1 /* 2 * kernel/sched/debug.c 3 * 4 * Print the CFS rbtree 5 * 6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/proc_fs.h> 14 #include <linux/sched.h> 15 #include <linux/seq_file.h> 16 #include <linux/kallsyms.h> 17 #include <linux/utsname.h> 18 #include <linux/mempolicy.h> 19 #include <linux/debugfs.h> 20 21 #include "sched.h" 22 23 static DEFINE_SPINLOCK(sched_debug_lock); 24 25 /* 26 * This allows printing both to /proc/sched_debug and 27 * to the console 28 */ 29 #define SEQ_printf(m, x...) \ 30 do { \ 31 if (m) \ 32 seq_printf(m, x); \ 33 else \ 34 printk(x); \ 35 } while (0) 36 37 /* 38 * Ease the printing of nsec fields: 39 */ 40 static long long nsec_high(unsigned long long nsec) 41 { 42 if ((long long)nsec < 0) { 43 nsec = -nsec; 44 do_div(nsec, 1000000); 45 return -nsec; 46 } 47 do_div(nsec, 1000000); 48 49 return nsec; 50 } 51 52 static unsigned long nsec_low(unsigned long long nsec) 53 { 54 if ((long long)nsec < 0) 55 nsec = -nsec; 56 57 return do_div(nsec, 1000000); 58 } 59 60 #define SPLIT_NS(x) nsec_high(x), nsec_low(x) 61 62 #define SCHED_FEAT(name, enabled) \ 63 #name , 64 65 static const char * const sched_feat_names[] = { 66 #include "features.h" 67 }; 68 69 #undef SCHED_FEAT 70 71 static int sched_feat_show(struct seq_file *m, void *v) 72 { 73 int i; 74 75 for (i = 0; i < __SCHED_FEAT_NR; i++) { 76 if (!(sysctl_sched_features & (1UL << i))) 77 seq_puts(m, "NO_"); 78 seq_printf(m, "%s ", sched_feat_names[i]); 79 } 80 seq_puts(m, "\n"); 81 82 return 0; 83 } 84 85 #ifdef HAVE_JUMP_LABEL 86 87 #define jump_label_key__true STATIC_KEY_INIT_TRUE 88 #define jump_label_key__false STATIC_KEY_INIT_FALSE 89 90 #define SCHED_FEAT(name, enabled) \ 91 jump_label_key__##enabled , 92 93 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 94 #include "features.h" 95 }; 96 97 #undef SCHED_FEAT 98 99 static void sched_feat_disable(int i) 100 { 101 static_key_disable(&sched_feat_keys[i]); 102 } 103 104 static void sched_feat_enable(int i) 105 { 106 static_key_enable(&sched_feat_keys[i]); 107 } 108 #else 109 static void sched_feat_disable(int i) { }; 110 static void sched_feat_enable(int i) { }; 111 #endif /* HAVE_JUMP_LABEL */ 112 113 static int sched_feat_set(char *cmp) 114 { 115 int i; 116 int neg = 0; 117 118 if (strncmp(cmp, "NO_", 3) == 0) { 119 neg = 1; 120 cmp += 3; 121 } 122 123 for (i = 0; i < __SCHED_FEAT_NR; i++) { 124 if (strcmp(cmp, sched_feat_names[i]) == 0) { 125 if (neg) { 126 sysctl_sched_features &= ~(1UL << i); 127 sched_feat_disable(i); 128 } else { 129 sysctl_sched_features |= (1UL << i); 130 sched_feat_enable(i); 131 } 132 break; 133 } 134 } 135 136 return i; 137 } 138 139 static ssize_t 140 sched_feat_write(struct file *filp, const char __user *ubuf, 141 size_t cnt, loff_t *ppos) 142 { 143 char buf[64]; 144 char *cmp; 145 int i; 146 struct inode *inode; 147 148 if (cnt > 63) 149 cnt = 63; 150 151 if (copy_from_user(&buf, ubuf, cnt)) 152 return -EFAULT; 153 154 buf[cnt] = 0; 155 cmp = strstrip(buf); 156 157 /* Ensure the static_key remains in a consistent state */ 158 inode = file_inode(filp); 159 inode_lock(inode); 160 i = sched_feat_set(cmp); 161 inode_unlock(inode); 162 if (i == __SCHED_FEAT_NR) 163 return -EINVAL; 164 165 *ppos += cnt; 166 167 return cnt; 168 } 169 170 static int sched_feat_open(struct inode *inode, struct file *filp) 171 { 172 return single_open(filp, sched_feat_show, NULL); 173 } 174 175 static const struct file_operations sched_feat_fops = { 176 .open = sched_feat_open, 177 .write = sched_feat_write, 178 .read = seq_read, 179 .llseek = seq_lseek, 180 .release = single_release, 181 }; 182 183 static __init int sched_init_debug(void) 184 { 185 debugfs_create_file("sched_features", 0644, NULL, NULL, 186 &sched_feat_fops); 187 188 return 0; 189 } 190 late_initcall(sched_init_debug); 191 192 #ifdef CONFIG_SMP 193 194 #ifdef CONFIG_SYSCTL 195 196 static struct ctl_table sd_ctl_dir[] = { 197 { 198 .procname = "sched_domain", 199 .mode = 0555, 200 }, 201 {} 202 }; 203 204 static struct ctl_table sd_ctl_root[] = { 205 { 206 .procname = "kernel", 207 .mode = 0555, 208 .child = sd_ctl_dir, 209 }, 210 {} 211 }; 212 213 static struct ctl_table *sd_alloc_ctl_entry(int n) 214 { 215 struct ctl_table *entry = 216 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 217 218 return entry; 219 } 220 221 static void sd_free_ctl_entry(struct ctl_table **tablep) 222 { 223 struct ctl_table *entry; 224 225 /* 226 * In the intermediate directories, both the child directory and 227 * procname are dynamically allocated and could fail but the mode 228 * will always be set. In the lowest directory the names are 229 * static strings and all have proc handlers. 230 */ 231 for (entry = *tablep; entry->mode; entry++) { 232 if (entry->child) 233 sd_free_ctl_entry(&entry->child); 234 if (entry->proc_handler == NULL) 235 kfree(entry->procname); 236 } 237 238 kfree(*tablep); 239 *tablep = NULL; 240 } 241 242 static int min_load_idx = 0; 243 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 244 245 static void 246 set_table_entry(struct ctl_table *entry, 247 const char *procname, void *data, int maxlen, 248 umode_t mode, proc_handler *proc_handler, 249 bool load_idx) 250 { 251 entry->procname = procname; 252 entry->data = data; 253 entry->maxlen = maxlen; 254 entry->mode = mode; 255 entry->proc_handler = proc_handler; 256 257 if (load_idx) { 258 entry->extra1 = &min_load_idx; 259 entry->extra2 = &max_load_idx; 260 } 261 } 262 263 static struct ctl_table * 264 sd_alloc_ctl_domain_table(struct sched_domain *sd) 265 { 266 struct ctl_table *table = sd_alloc_ctl_entry(14); 267 268 if (table == NULL) 269 return NULL; 270 271 set_table_entry(&table[0], "min_interval", &sd->min_interval, 272 sizeof(long), 0644, proc_doulongvec_minmax, false); 273 set_table_entry(&table[1], "max_interval", &sd->max_interval, 274 sizeof(long), 0644, proc_doulongvec_minmax, false); 275 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 276 sizeof(int), 0644, proc_dointvec_minmax, true); 277 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 278 sizeof(int), 0644, proc_dointvec_minmax, true); 279 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 280 sizeof(int), 0644, proc_dointvec_minmax, true); 281 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 282 sizeof(int), 0644, proc_dointvec_minmax, true); 283 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 284 sizeof(int), 0644, proc_dointvec_minmax, true); 285 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 286 sizeof(int), 0644, proc_dointvec_minmax, false); 287 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 288 sizeof(int), 0644, proc_dointvec_minmax, false); 289 set_table_entry(&table[9], "cache_nice_tries", 290 &sd->cache_nice_tries, 291 sizeof(int), 0644, proc_dointvec_minmax, false); 292 set_table_entry(&table[10], "flags", &sd->flags, 293 sizeof(int), 0644, proc_dointvec_minmax, false); 294 set_table_entry(&table[11], "max_newidle_lb_cost", 295 &sd->max_newidle_lb_cost, 296 sizeof(long), 0644, proc_doulongvec_minmax, false); 297 set_table_entry(&table[12], "name", sd->name, 298 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 299 /* &table[13] is terminator */ 300 301 return table; 302 } 303 304 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 305 { 306 struct ctl_table *entry, *table; 307 struct sched_domain *sd; 308 int domain_num = 0, i; 309 char buf[32]; 310 311 for_each_domain(cpu, sd) 312 domain_num++; 313 entry = table = sd_alloc_ctl_entry(domain_num + 1); 314 if (table == NULL) 315 return NULL; 316 317 i = 0; 318 for_each_domain(cpu, sd) { 319 snprintf(buf, 32, "domain%d", i); 320 entry->procname = kstrdup(buf, GFP_KERNEL); 321 entry->mode = 0555; 322 entry->child = sd_alloc_ctl_domain_table(sd); 323 entry++; 324 i++; 325 } 326 return table; 327 } 328 329 static struct ctl_table_header *sd_sysctl_header; 330 void register_sched_domain_sysctl(void) 331 { 332 int i, cpu_num = num_possible_cpus(); 333 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 334 char buf[32]; 335 336 WARN_ON(sd_ctl_dir[0].child); 337 sd_ctl_dir[0].child = entry; 338 339 if (entry == NULL) 340 return; 341 342 for_each_possible_cpu(i) { 343 snprintf(buf, 32, "cpu%d", i); 344 entry->procname = kstrdup(buf, GFP_KERNEL); 345 entry->mode = 0555; 346 entry->child = sd_alloc_ctl_cpu_table(i); 347 entry++; 348 } 349 350 WARN_ON(sd_sysctl_header); 351 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 352 } 353 354 /* may be called multiple times per register */ 355 void unregister_sched_domain_sysctl(void) 356 { 357 unregister_sysctl_table(sd_sysctl_header); 358 sd_sysctl_header = NULL; 359 if (sd_ctl_dir[0].child) 360 sd_free_ctl_entry(&sd_ctl_dir[0].child); 361 } 362 #endif /* CONFIG_SYSCTL */ 363 #endif /* CONFIG_SMP */ 364 365 #ifdef CONFIG_FAIR_GROUP_SCHED 366 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) 367 { 368 struct sched_entity *se = tg->se[cpu]; 369 370 #define P(F) \ 371 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) 372 #define PN(F) \ 373 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) 374 375 if (!se) 376 return; 377 378 PN(se->exec_start); 379 PN(se->vruntime); 380 PN(se->sum_exec_runtime); 381 #ifdef CONFIG_SCHEDSTATS 382 if (schedstat_enabled()) { 383 PN(se->statistics.wait_start); 384 PN(se->statistics.sleep_start); 385 PN(se->statistics.block_start); 386 PN(se->statistics.sleep_max); 387 PN(se->statistics.block_max); 388 PN(se->statistics.exec_max); 389 PN(se->statistics.slice_max); 390 PN(se->statistics.wait_max); 391 PN(se->statistics.wait_sum); 392 P(se->statistics.wait_count); 393 } 394 #endif 395 P(se->load.weight); 396 #ifdef CONFIG_SMP 397 P(se->avg.load_avg); 398 P(se->avg.util_avg); 399 #endif 400 #undef PN 401 #undef P 402 } 403 #endif 404 405 #ifdef CONFIG_CGROUP_SCHED 406 static char group_path[PATH_MAX]; 407 408 static char *task_group_path(struct task_group *tg) 409 { 410 if (autogroup_path(tg, group_path, PATH_MAX)) 411 return group_path; 412 413 return cgroup_path(tg->css.cgroup, group_path, PATH_MAX); 414 } 415 #endif 416 417 static void 418 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) 419 { 420 if (rq->curr == p) 421 SEQ_printf(m, "R"); 422 else 423 SEQ_printf(m, " "); 424 425 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ", 426 p->comm, task_pid_nr(p), 427 SPLIT_NS(p->se.vruntime), 428 (long long)(p->nvcsw + p->nivcsw), 429 p->prio); 430 #ifdef CONFIG_SCHEDSTATS 431 if (schedstat_enabled()) { 432 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", 433 SPLIT_NS(p->se.statistics.wait_sum), 434 SPLIT_NS(p->se.sum_exec_runtime), 435 SPLIT_NS(p->se.statistics.sum_sleep_runtime)); 436 } 437 #else 438 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", 439 0LL, 0L, 440 SPLIT_NS(p->se.sum_exec_runtime), 441 0LL, 0L); 442 #endif 443 #ifdef CONFIG_NUMA_BALANCING 444 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p)); 445 #endif 446 #ifdef CONFIG_CGROUP_SCHED 447 SEQ_printf(m, " %s", task_group_path(task_group(p))); 448 #endif 449 450 SEQ_printf(m, "\n"); 451 } 452 453 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) 454 { 455 struct task_struct *g, *p; 456 457 SEQ_printf(m, 458 "\nrunnable tasks:\n" 459 " task PID tree-key switches prio" 460 " wait-time sum-exec sum-sleep\n" 461 "------------------------------------------------------" 462 "----------------------------------------------------\n"); 463 464 rcu_read_lock(); 465 for_each_process_thread(g, p) { 466 if (task_cpu(p) != rq_cpu) 467 continue; 468 469 print_task(m, rq, p); 470 } 471 rcu_read_unlock(); 472 } 473 474 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 475 { 476 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, 477 spread, rq0_min_vruntime, spread0; 478 struct rq *rq = cpu_rq(cpu); 479 struct sched_entity *last; 480 unsigned long flags; 481 482 #ifdef CONFIG_FAIR_GROUP_SCHED 483 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg)); 484 #else 485 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu); 486 #endif 487 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", 488 SPLIT_NS(cfs_rq->exec_clock)); 489 490 raw_spin_lock_irqsave(&rq->lock, flags); 491 if (cfs_rq->rb_leftmost) 492 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; 493 last = __pick_last_entity(cfs_rq); 494 if (last) 495 max_vruntime = last->vruntime; 496 min_vruntime = cfs_rq->min_vruntime; 497 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; 498 raw_spin_unlock_irqrestore(&rq->lock, flags); 499 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", 500 SPLIT_NS(MIN_vruntime)); 501 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", 502 SPLIT_NS(min_vruntime)); 503 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", 504 SPLIT_NS(max_vruntime)); 505 spread = max_vruntime - MIN_vruntime; 506 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", 507 SPLIT_NS(spread)); 508 spread0 = min_vruntime - rq0_min_vruntime; 509 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", 510 SPLIT_NS(spread0)); 511 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", 512 cfs_rq->nr_spread_over); 513 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); 514 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); 515 #ifdef CONFIG_SMP 516 SEQ_printf(m, " .%-30s: %lu\n", "load_avg", 517 cfs_rq->avg.load_avg); 518 SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg", 519 cfs_rq->runnable_load_avg); 520 SEQ_printf(m, " .%-30s: %lu\n", "util_avg", 521 cfs_rq->avg.util_avg); 522 SEQ_printf(m, " .%-30s: %ld\n", "removed_load_avg", 523 atomic_long_read(&cfs_rq->removed_load_avg)); 524 SEQ_printf(m, " .%-30s: %ld\n", "removed_util_avg", 525 atomic_long_read(&cfs_rq->removed_util_avg)); 526 #ifdef CONFIG_FAIR_GROUP_SCHED 527 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib", 528 cfs_rq->tg_load_avg_contrib); 529 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", 530 atomic_long_read(&cfs_rq->tg->load_avg)); 531 #endif 532 #endif 533 #ifdef CONFIG_CFS_BANDWIDTH 534 SEQ_printf(m, " .%-30s: %d\n", "throttled", 535 cfs_rq->throttled); 536 SEQ_printf(m, " .%-30s: %d\n", "throttle_count", 537 cfs_rq->throttle_count); 538 #endif 539 540 #ifdef CONFIG_FAIR_GROUP_SCHED 541 print_cfs_group_stats(m, cpu, cfs_rq->tg); 542 #endif 543 } 544 545 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) 546 { 547 #ifdef CONFIG_RT_GROUP_SCHED 548 SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg)); 549 #else 550 SEQ_printf(m, "\nrt_rq[%d]:\n", cpu); 551 #endif 552 553 #define P(x) \ 554 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) 555 #define PN(x) \ 556 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) 557 558 P(rt_nr_running); 559 P(rt_throttled); 560 PN(rt_time); 561 PN(rt_runtime); 562 563 #undef PN 564 #undef P 565 } 566 567 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq) 568 { 569 struct dl_bw *dl_bw; 570 571 SEQ_printf(m, "\ndl_rq[%d]:\n", cpu); 572 SEQ_printf(m, " .%-30s: %ld\n", "dl_nr_running", dl_rq->dl_nr_running); 573 #ifdef CONFIG_SMP 574 dl_bw = &cpu_rq(cpu)->rd->dl_bw; 575 #else 576 dl_bw = &dl_rq->dl_bw; 577 #endif 578 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw); 579 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw); 580 } 581 582 extern __read_mostly int sched_clock_running; 583 584 static void print_cpu(struct seq_file *m, int cpu) 585 { 586 struct rq *rq = cpu_rq(cpu); 587 unsigned long flags; 588 589 #ifdef CONFIG_X86 590 { 591 unsigned int freq = cpu_khz ? : 1; 592 593 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", 594 cpu, freq / 1000, (freq % 1000)); 595 } 596 #else 597 SEQ_printf(m, "cpu#%d\n", cpu); 598 #endif 599 600 #define P(x) \ 601 do { \ 602 if (sizeof(rq->x) == 4) \ 603 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \ 604 else \ 605 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ 606 } while (0) 607 608 #define PN(x) \ 609 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) 610 611 P(nr_running); 612 SEQ_printf(m, " .%-30s: %lu\n", "load", 613 rq->load.weight); 614 P(nr_switches); 615 P(nr_load_updates); 616 P(nr_uninterruptible); 617 PN(next_balance); 618 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); 619 PN(clock); 620 PN(clock_task); 621 P(cpu_load[0]); 622 P(cpu_load[1]); 623 P(cpu_load[2]); 624 P(cpu_load[3]); 625 P(cpu_load[4]); 626 #undef P 627 #undef PN 628 629 #ifdef CONFIG_SMP 630 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); 631 P64(avg_idle); 632 P64(max_idle_balance_cost); 633 #undef P64 634 #endif 635 636 #ifdef CONFIG_SCHEDSTATS 637 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n); 638 639 if (schedstat_enabled()) { 640 P(yld_count); 641 P(sched_count); 642 P(sched_goidle); 643 P(ttwu_count); 644 P(ttwu_local); 645 } 646 647 #undef P 648 #endif 649 spin_lock_irqsave(&sched_debug_lock, flags); 650 print_cfs_stats(m, cpu); 651 print_rt_stats(m, cpu); 652 print_dl_stats(m, cpu); 653 654 print_rq(m, rq, cpu); 655 spin_unlock_irqrestore(&sched_debug_lock, flags); 656 SEQ_printf(m, "\n"); 657 } 658 659 static const char *sched_tunable_scaling_names[] = { 660 "none", 661 "logaritmic", 662 "linear" 663 }; 664 665 static void sched_debug_header(struct seq_file *m) 666 { 667 u64 ktime, sched_clk, cpu_clk; 668 unsigned long flags; 669 670 local_irq_save(flags); 671 ktime = ktime_to_ns(ktime_get()); 672 sched_clk = sched_clock(); 673 cpu_clk = local_clock(); 674 local_irq_restore(flags); 675 676 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", 677 init_utsname()->release, 678 (int)strcspn(init_utsname()->version, " "), 679 init_utsname()->version); 680 681 #define P(x) \ 682 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) 683 #define PN(x) \ 684 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 685 PN(ktime); 686 PN(sched_clk); 687 PN(cpu_clk); 688 P(jiffies); 689 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 690 P(sched_clock_stable()); 691 #endif 692 #undef PN 693 #undef P 694 695 SEQ_printf(m, "\n"); 696 SEQ_printf(m, "sysctl_sched\n"); 697 698 #define P(x) \ 699 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) 700 #define PN(x) \ 701 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 702 PN(sysctl_sched_latency); 703 PN(sysctl_sched_min_granularity); 704 PN(sysctl_sched_wakeup_granularity); 705 P(sysctl_sched_child_runs_first); 706 P(sysctl_sched_features); 707 #undef PN 708 #undef P 709 710 SEQ_printf(m, " .%-40s: %d (%s)\n", 711 "sysctl_sched_tunable_scaling", 712 sysctl_sched_tunable_scaling, 713 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); 714 SEQ_printf(m, "\n"); 715 } 716 717 static int sched_debug_show(struct seq_file *m, void *v) 718 { 719 int cpu = (unsigned long)(v - 2); 720 721 if (cpu != -1) 722 print_cpu(m, cpu); 723 else 724 sched_debug_header(m); 725 726 return 0; 727 } 728 729 void sysrq_sched_debug_show(void) 730 { 731 int cpu; 732 733 sched_debug_header(NULL); 734 for_each_online_cpu(cpu) 735 print_cpu(NULL, cpu); 736 737 } 738 739 /* 740 * This itererator needs some explanation. 741 * It returns 1 for the header position. 742 * This means 2 is cpu 0. 743 * In a hotplugged system some cpus, including cpu 0, may be missing so we have 744 * to use cpumask_* to iterate over the cpus. 745 */ 746 static void *sched_debug_start(struct seq_file *file, loff_t *offset) 747 { 748 unsigned long n = *offset; 749 750 if (n == 0) 751 return (void *) 1; 752 753 n--; 754 755 if (n > 0) 756 n = cpumask_next(n - 1, cpu_online_mask); 757 else 758 n = cpumask_first(cpu_online_mask); 759 760 *offset = n + 1; 761 762 if (n < nr_cpu_ids) 763 return (void *)(unsigned long)(n + 2); 764 return NULL; 765 } 766 767 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset) 768 { 769 (*offset)++; 770 return sched_debug_start(file, offset); 771 } 772 773 static void sched_debug_stop(struct seq_file *file, void *data) 774 { 775 } 776 777 static const struct seq_operations sched_debug_sops = { 778 .start = sched_debug_start, 779 .next = sched_debug_next, 780 .stop = sched_debug_stop, 781 .show = sched_debug_show, 782 }; 783 784 static int sched_debug_release(struct inode *inode, struct file *file) 785 { 786 seq_release(inode, file); 787 788 return 0; 789 } 790 791 static int sched_debug_open(struct inode *inode, struct file *filp) 792 { 793 int ret = 0; 794 795 ret = seq_open(filp, &sched_debug_sops); 796 797 return ret; 798 } 799 800 static const struct file_operations sched_debug_fops = { 801 .open = sched_debug_open, 802 .read = seq_read, 803 .llseek = seq_lseek, 804 .release = sched_debug_release, 805 }; 806 807 static int __init init_sched_debug_procfs(void) 808 { 809 struct proc_dir_entry *pe; 810 811 pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops); 812 if (!pe) 813 return -ENOMEM; 814 return 0; 815 } 816 817 __initcall(init_sched_debug_procfs); 818 819 #define __P(F) \ 820 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) 821 #define P(F) \ 822 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) 823 #define __PN(F) \ 824 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 825 #define PN(F) \ 826 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 827 828 829 #ifdef CONFIG_NUMA_BALANCING 830 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 831 unsigned long tpf, unsigned long gsf, unsigned long gpf) 832 { 833 SEQ_printf(m, "numa_faults node=%d ", node); 834 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tsf, tpf); 835 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gsf, gpf); 836 } 837 #endif 838 839 840 static void sched_show_numa(struct task_struct *p, struct seq_file *m) 841 { 842 #ifdef CONFIG_NUMA_BALANCING 843 struct mempolicy *pol; 844 845 if (p->mm) 846 P(mm->numa_scan_seq); 847 848 task_lock(p); 849 pol = p->mempolicy; 850 if (pol && !(pol->flags & MPOL_F_MORON)) 851 pol = NULL; 852 mpol_get(pol); 853 task_unlock(p); 854 855 P(numa_pages_migrated); 856 P(numa_preferred_nid); 857 P(total_numa_faults); 858 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n", 859 task_node(p), task_numa_group_id(p)); 860 show_numa_stats(p, m); 861 mpol_put(pol); 862 #endif 863 } 864 865 void proc_sched_show_task(struct task_struct *p, struct seq_file *m) 866 { 867 unsigned long nr_switches; 868 869 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr(p), 870 get_nr_threads(p)); 871 SEQ_printf(m, 872 "---------------------------------------------------------" 873 "----------\n"); 874 #define __P(F) \ 875 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) 876 #define P(F) \ 877 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) 878 #define __PN(F) \ 879 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 880 #define PN(F) \ 881 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 882 883 PN(se.exec_start); 884 PN(se.vruntime); 885 PN(se.sum_exec_runtime); 886 887 nr_switches = p->nvcsw + p->nivcsw; 888 889 #ifdef CONFIG_SCHEDSTATS 890 P(se.nr_migrations); 891 892 if (schedstat_enabled()) { 893 u64 avg_atom, avg_per_cpu; 894 895 PN(se.statistics.sum_sleep_runtime); 896 PN(se.statistics.wait_start); 897 PN(se.statistics.sleep_start); 898 PN(se.statistics.block_start); 899 PN(se.statistics.sleep_max); 900 PN(se.statistics.block_max); 901 PN(se.statistics.exec_max); 902 PN(se.statistics.slice_max); 903 PN(se.statistics.wait_max); 904 PN(se.statistics.wait_sum); 905 P(se.statistics.wait_count); 906 PN(se.statistics.iowait_sum); 907 P(se.statistics.iowait_count); 908 P(se.statistics.nr_migrations_cold); 909 P(se.statistics.nr_failed_migrations_affine); 910 P(se.statistics.nr_failed_migrations_running); 911 P(se.statistics.nr_failed_migrations_hot); 912 P(se.statistics.nr_forced_migrations); 913 P(se.statistics.nr_wakeups); 914 P(se.statistics.nr_wakeups_sync); 915 P(se.statistics.nr_wakeups_migrate); 916 P(se.statistics.nr_wakeups_local); 917 P(se.statistics.nr_wakeups_remote); 918 P(se.statistics.nr_wakeups_affine); 919 P(se.statistics.nr_wakeups_affine_attempts); 920 P(se.statistics.nr_wakeups_passive); 921 P(se.statistics.nr_wakeups_idle); 922 923 avg_atom = p->se.sum_exec_runtime; 924 if (nr_switches) 925 avg_atom = div64_ul(avg_atom, nr_switches); 926 else 927 avg_atom = -1LL; 928 929 avg_per_cpu = p->se.sum_exec_runtime; 930 if (p->se.nr_migrations) { 931 avg_per_cpu = div64_u64(avg_per_cpu, 932 p->se.nr_migrations); 933 } else { 934 avg_per_cpu = -1LL; 935 } 936 937 __PN(avg_atom); 938 __PN(avg_per_cpu); 939 } 940 #endif 941 __P(nr_switches); 942 SEQ_printf(m, "%-45s:%21Ld\n", 943 "nr_voluntary_switches", (long long)p->nvcsw); 944 SEQ_printf(m, "%-45s:%21Ld\n", 945 "nr_involuntary_switches", (long long)p->nivcsw); 946 947 P(se.load.weight); 948 #ifdef CONFIG_SMP 949 P(se.avg.load_sum); 950 P(se.avg.util_sum); 951 P(se.avg.load_avg); 952 P(se.avg.util_avg); 953 P(se.avg.last_update_time); 954 #endif 955 P(policy); 956 P(prio); 957 #undef PN 958 #undef __PN 959 #undef P 960 #undef __P 961 962 { 963 unsigned int this_cpu = raw_smp_processor_id(); 964 u64 t0, t1; 965 966 t0 = cpu_clock(this_cpu); 967 t1 = cpu_clock(this_cpu); 968 SEQ_printf(m, "%-45s:%21Ld\n", 969 "clock-delta", (long long)(t1-t0)); 970 } 971 972 sched_show_numa(p, m); 973 } 974 975 void proc_sched_set_task(struct task_struct *p) 976 { 977 #ifdef CONFIG_SCHEDSTATS 978 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 979 #endif 980 } 981