1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/debug.c 4 * 5 * Print the CFS rbtree and other debugging details 6 * 7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar 8 */ 9 10 /* 11 * This allows printing both to /proc/sched_debug and 12 * to the console 13 */ 14 #define SEQ_printf(m, x...) \ 15 do { \ 16 if (m) \ 17 seq_printf(m, x); \ 18 else \ 19 pr_cont(x); \ 20 } while (0) 21 22 /* 23 * Ease the printing of nsec fields: 24 */ 25 static long long nsec_high(unsigned long long nsec) 26 { 27 if ((long long)nsec < 0) { 28 nsec = -nsec; 29 do_div(nsec, 1000000); 30 return -nsec; 31 } 32 do_div(nsec, 1000000); 33 34 return nsec; 35 } 36 37 static unsigned long nsec_low(unsigned long long nsec) 38 { 39 if ((long long)nsec < 0) 40 nsec = -nsec; 41 42 return do_div(nsec, 1000000); 43 } 44 45 #define SPLIT_NS(x) nsec_high(x), nsec_low(x) 46 47 #define SCHED_FEAT(name, enabled) \ 48 #name , 49 50 static const char * const sched_feat_names[] = { 51 #include "features.h" 52 }; 53 54 #undef SCHED_FEAT 55 56 static int sched_feat_show(struct seq_file *m, void *v) 57 { 58 int i; 59 60 for (i = 0; i < __SCHED_FEAT_NR; i++) { 61 if (!(sysctl_sched_features & (1UL << i))) 62 seq_puts(m, "NO_"); 63 seq_printf(m, "%s ", sched_feat_names[i]); 64 } 65 seq_puts(m, "\n"); 66 67 return 0; 68 } 69 70 #ifdef CONFIG_JUMP_LABEL 71 72 #define jump_label_key__true STATIC_KEY_INIT_TRUE 73 #define jump_label_key__false STATIC_KEY_INIT_FALSE 74 75 #define SCHED_FEAT(name, enabled) \ 76 jump_label_key__##enabled , 77 78 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 79 #include "features.h" 80 }; 81 82 #undef SCHED_FEAT 83 84 static void sched_feat_disable(int i) 85 { 86 static_key_disable_cpuslocked(&sched_feat_keys[i]); 87 } 88 89 static void sched_feat_enable(int i) 90 { 91 static_key_enable_cpuslocked(&sched_feat_keys[i]); 92 } 93 #else 94 static void sched_feat_disable(int i) { }; 95 static void sched_feat_enable(int i) { }; 96 #endif /* CONFIG_JUMP_LABEL */ 97 98 static int sched_feat_set(char *cmp) 99 { 100 int i; 101 int neg = 0; 102 103 if (strncmp(cmp, "NO_", 3) == 0) { 104 neg = 1; 105 cmp += 3; 106 } 107 108 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp); 109 if (i < 0) 110 return i; 111 112 if (neg) { 113 sysctl_sched_features &= ~(1UL << i); 114 sched_feat_disable(i); 115 } else { 116 sysctl_sched_features |= (1UL << i); 117 sched_feat_enable(i); 118 } 119 120 return 0; 121 } 122 123 static ssize_t 124 sched_feat_write(struct file *filp, const char __user *ubuf, 125 size_t cnt, loff_t *ppos) 126 { 127 char buf[64]; 128 char *cmp; 129 int ret; 130 struct inode *inode; 131 132 if (cnt > 63) 133 cnt = 63; 134 135 if (copy_from_user(&buf, ubuf, cnt)) 136 return -EFAULT; 137 138 buf[cnt] = 0; 139 cmp = strstrip(buf); 140 141 /* Ensure the static_key remains in a consistent state */ 142 inode = file_inode(filp); 143 cpus_read_lock(); 144 inode_lock(inode); 145 ret = sched_feat_set(cmp); 146 inode_unlock(inode); 147 cpus_read_unlock(); 148 if (ret < 0) 149 return ret; 150 151 *ppos += cnt; 152 153 return cnt; 154 } 155 156 static int sched_feat_open(struct inode *inode, struct file *filp) 157 { 158 return single_open(filp, sched_feat_show, NULL); 159 } 160 161 static const struct file_operations sched_feat_fops = { 162 .open = sched_feat_open, 163 .write = sched_feat_write, 164 .read = seq_read, 165 .llseek = seq_lseek, 166 .release = single_release, 167 }; 168 169 #ifdef CONFIG_SMP 170 171 static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf, 172 size_t cnt, loff_t *ppos) 173 { 174 char buf[16]; 175 unsigned int scaling; 176 177 if (cnt > 15) 178 cnt = 15; 179 180 if (copy_from_user(&buf, ubuf, cnt)) 181 return -EFAULT; 182 buf[cnt] = '\0'; 183 184 if (kstrtouint(buf, 10, &scaling)) 185 return -EINVAL; 186 187 if (scaling >= SCHED_TUNABLESCALING_END) 188 return -EINVAL; 189 190 sysctl_sched_tunable_scaling = scaling; 191 if (sched_update_scaling()) 192 return -EINVAL; 193 194 *ppos += cnt; 195 return cnt; 196 } 197 198 static int sched_scaling_show(struct seq_file *m, void *v) 199 { 200 seq_printf(m, "%d\n", sysctl_sched_tunable_scaling); 201 return 0; 202 } 203 204 static int sched_scaling_open(struct inode *inode, struct file *filp) 205 { 206 return single_open(filp, sched_scaling_show, NULL); 207 } 208 209 static const struct file_operations sched_scaling_fops = { 210 .open = sched_scaling_open, 211 .write = sched_scaling_write, 212 .read = seq_read, 213 .llseek = seq_lseek, 214 .release = single_release, 215 }; 216 217 #endif /* SMP */ 218 219 #ifdef CONFIG_PREEMPT_DYNAMIC 220 221 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf, 222 size_t cnt, loff_t *ppos) 223 { 224 char buf[16]; 225 int mode; 226 227 if (cnt > 15) 228 cnt = 15; 229 230 if (copy_from_user(&buf, ubuf, cnt)) 231 return -EFAULT; 232 233 buf[cnt] = 0; 234 mode = sched_dynamic_mode(strstrip(buf)); 235 if (mode < 0) 236 return mode; 237 238 sched_dynamic_update(mode); 239 240 *ppos += cnt; 241 242 return cnt; 243 } 244 245 static int sched_dynamic_show(struct seq_file *m, void *v) 246 { 247 static const char * preempt_modes[] = { 248 "none", "voluntary", "full" 249 }; 250 int i; 251 252 for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) { 253 if (preempt_dynamic_mode == i) 254 seq_puts(m, "("); 255 seq_puts(m, preempt_modes[i]); 256 if (preempt_dynamic_mode == i) 257 seq_puts(m, ")"); 258 259 seq_puts(m, " "); 260 } 261 262 seq_puts(m, "\n"); 263 return 0; 264 } 265 266 static int sched_dynamic_open(struct inode *inode, struct file *filp) 267 { 268 return single_open(filp, sched_dynamic_show, NULL); 269 } 270 271 static const struct file_operations sched_dynamic_fops = { 272 .open = sched_dynamic_open, 273 .write = sched_dynamic_write, 274 .read = seq_read, 275 .llseek = seq_lseek, 276 .release = single_release, 277 }; 278 279 #endif /* CONFIG_PREEMPT_DYNAMIC */ 280 281 __read_mostly bool sched_debug_verbose; 282 283 static const struct seq_operations sched_debug_sops; 284 285 static int sched_debug_open(struct inode *inode, struct file *filp) 286 { 287 return seq_open(filp, &sched_debug_sops); 288 } 289 290 static const struct file_operations sched_debug_fops = { 291 .open = sched_debug_open, 292 .read = seq_read, 293 .llseek = seq_lseek, 294 .release = seq_release, 295 }; 296 297 static struct dentry *debugfs_sched; 298 299 static __init int sched_init_debug(void) 300 { 301 struct dentry __maybe_unused *numa; 302 303 debugfs_sched = debugfs_create_dir("sched", NULL); 304 305 debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops); 306 debugfs_create_bool("verbose", 0644, debugfs_sched, &sched_debug_verbose); 307 #ifdef CONFIG_PREEMPT_DYNAMIC 308 debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops); 309 #endif 310 311 debugfs_create_u32("latency_ns", 0644, debugfs_sched, &sysctl_sched_latency); 312 debugfs_create_u32("min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_min_granularity); 313 debugfs_create_u32("idle_min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_idle_min_granularity); 314 debugfs_create_u32("wakeup_granularity_ns", 0644, debugfs_sched, &sysctl_sched_wakeup_granularity); 315 316 debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms); 317 debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once); 318 319 #ifdef CONFIG_SMP 320 debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops); 321 debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost); 322 debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate); 323 324 mutex_lock(&sched_domains_mutex); 325 update_sched_domain_debugfs(); 326 mutex_unlock(&sched_domains_mutex); 327 #endif 328 329 #ifdef CONFIG_NUMA_BALANCING 330 numa = debugfs_create_dir("numa_balancing", debugfs_sched); 331 332 debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay); 333 debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min); 334 debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max); 335 debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size); 336 #endif 337 338 debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops); 339 340 return 0; 341 } 342 late_initcall(sched_init_debug); 343 344 #ifdef CONFIG_SMP 345 346 static cpumask_var_t sd_sysctl_cpus; 347 static struct dentry *sd_dentry; 348 349 static int sd_flags_show(struct seq_file *m, void *v) 350 { 351 unsigned long flags = *(unsigned int *)m->private; 352 int idx; 353 354 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { 355 seq_puts(m, sd_flag_debug[idx].name); 356 seq_puts(m, " "); 357 } 358 seq_puts(m, "\n"); 359 360 return 0; 361 } 362 363 static int sd_flags_open(struct inode *inode, struct file *file) 364 { 365 return single_open(file, sd_flags_show, inode->i_private); 366 } 367 368 static const struct file_operations sd_flags_fops = { 369 .open = sd_flags_open, 370 .read = seq_read, 371 .llseek = seq_lseek, 372 .release = single_release, 373 }; 374 375 static void register_sd(struct sched_domain *sd, struct dentry *parent) 376 { 377 #define SDM(type, mode, member) \ 378 debugfs_create_##type(#member, mode, parent, &sd->member) 379 380 SDM(ulong, 0644, min_interval); 381 SDM(ulong, 0644, max_interval); 382 SDM(u64, 0644, max_newidle_lb_cost); 383 SDM(u32, 0644, busy_factor); 384 SDM(u32, 0644, imbalance_pct); 385 SDM(u32, 0644, cache_nice_tries); 386 SDM(str, 0444, name); 387 388 #undef SDM 389 390 debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops); 391 } 392 393 void update_sched_domain_debugfs(void) 394 { 395 int cpu, i; 396 397 /* 398 * This can unfortunately be invoked before sched_debug_init() creates 399 * the debug directory. Don't touch sd_sysctl_cpus until then. 400 */ 401 if (!debugfs_sched) 402 return; 403 404 if (!cpumask_available(sd_sysctl_cpus)) { 405 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL)) 406 return; 407 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask); 408 } 409 410 if (!sd_dentry) 411 sd_dentry = debugfs_create_dir("domains", debugfs_sched); 412 413 for_each_cpu(cpu, sd_sysctl_cpus) { 414 struct sched_domain *sd; 415 struct dentry *d_cpu; 416 char buf[32]; 417 418 snprintf(buf, sizeof(buf), "cpu%d", cpu); 419 debugfs_lookup_and_remove(buf, sd_dentry); 420 d_cpu = debugfs_create_dir(buf, sd_dentry); 421 422 i = 0; 423 for_each_domain(cpu, sd) { 424 struct dentry *d_sd; 425 426 snprintf(buf, sizeof(buf), "domain%d", i); 427 d_sd = debugfs_create_dir(buf, d_cpu); 428 429 register_sd(sd, d_sd); 430 i++; 431 } 432 433 __cpumask_clear_cpu(cpu, sd_sysctl_cpus); 434 } 435 } 436 437 void dirty_sched_domain_sysctl(int cpu) 438 { 439 if (cpumask_available(sd_sysctl_cpus)) 440 __cpumask_set_cpu(cpu, sd_sysctl_cpus); 441 } 442 443 #endif /* CONFIG_SMP */ 444 445 #ifdef CONFIG_FAIR_GROUP_SCHED 446 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) 447 { 448 struct sched_entity *se = tg->se[cpu]; 449 450 #define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) 451 #define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", \ 452 #F, (long long)schedstat_val(stats->F)) 453 #define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) 454 #define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", \ 455 #F, SPLIT_NS((long long)schedstat_val(stats->F))) 456 457 if (!se) 458 return; 459 460 PN(se->exec_start); 461 PN(se->vruntime); 462 PN(se->sum_exec_runtime); 463 464 if (schedstat_enabled()) { 465 struct sched_statistics *stats; 466 stats = __schedstats_from_se(se); 467 468 PN_SCHEDSTAT(wait_start); 469 PN_SCHEDSTAT(sleep_start); 470 PN_SCHEDSTAT(block_start); 471 PN_SCHEDSTAT(sleep_max); 472 PN_SCHEDSTAT(block_max); 473 PN_SCHEDSTAT(exec_max); 474 PN_SCHEDSTAT(slice_max); 475 PN_SCHEDSTAT(wait_max); 476 PN_SCHEDSTAT(wait_sum); 477 P_SCHEDSTAT(wait_count); 478 } 479 480 P(se->load.weight); 481 #ifdef CONFIG_SMP 482 P(se->avg.load_avg); 483 P(se->avg.util_avg); 484 P(se->avg.runnable_avg); 485 #endif 486 487 #undef PN_SCHEDSTAT 488 #undef PN 489 #undef P_SCHEDSTAT 490 #undef P 491 } 492 #endif 493 494 #ifdef CONFIG_CGROUP_SCHED 495 static DEFINE_SPINLOCK(sched_debug_lock); 496 static char group_path[PATH_MAX]; 497 498 static void task_group_path(struct task_group *tg, char *path, int plen) 499 { 500 if (autogroup_path(tg, path, plen)) 501 return; 502 503 cgroup_path(tg->css.cgroup, path, plen); 504 } 505 506 /* 507 * Only 1 SEQ_printf_task_group_path() caller can use the full length 508 * group_path[] for cgroup path. Other simultaneous callers will have 509 * to use a shorter stack buffer. A "..." suffix is appended at the end 510 * of the stack buffer so that it will show up in case the output length 511 * matches the given buffer size to indicate possible path name truncation. 512 */ 513 #define SEQ_printf_task_group_path(m, tg, fmt...) \ 514 { \ 515 if (spin_trylock(&sched_debug_lock)) { \ 516 task_group_path(tg, group_path, sizeof(group_path)); \ 517 SEQ_printf(m, fmt, group_path); \ 518 spin_unlock(&sched_debug_lock); \ 519 } else { \ 520 char buf[128]; \ 521 char *bufend = buf + sizeof(buf) - 3; \ 522 task_group_path(tg, buf, bufend - buf); \ 523 strcpy(bufend - 1, "..."); \ 524 SEQ_printf(m, fmt, buf); \ 525 } \ 526 } 527 #endif 528 529 static void 530 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) 531 { 532 if (task_current(rq, p)) 533 SEQ_printf(m, ">R"); 534 else 535 SEQ_printf(m, " %c", task_state_to_char(p)); 536 537 SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d ", 538 p->comm, task_pid_nr(p), 539 SPLIT_NS(p->se.vruntime), 540 (long long)(p->nvcsw + p->nivcsw), 541 p->prio); 542 543 SEQ_printf(m, "%9lld.%06ld %9lld.%06ld %9lld.%06ld %9lld.%06ld", 544 SPLIT_NS(schedstat_val_or_zero(p->stats.wait_sum)), 545 SPLIT_NS(p->se.sum_exec_runtime), 546 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_sleep_runtime)), 547 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_block_runtime))); 548 549 #ifdef CONFIG_NUMA_BALANCING 550 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p)); 551 #endif 552 #ifdef CONFIG_CGROUP_SCHED 553 SEQ_printf_task_group_path(m, task_group(p), " %s") 554 #endif 555 556 SEQ_printf(m, "\n"); 557 } 558 559 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) 560 { 561 struct task_struct *g, *p; 562 563 SEQ_printf(m, "\n"); 564 SEQ_printf(m, "runnable tasks:\n"); 565 SEQ_printf(m, " S task PID tree-key switches prio" 566 " wait-time sum-exec sum-sleep\n"); 567 SEQ_printf(m, "-------------------------------------------------------" 568 "------------------------------------------------------\n"); 569 570 rcu_read_lock(); 571 for_each_process_thread(g, p) { 572 if (task_cpu(p) != rq_cpu) 573 continue; 574 575 print_task(m, rq, p); 576 } 577 rcu_read_unlock(); 578 } 579 580 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 581 { 582 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, 583 spread, rq0_min_vruntime, spread0; 584 struct rq *rq = cpu_rq(cpu); 585 struct sched_entity *last; 586 unsigned long flags; 587 588 #ifdef CONFIG_FAIR_GROUP_SCHED 589 SEQ_printf(m, "\n"); 590 SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu); 591 #else 592 SEQ_printf(m, "\n"); 593 SEQ_printf(m, "cfs_rq[%d]:\n", cpu); 594 #endif 595 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", 596 SPLIT_NS(cfs_rq->exec_clock)); 597 598 raw_spin_rq_lock_irqsave(rq, flags); 599 if (rb_first_cached(&cfs_rq->tasks_timeline)) 600 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; 601 last = __pick_last_entity(cfs_rq); 602 if (last) 603 max_vruntime = last->vruntime; 604 min_vruntime = cfs_rq->min_vruntime; 605 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; 606 raw_spin_rq_unlock_irqrestore(rq, flags); 607 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", 608 SPLIT_NS(MIN_vruntime)); 609 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", 610 SPLIT_NS(min_vruntime)); 611 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", 612 SPLIT_NS(max_vruntime)); 613 spread = max_vruntime - MIN_vruntime; 614 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", 615 SPLIT_NS(spread)); 616 spread0 = min_vruntime - rq0_min_vruntime; 617 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", 618 SPLIT_NS(spread0)); 619 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", 620 cfs_rq->nr_spread_over); 621 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); 622 SEQ_printf(m, " .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running); 623 SEQ_printf(m, " .%-30s: %d\n", "idle_nr_running", 624 cfs_rq->idle_nr_running); 625 SEQ_printf(m, " .%-30s: %d\n", "idle_h_nr_running", 626 cfs_rq->idle_h_nr_running); 627 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); 628 #ifdef CONFIG_SMP 629 SEQ_printf(m, " .%-30s: %lu\n", "load_avg", 630 cfs_rq->avg.load_avg); 631 SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg", 632 cfs_rq->avg.runnable_avg); 633 SEQ_printf(m, " .%-30s: %lu\n", "util_avg", 634 cfs_rq->avg.util_avg); 635 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued", 636 cfs_rq->avg.util_est.enqueued); 637 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg", 638 cfs_rq->removed.load_avg); 639 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg", 640 cfs_rq->removed.util_avg); 641 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_avg", 642 cfs_rq->removed.runnable_avg); 643 #ifdef CONFIG_FAIR_GROUP_SCHED 644 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib", 645 cfs_rq->tg_load_avg_contrib); 646 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", 647 atomic_long_read(&cfs_rq->tg->load_avg)); 648 #endif 649 #endif 650 #ifdef CONFIG_CFS_BANDWIDTH 651 SEQ_printf(m, " .%-30s: %d\n", "throttled", 652 cfs_rq->throttled); 653 SEQ_printf(m, " .%-30s: %d\n", "throttle_count", 654 cfs_rq->throttle_count); 655 #endif 656 657 #ifdef CONFIG_FAIR_GROUP_SCHED 658 print_cfs_group_stats(m, cpu, cfs_rq->tg); 659 #endif 660 } 661 662 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) 663 { 664 #ifdef CONFIG_RT_GROUP_SCHED 665 SEQ_printf(m, "\n"); 666 SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu); 667 #else 668 SEQ_printf(m, "\n"); 669 SEQ_printf(m, "rt_rq[%d]:\n", cpu); 670 #endif 671 672 #define P(x) \ 673 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) 674 #define PU(x) \ 675 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x)) 676 #define PN(x) \ 677 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) 678 679 PU(rt_nr_running); 680 #ifdef CONFIG_SMP 681 PU(rt_nr_migratory); 682 #endif 683 P(rt_throttled); 684 PN(rt_time); 685 PN(rt_runtime); 686 687 #undef PN 688 #undef PU 689 #undef P 690 } 691 692 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq) 693 { 694 struct dl_bw *dl_bw; 695 696 SEQ_printf(m, "\n"); 697 SEQ_printf(m, "dl_rq[%d]:\n", cpu); 698 699 #define PU(x) \ 700 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x)) 701 702 PU(dl_nr_running); 703 #ifdef CONFIG_SMP 704 PU(dl_nr_migratory); 705 dl_bw = &cpu_rq(cpu)->rd->dl_bw; 706 #else 707 dl_bw = &dl_rq->dl_bw; 708 #endif 709 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw); 710 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw); 711 712 #undef PU 713 } 714 715 static void print_cpu(struct seq_file *m, int cpu) 716 { 717 struct rq *rq = cpu_rq(cpu); 718 719 #ifdef CONFIG_X86 720 { 721 unsigned int freq = cpu_khz ? : 1; 722 723 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", 724 cpu, freq / 1000, (freq % 1000)); 725 } 726 #else 727 SEQ_printf(m, "cpu#%d\n", cpu); 728 #endif 729 730 #define P(x) \ 731 do { \ 732 if (sizeof(rq->x) == 4) \ 733 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \ 734 else \ 735 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ 736 } while (0) 737 738 #define PN(x) \ 739 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) 740 741 P(nr_running); 742 P(nr_switches); 743 P(nr_uninterruptible); 744 PN(next_balance); 745 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); 746 PN(clock); 747 PN(clock_task); 748 #undef P 749 #undef PN 750 751 #ifdef CONFIG_SMP 752 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); 753 P64(avg_idle); 754 P64(max_idle_balance_cost); 755 #undef P64 756 #endif 757 758 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n)); 759 if (schedstat_enabled()) { 760 P(yld_count); 761 P(sched_count); 762 P(sched_goidle); 763 P(ttwu_count); 764 P(ttwu_local); 765 } 766 #undef P 767 768 print_cfs_stats(m, cpu); 769 print_rt_stats(m, cpu); 770 print_dl_stats(m, cpu); 771 772 print_rq(m, rq, cpu); 773 SEQ_printf(m, "\n"); 774 } 775 776 static const char *sched_tunable_scaling_names[] = { 777 "none", 778 "logarithmic", 779 "linear" 780 }; 781 782 static void sched_debug_header(struct seq_file *m) 783 { 784 u64 ktime, sched_clk, cpu_clk; 785 unsigned long flags; 786 787 local_irq_save(flags); 788 ktime = ktime_to_ns(ktime_get()); 789 sched_clk = sched_clock(); 790 cpu_clk = local_clock(); 791 local_irq_restore(flags); 792 793 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", 794 init_utsname()->release, 795 (int)strcspn(init_utsname()->version, " "), 796 init_utsname()->version); 797 798 #define P(x) \ 799 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) 800 #define PN(x) \ 801 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 802 PN(ktime); 803 PN(sched_clk); 804 PN(cpu_clk); 805 P(jiffies); 806 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 807 P(sched_clock_stable()); 808 #endif 809 #undef PN 810 #undef P 811 812 SEQ_printf(m, "\n"); 813 SEQ_printf(m, "sysctl_sched\n"); 814 815 #define P(x) \ 816 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) 817 #define PN(x) \ 818 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 819 PN(sysctl_sched_latency); 820 PN(sysctl_sched_min_granularity); 821 PN(sysctl_sched_idle_min_granularity); 822 PN(sysctl_sched_wakeup_granularity); 823 P(sysctl_sched_child_runs_first); 824 P(sysctl_sched_features); 825 #undef PN 826 #undef P 827 828 SEQ_printf(m, " .%-40s: %d (%s)\n", 829 "sysctl_sched_tunable_scaling", 830 sysctl_sched_tunable_scaling, 831 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); 832 SEQ_printf(m, "\n"); 833 } 834 835 static int sched_debug_show(struct seq_file *m, void *v) 836 { 837 int cpu = (unsigned long)(v - 2); 838 839 if (cpu != -1) 840 print_cpu(m, cpu); 841 else 842 sched_debug_header(m); 843 844 return 0; 845 } 846 847 void sysrq_sched_debug_show(void) 848 { 849 int cpu; 850 851 sched_debug_header(NULL); 852 for_each_online_cpu(cpu) { 853 /* 854 * Need to reset softlockup watchdogs on all CPUs, because 855 * another CPU might be blocked waiting for us to process 856 * an IPI or stop_machine. 857 */ 858 touch_nmi_watchdog(); 859 touch_all_softlockup_watchdogs(); 860 print_cpu(NULL, cpu); 861 } 862 } 863 864 /* 865 * This iterator needs some explanation. 866 * It returns 1 for the header position. 867 * This means 2 is CPU 0. 868 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have 869 * to use cpumask_* to iterate over the CPUs. 870 */ 871 static void *sched_debug_start(struct seq_file *file, loff_t *offset) 872 { 873 unsigned long n = *offset; 874 875 if (n == 0) 876 return (void *) 1; 877 878 n--; 879 880 if (n > 0) 881 n = cpumask_next(n - 1, cpu_online_mask); 882 else 883 n = cpumask_first(cpu_online_mask); 884 885 *offset = n + 1; 886 887 if (n < nr_cpu_ids) 888 return (void *)(unsigned long)(n + 2); 889 890 return NULL; 891 } 892 893 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset) 894 { 895 (*offset)++; 896 return sched_debug_start(file, offset); 897 } 898 899 static void sched_debug_stop(struct seq_file *file, void *data) 900 { 901 } 902 903 static const struct seq_operations sched_debug_sops = { 904 .start = sched_debug_start, 905 .next = sched_debug_next, 906 .stop = sched_debug_stop, 907 .show = sched_debug_show, 908 }; 909 910 #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F)) 911 #define __P(F) __PS(#F, F) 912 #define P(F) __PS(#F, p->F) 913 #define PM(F, M) __PS(#F, p->F & (M)) 914 #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F))) 915 #define __PN(F) __PSN(#F, F) 916 #define PN(F) __PSN(#F, p->F) 917 918 919 #ifdef CONFIG_NUMA_BALANCING 920 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 921 unsigned long tpf, unsigned long gsf, unsigned long gpf) 922 { 923 SEQ_printf(m, "numa_faults node=%d ", node); 924 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf); 925 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf); 926 } 927 #endif 928 929 930 static void sched_show_numa(struct task_struct *p, struct seq_file *m) 931 { 932 #ifdef CONFIG_NUMA_BALANCING 933 if (p->mm) 934 P(mm->numa_scan_seq); 935 936 P(numa_pages_migrated); 937 P(numa_preferred_nid); 938 P(total_numa_faults); 939 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n", 940 task_node(p), task_numa_group_id(p)); 941 show_numa_stats(p, m); 942 #endif 943 } 944 945 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns, 946 struct seq_file *m) 947 { 948 unsigned long nr_switches; 949 950 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns), 951 get_nr_threads(p)); 952 SEQ_printf(m, 953 "---------------------------------------------------------" 954 "----------\n"); 955 956 #define P_SCHEDSTAT(F) __PS(#F, schedstat_val(p->stats.F)) 957 #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->stats.F)) 958 959 PN(se.exec_start); 960 PN(se.vruntime); 961 PN(se.sum_exec_runtime); 962 963 nr_switches = p->nvcsw + p->nivcsw; 964 965 P(se.nr_migrations); 966 967 if (schedstat_enabled()) { 968 u64 avg_atom, avg_per_cpu; 969 970 PN_SCHEDSTAT(sum_sleep_runtime); 971 PN_SCHEDSTAT(sum_block_runtime); 972 PN_SCHEDSTAT(wait_start); 973 PN_SCHEDSTAT(sleep_start); 974 PN_SCHEDSTAT(block_start); 975 PN_SCHEDSTAT(sleep_max); 976 PN_SCHEDSTAT(block_max); 977 PN_SCHEDSTAT(exec_max); 978 PN_SCHEDSTAT(slice_max); 979 PN_SCHEDSTAT(wait_max); 980 PN_SCHEDSTAT(wait_sum); 981 P_SCHEDSTAT(wait_count); 982 PN_SCHEDSTAT(iowait_sum); 983 P_SCHEDSTAT(iowait_count); 984 P_SCHEDSTAT(nr_migrations_cold); 985 P_SCHEDSTAT(nr_failed_migrations_affine); 986 P_SCHEDSTAT(nr_failed_migrations_running); 987 P_SCHEDSTAT(nr_failed_migrations_hot); 988 P_SCHEDSTAT(nr_forced_migrations); 989 P_SCHEDSTAT(nr_wakeups); 990 P_SCHEDSTAT(nr_wakeups_sync); 991 P_SCHEDSTAT(nr_wakeups_migrate); 992 P_SCHEDSTAT(nr_wakeups_local); 993 P_SCHEDSTAT(nr_wakeups_remote); 994 P_SCHEDSTAT(nr_wakeups_affine); 995 P_SCHEDSTAT(nr_wakeups_affine_attempts); 996 P_SCHEDSTAT(nr_wakeups_passive); 997 P_SCHEDSTAT(nr_wakeups_idle); 998 999 avg_atom = p->se.sum_exec_runtime; 1000 if (nr_switches) 1001 avg_atom = div64_ul(avg_atom, nr_switches); 1002 else 1003 avg_atom = -1LL; 1004 1005 avg_per_cpu = p->se.sum_exec_runtime; 1006 if (p->se.nr_migrations) { 1007 avg_per_cpu = div64_u64(avg_per_cpu, 1008 p->se.nr_migrations); 1009 } else { 1010 avg_per_cpu = -1LL; 1011 } 1012 1013 __PN(avg_atom); 1014 __PN(avg_per_cpu); 1015 1016 #ifdef CONFIG_SCHED_CORE 1017 PN_SCHEDSTAT(core_forceidle_sum); 1018 #endif 1019 } 1020 1021 __P(nr_switches); 1022 __PS("nr_voluntary_switches", p->nvcsw); 1023 __PS("nr_involuntary_switches", p->nivcsw); 1024 1025 P(se.load.weight); 1026 #ifdef CONFIG_SMP 1027 P(se.avg.load_sum); 1028 P(se.avg.runnable_sum); 1029 P(se.avg.util_sum); 1030 P(se.avg.load_avg); 1031 P(se.avg.runnable_avg); 1032 P(se.avg.util_avg); 1033 P(se.avg.last_update_time); 1034 P(se.avg.util_est.ewma); 1035 PM(se.avg.util_est.enqueued, ~UTIL_AVG_UNCHANGED); 1036 #endif 1037 #ifdef CONFIG_UCLAMP_TASK 1038 __PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value); 1039 __PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value); 1040 __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN)); 1041 __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX)); 1042 #endif 1043 P(policy); 1044 P(prio); 1045 if (task_has_dl_policy(p)) { 1046 P(dl.runtime); 1047 P(dl.deadline); 1048 } 1049 #undef PN_SCHEDSTAT 1050 #undef P_SCHEDSTAT 1051 1052 { 1053 unsigned int this_cpu = raw_smp_processor_id(); 1054 u64 t0, t1; 1055 1056 t0 = cpu_clock(this_cpu); 1057 t1 = cpu_clock(this_cpu); 1058 __PS("clock-delta", t1-t0); 1059 } 1060 1061 sched_show_numa(p, m); 1062 } 1063 1064 void proc_sched_set_task(struct task_struct *p) 1065 { 1066 #ifdef CONFIG_SCHEDSTATS 1067 memset(&p->stats, 0, sizeof(p->stats)); 1068 #endif 1069 } 1070 1071 void resched_latency_warn(int cpu, u64 latency) 1072 { 1073 static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1); 1074 1075 WARN(__ratelimit(&latency_check_ratelimit), 1076 "sched: CPU %d need_resched set for > %llu ns (%d ticks) " 1077 "without schedule\n", 1078 cpu, latency, cpu_rq(cpu)->ticks_without_resched); 1079 } 1080