1 /* 2 * kernel/sched/debug.c 3 * 4 * Print the CFS rbtree 5 * 6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/proc_fs.h> 14 #include <linux/sched.h> 15 #include <linux/seq_file.h> 16 #include <linux/kallsyms.h> 17 #include <linux/utsname.h> 18 #include <linux/mempolicy.h> 19 20 #include "sched.h" 21 22 static DEFINE_SPINLOCK(sched_debug_lock); 23 24 /* 25 * This allows printing both to /proc/sched_debug and 26 * to the console 27 */ 28 #define SEQ_printf(m, x...) \ 29 do { \ 30 if (m) \ 31 seq_printf(m, x); \ 32 else \ 33 printk(x); \ 34 } while (0) 35 36 /* 37 * Ease the printing of nsec fields: 38 */ 39 static long long nsec_high(unsigned long long nsec) 40 { 41 if ((long long)nsec < 0) { 42 nsec = -nsec; 43 do_div(nsec, 1000000); 44 return -nsec; 45 } 46 do_div(nsec, 1000000); 47 48 return nsec; 49 } 50 51 static unsigned long nsec_low(unsigned long long nsec) 52 { 53 if ((long long)nsec < 0) 54 nsec = -nsec; 55 56 return do_div(nsec, 1000000); 57 } 58 59 #define SPLIT_NS(x) nsec_high(x), nsec_low(x) 60 61 #ifdef CONFIG_FAIR_GROUP_SCHED 62 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) 63 { 64 struct sched_entity *se = tg->se[cpu]; 65 66 #define P(F) \ 67 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) 68 #define PN(F) \ 69 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) 70 71 if (!se) { 72 struct sched_avg *avg = &cpu_rq(cpu)->avg; 73 P(avg->runnable_avg_sum); 74 P(avg->avg_period); 75 return; 76 } 77 78 79 PN(se->exec_start); 80 PN(se->vruntime); 81 PN(se->sum_exec_runtime); 82 #ifdef CONFIG_SCHEDSTATS 83 PN(se->statistics.wait_start); 84 PN(se->statistics.sleep_start); 85 PN(se->statistics.block_start); 86 PN(se->statistics.sleep_max); 87 PN(se->statistics.block_max); 88 PN(se->statistics.exec_max); 89 PN(se->statistics.slice_max); 90 PN(se->statistics.wait_max); 91 PN(se->statistics.wait_sum); 92 P(se->statistics.wait_count); 93 #endif 94 P(se->load.weight); 95 #ifdef CONFIG_SMP 96 P(se->avg.runnable_avg_sum); 97 P(se->avg.running_avg_sum); 98 P(se->avg.avg_period); 99 P(se->avg.load_avg_contrib); 100 P(se->avg.utilization_avg_contrib); 101 P(se->avg.decay_count); 102 #endif 103 #undef PN 104 #undef P 105 } 106 #endif 107 108 #ifdef CONFIG_CGROUP_SCHED 109 static char group_path[PATH_MAX]; 110 111 static char *task_group_path(struct task_group *tg) 112 { 113 if (autogroup_path(tg, group_path, PATH_MAX)) 114 return group_path; 115 116 return cgroup_path(tg->css.cgroup, group_path, PATH_MAX); 117 } 118 #endif 119 120 static void 121 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) 122 { 123 if (rq->curr == p) 124 SEQ_printf(m, "R"); 125 else 126 SEQ_printf(m, " "); 127 128 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ", 129 p->comm, task_pid_nr(p), 130 SPLIT_NS(p->se.vruntime), 131 (long long)(p->nvcsw + p->nivcsw), 132 p->prio); 133 #ifdef CONFIG_SCHEDSTATS 134 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", 135 SPLIT_NS(p->se.statistics.wait_sum), 136 SPLIT_NS(p->se.sum_exec_runtime), 137 SPLIT_NS(p->se.statistics.sum_sleep_runtime)); 138 #else 139 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", 140 0LL, 0L, 141 SPLIT_NS(p->se.sum_exec_runtime), 142 0LL, 0L); 143 #endif 144 #ifdef CONFIG_NUMA_BALANCING 145 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p)); 146 #endif 147 #ifdef CONFIG_CGROUP_SCHED 148 SEQ_printf(m, " %s", task_group_path(task_group(p))); 149 #endif 150 151 SEQ_printf(m, "\n"); 152 } 153 154 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) 155 { 156 struct task_struct *g, *p; 157 158 SEQ_printf(m, 159 "\nrunnable tasks:\n" 160 " task PID tree-key switches prio" 161 " wait-time sum-exec sum-sleep\n" 162 "------------------------------------------------------" 163 "----------------------------------------------------\n"); 164 165 rcu_read_lock(); 166 for_each_process_thread(g, p) { 167 if (task_cpu(p) != rq_cpu) 168 continue; 169 170 print_task(m, rq, p); 171 } 172 rcu_read_unlock(); 173 } 174 175 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 176 { 177 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, 178 spread, rq0_min_vruntime, spread0; 179 struct rq *rq = cpu_rq(cpu); 180 struct sched_entity *last; 181 unsigned long flags; 182 183 #ifdef CONFIG_FAIR_GROUP_SCHED 184 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg)); 185 #else 186 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu); 187 #endif 188 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", 189 SPLIT_NS(cfs_rq->exec_clock)); 190 191 raw_spin_lock_irqsave(&rq->lock, flags); 192 if (cfs_rq->rb_leftmost) 193 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; 194 last = __pick_last_entity(cfs_rq); 195 if (last) 196 max_vruntime = last->vruntime; 197 min_vruntime = cfs_rq->min_vruntime; 198 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; 199 raw_spin_unlock_irqrestore(&rq->lock, flags); 200 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", 201 SPLIT_NS(MIN_vruntime)); 202 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", 203 SPLIT_NS(min_vruntime)); 204 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", 205 SPLIT_NS(max_vruntime)); 206 spread = max_vruntime - MIN_vruntime; 207 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", 208 SPLIT_NS(spread)); 209 spread0 = min_vruntime - rq0_min_vruntime; 210 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", 211 SPLIT_NS(spread0)); 212 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", 213 cfs_rq->nr_spread_over); 214 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); 215 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); 216 #ifdef CONFIG_SMP 217 SEQ_printf(m, " .%-30s: %ld\n", "runnable_load_avg", 218 cfs_rq->runnable_load_avg); 219 SEQ_printf(m, " .%-30s: %ld\n", "blocked_load_avg", 220 cfs_rq->blocked_load_avg); 221 SEQ_printf(m, " .%-30s: %ld\n", "utilization_load_avg", 222 cfs_rq->utilization_load_avg); 223 #ifdef CONFIG_FAIR_GROUP_SCHED 224 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_contrib", 225 cfs_rq->tg_load_contrib); 226 SEQ_printf(m, " .%-30s: %d\n", "tg_runnable_contrib", 227 cfs_rq->tg_runnable_contrib); 228 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", 229 atomic_long_read(&cfs_rq->tg->load_avg)); 230 SEQ_printf(m, " .%-30s: %d\n", "tg->runnable_avg", 231 atomic_read(&cfs_rq->tg->runnable_avg)); 232 #endif 233 #endif 234 #ifdef CONFIG_CFS_BANDWIDTH 235 SEQ_printf(m, " .%-30s: %d\n", "throttled", 236 cfs_rq->throttled); 237 SEQ_printf(m, " .%-30s: %d\n", "throttle_count", 238 cfs_rq->throttle_count); 239 #endif 240 241 #ifdef CONFIG_FAIR_GROUP_SCHED 242 print_cfs_group_stats(m, cpu, cfs_rq->tg); 243 #endif 244 } 245 246 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) 247 { 248 #ifdef CONFIG_RT_GROUP_SCHED 249 SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg)); 250 #else 251 SEQ_printf(m, "\nrt_rq[%d]:\n", cpu); 252 #endif 253 254 #define P(x) \ 255 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) 256 #define PN(x) \ 257 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) 258 259 P(rt_nr_running); 260 P(rt_throttled); 261 PN(rt_time); 262 PN(rt_runtime); 263 264 #undef PN 265 #undef P 266 } 267 268 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq) 269 { 270 SEQ_printf(m, "\ndl_rq[%d]:\n", cpu); 271 SEQ_printf(m, " .%-30s: %ld\n", "dl_nr_running", dl_rq->dl_nr_running); 272 } 273 274 extern __read_mostly int sched_clock_running; 275 276 static void print_cpu(struct seq_file *m, int cpu) 277 { 278 struct rq *rq = cpu_rq(cpu); 279 unsigned long flags; 280 281 #ifdef CONFIG_X86 282 { 283 unsigned int freq = cpu_khz ? : 1; 284 285 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", 286 cpu, freq / 1000, (freq % 1000)); 287 } 288 #else 289 SEQ_printf(m, "cpu#%d\n", cpu); 290 #endif 291 292 #define P(x) \ 293 do { \ 294 if (sizeof(rq->x) == 4) \ 295 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \ 296 else \ 297 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ 298 } while (0) 299 300 #define PN(x) \ 301 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) 302 303 P(nr_running); 304 SEQ_printf(m, " .%-30s: %lu\n", "load", 305 rq->load.weight); 306 P(nr_switches); 307 P(nr_load_updates); 308 P(nr_uninterruptible); 309 PN(next_balance); 310 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); 311 PN(clock); 312 PN(clock_task); 313 P(cpu_load[0]); 314 P(cpu_load[1]); 315 P(cpu_load[2]); 316 P(cpu_load[3]); 317 P(cpu_load[4]); 318 #undef P 319 #undef PN 320 321 #ifdef CONFIG_SCHEDSTATS 322 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n); 323 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); 324 325 P(yld_count); 326 327 P(sched_count); 328 P(sched_goidle); 329 #ifdef CONFIG_SMP 330 P64(avg_idle); 331 P64(max_idle_balance_cost); 332 #endif 333 334 P(ttwu_count); 335 P(ttwu_local); 336 337 #undef P 338 #undef P64 339 #endif 340 spin_lock_irqsave(&sched_debug_lock, flags); 341 print_cfs_stats(m, cpu); 342 print_rt_stats(m, cpu); 343 print_dl_stats(m, cpu); 344 345 print_rq(m, rq, cpu); 346 spin_unlock_irqrestore(&sched_debug_lock, flags); 347 SEQ_printf(m, "\n"); 348 } 349 350 static const char *sched_tunable_scaling_names[] = { 351 "none", 352 "logaritmic", 353 "linear" 354 }; 355 356 static void sched_debug_header(struct seq_file *m) 357 { 358 u64 ktime, sched_clk, cpu_clk; 359 unsigned long flags; 360 361 local_irq_save(flags); 362 ktime = ktime_to_ns(ktime_get()); 363 sched_clk = sched_clock(); 364 cpu_clk = local_clock(); 365 local_irq_restore(flags); 366 367 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", 368 init_utsname()->release, 369 (int)strcspn(init_utsname()->version, " "), 370 init_utsname()->version); 371 372 #define P(x) \ 373 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) 374 #define PN(x) \ 375 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 376 PN(ktime); 377 PN(sched_clk); 378 PN(cpu_clk); 379 P(jiffies); 380 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 381 P(sched_clock_stable()); 382 #endif 383 #undef PN 384 #undef P 385 386 SEQ_printf(m, "\n"); 387 SEQ_printf(m, "sysctl_sched\n"); 388 389 #define P(x) \ 390 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) 391 #define PN(x) \ 392 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 393 PN(sysctl_sched_latency); 394 PN(sysctl_sched_min_granularity); 395 PN(sysctl_sched_wakeup_granularity); 396 P(sysctl_sched_child_runs_first); 397 P(sysctl_sched_features); 398 #undef PN 399 #undef P 400 401 SEQ_printf(m, " .%-40s: %d (%s)\n", 402 "sysctl_sched_tunable_scaling", 403 sysctl_sched_tunable_scaling, 404 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); 405 SEQ_printf(m, "\n"); 406 } 407 408 static int sched_debug_show(struct seq_file *m, void *v) 409 { 410 int cpu = (unsigned long)(v - 2); 411 412 if (cpu != -1) 413 print_cpu(m, cpu); 414 else 415 sched_debug_header(m); 416 417 return 0; 418 } 419 420 void sysrq_sched_debug_show(void) 421 { 422 int cpu; 423 424 sched_debug_header(NULL); 425 for_each_online_cpu(cpu) 426 print_cpu(NULL, cpu); 427 428 } 429 430 /* 431 * This itererator needs some explanation. 432 * It returns 1 for the header position. 433 * This means 2 is cpu 0. 434 * In a hotplugged system some cpus, including cpu 0, may be missing so we have 435 * to use cpumask_* to iterate over the cpus. 436 */ 437 static void *sched_debug_start(struct seq_file *file, loff_t *offset) 438 { 439 unsigned long n = *offset; 440 441 if (n == 0) 442 return (void *) 1; 443 444 n--; 445 446 if (n > 0) 447 n = cpumask_next(n - 1, cpu_online_mask); 448 else 449 n = cpumask_first(cpu_online_mask); 450 451 *offset = n + 1; 452 453 if (n < nr_cpu_ids) 454 return (void *)(unsigned long)(n + 2); 455 return NULL; 456 } 457 458 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset) 459 { 460 (*offset)++; 461 return sched_debug_start(file, offset); 462 } 463 464 static void sched_debug_stop(struct seq_file *file, void *data) 465 { 466 } 467 468 static const struct seq_operations sched_debug_sops = { 469 .start = sched_debug_start, 470 .next = sched_debug_next, 471 .stop = sched_debug_stop, 472 .show = sched_debug_show, 473 }; 474 475 static int sched_debug_release(struct inode *inode, struct file *file) 476 { 477 seq_release(inode, file); 478 479 return 0; 480 } 481 482 static int sched_debug_open(struct inode *inode, struct file *filp) 483 { 484 int ret = 0; 485 486 ret = seq_open(filp, &sched_debug_sops); 487 488 return ret; 489 } 490 491 static const struct file_operations sched_debug_fops = { 492 .open = sched_debug_open, 493 .read = seq_read, 494 .llseek = seq_lseek, 495 .release = sched_debug_release, 496 }; 497 498 static int __init init_sched_debug_procfs(void) 499 { 500 struct proc_dir_entry *pe; 501 502 pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops); 503 if (!pe) 504 return -ENOMEM; 505 return 0; 506 } 507 508 __initcall(init_sched_debug_procfs); 509 510 #define __P(F) \ 511 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) 512 #define P(F) \ 513 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) 514 #define __PN(F) \ 515 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 516 #define PN(F) \ 517 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 518 519 520 #ifdef CONFIG_NUMA_BALANCING 521 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 522 unsigned long tpf, unsigned long gsf, unsigned long gpf) 523 { 524 SEQ_printf(m, "numa_faults node=%d ", node); 525 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tsf, tpf); 526 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gsf, gpf); 527 } 528 #endif 529 530 531 static void sched_show_numa(struct task_struct *p, struct seq_file *m) 532 { 533 #ifdef CONFIG_NUMA_BALANCING 534 struct mempolicy *pol; 535 536 if (p->mm) 537 P(mm->numa_scan_seq); 538 539 task_lock(p); 540 pol = p->mempolicy; 541 if (pol && !(pol->flags & MPOL_F_MORON)) 542 pol = NULL; 543 mpol_get(pol); 544 task_unlock(p); 545 546 P(numa_pages_migrated); 547 P(numa_preferred_nid); 548 P(total_numa_faults); 549 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n", 550 task_node(p), task_numa_group_id(p)); 551 show_numa_stats(p, m); 552 mpol_put(pol); 553 #endif 554 } 555 556 void proc_sched_show_task(struct task_struct *p, struct seq_file *m) 557 { 558 unsigned long nr_switches; 559 560 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr(p), 561 get_nr_threads(p)); 562 SEQ_printf(m, 563 "---------------------------------------------------------" 564 "----------\n"); 565 #define __P(F) \ 566 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) 567 #define P(F) \ 568 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) 569 #define __PN(F) \ 570 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 571 #define PN(F) \ 572 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 573 574 PN(se.exec_start); 575 PN(se.vruntime); 576 PN(se.sum_exec_runtime); 577 578 nr_switches = p->nvcsw + p->nivcsw; 579 580 #ifdef CONFIG_SCHEDSTATS 581 PN(se.statistics.sum_sleep_runtime); 582 PN(se.statistics.wait_start); 583 PN(se.statistics.sleep_start); 584 PN(se.statistics.block_start); 585 PN(se.statistics.sleep_max); 586 PN(se.statistics.block_max); 587 PN(se.statistics.exec_max); 588 PN(se.statistics.slice_max); 589 PN(se.statistics.wait_max); 590 PN(se.statistics.wait_sum); 591 P(se.statistics.wait_count); 592 PN(se.statistics.iowait_sum); 593 P(se.statistics.iowait_count); 594 P(se.nr_migrations); 595 P(se.statistics.nr_migrations_cold); 596 P(se.statistics.nr_failed_migrations_affine); 597 P(se.statistics.nr_failed_migrations_running); 598 P(se.statistics.nr_failed_migrations_hot); 599 P(se.statistics.nr_forced_migrations); 600 P(se.statistics.nr_wakeups); 601 P(se.statistics.nr_wakeups_sync); 602 P(se.statistics.nr_wakeups_migrate); 603 P(se.statistics.nr_wakeups_local); 604 P(se.statistics.nr_wakeups_remote); 605 P(se.statistics.nr_wakeups_affine); 606 P(se.statistics.nr_wakeups_affine_attempts); 607 P(se.statistics.nr_wakeups_passive); 608 P(se.statistics.nr_wakeups_idle); 609 610 { 611 u64 avg_atom, avg_per_cpu; 612 613 avg_atom = p->se.sum_exec_runtime; 614 if (nr_switches) 615 avg_atom = div64_ul(avg_atom, nr_switches); 616 else 617 avg_atom = -1LL; 618 619 avg_per_cpu = p->se.sum_exec_runtime; 620 if (p->se.nr_migrations) { 621 avg_per_cpu = div64_u64(avg_per_cpu, 622 p->se.nr_migrations); 623 } else { 624 avg_per_cpu = -1LL; 625 } 626 627 __PN(avg_atom); 628 __PN(avg_per_cpu); 629 } 630 #endif 631 __P(nr_switches); 632 SEQ_printf(m, "%-45s:%21Ld\n", 633 "nr_voluntary_switches", (long long)p->nvcsw); 634 SEQ_printf(m, "%-45s:%21Ld\n", 635 "nr_involuntary_switches", (long long)p->nivcsw); 636 637 P(se.load.weight); 638 #ifdef CONFIG_SMP 639 P(se.avg.runnable_avg_sum); 640 P(se.avg.running_avg_sum); 641 P(se.avg.avg_period); 642 P(se.avg.load_avg_contrib); 643 P(se.avg.utilization_avg_contrib); 644 P(se.avg.decay_count); 645 #endif 646 P(policy); 647 P(prio); 648 #undef PN 649 #undef __PN 650 #undef P 651 #undef __P 652 653 { 654 unsigned int this_cpu = raw_smp_processor_id(); 655 u64 t0, t1; 656 657 t0 = cpu_clock(this_cpu); 658 t1 = cpu_clock(this_cpu); 659 SEQ_printf(m, "%-45s:%21Ld\n", 660 "clock-delta", (long long)(t1-t0)); 661 } 662 663 sched_show_numa(p, m); 664 } 665 666 void proc_sched_set_task(struct task_struct *p) 667 { 668 #ifdef CONFIG_SCHEDSTATS 669 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 670 #endif 671 } 672