1 /* 2 * kernel/sched/debug.c 3 * 4 * Print the CFS rbtree 5 * 6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/proc_fs.h> 14 #include <linux/sched.h> 15 #include <linux/seq_file.h> 16 #include <linux/kallsyms.h> 17 #include <linux/utsname.h> 18 #include <linux/mempolicy.h> 19 20 #include "sched.h" 21 22 static DEFINE_SPINLOCK(sched_debug_lock); 23 24 /* 25 * This allows printing both to /proc/sched_debug and 26 * to the console 27 */ 28 #define SEQ_printf(m, x...) \ 29 do { \ 30 if (m) \ 31 seq_printf(m, x); \ 32 else \ 33 printk(x); \ 34 } while (0) 35 36 /* 37 * Ease the printing of nsec fields: 38 */ 39 static long long nsec_high(unsigned long long nsec) 40 { 41 if ((long long)nsec < 0) { 42 nsec = -nsec; 43 do_div(nsec, 1000000); 44 return -nsec; 45 } 46 do_div(nsec, 1000000); 47 48 return nsec; 49 } 50 51 static unsigned long nsec_low(unsigned long long nsec) 52 { 53 if ((long long)nsec < 0) 54 nsec = -nsec; 55 56 return do_div(nsec, 1000000); 57 } 58 59 #define SPLIT_NS(x) nsec_high(x), nsec_low(x) 60 61 #ifdef CONFIG_FAIR_GROUP_SCHED 62 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) 63 { 64 struct sched_entity *se = tg->se[cpu]; 65 66 #define P(F) \ 67 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) 68 #define PN(F) \ 69 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) 70 71 if (!se) { 72 struct sched_avg *avg = &cpu_rq(cpu)->avg; 73 P(avg->runnable_avg_sum); 74 P(avg->runnable_avg_period); 75 return; 76 } 77 78 79 PN(se->exec_start); 80 PN(se->vruntime); 81 PN(se->sum_exec_runtime); 82 #ifdef CONFIG_SCHEDSTATS 83 PN(se->statistics.wait_start); 84 PN(se->statistics.sleep_start); 85 PN(se->statistics.block_start); 86 PN(se->statistics.sleep_max); 87 PN(se->statistics.block_max); 88 PN(se->statistics.exec_max); 89 PN(se->statistics.slice_max); 90 PN(se->statistics.wait_max); 91 PN(se->statistics.wait_sum); 92 P(se->statistics.wait_count); 93 #endif 94 P(se->load.weight); 95 #ifdef CONFIG_SMP 96 P(se->avg.runnable_avg_sum); 97 P(se->avg.runnable_avg_period); 98 P(se->avg.load_avg_contrib); 99 P(se->avg.decay_count); 100 #endif 101 #undef PN 102 #undef P 103 } 104 #endif 105 106 #ifdef CONFIG_CGROUP_SCHED 107 static char group_path[PATH_MAX]; 108 109 static char *task_group_path(struct task_group *tg) 110 { 111 if (autogroup_path(tg, group_path, PATH_MAX)) 112 return group_path; 113 114 return cgroup_path(tg->css.cgroup, group_path, PATH_MAX); 115 } 116 #endif 117 118 static void 119 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) 120 { 121 if (rq->curr == p) 122 SEQ_printf(m, "R"); 123 else 124 SEQ_printf(m, " "); 125 126 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ", 127 p->comm, task_pid_nr(p), 128 SPLIT_NS(p->se.vruntime), 129 (long long)(p->nvcsw + p->nivcsw), 130 p->prio); 131 #ifdef CONFIG_SCHEDSTATS 132 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", 133 SPLIT_NS(p->se.vruntime), 134 SPLIT_NS(p->se.sum_exec_runtime), 135 SPLIT_NS(p->se.statistics.sum_sleep_runtime)); 136 #else 137 SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld", 138 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L); 139 #endif 140 #ifdef CONFIG_NUMA_BALANCING 141 SEQ_printf(m, " %d", task_node(p)); 142 #endif 143 #ifdef CONFIG_CGROUP_SCHED 144 SEQ_printf(m, " %s", task_group_path(task_group(p))); 145 #endif 146 147 SEQ_printf(m, "\n"); 148 } 149 150 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) 151 { 152 struct task_struct *g, *p; 153 154 SEQ_printf(m, 155 "\nrunnable tasks:\n" 156 " task PID tree-key switches prio" 157 " exec-runtime sum-exec sum-sleep\n" 158 "------------------------------------------------------" 159 "----------------------------------------------------\n"); 160 161 rcu_read_lock(); 162 for_each_process_thread(g, p) { 163 if (task_cpu(p) != rq_cpu) 164 continue; 165 166 print_task(m, rq, p); 167 } 168 rcu_read_unlock(); 169 } 170 171 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 172 { 173 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, 174 spread, rq0_min_vruntime, spread0; 175 struct rq *rq = cpu_rq(cpu); 176 struct sched_entity *last; 177 unsigned long flags; 178 179 #ifdef CONFIG_FAIR_GROUP_SCHED 180 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg)); 181 #else 182 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu); 183 #endif 184 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", 185 SPLIT_NS(cfs_rq->exec_clock)); 186 187 raw_spin_lock_irqsave(&rq->lock, flags); 188 if (cfs_rq->rb_leftmost) 189 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; 190 last = __pick_last_entity(cfs_rq); 191 if (last) 192 max_vruntime = last->vruntime; 193 min_vruntime = cfs_rq->min_vruntime; 194 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; 195 raw_spin_unlock_irqrestore(&rq->lock, flags); 196 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", 197 SPLIT_NS(MIN_vruntime)); 198 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", 199 SPLIT_NS(min_vruntime)); 200 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", 201 SPLIT_NS(max_vruntime)); 202 spread = max_vruntime - MIN_vruntime; 203 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", 204 SPLIT_NS(spread)); 205 spread0 = min_vruntime - rq0_min_vruntime; 206 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", 207 SPLIT_NS(spread0)); 208 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", 209 cfs_rq->nr_spread_over); 210 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); 211 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); 212 #ifdef CONFIG_SMP 213 SEQ_printf(m, " .%-30s: %ld\n", "runnable_load_avg", 214 cfs_rq->runnable_load_avg); 215 SEQ_printf(m, " .%-30s: %ld\n", "blocked_load_avg", 216 cfs_rq->blocked_load_avg); 217 #ifdef CONFIG_FAIR_GROUP_SCHED 218 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_contrib", 219 cfs_rq->tg_load_contrib); 220 SEQ_printf(m, " .%-30s: %d\n", "tg_runnable_contrib", 221 cfs_rq->tg_runnable_contrib); 222 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", 223 atomic_long_read(&cfs_rq->tg->load_avg)); 224 SEQ_printf(m, " .%-30s: %d\n", "tg->runnable_avg", 225 atomic_read(&cfs_rq->tg->runnable_avg)); 226 #endif 227 #endif 228 #ifdef CONFIG_CFS_BANDWIDTH 229 SEQ_printf(m, " .%-30s: %d\n", "tg->cfs_bandwidth.timer_active", 230 cfs_rq->tg->cfs_bandwidth.timer_active); 231 SEQ_printf(m, " .%-30s: %d\n", "throttled", 232 cfs_rq->throttled); 233 SEQ_printf(m, " .%-30s: %d\n", "throttle_count", 234 cfs_rq->throttle_count); 235 #endif 236 237 #ifdef CONFIG_FAIR_GROUP_SCHED 238 print_cfs_group_stats(m, cpu, cfs_rq->tg); 239 #endif 240 } 241 242 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) 243 { 244 #ifdef CONFIG_RT_GROUP_SCHED 245 SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg)); 246 #else 247 SEQ_printf(m, "\nrt_rq[%d]:\n", cpu); 248 #endif 249 250 #define P(x) \ 251 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) 252 #define PN(x) \ 253 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) 254 255 P(rt_nr_running); 256 P(rt_throttled); 257 PN(rt_time); 258 PN(rt_runtime); 259 260 #undef PN 261 #undef P 262 } 263 264 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq) 265 { 266 SEQ_printf(m, "\ndl_rq[%d]:\n", cpu); 267 SEQ_printf(m, " .%-30s: %ld\n", "dl_nr_running", dl_rq->dl_nr_running); 268 } 269 270 extern __read_mostly int sched_clock_running; 271 272 static void print_cpu(struct seq_file *m, int cpu) 273 { 274 struct rq *rq = cpu_rq(cpu); 275 unsigned long flags; 276 277 #ifdef CONFIG_X86 278 { 279 unsigned int freq = cpu_khz ? : 1; 280 281 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", 282 cpu, freq / 1000, (freq % 1000)); 283 } 284 #else 285 SEQ_printf(m, "cpu#%d\n", cpu); 286 #endif 287 288 #define P(x) \ 289 do { \ 290 if (sizeof(rq->x) == 4) \ 291 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \ 292 else \ 293 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ 294 } while (0) 295 296 #define PN(x) \ 297 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) 298 299 P(nr_running); 300 SEQ_printf(m, " .%-30s: %lu\n", "load", 301 rq->load.weight); 302 P(nr_switches); 303 P(nr_load_updates); 304 P(nr_uninterruptible); 305 PN(next_balance); 306 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); 307 PN(clock); 308 PN(clock_task); 309 P(cpu_load[0]); 310 P(cpu_load[1]); 311 P(cpu_load[2]); 312 P(cpu_load[3]); 313 P(cpu_load[4]); 314 #undef P 315 #undef PN 316 317 #ifdef CONFIG_SCHEDSTATS 318 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n); 319 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); 320 321 P(yld_count); 322 323 P(sched_count); 324 P(sched_goidle); 325 #ifdef CONFIG_SMP 326 P64(avg_idle); 327 P64(max_idle_balance_cost); 328 #endif 329 330 P(ttwu_count); 331 P(ttwu_local); 332 333 #undef P 334 #undef P64 335 #endif 336 spin_lock_irqsave(&sched_debug_lock, flags); 337 print_cfs_stats(m, cpu); 338 print_rt_stats(m, cpu); 339 print_dl_stats(m, cpu); 340 341 print_rq(m, rq, cpu); 342 spin_unlock_irqrestore(&sched_debug_lock, flags); 343 SEQ_printf(m, "\n"); 344 } 345 346 static const char *sched_tunable_scaling_names[] = { 347 "none", 348 "logaritmic", 349 "linear" 350 }; 351 352 static void sched_debug_header(struct seq_file *m) 353 { 354 u64 ktime, sched_clk, cpu_clk; 355 unsigned long flags; 356 357 local_irq_save(flags); 358 ktime = ktime_to_ns(ktime_get()); 359 sched_clk = sched_clock(); 360 cpu_clk = local_clock(); 361 local_irq_restore(flags); 362 363 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", 364 init_utsname()->release, 365 (int)strcspn(init_utsname()->version, " "), 366 init_utsname()->version); 367 368 #define P(x) \ 369 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) 370 #define PN(x) \ 371 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 372 PN(ktime); 373 PN(sched_clk); 374 PN(cpu_clk); 375 P(jiffies); 376 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 377 P(sched_clock_stable()); 378 #endif 379 #undef PN 380 #undef P 381 382 SEQ_printf(m, "\n"); 383 SEQ_printf(m, "sysctl_sched\n"); 384 385 #define P(x) \ 386 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) 387 #define PN(x) \ 388 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 389 PN(sysctl_sched_latency); 390 PN(sysctl_sched_min_granularity); 391 PN(sysctl_sched_wakeup_granularity); 392 P(sysctl_sched_child_runs_first); 393 P(sysctl_sched_features); 394 #undef PN 395 #undef P 396 397 SEQ_printf(m, " .%-40s: %d (%s)\n", 398 "sysctl_sched_tunable_scaling", 399 sysctl_sched_tunable_scaling, 400 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); 401 SEQ_printf(m, "\n"); 402 } 403 404 static int sched_debug_show(struct seq_file *m, void *v) 405 { 406 int cpu = (unsigned long)(v - 2); 407 408 if (cpu != -1) 409 print_cpu(m, cpu); 410 else 411 sched_debug_header(m); 412 413 return 0; 414 } 415 416 void sysrq_sched_debug_show(void) 417 { 418 int cpu; 419 420 sched_debug_header(NULL); 421 for_each_online_cpu(cpu) 422 print_cpu(NULL, cpu); 423 424 } 425 426 /* 427 * This itererator needs some explanation. 428 * It returns 1 for the header position. 429 * This means 2 is cpu 0. 430 * In a hotplugged system some cpus, including cpu 0, may be missing so we have 431 * to use cpumask_* to iterate over the cpus. 432 */ 433 static void *sched_debug_start(struct seq_file *file, loff_t *offset) 434 { 435 unsigned long n = *offset; 436 437 if (n == 0) 438 return (void *) 1; 439 440 n--; 441 442 if (n > 0) 443 n = cpumask_next(n - 1, cpu_online_mask); 444 else 445 n = cpumask_first(cpu_online_mask); 446 447 *offset = n + 1; 448 449 if (n < nr_cpu_ids) 450 return (void *)(unsigned long)(n + 2); 451 return NULL; 452 } 453 454 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset) 455 { 456 (*offset)++; 457 return sched_debug_start(file, offset); 458 } 459 460 static void sched_debug_stop(struct seq_file *file, void *data) 461 { 462 } 463 464 static const struct seq_operations sched_debug_sops = { 465 .start = sched_debug_start, 466 .next = sched_debug_next, 467 .stop = sched_debug_stop, 468 .show = sched_debug_show, 469 }; 470 471 static int sched_debug_release(struct inode *inode, struct file *file) 472 { 473 seq_release(inode, file); 474 475 return 0; 476 } 477 478 static int sched_debug_open(struct inode *inode, struct file *filp) 479 { 480 int ret = 0; 481 482 ret = seq_open(filp, &sched_debug_sops); 483 484 return ret; 485 } 486 487 static const struct file_operations sched_debug_fops = { 488 .open = sched_debug_open, 489 .read = seq_read, 490 .llseek = seq_lseek, 491 .release = sched_debug_release, 492 }; 493 494 static int __init init_sched_debug_procfs(void) 495 { 496 struct proc_dir_entry *pe; 497 498 pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops); 499 if (!pe) 500 return -ENOMEM; 501 return 0; 502 } 503 504 __initcall(init_sched_debug_procfs); 505 506 #define __P(F) \ 507 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) 508 #define P(F) \ 509 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) 510 #define __PN(F) \ 511 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 512 #define PN(F) \ 513 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 514 515 516 static void sched_show_numa(struct task_struct *p, struct seq_file *m) 517 { 518 #ifdef CONFIG_NUMA_BALANCING 519 struct mempolicy *pol; 520 int node, i; 521 522 if (p->mm) 523 P(mm->numa_scan_seq); 524 525 task_lock(p); 526 pol = p->mempolicy; 527 if (pol && !(pol->flags & MPOL_F_MORON)) 528 pol = NULL; 529 mpol_get(pol); 530 task_unlock(p); 531 532 SEQ_printf(m, "numa_migrations, %ld\n", xchg(&p->numa_pages_migrated, 0)); 533 534 for_each_online_node(node) { 535 for (i = 0; i < 2; i++) { 536 unsigned long nr_faults = -1; 537 int cpu_current, home_node; 538 539 if (p->numa_faults) 540 nr_faults = p->numa_faults[2*node + i]; 541 542 cpu_current = !i ? (task_node(p) == node) : 543 (pol && node_isset(node, pol->v.nodes)); 544 545 home_node = (p->numa_preferred_nid == node); 546 547 SEQ_printf(m, "numa_faults_memory, %d, %d, %d, %d, %ld\n", 548 i, node, cpu_current, home_node, nr_faults); 549 } 550 } 551 552 mpol_put(pol); 553 #endif 554 } 555 556 void proc_sched_show_task(struct task_struct *p, struct seq_file *m) 557 { 558 unsigned long nr_switches; 559 560 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr(p), 561 get_nr_threads(p)); 562 SEQ_printf(m, 563 "---------------------------------------------------------" 564 "----------\n"); 565 #define __P(F) \ 566 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) 567 #define P(F) \ 568 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) 569 #define __PN(F) \ 570 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 571 #define PN(F) \ 572 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 573 574 PN(se.exec_start); 575 PN(se.vruntime); 576 PN(se.sum_exec_runtime); 577 578 nr_switches = p->nvcsw + p->nivcsw; 579 580 #ifdef CONFIG_SCHEDSTATS 581 PN(se.statistics.wait_start); 582 PN(se.statistics.sleep_start); 583 PN(se.statistics.block_start); 584 PN(se.statistics.sleep_max); 585 PN(se.statistics.block_max); 586 PN(se.statistics.exec_max); 587 PN(se.statistics.slice_max); 588 PN(se.statistics.wait_max); 589 PN(se.statistics.wait_sum); 590 P(se.statistics.wait_count); 591 PN(se.statistics.iowait_sum); 592 P(se.statistics.iowait_count); 593 P(se.nr_migrations); 594 P(se.statistics.nr_migrations_cold); 595 P(se.statistics.nr_failed_migrations_affine); 596 P(se.statistics.nr_failed_migrations_running); 597 P(se.statistics.nr_failed_migrations_hot); 598 P(se.statistics.nr_forced_migrations); 599 P(se.statistics.nr_wakeups); 600 P(se.statistics.nr_wakeups_sync); 601 P(se.statistics.nr_wakeups_migrate); 602 P(se.statistics.nr_wakeups_local); 603 P(se.statistics.nr_wakeups_remote); 604 P(se.statistics.nr_wakeups_affine); 605 P(se.statistics.nr_wakeups_affine_attempts); 606 P(se.statistics.nr_wakeups_passive); 607 P(se.statistics.nr_wakeups_idle); 608 609 { 610 u64 avg_atom, avg_per_cpu; 611 612 avg_atom = p->se.sum_exec_runtime; 613 if (nr_switches) 614 avg_atom = div64_ul(avg_atom, nr_switches); 615 else 616 avg_atom = -1LL; 617 618 avg_per_cpu = p->se.sum_exec_runtime; 619 if (p->se.nr_migrations) { 620 avg_per_cpu = div64_u64(avg_per_cpu, 621 p->se.nr_migrations); 622 } else { 623 avg_per_cpu = -1LL; 624 } 625 626 __PN(avg_atom); 627 __PN(avg_per_cpu); 628 } 629 #endif 630 __P(nr_switches); 631 SEQ_printf(m, "%-45s:%21Ld\n", 632 "nr_voluntary_switches", (long long)p->nvcsw); 633 SEQ_printf(m, "%-45s:%21Ld\n", 634 "nr_involuntary_switches", (long long)p->nivcsw); 635 636 P(se.load.weight); 637 #ifdef CONFIG_SMP 638 P(se.avg.runnable_avg_sum); 639 P(se.avg.runnable_avg_period); 640 P(se.avg.load_avg_contrib); 641 P(se.avg.decay_count); 642 #endif 643 P(policy); 644 P(prio); 645 #undef PN 646 #undef __PN 647 #undef P 648 #undef __P 649 650 { 651 unsigned int this_cpu = raw_smp_processor_id(); 652 u64 t0, t1; 653 654 t0 = cpu_clock(this_cpu); 655 t1 = cpu_clock(this_cpu); 656 SEQ_printf(m, "%-45s:%21Ld\n", 657 "clock-delta", (long long)(t1-t0)); 658 } 659 660 sched_show_numa(p, m); 661 } 662 663 void proc_sched_set_task(struct task_struct *p) 664 { 665 #ifdef CONFIG_SCHEDSTATS 666 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 667 #endif 668 } 669