1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/debug.c 4 * 5 * Print the CFS rbtree and other debugging details 6 * 7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar 8 */ 9 #include "sched.h" 10 11 /* 12 * This allows printing both to /proc/sched_debug and 13 * to the console 14 */ 15 #define SEQ_printf(m, x...) \ 16 do { \ 17 if (m) \ 18 seq_printf(m, x); \ 19 else \ 20 pr_cont(x); \ 21 } while (0) 22 23 /* 24 * Ease the printing of nsec fields: 25 */ 26 static long long nsec_high(unsigned long long nsec) 27 { 28 if ((long long)nsec < 0) { 29 nsec = -nsec; 30 do_div(nsec, 1000000); 31 return -nsec; 32 } 33 do_div(nsec, 1000000); 34 35 return nsec; 36 } 37 38 static unsigned long nsec_low(unsigned long long nsec) 39 { 40 if ((long long)nsec < 0) 41 nsec = -nsec; 42 43 return do_div(nsec, 1000000); 44 } 45 46 #define SPLIT_NS(x) nsec_high(x), nsec_low(x) 47 48 #define SCHED_FEAT(name, enabled) \ 49 #name , 50 51 static const char * const sched_feat_names[] = { 52 #include "features.h" 53 }; 54 55 #undef SCHED_FEAT 56 57 static int sched_feat_show(struct seq_file *m, void *v) 58 { 59 int i; 60 61 for (i = 0; i < __SCHED_FEAT_NR; i++) { 62 if (!(sysctl_sched_features & (1UL << i))) 63 seq_puts(m, "NO_"); 64 seq_printf(m, "%s ", sched_feat_names[i]); 65 } 66 seq_puts(m, "\n"); 67 68 return 0; 69 } 70 71 #ifdef CONFIG_JUMP_LABEL 72 73 #define jump_label_key__true STATIC_KEY_INIT_TRUE 74 #define jump_label_key__false STATIC_KEY_INIT_FALSE 75 76 #define SCHED_FEAT(name, enabled) \ 77 jump_label_key__##enabled , 78 79 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 80 #include "features.h" 81 }; 82 83 #undef SCHED_FEAT 84 85 static void sched_feat_disable(int i) 86 { 87 static_key_disable_cpuslocked(&sched_feat_keys[i]); 88 } 89 90 static void sched_feat_enable(int i) 91 { 92 static_key_enable_cpuslocked(&sched_feat_keys[i]); 93 } 94 #else 95 static void sched_feat_disable(int i) { }; 96 static void sched_feat_enable(int i) { }; 97 #endif /* CONFIG_JUMP_LABEL */ 98 99 static int sched_feat_set(char *cmp) 100 { 101 int i; 102 int neg = 0; 103 104 if (strncmp(cmp, "NO_", 3) == 0) { 105 neg = 1; 106 cmp += 3; 107 } 108 109 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp); 110 if (i < 0) 111 return i; 112 113 if (neg) { 114 sysctl_sched_features &= ~(1UL << i); 115 sched_feat_disable(i); 116 } else { 117 sysctl_sched_features |= (1UL << i); 118 sched_feat_enable(i); 119 } 120 121 return 0; 122 } 123 124 static ssize_t 125 sched_feat_write(struct file *filp, const char __user *ubuf, 126 size_t cnt, loff_t *ppos) 127 { 128 char buf[64]; 129 char *cmp; 130 int ret; 131 struct inode *inode; 132 133 if (cnt > 63) 134 cnt = 63; 135 136 if (copy_from_user(&buf, ubuf, cnt)) 137 return -EFAULT; 138 139 buf[cnt] = 0; 140 cmp = strstrip(buf); 141 142 /* Ensure the static_key remains in a consistent state */ 143 inode = file_inode(filp); 144 cpus_read_lock(); 145 inode_lock(inode); 146 ret = sched_feat_set(cmp); 147 inode_unlock(inode); 148 cpus_read_unlock(); 149 if (ret < 0) 150 return ret; 151 152 *ppos += cnt; 153 154 return cnt; 155 } 156 157 static int sched_feat_open(struct inode *inode, struct file *filp) 158 { 159 return single_open(filp, sched_feat_show, NULL); 160 } 161 162 static const struct file_operations sched_feat_fops = { 163 .open = sched_feat_open, 164 .write = sched_feat_write, 165 .read = seq_read, 166 .llseek = seq_lseek, 167 .release = single_release, 168 }; 169 170 #ifdef CONFIG_SMP 171 172 static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf, 173 size_t cnt, loff_t *ppos) 174 { 175 char buf[16]; 176 unsigned int scaling; 177 178 if (cnt > 15) 179 cnt = 15; 180 181 if (copy_from_user(&buf, ubuf, cnt)) 182 return -EFAULT; 183 buf[cnt] = '\0'; 184 185 if (kstrtouint(buf, 10, &scaling)) 186 return -EINVAL; 187 188 if (scaling >= SCHED_TUNABLESCALING_END) 189 return -EINVAL; 190 191 sysctl_sched_tunable_scaling = scaling; 192 if (sched_update_scaling()) 193 return -EINVAL; 194 195 *ppos += cnt; 196 return cnt; 197 } 198 199 static int sched_scaling_show(struct seq_file *m, void *v) 200 { 201 seq_printf(m, "%d\n", sysctl_sched_tunable_scaling); 202 return 0; 203 } 204 205 static int sched_scaling_open(struct inode *inode, struct file *filp) 206 { 207 return single_open(filp, sched_scaling_show, NULL); 208 } 209 210 static const struct file_operations sched_scaling_fops = { 211 .open = sched_scaling_open, 212 .write = sched_scaling_write, 213 .read = seq_read, 214 .llseek = seq_lseek, 215 .release = single_release, 216 }; 217 218 #endif /* SMP */ 219 220 #ifdef CONFIG_PREEMPT_DYNAMIC 221 222 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf, 223 size_t cnt, loff_t *ppos) 224 { 225 char buf[16]; 226 int mode; 227 228 if (cnt > 15) 229 cnt = 15; 230 231 if (copy_from_user(&buf, ubuf, cnt)) 232 return -EFAULT; 233 234 buf[cnt] = 0; 235 mode = sched_dynamic_mode(strstrip(buf)); 236 if (mode < 0) 237 return mode; 238 239 sched_dynamic_update(mode); 240 241 *ppos += cnt; 242 243 return cnt; 244 } 245 246 static int sched_dynamic_show(struct seq_file *m, void *v) 247 { 248 static const char * preempt_modes[] = { 249 "none", "voluntary", "full" 250 }; 251 int i; 252 253 for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) { 254 if (preempt_dynamic_mode == i) 255 seq_puts(m, "("); 256 seq_puts(m, preempt_modes[i]); 257 if (preempt_dynamic_mode == i) 258 seq_puts(m, ")"); 259 260 seq_puts(m, " "); 261 } 262 263 seq_puts(m, "\n"); 264 return 0; 265 } 266 267 static int sched_dynamic_open(struct inode *inode, struct file *filp) 268 { 269 return single_open(filp, sched_dynamic_show, NULL); 270 } 271 272 static const struct file_operations sched_dynamic_fops = { 273 .open = sched_dynamic_open, 274 .write = sched_dynamic_write, 275 .read = seq_read, 276 .llseek = seq_lseek, 277 .release = single_release, 278 }; 279 280 #endif /* CONFIG_PREEMPT_DYNAMIC */ 281 282 __read_mostly bool sched_debug_verbose; 283 284 static const struct seq_operations sched_debug_sops; 285 286 static int sched_debug_open(struct inode *inode, struct file *filp) 287 { 288 return seq_open(filp, &sched_debug_sops); 289 } 290 291 static const struct file_operations sched_debug_fops = { 292 .open = sched_debug_open, 293 .read = seq_read, 294 .llseek = seq_lseek, 295 .release = seq_release, 296 }; 297 298 static struct dentry *debugfs_sched; 299 300 static __init int sched_init_debug(void) 301 { 302 struct dentry __maybe_unused *numa; 303 304 debugfs_sched = debugfs_create_dir("sched", NULL); 305 306 debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops); 307 debugfs_create_bool("verbose", 0644, debugfs_sched, &sched_debug_verbose); 308 #ifdef CONFIG_PREEMPT_DYNAMIC 309 debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops); 310 #endif 311 312 debugfs_create_u32("latency_ns", 0644, debugfs_sched, &sysctl_sched_latency); 313 debugfs_create_u32("min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_min_granularity); 314 debugfs_create_u32("idle_min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_idle_min_granularity); 315 debugfs_create_u32("wakeup_granularity_ns", 0644, debugfs_sched, &sysctl_sched_wakeup_granularity); 316 317 debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms); 318 debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once); 319 320 #ifdef CONFIG_SMP 321 debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops); 322 debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost); 323 debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate); 324 325 mutex_lock(&sched_domains_mutex); 326 update_sched_domain_debugfs(); 327 mutex_unlock(&sched_domains_mutex); 328 #endif 329 330 #ifdef CONFIG_NUMA_BALANCING 331 numa = debugfs_create_dir("numa_balancing", debugfs_sched); 332 333 debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay); 334 debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min); 335 debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max); 336 debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size); 337 #endif 338 339 debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops); 340 341 return 0; 342 } 343 late_initcall(sched_init_debug); 344 345 #ifdef CONFIG_SMP 346 347 static cpumask_var_t sd_sysctl_cpus; 348 static struct dentry *sd_dentry; 349 350 static int sd_flags_show(struct seq_file *m, void *v) 351 { 352 unsigned long flags = *(unsigned int *)m->private; 353 int idx; 354 355 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { 356 seq_puts(m, sd_flag_debug[idx].name); 357 seq_puts(m, " "); 358 } 359 seq_puts(m, "\n"); 360 361 return 0; 362 } 363 364 static int sd_flags_open(struct inode *inode, struct file *file) 365 { 366 return single_open(file, sd_flags_show, inode->i_private); 367 } 368 369 static const struct file_operations sd_flags_fops = { 370 .open = sd_flags_open, 371 .read = seq_read, 372 .llseek = seq_lseek, 373 .release = single_release, 374 }; 375 376 static void register_sd(struct sched_domain *sd, struct dentry *parent) 377 { 378 #define SDM(type, mode, member) \ 379 debugfs_create_##type(#member, mode, parent, &sd->member) 380 381 SDM(ulong, 0644, min_interval); 382 SDM(ulong, 0644, max_interval); 383 SDM(u64, 0644, max_newidle_lb_cost); 384 SDM(u32, 0644, busy_factor); 385 SDM(u32, 0644, imbalance_pct); 386 SDM(u32, 0644, cache_nice_tries); 387 SDM(str, 0444, name); 388 389 #undef SDM 390 391 debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops); 392 } 393 394 void update_sched_domain_debugfs(void) 395 { 396 int cpu, i; 397 398 /* 399 * This can unfortunately be invoked before sched_debug_init() creates 400 * the debug directory. Don't touch sd_sysctl_cpus until then. 401 */ 402 if (!debugfs_sched) 403 return; 404 405 if (!cpumask_available(sd_sysctl_cpus)) { 406 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL)) 407 return; 408 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask); 409 } 410 411 if (!sd_dentry) 412 sd_dentry = debugfs_create_dir("domains", debugfs_sched); 413 414 for_each_cpu(cpu, sd_sysctl_cpus) { 415 struct sched_domain *sd; 416 struct dentry *d_cpu; 417 char buf[32]; 418 419 snprintf(buf, sizeof(buf), "cpu%d", cpu); 420 debugfs_remove(debugfs_lookup(buf, sd_dentry)); 421 d_cpu = debugfs_create_dir(buf, sd_dentry); 422 423 i = 0; 424 for_each_domain(cpu, sd) { 425 struct dentry *d_sd; 426 427 snprintf(buf, sizeof(buf), "domain%d", i); 428 d_sd = debugfs_create_dir(buf, d_cpu); 429 430 register_sd(sd, d_sd); 431 i++; 432 } 433 434 __cpumask_clear_cpu(cpu, sd_sysctl_cpus); 435 } 436 } 437 438 void dirty_sched_domain_sysctl(int cpu) 439 { 440 if (cpumask_available(sd_sysctl_cpus)) 441 __cpumask_set_cpu(cpu, sd_sysctl_cpus); 442 } 443 444 #endif /* CONFIG_SMP */ 445 446 #ifdef CONFIG_FAIR_GROUP_SCHED 447 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) 448 { 449 struct sched_entity *se = tg->se[cpu]; 450 451 #define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) 452 #define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", \ 453 #F, (long long)schedstat_val(stats->F)) 454 #define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) 455 #define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", \ 456 #F, SPLIT_NS((long long)schedstat_val(stats->F))) 457 458 if (!se) 459 return; 460 461 PN(se->exec_start); 462 PN(se->vruntime); 463 PN(se->sum_exec_runtime); 464 465 if (schedstat_enabled()) { 466 struct sched_statistics *stats; 467 stats = __schedstats_from_se(se); 468 469 PN_SCHEDSTAT(wait_start); 470 PN_SCHEDSTAT(sleep_start); 471 PN_SCHEDSTAT(block_start); 472 PN_SCHEDSTAT(sleep_max); 473 PN_SCHEDSTAT(block_max); 474 PN_SCHEDSTAT(exec_max); 475 PN_SCHEDSTAT(slice_max); 476 PN_SCHEDSTAT(wait_max); 477 PN_SCHEDSTAT(wait_sum); 478 P_SCHEDSTAT(wait_count); 479 } 480 481 P(se->load.weight); 482 #ifdef CONFIG_SMP 483 P(se->avg.load_avg); 484 P(se->avg.util_avg); 485 P(se->avg.runnable_avg); 486 #endif 487 488 #undef PN_SCHEDSTAT 489 #undef PN 490 #undef P_SCHEDSTAT 491 #undef P 492 } 493 #endif 494 495 #ifdef CONFIG_CGROUP_SCHED 496 static DEFINE_SPINLOCK(sched_debug_lock); 497 static char group_path[PATH_MAX]; 498 499 static void task_group_path(struct task_group *tg, char *path, int plen) 500 { 501 if (autogroup_path(tg, path, plen)) 502 return; 503 504 cgroup_path(tg->css.cgroup, path, plen); 505 } 506 507 /* 508 * Only 1 SEQ_printf_task_group_path() caller can use the full length 509 * group_path[] for cgroup path. Other simultaneous callers will have 510 * to use a shorter stack buffer. A "..." suffix is appended at the end 511 * of the stack buffer so that it will show up in case the output length 512 * matches the given buffer size to indicate possible path name truncation. 513 */ 514 #define SEQ_printf_task_group_path(m, tg, fmt...) \ 515 { \ 516 if (spin_trylock(&sched_debug_lock)) { \ 517 task_group_path(tg, group_path, sizeof(group_path)); \ 518 SEQ_printf(m, fmt, group_path); \ 519 spin_unlock(&sched_debug_lock); \ 520 } else { \ 521 char buf[128]; \ 522 char *bufend = buf + sizeof(buf) - 3; \ 523 task_group_path(tg, buf, bufend - buf); \ 524 strcpy(bufend - 1, "..."); \ 525 SEQ_printf(m, fmt, buf); \ 526 } \ 527 } 528 #endif 529 530 static void 531 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) 532 { 533 if (task_current(rq, p)) 534 SEQ_printf(m, ">R"); 535 else 536 SEQ_printf(m, " %c", task_state_to_char(p)); 537 538 SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d ", 539 p->comm, task_pid_nr(p), 540 SPLIT_NS(p->se.vruntime), 541 (long long)(p->nvcsw + p->nivcsw), 542 p->prio); 543 544 SEQ_printf(m, "%9lld.%06ld %9lld.%06ld %9lld.%06ld %9lld.%06ld", 545 SPLIT_NS(schedstat_val_or_zero(p->stats.wait_sum)), 546 SPLIT_NS(p->se.sum_exec_runtime), 547 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_sleep_runtime)), 548 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_block_runtime))); 549 550 #ifdef CONFIG_NUMA_BALANCING 551 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p)); 552 #endif 553 #ifdef CONFIG_CGROUP_SCHED 554 SEQ_printf_task_group_path(m, task_group(p), " %s") 555 #endif 556 557 SEQ_printf(m, "\n"); 558 } 559 560 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) 561 { 562 struct task_struct *g, *p; 563 564 SEQ_printf(m, "\n"); 565 SEQ_printf(m, "runnable tasks:\n"); 566 SEQ_printf(m, " S task PID tree-key switches prio" 567 " wait-time sum-exec sum-sleep\n"); 568 SEQ_printf(m, "-------------------------------------------------------" 569 "------------------------------------------------------\n"); 570 571 rcu_read_lock(); 572 for_each_process_thread(g, p) { 573 if (task_cpu(p) != rq_cpu) 574 continue; 575 576 print_task(m, rq, p); 577 } 578 rcu_read_unlock(); 579 } 580 581 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 582 { 583 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, 584 spread, rq0_min_vruntime, spread0; 585 struct rq *rq = cpu_rq(cpu); 586 struct sched_entity *last; 587 unsigned long flags; 588 589 #ifdef CONFIG_FAIR_GROUP_SCHED 590 SEQ_printf(m, "\n"); 591 SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu); 592 #else 593 SEQ_printf(m, "\n"); 594 SEQ_printf(m, "cfs_rq[%d]:\n", cpu); 595 #endif 596 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", 597 SPLIT_NS(cfs_rq->exec_clock)); 598 599 raw_spin_rq_lock_irqsave(rq, flags); 600 if (rb_first_cached(&cfs_rq->tasks_timeline)) 601 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; 602 last = __pick_last_entity(cfs_rq); 603 if (last) 604 max_vruntime = last->vruntime; 605 min_vruntime = cfs_rq->min_vruntime; 606 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; 607 raw_spin_rq_unlock_irqrestore(rq, flags); 608 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", 609 SPLIT_NS(MIN_vruntime)); 610 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", 611 SPLIT_NS(min_vruntime)); 612 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", 613 SPLIT_NS(max_vruntime)); 614 spread = max_vruntime - MIN_vruntime; 615 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", 616 SPLIT_NS(spread)); 617 spread0 = min_vruntime - rq0_min_vruntime; 618 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", 619 SPLIT_NS(spread0)); 620 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", 621 cfs_rq->nr_spread_over); 622 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); 623 SEQ_printf(m, " .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running); 624 SEQ_printf(m, " .%-30s: %d\n", "idle_nr_running", 625 cfs_rq->idle_nr_running); 626 SEQ_printf(m, " .%-30s: %d\n", "idle_h_nr_running", 627 cfs_rq->idle_h_nr_running); 628 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); 629 #ifdef CONFIG_SMP 630 SEQ_printf(m, " .%-30s: %lu\n", "load_avg", 631 cfs_rq->avg.load_avg); 632 SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg", 633 cfs_rq->avg.runnable_avg); 634 SEQ_printf(m, " .%-30s: %lu\n", "util_avg", 635 cfs_rq->avg.util_avg); 636 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued", 637 cfs_rq->avg.util_est.enqueued); 638 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg", 639 cfs_rq->removed.load_avg); 640 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg", 641 cfs_rq->removed.util_avg); 642 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_avg", 643 cfs_rq->removed.runnable_avg); 644 #ifdef CONFIG_FAIR_GROUP_SCHED 645 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib", 646 cfs_rq->tg_load_avg_contrib); 647 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", 648 atomic_long_read(&cfs_rq->tg->load_avg)); 649 #endif 650 #endif 651 #ifdef CONFIG_CFS_BANDWIDTH 652 SEQ_printf(m, " .%-30s: %d\n", "throttled", 653 cfs_rq->throttled); 654 SEQ_printf(m, " .%-30s: %d\n", "throttle_count", 655 cfs_rq->throttle_count); 656 #endif 657 658 #ifdef CONFIG_FAIR_GROUP_SCHED 659 print_cfs_group_stats(m, cpu, cfs_rq->tg); 660 #endif 661 } 662 663 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) 664 { 665 #ifdef CONFIG_RT_GROUP_SCHED 666 SEQ_printf(m, "\n"); 667 SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu); 668 #else 669 SEQ_printf(m, "\n"); 670 SEQ_printf(m, "rt_rq[%d]:\n", cpu); 671 #endif 672 673 #define P(x) \ 674 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) 675 #define PU(x) \ 676 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x)) 677 #define PN(x) \ 678 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) 679 680 PU(rt_nr_running); 681 #ifdef CONFIG_SMP 682 PU(rt_nr_migratory); 683 #endif 684 P(rt_throttled); 685 PN(rt_time); 686 PN(rt_runtime); 687 688 #undef PN 689 #undef PU 690 #undef P 691 } 692 693 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq) 694 { 695 struct dl_bw *dl_bw; 696 697 SEQ_printf(m, "\n"); 698 SEQ_printf(m, "dl_rq[%d]:\n", cpu); 699 700 #define PU(x) \ 701 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x)) 702 703 PU(dl_nr_running); 704 #ifdef CONFIG_SMP 705 PU(dl_nr_migratory); 706 dl_bw = &cpu_rq(cpu)->rd->dl_bw; 707 #else 708 dl_bw = &dl_rq->dl_bw; 709 #endif 710 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw); 711 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw); 712 713 #undef PU 714 } 715 716 static void print_cpu(struct seq_file *m, int cpu) 717 { 718 struct rq *rq = cpu_rq(cpu); 719 720 #ifdef CONFIG_X86 721 { 722 unsigned int freq = cpu_khz ? : 1; 723 724 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", 725 cpu, freq / 1000, (freq % 1000)); 726 } 727 #else 728 SEQ_printf(m, "cpu#%d\n", cpu); 729 #endif 730 731 #define P(x) \ 732 do { \ 733 if (sizeof(rq->x) == 4) \ 734 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \ 735 else \ 736 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ 737 } while (0) 738 739 #define PN(x) \ 740 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) 741 742 P(nr_running); 743 P(nr_switches); 744 P(nr_uninterruptible); 745 PN(next_balance); 746 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); 747 PN(clock); 748 PN(clock_task); 749 #undef P 750 #undef PN 751 752 #ifdef CONFIG_SMP 753 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); 754 P64(avg_idle); 755 P64(max_idle_balance_cost); 756 #undef P64 757 #endif 758 759 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n)); 760 if (schedstat_enabled()) { 761 P(yld_count); 762 P(sched_count); 763 P(sched_goidle); 764 P(ttwu_count); 765 P(ttwu_local); 766 } 767 #undef P 768 769 print_cfs_stats(m, cpu); 770 print_rt_stats(m, cpu); 771 print_dl_stats(m, cpu); 772 773 print_rq(m, rq, cpu); 774 SEQ_printf(m, "\n"); 775 } 776 777 static const char *sched_tunable_scaling_names[] = { 778 "none", 779 "logarithmic", 780 "linear" 781 }; 782 783 static void sched_debug_header(struct seq_file *m) 784 { 785 u64 ktime, sched_clk, cpu_clk; 786 unsigned long flags; 787 788 local_irq_save(flags); 789 ktime = ktime_to_ns(ktime_get()); 790 sched_clk = sched_clock(); 791 cpu_clk = local_clock(); 792 local_irq_restore(flags); 793 794 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", 795 init_utsname()->release, 796 (int)strcspn(init_utsname()->version, " "), 797 init_utsname()->version); 798 799 #define P(x) \ 800 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) 801 #define PN(x) \ 802 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 803 PN(ktime); 804 PN(sched_clk); 805 PN(cpu_clk); 806 P(jiffies); 807 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 808 P(sched_clock_stable()); 809 #endif 810 #undef PN 811 #undef P 812 813 SEQ_printf(m, "\n"); 814 SEQ_printf(m, "sysctl_sched\n"); 815 816 #define P(x) \ 817 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) 818 #define PN(x) \ 819 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 820 PN(sysctl_sched_latency); 821 PN(sysctl_sched_min_granularity); 822 PN(sysctl_sched_idle_min_granularity); 823 PN(sysctl_sched_wakeup_granularity); 824 P(sysctl_sched_child_runs_first); 825 P(sysctl_sched_features); 826 #undef PN 827 #undef P 828 829 SEQ_printf(m, " .%-40s: %d (%s)\n", 830 "sysctl_sched_tunable_scaling", 831 sysctl_sched_tunable_scaling, 832 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); 833 SEQ_printf(m, "\n"); 834 } 835 836 static int sched_debug_show(struct seq_file *m, void *v) 837 { 838 int cpu = (unsigned long)(v - 2); 839 840 if (cpu != -1) 841 print_cpu(m, cpu); 842 else 843 sched_debug_header(m); 844 845 return 0; 846 } 847 848 void sysrq_sched_debug_show(void) 849 { 850 int cpu; 851 852 sched_debug_header(NULL); 853 for_each_online_cpu(cpu) { 854 /* 855 * Need to reset softlockup watchdogs on all CPUs, because 856 * another CPU might be blocked waiting for us to process 857 * an IPI or stop_machine. 858 */ 859 touch_nmi_watchdog(); 860 touch_all_softlockup_watchdogs(); 861 print_cpu(NULL, cpu); 862 } 863 } 864 865 /* 866 * This iterator needs some explanation. 867 * It returns 1 for the header position. 868 * This means 2 is CPU 0. 869 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have 870 * to use cpumask_* to iterate over the CPUs. 871 */ 872 static void *sched_debug_start(struct seq_file *file, loff_t *offset) 873 { 874 unsigned long n = *offset; 875 876 if (n == 0) 877 return (void *) 1; 878 879 n--; 880 881 if (n > 0) 882 n = cpumask_next(n - 1, cpu_online_mask); 883 else 884 n = cpumask_first(cpu_online_mask); 885 886 *offset = n + 1; 887 888 if (n < nr_cpu_ids) 889 return (void *)(unsigned long)(n + 2); 890 891 return NULL; 892 } 893 894 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset) 895 { 896 (*offset)++; 897 return sched_debug_start(file, offset); 898 } 899 900 static void sched_debug_stop(struct seq_file *file, void *data) 901 { 902 } 903 904 static const struct seq_operations sched_debug_sops = { 905 .start = sched_debug_start, 906 .next = sched_debug_next, 907 .stop = sched_debug_stop, 908 .show = sched_debug_show, 909 }; 910 911 #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F)) 912 #define __P(F) __PS(#F, F) 913 #define P(F) __PS(#F, p->F) 914 #define PM(F, M) __PS(#F, p->F & (M)) 915 #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F))) 916 #define __PN(F) __PSN(#F, F) 917 #define PN(F) __PSN(#F, p->F) 918 919 920 #ifdef CONFIG_NUMA_BALANCING 921 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 922 unsigned long tpf, unsigned long gsf, unsigned long gpf) 923 { 924 SEQ_printf(m, "numa_faults node=%d ", node); 925 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf); 926 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf); 927 } 928 #endif 929 930 931 static void sched_show_numa(struct task_struct *p, struct seq_file *m) 932 { 933 #ifdef CONFIG_NUMA_BALANCING 934 struct mempolicy *pol; 935 936 if (p->mm) 937 P(mm->numa_scan_seq); 938 939 task_lock(p); 940 pol = p->mempolicy; 941 if (pol && !(pol->flags & MPOL_F_MORON)) 942 pol = NULL; 943 mpol_get(pol); 944 task_unlock(p); 945 946 P(numa_pages_migrated); 947 P(numa_preferred_nid); 948 P(total_numa_faults); 949 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n", 950 task_node(p), task_numa_group_id(p)); 951 show_numa_stats(p, m); 952 mpol_put(pol); 953 #endif 954 } 955 956 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns, 957 struct seq_file *m) 958 { 959 unsigned long nr_switches; 960 961 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns), 962 get_nr_threads(p)); 963 SEQ_printf(m, 964 "---------------------------------------------------------" 965 "----------\n"); 966 967 #define P_SCHEDSTAT(F) __PS(#F, schedstat_val(p->stats.F)) 968 #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->stats.F)) 969 970 PN(se.exec_start); 971 PN(se.vruntime); 972 PN(se.sum_exec_runtime); 973 974 nr_switches = p->nvcsw + p->nivcsw; 975 976 P(se.nr_migrations); 977 978 if (schedstat_enabled()) { 979 u64 avg_atom, avg_per_cpu; 980 981 PN_SCHEDSTAT(sum_sleep_runtime); 982 PN_SCHEDSTAT(sum_block_runtime); 983 PN_SCHEDSTAT(wait_start); 984 PN_SCHEDSTAT(sleep_start); 985 PN_SCHEDSTAT(block_start); 986 PN_SCHEDSTAT(sleep_max); 987 PN_SCHEDSTAT(block_max); 988 PN_SCHEDSTAT(exec_max); 989 PN_SCHEDSTAT(slice_max); 990 PN_SCHEDSTAT(wait_max); 991 PN_SCHEDSTAT(wait_sum); 992 P_SCHEDSTAT(wait_count); 993 PN_SCHEDSTAT(iowait_sum); 994 P_SCHEDSTAT(iowait_count); 995 P_SCHEDSTAT(nr_migrations_cold); 996 P_SCHEDSTAT(nr_failed_migrations_affine); 997 P_SCHEDSTAT(nr_failed_migrations_running); 998 P_SCHEDSTAT(nr_failed_migrations_hot); 999 P_SCHEDSTAT(nr_forced_migrations); 1000 P_SCHEDSTAT(nr_wakeups); 1001 P_SCHEDSTAT(nr_wakeups_sync); 1002 P_SCHEDSTAT(nr_wakeups_migrate); 1003 P_SCHEDSTAT(nr_wakeups_local); 1004 P_SCHEDSTAT(nr_wakeups_remote); 1005 P_SCHEDSTAT(nr_wakeups_affine); 1006 P_SCHEDSTAT(nr_wakeups_affine_attempts); 1007 P_SCHEDSTAT(nr_wakeups_passive); 1008 P_SCHEDSTAT(nr_wakeups_idle); 1009 1010 avg_atom = p->se.sum_exec_runtime; 1011 if (nr_switches) 1012 avg_atom = div64_ul(avg_atom, nr_switches); 1013 else 1014 avg_atom = -1LL; 1015 1016 avg_per_cpu = p->se.sum_exec_runtime; 1017 if (p->se.nr_migrations) { 1018 avg_per_cpu = div64_u64(avg_per_cpu, 1019 p->se.nr_migrations); 1020 } else { 1021 avg_per_cpu = -1LL; 1022 } 1023 1024 __PN(avg_atom); 1025 __PN(avg_per_cpu); 1026 1027 #ifdef CONFIG_SCHED_CORE 1028 PN_SCHEDSTAT(core_forceidle_sum); 1029 #endif 1030 } 1031 1032 __P(nr_switches); 1033 __PS("nr_voluntary_switches", p->nvcsw); 1034 __PS("nr_involuntary_switches", p->nivcsw); 1035 1036 P(se.load.weight); 1037 #ifdef CONFIG_SMP 1038 P(se.avg.load_sum); 1039 P(se.avg.runnable_sum); 1040 P(se.avg.util_sum); 1041 P(se.avg.load_avg); 1042 P(se.avg.runnable_avg); 1043 P(se.avg.util_avg); 1044 P(se.avg.last_update_time); 1045 P(se.avg.util_est.ewma); 1046 PM(se.avg.util_est.enqueued, ~UTIL_AVG_UNCHANGED); 1047 #endif 1048 #ifdef CONFIG_UCLAMP_TASK 1049 __PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value); 1050 __PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value); 1051 __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN)); 1052 __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX)); 1053 #endif 1054 P(policy); 1055 P(prio); 1056 if (task_has_dl_policy(p)) { 1057 P(dl.runtime); 1058 P(dl.deadline); 1059 } 1060 #undef PN_SCHEDSTAT 1061 #undef P_SCHEDSTAT 1062 1063 { 1064 unsigned int this_cpu = raw_smp_processor_id(); 1065 u64 t0, t1; 1066 1067 t0 = cpu_clock(this_cpu); 1068 t1 = cpu_clock(this_cpu); 1069 __PS("clock-delta", t1-t0); 1070 } 1071 1072 sched_show_numa(p, m); 1073 } 1074 1075 void proc_sched_set_task(struct task_struct *p) 1076 { 1077 #ifdef CONFIG_SCHEDSTATS 1078 memset(&p->stats, 0, sizeof(p->stats)); 1079 #endif 1080 } 1081 1082 void resched_latency_warn(int cpu, u64 latency) 1083 { 1084 static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1); 1085 1086 WARN(__ratelimit(&latency_check_ratelimit), 1087 "sched: CPU %d need_resched set for > %llu ns (%d ticks) " 1088 "without schedule\n", 1089 cpu, latency, cpu_rq(cpu)->ticks_without_resched); 1090 } 1091