xref: /openbmc/linux/kernel/sched/debug.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * kernel/sched/debug.c
3  *
4  * Print the CFS rbtree and other debugging details
5  *
6  * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include "sched.h"
13 
14 static DEFINE_SPINLOCK(sched_debug_lock);
15 
16 /*
17  * This allows printing both to /proc/sched_debug and
18  * to the console
19  */
20 #define SEQ_printf(m, x...)			\
21  do {						\
22 	if (m)					\
23 		seq_printf(m, x);		\
24 	else					\
25 		pr_cont(x);			\
26  } while (0)
27 
28 /*
29  * Ease the printing of nsec fields:
30  */
31 static long long nsec_high(unsigned long long nsec)
32 {
33 	if ((long long)nsec < 0) {
34 		nsec = -nsec;
35 		do_div(nsec, 1000000);
36 		return -nsec;
37 	}
38 	do_div(nsec, 1000000);
39 
40 	return nsec;
41 }
42 
43 static unsigned long nsec_low(unsigned long long nsec)
44 {
45 	if ((long long)nsec < 0)
46 		nsec = -nsec;
47 
48 	return do_div(nsec, 1000000);
49 }
50 
51 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
52 
53 #define SCHED_FEAT(name, enabled)	\
54 	#name ,
55 
56 static const char * const sched_feat_names[] = {
57 #include "features.h"
58 };
59 
60 #undef SCHED_FEAT
61 
62 static int sched_feat_show(struct seq_file *m, void *v)
63 {
64 	int i;
65 
66 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
67 		if (!(sysctl_sched_features & (1UL << i)))
68 			seq_puts(m, "NO_");
69 		seq_printf(m, "%s ", sched_feat_names[i]);
70 	}
71 	seq_puts(m, "\n");
72 
73 	return 0;
74 }
75 
76 #ifdef HAVE_JUMP_LABEL
77 
78 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
79 #define jump_label_key__false STATIC_KEY_INIT_FALSE
80 
81 #define SCHED_FEAT(name, enabled)	\
82 	jump_label_key__##enabled ,
83 
84 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
85 #include "features.h"
86 };
87 
88 #undef SCHED_FEAT
89 
90 static void sched_feat_disable(int i)
91 {
92 	static_key_disable(&sched_feat_keys[i]);
93 }
94 
95 static void sched_feat_enable(int i)
96 {
97 	static_key_enable(&sched_feat_keys[i]);
98 }
99 #else
100 static void sched_feat_disable(int i) { };
101 static void sched_feat_enable(int i) { };
102 #endif /* HAVE_JUMP_LABEL */
103 
104 static int sched_feat_set(char *cmp)
105 {
106 	int i;
107 	int neg = 0;
108 
109 	if (strncmp(cmp, "NO_", 3) == 0) {
110 		neg = 1;
111 		cmp += 3;
112 	}
113 
114 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
115 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
116 			if (neg) {
117 				sysctl_sched_features &= ~(1UL << i);
118 				sched_feat_disable(i);
119 			} else {
120 				sysctl_sched_features |= (1UL << i);
121 				sched_feat_enable(i);
122 			}
123 			break;
124 		}
125 	}
126 
127 	return i;
128 }
129 
130 static ssize_t
131 sched_feat_write(struct file *filp, const char __user *ubuf,
132 		size_t cnt, loff_t *ppos)
133 {
134 	char buf[64];
135 	char *cmp;
136 	int i;
137 	struct inode *inode;
138 
139 	if (cnt > 63)
140 		cnt = 63;
141 
142 	if (copy_from_user(&buf, ubuf, cnt))
143 		return -EFAULT;
144 
145 	buf[cnt] = 0;
146 	cmp = strstrip(buf);
147 
148 	/* Ensure the static_key remains in a consistent state */
149 	inode = file_inode(filp);
150 	inode_lock(inode);
151 	i = sched_feat_set(cmp);
152 	inode_unlock(inode);
153 	if (i == __SCHED_FEAT_NR)
154 		return -EINVAL;
155 
156 	*ppos += cnt;
157 
158 	return cnt;
159 }
160 
161 static int sched_feat_open(struct inode *inode, struct file *filp)
162 {
163 	return single_open(filp, sched_feat_show, NULL);
164 }
165 
166 static const struct file_operations sched_feat_fops = {
167 	.open		= sched_feat_open,
168 	.write		= sched_feat_write,
169 	.read		= seq_read,
170 	.llseek		= seq_lseek,
171 	.release	= single_release,
172 };
173 
174 __read_mostly bool sched_debug_enabled;
175 
176 static __init int sched_init_debug(void)
177 {
178 	debugfs_create_file("sched_features", 0644, NULL, NULL,
179 			&sched_feat_fops);
180 
181 	debugfs_create_bool("sched_debug", 0644, NULL,
182 			&sched_debug_enabled);
183 
184 	return 0;
185 }
186 late_initcall(sched_init_debug);
187 
188 #ifdef CONFIG_SMP
189 
190 #ifdef CONFIG_SYSCTL
191 
192 static struct ctl_table sd_ctl_dir[] = {
193 	{
194 		.procname	= "sched_domain",
195 		.mode		= 0555,
196 	},
197 	{}
198 };
199 
200 static struct ctl_table sd_ctl_root[] = {
201 	{
202 		.procname	= "kernel",
203 		.mode		= 0555,
204 		.child		= sd_ctl_dir,
205 	},
206 	{}
207 };
208 
209 static struct ctl_table *sd_alloc_ctl_entry(int n)
210 {
211 	struct ctl_table *entry =
212 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
213 
214 	return entry;
215 }
216 
217 static void sd_free_ctl_entry(struct ctl_table **tablep)
218 {
219 	struct ctl_table *entry;
220 
221 	/*
222 	 * In the intermediate directories, both the child directory and
223 	 * procname are dynamically allocated and could fail but the mode
224 	 * will always be set. In the lowest directory the names are
225 	 * static strings and all have proc handlers.
226 	 */
227 	for (entry = *tablep; entry->mode; entry++) {
228 		if (entry->child)
229 			sd_free_ctl_entry(&entry->child);
230 		if (entry->proc_handler == NULL)
231 			kfree(entry->procname);
232 	}
233 
234 	kfree(*tablep);
235 	*tablep = NULL;
236 }
237 
238 static int min_load_idx = 0;
239 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
240 
241 static void
242 set_table_entry(struct ctl_table *entry,
243 		const char *procname, void *data, int maxlen,
244 		umode_t mode, proc_handler *proc_handler,
245 		bool load_idx)
246 {
247 	entry->procname = procname;
248 	entry->data = data;
249 	entry->maxlen = maxlen;
250 	entry->mode = mode;
251 	entry->proc_handler = proc_handler;
252 
253 	if (load_idx) {
254 		entry->extra1 = &min_load_idx;
255 		entry->extra2 = &max_load_idx;
256 	}
257 }
258 
259 static struct ctl_table *
260 sd_alloc_ctl_domain_table(struct sched_domain *sd)
261 {
262 	struct ctl_table *table = sd_alloc_ctl_entry(14);
263 
264 	if (table == NULL)
265 		return NULL;
266 
267 	set_table_entry(&table[0] , "min_interval",	   &sd->min_interval,	     sizeof(long), 0644, proc_doulongvec_minmax, false);
268 	set_table_entry(&table[1] , "max_interval",	   &sd->max_interval,	     sizeof(long), 0644, proc_doulongvec_minmax, false);
269 	set_table_entry(&table[2] , "busy_idx",		   &sd->busy_idx,	     sizeof(int) , 0644, proc_dointvec_minmax,   true );
270 	set_table_entry(&table[3] , "idle_idx",		   &sd->idle_idx,	     sizeof(int) , 0644, proc_dointvec_minmax,   true );
271 	set_table_entry(&table[4] , "newidle_idx",	   &sd->newidle_idx,	     sizeof(int) , 0644, proc_dointvec_minmax,   true );
272 	set_table_entry(&table[5] , "wake_idx",		   &sd->wake_idx,	     sizeof(int) , 0644, proc_dointvec_minmax,   true );
273 	set_table_entry(&table[6] , "forkexec_idx",	   &sd->forkexec_idx,	     sizeof(int) , 0644, proc_dointvec_minmax,   true );
274 	set_table_entry(&table[7] , "busy_factor",	   &sd->busy_factor,	     sizeof(int) , 0644, proc_dointvec_minmax,   false);
275 	set_table_entry(&table[8] , "imbalance_pct",	   &sd->imbalance_pct,	     sizeof(int) , 0644, proc_dointvec_minmax,   false);
276 	set_table_entry(&table[9] , "cache_nice_tries",	   &sd->cache_nice_tries,    sizeof(int) , 0644, proc_dointvec_minmax,   false);
277 	set_table_entry(&table[10], "flags",		   &sd->flags,		     sizeof(int) , 0644, proc_dointvec_minmax,   false);
278 	set_table_entry(&table[11], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax, false);
279 	set_table_entry(&table[12], "name",		   sd->name,		CORENAME_MAX_SIZE, 0444, proc_dostring,		 false);
280 	/* &table[13] is terminator */
281 
282 	return table;
283 }
284 
285 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
286 {
287 	struct ctl_table *entry, *table;
288 	struct sched_domain *sd;
289 	int domain_num = 0, i;
290 	char buf[32];
291 
292 	for_each_domain(cpu, sd)
293 		domain_num++;
294 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
295 	if (table == NULL)
296 		return NULL;
297 
298 	i = 0;
299 	for_each_domain(cpu, sd) {
300 		snprintf(buf, 32, "domain%d", i);
301 		entry->procname = kstrdup(buf, GFP_KERNEL);
302 		entry->mode = 0555;
303 		entry->child = sd_alloc_ctl_domain_table(sd);
304 		entry++;
305 		i++;
306 	}
307 	return table;
308 }
309 
310 static cpumask_var_t		sd_sysctl_cpus;
311 static struct ctl_table_header	*sd_sysctl_header;
312 
313 void register_sched_domain_sysctl(void)
314 {
315 	static struct ctl_table *cpu_entries;
316 	static struct ctl_table **cpu_idx;
317 	char buf[32];
318 	int i;
319 
320 	if (!cpu_entries) {
321 		cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
322 		if (!cpu_entries)
323 			return;
324 
325 		WARN_ON(sd_ctl_dir[0].child);
326 		sd_ctl_dir[0].child = cpu_entries;
327 	}
328 
329 	if (!cpu_idx) {
330 		struct ctl_table *e = cpu_entries;
331 
332 		cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
333 		if (!cpu_idx)
334 			return;
335 
336 		/* deal with sparse possible map */
337 		for_each_possible_cpu(i) {
338 			cpu_idx[i] = e;
339 			e++;
340 		}
341 	}
342 
343 	if (!cpumask_available(sd_sysctl_cpus)) {
344 		if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
345 			return;
346 
347 		/* init to possible to not have holes in @cpu_entries */
348 		cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
349 	}
350 
351 	for_each_cpu(i, sd_sysctl_cpus) {
352 		struct ctl_table *e = cpu_idx[i];
353 
354 		if (e->child)
355 			sd_free_ctl_entry(&e->child);
356 
357 		if (!e->procname) {
358 			snprintf(buf, 32, "cpu%d", i);
359 			e->procname = kstrdup(buf, GFP_KERNEL);
360 		}
361 		e->mode = 0555;
362 		e->child = sd_alloc_ctl_cpu_table(i);
363 
364 		__cpumask_clear_cpu(i, sd_sysctl_cpus);
365 	}
366 
367 	WARN_ON(sd_sysctl_header);
368 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
369 }
370 
371 void dirty_sched_domain_sysctl(int cpu)
372 {
373 	if (cpumask_available(sd_sysctl_cpus))
374 		__cpumask_set_cpu(cpu, sd_sysctl_cpus);
375 }
376 
377 /* may be called multiple times per register */
378 void unregister_sched_domain_sysctl(void)
379 {
380 	unregister_sysctl_table(sd_sysctl_header);
381 	sd_sysctl_header = NULL;
382 }
383 #endif /* CONFIG_SYSCTL */
384 #endif /* CONFIG_SMP */
385 
386 #ifdef CONFIG_FAIR_GROUP_SCHED
387 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
388 {
389 	struct sched_entity *se = tg->se[cpu];
390 
391 #define P(F)		SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)F)
392 #define P_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)schedstat_val(F))
393 #define PN(F)		SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
394 #define PN_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
395 
396 	if (!se)
397 		return;
398 
399 	PN(se->exec_start);
400 	PN(se->vruntime);
401 	PN(se->sum_exec_runtime);
402 
403 	if (schedstat_enabled()) {
404 		PN_SCHEDSTAT(se->statistics.wait_start);
405 		PN_SCHEDSTAT(se->statistics.sleep_start);
406 		PN_SCHEDSTAT(se->statistics.block_start);
407 		PN_SCHEDSTAT(se->statistics.sleep_max);
408 		PN_SCHEDSTAT(se->statistics.block_max);
409 		PN_SCHEDSTAT(se->statistics.exec_max);
410 		PN_SCHEDSTAT(se->statistics.slice_max);
411 		PN_SCHEDSTAT(se->statistics.wait_max);
412 		PN_SCHEDSTAT(se->statistics.wait_sum);
413 		P_SCHEDSTAT(se->statistics.wait_count);
414 	}
415 
416 	P(se->load.weight);
417 	P(se->runnable_weight);
418 #ifdef CONFIG_SMP
419 	P(se->avg.load_avg);
420 	P(se->avg.util_avg);
421 	P(se->avg.runnable_load_avg);
422 #endif
423 
424 #undef PN_SCHEDSTAT
425 #undef PN
426 #undef P_SCHEDSTAT
427 #undef P
428 }
429 #endif
430 
431 #ifdef CONFIG_CGROUP_SCHED
432 static char group_path[PATH_MAX];
433 
434 static char *task_group_path(struct task_group *tg)
435 {
436 	if (autogroup_path(tg, group_path, PATH_MAX))
437 		return group_path;
438 
439 	cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
440 
441 	return group_path;
442 }
443 #endif
444 
445 static void
446 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
447 {
448 	if (rq->curr == p)
449 		SEQ_printf(m, ">R");
450 	else
451 		SEQ_printf(m, " %c", task_state_to_char(p));
452 
453 	SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
454 		p->comm, task_pid_nr(p),
455 		SPLIT_NS(p->se.vruntime),
456 		(long long)(p->nvcsw + p->nivcsw),
457 		p->prio);
458 
459 	SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
460 		SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
461 		SPLIT_NS(p->se.sum_exec_runtime),
462 		SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
463 
464 #ifdef CONFIG_NUMA_BALANCING
465 	SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
466 #endif
467 #ifdef CONFIG_CGROUP_SCHED
468 	SEQ_printf(m, " %s", task_group_path(task_group(p)));
469 #endif
470 
471 	SEQ_printf(m, "\n");
472 }
473 
474 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
475 {
476 	struct task_struct *g, *p;
477 
478 	SEQ_printf(m, "\n");
479 	SEQ_printf(m, "runnable tasks:\n");
480 	SEQ_printf(m, " S           task   PID         tree-key  switches  prio"
481 		   "     wait-time             sum-exec        sum-sleep\n");
482 	SEQ_printf(m, "-------------------------------------------------------"
483 		   "----------------------------------------------------\n");
484 
485 	rcu_read_lock();
486 	for_each_process_thread(g, p) {
487 		if (task_cpu(p) != rq_cpu)
488 			continue;
489 
490 		print_task(m, rq, p);
491 	}
492 	rcu_read_unlock();
493 }
494 
495 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
496 {
497 	s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
498 		spread, rq0_min_vruntime, spread0;
499 	struct rq *rq = cpu_rq(cpu);
500 	struct sched_entity *last;
501 	unsigned long flags;
502 
503 #ifdef CONFIG_FAIR_GROUP_SCHED
504 	SEQ_printf(m, "\n");
505 	SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
506 #else
507 	SEQ_printf(m, "\n");
508 	SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
509 #endif
510 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
511 			SPLIT_NS(cfs_rq->exec_clock));
512 
513 	raw_spin_lock_irqsave(&rq->lock, flags);
514 	if (rb_first_cached(&cfs_rq->tasks_timeline))
515 		MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
516 	last = __pick_last_entity(cfs_rq);
517 	if (last)
518 		max_vruntime = last->vruntime;
519 	min_vruntime = cfs_rq->min_vruntime;
520 	rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
521 	raw_spin_unlock_irqrestore(&rq->lock, flags);
522 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
523 			SPLIT_NS(MIN_vruntime));
524 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
525 			SPLIT_NS(min_vruntime));
526 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
527 			SPLIT_NS(max_vruntime));
528 	spread = max_vruntime - MIN_vruntime;
529 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
530 			SPLIT_NS(spread));
531 	spread0 = min_vruntime - rq0_min_vruntime;
532 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
533 			SPLIT_NS(spread0));
534 	SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
535 			cfs_rq->nr_spread_over);
536 	SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
537 	SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
538 #ifdef CONFIG_SMP
539 	SEQ_printf(m, "  .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight);
540 	SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
541 			cfs_rq->avg.load_avg);
542 	SEQ_printf(m, "  .%-30s: %lu\n", "runnable_load_avg",
543 			cfs_rq->avg.runnable_load_avg);
544 	SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
545 			cfs_rq->avg.util_avg);
546 	SEQ_printf(m, "  .%-30s: %u\n", "util_est_enqueued",
547 			cfs_rq->avg.util_est.enqueued);
548 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.load_avg",
549 			cfs_rq->removed.load_avg);
550 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.util_avg",
551 			cfs_rq->removed.util_avg);
552 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.runnable_sum",
553 			cfs_rq->removed.runnable_sum);
554 #ifdef CONFIG_FAIR_GROUP_SCHED
555 	SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
556 			cfs_rq->tg_load_avg_contrib);
557 	SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
558 			atomic_long_read(&cfs_rq->tg->load_avg));
559 #endif
560 #endif
561 #ifdef CONFIG_CFS_BANDWIDTH
562 	SEQ_printf(m, "  .%-30s: %d\n", "throttled",
563 			cfs_rq->throttled);
564 	SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
565 			cfs_rq->throttle_count);
566 #endif
567 
568 #ifdef CONFIG_FAIR_GROUP_SCHED
569 	print_cfs_group_stats(m, cpu, cfs_rq->tg);
570 #endif
571 }
572 
573 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
574 {
575 #ifdef CONFIG_RT_GROUP_SCHED
576 	SEQ_printf(m, "\n");
577 	SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
578 #else
579 	SEQ_printf(m, "\n");
580 	SEQ_printf(m, "rt_rq[%d]:\n", cpu);
581 #endif
582 
583 #define P(x) \
584 	SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
585 #define PU(x) \
586 	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
587 #define PN(x) \
588 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
589 
590 	PU(rt_nr_running);
591 #ifdef CONFIG_SMP
592 	PU(rt_nr_migratory);
593 #endif
594 	P(rt_throttled);
595 	PN(rt_time);
596 	PN(rt_runtime);
597 
598 #undef PN
599 #undef PU
600 #undef P
601 }
602 
603 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
604 {
605 	struct dl_bw *dl_bw;
606 
607 	SEQ_printf(m, "\n");
608 	SEQ_printf(m, "dl_rq[%d]:\n", cpu);
609 
610 #define PU(x) \
611 	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
612 
613 	PU(dl_nr_running);
614 #ifdef CONFIG_SMP
615 	PU(dl_nr_migratory);
616 	dl_bw = &cpu_rq(cpu)->rd->dl_bw;
617 #else
618 	dl_bw = &dl_rq->dl_bw;
619 #endif
620 	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
621 	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
622 
623 #undef PU
624 }
625 
626 extern __read_mostly int sched_clock_running;
627 
628 static void print_cpu(struct seq_file *m, int cpu)
629 {
630 	struct rq *rq = cpu_rq(cpu);
631 	unsigned long flags;
632 
633 #ifdef CONFIG_X86
634 	{
635 		unsigned int freq = cpu_khz ? : 1;
636 
637 		SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
638 			   cpu, freq / 1000, (freq % 1000));
639 	}
640 #else
641 	SEQ_printf(m, "cpu#%d\n", cpu);
642 #endif
643 
644 #define P(x)								\
645 do {									\
646 	if (sizeof(rq->x) == 4)						\
647 		SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));	\
648 	else								\
649 		SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
650 } while (0)
651 
652 #define PN(x) \
653 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
654 
655 	P(nr_running);
656 	SEQ_printf(m, "  .%-30s: %lu\n", "load",
657 		   rq->load.weight);
658 	P(nr_switches);
659 	P(nr_load_updates);
660 	P(nr_uninterruptible);
661 	PN(next_balance);
662 	SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
663 	PN(clock);
664 	PN(clock_task);
665 	P(cpu_load[0]);
666 	P(cpu_load[1]);
667 	P(cpu_load[2]);
668 	P(cpu_load[3]);
669 	P(cpu_load[4]);
670 #undef P
671 #undef PN
672 
673 #ifdef CONFIG_SMP
674 #define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
675 	P64(avg_idle);
676 	P64(max_idle_balance_cost);
677 #undef P64
678 #endif
679 
680 #define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
681 	if (schedstat_enabled()) {
682 		P(yld_count);
683 		P(sched_count);
684 		P(sched_goidle);
685 		P(ttwu_count);
686 		P(ttwu_local);
687 	}
688 #undef P
689 
690 	spin_lock_irqsave(&sched_debug_lock, flags);
691 	print_cfs_stats(m, cpu);
692 	print_rt_stats(m, cpu);
693 	print_dl_stats(m, cpu);
694 
695 	print_rq(m, rq, cpu);
696 	spin_unlock_irqrestore(&sched_debug_lock, flags);
697 	SEQ_printf(m, "\n");
698 }
699 
700 static const char *sched_tunable_scaling_names[] = {
701 	"none",
702 	"logaritmic",
703 	"linear"
704 };
705 
706 static void sched_debug_header(struct seq_file *m)
707 {
708 	u64 ktime, sched_clk, cpu_clk;
709 	unsigned long flags;
710 
711 	local_irq_save(flags);
712 	ktime = ktime_to_ns(ktime_get());
713 	sched_clk = sched_clock();
714 	cpu_clk = local_clock();
715 	local_irq_restore(flags);
716 
717 	SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
718 		init_utsname()->release,
719 		(int)strcspn(init_utsname()->version, " "),
720 		init_utsname()->version);
721 
722 #define P(x) \
723 	SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
724 #define PN(x) \
725 	SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
726 	PN(ktime);
727 	PN(sched_clk);
728 	PN(cpu_clk);
729 	P(jiffies);
730 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
731 	P(sched_clock_stable());
732 #endif
733 #undef PN
734 #undef P
735 
736 	SEQ_printf(m, "\n");
737 	SEQ_printf(m, "sysctl_sched\n");
738 
739 #define P(x) \
740 	SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
741 #define PN(x) \
742 	SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
743 	PN(sysctl_sched_latency);
744 	PN(sysctl_sched_min_granularity);
745 	PN(sysctl_sched_wakeup_granularity);
746 	P(sysctl_sched_child_runs_first);
747 	P(sysctl_sched_features);
748 #undef PN
749 #undef P
750 
751 	SEQ_printf(m, "  .%-40s: %d (%s)\n",
752 		"sysctl_sched_tunable_scaling",
753 		sysctl_sched_tunable_scaling,
754 		sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
755 	SEQ_printf(m, "\n");
756 }
757 
758 static int sched_debug_show(struct seq_file *m, void *v)
759 {
760 	int cpu = (unsigned long)(v - 2);
761 
762 	if (cpu != -1)
763 		print_cpu(m, cpu);
764 	else
765 		sched_debug_header(m);
766 
767 	return 0;
768 }
769 
770 void sysrq_sched_debug_show(void)
771 {
772 	int cpu;
773 
774 	sched_debug_header(NULL);
775 	for_each_online_cpu(cpu)
776 		print_cpu(NULL, cpu);
777 
778 }
779 
780 /*
781  * This itererator needs some explanation.
782  * It returns 1 for the header position.
783  * This means 2 is CPU 0.
784  * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
785  * to use cpumask_* to iterate over the CPUs.
786  */
787 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
788 {
789 	unsigned long n = *offset;
790 
791 	if (n == 0)
792 		return (void *) 1;
793 
794 	n--;
795 
796 	if (n > 0)
797 		n = cpumask_next(n - 1, cpu_online_mask);
798 	else
799 		n = cpumask_first(cpu_online_mask);
800 
801 	*offset = n + 1;
802 
803 	if (n < nr_cpu_ids)
804 		return (void *)(unsigned long)(n + 2);
805 
806 	return NULL;
807 }
808 
809 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
810 {
811 	(*offset)++;
812 	return sched_debug_start(file, offset);
813 }
814 
815 static void sched_debug_stop(struct seq_file *file, void *data)
816 {
817 }
818 
819 static const struct seq_operations sched_debug_sops = {
820 	.start		= sched_debug_start,
821 	.next		= sched_debug_next,
822 	.stop		= sched_debug_stop,
823 	.show		= sched_debug_show,
824 };
825 
826 static int sched_debug_release(struct inode *inode, struct file *file)
827 {
828 	seq_release(inode, file);
829 
830 	return 0;
831 }
832 
833 static int sched_debug_open(struct inode *inode, struct file *filp)
834 {
835 	int ret = 0;
836 
837 	ret = seq_open(filp, &sched_debug_sops);
838 
839 	return ret;
840 }
841 
842 static const struct file_operations sched_debug_fops = {
843 	.open		= sched_debug_open,
844 	.read		= seq_read,
845 	.llseek		= seq_lseek,
846 	.release	= sched_debug_release,
847 };
848 
849 static int __init init_sched_debug_procfs(void)
850 {
851 	struct proc_dir_entry *pe;
852 
853 	pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
854 	if (!pe)
855 		return -ENOMEM;
856 	return 0;
857 }
858 
859 __initcall(init_sched_debug_procfs);
860 
861 #define __P(F)	SEQ_printf(m, "%-45s:%21Ld\n",	     #F, (long long)F)
862 #define   P(F)	SEQ_printf(m, "%-45s:%21Ld\n",	     #F, (long long)p->F)
863 #define __PN(F)	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
864 #define   PN(F)	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
865 
866 
867 #ifdef CONFIG_NUMA_BALANCING
868 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
869 		unsigned long tpf, unsigned long gsf, unsigned long gpf)
870 {
871 	SEQ_printf(m, "numa_faults node=%d ", node);
872 	SEQ_printf(m, "task_private=%lu task_shared=%lu ", tsf, tpf);
873 	SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gsf, gpf);
874 }
875 #endif
876 
877 
878 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
879 {
880 #ifdef CONFIG_NUMA_BALANCING
881 	struct mempolicy *pol;
882 
883 	if (p->mm)
884 		P(mm->numa_scan_seq);
885 
886 	task_lock(p);
887 	pol = p->mempolicy;
888 	if (pol && !(pol->flags & MPOL_F_MORON))
889 		pol = NULL;
890 	mpol_get(pol);
891 	task_unlock(p);
892 
893 	P(numa_pages_migrated);
894 	P(numa_preferred_nid);
895 	P(total_numa_faults);
896 	SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
897 			task_node(p), task_numa_group_id(p));
898 	show_numa_stats(p, m);
899 	mpol_put(pol);
900 #endif
901 }
902 
903 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
904 						  struct seq_file *m)
905 {
906 	unsigned long nr_switches;
907 
908 	SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
909 						get_nr_threads(p));
910 	SEQ_printf(m,
911 		"---------------------------------------------------------"
912 		"----------\n");
913 #define __P(F) \
914 	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
915 #define P(F) \
916 	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
917 #define P_SCHEDSTAT(F) \
918 	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
919 #define __PN(F) \
920 	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
921 #define PN(F) \
922 	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
923 #define PN_SCHEDSTAT(F) \
924 	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
925 
926 	PN(se.exec_start);
927 	PN(se.vruntime);
928 	PN(se.sum_exec_runtime);
929 
930 	nr_switches = p->nvcsw + p->nivcsw;
931 
932 	P(se.nr_migrations);
933 
934 	if (schedstat_enabled()) {
935 		u64 avg_atom, avg_per_cpu;
936 
937 		PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
938 		PN_SCHEDSTAT(se.statistics.wait_start);
939 		PN_SCHEDSTAT(se.statistics.sleep_start);
940 		PN_SCHEDSTAT(se.statistics.block_start);
941 		PN_SCHEDSTAT(se.statistics.sleep_max);
942 		PN_SCHEDSTAT(se.statistics.block_max);
943 		PN_SCHEDSTAT(se.statistics.exec_max);
944 		PN_SCHEDSTAT(se.statistics.slice_max);
945 		PN_SCHEDSTAT(se.statistics.wait_max);
946 		PN_SCHEDSTAT(se.statistics.wait_sum);
947 		P_SCHEDSTAT(se.statistics.wait_count);
948 		PN_SCHEDSTAT(se.statistics.iowait_sum);
949 		P_SCHEDSTAT(se.statistics.iowait_count);
950 		P_SCHEDSTAT(se.statistics.nr_migrations_cold);
951 		P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
952 		P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
953 		P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
954 		P_SCHEDSTAT(se.statistics.nr_forced_migrations);
955 		P_SCHEDSTAT(se.statistics.nr_wakeups);
956 		P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
957 		P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
958 		P_SCHEDSTAT(se.statistics.nr_wakeups_local);
959 		P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
960 		P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
961 		P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
962 		P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
963 		P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
964 
965 		avg_atom = p->se.sum_exec_runtime;
966 		if (nr_switches)
967 			avg_atom = div64_ul(avg_atom, nr_switches);
968 		else
969 			avg_atom = -1LL;
970 
971 		avg_per_cpu = p->se.sum_exec_runtime;
972 		if (p->se.nr_migrations) {
973 			avg_per_cpu = div64_u64(avg_per_cpu,
974 						p->se.nr_migrations);
975 		} else {
976 			avg_per_cpu = -1LL;
977 		}
978 
979 		__PN(avg_atom);
980 		__PN(avg_per_cpu);
981 	}
982 
983 	__P(nr_switches);
984 	SEQ_printf(m, "%-45s:%21Ld\n",
985 		   "nr_voluntary_switches", (long long)p->nvcsw);
986 	SEQ_printf(m, "%-45s:%21Ld\n",
987 		   "nr_involuntary_switches", (long long)p->nivcsw);
988 
989 	P(se.load.weight);
990 	P(se.runnable_weight);
991 #ifdef CONFIG_SMP
992 	P(se.avg.load_sum);
993 	P(se.avg.runnable_load_sum);
994 	P(se.avg.util_sum);
995 	P(se.avg.load_avg);
996 	P(se.avg.runnable_load_avg);
997 	P(se.avg.util_avg);
998 	P(se.avg.last_update_time);
999 	P(se.avg.util_est.ewma);
1000 	P(se.avg.util_est.enqueued);
1001 #endif
1002 	P(policy);
1003 	P(prio);
1004 	if (p->policy == SCHED_DEADLINE) {
1005 		P(dl.runtime);
1006 		P(dl.deadline);
1007 	}
1008 #undef PN_SCHEDSTAT
1009 #undef PN
1010 #undef __PN
1011 #undef P_SCHEDSTAT
1012 #undef P
1013 #undef __P
1014 
1015 	{
1016 		unsigned int this_cpu = raw_smp_processor_id();
1017 		u64 t0, t1;
1018 
1019 		t0 = cpu_clock(this_cpu);
1020 		t1 = cpu_clock(this_cpu);
1021 		SEQ_printf(m, "%-45s:%21Ld\n",
1022 			   "clock-delta", (long long)(t1-t0));
1023 	}
1024 
1025 	sched_show_numa(p, m);
1026 }
1027 
1028 void proc_sched_set_task(struct task_struct *p)
1029 {
1030 #ifdef CONFIG_SCHEDSTATS
1031 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1032 #endif
1033 }
1034