a cpufreq perspective, it's better to have higher utilisation 7019 * on one CPU. 7020 */ 7021 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7022 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7023 7024 if (sync && cpu_rq(this_cpu)->nr_running == 1) 7025 return this_cpu; 7026 7027 if (available_idle_cpu(prev_cpu)) 7028 return prev_cpu; 7029 7030 return nr_cpumask_bits; 7031 } 7032 7033 static int 7034 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7035 int this_cpu, int prev_cpu, int sync) 7036 { 7037 s64 this_eff_load, prev_eff_load; 7038 unsigned long task_load; 7039 7040 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7041 7042 if (sync) { 7043 unsigned long current_load = task_h_load(current); 7044 7045 if (current_load > this_eff_load) 7046 return this_cpu; 7047 7048 this_eff_load -= current_load; 7049 } 7050 7051 task_load = task_h_load(p); 7052 7053 this_eff_load += task_load; 7054 if (sched_feat(WA_BIAS)) 7055 this_eff_load *= 100; 7056 this_eff_load *= capacity_of(prev_cpu); 7057 7058 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7059 prev_eff_load -= task_load; 7060 if (sched_feat(WA_BIAS)) 7061 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7062 prev_eff_load *= capacity_of(this_cpu); 7063 7064 /* 7065 * If sync, adjust the weight of prev_eff_load such that if 7066 * prev_eff == this_eff that select_idle_sibling() will consider 7067 * stacking the wakee on top of the waker if no other CPU is 7068 * idle. 7069 */ 7070 if (sync) 7071 prev_eff_load += 1; 7072 7073 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7074 } 7075 7076 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7077 int this_cpu, int prev_cpu, int sync) 7078 { 7079 int target = nr_cpumask_bits; 7080 7081 if (sched_feat(WA_IDLE)) 7082 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7083 7084 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7085 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7086 7087 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7088 if (target != this_cpu) 7089 return prev_cpu; 7090 7091 schedstat_inc(sd->ttwu_move_affine); 7092 schedstat_inc(p->stats.nr_wakeups_affine); 7093 return target; 7094 } 7095 7096 static struct sched_group * 7097 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7098 7099 /* 7100 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 7101 */ 7102 static int 7103 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7104 { 7105 unsigned long load, min_load = ULONG_MAX; 7106 unsigned int min_exit_latency = UINT_MAX; 7107 u64 latest_idle_timestamp = 0; 7108 int least_loaded_cpu = this_cpu; 7109 int shallowest_idle_cpu = -1; 7110 int i; 7111 7112 /* Check if we have any choice: */ 7113 if (group->group_weight == 1) 7114 return cpumask_first(sched_group_span(group)); 7115 7116 /* Traverse only the allowed CPUs */ 7117 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7118 struct rq *rq = cpu_rq(i); 7119 7120 if (!sched_core_cookie_match(rq, p)) 7121 continue; 7122 7123 if (sched_idle_cpu(i)) 7124 return i; 7125 7126 if (available_idle_cpu(i)) { 7127 struct cpuidle_state *idle = idle_get_state(rq); 7128 if (idle && idle->exit_latency < min_exit_latency) { 7129 /* 7130 * We give priority to a CPU whose idle state 7131 * has the smallest exit latency irrespective 7132 * of any idle timestamp. 7133 */ 7134 min_exit_latency = idle->exit_latency; 7135 latest_idle_timestamp = rq->idle_stamp; 7136 shallowest_idle_cpu = i; 7137 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7138 rq->idle_stamp > latest_idle_timestamp) { 7139 /* 7140 * If equal or no active idle state, then 7141 * the most recently idled CPU might have 7142 * a warmer cache. 7143 */ 7144 latest_idle_timestamp = rq->idle_stamp; 7145 shallowest_idle_cpu = i; 7146 } 7147 } else if (shallowest_idle_cpu == -1) { 7148 load = cpu_load(cpu_rq(i)); 7149 if (load < min_load) { 7150 min_load = load; 7151 least_loaded_cpu = i; 7152 } 7153 } 7154 } 7155 7156 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7157 } 7158 7159 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 7160 int cpu, int prev_cpu, int sd_flag) 7161 { 7162 int new_cpu = cpu; 7163 7164 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7165 return prev_cpu; 7166 7167 /* 7168 * We need task's util for cpu_util_without, sync it up to 7169 * prev_cpu's last_update_time. 7170 */ 7171 if (!(sd_flag & SD_BALANCE_FORK)) 7172 sync_entity_load_avg(&p->se); 7173 7174 while (sd) { 7175 struct sched_group *group; 7176 struct sched_domain *tmp; 7177 int weight; 7178 7179 if (!(sd->flags & sd_flag)) { 7180 sd = sd->child; 7181 continue; 7182 } 7183 7184 group = find_idlest_group(sd, p, cpu); 7185 if (!group) { 7186 sd = sd->child; 7187 continue; 7188 } 7189 7190 new_cpu = find_idlest_group_cpu(group, p, cpu); 7191 if (new_cpu == cpu) { 7192 /* Now try balancing at a lower domain level of 'cpu': */ 7193 sd = sd->child; 7194 continue; 7195 } 7196 7197 /* Now try balancing at a lower domain level of 'new_cpu': */ 7198 cpu = new_cpu; 7199 weight = sd->span_weight; 7200 sd = NULL; 7201 for_each_domain(cpu, tmp) { 7202 if (weight <= tmp->span_weight) 7203 break; 7204 if (tmp->flags & sd_flag) 7205 sd = tmp; 7206 } 7207 } 7208 7209 return new_cpu; 7210 } 7211 7212 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7213 { 7214 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7215 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7216 return cpu; 7217 7218 return -1; 7219 } 7220 7221 #ifdef CONFIG_SCHED_SMT 7222 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7223 EXPORT_SYMBOL_GPL(sched_smt_present); 7224 7225 static inline void set_idle_cores(int cpu, int val) 7226 { 7227 struct sched_domain_shared *sds; 7228 7229 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7230 if (sds) 7231 WRITE_ONCE(sds->has_idle_cores, val); 7232 } 7233 7234 static inline bool test_idle_cores(int cpu) 7235 { 7236 struct sched_domain_shared *sds; 7237 7238 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7239 if (sds) 7240 return READ_ONCE(sds->has_idle_cores); 7241 7242 return false; 7243 } 7244 7245 /* 7246 * Scans the local SMT mask to see if the entire core is idle, and records this 7247 * information in sd_llc_shared->has_idle_cores. 7248 * 7249 * Since SMT siblings share all cache levels, inspecting this limited remote 7250 * state should be fairly cheap. 7251 */ 7252 void __update_idle_core(struct rq *rq) 7253 { 7254 int core = cpu_of(rq); 7255 int cpu; 7256 7257 rcu_read_lock(); 7258 if (test_idle_cores(core)) 7259 goto unlock; 7260 7261 for_each_cpu(cpu, cpu_smt_mask(core)) { 7262 if (cpu == core) 7263 continue; 7264 7265 if (!available_idle_cpu(cpu)) 7266 goto unlock; 7267 } 7268 7269 set_idle_cores(core, 1); 7270 unlock: 7271 rcu_read_unlock(); 7272 } 7273 7274 /* 7275 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7276 * there are no idle cores left in the system; tracked through 7277 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7278 */ 7279 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7280 { 7281 bool idle = true; 7282 int cpu; 7283 7284 for_each_cpu(cpu, cpu_smt_mask(core)) { 7285 if (!available_idle_cpu(cpu)) { 7286 idle = false; 7287 if (*idle_cpu == -1) { 7288 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7289 *idle_cpu = cpu; 7290 break; 7291 } 7292 continue; 7293 } 7294 break; 7295 } 7296 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7297 *idle_cpu = cpu; 7298 } 7299 7300 if (idle) 7301 return core; 7302 7303 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7304 return -1; 7305 } 7306 7307 /* 7308 * Scan the local SMT mask for idle CPUs. 7309 */ 7310 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7311 { 7312 int cpu; 7313 7314 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7315 if (cpu == target) 7316 continue; 7317 /* 7318 * Check if the CPU is in the LLC scheduling domain of @target. 7319 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7320 */ 7321 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7322 continue; 7323 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7324 return cpu; 7325 } 7326 7327 return -1; 7328 } 7329 7330 #else /* CONFIG_SCHED_SMT */ 7331 7332 static inline void set_idle_cores(int cpu, int val) 7333 { 7334 } 7335 7336 static inline bool test_idle_cores(int cpu) 7337 { 7338 return false; 7339 } 7340 7341 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7342 { 7343 return __select_idle_cpu(core, p); 7344 } 7345 7346 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7347 { 7348 return -1; 7349 } 7350 7351 #endif /* CONFIG_SCHED_SMT */ 7352 7353 /* 7354 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7355 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7356 * average idle time for this rq (as found in rq->avg_idle). 7357 */ 7358 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7359 { 7360 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7361 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7362 struct sched_domain_shared *sd_share; 7363 struct rq *this_rq = this_rq(); 7364 int this = smp_processor_id(); 7365 struct sched_domain *this_sd = NULL; 7366 u64 time = 0; 7367 7368 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7369 7370 if (sched_feat(SIS_PROP) && !has_idle_core) { 7371 u64 avg_cost, avg_idle, span_avg; 7372 unsigned long now = jiffies; 7373 7374 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 7375 if (!this_sd) 7376 return -1; 7377 7378 /* 7379 * If we're busy, the assumption that the last idle period 7380 * predicts the future is flawed; age away the remaining 7381 * predicted idle time. 7382 */ 7383 if (unlikely(this_rq->wake_stamp < now)) { 7384 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) { 7385 this_rq->wake_stamp++; 7386 this_rq->wake_avg_idle >>= 1; 7387 } 7388 } 7389 7390 avg_idle = this_rq->wake_avg_idle; 7391 avg_cost = this_sd->avg_scan_cost + 1; 7392 7393 span_avg = sd->span_weight * avg_idle; 7394 if (span_avg > 4*avg_cost) 7395 nr = div_u64(span_avg, avg_cost); 7396 else 7397 nr = 4; 7398 7399 time = cpu_clock(this); 7400 } 7401 7402 if (sched_feat(SIS_UTIL)) { 7403 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7404 if (sd_share) { 7405 /* because !--nr is the condition to stop scan */ 7406 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7407 /* overloaded LLC is unlikely to have idle cpu/core */ 7408 if (nr == 1) 7409 return -1; 7410 } 7411 } 7412 7413 for_each_cpu_wrap(cpu, cpus, target + 1) { 7414 if (has_idle_core) { 7415 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7416 if ((unsigned int)i < nr_cpumask_bits) 7417 return i; 7418 7419 } else { 7420 if (!--nr) 7421 return -1; 7422 idle_cpu = __select_idle_cpu(cpu, p); 7423 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7424 break; 7425 } 7426 } 7427 7428 if (has_idle_core) 7429 set_idle_cores(target, false); 7430 7431 if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) { 7432 time = cpu_clock(this) - time; 7433 7434 /* 7435 * Account for the scan cost of wakeups against the average 7436 * idle time. 7437 */ 7438 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time); 7439 7440 update_avg(&this_sd->avg_scan_cost, time); 7441 } 7442 7443 return idle_cpu; 7444 } 7445 7446 /* 7447 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7448 * the task fits. If no CPU is big enough, but there are idle ones, try to 7449 * maximize capacity. 7450 */ 7451 static int 7452 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7453 { 7454 unsigned long task_util, util_min, util_max, best_cap = 0; 7455 int fits, best_fits = 0; 7456 int cpu, best_cpu = -1; 7457 struct cpumask *cpus; 7458 7459 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7460 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7461 7462 task_util = task_util_est(p); 7463 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7464 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7465 7466 for_each_cpu_wrap(cpu, cpus, target) { 7467 unsigned long cpu_cap = capacity_of(cpu); 7468 7469 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7470 continue; 7471 7472 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7473 7474 /* This CPU fits with all requirements */ 7475 if (fits > 0) 7476 return cpu; 7477 /* 7478 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7479 * Look for the CPU with best capacity. 7480 */ 7481 else if (fits < 0) 7482 cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu)); 7483 7484 /* 7485 * First, select CPU which fits better (-1 being better than 0). 7486 * Then, select the one with best capacity at same level. 7487 */ 7488 if ((fits < best_fits) || 7489 ((fits == best_fits) && (cpu_cap > best_cap))) { 7490 best_cap = cpu_cap; 7491 best_cpu = cpu; 7492 best_fits = fits; 7493 } 7494 } 7495 7496 return best_cpu; 7497 } 7498 7499 static inline bool asym_fits_cpu(unsigned long util, 7500 unsigned long util_min, 7501 unsigned long util_max, 7502 int cpu) 7503 { 7504 if (sched_asym_cpucap_active()) 7505 /* 7506 * Return true only if the cpu fully fits the task requirements 7507 * which include the utilization and the performance hints. 7508 */ 7509 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7510 7511 return true; 7512 } 7513 7514 /* 7515 * Try and locate an idle core/thread in the LLC cache domain. 7516 */ 7517 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7518 { 7519 bool has_idle_core = false; 7520 struct sched_domain *sd; 7521 unsigned long task_util, util_min, util_max; 7522 int i, recent_used_cpu; 7523 7524 /* 7525 * On asymmetric system, update task utilization because we will check 7526 * that the task fits with cpu's capacity. 7527 */ 7528 if (sched_asym_cpucap_active()) { 7529 sync_entity_load_avg(&p->se); 7530 task_util = task_util_est(p); 7531 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7532 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7533 } 7534 7535 /* 7536 * per-cpu select_rq_mask usage 7537 */ 7538 lockdep_assert_irqs_disabled(); 7539 7540 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7541 asym_fits_cpu(task_util, util_min, util_max, target)) 7542 return target; 7543 7544 /* 7545 * If the previous CPU is cache affine and idle, don't be stupid: 7546 */ 7547 if (prev != target && cpus_share_cache(prev, target) && 7548 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7549 asym_fits_cpu(task_util, util_min, util_max, prev)) 7550 return prev; 7551 7552 /* 7553 * Allow a per-cpu kthread to stack with the wakee if the 7554 * kworker thread and the tasks previous CPUs are the same. 7555 * The assumption is that the wakee queued work for the 7556 * per-cpu kthread that is now complete and the wakeup is 7557 * essentially a sync wakeup. An obvious example of this 7558 * pattern is IO completions. 7559 */ 7560 if (is_per_cpu_kthread(current) && 7561 in_task() && 7562 prev == smp_processor_id() && 7563 this_rq()->nr_running <= 1 && 7564 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7565 return prev; 7566 } 7567 7568 /* Check a recently used CPU as a potential idle candidate: */ 7569 recent_used_cpu = p->recent_used_cpu; 7570 p->recent_used_cpu = prev; 7571 if (recent_used_cpu != prev && 7572 recent_used_cpu != target && 7573 cpus_share_cache(recent_used_cpu, target) && 7574 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7575 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7576 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7577 return recent_used_cpu; 7578 } 7579 7580 /* 7581 * For asymmetric CPU capacity systems, our domain of interest is 7582 * sd_asym_cpucapacity rather than sd_llc. 7583 */ 7584 if (sched_asym_cpucap_active()) { 7585 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7586 /* 7587 * On an asymmetric CPU capacity system where an exclusive 7588 * cpuset defines a symmetric island (i.e. one unique 7589 * capacity_orig value through the cpuset), the key will be set 7590 * but the CPUs within that cpuset will not have a domain with 7591 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7592 * capacity path. 7593 */ 7594 if (sd) { 7595 i = select_idle_capacity(p, sd, target); 7596 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7597 } 7598 } 7599 7600 sd = rcu_dereference(per_cpu(sd_llc, target)); 7601 if (!sd) 7602 return target; 7603 7604 if (sched_smt_active()) { 7605 has_idle_core = test_idle_cores(target); 7606 7607 if (!has_idle_core && cpus_share_cache(prev, target)) { 7608 i = select_idle_smt(p, sd, prev); 7609 if ((unsigned int)i < nr_cpumask_bits) 7610 return i; 7611 } 7612 } 7613 7614 i = select_idle_cpu(p, sd, has_idle_core, target); 7615 if ((unsigned)i < nr_cpumask_bits) 7616 return i; 7617 7618 return target; 7619 } 7620 7621 /** 7622 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7623 * @cpu: the CPU to get the utilization for 7624 * @p: task for which the CPU utilization should be predicted or NULL 7625 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7626 * @boost: 1 to enable boosting, otherwise 0 7627 * 7628 * The unit of the return value must be the same as the one of CPU capacity 7629 * so that CPU utilization can be compared with CPU capacity. 7630 * 7631 * CPU utilization is the sum of running time of runnable tasks plus the 7632 * recent utilization of currently non-runnable tasks on that CPU. 7633 * It represents the amount of CPU capacity currently used by CFS tasks in 7634 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7635 * capacity at f_max. 7636 * 7637 * The estimated CPU utilization is defined as the maximum between CPU 7638 * utilization and sum of the estimated utilization of the currently 7639 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7640 * previously-executed tasks, which helps better deduce how busy a CPU will 7641 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7642 * of such a task would be significantly decayed at this point of time. 7643 * 7644 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7645 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7646 * utilization. Boosting is implemented in cpu_util() so that internal 7647 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7648 * latter via cpu_util_cfs_boost(). 7649 * 7650 * CPU utilization can be higher than the current CPU capacity 7651 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7652 * of rounding errors as well as task migrations or wakeups of new tasks. 7653 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7654 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7655 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7656 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7657 * though since this is useful for predicting the CPU capacity required 7658 * after task migrations (scheduler-driven DVFS). 7659 * 7660 * Return: (Boosted) (estimated) utilization for the specified CPU. 7661 */ 7662 static unsigned long 7663 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 7664 { 7665 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7666 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7667 unsigned long runnable; 7668 7669 if (boost) { 7670 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7671 util = max(util, runnable); 7672 } 7673 7674 /* 7675 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7676 * contribution. If @p migrates from another CPU to @cpu add its 7677 * contribution. In all the other cases @cpu is not impacted by the 7678 * migration so its util_avg is already correct. 7679 */ 7680 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 7681 lsub_positive(&util, task_util(p)); 7682 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 7683 util += task_util(p); 7684 7685 if (sched_feat(UTIL_EST)) { 7686 unsigned long util_est; 7687 7688 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 7689 7690 /* 7691 * During wake-up @p isn't enqueued yet and doesn't contribute 7692 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued. 7693 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 7694 * has been enqueued. 7695 * 7696 * During exec (@dst_cpu = -1) @p is enqueued and does 7697 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued. 7698 * Remove it to "simulate" cpu_util without @p's contribution. 7699 * 7700 * Despite the task_on_rq_queued(@p) check there is still a 7701 * small window for a possible race when an exec 7702 * select_task_rq_fair() races with LB's detach_task(). 7703 * 7704 * detach_task() 7705 * deactivate_task() 7706 * p->on_rq = TASK_ON_RQ_MIGRATING; 7707 * -------------------------------- A 7708 * dequeue_task() \ 7709 * dequeue_task_fair() + Race Time 7710 * util_est_dequeue() / 7711 * -------------------------------- B 7712 * 7713 * The additional check "current == p" is required to further 7714 * reduce the race window. 7715 */ 7716 if (dst_cpu == cpu) 7717 util_est += _task_util_est(p); 7718 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 7719 lsub_positive(&util_est, _task_util_est(p)); 7720 7721 util = max(util, util_est); 7722 } 7723 7724 return min(util, capacity_orig_of(cpu)); 7725 } 7726 7727 unsigned long cpu_util_cfs(int cpu) 7728 { 7729 return cpu_util(cpu, NULL, -1, 0); 7730 } 7731 7732 unsigned long cpu_util_cfs_boost(int cpu) 7733 { 7734 return cpu_util(cpu, NULL, -1, 1); 7735 } 7736 7737 /* 7738 * cpu_util_without: compute cpu utilization without any contributions from *p 7739 * @cpu: the CPU which utilization is requested 7740 * @p: the task which utilization should be discounted 7741 * 7742 * The utilization of a CPU is defined by the utilization of tasks currently 7743 * enqueued on that CPU as well as tasks which are currently sleeping after an 7744 * execution on that CPU. 7745 * 7746 * This method returns the utilization of the specified CPU by discounting the 7747 * utilization of the specified task, whenever the task is currently 7748 * contributing to the CPU utilization. 7749 */ 7750 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 7751 { 7752 /* Task has no contribution or is new */ 7753 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7754 p = NULL; 7755 7756 return cpu_util(cpu, p, -1, 0); 7757 } 7758 7759 /* 7760 * energy_env - Utilization landscape for energy estimation. 7761 * @task_busy_time: Utilization contribution by the task for which we test the 7762 * placement. Given by eenv_task_busy_time(). 7763 * @pd_busy_time: Utilization of the whole perf domain without the task 7764 * contribution. Given by eenv_pd_busy_time(). 7765 * @cpu_cap: Maximum CPU capacity for the perf domain. 7766 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 7767 */ 7768 struct energy_env { 7769 unsigned long task_busy_time; 7770 unsigned long pd_busy_time; 7771 unsigned long cpu_cap; 7772 unsigned long pd_cap; 7773 }; 7774 7775 /* 7776 * Compute the task busy time for compute_energy(). This time cannot be 7777 * injected directly into effective_cpu_util() because of the IRQ scaling. 7778 * The latter only makes sense with the most recent CPUs where the task has 7779 * run. 7780 */ 7781 static inline void eenv_task_busy_time(struct energy_env *eenv, 7782 struct task_struct *p, int prev_cpu) 7783 { 7784 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 7785 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 7786 7787 if (unlikely(irq >= max_cap)) 7788 busy_time = max_cap; 7789 else 7790 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 7791 7792 eenv->task_busy_time = busy_time; 7793 } 7794 7795 /* 7796 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 7797 * utilization for each @pd_cpus, it however doesn't take into account 7798 * clamping since the ratio (utilization / cpu_capacity) is already enough to 7799 * scale the EM reported power consumption at the (eventually clamped) 7800 * cpu_capacity. 7801 * 7802 * The contribution of the task @p for which we want to estimate the 7803 * energy cost is removed (by cpu_util()) and must be calculated 7804 * separately (see eenv_task_busy_time). This ensures: 7805 * 7806 * - A stable PD utilization, no matter which CPU of that PD we want to place 7807 * the task on. 7808 * 7809 * - A fair comparison between CPUs as the task contribution (task_util()) 7810 * will always be the same no matter which CPU utilization we rely on 7811 * (util_avg or util_est). 7812 * 7813 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 7814 * exceed @eenv->pd_cap. 7815 */ 7816 static inline void eenv_pd_busy_time(struct energy_env *eenv, 7817 struct cpumask *pd_cpus, 7818 struct task_struct *p) 7819 { 7820 unsigned long busy_time = 0; 7821 int cpu; 7822 7823 for_each_cpu(cpu, pd_cpus) { 7824 unsigned long util = cpu_util(cpu, p, -1, 0); 7825 7826 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL); 7827 } 7828 7829 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 7830 } 7831 7832 /* 7833 * Compute the maximum utilization for compute_energy() when the task @p 7834 * is placed on the cpu @dst_cpu. 7835 * 7836 * Returns the maximum utilization among @eenv->cpus. This utilization can't 7837 * exceed @eenv->cpu_cap. 7838 */ 7839 static inline unsigned long 7840 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 7841 struct task_struct *p, int dst_cpu) 7842 { 7843 unsigned long max_util = 0; 7844 int cpu; 7845 7846 for_each_cpu(cpu, pd_cpus) { 7847 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 7848 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 7849 unsigned long eff_util; 7850 7851 /* 7852 * Performance domain frequency: utilization clamping 7853 * must be considered since it affects the selection 7854 * of the performance domain frequency. 7855 * NOTE: in case RT tasks are running, by default the 7856 * FREQUENCY_UTIL's utilization can be max OPP. 7857 */ 7858 eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk); 7859 max_util = max(max_util, eff_util); 7860 } 7861 7862 return min(max_util, eenv->cpu_cap); 7863 } 7864 7865 /* 7866 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 7867 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 7868 * contribution is ignored. 7869 */ 7870 static inline unsigned long 7871 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 7872 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 7873 { 7874 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 7875 unsigned long busy_time = eenv->pd_busy_time; 7876 7877 if (dst_cpu >= 0) 7878 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 7879 7880 return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 7881 } 7882 7883 /* 7884 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 7885 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 7886 * spare capacity in each performance domain and uses it as a potential 7887 * candidate to execute the task. Then, it uses the Energy Model to figure 7888 * out which of the CPU candidates is the most energy-efficient. 7889 * 7890 * The rationale for this heuristic is as follows. In a performance domain, 7891 * all the most energy efficient CPU candidates (according to the Energy 7892 * Model) are those for which we'll request a low frequency. When there are 7893 * several CPUs for which the frequency request will be the same, we don't 7894 * have enough data to break the tie between them, because the Energy Model 7895 * only includes active power costs. With this model, if we assume that 7896 * frequency requests follow utilization (e.g. using schedutil), the CPU with 7897 * the maximum spare capacity in a performance domain is guaranteed to be among 7898 * the best candidates of the performance domain. 7899 * 7900 * In practice, it could be preferable from an energy standpoint to pack 7901 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 7902 * but that could also hurt our chances to go cluster idle, and we have no 7903 * ways to tell with the current Energy Model if this is actually a good 7904 * idea or not. So, find_energy_efficient_cpu() basically favors 7905 * cluster-packing, and spreading inside a cluster. That should at least be 7906 * a good thing for latency, and this is consistent with the idea that most 7907 * of the energy savings of EAS come from the asymmetry of the system, and 7908 * not so much from breaking the tie between identical CPUs. That's also the 7909 * reason why EAS is enabled in the topology code only for systems where 7910 * SD_ASYM_CPUCAPACITY is set. 7911 * 7912 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 7913 * they don't have any useful utilization data yet and it's not possible to 7914 * forecast their impact on energy consumption. Consequently, they will be 7915 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 7916 * to be energy-inefficient in some use-cases. The alternative would be to 7917 * bias new tasks towards specific types of CPUs first, or to try to infer 7918 * their util_avg from the parent task, but those heuristics could hurt 7919 * other use-cases too. So, until someone finds a better way to solve this, 7920 * let's keep things simple by re-using the existing slow path. 7921 */ 7922 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 7923 { 7924 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7925 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 7926 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 7927 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 7928 struct root_domain *rd = this_rq()->rd; 7929 int cpu, best_energy_cpu, target = -1; 7930 int prev_fits = -1, best_fits = -1; 7931 unsigned long best_thermal_cap = 0; 7932 unsigned long prev_thermal_cap = 0; 7933 struct sched_domain *sd; 7934 struct perf_domain *pd; 7935 struct energy_env eenv; 7936 7937 rcu_read_lock(); 7938 pd = rcu_dereference(rd->pd); 7939 if (!pd || READ_ONCE(rd->overutilized)) 7940 goto unlock; 7941 7942 /* 7943 * Energy-aware wake-up happens on the lowest sched_domain starting 7944 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 7945 */ 7946 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 7947 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 7948 sd = sd->parent; 7949 if (!sd) 7950 goto unlock; 7951 7952 target = prev_cpu; 7953 7954 sync_entity_load_avg(&p->se); 7955 if (!task_util_est(p) && p_util_min == 0) 7956 goto unlock; 7957 7958 eenv_task_busy_time(&eenv, p, prev_cpu); 7959 7960 for (; pd; pd = pd->next) { 7961 unsigned long util_min = p_util_min, util_max = p_util_max; 7962 unsigned long cpu_cap, cpu_thermal_cap, util; 7963 long prev_spare_cap = -1, max_spare_cap = -1; 7964 unsigned long rq_util_min, rq_util_max; 7965 unsigned long cur_delta, base_energy; 7966 int max_spare_cap_cpu = -1; 7967 int fits, max_fits = -1; 7968 7969 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 7970 7971 if (cpumask_empty(cpus)) 7972 continue; 7973 7974 /* Account thermal pressure for the energy estimation */ 7975 cpu = cpumask_first(cpus); 7976 cpu_thermal_cap = arch_scale_cpu_capacity(cpu); 7977 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu); 7978 7979 eenv.cpu_cap = cpu_thermal_cap; 7980 eenv.pd_cap = 0; 7981 7982 for_each_cpu(cpu, cpus) { 7983 struct rq *rq = cpu_rq(cpu); 7984 7985 eenv.pd_cap += cpu_thermal_cap; 7986 7987 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7988 continue; 7989 7990 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 7991 continue; 7992 7993 util = cpu_util(cpu, p, cpu, 0); 7994 cpu_cap = capacity_of(cpu); 7995 7996 /* 7997 * Skip CPUs that cannot satisfy the capacity request. 7998 * IOW, placing the task there would make the CPU 7999 * overutilized. Take uclamp into account to see how 8000 * much capacity we can get out of the CPU; this is 8001 * aligned with sched_cpu_util(). 8002 */ 8003 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8004 /* 8005 * Open code uclamp_rq_util_with() except for 8006 * the clamp() part. Ie: apply max aggregation 8007 * only. util_fits_cpu() logic requires to 8008 * operate on non clamped util but must use the 8009 * max-aggregated uclamp_{min, max}. 8010 */ 8011 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8012 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8013 8014 util_min = max(rq_util_min, p_util_min); 8015 util_max = max(rq_util_max, p_util_max); 8016 } 8017 8018 fits = util_fits_cpu(util, util_min, util_max, cpu); 8019 if (!fits) 8020 continue; 8021 8022 lsub_positive(&cpu_cap, util); 8023 8024 if (cpu == prev_cpu) { 8025 /* Always use prev_cpu as a candidate. */ 8026 prev_spare_cap = cpu_cap; 8027 prev_fits = fits; 8028 } else if ((fits > max_fits) || 8029 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8030 /* 8031 * Find the CPU with the maximum spare capacity 8032 * among the remaining CPUs in the performance 8033 * domain. 8034 */ 8035 max_spare_cap = cpu_cap; 8036 max_spare_cap_cpu = cpu; 8037 max_fits = fits; 8038 } 8039 } 8040 8041 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8042 continue; 8043 8044 eenv_pd_busy_time(&eenv, cpus, p); 8045 /* Compute the 'base' energy of the pd, without @p */ 8046 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8047 8048 /* Evaluate the energy impact of using prev_cpu. */ 8049 if (prev_spare_cap > -1) { 8050 prev_delta = compute_energy(&eenv, pd, cpus, p, 8051 prev_cpu); 8052 /* CPU utilization has changed */ 8053 if (prev_delta < base_energy) 8054 goto unlock; 8055 prev_delta -= base_energy; 8056 prev_thermal_cap = cpu_thermal_cap; 8057 best_delta = min(best_delta, prev_delta); 8058 } 8059 8060 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8061 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8062 /* Current best energy cpu fits better */ 8063 if (max_fits < best_fits) 8064 continue; 8065 8066 /* 8067 * Both don't fit performance hint (i.e. uclamp_min) 8068 * but best energy cpu has better capacity. 8069 */ 8070 if ((max_fits < 0) && 8071 (cpu_thermal_cap <= best_thermal_cap)) 8072 continue; 8073 8074 cur_delta = compute_energy(&eenv, pd, cpus, p, 8075 max_spare_cap_cpu); 8076 /* CPU utilization has changed */ 8077 if (cur_delta < base_energy) 8078 goto unlock; 8079 cur_delta -= base_energy; 8080 8081 /* 8082 * Both fit for the task but best energy cpu has lower 8083 * energy impact. 8084 */ 8085 if ((max_fits > 0) && (best_fits > 0) && 8086 (cur_delta >= best_delta)) 8087 continue; 8088 8089 best_delta = cur_delta; 8090 best_energy_cpu = max_spare_cap_cpu; 8091 best_fits = max_fits; 8092 best_thermal_cap = cpu_thermal_cap; 8093 } 8094 } 8095 rcu_read_unlock(); 8096 8097 if ((best_fits > prev_fits) || 8098 ((best_fits > 0) && (best_delta < prev_delta)) || 8099 ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap))) 8100 target = best_energy_cpu; 8101 8102 return target; 8103 8104 unlock: 8105 rcu_read_unlock(); 8106 8107 return target; 8108 } 8109 8110 /* 8111 * select_task_rq_fair: Select target runqueue for the waking task in domains 8112 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8113 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8114 * 8115 * Balances load by selecting the idlest CPU in the idlest group, or under 8116 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8117 * 8118 * Returns the target CPU number. 8119 */ 8120 static int 8121 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8122 { 8123 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8124 struct sched_domain *tmp, *sd = NULL; 8125 int cpu = smp_processor_id(); 8126 int new_cpu = prev_cpu; 8127 int want_affine = 0; 8128 /* SD_flags and WF_flags share the first nibble */ 8129 int sd_flag = wake_flags & 0xF; 8130 8131 /* 8132 * required for stable ->cpus_allowed 8133 */ 8134 lockdep_assert_held(&p->pi_lock); 8135 if (wake_flags & WF_TTWU) { 8136 record_wakee(p); 8137 8138 if ((wake_flags & WF_CURRENT_CPU) && 8139 cpumask_test_cpu(cpu, p->cpus_ptr)) 8140 return cpu; 8141 8142 if (sched_energy_enabled()) { 8143 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8144 if (new_cpu >= 0) 8145 return new_cpu; 8146 new_cpu = prev_cpu; 8147 } 8148 8149 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8150 } 8151 8152 rcu_read_lock(); 8153 for_each_domain(cpu, tmp) { 8154 /* 8155 * If both 'cpu' and 'prev_cpu' are part of this domain, 8156 * cpu is a valid SD_WAKE_AFFINE target. 8157 */ 8158 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8159 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8160 if (cpu != prev_cpu) 8161 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8162 8163 sd = NULL; /* Prefer wake_affine over balance flags */ 8164 break; 8165 } 8166 8167 /* 8168 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8169 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8170 * will usually go to the fast path. 8171 */ 8172 if (tmp->flags & sd_flag) 8173 sd = tmp; 8174 else if (!want_affine) 8175 break; 8176 } 8177 8178 if (unlikely(sd)) { 8179 /* Slow path */ 8180 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 8181 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8182 /* Fast path */ 8183 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8184 } 8185 rcu_read_unlock(); 8186 8187 return new_cpu; 8188 } 8189 8190 /* 8191 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8192 * cfs_rq_of(p) references at time of call are still valid and identify the 8193 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8194 */ 8195 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8196 { 8197 struct sched_entity *se = &p->se; 8198 8199 if (!task_on_rq_migrating(p)) { 8200 remove_entity_load_avg(se); 8201 8202 /* 8203 * Here, the task's PELT values have been updated according to 8204 * the current rq's clock. But if that clock hasn't been 8205 * updated in a while, a substantial idle time will be missed, 8206 * leading to an inflation after wake-up on the new rq. 8207 * 8208 * Estimate the missing time from the cfs_rq last_update_time 8209 * and update sched_avg to improve the PELT continuity after 8210 * migration. 8211 */ 8212 migrate_se_pelt_lag(se); 8213 } 8214 8215 /* Tell new CPU we are migrated */ 8216 se->avg.last_update_time = 0; 8217 8218 update_scan_period(p, new_cpu); 8219 } 8220 8221 static void task_dead_fair(struct task_struct *p) 8222 { 8223 remove_entity_load_avg(&p->se); 8224 } 8225 8226 static int 8227 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8228 { 8229 if (rq->nr_running) 8230 return 1; 8231 8232 return newidle_balance(rq, rf) != 0; 8233 } 8234 #endif /* CONFIG_SMP */ 8235 8236 static void set_next_buddy(struct sched_entity *se) 8237 { 8238 for_each_sched_entity(se) { 8239 if (SCHED_WARN_ON(!se->on_rq)) 8240 return; 8241 if (se_is_idle(se)) 8242 return; 8243 cfs_rq_of(se)->next = se; 8244 } 8245 } 8246 8247 /* 8248 * Preempt the current task with a newly woken task if needed: 8249 */ 8250 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 8251 { 8252 struct task_struct *curr = rq->curr; 8253 struct sched_entity *se = &curr->se, *pse = &p->se; 8254 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8255 int next_buddy_marked = 0; 8256 int cse_is_idle, pse_is_idle; 8257 8258 if (unlikely(se == pse)) 8259 return; 8260 8261 /* 8262 * This is possible from callers such as attach_tasks(), in which we 8263 * unconditionally check_preempt_curr() after an enqueue (which may have 8264 * lead to a throttle). This both saves work and prevents false 8265 * next-buddy nomination below. 8266 */ 8267 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8268 return; 8269 8270 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) { 8271 set_next_buddy(pse); 8272 next_buddy_marked = 1; 8273 } 8274 8275 /* 8276 * We can come here with TIF_NEED_RESCHED already set from new task 8277 * wake up path. 8278 * 8279 * Note: this also catches the edge-case of curr being in a throttled 8280 * group (e.g. via set_curr_task), since update_curr() (in the 8281 * enqueue of curr) will have resulted in resched being set. This 8282 * prevents us from potentially nominating it as a false LAST_BUDDY 8283 * below. 8284 */ 8285 if (test_tsk_need_resched(curr)) 8286 return; 8287 8288 if (!sched_feat(WAKEUP_PREEMPTION)) 8289 return; 8290 8291 find_matching_se(&se, &pse); 8292 WARN_ON_ONCE(!pse); 8293 8294 cse_is_idle = se_is_idle(se); 8295 pse_is_idle = se_is_idle(pse); 8296 8297 /* 8298 * Preempt an idle entity in favor of a non-idle entity (and don't preempt 8299 * in the inverse case). 8300 */ 8301 if (cse_is_idle && !pse_is_idle) 8302 goto preempt; 8303 if (cse_is_idle != pse_is_idle) 8304 return; 8305 8306 /* 8307 * BATCH and IDLE tasks do not preempt others. 8308 */ 8309 if (unlikely(p->policy != SCHED_NORMAL)) 8310 return; 8311 8312 cfs_rq = cfs_rq_of(se); 8313 update_curr(cfs_rq); 8314 /* 8315 * XXX pick_eevdf(cfs_rq) != se ? 8316 */ 8317 if (pick_eevdf(cfs_rq) == pse) 8318 goto preempt; 8319 8320 return; 8321 8322 preempt: 8323 resched_curr(rq); 8324 } 8325 8326 #ifdef CONFIG_SMP 8327 static struct task_struct *pick_task_fair(struct rq *rq) 8328 { 8329 struct sched_entity *se; 8330 struct cfs_rq *cfs_rq; 8331 8332 again: 8333 cfs_rq = &rq->cfs; 8334 if (!cfs_rq->nr_running) 8335 return NULL; 8336 8337 do { 8338 struct sched_entity *curr = cfs_rq->curr; 8339 8340 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 8341 if (curr) { 8342 if (curr->on_rq) 8343 update_curr(cfs_rq); 8344 else 8345 curr = NULL; 8346 8347 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8348 goto again; 8349 } 8350 8351 se = pick_next_entity(cfs_rq, curr); 8352 cfs_rq = group_cfs_rq(se); 8353 } while (cfs_rq); 8354 8355 return task_of(se); 8356 } 8357 #endif 8358 8359 struct task_struct * 8360 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8361 { 8362 struct cfs_rq *cfs_rq = &rq->cfs; 8363 struct sched_entity *se; 8364 struct task_struct *p; 8365 int new_tasks; 8366 8367 again: 8368 if (!sched_fair_runnable(rq)) 8369 goto idle; 8370 8371 #ifdef CONFIG_FAIR_GROUP_SCHED 8372 if (!prev || prev->sched_class != &fair_sched_class) 8373 goto simple; 8374 8375 /* 8376 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8377 * likely that a next task is from the same cgroup as the current. 8378 * 8379 * Therefore attempt to avoid putting and setting the entire cgroup 8380 * hierarchy, only change the part that actually changes. 8381 */ 8382 8383 do { 8384 struct sched_entity *curr = cfs_rq->curr; 8385 8386 /* 8387 * Since we got here without doing put_prev_entity() we also 8388 * have to consider cfs_rq->curr. If it is still a runnable 8389 * entity, update_curr() will update its vruntime, otherwise 8390 * forget we've ever seen it. 8391 */ 8392 if (curr) { 8393 if (curr->on_rq) 8394 update_curr(cfs_rq); 8395 else 8396 curr = NULL; 8397 8398 /* 8399 * This call to check_cfs_rq_runtime() will do the 8400 * throttle and dequeue its entity in the parent(s). 8401 * Therefore the nr_running test will indeed 8402 * be correct. 8403 */ 8404 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 8405 cfs_rq = &rq->cfs; 8406 8407 if (!cfs_rq->nr_running) 8408 goto idle; 8409 8410 goto simple; 8411 } 8412 } 8413 8414 se = pick_next_entity(cfs_rq, curr); 8415 cfs_rq = group_cfs_rq(se); 8416 } while (cfs_rq); 8417 8418 p = task_of(se); 8419 8420 /* 8421 * Since we haven't yet done put_prev_entity and if the selected task 8422 * is a different task than we started out with, try and touch the 8423 * least amount of cfs_rqs. 8424 */ 8425 if (prev != p) { 8426 struct sched_entity *pse = &prev->se; 8427 8428 while (!(cfs_rq = is_same_group(se, pse))) { 8429 int se_depth = se->depth; 8430 int pse_depth = pse->depth; 8431 8432 if (se_depth <= pse_depth) { 8433 put_prev_entity(cfs_rq_of(pse), pse); 8434 pse = parent_entity(pse); 8435 } 8436 if (se_depth >= pse_depth) { 8437 set_next_entity(cfs_rq_of(se), se); 8438 se = parent_entity(se); 8439 } 8440 } 8441 8442 put_prev_entity(cfs_rq, pse); 8443 set_next_entity(cfs_rq, se); 8444 } 8445 8446 goto done; 8447 simple: 8448 #endif 8449 if (prev) 8450 put_prev_task(rq, prev); 8451 8452 do { 8453 se = pick_next_entity(cfs_rq, NULL); 8454 set_next_entity(cfs_rq, se); 8455 cfs_rq = group_cfs_rq(se); 8456 } while (cfs_rq); 8457 8458 p = task_of(se); 8459 8460 done: __maybe_unused; 8461 #ifdef CONFIG_SMP 8462 /* 8463 * Move the next running task to the front of 8464 * the list, so our cfs_tasks list becomes MRU 8465 * one. 8466 */ 8467 list_move(&p->se.group_node, &rq->cfs_tasks); 8468 #endif 8469 8470 if (hrtick_enabled_fair(rq)) 8471 hrtick_start_fair(rq, p); 8472 8473 update_misfit_status(p, rq); 8474 sched_fair_update_stop_tick(rq, p); 8475 8476 return p; 8477 8478 idle: 8479 if (!rf) 8480 return NULL; 8481 8482 new_tasks = newidle_balance(rq, rf); 8483 8484 /* 8485 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 8486 * possible for any higher priority task to appear. In that case we 8487 * must re-start the pick_next_entity() loop. 8488 */ 8489 if (new_tasks < 0) 8490 return RETRY_TASK; 8491 8492 if (new_tasks > 0) 8493 goto again; 8494 8495 /* 8496 * rq is about to be idle, check if we need to update the 8497 * lost_idle_time of clock_pelt 8498 */ 8499 update_idle_rq_clock_pelt(rq); 8500 8501 return NULL; 8502 } 8503 8504 static struct task_struct *__pick_next_task_fair(struct rq *rq) 8505 { 8506 return pick_next_task_fair(rq, NULL, NULL); 8507 } 8508 8509 /* 8510 * Account for a descheduled task: 8511 */ 8512 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 8513 { 8514 struct sched_entity *se = &prev->se; 8515 struct cfs_rq *cfs_rq; 8516 8517 for_each_sched_entity(se) { 8518 cfs_rq = cfs_rq_of(se); 8519 put_prev_entity(cfs_rq, se); 8520 } 8521 } 8522 8523 /* 8524 * sched_yield() is very simple 8525 */ 8526 static void yield_task_fair(struct rq *rq) 8527 { 8528 struct task_struct *curr = rq->curr; 8529 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8530 struct sched_entity *se = &curr->se; 8531 8532 /* 8533 * Are we the only task in the tree? 8534 */ 8535 if (unlikely(rq->nr_running == 1)) 8536 return; 8537 8538 clear_buddies(cfs_rq, se); 8539 8540 update_rq_clock(rq); 8541 /* 8542 * Update run-time statistics of the 'current'. 8543 */ 8544 update_curr(cfs_rq); 8545 /* 8546 * Tell update_rq_clock() that we've just updated, 8547 * so we don't do microscopic update in schedule() 8548 * and double the fastpath cost. 8549 */ 8550 rq_clock_skip_update(rq); 8551 8552 se->deadline += calc_delta_fair(se->slice, se); 8553 } 8554 8555 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 8556 { 8557 struct sched_entity *se = &p->se; 8558 8559 /* throttled hierarchies are not runnable */ 8560 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 8561 return false; 8562 8563 /* Tell the scheduler that we'd really like pse to run next. */ 8564 set_next_buddy(se); 8565 8566 yield_task_fair(rq); 8567 8568 return true; 8569 } 8570 8571 #ifdef CONFIG_SMP 8572 /************************************************** 8573 * Fair scheduling class load-balancing methods. 8574 * 8575 * BASICS 8576 * 8577 * The purpose of load-balancing is to achieve the same basic fairness the 8578 * per-CPU scheduler provides, namely provide a proportional amount of compute 8579 * time to each task. This is expressed in the following equation: 8580 * 8581 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 8582 * 8583 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 8584 * W_i,0 is defined as: 8585 * 8586 * W_i,0 = \Sum_j w_i,j (2) 8587 * 8588 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 8589 * is derived from the nice value as per sched_prio_to_weight[]. 8590 * 8591 * The weight average is an exponential decay average of the instantaneous 8592 * weight: 8593 * 8594 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 8595 * 8596 * C_i is the compute capacity of CPU i, typically it is the 8597 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 8598 * can also include other factors [XXX]. 8599 * 8600 * To achieve this balance we define a measure of imbalance which follows 8601 * directly from (1): 8602 * 8603 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 8604 * 8605 * We them move tasks around to minimize the imbalance. In the continuous 8606 * function space it is obvious this converges, in the discrete case we get 8607 * a few fun cases generally called infeasible weight scenarios. 8608 * 8609 * [XXX expand on: 8610 * - infeasible weights; 8611 * - local vs global optima in the discrete case. ] 8612 * 8613 * 8614 * SCHED DOMAINS 8615 * 8616 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 8617 * for all i,j solution, we create a tree of CPUs that follows the hardware 8618 * topology where each level pairs two lower groups (or better). This results 8619 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 8620 * tree to only the first of the previous level and we decrease the frequency 8621 * of load-balance at each level inv. proportional to the number of CPUs in 8622 * the groups. 8623 * 8624 * This yields: 8625 * 8626 * log_2 n 1 n 8627 * \Sum { --- * --- * 2^i } = O(n) (5) 8628 * i = 0 2^i 2^i 8629 * `- size of each group 8630 * | | `- number of CPUs doing load-balance 8631 * | `- freq 8632 * `- sum over all levels 8633 * 8634 * Coupled with a limit on how many tasks we can migrate every balance pass, 8635 * this makes (5) the runtime complexity of the balancer. 8636 * 8637 * An important property here is that each CPU is still (indirectly) connected 8638 * to every other CPU in at most O(log n) steps: 8639 * 8640 * The adjacency matrix of the resulting graph is given by: 8641 * 8642 * log_2 n 8643 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 8644 * k = 0 8645 * 8646 * And you'll find that: 8647 * 8648 * A^(log_2 n)_i,j != 0 for all i,j (7) 8649 * 8650 * Showing there's indeed a path between every CPU in at most O(log n) steps. 8651 * The task movement gives a factor of O(m), giving a convergence complexity 8652 * of: 8653 * 8654 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 8655 * 8656 * 8657 * WORK CONSERVING 8658 * 8659 * In order to avoid CPUs going idle while there's still work to do, new idle 8660 * balancing is more aggressive and has the newly idle CPU iterate up the domain 8661 * tree itself instead of relying on other CPUs to bring it work. 8662 * 8663 * This adds some complexity to both (5) and (8) but it reduces the total idle 8664 * time. 8665 * 8666 * [XXX more?] 8667 * 8668 * 8669 * CGROUPS 8670 * 8671 * Cgroups make a horror show out of (2), instead of a simple sum we get: 8672 * 8673 * s_k,i 8674 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 8675 * S_k 8676 * 8677 * Where 8678 * 8679 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 8680 * 8681 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 8682 * 8683 * The big problem is S_k, its a global sum needed to compute a local (W_i) 8684 * property. 8685 * 8686 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 8687 * rewrite all of this once again.] 8688 */ 8689 8690 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 8691 8692 enum fbq_type { regular, remote, all }; 8693 8694 /* 8695 * 'group_type' describes the group of CPUs at the moment of load balancing. 8696 * 8697 * The enum is ordered by pulling priority, with the group with lowest priority 8698 * first so the group_type can simply be compared when selecting the busiest 8699 * group. See update_sd_pick_busiest(). 8700 */ 8701 enum group_type { 8702 /* The group has spare capacity that can be used to run more tasks. */ 8703 group_has_spare = 0, 8704 /* 8705 * The group is fully used and the tasks don't compete for more CPU 8706 * cycles. Nevertheless, some tasks might wait before running. 8707 */ 8708 group_fully_busy, 8709 /* 8710 * One task doesn't fit with CPU's capacity and must be migrated to a 8711 * more powerful CPU. 8712 */ 8713 group_misfit_task, 8714 /* 8715 * Balance SMT group that's fully busy. Can benefit from migration 8716 * a task on SMT with busy sibling to another CPU on idle core. 8717 */ 8718 group_smt_balance, 8719 /* 8720 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 8721 * and the task should be migrated to it instead of running on the 8722 * current CPU. 8723 */ 8724 group_asym_packing, 8725 /* 8726 * The tasks' affinity constraints previously prevented the scheduler 8727 * from balancing the load across the system. 8728 */ 8729 group_imbalanced, 8730 /* 8731 * The CPU is overloaded and can't provide expected CPU cycles to all 8732 * tasks. 8733 */ 8734 group_overloaded 8735 }; 8736 8737 enum migration_type { 8738 migrate_load = 0, 8739 migrate_util, 8740 migrate_task, 8741 migrate_misfit 8742 }; 8743 8744 #define LBF_ALL_PINNED 0x01 8745 #define LBF_NEED_BREAK 0x02 8746 #define LBF_DST_PINNED 0x04 8747 #define LBF_SOME_PINNED 0x08 8748 #define LBF_ACTIVE_LB 0x10 8749 8750 struct lb_env { 8751 struct sched_domain *sd; 8752 8753 struct rq *src_rq; 8754 int src_cpu; 8755 8756 int dst_cpu; 8757 struct rq *dst_rq; 8758 8759 struct cpumask *dst_grpmask; 8760 int new_dst_cpu; 8761 enum cpu_idle_type idle; 8762 long imbalance; 8763 /* The set of CPUs under consideration for load-balancing */ 8764 struct cpumask *cpus; 8765 8766 unsigned int flags; 8767 8768 unsigned int loop; 8769 unsigned int loop_break; 8770 unsigned int loop_max; 8771 8772 enum fbq_type fbq_type; 8773 enum migration_type migration_type; 8774 struct list_head tasks; 8775 }; 8776 8777 /* 8778 * Is this task likely cache-hot: 8779 */ 8780 static int task_hot(struct task_struct *p, struct lb_env *env) 8781 { 8782 s64 delta; 8783 8784 lockdep_assert_rq_held(env->src_rq); 8785 8786 if (p->sched_class != &fair_sched_class) 8787 return 0; 8788 8789 if (unlikely(task_has_idle_policy(p))) 8790 return 0; 8791 8792 /* SMT siblings share cache */ 8793 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 8794 return 0; 8795 8796 /* 8797 * Buddy candidates are cache hot: 8798 */ 8799 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 8800 (&p->se == cfs_rq_of(&p->se)->next)) 8801 return 1; 8802 8803 if (sysctl_sched_migration_cost == -1) 8804 return 1; 8805 8806 /* 8807 * Don't migrate task if the task's cookie does not match 8808 * with the destination CPU's core cookie. 8809 */ 8810 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 8811 return 1; 8812 8813 if (sysctl_sched_migration_cost == 0) 8814 return 0; 8815 8816 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 8817 8818 return delta < (s64)sysctl_sched_migration_cost; 8819 } 8820 8821 #ifdef CONFIG_NUMA_BALANCING 8822 /* 8823 * Returns 1, if task migration degrades locality 8824 * Returns 0, if task migration improves locality i.e migration preferred. 8825 * Returns -1, if task migration is not affected by locality. 8826 */ 8827 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 8828 { 8829 struct numa_group *numa_group = rcu_dereference(p->numa_group); 8830 unsigned long src_weight, dst_weight; 8831 int src_nid, dst_nid, dist; 8832 8833 if (!static_branch_likely(&sched_numa_balancing)) 8834 return -1; 8835 8836 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 8837 return -1; 8838 8839 src_nid = cpu_to_node(env->src_cpu); 8840 dst_nid = cpu_to_node(env->dst_cpu); 8841 8842 if (src_nid == dst_nid) 8843 return -1; 8844 8845 /* Migrating away from the preferred node is always bad. */ 8846 if (src_nid == p->numa_preferred_nid) { 8847 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 8848 return 1; 8849 else 8850 return -1; 8851 } 8852 8853 /* Encourage migration to the preferred node. */ 8854 if (dst_nid == p->numa_preferred_nid) 8855 return 0; 8856 8857 /* Leaving a core idle is often worse than degrading locality. */ 8858 if (env->idle == CPU_IDLE) 8859 return -1; 8860 8861 dist = node_distance(src_nid, dst_nid); 8862 if (numa_group) { 8863 src_weight = group_weight(p, src_nid, dist); 8864 dst_weight = group_weight(p, dst_nid, dist); 8865 } else { 8866 src_weight = task_weight(p, src_nid, dist); 8867 dst_weight = task_weight(p, dst_nid, dist); 8868 } 8869 8870 return dst_weight < src_weight; 8871 } 8872 8873 #else 8874 static inline int migrate_degrades_locality(struct task_struct *p, 8875 struct lb_env *env) 8876 { 8877 return -1; 8878 } 8879 #endif 8880 8881 /* 8882 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 8883 */ 8884 static 8885 int can_migrate_task(struct task_struct *p, struct lb_env *env) 8886 { 8887 int tsk_cache_hot; 8888 8889 lockdep_assert_rq_held(env->src_rq); 8890 8891 /* 8892 * We do not migrate tasks that are: 8893 * 1) throttled_lb_pair, or 8894 * 2) cannot be migrated to this CPU due to cpus_ptr, or 8895 * 3) running (obviously), or 8896 * 4) are cache-hot on their current CPU. 8897 */ 8898 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 8899 return 0; 8900 8901 /* Disregard pcpu kthreads; they are where they need to be. */ 8902 if (kthread_is_per_cpu(p)) 8903 return 0; 8904 8905 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 8906 int cpu; 8907 8908 schedstat_inc(p->stats.nr_failed_migrations_affine); 8909 8910 env->flags |= LBF_SOME_PINNED; 8911 8912 /* 8913 * Remember if this task can be migrated to any other CPU in 8914 * our sched_group. We may want to revisit it if we couldn't 8915 * meet load balance goals by pulling other tasks on src_cpu. 8916 * 8917 * Avoid computing new_dst_cpu 8918 * - for NEWLY_IDLE 8919 * - if we have already computed one in current iteration 8920 * - if it's an active balance 8921 */ 8922 if (env->idle == CPU_NEWLY_IDLE || 8923 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 8924 return 0; 8925 8926 /* Prevent to re-select dst_cpu via env's CPUs: */ 8927 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 8928 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 8929 env->flags |= LBF_DST_PINNED; 8930 env->new_dst_cpu = cpu; 8931 break; 8932 } 8933 } 8934 8935 return 0; 8936 } 8937 8938 /* Record that we found at least one task that could run on dst_cpu */ 8939 env->flags &= ~LBF_ALL_PINNED; 8940 8941 if (task_on_cpu(env->src_rq, p)) { 8942 schedstat_inc(p->stats.nr_failed_migrations_running); 8943 return 0; 8944 } 8945 8946 /* 8947 * Aggressive migration if: 8948 * 1) active balance 8949 * 2) destination numa is preferred 8950 * 3) task is cache cold, or 8951 * 4) too many balance attempts have failed. 8952 */ 8953 if (env->flags & LBF_ACTIVE_LB) 8954 return 1; 8955 8956 tsk_cache_hot = migrate_degrades_locality(p, env); 8957 if (tsk_cache_hot == -1) 8958 tsk_cache_hot = task_hot(p, env); 8959 8960 if (tsk_cache_hot <= 0 || 8961 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 8962 if (tsk_cache_hot == 1) { 8963 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 8964 schedstat_inc(p->stats.nr_forced_migrations); 8965 } 8966 return 1; 8967 } 8968 8969 schedstat_inc(p->stats.nr_failed_migrations_hot); 8970 return 0; 8971 } 8972 8973 /* 8974 * detach_task() -- detach the task for the migration specified in env 8975 */ 8976 static void detach_task(struct task_struct *p, struct lb_env *env) 8977 { 8978 lockdep_assert_rq_held(env->src_rq); 8979 8980 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 8981 set_task_cpu(p, env->dst_cpu); 8982 } 8983 8984 /* 8985 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 8986 * part of active balancing operations within "domain". 8987 * 8988 * Returns a task if successful and NULL otherwise. 8989 */ 8990 static struct task_struct *detach_one_task(struct lb_env *env) 8991 { 8992 struct task_struct *p; 8993 8994 lockdep_assert_rq_held(env->src_rq); 8995 8996 list_for_each_entry_reverse(p, 8997 &env->src_rq->cfs_tasks, se.group_node) { 8998 if (!can_migrate_task(p, env)) 8999 continue; 9000 9001 detach_task(p, env); 9002 9003 /* 9004 * Right now, this is only the second place where 9005 * lb_gained[env->idle] is updated (other is detach_tasks) 9006 * so we can safely collect stats here rather than 9007 * inside detach_tasks(). 9008 */ 9009 schedstat_inc(env->sd->lb_gained[env->idle]); 9010 return p; 9011 } 9012 return NULL; 9013 } 9014 9015 /* 9016 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9017 * busiest_rq, as part of a balancing operation within domain "sd". 9018 * 9019 * Returns number of detached tasks if successful and 0 otherwise. 9020 */ 9021 static int detach_tasks(struct lb_env *env) 9022 { 9023 struct list_head *tasks = &env->src_rq->cfs_tasks; 9024 unsigned long util, load; 9025 struct task_struct *p; 9026 int detached = 0; 9027 9028 lockdep_assert_rq_held(env->src_rq); 9029 9030 /* 9031 * Source run queue has been emptied by another CPU, clear 9032 * LBF_ALL_PINNED flag as we will not test any task. 9033 */ 9034 if (env->src_rq->nr_running <= 1) { 9035 env->flags &= ~LBF_ALL_PINNED; 9036 return 0; 9037 } 9038 9039 if (env->imbalance <= 0) 9040 return 0; 9041 9042 while (!list_empty(tasks)) { 9043 /* 9044 * We don't want to steal all, otherwise we may be treated likewise, 9045 * which could at worst lead to a livelock crash. 9046 */ 9047 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 9048 break; 9049 9050 env->loop++; 9051 /* We've more or less seen every task there is, call it quits */ 9052 if (env->loop > env->loop_max) 9053 break; 9054 9055 /* take a breather every nr_migrate tasks */ 9056 if (env->loop > env->loop_break) { 9057 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9058 env->flags |= LBF_NEED_BREAK; 9059 break; 9060 } 9061 9062 p = list_last_entry(tasks, struct task_struct, se.group_node); 9063 9064 if (!can_migrate_task(p, env)) 9065 goto next; 9066 9067 switch (env->migration_type) { 9068 case migrate_load: 9069 /* 9070 * Depending of the number of CPUs and tasks and the 9071 * cgroup hierarchy, task_h_load() can return a null 9072 * value. Make sure that env->imbalance decreases 9073 * otherwise detach_tasks() will stop only after 9074 * detaching up to loop_max tasks. 9075 */ 9076 load = max_t(unsigned long, task_h_load(p), 1); 9077 9078 if (sched_feat(LB_MIN) && 9079 load < 16 && !env->sd->nr_balance_failed) 9080 goto next; 9081 9082 /* 9083 * Make sure that we don't migrate too much load. 9084 * Nevertheless, let relax the constraint if 9085 * scheduler fails to find a good waiting task to 9086 * migrate. 9087 */ 9088 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9089 goto next; 9090 9091 env->imbalance -= load; 9092 break; 9093 9094 case migrate_util: 9095 util = task_util_est(p); 9096 9097 if (util > env->imbalance) 9098 goto next; 9099 9100 env->imbalance -= util; 9101 break; 9102 9103 case migrate_task: 9104 env->imbalance--; 9105 break; 9106 9107 case migrate_misfit: 9108 /* This is not a misfit task */ 9109 if (task_fits_cpu(p, env->src_cpu)) 9110 goto next; 9111 9112 env->imbalance = 0; 9113 break; 9114 } 9115 9116 detach_task(p, env); 9117 list_add(&p->se.group_node, &env->tasks); 9118 9119 detached++; 9120 9121 #ifdef CONFIG_PREEMPTION 9122 /* 9123 * NEWIDLE balancing is a source of latency, so preemptible 9124 * kernels will stop after the first task is detached to minimize 9125 * the critical section. 9126 */ 9127 if (env->idle == CPU_NEWLY_IDLE) 9128 break; 9129 #endif 9130 9131 /* 9132 * We only want to steal up to the prescribed amount of 9133 * load/util/tasks. 9134 */ 9135 if (env->imbalance <= 0) 9136 break; 9137 9138 continue; 9139 next: 9140 list_move(&p->se.group_node, tasks); 9141 } 9142 9143 /* 9144 * Right now, this is one of only two places we collect this stat 9145 * so we can safely collect detach_one_task() stats here rather 9146 * than inside detach_one_task(). 9147 */ 9148 schedstat_add(env->sd->lb_gained[env->idle], detached); 9149 9150 return detached; 9151 } 9152 9153 /* 9154 * attach_task() -- attach the task detached by detach_task() to its new rq. 9155 */ 9156 static void attach_task(struct rq *rq, struct task_struct *p) 9157 { 9158 lockdep_assert_rq_held(rq); 9159 9160 WARN_ON_ONCE(task_rq(p) != rq); 9161 activate_task(rq, p, ENQUEUE_NOCLOCK); 9162 check_preempt_curr(rq, p, 0); 9163 } 9164 9165 /* 9166 * attach_one_task() -- attaches the task returned from detach_one_task() to 9167 * its new rq. 9168 */ 9169 static void attach_one_task(struct rq *rq, struct task_struct *p) 9170 { 9171 struct rq_flags rf; 9172 9173 rq_lock(rq, &rf); 9174 update_rq_clock(rq); 9175 attach_task(rq, p); 9176 rq_unlock(rq, &rf); 9177 } 9178 9179 /* 9180 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9181 * new rq. 9182 */ 9183 static void attach_tasks(struct lb_env *env) 9184 { 9185 struct list_head *tasks = &env->tasks; 9186 struct task_struct *p; 9187 struct rq_flags rf; 9188 9189 rq_lock(env->dst_rq, &rf); 9190 update_rq_clock(env->dst_rq); 9191 9192 while (!list_empty(tasks)) { 9193 p = list_first_entry(tasks, struct task_struct, se.group_node); 9194 list_del_init(&p->se.group_node); 9195 9196 attach_task(env->dst_rq, p); 9197 } 9198 9199 rq_unlock(env->dst_rq, &rf); 9200 } 9201 9202 #ifdef CONFIG_NO_HZ_COMMON 9203 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9204 { 9205 if (cfs_rq->avg.load_avg) 9206 return true; 9207 9208 if (cfs_rq->avg.util_avg) 9209 return true; 9210 9211 return false; 9212 } 9213 9214 static inline bool others_have_blocked(struct rq *rq) 9215 { 9216 if (READ_ONCE(rq->avg_rt.util_avg)) 9217 return true; 9218 9219 if (READ_ONCE(rq->avg_dl.util_avg)) 9220 return true; 9221 9222 if (thermal_load_avg(rq)) 9223 return true; 9224 9225 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 9226 if (READ_ONCE(rq->avg_irq.util_avg)) 9227 return true; 9228 #endif 9229 9230 return false; 9231 } 9232 9233 static inline void update_blocked_load_tick(struct rq *rq) 9234 { 9235 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9236 } 9237 9238 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9239 { 9240 if (!has_blocked) 9241 rq->has_blocked_load = 0; 9242 } 9243 #else 9244 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9245 static inline bool others_have_blocked(struct rq *rq) { return false; } 9246 static inline void update_blocked_load_tick(struct rq *rq) {} 9247 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9248 #endif 9249 9250 static bool __update_blocked_others(struct rq *rq, bool *done) 9251 { 9252 const struct sched_class *curr_class; 9253 u64 now = rq_clock_pelt(rq); 9254 unsigned long thermal_pressure; 9255 bool decayed; 9256 9257 /* 9258 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9259 * DL and IRQ signals have been updated before updating CFS. 9260 */ 9261 curr_class = rq->curr->sched_class; 9262 9263 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 9264 9265 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 9266 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 9267 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 9268 update_irq_load_avg(rq, 0); 9269 9270 if (others_have_blocked(rq)) 9271 *done = false; 9272 9273 return decayed; 9274 } 9275 9276 #ifdef CONFIG_FAIR_GROUP_SCHED 9277 9278 static bool __update_blocked_fair(struct rq *rq, bool *done) 9279 { 9280 struct cfs_rq *cfs_rq, *pos; 9281 bool decayed = false; 9282 int cpu = cpu_of(rq); 9283 9284 /* 9285 * Iterates the task_group tree in a bottom up fashion, see 9286 * list_add_leaf_cfs_rq() for details. 9287 */ 9288 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9289 struct sched_entity *se; 9290 9291 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9292 update_tg_load_avg(cfs_rq); 9293 9294 if (cfs_rq->nr_running == 0) 9295 update_idle_cfs_rq_clock_pelt(cfs_rq); 9296 9297 if (cfs_rq == &rq->cfs) 9298 decayed = true; 9299 } 9300 9301 /* Propagate pending load changes to the parent, if any: */ 9302 se = cfs_rq->tg->se[cpu]; 9303 if (se && !skip_blocked_update(se)) 9304 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9305 9306 /* 9307 * There can be a lot of idle CPU cgroups. Don't let fully 9308 * decayed cfs_rqs linger on the list. 9309 */ 9310 if (cfs_rq_is_decayed(cfs_rq)) 9311 list_del_leaf_cfs_rq(cfs_rq); 9312 9313 /* Don't need periodic decay once load/util_avg are null */ 9314 if (cfs_rq_has_blocked(cfs_rq)) 9315 *done = false; 9316 } 9317 9318 return decayed; 9319 } 9320 9321 /* 9322 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9323 * This needs to be done in a top-down fashion because the load of a child 9324 * group is a fraction of its parents load. 9325 */ 9326 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9327 { 9328 struct rq *rq = rq_of(cfs_rq); 9329 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9330 unsigned long now = jiffies; 9331 unsigned long load; 9332 9333 if (cfs_rq->last_h_load_update == now) 9334 return; 9335 9336 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9337 for_each_sched_entity(se) { 9338 cfs_rq = cfs_rq_of(se); 9339 WRITE_ONCE(cfs_rq->h_load_next, se); 9340 if (cfs_rq->last_h_load_update == now) 9341 break; 9342 } 9343 9344 if (!se) { 9345 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9346 cfs_rq->last_h_load_update = now; 9347 } 9348 9349 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9350 load = cfs_rq->h_load; 9351 load = div64_ul(load * se->avg.load_avg, 9352 cfs_rq_load_avg(cfs_rq) + 1); 9353 cfs_rq = group_cfs_rq(se); 9354 cfs_rq->h_load = load; 9355 cfs_rq->last_h_load_update = now; 9356 } 9357 } 9358 9359 static unsigned long task_h_load(struct task_struct *p) 9360 { 9361 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9362 9363 update_cfs_rq_h_load(cfs_rq); 9364 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9365 cfs_rq_load_avg(cfs_rq) + 1); 9366 } 9367 #else 9368 static bool __update_blocked_fair(struct rq *rq, bool *done) 9369 { 9370 struct cfs_rq *cfs_rq = &rq->cfs; 9371 bool decayed; 9372 9373 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9374 if (cfs_rq_has_blocked(cfs_rq)) 9375 *done = false; 9376 9377 return decayed; 9378 } 9379 9380 static unsigned long task_h_load(struct task_struct *p) 9381 { 9382 return p->se.avg.load_avg; 9383 } 9384 #endif 9385 9386 static void update_blocked_averages(int cpu) 9387 { 9388 bool decayed = false, done = true; 9389 struct rq *rq = cpu_rq(cpu); 9390 struct rq_flags rf; 9391 9392 rq_lock_irqsave(rq, &rf); 9393 update_blocked_load_tick(rq); 9394 update_rq_clock(rq); 9395 9396 decayed |= __update_blocked_others(rq, &done); 9397 decayed |= __update_blocked_fair(rq, &done); 9398 9399 update_blocked_load_status(rq, !done); 9400 if (decayed) 9401 cpufreq_update_util(rq, 0); 9402 rq_unlock_irqrestore(rq, &rf); 9403 } 9404 9405 /********** Helpers for find_busiest_group ************************/ 9406 9407 /* 9408 * sg_lb_stats - stats of a sched_group required for load_balancing 9409 */ 9410 struct sg_lb_stats { 9411 unsigned long avg_load; /*Avg load across the CPUs of the group */ 9412 unsigned long group_load; /* Total load over the CPUs of the group */ 9413 unsigned long group_capacity; 9414 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9415 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9416 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 9417 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9418 unsigned int idle_cpus; 9419 unsigned int group_weight; 9420 enum group_type group_type; 9421 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9422 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9423 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9424 #ifdef CONFIG_NUMA_BALANCING 9425 unsigned int nr_numa_running; 9426 unsigned int nr_preferred_running; 9427 #endif 9428 }; 9429 9430 /* 9431 * sd_lb_stats - Structure to store the statistics of a sched_domain 9432 * during load balancing. 9433 */ 9434 struct sd_lb_stats { 9435 struct sched_group *busiest; /* Busiest group in this sd */ 9436 struct sched_group *local; /* Local group in this sd */ 9437 unsigned long total_load; /* Total load of all groups in sd */ 9438 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9439 unsigned long avg_load; /* Average load across all groups in sd */ 9440 unsigned int prefer_sibling; /* tasks should go to sibling first */ 9441 9442 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 9443 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9444 }; 9445 9446 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9447 { 9448 /* 9449 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9450 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9451 * We must however set busiest_stat::group_type and 9452 * busiest_stat::idle_cpus to the worst busiest group because 9453 * update_sd_pick_busiest() reads these before assignment. 9454 */ 9455 *sds = (struct sd_lb_stats){ 9456 .busiest = NULL, 9457 .local = NULL, 9458 .total_load = 0UL, 9459 .total_capacity = 0UL, 9460 .busiest_stat = { 9461 .idle_cpus = UINT_MAX, 9462 .group_type = group_has_spare, 9463 }, 9464 }; 9465 } 9466 9467 static unsigned long scale_rt_capacity(int cpu) 9468 { 9469 struct rq *rq = cpu_rq(cpu); 9470 unsigned long max = arch_scale_cpu_capacity(cpu); 9471 unsigned long used, free; 9472 unsigned long irq; 9473 9474 irq = cpu_util_irq(rq); 9475 9476 if (unlikely(irq >= max)) 9477 return 1; 9478 9479 /* 9480 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9481 * (running and not running) with weights 0 and 1024 respectively. 9482 * avg_thermal.load_avg tracks thermal pressure and the weighted 9483 * average uses the actual delta max capacity(load). 9484 */ 9485 used = READ_ONCE(rq->avg_rt.util_avg); 9486 used += READ_ONCE(rq->avg_dl.util_avg); 9487 used += thermal_load_avg(rq); 9488 9489 if (unlikely(used >= max)) 9490 return 1; 9491 9492 free = max - used; 9493 9494 return scale_irq_capacity(free, irq, max); 9495 } 9496 9497 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9498 { 9499 unsigned long capacity = scale_rt_capacity(cpu); 9500 struct sched_group *sdg = sd->groups; 9501 9502 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 9503 9504 if (!capacity) 9505 capacity = 1; 9506 9507 cpu_rq(cpu)->cpu_capacity = capacity; 9508 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9509 9510 sdg->sgc->capacity = capacity; 9511 sdg->sgc->min_capacity = capacity; 9512 sdg->sgc->max_capacity = capacity; 9513 } 9514 9515 void update_group_capacity(struct sched_domain *sd, int cpu) 9516 { 9517 struct sched_domain *child = sd->child; 9518 struct sched_group *group, *sdg = sd->groups; 9519 unsigned long capacity, min_capacity, max_capacity; 9520 unsigned long interval; 9521 9522 interval = msecs_to_jiffies(sd->balance_interval); 9523 interval = clamp(interval, 1UL, max_load_balance_interval); 9524 sdg->sgc->next_update = jiffies + interval; 9525 9526 if (!child) { 9527 update_cpu_capacity(sd, cpu); 9528 return; 9529 } 9530 9531 capacity = 0; 9532 min_capacity = ULONG_MAX; 9533 max_capacity = 0; 9534 9535 if (child->flags & SD_OVERLAP) { 9536 /* 9537 * SD_OVERLAP domains cannot assume that child groups 9538 * span the current group. 9539 */ 9540 9541 for_each_cpu(cpu, sched_group_span(sdg)) { 9542 unsigned long cpu_cap = capacity_of(cpu); 9543 9544 capacity += cpu_cap; 9545 min_capacity = min(cpu_cap, min_capacity); 9546 max_capacity = max(cpu_cap, max_capacity); 9547 } 9548 } else { 9549 /* 9550 * !SD_OVERLAP domains can assume that child groups 9551 * span the current group. 9552 */ 9553 9554 group = child->groups; 9555 do { 9556 struct sched_group_capacity *sgc = group->sgc; 9557 9558 capacity += sgc->capacity; 9559 min_capacity = min(sgc->min_capacity, min_capacity); 9560 max_capacity = max(sgc->max_capacity, max_capacity); 9561 group = group->next; 9562 } while (group != child->groups); 9563 } 9564 9565 sdg->sgc->capacity = capacity; 9566 sdg->sgc->min_capacity = min_capacity; 9567 sdg->sgc->max_capacity = max_capacity; 9568 } 9569 9570 /* 9571 * Check whether the capacity of the rq has been noticeably reduced by side 9572 * activity. The imbalance_pct is used for the threshold. 9573 * Return true is the capacity is reduced 9574 */ 9575 static inline int 9576 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 9577 { 9578 return ((rq->cpu_capacity * sd->imbalance_pct) < 9579 (rq->cpu_capacity_orig * 100)); 9580 } 9581 9582 /* 9583 * Check whether a rq has a misfit task and if it looks like we can actually 9584 * help that task: we can migrate the task to a CPU of higher capacity, or 9585 * the task's current CPU is heavily pressured. 9586 */ 9587 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 9588 { 9589 return rq->misfit_task_load && 9590 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 9591 check_cpu_capacity(rq, sd)); 9592 } 9593 9594 /* 9595 * Group imbalance indicates (and tries to solve) the problem where balancing 9596 * groups is inadequate due to ->cpus_ptr constraints. 9597 * 9598 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 9599 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 9600 * Something like: 9601 * 9602 * { 0 1 2 3 } { 4 5 6 7 } 9603 * * * * * 9604 * 9605 * If we were to balance group-wise we'd place two tasks in the first group and 9606 * two tasks in the second group. Clearly this is undesired as it will overload 9607 * cpu 3 and leave one of the CPUs in the second group unused. 9608 * 9609 * The current solution to this issue is detecting the skew in the first group 9610 * by noticing the lower domain failed to reach balance and had difficulty 9611 * moving tasks due to affinity constraints. 9612 * 9613 * When this is so detected; this group becomes a candidate for busiest; see 9614 * update_sd_pick_busiest(). And calculate_imbalance() and 9615 * find_busiest_group() avoid some of the usual balance conditions to allow it 9616 * to create an effective group imbalance. 9617 * 9618 * This is a somewhat tricky proposition since the next run might not find the 9619 * group imbalance and decide the groups need to be balanced again. A most 9620 * subtle and fragile situation. 9621 */ 9622 9623 static inline int sg_imbalanced(struct sched_group *group) 9624 { 9625 return group->sgc->imbalance; 9626 } 9627 9628 /* 9629 * group_has_capacity returns true if the group has spare capacity that could 9630 * be used by some tasks. 9631 * We consider that a group has spare capacity if the number of task is 9632 * smaller than the number of CPUs or if the utilization is lower than the 9633 * available capacity for CFS tasks. 9634 * For the latter, we use a threshold to stabilize the state, to take into 9635 * account the variance of the tasks' load and to return true if the available 9636 * capacity in meaningful for the load balancer. 9637 * As an example, an available capacity of 1% can appear but it doesn't make 9638 * any benefit for the load balance. 9639 */ 9640 static inline bool 9641 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9642 { 9643 if (sgs->sum_nr_running < sgs->group_weight) 9644 return true; 9645 9646 if ((sgs->group_capacity * imbalance_pct) < 9647 (sgs->group_runnable * 100)) 9648 return false; 9649 9650 if ((sgs->group_capacity * 100) > 9651 (sgs->group_util * imbalance_pct)) 9652 return true; 9653 9654 return false; 9655 } 9656 9657 /* 9658 * group_is_overloaded returns true if the group has more tasks than it can 9659 * handle. 9660 * group_is_overloaded is not equals to !group_has_capacity because a group 9661 * with the exact right number of tasks, has no more spare capacity but is not 9662 * overloaded so both group_has_capacity and group_is_overloaded return 9663 * false. 9664 */ 9665 static inline bool 9666 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9667 { 9668 if (sgs->sum_nr_running <= sgs->group_weight) 9669 return false; 9670 9671 if ((sgs->group_capacity * 100) < 9672 (sgs->group_util * imbalance_pct)) 9673 return true; 9674 9675 if ((sgs->group_capacity * imbalance_pct) < 9676 (sgs->group_runnable * 100)) 9677 return true; 9678 9679 return false; 9680 } 9681 9682 static inline enum 9683 group_type group_classify(unsigned int imbalance_pct, 9684 struct sched_group *group, 9685 struct sg_lb_stats *sgs) 9686 { 9687 if (group_is_overloaded(imbalance_pct, sgs)) 9688 return group_overloaded; 9689 9690 if (sg_imbalanced(group)) 9691 return group_imbalanced; 9692 9693 if (sgs->group_asym_packing) 9694 return group_asym_packing; 9695 9696 if (sgs->group_smt_balance) 9697 return group_smt_balance; 9698 9699 if (sgs->group_misfit_task_load) 9700 return group_misfit_task; 9701 9702 if (!group_has_capacity(imbalance_pct, sgs)) 9703 return group_fully_busy; 9704 9705 return group_has_spare; 9706 } 9707 9708 /** 9709 * sched_use_asym_prio - Check whether asym_packing priority must be used 9710 * @sd: The scheduling domain of the load balancing 9711 * @cpu: A CPU 9712 * 9713 * Always use CPU priority when balancing load between SMT siblings. When 9714 * balancing load between cores, it is not sufficient that @cpu is idle. Only 9715 * use CPU priority if the whole core is idle. 9716 * 9717 * Returns: True if the priority of @cpu must be followed. False otherwise. 9718 */ 9719 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 9720 { 9721 if (!sched_smt_active()) 9722 return true; 9723 9724 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 9725 } 9726 9727 /** 9728 * sched_asym - Check if the destination CPU can do asym_packing load balance 9729 * @env: The load balancing environment 9730 * @sds: Load-balancing data with statistics of the local group 9731 * @sgs: Load-balancing statistics of the candidate busiest group 9732 * @group: The candidate busiest group 9733 * 9734 * @env::dst_cpu can do asym_packing if it has higher priority than the 9735 * preferred CPU of @group. 9736 * 9737 * SMT is a special case. If we are balancing load between cores, @env::dst_cpu 9738 * can do asym_packing balance only if all its SMT siblings are idle. Also, it 9739 * can only do it if @group is an SMT group and has exactly on busy CPU. Larger 9740 * imbalances in the number of CPUS are dealt with in find_busiest_group(). 9741 * 9742 * If we are balancing load within an SMT core, or at DIE domain level, always 9743 * proceed. 9744 * 9745 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 9746 * otherwise. 9747 */ 9748 static inline bool 9749 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs, 9750 struct sched_group *group) 9751 { 9752 /* Ensure that the whole local core is idle, if applicable. */ 9753 if (!sched_use_asym_prio(env->sd, env->dst_cpu)) 9754 return false; 9755 9756 /* 9757 * CPU priorities does not make sense for SMT cores with more than one 9758 * busy sibling. 9759 */ 9760 if (group->flags & SD_SHARE_CPUCAPACITY) { 9761 if (sgs->group_weight - sgs->idle_cpus != 1) 9762 return false; 9763 } 9764 9765 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu); 9766 } 9767 9768 /* One group has more than one SMT CPU while the other group does not */ 9769 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 9770 struct sched_group *sg2) 9771 { 9772 if (!sg1 || !sg2) 9773 return false; 9774 9775 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 9776 (sg2->flags & SD_SHARE_CPUCAPACITY); 9777 } 9778 9779 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 9780 struct sched_group *group) 9781 { 9782 if (env->idle == CPU_NOT_IDLE) 9783 return false; 9784 9785 /* 9786 * For SMT source group, it is better to move a task 9787 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 9788 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 9789 * will not be on. 9790 */ 9791 if (group->flags & SD_SHARE_CPUCAPACITY && 9792 sgs->sum_h_nr_running > 1) 9793 return true; 9794 9795 return false; 9796 } 9797 9798 static inline long sibling_imbalance(struct lb_env *env, 9799 struct sd_lb_stats *sds, 9800 struct sg_lb_stats *busiest, 9801 struct sg_lb_stats *local) 9802 { 9803 int ncores_busiest, ncores_local; 9804 long imbalance; 9805 9806 if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running) 9807 return 0; 9808 9809 ncores_busiest = sds->busiest->cores; 9810 ncores_local = sds->local->cores; 9811 9812 if (ncores_busiest == ncores_local) { 9813 imbalance = busiest->sum_nr_running; 9814 lsub_positive(&imbalance, local->sum_nr_running); 9815 return imbalance; 9816 } 9817 9818 /* Balance such that nr_running/ncores ratio are same on both groups */ 9819 imbalance = ncores_local * busiest->sum_nr_running; 9820 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 9821 /* Normalize imbalance and do rounding on normalization */ 9822 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 9823 imbalance /= ncores_local + ncores_busiest; 9824 9825 /* Take advantage of resource in an empty sched group */ 9826 if (imbalance <= 1 && local->sum_nr_running == 0 && 9827 busiest->sum_nr_running > 1) 9828 imbalance = 2; 9829 9830 return imbalance; 9831 } 9832 9833 static inline bool 9834 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 9835 { 9836 /* 9837 * When there is more than 1 task, the group_overloaded case already 9838 * takes care of cpu with reduced capacity 9839 */ 9840 if (rq->cfs.h_nr_running != 1) 9841 return false; 9842 9843 return check_cpu_capacity(rq, sd); 9844 } 9845 9846 /** 9847 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 9848 * @env: The load balancing environment. 9849 * @sds: Load-balancing data with statistics of the local group. 9850 * @group: sched_group whose statistics are to be updated. 9851 * @sgs: variable to hold the statistics for this group. 9852 * @sg_status: Holds flag indicating the status of the sched_group 9853 */ 9854 static inline void update_sg_lb_stats(struct lb_env *env, 9855 struct sd_lb_stats *sds, 9856 struct sched_group *group, 9857 struct sg_lb_stats *sgs, 9858 int *sg_status) 9859 { 9860 int i, nr_running, local_group; 9861 9862 memset(sgs, 0, sizeof(*sgs)); 9863 9864 local_group = group == sds->local; 9865 9866 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9867 struct rq *rq = cpu_rq(i); 9868 unsigned long load = cpu_load(rq); 9869 9870 sgs->group_load += load; 9871 sgs->group_util += cpu_util_cfs(i); 9872 sgs->group_runnable += cpu_runnable(rq); 9873 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 9874 9875 nr_running = rq->nr_running; 9876 sgs->sum_nr_running += nr_running; 9877 9878 if (nr_running > 1) 9879 *sg_status |= SG_OVERLOAD; 9880 9881 if (cpu_overutilized(i)) 9882 *sg_status |= SG_OVERUTILIZED; 9883 9884 #ifdef CONFIG_NUMA_BALANCING 9885 sgs->nr_numa_running += rq->nr_numa_running; 9886 sgs->nr_preferred_running += rq->nr_preferred_running; 9887 #endif 9888 /* 9889 * No need to call idle_cpu() if nr_running is not 0 9890 */ 9891 if (!nr_running && idle_cpu(i)) { 9892 sgs->idle_cpus++; 9893 /* Idle cpu can't have misfit task */ 9894 continue; 9895 } 9896 9897 if (local_group) 9898 continue; 9899 9900 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9901 /* Check for a misfit task on the cpu */ 9902 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 9903 sgs->group_misfit_task_load = rq->misfit_task_load; 9904 *sg_status |= SG_OVERLOAD; 9905 } 9906 } else if ((env->idle != CPU_NOT_IDLE) && 9907 sched_reduced_capacity(rq, env->sd)) { 9908 /* Check for a task running on a CPU with reduced capacity */ 9909 if (sgs->group_misfit_task_load < load) 9910 sgs->group_misfit_task_load = load; 9911 } 9912 } 9913 9914 sgs->group_capacity = group->sgc->capacity; 9915 9916 sgs->group_weight = group->group_weight; 9917 9918 /* Check if dst CPU is idle and preferred to this group */ 9919 if (!local_group && env->sd->flags & SD_ASYM_PACKING && 9920 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running && 9921 sched_asym(env, sds, sgs, group)) { 9922 sgs->group_asym_packing = 1; 9923 } 9924 9925 /* Check for loaded SMT group to be balanced to dst CPU */ 9926 if (!local_group && smt_balance(env, sgs, group)) 9927 sgs->group_smt_balance = 1; 9928 9929 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 9930 9931 /* Computing avg_load makes sense only when group is overloaded */ 9932 if (sgs->group_type == group_overloaded) 9933 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9934 sgs->group_capacity; 9935 } 9936 9937 /** 9938 * update_sd_pick_busiest - return 1 on busiest group 9939 * @env: The load balancing environment. 9940 * @sds: sched_domain statistics 9941 * @sg: sched_group candidate to be checked for being the busiest 9942 * @sgs: sched_group statistics 9943 * 9944 * Determine if @sg is a busier group than the previously selected 9945 * busiest group. 9946 * 9947 * Return: %true if @sg is a busier group than the previously selected 9948 * busiest group. %false otherwise. 9949 */ 9950 static bool update_sd_pick_busiest(struct lb_env *env, 9951 struct sd_lb_stats *sds, 9952 struct sched_group *sg, 9953 struct sg_lb_stats *sgs) 9954 { 9955 struct sg_lb_stats *busiest = &sds->busiest_stat; 9956 9957 /* Make sure that there is at least one task to pull */ 9958 if (!sgs->sum_h_nr_running) 9959 return false; 9960 9961 /* 9962 * Don't try to pull misfit tasks we can't help. 9963 * We can use max_capacity here as reduction in capacity on some 9964 * CPUs in the group should either be possible to resolve 9965 * internally or be covered by avg_load imbalance (eventually). 9966 */ 9967 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9968 (sgs->group_type == group_misfit_task) && 9969 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 9970 sds->local_stat.group_type != group_has_spare)) 9971 return false; 9972 9973 if (sgs->group_type > busiest->group_type) 9974 return true; 9975 9976 if (sgs->group_type < busiest->group_type) 9977 return false; 9978 9979 /* 9980 * The candidate and the current busiest group are the same type of 9981 * group. Let check which one is the busiest according to the type. 9982 */ 9983 9984 switch (sgs->group_type) { 9985 case group_overloaded: 9986 /* Select the overloaded group with highest avg_load. */ 9987 if (sgs->avg_load <= busiest->avg_load) 9988 return false; 9989 break; 9990 9991 case group_imbalanced: 9992 /* 9993 * Select the 1st imbalanced group as we don't have any way to 9994 * choose one more than another. 9995 */ 9996 return false; 9997 9998 case group_asym_packing: 9999 /* Prefer to move from lowest priority CPU's work */ 10000 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 10001 return false; 10002 break; 10003 10004 case group_misfit_task: 10005 /* 10006 * If we have more than one misfit sg go with the biggest 10007 * misfit. 10008 */ 10009 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 10010 return false; 10011 break; 10012 10013 case group_smt_balance: 10014 /* 10015 * Check if we have spare CPUs on either SMT group to 10016 * choose has spare or fully busy handling. 10017 */ 10018 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10019 goto has_spare; 10020 10021 fallthrough; 10022 10023 case group_fully_busy: 10024 /* 10025 * Select the fully busy group with highest avg_load. In 10026 * theory, there is no need to pull task from such kind of 10027 * group because tasks have all compute capacity that they need 10028 * but we can still improve the overall throughput by reducing 10029 * contention when accessing shared HW resources. 10030 * 10031 * XXX for now avg_load is not computed and always 0 so we 10032 * select the 1st one, except if @sg is composed of SMT 10033 * siblings. 10034 */ 10035 10036 if (sgs->avg_load < busiest->avg_load) 10037 return false; 10038 10039 if (sgs->avg_load == busiest->avg_load) { 10040 /* 10041 * SMT sched groups need more help than non-SMT groups. 10042 * If @sg happens to also be SMT, either choice is good. 10043 */ 10044 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10045 return false; 10046 } 10047 10048 break; 10049 10050 case group_has_spare: 10051 /* 10052 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10053 * as we do not want to pull task off SMT core with one task 10054 * and make the core idle. 10055 */ 10056 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10057 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10058 return false; 10059 else 10060 return true; 10061 } 10062 has_spare: 10063 10064 /* 10065 * Select not overloaded group with lowest number of idle cpus 10066 * and highest number of running tasks. We could also compare 10067 * the spare capacity which is more stable but it can end up 10068 * that the group has less spare capacity but finally more idle 10069 * CPUs which means less opportunity to pull tasks. 10070 */ 10071 if (sgs->idle_cpus > busiest->idle_cpus) 10072 return false; 10073 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10074 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10075 return false; 10076 10077 break; 10078 } 10079 10080 /* 10081 * Candidate sg has no more than one task per CPU and has higher 10082 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10083 * throughput. Maximize throughput, power/energy consequences are not 10084 * considered. 10085 */ 10086 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10087 (sgs->group_type <= group_fully_busy) && 10088 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10089 return false; 10090 10091 return true; 10092 } 10093 10094 #ifdef CONFIG_NUMA_BALANCING 10095 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10096 { 10097 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10098 return regular; 10099 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10100 return remote; 10101 return all; 10102 } 10103 10104 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10105 { 10106 if (rq->nr_running > rq->nr_numa_running) 10107 return regular; 10108 if (rq->nr_running > rq->nr_preferred_running) 10109 return remote; 10110 return all; 10111 } 10112 #else 10113 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10114 { 10115 return all; 10116 } 10117 10118 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10119 { 10120 return regular; 10121 } 10122 #endif /* CONFIG_NUMA_BALANCING */ 10123 10124 10125 struct sg_lb_stats; 10126 10127 /* 10128 * task_running_on_cpu - return 1 if @p is running on @cpu. 10129 */ 10130 10131 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10132 { 10133 /* Task has no contribution or is new */ 10134 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10135 return 0; 10136 10137 if (task_on_rq_queued(p)) 10138 return 1; 10139 10140 return 0; 10141 } 10142 10143 /** 10144 * idle_cpu_without - would a given CPU be idle without p ? 10145 * @cpu: the processor on which idleness is tested. 10146 * @p: task which should be ignored. 10147 * 10148 * Return: 1 if the CPU would be idle. 0 otherwise. 10149 */ 10150 static int idle_cpu_without(int cpu, struct task_struct *p) 10151 { 10152 struct rq *rq = cpu_rq(cpu); 10153 10154 if (rq->curr != rq->idle && rq->curr != p) 10155 return 0; 10156 10157 /* 10158 * rq->nr_running can't be used but an updated version without the 10159 * impact of p on cpu must be used instead. The updated nr_running 10160 * be computed and tested before calling idle_cpu_without(). 10161 */ 10162 10163 #ifdef CONFIG_SMP 10164 if (rq->ttwu_pending) 10165 return 0; 10166 #endif 10167 10168 return 1; 10169 } 10170 10171 /* 10172 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10173 * @sd: The sched_domain level to look for idlest group. 10174 * @group: sched_group whose statistics are to be updated. 10175 * @sgs: variable to hold the statistics for this group. 10176 * @p: The task for which we look for the idlest group/CPU. 10177 */ 10178 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10179 struct sched_group *group, 10180 struct sg_lb_stats *sgs, 10181 struct task_struct *p) 10182 { 10183 int i, nr_running; 10184 10185 memset(sgs, 0, sizeof(*sgs)); 10186 10187 /* Assume that task can't fit any CPU of the group */ 10188 if (sd->flags & SD_ASYM_CPUCAPACITY) 10189 sgs->group_misfit_task_load = 1; 10190 10191 for_each_cpu(i, sched_group_span(group)) { 10192 struct rq *rq = cpu_rq(i); 10193 unsigned int local; 10194 10195 sgs->group_load += cpu_load_without(rq, p); 10196 sgs->group_util += cpu_util_without(i, p); 10197 sgs->group_runnable += cpu_runnable_without(rq, p); 10198 local = task_running_on_cpu(i, p); 10199 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 10200 10201 nr_running = rq->nr_running - local; 10202 sgs->sum_nr_running += nr_running; 10203 10204 /* 10205 * No need to call idle_cpu_without() if nr_running is not 0 10206 */ 10207 if (!nr_running && idle_cpu_without(i, p)) 10208 sgs->idle_cpus++; 10209 10210 /* Check if task fits in the CPU */ 10211 if (sd->flags & SD_ASYM_CPUCAPACITY && 10212 sgs->group_misfit_task_load && 10213 task_fits_cpu(p, i)) 10214 sgs->group_misfit_task_load = 0; 10215 10216 } 10217 10218 sgs->group_capacity = group->sgc->capacity; 10219 10220 sgs->group_weight = group->group_weight; 10221 10222 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10223 10224 /* 10225 * Computing avg_load makes sense only when group is fully busy or 10226 * overloaded 10227 */ 10228 if (sgs->group_type == group_fully_busy || 10229 sgs->group_type == group_overloaded) 10230 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10231 sgs->group_capacity; 10232 } 10233 10234 static bool update_pick_idlest(struct sched_group *idlest, 10235 struct sg_lb_stats *idlest_sgs, 10236 struct sched_group *group, 10237 struct sg_lb_stats *sgs) 10238 { 10239 if (sgs->group_type < idlest_sgs->group_type) 10240 return true; 10241 10242 if (sgs->group_type > idlest_sgs->group_type) 10243 return false; 10244 10245 /* 10246 * The candidate and the current idlest group are the same type of 10247 * group. Let check which one is the idlest according to the type. 10248 */ 10249 10250 switch (sgs->group_type) { 10251 case group_overloaded: 10252 case group_fully_busy: 10253 /* Select the group with lowest avg_load. */ 10254 if (idlest_sgs->avg_load <= sgs->avg_load) 10255 return false; 10256 break; 10257 10258 case group_imbalanced: 10259 case group_asym_packing: 10260 case group_smt_balance: 10261 /* Those types are not used in the slow wakeup path */ 10262 return false; 10263 10264 case group_misfit_task: 10265 /* Select group with the highest max capacity */ 10266 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10267 return false; 10268 break; 10269 10270 case group_has_spare: 10271 /* Select group with most idle CPUs */ 10272 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10273 return false; 10274 10275 /* Select group with lowest group_util */ 10276 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10277 idlest_sgs->group_util <= sgs->group_util) 10278 return false; 10279 10280 break; 10281 } 10282 10283 return true; 10284 } 10285 10286 /* 10287 * find_idlest_group() finds and returns the least busy CPU group within the 10288 * domain. 10289 * 10290 * Assumes p is allowed on at least one CPU in sd. 10291 */ 10292 static struct sched_group * 10293 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10294 { 10295 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10296 struct sg_lb_stats local_sgs, tmp_sgs; 10297 struct sg_lb_stats *sgs; 10298 unsigned long imbalance; 10299 struct sg_lb_stats idlest_sgs = { 10300 .avg_load = UINT_MAX, 10301 .group_type = group_overloaded, 10302 }; 10303 10304 do { 10305 int local_group; 10306 10307 /* Skip over this group if it has no CPUs allowed */ 10308 if (!cpumask_intersects(sched_group_span(group), 10309 p->cpus_ptr)) 10310 continue; 10311 10312 /* Skip over this group if no cookie matched */ 10313 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10314 continue; 10315 10316 local_group = cpumask_test_cpu(this_cpu, 10317 sched_group_span(group)); 10318 10319 if (local_group) { 10320 sgs = &local_sgs; 10321 local = group; 10322 } else { 10323 sgs = &tmp_sgs; 10324 } 10325 10326 update_sg_wakeup_stats(sd, group, sgs, p); 10327 10328 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10329 idlest = group; 10330 idlest_sgs = *sgs; 10331 } 10332 10333 } while (group = group->next, group != sd->groups); 10334 10335 10336 /* There is no idlest group to push tasks to */ 10337 if (!idlest) 10338 return NULL; 10339 10340 /* The local group has been skipped because of CPU affinity */ 10341 if (!local) 10342 return idlest; 10343 10344 /* 10345 * If the local group is idler than the selected idlest group 10346 * don't try and push the task. 10347 */ 10348 if (local_sgs.group_type < idlest_sgs.group_type) 10349 return NULL; 10350 10351 /* 10352 * If the local group is busier than the selected idlest group 10353 * try and push the task. 10354 */ 10355 if (local_sgs.group_type > idlest_sgs.group_type) 10356 return idlest; 10357 10358 switch (local_sgs.group_type) { 10359 case group_overloaded: 10360 case group_fully_busy: 10361 10362 /* Calculate allowed imbalance based on load */ 10363 imbalance = scale_load_down(NICE_0_LOAD) * 10364 (sd->imbalance_pct-100) / 100; 10365 10366 /* 10367 * When comparing groups across NUMA domains, it's possible for 10368 * the local domain to be very lightly loaded relative to the 10369 * remote domains but "imbalance" skews the comparison making 10370 * remote CPUs look much more favourable. When considering 10371 * cross-domain, add imbalance to the load on the remote node 10372 * and consider staying local. 10373 */ 10374 10375 if ((sd->flags & SD_NUMA) && 10376 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10377 return NULL; 10378 10379 /* 10380 * If the local group is less loaded than the selected 10381 * idlest group don't try and push any tasks. 10382 */ 10383 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10384 return NULL; 10385 10386 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10387 return NULL; 10388 break; 10389 10390 case group_imbalanced: 10391 case group_asym_packing: 10392 case group_smt_balance: 10393 /* Those type are not used in the slow wakeup path */ 10394 return NULL; 10395 10396 case group_misfit_task: 10397 /* Select group with the highest max capacity */ 10398 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10399 return NULL; 10400 break; 10401 10402 case group_has_spare: 10403 #ifdef CONFIG_NUMA 10404 if (sd->flags & SD_NUMA) { 10405 int imb_numa_nr = sd->imb_numa_nr; 10406 #ifdef CONFIG_NUMA_BALANCING 10407 int idlest_cpu; 10408 /* 10409 * If there is spare capacity at NUMA, try to select 10410 * the preferred node 10411 */ 10412 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10413 return NULL; 10414 10415 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10416 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10417 return idlest; 10418 #endif /* CONFIG_NUMA_BALANCING */ 10419 /* 10420 * Otherwise, keep the task close to the wakeup source 10421 * and improve locality if the number of running tasks 10422 * would remain below threshold where an imbalance is 10423 * allowed while accounting for the possibility the 10424 * task is pinned to a subset of CPUs. If there is a 10425 * real need of migration, periodic load balance will 10426 * take care of it. 10427 */ 10428 if (p->nr_cpus_allowed != NR_CPUS) { 10429 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10430 10431 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10432 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10433 } 10434 10435 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10436 if (!adjust_numa_imbalance(imbalance, 10437 local_sgs.sum_nr_running + 1, 10438 imb_numa_nr)) { 10439 return NULL; 10440 } 10441 } 10442 #endif /* CONFIG_NUMA */ 10443 10444 /* 10445 * Select group with highest number of idle CPUs. We could also 10446 * compare the utilization which is more stable but it can end 10447 * up that the group has less spare capacity but finally more 10448 * idle CPUs which means more opportunity to run task. 10449 */ 10450 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10451 return NULL; 10452 break; 10453 } 10454 10455 return idlest; 10456 } 10457 10458 static void update_idle_cpu_scan(struct lb_env *env, 10459 unsigned long sum_util) 10460 { 10461 struct sched_domain_shared *sd_share; 10462 int llc_weight, pct; 10463 u64 x, y, tmp; 10464 /* 10465 * Update the number of CPUs to scan in LLC domain, which could 10466 * be used as a hint in select_idle_cpu(). The update of sd_share 10467 * could be expensive because it is within a shared cache line. 10468 * So the write of this hint only occurs during periodic load 10469 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10470 * can fire way more frequently than the former. 10471 */ 10472 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10473 return; 10474 10475 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10476 if (env->sd->span_weight != llc_weight) 10477 return; 10478 10479 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10480 if (!sd_share) 10481 return; 10482 10483 /* 10484 * The number of CPUs to search drops as sum_util increases, when 10485 * sum_util hits 85% or above, the scan stops. 10486 * The reason to choose 85% as the threshold is because this is the 10487 * imbalance_pct(117) when a LLC sched group is overloaded. 10488 * 10489 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10490 * and y'= y / SCHED_CAPACITY_SCALE 10491 * 10492 * x is the ratio of sum_util compared to the CPU capacity: 10493 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10494 * y' is the ratio of CPUs to be scanned in the LLC domain, 10495 * and the number of CPUs to scan is calculated by: 10496 * 10497 * nr_scan = llc_weight * y' [2] 10498 * 10499 * When x hits the threshold of overloaded, AKA, when 10500 * x = 100 / pct, y drops to 0. According to [1], 10501 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10502 * 10503 * Scale x by SCHED_CAPACITY_SCALE: 10504 * x' = sum_util / llc_weight; [3] 10505 * 10506 * and finally [1] becomes: 10507 * y = SCHED_CAPACITY_SCALE - 10508 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10509 * 10510 */ 10511 /* equation [3] */ 10512 x = sum_util; 10513 do_div(x, llc_weight); 10514 10515 /* equation [4] */ 10516 pct = env->sd->imbalance_pct; 10517 tmp = x * x * pct * pct; 10518 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10519 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10520 y = SCHED_CAPACITY_SCALE - tmp; 10521 10522 /* equation [2] */ 10523 y *= llc_weight; 10524 do_div(y, SCHED_CAPACITY_SCALE); 10525 if ((int)y != sd_share->nr_idle_scan) 10526 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10527 } 10528 10529 /** 10530 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 10531 * @env: The load balancing environment. 10532 * @sds: variable to hold the statistics for this sched_domain. 10533 */ 10534 10535 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 10536 { 10537 struct sched_group *sg = env->sd->groups; 10538 struct sg_lb_stats *local = &sds->local_stat; 10539 struct sg_lb_stats tmp_sgs; 10540 unsigned long sum_util = 0; 10541 int sg_status = 0; 10542 10543 do { 10544 struct sg_lb_stats *sgs = &tmp_sgs; 10545 int local_group; 10546 10547 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10548 if (local_group) { 10549 sds->local = sg; 10550 sgs = local; 10551 10552 if (env->idle != CPU_NEWLY_IDLE || 10553 time_after_eq(jiffies, sg->sgc->next_update)) 10554 update_group_capacity(env->sd, env->dst_cpu); 10555 } 10556 10557 update_sg_lb_stats(env, sds, sg, sgs, &sg_status); 10558 10559 if (local_group) 10560 goto next_group; 10561 10562 10563 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 10564 sds->busiest = sg; 10565 sds->busiest_stat = *sgs; 10566 } 10567 10568 next_group: 10569 /* Now, start updating sd_lb_stats */ 10570 sds->total_load += sgs->group_load; 10571 sds->total_capacity += sgs->group_capacity; 10572 10573 sum_util += sgs->group_util; 10574 sg = sg->next; 10575 } while (sg != env->sd->groups); 10576 10577 /* 10578 * Indicate that the child domain of the busiest group prefers tasks 10579 * go to a child's sibling domains first. NB the flags of a sched group 10580 * are those of the child domain. 10581 */ 10582 if (sds->busiest) 10583 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 10584 10585 10586 if (env->sd->flags & SD_NUMA) 10587 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 10588 10589 if (!env->sd->parent) { 10590 /* update overload indicator if we are at root domain */ 10591 WRITE_ONCE(env->dst_rq->rd->overload, sg_status & SG_OVERLOAD); 10592 10593 /* Update over-utilization (tipping point, U >= 0) indicator */ 10594 set_rd_overutilized_status(env->dst_rq->rd, 10595 sg_status & SG_OVERUTILIZED); 10596 } else if (sg_status & SG_OVERUTILIZED) { 10597 set_rd_overutilized_status(env->dst_rq->rd, SG_OVERUTILIZED); 10598 } 10599 10600 update_idle_cpu_scan(env, sum_util); 10601 } 10602 10603 /** 10604 * calculate_imbalance - Calculate the amount of imbalance present within the 10605 * groups of a given sched_domain during load balance. 10606 * @env: load balance environment 10607 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 10608 */ 10609 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 10610 { 10611 struct sg_lb_stats *local, *busiest; 10612 10613 local = &sds->local_stat; 10614 busiest = &sds->busiest_stat; 10615 10616 if (busiest->group_type == group_misfit_task) { 10617 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10618 /* Set imbalance to allow misfit tasks to be balanced. */ 10619 env->migration_type = migrate_misfit; 10620 env->imbalance = 1; 10621 } else { 10622 /* 10623 * Set load imbalance to allow moving task from cpu 10624 * with reduced capacity. 10625 */ 10626 env->migration_type = migrate_load; 10627 env->imbalance = busiest->group_misfit_task_load; 10628 } 10629 return; 10630 } 10631 10632 if (busiest->group_type == group_asym_packing) { 10633 /* 10634 * In case of asym capacity, we will try to migrate all load to 10635 * the preferred CPU. 10636 */ 10637 env->migration_type = migrate_task; 10638 env->imbalance = busiest->sum_h_nr_running; 10639 return; 10640 } 10641 10642 if (busiest->group_type == group_smt_balance) { 10643 /* Reduce number of tasks sharing CPU capacity */ 10644 env->migration_type = migrate_task; 10645 env->imbalance = 1; 10646 return; 10647 } 10648 10649 if (busiest->group_type == group_imbalanced) { 10650 /* 10651 * In the group_imb case we cannot rely on group-wide averages 10652 * to ensure CPU-load equilibrium, try to move any task to fix 10653 * the imbalance. The next load balance will take care of 10654 * balancing back the system. 10655 */ 10656 env->migration_type = migrate_task; 10657 env->imbalance = 1; 10658 return; 10659 } 10660 10661 /* 10662 * Try to use spare capacity of local group without overloading it or 10663 * emptying busiest. 10664 */ 10665 if (local->group_type == group_has_spare) { 10666 if ((busiest->group_type > group_fully_busy) && 10667 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 10668 /* 10669 * If busiest is overloaded, try to fill spare 10670 * capacity. This might end up creating spare capacity 10671 * in busiest or busiest still being overloaded but 10672 * there is no simple way to directly compute the 10673 * amount of load to migrate in order to balance the 10674 * system. 10675 */ 10676 env->migration_type = migrate_util; 10677 env->imbalance = max(local->group_capacity, local->group_util) - 10678 local->group_util; 10679 10680 /* 10681 * In some cases, the group's utilization is max or even 10682 * higher than capacity because of migrations but the 10683 * local CPU is (newly) idle. There is at least one 10684 * waiting task in this overloaded busiest group. Let's 10685 * try to pull it. 10686 */ 10687 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 10688 env->migration_type = migrate_task; 10689 env->imbalance = 1; 10690 } 10691 10692 return; 10693 } 10694 10695 if (busiest->group_weight == 1 || sds->prefer_sibling) { 10696 /* 10697 * When prefer sibling, evenly spread running tasks on 10698 * groups. 10699 */ 10700 env->migration_type = migrate_task; 10701 env->imbalance = sibling_imbalance(env, sds, busiest, local); 10702 } else { 10703 10704 /* 10705 * If there is no overload, we just want to even the number of 10706 * idle cpus. 10707 */ 10708 env->migration_type = migrate_task; 10709 env->imbalance = max_t(long, 0, 10710 (local->idle_cpus - busiest->idle_cpus)); 10711 } 10712 10713 #ifdef CONFIG_NUMA 10714 /* Consider allowing a small imbalance between NUMA groups */ 10715 if (env->sd->flags & SD_NUMA) { 10716 env->imbalance = adjust_numa_imbalance(env->imbalance, 10717 local->sum_nr_running + 1, 10718 env->sd->imb_numa_nr); 10719 } 10720 #endif 10721 10722 /* Number of tasks to move to restore balance */ 10723 env->imbalance >>= 1; 10724 10725 return; 10726 } 10727 10728 /* 10729 * Local is fully busy but has to take more load to relieve the 10730 * busiest group 10731 */ 10732 if (local->group_type < group_overloaded) { 10733 /* 10734 * Local will become overloaded so the avg_load metrics are 10735 * finally needed. 10736 */ 10737 10738 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 10739 local->group_capacity; 10740 10741 /* 10742 * If the local group is more loaded than the selected 10743 * busiest group don't try to pull any tasks. 10744 */ 10745 if (local->avg_load >= busiest->avg_load) { 10746 env->imbalance = 0; 10747 return; 10748 } 10749 10750 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 10751 sds->total_capacity; 10752 10753 /* 10754 * If the local group is more loaded than the average system 10755 * load, don't try to pull any tasks. 10756 */ 10757 if (local->avg_load >= sds->avg_load) { 10758 env->imbalance = 0; 10759 return; 10760 } 10761 10762 } 10763 10764 /* 10765 * Both group are or will become overloaded and we're trying to get all 10766 * the CPUs to the average_load, so we don't want to push ourselves 10767 * above the average load, nor do we wish to reduce the max loaded CPU 10768 * below the average load. At the same time, we also don't want to 10769 * reduce the group load below the group capacity. Thus we look for 10770 * the minimum possible imbalance. 10771 */ 10772 env->migration_type = migrate_load; 10773 env->imbalance = min( 10774 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 10775 (sds->avg_load - local->avg_load) * local->group_capacity 10776 ) / SCHED_CAPACITY_SCALE; 10777 } 10778 10779 /******* find_busiest_group() helpers end here *********************/ 10780 10781 /* 10782 * Decision matrix according to the local and busiest group type: 10783 * 10784 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 10785 * has_spare nr_idle balanced N/A N/A balanced balanced 10786 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 10787 * misfit_task force N/A N/A N/A N/A N/A 10788 * asym_packing force force N/A N/A force force 10789 * imbalanced force force N/A N/A force force 10790 * overloaded force force N/A N/A force avg_load 10791 * 10792 * N/A : Not Applicable because already filtered while updating 10793 * statistics. 10794 * balanced : The system is balanced for these 2 groups. 10795 * force : Calculate the imbalance as load migration is probably needed. 10796 * avg_load : Only if imbalance is significant enough. 10797 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 10798 * different in groups. 10799 */ 10800 10801 /** 10802 * find_busiest_group - Returns the busiest group within the sched_domain 10803 * if there is an imbalance. 10804 * @env: The load balancing environment. 10805 * 10806 * Also calculates the amount of runnable load which should be moved 10807 * to restore balance. 10808 * 10809 * Return: - The busiest group if imbalance exists. 10810 */ 10811 static struct sched_group *find_busiest_group(struct lb_env *env) 10812 { 10813 struct sg_lb_stats *local, *busiest; 10814 struct sd_lb_stats sds; 10815 10816 init_sd_lb_stats(&sds); 10817 10818 /* 10819 * Compute the various statistics relevant for load balancing at 10820 * this level. 10821 */ 10822 update_sd_lb_stats(env, &sds); 10823 10824 /* There is no busy sibling group to pull tasks from */ 10825 if (!sds.busiest) 10826 goto out_balanced; 10827 10828 busiest = &sds.busiest_stat; 10829 10830 /* Misfit tasks should be dealt with regardless of the avg load */ 10831 if (busiest->group_type == group_misfit_task) 10832 goto force_balance; 10833 10834 if (sched_energy_enabled()) { 10835 struct root_domain *rd = env->dst_rq->rd; 10836 10837 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 10838 goto out_balanced; 10839 } 10840 10841 /* ASYM feature bypasses nice load balance check */ 10842 if (busiest->group_type == group_asym_packing) 10843 goto force_balance; 10844 10845 /* 10846 * If the busiest group is imbalanced the below checks don't 10847 * work because they assume all things are equal, which typically 10848 * isn't true due to cpus_ptr constraints and the like. 10849 */ 10850 if (busiest->group_type == group_imbalanced) 10851 goto force_balance; 10852 10853 local = &sds.local_stat; 10854 /* 10855 * If the local group is busier than the selected busiest group 10856 * don't try and pull any tasks. 10857 */ 10858 if (local->group_type > busiest->group_type) 10859 goto out_balanced; 10860 10861 /* 10862 * When groups are overloaded, use the avg_load to ensure fairness 10863 * between tasks. 10864 */ 10865 if (local->group_type == group_overloaded) { 10866 /* 10867 * If the local group is more loaded than the selected 10868 * busiest group don't try to pull any tasks. 10869 */ 10870 if (local->avg_load >= busiest->avg_load) 10871 goto out_balanced; 10872 10873 /* XXX broken for overlapping NUMA groups */ 10874 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 10875 sds.total_capacity; 10876 10877 /* 10878 * Don't pull any tasks if this group is already above the 10879 * domain average load. 10880 */ 10881 if (local->avg_load >= sds.avg_load) 10882 goto out_balanced; 10883 10884 /* 10885 * If the busiest group is more loaded, use imbalance_pct to be 10886 * conservative. 10887 */ 10888 if (100 * busiest->avg_load <= 10889 env->sd->imbalance_pct * local->avg_load) 10890 goto out_balanced; 10891 } 10892 10893 /* 10894 * Try to move all excess tasks to a sibling domain of the busiest 10895 * group's child domain. 10896 */ 10897 if (sds.prefer_sibling && local->group_type == group_has_spare && 10898 sibling_imbalance(env, &sds, busiest, local) > 1) 10899 goto force_balance; 10900 10901 if (busiest->group_type != group_overloaded) { 10902 if (env->idle == CPU_NOT_IDLE) { 10903 /* 10904 * If the busiest group is not overloaded (and as a 10905 * result the local one too) but this CPU is already 10906 * busy, let another idle CPU try to pull task. 10907 */ 10908 goto out_balanced; 10909 } 10910 10911 if (busiest->group_type == group_smt_balance && 10912 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 10913 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 10914 goto force_balance; 10915 } 10916 10917 if (busiest->group_weight > 1 && 10918 local->idle_cpus <= (busiest->idle_cpus + 1)) { 10919 /* 10920 * If the busiest group is not overloaded 10921 * and there is no imbalance between this and busiest 10922 * group wrt idle CPUs, it is balanced. The imbalance 10923 * becomes significant if the diff is greater than 1 10924 * otherwise we might end up to just move the imbalance 10925 * on another group. Of course this applies only if 10926 * there is more than 1 CPU per group. 10927 */ 10928 goto out_balanced; 10929 } 10930 10931 if (busiest->sum_h_nr_running == 1) { 10932 /* 10933 * busiest doesn't have any tasks waiting to run 10934 */ 10935 goto out_balanced; 10936 } 10937 } 10938 10939 force_balance: 10940 /* Looks like there is an imbalance. Compute it */ 10941 calculate_imbalance(env, &sds); 10942 return env->imbalance ? sds.busiest : NULL; 10943 10944 out_balanced: 10945 env->imbalance = 0; 10946 return NULL; 10947 } 10948 10949 /* 10950 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 10951 */ 10952 static struct rq *find_busiest_queue(struct lb_env *env, 10953 struct sched_group *group) 10954 { 10955 struct rq *busiest = NULL, *rq; 10956 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 10957 unsigned int busiest_nr = 0; 10958 int i; 10959 10960 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10961 unsigned long capacity, load, util; 10962 unsigned int nr_running; 10963 enum fbq_type rt; 10964 10965 rq = cpu_rq(i); 10966 rt = fbq_classify_rq(rq); 10967 10968 /* 10969 * We classify groups/runqueues into three groups: 10970 * - regular: there are !numa tasks 10971 * - remote: there are numa tasks that run on the 'wrong' node 10972 * - all: there is no distinction 10973 * 10974 * In order to avoid migrating ideally placed numa tasks, 10975 * ignore those when there's better options. 10976 * 10977 * If we ignore the actual busiest queue to migrate another 10978 * task, the next balance pass can still reduce the busiest 10979 * queue by moving tasks around inside the node. 10980 * 10981 * If we cannot move enough load due to this classification 10982 * the next pass will adjust the group classification and 10983 * allow migration of more tasks. 10984 * 10985 * Both cases only affect the total convergence complexity. 10986 */ 10987 if (rt > env->fbq_type) 10988 continue; 10989 10990 nr_running = rq->cfs.h_nr_running; 10991 if (!nr_running) 10992 continue; 10993 10994 capacity = capacity_of(i); 10995 10996 /* 10997 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 10998 * eventually lead to active_balancing high->low capacity. 10999 * Higher per-CPU capacity is considered better than balancing 11000 * average load. 11001 */ 11002 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11003 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11004 nr_running == 1) 11005 continue; 11006 11007 /* 11008 * Make sure we only pull tasks from a CPU of lower priority 11009 * when balancing between SMT siblings. 11010 * 11011 * If balancing between cores, let lower priority CPUs help 11012 * SMT cores with more than one busy sibling. 11013 */ 11014 if ((env->sd->flags & SD_ASYM_PACKING) && 11015 sched_use_asym_prio(env->sd, i) && 11016 sched_asym_prefer(i, env->dst_cpu) && 11017 nr_running == 1) 11018 continue; 11019 11020 switch (env->migration_type) { 11021 case migrate_load: 11022 /* 11023 * When comparing with load imbalance, use cpu_load() 11024 * which is not scaled with the CPU capacity. 11025 */ 11026 load = cpu_load(rq); 11027 11028 if (nr_running == 1 && load > env->imbalance && 11029 !check_cpu_capacity(rq, env->sd)) 11030 break; 11031 11032 /* 11033 * For the load comparisons with the other CPUs, 11034 * consider the cpu_load() scaled with the CPU 11035 * capacity, so that the load can be moved away 11036 * from the CPU that is potentially running at a 11037 * lower capacity. 11038 * 11039 * Thus we're looking for max(load_i / capacity_i), 11040 * crosswise multiplication to rid ourselves of the 11041 * division works out to: 11042 * load_i * capacity_j > load_j * capacity_i; 11043 * where j is our previous maximum. 11044 */ 11045 if (load * busiest_capacity > busiest_load * capacity) { 11046 busiest_load = load; 11047 busiest_capacity = capacity; 11048 busiest = rq; 11049 } 11050 break; 11051 11052 case migrate_util: 11053 util = cpu_util_cfs_boost(i); 11054 11055 /* 11056 * Don't try to pull utilization from a CPU with one 11057 * running task. Whatever its utilization, we will fail 11058 * detach the task. 11059 */ 11060 if (nr_running <= 1) 11061 continue; 11062 11063 if (busiest_util < util) { 11064 busiest_util = util; 11065 busiest = rq; 11066 } 11067 break; 11068 11069 case migrate_task: 11070 if (busiest_nr < nr_running) { 11071 busiest_nr = nr_running; 11072 busiest = rq; 11073 } 11074 break; 11075 11076 case migrate_misfit: 11077 /* 11078 * For ASYM_CPUCAPACITY domains with misfit tasks we 11079 * simply seek the "biggest" misfit task. 11080 */ 11081 if (rq->misfit_task_load > busiest_load) { 11082 busiest_load = rq->misfit_task_load; 11083 busiest = rq; 11084 } 11085 11086 break; 11087 11088 } 11089 } 11090 11091 return busiest; 11092 } 11093 11094 /* 11095 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11096 * so long as it is large enough. 11097 */ 11098 #define MAX_PINNED_INTERVAL 512 11099 11100 static inline bool 11101 asym_active_balance(struct lb_env *env) 11102 { 11103 /* 11104 * ASYM_PACKING needs to force migrate tasks from busy but lower 11105 * priority CPUs in order to pack all tasks in the highest priority 11106 * CPUs. When done between cores, do it only if the whole core if the 11107 * whole core is idle. 11108 * 11109 * If @env::src_cpu is an SMT core with busy siblings, let 11110 * the lower priority @env::dst_cpu help it. Do not follow 11111 * CPU priority. 11112 */ 11113 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 11114 sched_use_asym_prio(env->sd, env->dst_cpu) && 11115 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11116 !sched_use_asym_prio(env->sd, env->src_cpu)); 11117 } 11118 11119 static inline bool 11120 imbalanced_active_balance(struct lb_env *env) 11121 { 11122 struct sched_domain *sd = env->sd; 11123 11124 /* 11125 * The imbalanced case includes the case of pinned tasks preventing a fair 11126 * distribution of the load on the system but also the even distribution of the 11127 * threads on a system with spare capacity 11128 */ 11129 if ((env->migration_type == migrate_task) && 11130 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11131 return 1; 11132 11133 return 0; 11134 } 11135 11136 static int need_active_balance(struct lb_env *env) 11137 { 11138 struct sched_domain *sd = env->sd; 11139 11140 if (asym_active_balance(env)) 11141 return 1; 11142 11143 if (imbalanced_active_balance(env)) 11144 return 1; 11145 11146 /* 11147 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11148 * It's worth migrating the task if the src_cpu's capacity is reduced 11149 * because of other sched_class or IRQs if more capacity stays 11150 * available on dst_cpu. 11151 */ 11152 if ((env->idle != CPU_NOT_IDLE) && 11153 (env->src_rq->cfs.h_nr_running == 1)) { 11154 if ((check_cpu_capacity(env->src_rq, sd)) && 11155 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11156 return 1; 11157 } 11158 11159 if (env->migration_type == migrate_misfit) 11160 return 1; 11161 11162 return 0; 11163 } 11164 11165 static int active_load_balance_cpu_stop(void *data); 11166 11167 static int should_we_balance(struct lb_env *env) 11168 { 11169 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11170 struct sched_group *sg = env->sd->groups; 11171 int cpu, idle_smt = -1; 11172 11173 /* 11174 * Ensure the balancing environment is consistent; can happen 11175 * when the softirq triggers 'during' hotplug. 11176 */ 11177 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11178 return 0; 11179 11180 /* 11181 * In the newly idle case, we will allow all the CPUs 11182 * to do the newly idle load balance. 11183 * 11184 * However, we bail out if we already have tasks or a wakeup pending, 11185 * to optimize wakeup latency. 11186 */ 11187 if (env->idle == CPU_NEWLY_IDLE) { 11188 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11189 return 0; 11190 return 1; 11191 } 11192 11193 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11194 /* Try to find first idle CPU */ 11195 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11196 if (!idle_cpu(cpu)) 11197 continue; 11198 11199 /* 11200 * Don't balance to idle SMT in busy core right away when 11201 * balancing cores, but remember the first idle SMT CPU for 11202 * later consideration. Find CPU on an idle core first. 11203 */ 11204 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11205 if (idle_smt == -1) 11206 idle_smt = cpu; 11207 /* 11208 * If the core is not idle, and first SMT sibling which is 11209 * idle has been found, then its not needed to check other 11210 * SMT siblings for idleness: 11211 */ 11212 #ifdef CONFIG_SCHED_SMT 11213 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11214 #endif 11215 continue; 11216 } 11217 11218 /* 11219 * Are we the first idle core in a non-SMT domain or higher, 11220 * or the first idle CPU in a SMT domain? 11221 */ 11222 return cpu == env->dst_cpu; 11223 } 11224 11225 /* Are we the first idle CPU with busy siblings? */ 11226 if (idle_smt != -1) 11227 return idle_smt == env->dst_cpu; 11228 11229 /* Are we the first CPU of this group ? */ 11230 return group_balance_cpu(sg) == env->dst_cpu; 11231 } 11232 11233 /* 11234 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11235 * tasks if there is an imbalance. 11236 */ 11237 static int load_balance(int this_cpu, struct rq *this_rq, 11238 struct sched_domain *sd, enum cpu_idle_type idle, 11239 int *continue_balancing) 11240 { 11241 int ld_moved, cur_ld_moved, active_balance = 0; 11242 struct sched_domain *sd_parent = sd->parent; 11243 struct sched_group *group; 11244 struct rq *busiest; 11245 struct rq_flags rf; 11246 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11247 struct lb_env env = { 11248 .sd = sd, 11249 .dst_cpu = this_cpu, 11250 .dst_rq = this_rq, 11251 .dst_grpmask = group_balance_mask(sd->groups), 11252 .idle = idle, 11253 .loop_break = SCHED_NR_MIGRATE_BREAK, 11254 .cpus = cpus, 11255 .fbq_type = all, 11256 .tasks = LIST_HEAD_INIT(env.tasks), 11257 }; 11258 11259 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11260 11261 schedstat_inc(sd->lb_count[idle]); 11262 11263 redo: 11264 if (!should_we_balance(&env)) { 11265 *continue_balancing = 0; 11266 goto out_balanced; 11267 } 11268 11269 group = find_busiest_group(&env); 11270 if (!group) { 11271 schedstat_inc(sd->lb_nobusyg[idle]); 11272 goto out_balanced; 11273 } 11274 11275 busiest = find_busiest_queue(&env, group); 11276 if (!busiest) { 11277 schedstat_inc(sd->lb_nobusyq[idle]); 11278 goto out_balanced; 11279 } 11280 11281 WARN_ON_ONCE(busiest == env.dst_rq); 11282 11283 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 11284 11285 env.src_cpu = busiest->cpu; 11286 env.src_rq = busiest; 11287 11288 ld_moved = 0; 11289 /* Clear this flag as soon as we find a pullable task */ 11290 env.flags |= LBF_ALL_PINNED; 11291 if (busiest->nr_running > 1) { 11292 /* 11293 * Attempt to move tasks. If find_busiest_group has found 11294 * an imbalance but busiest->nr_running <= 1, the group is 11295 * still unbalanced. ld_moved simply stays zero, so it is 11296 * correctly treated as an imbalance. 11297 */ 11298 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11299 11300 more_balance: 11301 rq_lock_irqsave(busiest, &rf); 11302 update_rq_clock(busiest); 11303 11304 /* 11305 * cur_ld_moved - load moved in current iteration 11306 * ld_moved - cumulative load moved across iterations 11307 */ 11308 cur_ld_moved = detach_tasks(&env); 11309 11310 /* 11311 * We've detached some tasks from busiest_rq. Every 11312 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11313 * unlock busiest->lock, and we are able to be sure 11314 * that nobody can manipulate the tasks in parallel. 11315 * See task_rq_lock() family for the details. 11316 */ 11317 11318 rq_unlock(busiest, &rf); 11319 11320 if (cur_ld_moved) { 11321 attach_tasks(&env); 11322 ld_moved += cur_ld_moved; 11323 } 11324 11325 local_irq_restore(rf.flags); 11326 11327 if (env.flags & LBF_NEED_BREAK) { 11328 env.flags &= ~LBF_NEED_BREAK; 11329 goto more_balance; 11330 } 11331 11332 /* 11333 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11334 * us and move them to an alternate dst_cpu in our sched_group 11335 * where they can run. The upper limit on how many times we 11336 * iterate on same src_cpu is dependent on number of CPUs in our 11337 * sched_group. 11338 * 11339 * This changes load balance semantics a bit on who can move 11340 * load to a given_cpu. In addition to the given_cpu itself 11341 * (or a ilb_cpu acting on its behalf where given_cpu is 11342 * nohz-idle), we now have balance_cpu in a position to move 11343 * load to given_cpu. In rare situations, this may cause 11344 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11345 * _independently_ and at _same_ time to move some load to 11346 * given_cpu) causing excess load to be moved to given_cpu. 11347 * This however should not happen so much in practice and 11348 * moreover subsequent load balance cycles should correct the 11349 * excess load moved. 11350 */ 11351 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11352 11353 /* Prevent to re-select dst_cpu via env's CPUs */ 11354 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11355 11356 env.dst_rq = cpu_rq(env.new_dst_cpu); 11357 env.dst_cpu = env.new_dst_cpu; 11358 env.flags &= ~LBF_DST_PINNED; 11359 env.loop = 0; 11360 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11361 11362 /* 11363 * Go back to "more_balance" rather than "redo" since we 11364 * need to continue with same src_cpu. 11365 */ 11366 goto more_balance; 11367 } 11368 11369 /* 11370 * We failed to reach balance because of affinity. 11371 */ 11372 if (sd_parent) { 11373 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11374 11375 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11376 *group_imbalance = 1; 11377 } 11378 11379 /* All tasks on this runqueue were pinned by CPU affinity */ 11380 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11381 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11382 /* 11383 * Attempting to continue load balancing at the current 11384 * sched_domain level only makes sense if there are 11385 * active CPUs remaining as possible busiest CPUs to 11386 * pull load from which are not contained within the 11387 * destination group that is receiving any migrated 11388 * load. 11389 */ 11390 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11391 env.loop = 0; 11392 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11393 goto redo; 11394 } 11395 goto out_all_pinned; 11396 } 11397 } 11398 11399 if (!ld_moved) { 11400 schedstat_inc(sd->lb_failed[idle]); 11401 /* 11402 * Increment the failure counter only on periodic balance. 11403 * We do not want newidle balance, which can be very 11404 * frequent, pollute the failure counter causing 11405 * excessive cache_hot migrations and active balances. 11406 */ 11407 if (idle != CPU_NEWLY_IDLE) 11408 sd->nr_balance_failed++; 11409 11410 if (need_active_balance(&env)) { 11411 unsigned long flags; 11412 11413 raw_spin_rq_lock_irqsave(busiest, flags); 11414 11415 /* 11416 * Don't kick the active_load_balance_cpu_stop, 11417 * if the curr task on busiest CPU can't be 11418 * moved to this_cpu: 11419 */ 11420 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11421 raw_spin_rq_unlock_irqrestore(busiest, flags); 11422 goto out_one_pinned; 11423 } 11424 11425 /* Record that we found at least one task that could run on this_cpu */ 11426 env.flags &= ~LBF_ALL_PINNED; 11427 11428 /* 11429 * ->active_balance synchronizes accesses to 11430 * ->active_balance_work. Once set, it's cleared 11431 * only after active load balance is finished. 11432 */ 11433 if (!busiest->active_balance) { 11434 busiest->active_balance = 1; 11435 busiest->push_cpu = this_cpu; 11436 active_balance = 1; 11437 } 11438 11439 preempt_disable(); 11440 raw_spin_rq_unlock_irqrestore(busiest, flags); 11441 if (active_balance) { 11442 stop_one_cpu_nowait(cpu_of(busiest), 11443 active_load_balance_cpu_stop, busiest, 11444 &busiest->active_balance_work); 11445 } 11446 preempt_enable(); 11447 } 11448 } else { 11449 sd->nr_balance_failed = 0; 11450 } 11451 11452 if (likely(!active_balance) || need_active_balance(&env)) { 11453 /* We were unbalanced, so reset the balancing interval */ 11454 sd->balance_interval = sd->min_interval; 11455 } 11456 11457 goto out; 11458 11459 out_balanced: 11460 /* 11461 * We reach balance although we may have faced some affinity 11462 * constraints. Clear the imbalance flag only if other tasks got 11463 * a chance to move and fix the imbalance. 11464 */ 11465 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11466 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11467 11468 if (*group_imbalance) 11469 *group_imbalance = 0; 11470 } 11471 11472 out_all_pinned: 11473 /* 11474 * We reach balance because all tasks are pinned at this level so 11475 * we can't migrate them. Let the imbalance flag set so parent level 11476 * can try to migrate them. 11477 */ 11478 schedstat_inc(sd->lb_balanced[idle]); 11479 11480 sd->nr_balance_failed = 0; 11481 11482 out_one_pinned: 11483 ld_moved = 0; 11484 11485 /* 11486 * newidle_balance() disregards balance intervals, so we could 11487 * repeatedly reach this code, which would lead to balance_interval 11488 * skyrocketing in a short amount of time. Skip the balance_interval 11489 * increase logic to avoid that. 11490 */ 11491 if (env.idle == CPU_NEWLY_IDLE) 11492 goto out; 11493 11494 /* tune up the balancing interval */ 11495 if ((env.flags & LBF_ALL_PINNED && 11496 sd->balance_interval < MAX_PINNED_INTERVAL) || 11497 sd->balance_interval < sd->max_interval) 11498 sd->balance_interval *= 2; 11499 out: 11500 return ld_moved; 11501 } 11502 11503 static inline unsigned long 11504 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11505 { 11506 unsigned long interval = sd->balance_interval; 11507 11508 if (cpu_busy) 11509 interval *= sd->busy_factor; 11510 11511 /* scale ms to jiffies */ 11512 interval = msecs_to_jiffies(interval); 11513 11514 /* 11515 * Reduce likelihood of busy balancing at higher domains racing with 11516 * balancing at lower domains by preventing their balancing periods 11517 * from being multiples of each other. 11518 */ 11519 if (cpu_busy) 11520 interval -= 1; 11521 11522 interval = clamp(interval, 1UL, max_load_balance_interval); 11523 11524 return interval; 11525 } 11526 11527 static inline void 11528 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 11529 { 11530 unsigned long interval, next; 11531 11532 /* used by idle balance, so cpu_busy = 0 */ 11533 interval = get_sd_balance_interval(sd, 0); 11534 next = sd->last_balance + interval; 11535 11536 if (time_after(*next_balance, next)) 11537 *next_balance = next; 11538 } 11539 11540 /* 11541 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 11542 * running tasks off the busiest CPU onto idle CPUs. It requires at 11543 * least 1 task to be running on each physical CPU where possible, and 11544 * avoids physical / logical imbalances. 11545 */ 11546 static int active_load_balance_cpu_stop(void *data) 11547 { 11548 struct rq *busiest_rq = data; 11549 int busiest_cpu = cpu_of(busiest_rq); 11550 int target_cpu = busiest_rq->push_cpu; 11551 struct rq *target_rq = cpu_rq(target_cpu); 11552 struct sched_domain *sd; 11553 struct task_struct *p = NULL; 11554 struct rq_flags rf; 11555 11556 rq_lock_irq(busiest_rq, &rf); 11557 /* 11558 * Between queueing the stop-work and running it is a hole in which 11559 * CPUs can become inactive. We should not move tasks from or to 11560 * inactive CPUs. 11561 */ 11562 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 11563 goto out_unlock; 11564 11565 /* Make sure the requested CPU hasn't gone down in the meantime: */ 11566 if (unlikely(busiest_cpu != smp_processor_id() || 11567 !busiest_rq->active_balance)) 11568 goto out_unlock; 11569 11570 /* Is there any task to move? */ 11571 if (busiest_rq->nr_running <= 1) 11572 goto out_unlock; 11573 11574 /* 11575 * This condition is "impossible", if it occurs 11576 * we need to fix it. Originally reported by 11577 * Bjorn Helgaas on a 128-CPU setup. 11578 */ 11579 WARN_ON_ONCE(busiest_rq == target_rq); 11580 11581 /* Search for an sd spanning us and the target CPU. */ 11582 rcu_read_lock(); 11583 for_each_domain(target_cpu, sd) { 11584 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 11585 break; 11586 } 11587 11588 if (likely(sd)) { 11589 struct lb_env env = { 11590 .sd = sd, 11591 .dst_cpu = target_cpu, 11592 .dst_rq = target_rq, 11593 .src_cpu = busiest_rq->cpu, 11594 .src_rq = busiest_rq, 11595 .idle = CPU_IDLE, 11596 .flags = LBF_ACTIVE_LB, 11597 }; 11598 11599 schedstat_inc(sd->alb_count); 11600 update_rq_clock(busiest_rq); 11601 11602 p = detach_one_task(&env); 11603 if (p) { 11604 schedstat_inc(sd->alb_pushed); 11605 /* Active balancing done, reset the failure counter. */ 11606 sd->nr_balance_failed = 0; 11607 } else { 11608 schedstat_inc(sd->alb_failed); 11609 } 11610 } 11611 rcu_read_unlock(); 11612 out_unlock: 11613 busiest_rq->active_balance = 0; 11614 rq_unlock(busiest_rq, &rf); 11615 11616 if (p) 11617 attach_one_task(target_rq, p); 11618 11619 local_irq_enable(); 11620 11621 return 0; 11622 } 11623 11624 static DEFINE_SPINLOCK(balancing); 11625 11626 /* 11627 * Scale the max load_balance interval with the number of CPUs in the system. 11628 * This trades load-balance latency on larger machines for less cross talk. 11629 */ 11630 void update_max_interval(void) 11631 { 11632 max_load_balance_interval = HZ*num_online_cpus()/10; 11633 } 11634 11635 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 11636 { 11637 if (cost > sd->max_newidle_lb_cost) { 11638 /* 11639 * Track max cost of a domain to make sure to not delay the 11640 * next wakeup on the CPU. 11641 */ 11642 sd->max_newidle_lb_cost = cost; 11643 sd->last_decay_max_lb_cost = jiffies; 11644 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 11645 /* 11646 * Decay the newidle max times by ~1% per second to ensure that 11647 * it is not outdated and the current max cost is actually 11648 * shorter. 11649 */ 11650 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 11651 sd->last_decay_max_lb_cost = jiffies; 11652 11653 return true; 11654 } 11655 11656 return false; 11657 } 11658 11659 /* 11660 * It checks each scheduling domain to see if it is due to be balanced, 11661 * and initiates a balancing operation if so. 11662 * 11663 * Balancing parameters are set up in init_sched_domains. 11664 */ 11665 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 11666 { 11667 int continue_balancing = 1; 11668 int cpu = rq->cpu; 11669 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11670 unsigned long interval; 11671 struct sched_domain *sd; 11672 /* Earliest time when we have to do rebalance again */ 11673 unsigned long next_balance = jiffies + 60*HZ; 11674 int update_next_balance = 0; 11675 int need_serialize, need_decay = 0; 11676 u64 max_cost = 0; 11677 11678 rcu_read_lock(); 11679 for_each_domain(cpu, sd) { 11680 /* 11681 * Decay the newidle max times here because this is a regular 11682 * visit to all the domains. 11683 */ 11684 need_decay = update_newidle_cost(sd, 0); 11685 max_cost += sd->max_newidle_lb_cost; 11686 11687 /* 11688 * Stop the load balance at this level. There is another 11689 * CPU in our sched group which is doing load balancing more 11690 * actively. 11691 */ 11692 if (!continue_balancing) { 11693 if (need_decay) 11694 continue; 11695 break; 11696 } 11697 11698 interval = get_sd_balance_interval(sd, busy); 11699 11700 need_serialize = sd->flags & SD_SERIALIZE; 11701 if (need_serialize) { 11702 if (!spin_trylock(&balancing)) 11703 goto out; 11704 } 11705 11706 if (time_after_eq(jiffies, sd->last_balance + interval)) { 11707 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 11708 /* 11709 * The LBF_DST_PINNED logic could have changed 11710 * env->dst_cpu, so we can't know our idle 11711 * state even if we migrated tasks. Update it. 11712 */ 11713 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 11714 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11715 } 11716 sd->last_balance = jiffies; 11717 interval = get_sd_balance_interval(sd, busy); 11718 } 11719 if (need_serialize) 11720 spin_unlock(&balancing); 11721 out: 11722 if (time_after(next_balance, sd->last_balance + interval)) { 11723 next_balance = sd->last_balance + interval; 11724 update_next_balance = 1; 11725 } 11726 } 11727 if (need_decay) { 11728 /* 11729 * Ensure the rq-wide value also decays but keep it at a 11730 * reasonable floor to avoid funnies with rq->avg_idle. 11731 */ 11732 rq->max_idle_balance_cost = 11733 max((u64)sysctl_sched_migration_cost, max_cost); 11734 } 11735 rcu_read_unlock(); 11736 11737 /* 11738 * next_balance will be updated only when there is a need. 11739 * When the cpu is attached to null domain for ex, it will not be 11740 * updated. 11741 */ 11742 if (likely(update_next_balance)) 11743 rq->next_balance = next_balance; 11744 11745 } 11746 11747 static inline int on_null_domain(struct rq *rq) 11748 { 11749 return unlikely(!rcu_dereference_sched(rq->sd)); 11750 } 11751 11752 #ifdef CONFIG_NO_HZ_COMMON 11753 /* 11754 * idle load balancing details 11755 * - When one of the busy CPUs notice that there may be an idle rebalancing 11756 * needed, they will kick the idle load balancer, which then does idle 11757 * load balancing for all the idle CPUs. 11758 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set 11759 * anywhere yet. 11760 */ 11761 11762 static inline int find_new_ilb(void) 11763 { 11764 int ilb; 11765 const struct cpumask *hk_mask; 11766 11767 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 11768 11769 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) { 11770 11771 if (ilb == smp_processor_id()) 11772 continue; 11773 11774 if (idle_cpu(ilb)) 11775 return ilb; 11776 } 11777 11778 return nr_cpu_ids; 11779 } 11780 11781 /* 11782 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 11783 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 11784 */ 11785 static void kick_ilb(unsigned int flags) 11786 { 11787 int ilb_cpu; 11788 11789 /* 11790 * Increase nohz.next_balance only when if full ilb is triggered but 11791 * not if we only update stats. 11792 */ 11793 if (flags & NOHZ_BALANCE_KICK) 11794 nohz.next_balance = jiffies+1; 11795 11796 ilb_cpu = find_new_ilb(); 11797 11798 if (ilb_cpu >= nr_cpu_ids) 11799 return; 11800 11801 /* 11802 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 11803 * the first flag owns it; cleared by nohz_csd_func(). 11804 */ 11805 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 11806 if (flags & NOHZ_KICK_MASK) 11807 return; 11808 11809 /* 11810 * This way we generate an IPI on the target CPU which 11811 * is idle. And the softirq performing nohz idle load balance 11812 * will be run before returning from the IPI. 11813 */ 11814 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 11815 } 11816 11817 /* 11818 * Current decision point for kicking the idle load balancer in the presence 11819 * of idle CPUs in the system. 11820 */ 11821 static void nohz_balancer_kick(struct rq *rq) 11822 { 11823 unsigned long now = jiffies; 11824 struct sched_domain_shared *sds; 11825 struct sched_domain *sd; 11826 int nr_busy, i, cpu = rq->cpu; 11827 unsigned int flags = 0; 11828 11829 if (unlikely(rq->idle_balance)) 11830 return; 11831 11832 /* 11833 * We may be recently in ticked or tickless idle mode. At the first 11834 * busy tick after returning from idle, we will update the busy stats. 11835 */ 11836 nohz_balance_exit_idle(rq); 11837 11838 /* 11839 * None are in tickless mode and hence no need for NOHZ idle load 11840 * balancing. 11841 */ 11842 if (likely(!atomic_read(&nohz.nr_cpus))) 11843 return; 11844 11845 if (READ_ONCE(nohz.has_blocked) && 11846 time_after(now, READ_ONCE(nohz.next_blocked))) 11847 flags = NOHZ_STATS_KICK; 11848 11849 if (time_before(now, nohz.next_balance)) 11850 goto out; 11851 11852 if (rq->nr_running >= 2) { 11853 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11854 goto out; 11855 } 11856 11857 rcu_read_lock(); 11858 11859 sd = rcu_dereference(rq->sd); 11860 if (sd) { 11861 /* 11862 * If there's a CFS task and the current CPU has reduced 11863 * capacity; kick the ILB to see if there's a better CPU to run 11864 * on. 11865 */ 11866 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 11867 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11868 goto unlock; 11869 } 11870 } 11871 11872 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 11873 if (sd) { 11874 /* 11875 * When ASYM_PACKING; see if there's a more preferred CPU 11876 * currently idle; in which case, kick the ILB to move tasks 11877 * around. 11878 * 11879 * When balancing betwen cores, all the SMT siblings of the 11880 * preferred CPU must be idle. 11881 */ 11882 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 11883 if (sched_use_asym_prio(sd, i) && 11884 sched_asym_prefer(i, cpu)) { 11885 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11886 goto unlock; 11887 } 11888 } 11889 } 11890 11891 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 11892 if (sd) { 11893 /* 11894 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 11895 * to run the misfit task on. 11896 */ 11897 if (check_misfit_status(rq, sd)) { 11898 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11899 goto unlock; 11900 } 11901 11902 /* 11903 * For asymmetric systems, we do not want to nicely balance 11904 * cache use, instead we want to embrace asymmetry and only 11905 * ensure tasks have enough CPU capacity. 11906 * 11907 * Skip the LLC logic because it's not relevant in that case. 11908 */ 11909 goto unlock; 11910 } 11911 11912 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 11913 if (sds) { 11914 /* 11915 * If there is an imbalance between LLC domains (IOW we could 11916 * increase the overall cache use), we need some less-loaded LLC 11917 * domain to pull some load. Likewise, we may need to spread 11918 * load within the current LLC domain (e.g. packed SMT cores but 11919 * other CPUs are idle). We can't really know from here how busy 11920 * the others are - so just get a nohz balance going if it looks 11921 * like this LLC domain has tasks we could move. 11922 */ 11923 nr_busy = atomic_read(&sds->nr_busy_cpus); 11924 if (nr_busy > 1) { 11925 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11926 goto unlock; 11927 } 11928 } 11929 unlock: 11930 rcu_read_unlock(); 11931 out: 11932 if (READ_ONCE(nohz.needs_update)) 11933 flags |= NOHZ_NEXT_KICK; 11934 11935 if (flags) 11936 kick_ilb(flags); 11937 } 11938 11939 static void set_cpu_sd_state_busy(int cpu) 11940 { 11941 struct sched_domain *sd; 11942 11943 rcu_read_lock(); 11944 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11945 11946 if (!sd || !sd->nohz_idle) 11947 goto unlock; 11948 sd->nohz_idle = 0; 11949 11950 atomic_inc(&sd->shared->nr_busy_cpus); 11951 unlock: 11952 rcu_read_unlock(); 11953 } 11954 11955 void nohz_balance_exit_idle(struct rq *rq) 11956 { 11957 SCHED_WARN_ON(rq != this_rq()); 11958 11959 if (likely(!rq->nohz_tick_stopped)) 11960 return; 11961 11962 rq->nohz_tick_stopped = 0; 11963 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 11964 atomic_dec(&nohz.nr_cpus); 11965 11966 set_cpu_sd_state_busy(rq->cpu); 11967 } 11968 11969 static void set_cpu_sd_state_idle(int cpu) 11970 { 11971 struct sched_domain *sd; 11972 11973 rcu_read_lock(); 11974 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11975 11976 if (!sd || sd->nohz_idle) 11977 goto unlock; 11978 sd->nohz_idle = 1; 11979 11980 atomic_dec(&sd->shared->nr_busy_cpus); 11981 unlock: 11982 rcu_read_unlock(); 11983 } 11984 11985 /* 11986 * This routine will record that the CPU is going idle with tick stopped. 11987 * This info will be used in performing idle load balancing in the future. 11988 */ 11989 void nohz_balance_enter_idle(int cpu) 11990 { 11991 struct rq *rq = cpu_rq(cpu); 11992 11993 SCHED_WARN_ON(cpu != smp_processor_id()); 11994 11995 /* If this CPU is going down, then nothing needs to be done: */ 11996 if (!cpu_active(cpu)) 11997 return; 11998 11999 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 12000 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 12001 return; 12002 12003 /* 12004 * Can be set safely without rq->lock held 12005 * If a clear happens, it will have evaluated last additions because 12006 * rq->lock is held during the check and the clear 12007 */ 12008 rq->has_blocked_load = 1; 12009 12010 /* 12011 * The tick is still stopped but load could have been added in the 12012 * meantime. We set the nohz.has_blocked flag to trig a check of the 12013 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12014 * of nohz.has_blocked can only happen after checking the new load 12015 */ 12016 if (rq->nohz_tick_stopped) 12017 goto out; 12018 12019 /* If we're a completely isolated CPU, we don't play: */ 12020 if (on_null_domain(rq)) 12021 return; 12022 12023 rq->nohz_tick_stopped = 1; 12024 12025 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12026 atomic_inc(&nohz.nr_cpus); 12027 12028 /* 12029 * Ensures that if nohz_idle_balance() fails to observe our 12030 * @idle_cpus_mask store, it must observe the @has_blocked 12031 * and @needs_update stores. 12032 */ 12033 smp_mb__after_atomic(); 12034 12035 set_cpu_sd_state_idle(cpu); 12036 12037 WRITE_ONCE(nohz.needs_update, 1); 12038 out: 12039 /* 12040 * Each time a cpu enter idle, we assume that it has blocked load and 12041 * enable the periodic update of the load of idle cpus 12042 */ 12043 WRITE_ONCE(nohz.has_blocked, 1); 12044 } 12045 12046 static bool update_nohz_stats(struct rq *rq) 12047 { 12048 unsigned int cpu = rq->cpu; 12049 12050 if (!rq->has_blocked_load) 12051 return false; 12052 12053 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12054 return false; 12055 12056 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12057 return true; 12058 12059 update_blocked_averages(cpu); 12060 12061 return rq->has_blocked_load; 12062 } 12063 12064 /* 12065 * Internal function that runs load balance for all idle cpus. The load balance 12066 * can be a simple update of blocked load or a complete load balance with 12067 * tasks movement depending of flags. 12068 */ 12069 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12070 { 12071 /* Earliest time when we have to do rebalance again */ 12072 unsigned long now = jiffies; 12073 unsigned long next_balance = now + 60*HZ; 12074 bool has_blocked_load = false; 12075 int update_next_balance = 0; 12076 int this_cpu = this_rq->cpu; 12077 int balance_cpu; 12078 struct rq *rq; 12079 12080 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12081 12082 /* 12083 * We assume there will be no idle load after this update and clear 12084 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12085 * set the has_blocked flag and trigger another update of idle load. 12086 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12087 * setting the flag, we are sure to not clear the state and not 12088 * check the load of an idle cpu. 12089 * 12090 * Same applies to idle_cpus_mask vs needs_update. 12091 */ 12092 if (flags & NOHZ_STATS_KICK) 12093 WRITE_ONCE(nohz.has_blocked, 0); 12094 if (flags & NOHZ_NEXT_KICK) 12095 WRITE_ONCE(nohz.needs_update, 0); 12096 12097 /* 12098 * Ensures that if we miss the CPU, we must see the has_blocked 12099 * store from nohz_balance_enter_idle(). 12100 */ 12101 smp_mb(); 12102 12103 /* 12104 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12105 * chance for other idle cpu to pull load. 12106 */ 12107 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12108 if (!idle_cpu(balance_cpu)) 12109 continue; 12110 12111 /* 12112 * If this CPU gets work to do, stop the load balancing 12113 * work being done for other CPUs. Next load 12114 * balancing owner will pick it up. 12115 */ 12116 if (need_resched()) { 12117 if (flags & NOHZ_STATS_KICK) 12118 has_blocked_load = true; 12119 if (flags & NOHZ_NEXT_KICK) 12120 WRITE_ONCE(nohz.needs_update, 1); 12121 goto abort; 12122 } 12123 12124 rq = cpu_rq(balance_cpu); 12125 12126 if (flags & NOHZ_STATS_KICK) 12127 has_blocked_load |= update_nohz_stats(rq); 12128 12129 /* 12130 * If time for next balance is due, 12131 * do the balance. 12132 */ 12133 if (time_after_eq(jiffies, rq->next_balance)) { 12134 struct rq_flags rf; 12135 12136 rq_lock_irqsave(rq, &rf); 12137 update_rq_clock(rq); 12138 rq_unlock_irqrestore(rq, &rf); 12139 12140 if (flags & NOHZ_BALANCE_KICK) 12141 rebalance_domains(rq, CPU_IDLE); 12142 } 12143 12144 if (time_after(next_balance, rq->next_balance)) { 12145 next_balance = rq->next_balance; 12146 update_next_balance = 1; 12147 } 12148 } 12149 12150 /* 12151 * next_balance will be updated only when there is a need. 12152 * When the CPU is attached to null domain for ex, it will not be 12153 * updated. 12154 */ 12155 if (likely(update_next_balance)) 12156 nohz.next_balance = next_balance; 12157 12158 if (flags & NOHZ_STATS_KICK) 12159 WRITE_ONCE(nohz.next_blocked, 12160 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12161 12162 abort: 12163 /* There is still blocked load, enable periodic update */ 12164 if (has_blocked_load) 12165 WRITE_ONCE(nohz.has_blocked, 1); 12166 } 12167 12168 /* 12169 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12170 * rebalancing for all the cpus for whom scheduler ticks are stopped. 12171 */ 12172 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12173 { 12174 unsigned int flags = this_rq->nohz_idle_balance; 12175 12176 if (!flags) 12177 return false; 12178 12179 this_rq->nohz_idle_balance = 0; 12180 12181 if (idle != CPU_IDLE) 12182 return false; 12183 12184 _nohz_idle_balance(this_rq, flags); 12185 12186 return true; 12187 } 12188 12189 /* 12190 * Check if we need to run the ILB for updating blocked load before entering 12191 * idle state. 12192 */ 12193 void nohz_run_idle_balance(int cpu) 12194 { 12195 unsigned int flags; 12196 12197 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12198 12199 /* 12200 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12201 * (ie NOHZ_STATS_KICK set) and will do the same. 12202 */ 12203 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12204 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12205 } 12206 12207 static void nohz_newidle_balance(struct rq *this_rq) 12208 { 12209 int this_cpu = this_rq->cpu; 12210 12211 /* 12212 * This CPU doesn't want to be disturbed by scheduler 12213 * housekeeping 12214 */ 12215 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 12216 return; 12217 12218 /* Will wake up very soon. No time for doing anything else*/ 12219 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12220 return; 12221 12222 /* Don't need to update blocked load of idle CPUs*/ 12223 if (!READ_ONCE(nohz.has_blocked) || 12224 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12225 return; 12226 12227 /* 12228 * Set the need to trigger ILB in order to update blocked load 12229 * before entering idle state. 12230 */ 12231 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12232 } 12233 12234 #else /* !CONFIG_NO_HZ_COMMON */ 12235 static inline void nohz_balancer_kick(struct rq *rq) { } 12236 12237 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12238 { 12239 return false; 12240 } 12241 12242 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12243 #endif /* CONFIG_NO_HZ_COMMON */ 12244 12245 /* 12246 * newidle_balance is called by schedule() if this_cpu is about to become 12247 * idle. Attempts to pull tasks from other CPUs. 12248 * 12249 * Returns: 12250 * < 0 - we released the lock and there are !fair tasks present 12251 * 0 - failed, no new tasks 12252 * > 0 - success, new (fair) tasks present 12253 */ 12254 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 12255 { 12256 unsigned long next_balance = jiffies + HZ; 12257 int this_cpu = this_rq->cpu; 12258 u64 t0, t1, curr_cost = 0; 12259 struct sched_domain *sd; 12260 int pulled_task = 0; 12261 12262 update_misfit_status(NULL, this_rq); 12263 12264 /* 12265 * There is a task waiting to run. No need to search for one. 12266 * Return 0; the task will be enqueued when switching to idle. 12267 */ 12268 if (this_rq->ttwu_pending) 12269 return 0; 12270 12271 /* 12272 * We must set idle_stamp _before_ calling idle_balance(), such that we 12273 * measure the duration of idle_balance() as idle time. 12274 */ 12275 this_rq->idle_stamp = rq_clock(this_rq); 12276 12277 /* 12278 * Do not pull tasks towards !active CPUs... 12279 */ 12280 if (!cpu_active(this_cpu)) 12281 return 0; 12282 12283 /* 12284 * This is OK, because current is on_cpu, which avoids it being picked 12285 * for load-balance and preemption/IRQs are still disabled avoiding 12286 * further scheduler activity on it and we're being very careful to 12287 * re-start the picking loop. 12288 */ 12289 rq_unpin_lock(this_rq, rf); 12290 12291 rcu_read_lock(); 12292 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12293 12294 if (!READ_ONCE(this_rq->rd->overload) || 12295 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12296 12297 if (sd) 12298 update_next_balance(sd, &next_balance); 12299 rcu_read_unlock(); 12300 12301 goto out; 12302 } 12303 rcu_read_unlock(); 12304 12305 raw_spin_rq_unlock(this_rq); 12306 12307 t0 = sched_clock_cpu(this_cpu); 12308 update_blocked_averages(this_cpu); 12309 12310 rcu_read_lock(); 12311 for_each_domain(this_cpu, sd) { 12312 int continue_balancing = 1; 12313 u64 domain_cost; 12314 12315 update_next_balance(sd, &next_balance); 12316 12317 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12318 break; 12319 12320 if (sd->flags & SD_BALANCE_NEWIDLE) { 12321 12322 pulled_task = load_balance(this_cpu, this_rq, 12323 sd, CPU_NEWLY_IDLE, 12324 &continue_balancing); 12325 12326 t1 = sched_clock_cpu(this_cpu); 12327 domain_cost = t1 - t0; 12328 update_newidle_cost(sd, domain_cost); 12329 12330 curr_cost += domain_cost; 12331 t0 = t1; 12332 } 12333 12334 /* 12335 * Stop searching for tasks to pull if there are 12336 * now runnable tasks on this rq. 12337 */ 12338 if (pulled_task || this_rq->nr_running > 0 || 12339 this_rq->ttwu_pending) 12340 break; 12341 } 12342 rcu_read_unlock(); 12343 12344 raw_spin_rq_lock(this_rq); 12345 12346 if (curr_cost > this_rq->max_idle_balance_cost) 12347 this_rq->max_idle_balance_cost = curr_cost; 12348 12349 /* 12350 * While browsing the domains, we released the rq lock, a task could 12351 * have been enqueued in the meantime. Since we're not going idle, 12352 * pretend we pulled a task. 12353 */ 12354 if (this_rq->cfs.h_nr_running && !pulled_task) 12355 pulled_task = 1; 12356 12357 /* Is there a task of a high priority class? */ 12358 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 12359 pulled_task = -1; 12360 12361 out: 12362 /* Move the next balance forward */ 12363 if (time_after(this_rq->next_balance, next_balance)) 12364 this_rq->next_balance = next_balance; 12365 12366 if (pulled_task) 12367 this_rq->idle_stamp = 0; 12368 else 12369 nohz_newidle_balance(this_rq); 12370 12371 rq_repin_lock(this_rq, rf); 12372 12373 return pulled_task; 12374 } 12375 12376 /* 12377 * run_rebalance_domains is triggered when needed from the scheduler tick. 12378 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 12379 */ 12380 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 12381 { 12382 struct rq *this_rq = this_rq(); 12383 enum cpu_idle_type idle = this_rq->idle_balance ? 12384 CPU_IDLE : CPU_NOT_IDLE; 12385 12386 /* 12387 * If this CPU has a pending nohz_balance_kick, then do the 12388 * balancing on behalf of the other idle CPUs whose ticks are 12389 * stopped. Do nohz_idle_balance *before* rebalance_domains to 12390 * give the idle CPUs a chance to load balance. Else we may 12391 * load balance only within the local sched_domain hierarchy 12392 * and abort nohz_idle_balance altogether if we pull some load. 12393 */ 12394 if (nohz_idle_balance(this_rq, idle)) 12395 return; 12396 12397 /* normal load balance */ 12398 update_blocked_averages(this_rq->cpu); 12399 rebalance_domains(this_rq, idle); 12400 } 12401 12402 /* 12403 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12404 */ 12405 void trigger_load_balance(struct rq *rq) 12406 { 12407 /* 12408 * Don't need to rebalance while attached to NULL domain or 12409 * runqueue CPU is not active 12410 */ 12411 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12412 return; 12413 12414 if (time_after_eq(jiffies, rq->next_balance)) 12415 raise_softirq(SCHED_SOFTIRQ); 12416 12417 nohz_balancer_kick(rq); 12418 } 12419 12420 static void rq_online_fair(struct rq *rq) 12421 { 12422 update_sysctl(); 12423 12424 update_runtime_enabled(rq); 12425 } 12426 12427 static void rq_offline_fair(struct rq *rq) 12428 { 12429 update_sysctl(); 12430 12431 /* Ensure any throttled groups are reachable by pick_next_task */ 12432 unthrottle_offline_cfs_rqs(rq); 12433 } 12434 12435 #endif /* CONFIG_SMP */ 12436 12437 #ifdef CONFIG_SCHED_CORE 12438 static inline bool 12439 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12440 { 12441 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12442 u64 slice = se->slice; 12443 12444 return (rtime * min_nr_tasks > slice); 12445 } 12446 12447 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12448 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12449 { 12450 if (!sched_core_enabled(rq)) 12451 return; 12452 12453 /* 12454 * If runqueue has only one task which used up its slice and 12455 * if the sibling is forced idle, then trigger schedule to 12456 * give forced idle task a chance. 12457 * 12458 * sched_slice() considers only this active rq and it gets the 12459 * whole slice. But during force idle, we have siblings acting 12460 * like a single runqueue and hence we need to consider runnable 12461 * tasks on this CPU and the forced idle CPU. Ideally, we should 12462 * go through the forced idle rq, but that would be a perf hit. 12463 * We can assume that the forced idle CPU has at least 12464 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12465 * if we need to give up the CPU. 12466 */ 12467 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 12468 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12469 resched_curr(rq); 12470 } 12471 12472 /* 12473 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12474 */ 12475 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12476 bool forceidle) 12477 { 12478 for_each_sched_entity(se) { 12479 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12480 12481 if (forceidle) { 12482 if (cfs_rq->forceidle_seq == fi_seq) 12483 break; 12484 cfs_rq->forceidle_seq = fi_seq; 12485 } 12486 12487 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 12488 } 12489 } 12490 12491 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 12492 { 12493 struct sched_entity *se = &p->se; 12494 12495 if (p->sched_class != &fair_sched_class) 12496 return; 12497 12498 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 12499 } 12500 12501 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 12502 bool in_fi) 12503 { 12504 struct rq *rq = task_rq(a); 12505 const struct sched_entity *sea = &a->se; 12506 const struct sched_entity *seb = &b->se; 12507 struct cfs_rq *cfs_rqa; 12508 struct cfs_rq *cfs_rqb; 12509 s64 delta; 12510 12511 SCHED_WARN_ON(task_rq(b)->core != rq->core); 12512 12513 #ifdef CONFIG_FAIR_GROUP_SCHED 12514 /* 12515 * Find an se in the hierarchy for tasks a and b, such that the se's 12516 * are immediate siblings. 12517 */ 12518 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 12519 int sea_depth = sea->depth; 12520 int seb_depth = seb->depth; 12521 12522 if (sea_depth >= seb_depth) 12523 sea = parent_entity(sea); 12524 if (sea_depth <= seb_depth) 12525 seb = parent_entity(seb); 12526 } 12527 12528 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 12529 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 12530 12531 cfs_rqa = sea->cfs_rq; 12532 cfs_rqb = seb->cfs_rq; 12533 #else 12534 cfs_rqa = &task_rq(a)->cfs; 12535 cfs_rqb = &task_rq(b)->cfs; 12536 #endif 12537 12538 /* 12539 * Find delta after normalizing se's vruntime with its cfs_rq's 12540 * min_vruntime_fi, which would have been updated in prior calls 12541 * to se_fi_update(). 12542 */ 12543 delta = (s64)(sea->vruntime - seb->vruntime) + 12544 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 12545 12546 return delta > 0; 12547 } 12548 12549 static int task_is_throttled_fair(struct task_struct *p, int cpu) 12550 { 12551 struct cfs_rq *cfs_rq; 12552 12553 #ifdef CONFIG_FAIR_GROUP_SCHED 12554 cfs_rq = task_group(p)->cfs_rq[cpu]; 12555 #else 12556 cfs_rq = &cpu_rq(cpu)->cfs; 12557 #endif 12558 return throttled_hierarchy(cfs_rq); 12559 } 12560 #else 12561 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 12562 #endif 12563 12564 /* 12565 * scheduler tick hitting a task of our scheduling class. 12566 * 12567 * NOTE: This function can be called remotely by the tick offload that 12568 * goes along full dynticks. Therefore no local assumption can be made 12569 * and everything must be accessed through the @rq and @curr passed in 12570 * parameters. 12571 */ 12572 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 12573 { 12574 struct cfs_rq *cfs_rq; 12575 struct sched_entity *se = &curr->se; 12576 12577 for_each_sched_entity(se) { 12578 cfs_rq = cfs_rq_of(se); 12579 entity_tick(cfs_rq, se, queued); 12580 } 12581 12582 if (static_branch_unlikely(&sched_numa_balancing)) 12583 task_tick_numa(rq, curr); 12584 12585 update_misfit_status(curr, rq); 12586 check_update_overutilized_status(task_rq(curr)); 12587 12588 task_tick_core(rq, curr); 12589 } 12590 12591 /* 12592 * called on fork with the child task as argument from the parent's context 12593 * - child not yet on the tasklist 12594 * - preemption disabled 12595 */ 12596 static void task_fork_fair(struct task_struct *p) 12597 { 12598 struct sched_entity *se = &p->se, *curr; 12599 struct cfs_rq *cfs_rq; 12600 struct rq *rq = this_rq(); 12601 struct rq_flags rf; 12602 12603 rq_lock(rq, &rf); 12604 update_rq_clock(rq); 12605 12606 cfs_rq = task_cfs_rq(current); 12607 curr = cfs_rq->curr; 12608 if (curr) 12609 update_curr(cfs_rq); 12610 place_entity(cfs_rq, se, ENQUEUE_INITIAL); 12611 rq_unlock(rq, &rf); 12612 } 12613 12614 /* 12615 * Priority of the task has changed. Check to see if we preempt 12616 * the current task. 12617 */ 12618 static void 12619 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 12620 { 12621 if (!task_on_rq_queued(p)) 12622 return; 12623 12624 if (rq->cfs.nr_running == 1) 12625 return; 12626 12627 /* 12628 * Reschedule if we are currently running on this runqueue and 12629 * our priority decreased, or if we are not currently running on 12630 * this runqueue and our priority is higher than the current's 12631 */ 12632 if (task_current(rq, p)) { 12633 if (p->prio > oldprio) 12634 resched_curr(rq); 12635 } else 12636 check_preempt_curr(rq, p, 0); 12637 } 12638 12639 #ifdef CONFIG_FAIR_GROUP_SCHED 12640 /* 12641 * Propagate the changes of the sched_entity across the tg tree to make it 12642 * visible to the root 12643 */ 12644 static void propagate_entity_cfs_rq(struct sched_entity *se) 12645 { 12646 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12647 12648 if (cfs_rq_throttled(cfs_rq)) 12649 return; 12650 12651 if (!throttled_hierarchy(cfs_rq)) 12652 list_add_leaf_cfs_rq(cfs_rq); 12653 12654 /* Start to propagate at parent */ 12655 se = se->parent; 12656 12657 for_each_sched_entity(se) { 12658 cfs_rq = cfs_rq_of(se); 12659 12660 update_load_avg(cfs_rq, se, UPDATE_TG); 12661 12662 if (cfs_rq_throttled(cfs_rq)) 12663 break; 12664 12665 if (!throttled_hierarchy(cfs_rq)) 12666 list_add_leaf_cfs_rq(cfs_rq); 12667 } 12668 } 12669 #else 12670 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 12671 #endif 12672 12673 static void detach_entity_cfs_rq(struct sched_entity *se) 12674 { 12675 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12676 12677 #ifdef CONFIG_SMP 12678 /* 12679 * In case the task sched_avg hasn't been attached: 12680 * - A forked task which hasn't been woken up by wake_up_new_task(). 12681 * - A task which has been woken up by try_to_wake_up() but is 12682 * waiting for actually being woken up by sched_ttwu_pending(). 12683 */ 12684 if (!se->avg.last_update_time) 12685 return; 12686 #endif 12687 12688 /* Catch up with the cfs_rq and remove our load when we leave */ 12689 update_load_avg(cfs_rq, se, 0); 12690 detach_entity_load_avg(cfs_rq, se); 12691 update_tg_load_avg(cfs_rq); 12692 propagate_entity_cfs_rq(se); 12693 } 12694 12695 static void attach_entity_cfs_rq(struct sched_entity *se) 12696 { 12697 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12698 12699 /* Synchronize entity with its cfs_rq */ 12700 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 12701 attach_entity_load_avg(cfs_rq, se); 12702 update_tg_load_avg(cfs_rq); 12703 propagate_entity_cfs_rq(se); 12704 } 12705 12706 static void detach_task_cfs_rq(struct task_struct *p) 12707 { 12708 struct sched_entity *se = &p->se; 12709 12710 detach_entity_cfs_rq(se); 12711 } 12712 12713 static void attach_task_cfs_rq(struct task_struct *p) 12714 { 12715 struct sched_entity *se = &p->se; 12716 12717 attach_entity_cfs_rq(se); 12718 } 12719 12720 static void switched_from_fair(struct rq *rq, struct task_struct *p) 12721 { 12722 detach_task_cfs_rq(p); 12723 } 12724 12725 static void switched_to_fair(struct rq *rq, struct task_struct *p) 12726 { 12727 attach_task_cfs_rq(p); 12728 12729 if (task_on_rq_queued(p)) { 12730 /* 12731 * We were most likely switched from sched_rt, so 12732 * kick off the schedule if running, otherwise just see 12733 * if we can still preempt the current task. 12734 */ 12735 if (task_current(rq, p)) 12736 resched_curr(rq); 12737 else 12738 check_preempt_curr(rq, p, 0); 12739 } 12740 } 12741 12742 /* Account for a task changing its policy or group. 12743 * 12744 * This routine is mostly called to set cfs_rq->curr field when a task 12745 * migrates between groups/classes. 12746 */ 12747 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 12748 { 12749 struct sched_entity *se = &p->se; 12750 12751 #ifdef CONFIG_SMP 12752 if (task_on_rq_queued(p)) { 12753 /* 12754 * Move the next running task to the front of the list, so our 12755 * cfs_tasks list becomes MRU one. 12756 */ 12757 list_move(&se->group_node, &rq->cfs_tasks); 12758 } 12759 #endif 12760 12761 for_each_sched_entity(se) { 12762 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12763 12764 set_next_entity(cfs_rq, se); 12765 /* ensure bandwidth has been allocated on our new cfs_rq */ 12766 account_cfs_rq_runtime(cfs_rq, 0); 12767 } 12768 } 12769 12770 void init_cfs_rq(struct cfs_rq *cfs_rq) 12771 { 12772 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 12773 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20))); 12774 #ifdef CONFIG_SMP 12775 raw_spin_lock_init(&cfs_rq->removed.lock); 12776 #endif 12777 } 12778 12779 #ifdef CONFIG_FAIR_GROUP_SCHED 12780 static void task_change_group_fair(struct task_struct *p) 12781 { 12782 /* 12783 * We couldn't detach or attach a forked task which 12784 * hasn't been woken up by wake_up_new_task(). 12785 */ 12786 if (READ_ONCE(p->__state) == TASK_NEW) 12787 return; 12788 12789 detach_task_cfs_rq(p); 12790 12791 #ifdef CONFIG_SMP 12792 /* Tell se's cfs_rq has been changed -- migrated */ 12793 p->se.avg.last_update_time = 0; 12794 #endif 12795 set_task_rq(p, task_cpu(p)); 12796 attach_task_cfs_rq(p); 12797 } 12798 12799 void free_fair_sched_group(struct task_group *tg) 12800 { 12801 int i; 12802 12803 for_each_possible_cpu(i) { 12804 if (tg->cfs_rq) 12805 kfree(tg->cfs_rq[i]); 12806 if (tg->se) 12807 kfree(tg->se[i]); 12808 } 12809 12810 kfree(tg->cfs_rq); 12811 kfree(tg->se); 12812 } 12813 12814 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12815 { 12816 struct sched_entity *se; 12817 struct cfs_rq *cfs_rq; 12818 int i; 12819 12820 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 12821 if (!tg->cfs_rq) 12822 goto err; 12823 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 12824 if (!tg->se) 12825 goto err; 12826 12827 tg->shares = NICE_0_LOAD; 12828 12829 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 12830 12831 for_each_possible_cpu(i) { 12832 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 12833 GFP_KERNEL, cpu_to_node(i)); 12834 if (!cfs_rq) 12835 goto err; 12836 12837 se = kzalloc_node(sizeof(struct sched_entity_stats), 12838 GFP_KERNEL, cpu_to_node(i)); 12839 if (!se) 12840 goto err_free_rq; 12841 12842 init_cfs_rq(cfs_rq); 12843 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 12844 init_entity_runnable_average(se); 12845 } 12846 12847 return 1; 12848 12849 err_free_rq: 12850 kfree(cfs_rq); 12851 err: 12852 return 0; 12853 } 12854 12855 void online_fair_sched_group(struct task_group *tg) 12856 { 12857 struct sched_entity *se; 12858 struct rq_flags rf; 12859 struct rq *rq; 12860 int i; 12861 12862 for_each_possible_cpu(i) { 12863 rq = cpu_rq(i); 12864 se = tg->se[i]; 12865 rq_lock_irq(rq, &rf); 12866 update_rq_clock(rq); 12867 attach_entity_cfs_rq(se); 12868 sync_throttle(tg, i); 12869 rq_unlock_irq(rq, &rf); 12870 } 12871 } 12872 12873 void unregister_fair_sched_group(struct task_group *tg) 12874 { 12875 unsigned long flags; 12876 struct rq *rq; 12877 int cpu; 12878 12879 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12880 12881 for_each_possible_cpu(cpu) { 12882 if (tg->se[cpu]) 12883 remove_entity_load_avg(tg->se[cpu]); 12884 12885 /* 12886 * Only empty task groups can be destroyed; so we can speculatively 12887 * check on_list without danger of it being re-added. 12888 */ 12889 if (!tg->cfs_rq[cpu]->on_list) 12890 continue; 12891 12892 rq = cpu_rq(cpu); 12893 12894 raw_spin_rq_lock_irqsave(rq, flags); 12895 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 12896 raw_spin_rq_unlock_irqrestore(rq, flags); 12897 } 12898 } 12899 12900 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 12901 struct sched_entity *se, int cpu, 12902 struct sched_entity *parent) 12903 { 12904 struct rq *rq = cpu_rq(cpu); 12905 12906 cfs_rq->tg = tg; 12907 cfs_rq->rq = rq; 12908 init_cfs_rq_runtime(cfs_rq); 12909 12910 tg->cfs_rq[cpu] = cfs_rq; 12911 tg->se[cpu] = se; 12912 12913 /* se could be NULL for root_task_group */ 12914 if (!se) 12915 return; 12916 12917 if (!parent) { 12918 se->cfs_rq = &rq->cfs; 12919 se->depth = 0; 12920 } else { 12921 se->cfs_rq = parent->my_q; 12922 se->depth = parent->depth + 1; 12923 } 12924 12925 se->my_q = cfs_rq; 12926 /* guarantee group entities always have weight */ 12927 update_load_set(&se->load, NICE_0_LOAD); 12928 se->parent = parent; 12929 } 12930 12931 static DEFINE_MUTEX(shares_mutex); 12932 12933 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 12934 { 12935 int i; 12936 12937 lockdep_assert_held(&shares_mutex); 12938 12939 /* 12940 * We can't change the weight of the root cgroup. 12941 */ 12942 if (!tg->se[0]) 12943 return -EINVAL; 12944 12945 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 12946 12947 if (tg->shares == shares) 12948 return 0; 12949 12950 tg->shares = shares; 12951 for_each_possible_cpu(i) { 12952 struct rq *rq = cpu_rq(i); 12953 struct sched_entity *se = tg->se[i]; 12954 struct rq_flags rf; 12955 12956 /* Propagate contribution to hierarchy */ 12957 rq_lock_irqsave(rq, &rf); 12958 update_rq_clock(rq); 12959 for_each_sched_entity(se) { 12960 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 12961 update_cfs_group(se); 12962 } 12963 rq_unlock_irqrestore(rq, &rf); 12964 } 12965 12966 return 0; 12967 } 12968 12969 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 12970 { 12971 int ret; 12972 12973 mutex_lock(&shares_mutex); 12974 if (tg_is_idle(tg)) 12975 ret = -EINVAL; 12976 else 12977 ret = __sched_group_set_shares(tg, shares); 12978 mutex_unlock(&shares_mutex); 12979 12980 return ret; 12981 } 12982 12983 int sched_group_set_idle(struct task_group *tg, long idle) 12984 { 12985 int i; 12986 12987 if (tg == &root_task_group) 12988 return -EINVAL; 12989 12990 if (idle < 0 || idle > 1) 12991 return -EINVAL; 12992 12993 mutex_lock(&shares_mutex); 12994 12995 if (tg->idle == idle) { 12996 mutex_unlock(&shares_mutex); 12997 return 0; 12998 } 12999 13000 tg->idle = idle; 13001 13002 for_each_possible_cpu(i) { 13003 struct rq *rq = cpu_rq(i); 13004 struct sched_entity *se = tg->se[i]; 13005 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 13006 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13007 long idle_task_delta; 13008 struct rq_flags rf; 13009 13010 rq_lock_irqsave(rq, &rf); 13011 13012 grp_cfs_rq->idle = idle; 13013 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13014 goto next_cpu; 13015 13016 if (se->on_rq) { 13017 parent_cfs_rq = cfs_rq_of(se); 13018 if (cfs_rq_is_idle(grp_cfs_rq)) 13019 parent_cfs_rq->idle_nr_running++; 13020 else 13021 parent_cfs_rq->idle_nr_running--; 13022 } 13023 13024 idle_task_delta = grp_cfs_rq->h_nr_running - 13025 grp_cfs_rq->idle_h_nr_running; 13026 if (!cfs_rq_is_idle(grp_cfs_rq)) 13027 idle_task_delta *= -1; 13028 13029 for_each_sched_entity(se) { 13030 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13031 13032 if (!se->on_rq) 13033 break; 13034 13035 cfs_rq->idle_h_nr_running += idle_task_delta; 13036 13037 /* Already accounted at parent level and above. */ 13038 if (cfs_rq_is_idle(cfs_rq)) 13039 break; 13040 } 13041 13042 next_cpu: 13043 rq_unlock_irqrestore(rq, &rf); 13044 } 13045 13046 /* Idle groups have minimum weight. */ 13047 if (tg_is_idle(tg)) 13048 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13049 else 13050 __sched_group_set_shares(tg, NICE_0_LOAD); 13051 13052 mutex_unlock(&shares_mutex); 13053 return 0; 13054 } 13055 13056 #else /* CONFIG_FAIR_GROUP_SCHED */ 13057 13058 void free_fair_sched_group(struct task_group *tg) { } 13059 13060 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 13061 { 13062 return 1; 13063 } 13064 13065 void online_fair_sched_group(struct task_group *tg) { } 13066 13067 void unregister_fair_sched_group(struct task_group *tg) { } 13068 13069 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13070 13071 13072 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13073 { 13074 struct sched_entity *se = &task->se; 13075 unsigned int rr_interval = 0; 13076 13077 /* 13078 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13079 * idle runqueue: 13080 */ 13081 if (rq->cfs.load.weight) 13082 rr_interval = NS_TO_JIFFIES(se->slice); 13083 13084 return rr_interval; 13085 } 13086 13087 /* 13088 * All the scheduling class methods: 13089 */ 13090 DEFINE_SCHED_CLASS(fair) = { 13091 13092 .enqueue_task = enqueue_task_fair, 13093 .dequeue_task = dequeue_task_fair, 13094 .yield_task = yield_task_fair, 13095 .yield_to_task = yield_to_task_fair, 13096 13097 .check_preempt_curr = check_preempt_wakeup, 13098 13099 .pick_next_task = __pick_next_task_fair, 13100 .put_prev_task = put_prev_task_fair, 13101 .set_next_task = set_next_task_fair, 13102 13103 #ifdef CONFIG_SMP 13104 .balance = balance_fair, 13105 .pick_task = pick_task_fair, 13106 .select_task_rq = select_task_rq_fair, 13107 .migrate_task_rq = migrate_task_rq_fair, 13108 13109 .rq_online = rq_online_fair, 13110 .rq_offline = rq_offline_fair, 13111 13112 .task_dead = task_dead_fair, 13113 .set_cpus_allowed = set_cpus_allowed_common, 13114 #endif 13115 13116 .task_tick = task_tick_fair, 13117 .task_fork = task_fork_fair, 13118 13119 .prio_changed = prio_changed_fair, 13120 .switched_from = switched_from_fair, 13121 .switched_to = switched_to_fair, 13122 13123 .get_rr_interval = get_rr_interval_fair, 13124 13125 .update_curr = update_curr_fair, 13126 13127 #ifdef CONFIG_FAIR_GROUP_SCHED 13128 .task_change_group = task_change_group_fair, 13129 #endif 13130 13131 #ifdef CONFIG_SCHED_CORE 13132 .task_is_throttled = task_is_throttled_fair, 13133 #endif 13134 13135 #ifdef CONFIG_UCLAMP_TASK 13136 .uclamp_enabled = 1, 13137 #endif 13138 }; 13139 13140 #ifdef CONFIG_SCHED_DEBUG 13141 void print_cfs_stats(struct seq_file *m, int cpu) 13142 { 13143 struct cfs_rq *cfs_rq, *pos; 13144 13145 rcu_read_lock(); 13146 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13147 print_cfs_rq(m, cpu, cfs_rq); 13148 rcu_read_unlock(); 13149 } 13150 13151 #ifdef CONFIG_NUMA_BALANCING 13152 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13153 { 13154 int node; 13155 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13156 struct numa_group *ng; 13157 13158 rcu_read_lock(); 13159 ng = rcu_dereference(p->numa_group); 13160 for_each_online_node(node) { 13161 if (p->numa_faults) { 13162 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13163 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13164 } 13165 if (ng) { 13166 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13167 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13168 } 13169 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13170 } 13171 rcu_read_unlock(); 13172 } 13173 #endif /* CONFIG_NUMA_BALANCING */ 13174 #endif /* CONFIG_SCHED_DEBUG */ 13175 13176 __init void init_sched_fair_class(void) 13177 { 13178 #ifdef CONFIG_SMP 13179 int i; 13180 13181 for_each_possible_cpu(i) { 13182 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13183 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13184 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13185 GFP_KERNEL, cpu_to_node(i)); 13186 13187 #ifdef CONFIG_CFS_BANDWIDTH 13188 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13189 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13190 #endif 13191 } 13192 13193 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 13194 13195 #ifdef CONFIG_NO_HZ_COMMON 13196 nohz.next_balance = jiffies; 13197 nohz.next_blocked = jiffies; 13198 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13199 #endif 13200 #endif /* SMP */ 13201 13202 } 13203