1 /* 2 * kernel/sched/debug.c 3 * 4 * Print the CFS rbtree and other debugging details 5 * 6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 #include "sched.h" 13 14 static DEFINE_SPINLOCK(sched_debug_lock); 15 16 /* 17 * This allows printing both to /proc/sched_debug and 18 * to the console 19 */ 20 #define SEQ_printf(m, x...) \ 21 do { \ 22 if (m) \ 23 seq_printf(m, x); \ 24 else \ 25 pr_cont(x); \ 26 } while (0) 27 28 /* 29 * Ease the printing of nsec fields: 30 */ 31 static long long nsec_high(unsigned long long nsec) 32 { 33 if ((long long)nsec < 0) { 34 nsec = -nsec; 35 do_div(nsec, 1000000); 36 return -nsec; 37 } 38 do_div(nsec, 1000000); 39 40 return nsec; 41 } 42 43 static unsigned long nsec_low(unsigned long long nsec) 44 { 45 if ((long long)nsec < 0) 46 nsec = -nsec; 47 48 return do_div(nsec, 1000000); 49 } 50 51 #define SPLIT_NS(x) nsec_high(x), nsec_low(x) 52 53 #define SCHED_FEAT(name, enabled) \ 54 #name , 55 56 static const char * const sched_feat_names[] = { 57 #include "features.h" 58 }; 59 60 #undef SCHED_FEAT 61 62 static int sched_feat_show(struct seq_file *m, void *v) 63 { 64 int i; 65 66 for (i = 0; i < __SCHED_FEAT_NR; i++) { 67 if (!(sysctl_sched_features & (1UL << i))) 68 seq_puts(m, "NO_"); 69 seq_printf(m, "%s ", sched_feat_names[i]); 70 } 71 seq_puts(m, "\n"); 72 73 return 0; 74 } 75 76 #ifdef HAVE_JUMP_LABEL 77 78 #define jump_label_key__true STATIC_KEY_INIT_TRUE 79 #define jump_label_key__false STATIC_KEY_INIT_FALSE 80 81 #define SCHED_FEAT(name, enabled) \ 82 jump_label_key__##enabled , 83 84 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 85 #include "features.h" 86 }; 87 88 #undef SCHED_FEAT 89 90 static void sched_feat_disable(int i) 91 { 92 static_key_disable_cpuslocked(&sched_feat_keys[i]); 93 } 94 95 static void sched_feat_enable(int i) 96 { 97 static_key_enable_cpuslocked(&sched_feat_keys[i]); 98 } 99 #else 100 static void sched_feat_disable(int i) { }; 101 static void sched_feat_enable(int i) { }; 102 #endif /* HAVE_JUMP_LABEL */ 103 104 static int sched_feat_set(char *cmp) 105 { 106 int i; 107 int neg = 0; 108 109 if (strncmp(cmp, "NO_", 3) == 0) { 110 neg = 1; 111 cmp += 3; 112 } 113 114 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp); 115 if (i < 0) 116 return i; 117 118 if (neg) { 119 sysctl_sched_features &= ~(1UL << i); 120 sched_feat_disable(i); 121 } else { 122 sysctl_sched_features |= (1UL << i); 123 sched_feat_enable(i); 124 } 125 126 return 0; 127 } 128 129 static ssize_t 130 sched_feat_write(struct file *filp, const char __user *ubuf, 131 size_t cnt, loff_t *ppos) 132 { 133 char buf[64]; 134 char *cmp; 135 int ret; 136 struct inode *inode; 137 138 if (cnt > 63) 139 cnt = 63; 140 141 if (copy_from_user(&buf, ubuf, cnt)) 142 return -EFAULT; 143 144 buf[cnt] = 0; 145 cmp = strstrip(buf); 146 147 /* Ensure the static_key remains in a consistent state */ 148 inode = file_inode(filp); 149 cpus_read_lock(); 150 inode_lock(inode); 151 ret = sched_feat_set(cmp); 152 inode_unlock(inode); 153 cpus_read_unlock(); 154 if (ret < 0) 155 return ret; 156 157 *ppos += cnt; 158 159 return cnt; 160 } 161 162 static int sched_feat_open(struct inode *inode, struct file *filp) 163 { 164 return single_open(filp, sched_feat_show, NULL); 165 } 166 167 static const struct file_operations sched_feat_fops = { 168 .open = sched_feat_open, 169 .write = sched_feat_write, 170 .read = seq_read, 171 .llseek = seq_lseek, 172 .release = single_release, 173 }; 174 175 __read_mostly bool sched_debug_enabled; 176 177 static __init int sched_init_debug(void) 178 { 179 debugfs_create_file("sched_features", 0644, NULL, NULL, 180 &sched_feat_fops); 181 182 debugfs_create_bool("sched_debug", 0644, NULL, 183 &sched_debug_enabled); 184 185 return 0; 186 } 187 late_initcall(sched_init_debug); 188 189 #ifdef CONFIG_SMP 190 191 #ifdef CONFIG_SYSCTL 192 193 static struct ctl_table sd_ctl_dir[] = { 194 { 195 .procname = "sched_domain", 196 .mode = 0555, 197 }, 198 {} 199 }; 200 201 static struct ctl_table sd_ctl_root[] = { 202 { 203 .procname = "kernel", 204 .mode = 0555, 205 .child = sd_ctl_dir, 206 }, 207 {} 208 }; 209 210 static struct ctl_table *sd_alloc_ctl_entry(int n) 211 { 212 struct ctl_table *entry = 213 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 214 215 return entry; 216 } 217 218 static void sd_free_ctl_entry(struct ctl_table **tablep) 219 { 220 struct ctl_table *entry; 221 222 /* 223 * In the intermediate directories, both the child directory and 224 * procname are dynamically allocated and could fail but the mode 225 * will always be set. In the lowest directory the names are 226 * static strings and all have proc handlers. 227 */ 228 for (entry = *tablep; entry->mode; entry++) { 229 if (entry->child) 230 sd_free_ctl_entry(&entry->child); 231 if (entry->proc_handler == NULL) 232 kfree(entry->procname); 233 } 234 235 kfree(*tablep); 236 *tablep = NULL; 237 } 238 239 static int min_load_idx = 0; 240 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 241 242 static void 243 set_table_entry(struct ctl_table *entry, 244 const char *procname, void *data, int maxlen, 245 umode_t mode, proc_handler *proc_handler, 246 bool load_idx) 247 { 248 entry->procname = procname; 249 entry->data = data; 250 entry->maxlen = maxlen; 251 entry->mode = mode; 252 entry->proc_handler = proc_handler; 253 254 if (load_idx) { 255 entry->extra1 = &min_load_idx; 256 entry->extra2 = &max_load_idx; 257 } 258 } 259 260 static struct ctl_table * 261 sd_alloc_ctl_domain_table(struct sched_domain *sd) 262 { 263 struct ctl_table *table = sd_alloc_ctl_entry(14); 264 265 if (table == NULL) 266 return NULL; 267 268 set_table_entry(&table[0] , "min_interval", &sd->min_interval, sizeof(long), 0644, proc_doulongvec_minmax, false); 269 set_table_entry(&table[1] , "max_interval", &sd->max_interval, sizeof(long), 0644, proc_doulongvec_minmax, false); 270 set_table_entry(&table[2] , "busy_idx", &sd->busy_idx, sizeof(int) , 0644, proc_dointvec_minmax, true ); 271 set_table_entry(&table[3] , "idle_idx", &sd->idle_idx, sizeof(int) , 0644, proc_dointvec_minmax, true ); 272 set_table_entry(&table[4] , "newidle_idx", &sd->newidle_idx, sizeof(int) , 0644, proc_dointvec_minmax, true ); 273 set_table_entry(&table[5] , "wake_idx", &sd->wake_idx, sizeof(int) , 0644, proc_dointvec_minmax, true ); 274 set_table_entry(&table[6] , "forkexec_idx", &sd->forkexec_idx, sizeof(int) , 0644, proc_dointvec_minmax, true ); 275 set_table_entry(&table[7] , "busy_factor", &sd->busy_factor, sizeof(int) , 0644, proc_dointvec_minmax, false); 276 set_table_entry(&table[8] , "imbalance_pct", &sd->imbalance_pct, sizeof(int) , 0644, proc_dointvec_minmax, false); 277 set_table_entry(&table[9] , "cache_nice_tries", &sd->cache_nice_tries, sizeof(int) , 0644, proc_dointvec_minmax, false); 278 set_table_entry(&table[10], "flags", &sd->flags, sizeof(int) , 0644, proc_dointvec_minmax, false); 279 set_table_entry(&table[11], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax, false); 280 set_table_entry(&table[12], "name", sd->name, CORENAME_MAX_SIZE, 0444, proc_dostring, false); 281 /* &table[13] is terminator */ 282 283 return table; 284 } 285 286 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 287 { 288 struct ctl_table *entry, *table; 289 struct sched_domain *sd; 290 int domain_num = 0, i; 291 char buf[32]; 292 293 for_each_domain(cpu, sd) 294 domain_num++; 295 entry = table = sd_alloc_ctl_entry(domain_num + 1); 296 if (table == NULL) 297 return NULL; 298 299 i = 0; 300 for_each_domain(cpu, sd) { 301 snprintf(buf, 32, "domain%d", i); 302 entry->procname = kstrdup(buf, GFP_KERNEL); 303 entry->mode = 0555; 304 entry->child = sd_alloc_ctl_domain_table(sd); 305 entry++; 306 i++; 307 } 308 return table; 309 } 310 311 static cpumask_var_t sd_sysctl_cpus; 312 static struct ctl_table_header *sd_sysctl_header; 313 314 void register_sched_domain_sysctl(void) 315 { 316 static struct ctl_table *cpu_entries; 317 static struct ctl_table **cpu_idx; 318 char buf[32]; 319 int i; 320 321 if (!cpu_entries) { 322 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1); 323 if (!cpu_entries) 324 return; 325 326 WARN_ON(sd_ctl_dir[0].child); 327 sd_ctl_dir[0].child = cpu_entries; 328 } 329 330 if (!cpu_idx) { 331 struct ctl_table *e = cpu_entries; 332 333 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL); 334 if (!cpu_idx) 335 return; 336 337 /* deal with sparse possible map */ 338 for_each_possible_cpu(i) { 339 cpu_idx[i] = e; 340 e++; 341 } 342 } 343 344 if (!cpumask_available(sd_sysctl_cpus)) { 345 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL)) 346 return; 347 348 /* init to possible to not have holes in @cpu_entries */ 349 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask); 350 } 351 352 for_each_cpu(i, sd_sysctl_cpus) { 353 struct ctl_table *e = cpu_idx[i]; 354 355 if (e->child) 356 sd_free_ctl_entry(&e->child); 357 358 if (!e->procname) { 359 snprintf(buf, 32, "cpu%d", i); 360 e->procname = kstrdup(buf, GFP_KERNEL); 361 } 362 e->mode = 0555; 363 e->child = sd_alloc_ctl_cpu_table(i); 364 365 __cpumask_clear_cpu(i, sd_sysctl_cpus); 366 } 367 368 WARN_ON(sd_sysctl_header); 369 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 370 } 371 372 void dirty_sched_domain_sysctl(int cpu) 373 { 374 if (cpumask_available(sd_sysctl_cpus)) 375 __cpumask_set_cpu(cpu, sd_sysctl_cpus); 376 } 377 378 /* may be called multiple times per register */ 379 void unregister_sched_domain_sysctl(void) 380 { 381 unregister_sysctl_table(sd_sysctl_header); 382 sd_sysctl_header = NULL; 383 } 384 #endif /* CONFIG_SYSCTL */ 385 #endif /* CONFIG_SMP */ 386 387 #ifdef CONFIG_FAIR_GROUP_SCHED 388 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) 389 { 390 struct sched_entity *se = tg->se[cpu]; 391 392 #define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) 393 #define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F)) 394 #define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) 395 #define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F))) 396 397 if (!se) 398 return; 399 400 PN(se->exec_start); 401 PN(se->vruntime); 402 PN(se->sum_exec_runtime); 403 404 if (schedstat_enabled()) { 405 PN_SCHEDSTAT(se->statistics.wait_start); 406 PN_SCHEDSTAT(se->statistics.sleep_start); 407 PN_SCHEDSTAT(se->statistics.block_start); 408 PN_SCHEDSTAT(se->statistics.sleep_max); 409 PN_SCHEDSTAT(se->statistics.block_max); 410 PN_SCHEDSTAT(se->statistics.exec_max); 411 PN_SCHEDSTAT(se->statistics.slice_max); 412 PN_SCHEDSTAT(se->statistics.wait_max); 413 PN_SCHEDSTAT(se->statistics.wait_sum); 414 P_SCHEDSTAT(se->statistics.wait_count); 415 } 416 417 P(se->load.weight); 418 P(se->runnable_weight); 419 #ifdef CONFIG_SMP 420 P(se->avg.load_avg); 421 P(se->avg.util_avg); 422 P(se->avg.runnable_load_avg); 423 #endif 424 425 #undef PN_SCHEDSTAT 426 #undef PN 427 #undef P_SCHEDSTAT 428 #undef P 429 } 430 #endif 431 432 #ifdef CONFIG_CGROUP_SCHED 433 static char group_path[PATH_MAX]; 434 435 static char *task_group_path(struct task_group *tg) 436 { 437 if (autogroup_path(tg, group_path, PATH_MAX)) 438 return group_path; 439 440 cgroup_path(tg->css.cgroup, group_path, PATH_MAX); 441 442 return group_path; 443 } 444 #endif 445 446 static void 447 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) 448 { 449 if (rq->curr == p) 450 SEQ_printf(m, ">R"); 451 else 452 SEQ_printf(m, " %c", task_state_to_char(p)); 453 454 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ", 455 p->comm, task_pid_nr(p), 456 SPLIT_NS(p->se.vruntime), 457 (long long)(p->nvcsw + p->nivcsw), 458 p->prio); 459 460 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", 461 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)), 462 SPLIT_NS(p->se.sum_exec_runtime), 463 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime))); 464 465 #ifdef CONFIG_NUMA_BALANCING 466 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p)); 467 #endif 468 #ifdef CONFIG_CGROUP_SCHED 469 SEQ_printf(m, " %s", task_group_path(task_group(p))); 470 #endif 471 472 SEQ_printf(m, "\n"); 473 } 474 475 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) 476 { 477 struct task_struct *g, *p; 478 479 SEQ_printf(m, "\n"); 480 SEQ_printf(m, "runnable tasks:\n"); 481 SEQ_printf(m, " S task PID tree-key switches prio" 482 " wait-time sum-exec sum-sleep\n"); 483 SEQ_printf(m, "-------------------------------------------------------" 484 "----------------------------------------------------\n"); 485 486 rcu_read_lock(); 487 for_each_process_thread(g, p) { 488 if (task_cpu(p) != rq_cpu) 489 continue; 490 491 print_task(m, rq, p); 492 } 493 rcu_read_unlock(); 494 } 495 496 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 497 { 498 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, 499 spread, rq0_min_vruntime, spread0; 500 struct rq *rq = cpu_rq(cpu); 501 struct sched_entity *last; 502 unsigned long flags; 503 504 #ifdef CONFIG_FAIR_GROUP_SCHED 505 SEQ_printf(m, "\n"); 506 SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg)); 507 #else 508 SEQ_printf(m, "\n"); 509 SEQ_printf(m, "cfs_rq[%d]:\n", cpu); 510 #endif 511 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", 512 SPLIT_NS(cfs_rq->exec_clock)); 513 514 raw_spin_lock_irqsave(&rq->lock, flags); 515 if (rb_first_cached(&cfs_rq->tasks_timeline)) 516 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; 517 last = __pick_last_entity(cfs_rq); 518 if (last) 519 max_vruntime = last->vruntime; 520 min_vruntime = cfs_rq->min_vruntime; 521 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; 522 raw_spin_unlock_irqrestore(&rq->lock, flags); 523 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", 524 SPLIT_NS(MIN_vruntime)); 525 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", 526 SPLIT_NS(min_vruntime)); 527 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", 528 SPLIT_NS(max_vruntime)); 529 spread = max_vruntime - MIN_vruntime; 530 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", 531 SPLIT_NS(spread)); 532 spread0 = min_vruntime - rq0_min_vruntime; 533 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", 534 SPLIT_NS(spread0)); 535 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", 536 cfs_rq->nr_spread_over); 537 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); 538 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); 539 #ifdef CONFIG_SMP 540 SEQ_printf(m, " .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight); 541 SEQ_printf(m, " .%-30s: %lu\n", "load_avg", 542 cfs_rq->avg.load_avg); 543 SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg", 544 cfs_rq->avg.runnable_load_avg); 545 SEQ_printf(m, " .%-30s: %lu\n", "util_avg", 546 cfs_rq->avg.util_avg); 547 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued", 548 cfs_rq->avg.util_est.enqueued); 549 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg", 550 cfs_rq->removed.load_avg); 551 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg", 552 cfs_rq->removed.util_avg); 553 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_sum", 554 cfs_rq->removed.runnable_sum); 555 #ifdef CONFIG_FAIR_GROUP_SCHED 556 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib", 557 cfs_rq->tg_load_avg_contrib); 558 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", 559 atomic_long_read(&cfs_rq->tg->load_avg)); 560 #endif 561 #endif 562 #ifdef CONFIG_CFS_BANDWIDTH 563 SEQ_printf(m, " .%-30s: %d\n", "throttled", 564 cfs_rq->throttled); 565 SEQ_printf(m, " .%-30s: %d\n", "throttle_count", 566 cfs_rq->throttle_count); 567 #endif 568 569 #ifdef CONFIG_FAIR_GROUP_SCHED 570 print_cfs_group_stats(m, cpu, cfs_rq->tg); 571 #endif 572 } 573 574 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) 575 { 576 #ifdef CONFIG_RT_GROUP_SCHED 577 SEQ_printf(m, "\n"); 578 SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg)); 579 #else 580 SEQ_printf(m, "\n"); 581 SEQ_printf(m, "rt_rq[%d]:\n", cpu); 582 #endif 583 584 #define P(x) \ 585 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) 586 #define PU(x) \ 587 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x)) 588 #define PN(x) \ 589 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) 590 591 PU(rt_nr_running); 592 #ifdef CONFIG_SMP 593 PU(rt_nr_migratory); 594 #endif 595 P(rt_throttled); 596 PN(rt_time); 597 PN(rt_runtime); 598 599 #undef PN 600 #undef PU 601 #undef P 602 } 603 604 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq) 605 { 606 struct dl_bw *dl_bw; 607 608 SEQ_printf(m, "\n"); 609 SEQ_printf(m, "dl_rq[%d]:\n", cpu); 610 611 #define PU(x) \ 612 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x)) 613 614 PU(dl_nr_running); 615 #ifdef CONFIG_SMP 616 PU(dl_nr_migratory); 617 dl_bw = &cpu_rq(cpu)->rd->dl_bw; 618 #else 619 dl_bw = &dl_rq->dl_bw; 620 #endif 621 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw); 622 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw); 623 624 #undef PU 625 } 626 627 static void print_cpu(struct seq_file *m, int cpu) 628 { 629 struct rq *rq = cpu_rq(cpu); 630 unsigned long flags; 631 632 #ifdef CONFIG_X86 633 { 634 unsigned int freq = cpu_khz ? : 1; 635 636 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", 637 cpu, freq / 1000, (freq % 1000)); 638 } 639 #else 640 SEQ_printf(m, "cpu#%d\n", cpu); 641 #endif 642 643 #define P(x) \ 644 do { \ 645 if (sizeof(rq->x) == 4) \ 646 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \ 647 else \ 648 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ 649 } while (0) 650 651 #define PN(x) \ 652 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) 653 654 P(nr_running); 655 SEQ_printf(m, " .%-30s: %lu\n", "load", 656 rq->load.weight); 657 P(nr_switches); 658 P(nr_load_updates); 659 P(nr_uninterruptible); 660 PN(next_balance); 661 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); 662 PN(clock); 663 PN(clock_task); 664 P(cpu_load[0]); 665 P(cpu_load[1]); 666 P(cpu_load[2]); 667 P(cpu_load[3]); 668 P(cpu_load[4]); 669 #undef P 670 #undef PN 671 672 #ifdef CONFIG_SMP 673 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); 674 P64(avg_idle); 675 P64(max_idle_balance_cost); 676 #undef P64 677 #endif 678 679 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n)); 680 if (schedstat_enabled()) { 681 P(yld_count); 682 P(sched_count); 683 P(sched_goidle); 684 P(ttwu_count); 685 P(ttwu_local); 686 } 687 #undef P 688 689 spin_lock_irqsave(&sched_debug_lock, flags); 690 print_cfs_stats(m, cpu); 691 print_rt_stats(m, cpu); 692 print_dl_stats(m, cpu); 693 694 print_rq(m, rq, cpu); 695 spin_unlock_irqrestore(&sched_debug_lock, flags); 696 SEQ_printf(m, "\n"); 697 } 698 699 static const char *sched_tunable_scaling_names[] = { 700 "none", 701 "logaritmic", 702 "linear" 703 }; 704 705 static void sched_debug_header(struct seq_file *m) 706 { 707 u64 ktime, sched_clk, cpu_clk; 708 unsigned long flags; 709 710 local_irq_save(flags); 711 ktime = ktime_to_ns(ktime_get()); 712 sched_clk = sched_clock(); 713 cpu_clk = local_clock(); 714 local_irq_restore(flags); 715 716 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", 717 init_utsname()->release, 718 (int)strcspn(init_utsname()->version, " "), 719 init_utsname()->version); 720 721 #define P(x) \ 722 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) 723 #define PN(x) \ 724 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 725 PN(ktime); 726 PN(sched_clk); 727 PN(cpu_clk); 728 P(jiffies); 729 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 730 P(sched_clock_stable()); 731 #endif 732 #undef PN 733 #undef P 734 735 SEQ_printf(m, "\n"); 736 SEQ_printf(m, "sysctl_sched\n"); 737 738 #define P(x) \ 739 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) 740 #define PN(x) \ 741 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 742 PN(sysctl_sched_latency); 743 PN(sysctl_sched_min_granularity); 744 PN(sysctl_sched_wakeup_granularity); 745 P(sysctl_sched_child_runs_first); 746 P(sysctl_sched_features); 747 #undef PN 748 #undef P 749 750 SEQ_printf(m, " .%-40s: %d (%s)\n", 751 "sysctl_sched_tunable_scaling", 752 sysctl_sched_tunable_scaling, 753 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); 754 SEQ_printf(m, "\n"); 755 } 756 757 static int sched_debug_show(struct seq_file *m, void *v) 758 { 759 int cpu = (unsigned long)(v - 2); 760 761 if (cpu != -1) 762 print_cpu(m, cpu); 763 else 764 sched_debug_header(m); 765 766 return 0; 767 } 768 769 void sysrq_sched_debug_show(void) 770 { 771 int cpu; 772 773 sched_debug_header(NULL); 774 for_each_online_cpu(cpu) 775 print_cpu(NULL, cpu); 776 777 } 778 779 /* 780 * This itererator needs some explanation. 781 * It returns 1 for the header position. 782 * This means 2 is CPU 0. 783 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have 784 * to use cpumask_* to iterate over the CPUs. 785 */ 786 static void *sched_debug_start(struct seq_file *file, loff_t *offset) 787 { 788 unsigned long n = *offset; 789 790 if (n == 0) 791 return (void *) 1; 792 793 n--; 794 795 if (n > 0) 796 n = cpumask_next(n - 1, cpu_online_mask); 797 else 798 n = cpumask_first(cpu_online_mask); 799 800 *offset = n + 1; 801 802 if (n < nr_cpu_ids) 803 return (void *)(unsigned long)(n + 2); 804 805 return NULL; 806 } 807 808 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset) 809 { 810 (*offset)++; 811 return sched_debug_start(file, offset); 812 } 813 814 static void sched_debug_stop(struct seq_file *file, void *data) 815 { 816 } 817 818 static const struct seq_operations sched_debug_sops = { 819 .start = sched_debug_start, 820 .next = sched_debug_next, 821 .stop = sched_debug_stop, 822 .show = sched_debug_show, 823 }; 824 825 static int __init init_sched_debug_procfs(void) 826 { 827 if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops)) 828 return -ENOMEM; 829 return 0; 830 } 831 832 __initcall(init_sched_debug_procfs); 833 834 #define __P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) 835 #define P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) 836 #define __PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 837 #define PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 838 839 840 #ifdef CONFIG_NUMA_BALANCING 841 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 842 unsigned long tpf, unsigned long gsf, unsigned long gpf) 843 { 844 SEQ_printf(m, "numa_faults node=%d ", node); 845 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf); 846 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf); 847 } 848 #endif 849 850 851 static void sched_show_numa(struct task_struct *p, struct seq_file *m) 852 { 853 #ifdef CONFIG_NUMA_BALANCING 854 struct mempolicy *pol; 855 856 if (p->mm) 857 P(mm->numa_scan_seq); 858 859 task_lock(p); 860 pol = p->mempolicy; 861 if (pol && !(pol->flags & MPOL_F_MORON)) 862 pol = NULL; 863 mpol_get(pol); 864 task_unlock(p); 865 866 P(numa_pages_migrated); 867 P(numa_preferred_nid); 868 P(total_numa_faults); 869 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n", 870 task_node(p), task_numa_group_id(p)); 871 show_numa_stats(p, m); 872 mpol_put(pol); 873 #endif 874 } 875 876 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns, 877 struct seq_file *m) 878 { 879 unsigned long nr_switches; 880 881 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns), 882 get_nr_threads(p)); 883 SEQ_printf(m, 884 "---------------------------------------------------------" 885 "----------\n"); 886 #define __P(F) \ 887 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) 888 #define P(F) \ 889 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) 890 #define P_SCHEDSTAT(F) \ 891 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F)) 892 #define __PN(F) \ 893 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 894 #define PN(F) \ 895 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 896 #define PN_SCHEDSTAT(F) \ 897 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F))) 898 899 PN(se.exec_start); 900 PN(se.vruntime); 901 PN(se.sum_exec_runtime); 902 903 nr_switches = p->nvcsw + p->nivcsw; 904 905 P(se.nr_migrations); 906 907 if (schedstat_enabled()) { 908 u64 avg_atom, avg_per_cpu; 909 910 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime); 911 PN_SCHEDSTAT(se.statistics.wait_start); 912 PN_SCHEDSTAT(se.statistics.sleep_start); 913 PN_SCHEDSTAT(se.statistics.block_start); 914 PN_SCHEDSTAT(se.statistics.sleep_max); 915 PN_SCHEDSTAT(se.statistics.block_max); 916 PN_SCHEDSTAT(se.statistics.exec_max); 917 PN_SCHEDSTAT(se.statistics.slice_max); 918 PN_SCHEDSTAT(se.statistics.wait_max); 919 PN_SCHEDSTAT(se.statistics.wait_sum); 920 P_SCHEDSTAT(se.statistics.wait_count); 921 PN_SCHEDSTAT(se.statistics.iowait_sum); 922 P_SCHEDSTAT(se.statistics.iowait_count); 923 P_SCHEDSTAT(se.statistics.nr_migrations_cold); 924 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine); 925 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running); 926 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot); 927 P_SCHEDSTAT(se.statistics.nr_forced_migrations); 928 P_SCHEDSTAT(se.statistics.nr_wakeups); 929 P_SCHEDSTAT(se.statistics.nr_wakeups_sync); 930 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate); 931 P_SCHEDSTAT(se.statistics.nr_wakeups_local); 932 P_SCHEDSTAT(se.statistics.nr_wakeups_remote); 933 P_SCHEDSTAT(se.statistics.nr_wakeups_affine); 934 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts); 935 P_SCHEDSTAT(se.statistics.nr_wakeups_passive); 936 P_SCHEDSTAT(se.statistics.nr_wakeups_idle); 937 938 avg_atom = p->se.sum_exec_runtime; 939 if (nr_switches) 940 avg_atom = div64_ul(avg_atom, nr_switches); 941 else 942 avg_atom = -1LL; 943 944 avg_per_cpu = p->se.sum_exec_runtime; 945 if (p->se.nr_migrations) { 946 avg_per_cpu = div64_u64(avg_per_cpu, 947 p->se.nr_migrations); 948 } else { 949 avg_per_cpu = -1LL; 950 } 951 952 __PN(avg_atom); 953 __PN(avg_per_cpu); 954 } 955 956 __P(nr_switches); 957 SEQ_printf(m, "%-45s:%21Ld\n", 958 "nr_voluntary_switches", (long long)p->nvcsw); 959 SEQ_printf(m, "%-45s:%21Ld\n", 960 "nr_involuntary_switches", (long long)p->nivcsw); 961 962 P(se.load.weight); 963 P(se.runnable_weight); 964 #ifdef CONFIG_SMP 965 P(se.avg.load_sum); 966 P(se.avg.runnable_load_sum); 967 P(se.avg.util_sum); 968 P(se.avg.load_avg); 969 P(se.avg.runnable_load_avg); 970 P(se.avg.util_avg); 971 P(se.avg.last_update_time); 972 P(se.avg.util_est.ewma); 973 P(se.avg.util_est.enqueued); 974 #endif 975 P(policy); 976 P(prio); 977 if (p->policy == SCHED_DEADLINE) { 978 P(dl.runtime); 979 P(dl.deadline); 980 } 981 #undef PN_SCHEDSTAT 982 #undef PN 983 #undef __PN 984 #undef P_SCHEDSTAT 985 #undef P 986 #undef __P 987 988 { 989 unsigned int this_cpu = raw_smp_processor_id(); 990 u64 t0, t1; 991 992 t0 = cpu_clock(this_cpu); 993 t1 = cpu_clock(this_cpu); 994 SEQ_printf(m, "%-45s:%21Ld\n", 995 "clock-delta", (long long)(t1-t0)); 996 } 997 998 sched_show_numa(p, m); 999 } 1000 1001 void proc_sched_set_task(struct task_struct *p) 1002 { 1003 #ifdef CONFIG_SCHEDSTATS 1004 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1005 #endif 1006 } 1007