xref: /openbmc/linux/kernel/sched/debug.c (revision b7019ac5)
1 /*
2  * kernel/sched/debug.c
3  *
4  * Print the CFS rbtree and other debugging details
5  *
6  * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include "sched.h"
13 
14 static DEFINE_SPINLOCK(sched_debug_lock);
15 
16 /*
17  * This allows printing both to /proc/sched_debug and
18  * to the console
19  */
20 #define SEQ_printf(m, x...)			\
21  do {						\
22 	if (m)					\
23 		seq_printf(m, x);		\
24 	else					\
25 		pr_cont(x);			\
26  } while (0)
27 
28 /*
29  * Ease the printing of nsec fields:
30  */
31 static long long nsec_high(unsigned long long nsec)
32 {
33 	if ((long long)nsec < 0) {
34 		nsec = -nsec;
35 		do_div(nsec, 1000000);
36 		return -nsec;
37 	}
38 	do_div(nsec, 1000000);
39 
40 	return nsec;
41 }
42 
43 static unsigned long nsec_low(unsigned long long nsec)
44 {
45 	if ((long long)nsec < 0)
46 		nsec = -nsec;
47 
48 	return do_div(nsec, 1000000);
49 }
50 
51 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
52 
53 #define SCHED_FEAT(name, enabled)	\
54 	#name ,
55 
56 static const char * const sched_feat_names[] = {
57 #include "features.h"
58 };
59 
60 #undef SCHED_FEAT
61 
62 static int sched_feat_show(struct seq_file *m, void *v)
63 {
64 	int i;
65 
66 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
67 		if (!(sysctl_sched_features & (1UL << i)))
68 			seq_puts(m, "NO_");
69 		seq_printf(m, "%s ", sched_feat_names[i]);
70 	}
71 	seq_puts(m, "\n");
72 
73 	return 0;
74 }
75 
76 #ifdef CONFIG_JUMP_LABEL
77 
78 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
79 #define jump_label_key__false STATIC_KEY_INIT_FALSE
80 
81 #define SCHED_FEAT(name, enabled)	\
82 	jump_label_key__##enabled ,
83 
84 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
85 #include "features.h"
86 };
87 
88 #undef SCHED_FEAT
89 
90 static void sched_feat_disable(int i)
91 {
92 	static_key_disable_cpuslocked(&sched_feat_keys[i]);
93 }
94 
95 static void sched_feat_enable(int i)
96 {
97 	static_key_enable_cpuslocked(&sched_feat_keys[i]);
98 }
99 #else
100 static void sched_feat_disable(int i) { };
101 static void sched_feat_enable(int i) { };
102 #endif /* CONFIG_JUMP_LABEL */
103 
104 static int sched_feat_set(char *cmp)
105 {
106 	int i;
107 	int neg = 0;
108 
109 	if (strncmp(cmp, "NO_", 3) == 0) {
110 		neg = 1;
111 		cmp += 3;
112 	}
113 
114 	i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
115 	if (i < 0)
116 		return i;
117 
118 	if (neg) {
119 		sysctl_sched_features &= ~(1UL << i);
120 		sched_feat_disable(i);
121 	} else {
122 		sysctl_sched_features |= (1UL << i);
123 		sched_feat_enable(i);
124 	}
125 
126 	return 0;
127 }
128 
129 static ssize_t
130 sched_feat_write(struct file *filp, const char __user *ubuf,
131 		size_t cnt, loff_t *ppos)
132 {
133 	char buf[64];
134 	char *cmp;
135 	int ret;
136 	struct inode *inode;
137 
138 	if (cnt > 63)
139 		cnt = 63;
140 
141 	if (copy_from_user(&buf, ubuf, cnt))
142 		return -EFAULT;
143 
144 	buf[cnt] = 0;
145 	cmp = strstrip(buf);
146 
147 	/* Ensure the static_key remains in a consistent state */
148 	inode = file_inode(filp);
149 	cpus_read_lock();
150 	inode_lock(inode);
151 	ret = sched_feat_set(cmp);
152 	inode_unlock(inode);
153 	cpus_read_unlock();
154 	if (ret < 0)
155 		return ret;
156 
157 	*ppos += cnt;
158 
159 	return cnt;
160 }
161 
162 static int sched_feat_open(struct inode *inode, struct file *filp)
163 {
164 	return single_open(filp, sched_feat_show, NULL);
165 }
166 
167 static const struct file_operations sched_feat_fops = {
168 	.open		= sched_feat_open,
169 	.write		= sched_feat_write,
170 	.read		= seq_read,
171 	.llseek		= seq_lseek,
172 	.release	= single_release,
173 };
174 
175 __read_mostly bool sched_debug_enabled;
176 
177 static __init int sched_init_debug(void)
178 {
179 	debugfs_create_file("sched_features", 0644, NULL, NULL,
180 			&sched_feat_fops);
181 
182 	debugfs_create_bool("sched_debug", 0644, NULL,
183 			&sched_debug_enabled);
184 
185 	return 0;
186 }
187 late_initcall(sched_init_debug);
188 
189 #ifdef CONFIG_SMP
190 
191 #ifdef CONFIG_SYSCTL
192 
193 static struct ctl_table sd_ctl_dir[] = {
194 	{
195 		.procname	= "sched_domain",
196 		.mode		= 0555,
197 	},
198 	{}
199 };
200 
201 static struct ctl_table sd_ctl_root[] = {
202 	{
203 		.procname	= "kernel",
204 		.mode		= 0555,
205 		.child		= sd_ctl_dir,
206 	},
207 	{}
208 };
209 
210 static struct ctl_table *sd_alloc_ctl_entry(int n)
211 {
212 	struct ctl_table *entry =
213 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
214 
215 	return entry;
216 }
217 
218 static void sd_free_ctl_entry(struct ctl_table **tablep)
219 {
220 	struct ctl_table *entry;
221 
222 	/*
223 	 * In the intermediate directories, both the child directory and
224 	 * procname are dynamically allocated and could fail but the mode
225 	 * will always be set. In the lowest directory the names are
226 	 * static strings and all have proc handlers.
227 	 */
228 	for (entry = *tablep; entry->mode; entry++) {
229 		if (entry->child)
230 			sd_free_ctl_entry(&entry->child);
231 		if (entry->proc_handler == NULL)
232 			kfree(entry->procname);
233 	}
234 
235 	kfree(*tablep);
236 	*tablep = NULL;
237 }
238 
239 static int min_load_idx = 0;
240 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
241 
242 static void
243 set_table_entry(struct ctl_table *entry,
244 		const char *procname, void *data, int maxlen,
245 		umode_t mode, proc_handler *proc_handler,
246 		bool load_idx)
247 {
248 	entry->procname = procname;
249 	entry->data = data;
250 	entry->maxlen = maxlen;
251 	entry->mode = mode;
252 	entry->proc_handler = proc_handler;
253 
254 	if (load_idx) {
255 		entry->extra1 = &min_load_idx;
256 		entry->extra2 = &max_load_idx;
257 	}
258 }
259 
260 static struct ctl_table *
261 sd_alloc_ctl_domain_table(struct sched_domain *sd)
262 {
263 	struct ctl_table *table = sd_alloc_ctl_entry(14);
264 
265 	if (table == NULL)
266 		return NULL;
267 
268 	set_table_entry(&table[0] , "min_interval",	   &sd->min_interval,	     sizeof(long), 0644, proc_doulongvec_minmax, false);
269 	set_table_entry(&table[1] , "max_interval",	   &sd->max_interval,	     sizeof(long), 0644, proc_doulongvec_minmax, false);
270 	set_table_entry(&table[2] , "busy_idx",		   &sd->busy_idx,	     sizeof(int) , 0644, proc_dointvec_minmax,   true );
271 	set_table_entry(&table[3] , "idle_idx",		   &sd->idle_idx,	     sizeof(int) , 0644, proc_dointvec_minmax,   true );
272 	set_table_entry(&table[4] , "newidle_idx",	   &sd->newidle_idx,	     sizeof(int) , 0644, proc_dointvec_minmax,   true );
273 	set_table_entry(&table[5] , "wake_idx",		   &sd->wake_idx,	     sizeof(int) , 0644, proc_dointvec_minmax,   true );
274 	set_table_entry(&table[6] , "forkexec_idx",	   &sd->forkexec_idx,	     sizeof(int) , 0644, proc_dointvec_minmax,   true );
275 	set_table_entry(&table[7] , "busy_factor",	   &sd->busy_factor,	     sizeof(int) , 0644, proc_dointvec_minmax,   false);
276 	set_table_entry(&table[8] , "imbalance_pct",	   &sd->imbalance_pct,	     sizeof(int) , 0644, proc_dointvec_minmax,   false);
277 	set_table_entry(&table[9] , "cache_nice_tries",	   &sd->cache_nice_tries,    sizeof(int) , 0644, proc_dointvec_minmax,   false);
278 	set_table_entry(&table[10], "flags",		   &sd->flags,		     sizeof(int) , 0644, proc_dointvec_minmax,   false);
279 	set_table_entry(&table[11], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax, false);
280 	set_table_entry(&table[12], "name",		   sd->name,		CORENAME_MAX_SIZE, 0444, proc_dostring,		 false);
281 	/* &table[13] is terminator */
282 
283 	return table;
284 }
285 
286 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
287 {
288 	struct ctl_table *entry, *table;
289 	struct sched_domain *sd;
290 	int domain_num = 0, i;
291 	char buf[32];
292 
293 	for_each_domain(cpu, sd)
294 		domain_num++;
295 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
296 	if (table == NULL)
297 		return NULL;
298 
299 	i = 0;
300 	for_each_domain(cpu, sd) {
301 		snprintf(buf, 32, "domain%d", i);
302 		entry->procname = kstrdup(buf, GFP_KERNEL);
303 		entry->mode = 0555;
304 		entry->child = sd_alloc_ctl_domain_table(sd);
305 		entry++;
306 		i++;
307 	}
308 	return table;
309 }
310 
311 static cpumask_var_t		sd_sysctl_cpus;
312 static struct ctl_table_header	*sd_sysctl_header;
313 
314 void register_sched_domain_sysctl(void)
315 {
316 	static struct ctl_table *cpu_entries;
317 	static struct ctl_table **cpu_idx;
318 	static bool init_done = false;
319 	char buf[32];
320 	int i;
321 
322 	if (!cpu_entries) {
323 		cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
324 		if (!cpu_entries)
325 			return;
326 
327 		WARN_ON(sd_ctl_dir[0].child);
328 		sd_ctl_dir[0].child = cpu_entries;
329 	}
330 
331 	if (!cpu_idx) {
332 		struct ctl_table *e = cpu_entries;
333 
334 		cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
335 		if (!cpu_idx)
336 			return;
337 
338 		/* deal with sparse possible map */
339 		for_each_possible_cpu(i) {
340 			cpu_idx[i] = e;
341 			e++;
342 		}
343 	}
344 
345 	if (!cpumask_available(sd_sysctl_cpus)) {
346 		if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
347 			return;
348 	}
349 
350 	if (!init_done) {
351 		init_done = true;
352 		/* init to possible to not have holes in @cpu_entries */
353 		cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
354 	}
355 
356 	for_each_cpu(i, sd_sysctl_cpus) {
357 		struct ctl_table *e = cpu_idx[i];
358 
359 		if (e->child)
360 			sd_free_ctl_entry(&e->child);
361 
362 		if (!e->procname) {
363 			snprintf(buf, 32, "cpu%d", i);
364 			e->procname = kstrdup(buf, GFP_KERNEL);
365 		}
366 		e->mode = 0555;
367 		e->child = sd_alloc_ctl_cpu_table(i);
368 
369 		__cpumask_clear_cpu(i, sd_sysctl_cpus);
370 	}
371 
372 	WARN_ON(sd_sysctl_header);
373 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
374 }
375 
376 void dirty_sched_domain_sysctl(int cpu)
377 {
378 	if (cpumask_available(sd_sysctl_cpus))
379 		__cpumask_set_cpu(cpu, sd_sysctl_cpus);
380 }
381 
382 /* may be called multiple times per register */
383 void unregister_sched_domain_sysctl(void)
384 {
385 	unregister_sysctl_table(sd_sysctl_header);
386 	sd_sysctl_header = NULL;
387 }
388 #endif /* CONFIG_SYSCTL */
389 #endif /* CONFIG_SMP */
390 
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
393 {
394 	struct sched_entity *se = tg->se[cpu];
395 
396 #define P(F)		SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)F)
397 #define P_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)schedstat_val(F))
398 #define PN(F)		SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
399 #define PN_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
400 
401 	if (!se)
402 		return;
403 
404 	PN(se->exec_start);
405 	PN(se->vruntime);
406 	PN(se->sum_exec_runtime);
407 
408 	if (schedstat_enabled()) {
409 		PN_SCHEDSTAT(se->statistics.wait_start);
410 		PN_SCHEDSTAT(se->statistics.sleep_start);
411 		PN_SCHEDSTAT(se->statistics.block_start);
412 		PN_SCHEDSTAT(se->statistics.sleep_max);
413 		PN_SCHEDSTAT(se->statistics.block_max);
414 		PN_SCHEDSTAT(se->statistics.exec_max);
415 		PN_SCHEDSTAT(se->statistics.slice_max);
416 		PN_SCHEDSTAT(se->statistics.wait_max);
417 		PN_SCHEDSTAT(se->statistics.wait_sum);
418 		P_SCHEDSTAT(se->statistics.wait_count);
419 	}
420 
421 	P(se->load.weight);
422 	P(se->runnable_weight);
423 #ifdef CONFIG_SMP
424 	P(se->avg.load_avg);
425 	P(se->avg.util_avg);
426 	P(se->avg.runnable_load_avg);
427 #endif
428 
429 #undef PN_SCHEDSTAT
430 #undef PN
431 #undef P_SCHEDSTAT
432 #undef P
433 }
434 #endif
435 
436 #ifdef CONFIG_CGROUP_SCHED
437 static char group_path[PATH_MAX];
438 
439 static char *task_group_path(struct task_group *tg)
440 {
441 	if (autogroup_path(tg, group_path, PATH_MAX))
442 		return group_path;
443 
444 	cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
445 
446 	return group_path;
447 }
448 #endif
449 
450 static void
451 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
452 {
453 	if (rq->curr == p)
454 		SEQ_printf(m, ">R");
455 	else
456 		SEQ_printf(m, " %c", task_state_to_char(p));
457 
458 	SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
459 		p->comm, task_pid_nr(p),
460 		SPLIT_NS(p->se.vruntime),
461 		(long long)(p->nvcsw + p->nivcsw),
462 		p->prio);
463 
464 	SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
465 		SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
466 		SPLIT_NS(p->se.sum_exec_runtime),
467 		SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
468 
469 #ifdef CONFIG_NUMA_BALANCING
470 	SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
471 #endif
472 #ifdef CONFIG_CGROUP_SCHED
473 	SEQ_printf(m, " %s", task_group_path(task_group(p)));
474 #endif
475 
476 	SEQ_printf(m, "\n");
477 }
478 
479 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
480 {
481 	struct task_struct *g, *p;
482 
483 	SEQ_printf(m, "\n");
484 	SEQ_printf(m, "runnable tasks:\n");
485 	SEQ_printf(m, " S           task   PID         tree-key  switches  prio"
486 		   "     wait-time             sum-exec        sum-sleep\n");
487 	SEQ_printf(m, "-------------------------------------------------------"
488 		   "----------------------------------------------------\n");
489 
490 	rcu_read_lock();
491 	for_each_process_thread(g, p) {
492 		if (task_cpu(p) != rq_cpu)
493 			continue;
494 
495 		print_task(m, rq, p);
496 	}
497 	rcu_read_unlock();
498 }
499 
500 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
501 {
502 	s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
503 		spread, rq0_min_vruntime, spread0;
504 	struct rq *rq = cpu_rq(cpu);
505 	struct sched_entity *last;
506 	unsigned long flags;
507 
508 #ifdef CONFIG_FAIR_GROUP_SCHED
509 	SEQ_printf(m, "\n");
510 	SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
511 #else
512 	SEQ_printf(m, "\n");
513 	SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
514 #endif
515 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
516 			SPLIT_NS(cfs_rq->exec_clock));
517 
518 	raw_spin_lock_irqsave(&rq->lock, flags);
519 	if (rb_first_cached(&cfs_rq->tasks_timeline))
520 		MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
521 	last = __pick_last_entity(cfs_rq);
522 	if (last)
523 		max_vruntime = last->vruntime;
524 	min_vruntime = cfs_rq->min_vruntime;
525 	rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
526 	raw_spin_unlock_irqrestore(&rq->lock, flags);
527 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
528 			SPLIT_NS(MIN_vruntime));
529 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
530 			SPLIT_NS(min_vruntime));
531 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
532 			SPLIT_NS(max_vruntime));
533 	spread = max_vruntime - MIN_vruntime;
534 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
535 			SPLIT_NS(spread));
536 	spread0 = min_vruntime - rq0_min_vruntime;
537 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
538 			SPLIT_NS(spread0));
539 	SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
540 			cfs_rq->nr_spread_over);
541 	SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
542 	SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
543 #ifdef CONFIG_SMP
544 	SEQ_printf(m, "  .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight);
545 	SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
546 			cfs_rq->avg.load_avg);
547 	SEQ_printf(m, "  .%-30s: %lu\n", "runnable_load_avg",
548 			cfs_rq->avg.runnable_load_avg);
549 	SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
550 			cfs_rq->avg.util_avg);
551 	SEQ_printf(m, "  .%-30s: %u\n", "util_est_enqueued",
552 			cfs_rq->avg.util_est.enqueued);
553 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.load_avg",
554 			cfs_rq->removed.load_avg);
555 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.util_avg",
556 			cfs_rq->removed.util_avg);
557 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.runnable_sum",
558 			cfs_rq->removed.runnable_sum);
559 #ifdef CONFIG_FAIR_GROUP_SCHED
560 	SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
561 			cfs_rq->tg_load_avg_contrib);
562 	SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
563 			atomic_long_read(&cfs_rq->tg->load_avg));
564 #endif
565 #endif
566 #ifdef CONFIG_CFS_BANDWIDTH
567 	SEQ_printf(m, "  .%-30s: %d\n", "throttled",
568 			cfs_rq->throttled);
569 	SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
570 			cfs_rq->throttle_count);
571 #endif
572 
573 #ifdef CONFIG_FAIR_GROUP_SCHED
574 	print_cfs_group_stats(m, cpu, cfs_rq->tg);
575 #endif
576 }
577 
578 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
579 {
580 #ifdef CONFIG_RT_GROUP_SCHED
581 	SEQ_printf(m, "\n");
582 	SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
583 #else
584 	SEQ_printf(m, "\n");
585 	SEQ_printf(m, "rt_rq[%d]:\n", cpu);
586 #endif
587 
588 #define P(x) \
589 	SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
590 #define PU(x) \
591 	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
592 #define PN(x) \
593 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
594 
595 	PU(rt_nr_running);
596 #ifdef CONFIG_SMP
597 	PU(rt_nr_migratory);
598 #endif
599 	P(rt_throttled);
600 	PN(rt_time);
601 	PN(rt_runtime);
602 
603 #undef PN
604 #undef PU
605 #undef P
606 }
607 
608 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
609 {
610 	struct dl_bw *dl_bw;
611 
612 	SEQ_printf(m, "\n");
613 	SEQ_printf(m, "dl_rq[%d]:\n", cpu);
614 
615 #define PU(x) \
616 	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
617 
618 	PU(dl_nr_running);
619 #ifdef CONFIG_SMP
620 	PU(dl_nr_migratory);
621 	dl_bw = &cpu_rq(cpu)->rd->dl_bw;
622 #else
623 	dl_bw = &dl_rq->dl_bw;
624 #endif
625 	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
626 	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
627 
628 #undef PU
629 }
630 
631 static void print_cpu(struct seq_file *m, int cpu)
632 {
633 	struct rq *rq = cpu_rq(cpu);
634 	unsigned long flags;
635 
636 #ifdef CONFIG_X86
637 	{
638 		unsigned int freq = cpu_khz ? : 1;
639 
640 		SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
641 			   cpu, freq / 1000, (freq % 1000));
642 	}
643 #else
644 	SEQ_printf(m, "cpu#%d\n", cpu);
645 #endif
646 
647 #define P(x)								\
648 do {									\
649 	if (sizeof(rq->x) == 4)						\
650 		SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));	\
651 	else								\
652 		SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
653 } while (0)
654 
655 #define PN(x) \
656 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
657 
658 	P(nr_running);
659 	SEQ_printf(m, "  .%-30s: %lu\n", "load",
660 		   rq->load.weight);
661 	P(nr_switches);
662 	P(nr_load_updates);
663 	P(nr_uninterruptible);
664 	PN(next_balance);
665 	SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
666 	PN(clock);
667 	PN(clock_task);
668 	P(cpu_load[0]);
669 	P(cpu_load[1]);
670 	P(cpu_load[2]);
671 	P(cpu_load[3]);
672 	P(cpu_load[4]);
673 #undef P
674 #undef PN
675 
676 #ifdef CONFIG_SMP
677 #define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
678 	P64(avg_idle);
679 	P64(max_idle_balance_cost);
680 #undef P64
681 #endif
682 
683 #define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
684 	if (schedstat_enabled()) {
685 		P(yld_count);
686 		P(sched_count);
687 		P(sched_goidle);
688 		P(ttwu_count);
689 		P(ttwu_local);
690 	}
691 #undef P
692 
693 	spin_lock_irqsave(&sched_debug_lock, flags);
694 	print_cfs_stats(m, cpu);
695 	print_rt_stats(m, cpu);
696 	print_dl_stats(m, cpu);
697 
698 	print_rq(m, rq, cpu);
699 	spin_unlock_irqrestore(&sched_debug_lock, flags);
700 	SEQ_printf(m, "\n");
701 }
702 
703 static const char *sched_tunable_scaling_names[] = {
704 	"none",
705 	"logarithmic",
706 	"linear"
707 };
708 
709 static void sched_debug_header(struct seq_file *m)
710 {
711 	u64 ktime, sched_clk, cpu_clk;
712 	unsigned long flags;
713 
714 	local_irq_save(flags);
715 	ktime = ktime_to_ns(ktime_get());
716 	sched_clk = sched_clock();
717 	cpu_clk = local_clock();
718 	local_irq_restore(flags);
719 
720 	SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
721 		init_utsname()->release,
722 		(int)strcspn(init_utsname()->version, " "),
723 		init_utsname()->version);
724 
725 #define P(x) \
726 	SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
727 #define PN(x) \
728 	SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
729 	PN(ktime);
730 	PN(sched_clk);
731 	PN(cpu_clk);
732 	P(jiffies);
733 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
734 	P(sched_clock_stable());
735 #endif
736 #undef PN
737 #undef P
738 
739 	SEQ_printf(m, "\n");
740 	SEQ_printf(m, "sysctl_sched\n");
741 
742 #define P(x) \
743 	SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
744 #define PN(x) \
745 	SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
746 	PN(sysctl_sched_latency);
747 	PN(sysctl_sched_min_granularity);
748 	PN(sysctl_sched_wakeup_granularity);
749 	P(sysctl_sched_child_runs_first);
750 	P(sysctl_sched_features);
751 #undef PN
752 #undef P
753 
754 	SEQ_printf(m, "  .%-40s: %d (%s)\n",
755 		"sysctl_sched_tunable_scaling",
756 		sysctl_sched_tunable_scaling,
757 		sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
758 	SEQ_printf(m, "\n");
759 }
760 
761 static int sched_debug_show(struct seq_file *m, void *v)
762 {
763 	int cpu = (unsigned long)(v - 2);
764 
765 	if (cpu != -1)
766 		print_cpu(m, cpu);
767 	else
768 		sched_debug_header(m);
769 
770 	return 0;
771 }
772 
773 void sysrq_sched_debug_show(void)
774 {
775 	int cpu;
776 
777 	sched_debug_header(NULL);
778 	for_each_online_cpu(cpu)
779 		print_cpu(NULL, cpu);
780 
781 }
782 
783 /*
784  * This itererator needs some explanation.
785  * It returns 1 for the header position.
786  * This means 2 is CPU 0.
787  * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
788  * to use cpumask_* to iterate over the CPUs.
789  */
790 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
791 {
792 	unsigned long n = *offset;
793 
794 	if (n == 0)
795 		return (void *) 1;
796 
797 	n--;
798 
799 	if (n > 0)
800 		n = cpumask_next(n - 1, cpu_online_mask);
801 	else
802 		n = cpumask_first(cpu_online_mask);
803 
804 	*offset = n + 1;
805 
806 	if (n < nr_cpu_ids)
807 		return (void *)(unsigned long)(n + 2);
808 
809 	return NULL;
810 }
811 
812 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
813 {
814 	(*offset)++;
815 	return sched_debug_start(file, offset);
816 }
817 
818 static void sched_debug_stop(struct seq_file *file, void *data)
819 {
820 }
821 
822 static const struct seq_operations sched_debug_sops = {
823 	.start		= sched_debug_start,
824 	.next		= sched_debug_next,
825 	.stop		= sched_debug_stop,
826 	.show		= sched_debug_show,
827 };
828 
829 static int __init init_sched_debug_procfs(void)
830 {
831 	if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops))
832 		return -ENOMEM;
833 	return 0;
834 }
835 
836 __initcall(init_sched_debug_procfs);
837 
838 #define __P(F)	SEQ_printf(m, "%-45s:%21Ld\n",	     #F, (long long)F)
839 #define   P(F)	SEQ_printf(m, "%-45s:%21Ld\n",	     #F, (long long)p->F)
840 #define __PN(F)	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
841 #define   PN(F)	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
842 
843 
844 #ifdef CONFIG_NUMA_BALANCING
845 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
846 		unsigned long tpf, unsigned long gsf, unsigned long gpf)
847 {
848 	SEQ_printf(m, "numa_faults node=%d ", node);
849 	SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
850 	SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
851 }
852 #endif
853 
854 
855 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
856 {
857 #ifdef CONFIG_NUMA_BALANCING
858 	struct mempolicy *pol;
859 
860 	if (p->mm)
861 		P(mm->numa_scan_seq);
862 
863 	task_lock(p);
864 	pol = p->mempolicy;
865 	if (pol && !(pol->flags & MPOL_F_MORON))
866 		pol = NULL;
867 	mpol_get(pol);
868 	task_unlock(p);
869 
870 	P(numa_pages_migrated);
871 	P(numa_preferred_nid);
872 	P(total_numa_faults);
873 	SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
874 			task_node(p), task_numa_group_id(p));
875 	show_numa_stats(p, m);
876 	mpol_put(pol);
877 #endif
878 }
879 
880 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
881 						  struct seq_file *m)
882 {
883 	unsigned long nr_switches;
884 
885 	SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
886 						get_nr_threads(p));
887 	SEQ_printf(m,
888 		"---------------------------------------------------------"
889 		"----------\n");
890 #define __P(F) \
891 	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
892 #define P(F) \
893 	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
894 #define P_SCHEDSTAT(F) \
895 	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
896 #define __PN(F) \
897 	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
898 #define PN(F) \
899 	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
900 #define PN_SCHEDSTAT(F) \
901 	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
902 
903 	PN(se.exec_start);
904 	PN(se.vruntime);
905 	PN(se.sum_exec_runtime);
906 
907 	nr_switches = p->nvcsw + p->nivcsw;
908 
909 	P(se.nr_migrations);
910 
911 	if (schedstat_enabled()) {
912 		u64 avg_atom, avg_per_cpu;
913 
914 		PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
915 		PN_SCHEDSTAT(se.statistics.wait_start);
916 		PN_SCHEDSTAT(se.statistics.sleep_start);
917 		PN_SCHEDSTAT(se.statistics.block_start);
918 		PN_SCHEDSTAT(se.statistics.sleep_max);
919 		PN_SCHEDSTAT(se.statistics.block_max);
920 		PN_SCHEDSTAT(se.statistics.exec_max);
921 		PN_SCHEDSTAT(se.statistics.slice_max);
922 		PN_SCHEDSTAT(se.statistics.wait_max);
923 		PN_SCHEDSTAT(se.statistics.wait_sum);
924 		P_SCHEDSTAT(se.statistics.wait_count);
925 		PN_SCHEDSTAT(se.statistics.iowait_sum);
926 		P_SCHEDSTAT(se.statistics.iowait_count);
927 		P_SCHEDSTAT(se.statistics.nr_migrations_cold);
928 		P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
929 		P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
930 		P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
931 		P_SCHEDSTAT(se.statistics.nr_forced_migrations);
932 		P_SCHEDSTAT(se.statistics.nr_wakeups);
933 		P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
934 		P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
935 		P_SCHEDSTAT(se.statistics.nr_wakeups_local);
936 		P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
937 		P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
938 		P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
939 		P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
940 		P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
941 
942 		avg_atom = p->se.sum_exec_runtime;
943 		if (nr_switches)
944 			avg_atom = div64_ul(avg_atom, nr_switches);
945 		else
946 			avg_atom = -1LL;
947 
948 		avg_per_cpu = p->se.sum_exec_runtime;
949 		if (p->se.nr_migrations) {
950 			avg_per_cpu = div64_u64(avg_per_cpu,
951 						p->se.nr_migrations);
952 		} else {
953 			avg_per_cpu = -1LL;
954 		}
955 
956 		__PN(avg_atom);
957 		__PN(avg_per_cpu);
958 	}
959 
960 	__P(nr_switches);
961 	SEQ_printf(m, "%-45s:%21Ld\n",
962 		   "nr_voluntary_switches", (long long)p->nvcsw);
963 	SEQ_printf(m, "%-45s:%21Ld\n",
964 		   "nr_involuntary_switches", (long long)p->nivcsw);
965 
966 	P(se.load.weight);
967 	P(se.runnable_weight);
968 #ifdef CONFIG_SMP
969 	P(se.avg.load_sum);
970 	P(se.avg.runnable_load_sum);
971 	P(se.avg.util_sum);
972 	P(se.avg.load_avg);
973 	P(se.avg.runnable_load_avg);
974 	P(se.avg.util_avg);
975 	P(se.avg.last_update_time);
976 	P(se.avg.util_est.ewma);
977 	P(se.avg.util_est.enqueued);
978 #endif
979 	P(policy);
980 	P(prio);
981 	if (task_has_dl_policy(p)) {
982 		P(dl.runtime);
983 		P(dl.deadline);
984 	}
985 #undef PN_SCHEDSTAT
986 #undef PN
987 #undef __PN
988 #undef P_SCHEDSTAT
989 #undef P
990 #undef __P
991 
992 	{
993 		unsigned int this_cpu = raw_smp_processor_id();
994 		u64 t0, t1;
995 
996 		t0 = cpu_clock(this_cpu);
997 		t1 = cpu_clock(this_cpu);
998 		SEQ_printf(m, "%-45s:%21Ld\n",
999 			   "clock-delta", (long long)(t1-t0));
1000 	}
1001 
1002 	sched_show_numa(p, m);
1003 }
1004 
1005 void proc_sched_set_task(struct task_struct *p)
1006 {
1007 #ifdef CONFIG_SCHEDSTATS
1008 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1009 #endif
1010 }
1011