xref: /openbmc/linux/kernel/sched/debug.c (revision 8e9356c6)
1 /*
2  * kernel/sched/debug.c
3  *
4  * Print the CFS rbtree
5  *
6  * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/proc_fs.h>
14 #include <linux/sched.h>
15 #include <linux/seq_file.h>
16 #include <linux/kallsyms.h>
17 #include <linux/utsname.h>
18 #include <linux/mempolicy.h>
19 
20 #include "sched.h"
21 
22 static DEFINE_SPINLOCK(sched_debug_lock);
23 
24 /*
25  * This allows printing both to /proc/sched_debug and
26  * to the console
27  */
28 #define SEQ_printf(m, x...)			\
29  do {						\
30 	if (m)					\
31 		seq_printf(m, x);		\
32 	else					\
33 		printk(x);			\
34  } while (0)
35 
36 /*
37  * Ease the printing of nsec fields:
38  */
39 static long long nsec_high(unsigned long long nsec)
40 {
41 	if ((long long)nsec < 0) {
42 		nsec = -nsec;
43 		do_div(nsec, 1000000);
44 		return -nsec;
45 	}
46 	do_div(nsec, 1000000);
47 
48 	return nsec;
49 }
50 
51 static unsigned long nsec_low(unsigned long long nsec)
52 {
53 	if ((long long)nsec < 0)
54 		nsec = -nsec;
55 
56 	return do_div(nsec, 1000000);
57 }
58 
59 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
60 
61 #ifdef CONFIG_FAIR_GROUP_SCHED
62 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
63 {
64 	struct sched_entity *se = tg->se[cpu];
65 
66 #define P(F) \
67 	SEQ_printf(m, "  .%-30s: %lld\n", #F, (long long)F)
68 #define PN(F) \
69 	SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
70 
71 	if (!se) {
72 		struct sched_avg *avg = &cpu_rq(cpu)->avg;
73 		P(avg->runnable_avg_sum);
74 		P(avg->runnable_avg_period);
75 		return;
76 	}
77 
78 
79 	PN(se->exec_start);
80 	PN(se->vruntime);
81 	PN(se->sum_exec_runtime);
82 #ifdef CONFIG_SCHEDSTATS
83 	PN(se->statistics.wait_start);
84 	PN(se->statistics.sleep_start);
85 	PN(se->statistics.block_start);
86 	PN(se->statistics.sleep_max);
87 	PN(se->statistics.block_max);
88 	PN(se->statistics.exec_max);
89 	PN(se->statistics.slice_max);
90 	PN(se->statistics.wait_max);
91 	PN(se->statistics.wait_sum);
92 	P(se->statistics.wait_count);
93 #endif
94 	P(se->load.weight);
95 #ifdef CONFIG_SMP
96 	P(se->avg.runnable_avg_sum);
97 	P(se->avg.runnable_avg_period);
98 	P(se->avg.load_avg_contrib);
99 	P(se->avg.decay_count);
100 #endif
101 #undef PN
102 #undef P
103 }
104 #endif
105 
106 #ifdef CONFIG_CGROUP_SCHED
107 static char group_path[PATH_MAX];
108 
109 static char *task_group_path(struct task_group *tg)
110 {
111 	if (autogroup_path(tg, group_path, PATH_MAX))
112 		return group_path;
113 
114 	cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
115 	return group_path;
116 }
117 #endif
118 
119 static void
120 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
121 {
122 	if (rq->curr == p)
123 		SEQ_printf(m, "R");
124 	else
125 		SEQ_printf(m, " ");
126 
127 	SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
128 		p->comm, task_pid_nr(p),
129 		SPLIT_NS(p->se.vruntime),
130 		(long long)(p->nvcsw + p->nivcsw),
131 		p->prio);
132 #ifdef CONFIG_SCHEDSTATS
133 	SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
134 		SPLIT_NS(p->se.vruntime),
135 		SPLIT_NS(p->se.sum_exec_runtime),
136 		SPLIT_NS(p->se.statistics.sum_sleep_runtime));
137 #else
138 	SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld",
139 		0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
140 #endif
141 #ifdef CONFIG_NUMA_BALANCING
142 	SEQ_printf(m, " %d", task_node(p));
143 #endif
144 #ifdef CONFIG_CGROUP_SCHED
145 	SEQ_printf(m, " %s", task_group_path(task_group(p)));
146 #endif
147 
148 	SEQ_printf(m, "\n");
149 }
150 
151 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
152 {
153 	struct task_struct *g, *p;
154 	unsigned long flags;
155 
156 	SEQ_printf(m,
157 	"\nrunnable tasks:\n"
158 	"            task   PID         tree-key  switches  prio"
159 	"     exec-runtime         sum-exec        sum-sleep\n"
160 	"------------------------------------------------------"
161 	"----------------------------------------------------\n");
162 
163 	read_lock_irqsave(&tasklist_lock, flags);
164 
165 	do_each_thread(g, p) {
166 		if (task_cpu(p) != rq_cpu)
167 			continue;
168 
169 		print_task(m, rq, p);
170 	} while_each_thread(g, p);
171 
172 	read_unlock_irqrestore(&tasklist_lock, flags);
173 }
174 
175 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
176 {
177 	s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
178 		spread, rq0_min_vruntime, spread0;
179 	struct rq *rq = cpu_rq(cpu);
180 	struct sched_entity *last;
181 	unsigned long flags;
182 
183 #ifdef CONFIG_FAIR_GROUP_SCHED
184 	SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
185 #else
186 	SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
187 #endif
188 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
189 			SPLIT_NS(cfs_rq->exec_clock));
190 
191 	raw_spin_lock_irqsave(&rq->lock, flags);
192 	if (cfs_rq->rb_leftmost)
193 		MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
194 	last = __pick_last_entity(cfs_rq);
195 	if (last)
196 		max_vruntime = last->vruntime;
197 	min_vruntime = cfs_rq->min_vruntime;
198 	rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
199 	raw_spin_unlock_irqrestore(&rq->lock, flags);
200 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
201 			SPLIT_NS(MIN_vruntime));
202 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
203 			SPLIT_NS(min_vruntime));
204 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
205 			SPLIT_NS(max_vruntime));
206 	spread = max_vruntime - MIN_vruntime;
207 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
208 			SPLIT_NS(spread));
209 	spread0 = min_vruntime - rq0_min_vruntime;
210 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
211 			SPLIT_NS(spread0));
212 	SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
213 			cfs_rq->nr_spread_over);
214 	SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
215 	SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
216 #ifdef CONFIG_SMP
217 	SEQ_printf(m, "  .%-30s: %ld\n", "runnable_load_avg",
218 			cfs_rq->runnable_load_avg);
219 	SEQ_printf(m, "  .%-30s: %ld\n", "blocked_load_avg",
220 			cfs_rq->blocked_load_avg);
221 #ifdef CONFIG_FAIR_GROUP_SCHED
222 	SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_contrib",
223 			cfs_rq->tg_load_contrib);
224 	SEQ_printf(m, "  .%-30s: %d\n", "tg_runnable_contrib",
225 			cfs_rq->tg_runnable_contrib);
226 	SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
227 			atomic_long_read(&cfs_rq->tg->load_avg));
228 	SEQ_printf(m, "  .%-30s: %d\n", "tg->runnable_avg",
229 			atomic_read(&cfs_rq->tg->runnable_avg));
230 #endif
231 #endif
232 #ifdef CONFIG_CFS_BANDWIDTH
233 	SEQ_printf(m, "  .%-30s: %d\n", "tg->cfs_bandwidth.timer_active",
234 			cfs_rq->tg->cfs_bandwidth.timer_active);
235 	SEQ_printf(m, "  .%-30s: %d\n", "throttled",
236 			cfs_rq->throttled);
237 	SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
238 			cfs_rq->throttle_count);
239 #endif
240 
241 #ifdef CONFIG_FAIR_GROUP_SCHED
242 	print_cfs_group_stats(m, cpu, cfs_rq->tg);
243 #endif
244 }
245 
246 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
247 {
248 #ifdef CONFIG_RT_GROUP_SCHED
249 	SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
250 #else
251 	SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
252 #endif
253 
254 #define P(x) \
255 	SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
256 #define PN(x) \
257 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
258 
259 	P(rt_nr_running);
260 	P(rt_throttled);
261 	PN(rt_time);
262 	PN(rt_runtime);
263 
264 #undef PN
265 #undef P
266 }
267 
268 extern __read_mostly int sched_clock_running;
269 
270 static void print_cpu(struct seq_file *m, int cpu)
271 {
272 	struct rq *rq = cpu_rq(cpu);
273 	unsigned long flags;
274 
275 #ifdef CONFIG_X86
276 	{
277 		unsigned int freq = cpu_khz ? : 1;
278 
279 		SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
280 			   cpu, freq / 1000, (freq % 1000));
281 	}
282 #else
283 	SEQ_printf(m, "cpu#%d\n", cpu);
284 #endif
285 
286 #define P(x)								\
287 do {									\
288 	if (sizeof(rq->x) == 4)						\
289 		SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));	\
290 	else								\
291 		SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
292 } while (0)
293 
294 #define PN(x) \
295 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
296 
297 	P(nr_running);
298 	SEQ_printf(m, "  .%-30s: %lu\n", "load",
299 		   rq->load.weight);
300 	P(nr_switches);
301 	P(nr_load_updates);
302 	P(nr_uninterruptible);
303 	PN(next_balance);
304 	SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
305 	PN(clock);
306 	P(cpu_load[0]);
307 	P(cpu_load[1]);
308 	P(cpu_load[2]);
309 	P(cpu_load[3]);
310 	P(cpu_load[4]);
311 #undef P
312 #undef PN
313 
314 #ifdef CONFIG_SCHEDSTATS
315 #define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, rq->n);
316 #define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
317 
318 	P(yld_count);
319 
320 	P(sched_count);
321 	P(sched_goidle);
322 #ifdef CONFIG_SMP
323 	P64(avg_idle);
324 #endif
325 
326 	P(ttwu_count);
327 	P(ttwu_local);
328 
329 #undef P
330 #undef P64
331 #endif
332 	spin_lock_irqsave(&sched_debug_lock, flags);
333 	print_cfs_stats(m, cpu);
334 	print_rt_stats(m, cpu);
335 
336 	rcu_read_lock();
337 	print_rq(m, rq, cpu);
338 	rcu_read_unlock();
339 	spin_unlock_irqrestore(&sched_debug_lock, flags);
340 	SEQ_printf(m, "\n");
341 }
342 
343 static const char *sched_tunable_scaling_names[] = {
344 	"none",
345 	"logaritmic",
346 	"linear"
347 };
348 
349 static void sched_debug_header(struct seq_file *m)
350 {
351 	u64 ktime, sched_clk, cpu_clk;
352 	unsigned long flags;
353 
354 	local_irq_save(flags);
355 	ktime = ktime_to_ns(ktime_get());
356 	sched_clk = sched_clock();
357 	cpu_clk = local_clock();
358 	local_irq_restore(flags);
359 
360 	SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
361 		init_utsname()->release,
362 		(int)strcspn(init_utsname()->version, " "),
363 		init_utsname()->version);
364 
365 #define P(x) \
366 	SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
367 #define PN(x) \
368 	SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
369 	PN(ktime);
370 	PN(sched_clk);
371 	PN(cpu_clk);
372 	P(jiffies);
373 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
374 	P(sched_clock_stable());
375 #endif
376 #undef PN
377 #undef P
378 
379 	SEQ_printf(m, "\n");
380 	SEQ_printf(m, "sysctl_sched\n");
381 
382 #define P(x) \
383 	SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
384 #define PN(x) \
385 	SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
386 	PN(sysctl_sched_latency);
387 	PN(sysctl_sched_min_granularity);
388 	PN(sysctl_sched_wakeup_granularity);
389 	P(sysctl_sched_child_runs_first);
390 	P(sysctl_sched_features);
391 #undef PN
392 #undef P
393 
394 	SEQ_printf(m, "  .%-40s: %d (%s)\n",
395 		"sysctl_sched_tunable_scaling",
396 		sysctl_sched_tunable_scaling,
397 		sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
398 	SEQ_printf(m, "\n");
399 }
400 
401 static int sched_debug_show(struct seq_file *m, void *v)
402 {
403 	int cpu = (unsigned long)(v - 2);
404 
405 	if (cpu != -1)
406 		print_cpu(m, cpu);
407 	else
408 		sched_debug_header(m);
409 
410 	return 0;
411 }
412 
413 void sysrq_sched_debug_show(void)
414 {
415 	int cpu;
416 
417 	sched_debug_header(NULL);
418 	for_each_online_cpu(cpu)
419 		print_cpu(NULL, cpu);
420 
421 }
422 
423 /*
424  * This itererator needs some explanation.
425  * It returns 1 for the header position.
426  * This means 2 is cpu 0.
427  * In a hotplugged system some cpus, including cpu 0, may be missing so we have
428  * to use cpumask_* to iterate over the cpus.
429  */
430 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
431 {
432 	unsigned long n = *offset;
433 
434 	if (n == 0)
435 		return (void *) 1;
436 
437 	n--;
438 
439 	if (n > 0)
440 		n = cpumask_next(n - 1, cpu_online_mask);
441 	else
442 		n = cpumask_first(cpu_online_mask);
443 
444 	*offset = n + 1;
445 
446 	if (n < nr_cpu_ids)
447 		return (void *)(unsigned long)(n + 2);
448 	return NULL;
449 }
450 
451 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
452 {
453 	(*offset)++;
454 	return sched_debug_start(file, offset);
455 }
456 
457 static void sched_debug_stop(struct seq_file *file, void *data)
458 {
459 }
460 
461 static const struct seq_operations sched_debug_sops = {
462 	.start = sched_debug_start,
463 	.next = sched_debug_next,
464 	.stop = sched_debug_stop,
465 	.show = sched_debug_show,
466 };
467 
468 static int sched_debug_release(struct inode *inode, struct file *file)
469 {
470 	seq_release(inode, file);
471 
472 	return 0;
473 }
474 
475 static int sched_debug_open(struct inode *inode, struct file *filp)
476 {
477 	int ret = 0;
478 
479 	ret = seq_open(filp, &sched_debug_sops);
480 
481 	return ret;
482 }
483 
484 static const struct file_operations sched_debug_fops = {
485 	.open		= sched_debug_open,
486 	.read		= seq_read,
487 	.llseek		= seq_lseek,
488 	.release	= sched_debug_release,
489 };
490 
491 static int __init init_sched_debug_procfs(void)
492 {
493 	struct proc_dir_entry *pe;
494 
495 	pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
496 	if (!pe)
497 		return -ENOMEM;
498 	return 0;
499 }
500 
501 __initcall(init_sched_debug_procfs);
502 
503 #define __P(F) \
504 	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
505 #define P(F) \
506 	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
507 #define __PN(F) \
508 	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
509 #define PN(F) \
510 	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
511 
512 
513 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
514 {
515 #ifdef CONFIG_NUMA_BALANCING
516 	struct mempolicy *pol;
517 	int node, i;
518 
519 	if (p->mm)
520 		P(mm->numa_scan_seq);
521 
522 	task_lock(p);
523 	pol = p->mempolicy;
524 	if (pol && !(pol->flags & MPOL_F_MORON))
525 		pol = NULL;
526 	mpol_get(pol);
527 	task_unlock(p);
528 
529 	SEQ_printf(m, "numa_migrations, %ld\n", xchg(&p->numa_pages_migrated, 0));
530 
531 	for_each_online_node(node) {
532 		for (i = 0; i < 2; i++) {
533 			unsigned long nr_faults = -1;
534 			int cpu_current, home_node;
535 
536 			if (p->numa_faults)
537 				nr_faults = p->numa_faults[2*node + i];
538 
539 			cpu_current = !i ? (task_node(p) == node) :
540 				(pol && node_isset(node, pol->v.nodes));
541 
542 			home_node = (p->numa_preferred_nid == node);
543 
544 			SEQ_printf(m, "numa_faults, %d, %d, %d, %d, %ld\n",
545 				i, node, cpu_current, home_node, nr_faults);
546 		}
547 	}
548 
549 	mpol_put(pol);
550 #endif
551 }
552 
553 void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
554 {
555 	unsigned long nr_switches;
556 
557 	SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr(p),
558 						get_nr_threads(p));
559 	SEQ_printf(m,
560 		"---------------------------------------------------------"
561 		"----------\n");
562 #define __P(F) \
563 	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
564 #define P(F) \
565 	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
566 #define __PN(F) \
567 	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
568 #define PN(F) \
569 	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
570 
571 	PN(se.exec_start);
572 	PN(se.vruntime);
573 	PN(se.sum_exec_runtime);
574 
575 	nr_switches = p->nvcsw + p->nivcsw;
576 
577 #ifdef CONFIG_SCHEDSTATS
578 	PN(se.statistics.wait_start);
579 	PN(se.statistics.sleep_start);
580 	PN(se.statistics.block_start);
581 	PN(se.statistics.sleep_max);
582 	PN(se.statistics.block_max);
583 	PN(se.statistics.exec_max);
584 	PN(se.statistics.slice_max);
585 	PN(se.statistics.wait_max);
586 	PN(se.statistics.wait_sum);
587 	P(se.statistics.wait_count);
588 	PN(se.statistics.iowait_sum);
589 	P(se.statistics.iowait_count);
590 	P(se.nr_migrations);
591 	P(se.statistics.nr_migrations_cold);
592 	P(se.statistics.nr_failed_migrations_affine);
593 	P(se.statistics.nr_failed_migrations_running);
594 	P(se.statistics.nr_failed_migrations_hot);
595 	P(se.statistics.nr_forced_migrations);
596 	P(se.statistics.nr_wakeups);
597 	P(se.statistics.nr_wakeups_sync);
598 	P(se.statistics.nr_wakeups_migrate);
599 	P(se.statistics.nr_wakeups_local);
600 	P(se.statistics.nr_wakeups_remote);
601 	P(se.statistics.nr_wakeups_affine);
602 	P(se.statistics.nr_wakeups_affine_attempts);
603 	P(se.statistics.nr_wakeups_passive);
604 	P(se.statistics.nr_wakeups_idle);
605 
606 	{
607 		u64 avg_atom, avg_per_cpu;
608 
609 		avg_atom = p->se.sum_exec_runtime;
610 		if (nr_switches)
611 			do_div(avg_atom, nr_switches);
612 		else
613 			avg_atom = -1LL;
614 
615 		avg_per_cpu = p->se.sum_exec_runtime;
616 		if (p->se.nr_migrations) {
617 			avg_per_cpu = div64_u64(avg_per_cpu,
618 						p->se.nr_migrations);
619 		} else {
620 			avg_per_cpu = -1LL;
621 		}
622 
623 		__PN(avg_atom);
624 		__PN(avg_per_cpu);
625 	}
626 #endif
627 	__P(nr_switches);
628 	SEQ_printf(m, "%-45s:%21Ld\n",
629 		   "nr_voluntary_switches", (long long)p->nvcsw);
630 	SEQ_printf(m, "%-45s:%21Ld\n",
631 		   "nr_involuntary_switches", (long long)p->nivcsw);
632 
633 	P(se.load.weight);
634 #ifdef CONFIG_SMP
635 	P(se.avg.runnable_avg_sum);
636 	P(se.avg.runnable_avg_period);
637 	P(se.avg.load_avg_contrib);
638 	P(se.avg.decay_count);
639 #endif
640 	P(policy);
641 	P(prio);
642 #undef PN
643 #undef __PN
644 #undef P
645 #undef __P
646 
647 	{
648 		unsigned int this_cpu = raw_smp_processor_id();
649 		u64 t0, t1;
650 
651 		t0 = cpu_clock(this_cpu);
652 		t1 = cpu_clock(this_cpu);
653 		SEQ_printf(m, "%-45s:%21Ld\n",
654 			   "clock-delta", (long long)(t1-t0));
655 	}
656 
657 	sched_show_numa(p, m);
658 }
659 
660 void proc_sched_set_task(struct task_struct *p)
661 {
662 #ifdef CONFIG_SCHEDSTATS
663 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
664 #endif
665 }
666