1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/debug.c 4 * 5 * Print the CFS rbtree and other debugging details 6 * 7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar 8 */ 9 #include "sched.h" 10 11 /* 12 * This allows printing both to /proc/sched_debug and 13 * to the console 14 */ 15 #define SEQ_printf(m, x...) \ 16 do { \ 17 if (m) \ 18 seq_printf(m, x); \ 19 else \ 20 pr_cont(x); \ 21 } while (0) 22 23 /* 24 * Ease the printing of nsec fields: 25 */ 26 static long long nsec_high(unsigned long long nsec) 27 { 28 if ((long long)nsec < 0) { 29 nsec = -nsec; 30 do_div(nsec, 1000000); 31 return -nsec; 32 } 33 do_div(nsec, 1000000); 34 35 return nsec; 36 } 37 38 static unsigned long nsec_low(unsigned long long nsec) 39 { 40 if ((long long)nsec < 0) 41 nsec = -nsec; 42 43 return do_div(nsec, 1000000); 44 } 45 46 #define SPLIT_NS(x) nsec_high(x), nsec_low(x) 47 48 #define SCHED_FEAT(name, enabled) \ 49 #name , 50 51 static const char * const sched_feat_names[] = { 52 #include "features.h" 53 }; 54 55 #undef SCHED_FEAT 56 57 static int sched_feat_show(struct seq_file *m, void *v) 58 { 59 int i; 60 61 for (i = 0; i < __SCHED_FEAT_NR; i++) { 62 if (!(sysctl_sched_features & (1UL << i))) 63 seq_puts(m, "NO_"); 64 seq_printf(m, "%s ", sched_feat_names[i]); 65 } 66 seq_puts(m, "\n"); 67 68 return 0; 69 } 70 71 #ifdef CONFIG_JUMP_LABEL 72 73 #define jump_label_key__true STATIC_KEY_INIT_TRUE 74 #define jump_label_key__false STATIC_KEY_INIT_FALSE 75 76 #define SCHED_FEAT(name, enabled) \ 77 jump_label_key__##enabled , 78 79 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 80 #include "features.h" 81 }; 82 83 #undef SCHED_FEAT 84 85 static void sched_feat_disable(int i) 86 { 87 static_key_disable_cpuslocked(&sched_feat_keys[i]); 88 } 89 90 static void sched_feat_enable(int i) 91 { 92 static_key_enable_cpuslocked(&sched_feat_keys[i]); 93 } 94 #else 95 static void sched_feat_disable(int i) { }; 96 static void sched_feat_enable(int i) { }; 97 #endif /* CONFIG_JUMP_LABEL */ 98 99 static int sched_feat_set(char *cmp) 100 { 101 int i; 102 int neg = 0; 103 104 if (strncmp(cmp, "NO_", 3) == 0) { 105 neg = 1; 106 cmp += 3; 107 } 108 109 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp); 110 if (i < 0) 111 return i; 112 113 if (neg) { 114 sysctl_sched_features &= ~(1UL << i); 115 sched_feat_disable(i); 116 } else { 117 sysctl_sched_features |= (1UL << i); 118 sched_feat_enable(i); 119 } 120 121 return 0; 122 } 123 124 static ssize_t 125 sched_feat_write(struct file *filp, const char __user *ubuf, 126 size_t cnt, loff_t *ppos) 127 { 128 char buf[64]; 129 char *cmp; 130 int ret; 131 struct inode *inode; 132 133 if (cnt > 63) 134 cnt = 63; 135 136 if (copy_from_user(&buf, ubuf, cnt)) 137 return -EFAULT; 138 139 buf[cnt] = 0; 140 cmp = strstrip(buf); 141 142 /* Ensure the static_key remains in a consistent state */ 143 inode = file_inode(filp); 144 cpus_read_lock(); 145 inode_lock(inode); 146 ret = sched_feat_set(cmp); 147 inode_unlock(inode); 148 cpus_read_unlock(); 149 if (ret < 0) 150 return ret; 151 152 *ppos += cnt; 153 154 return cnt; 155 } 156 157 static int sched_feat_open(struct inode *inode, struct file *filp) 158 { 159 return single_open(filp, sched_feat_show, NULL); 160 } 161 162 static const struct file_operations sched_feat_fops = { 163 .open = sched_feat_open, 164 .write = sched_feat_write, 165 .read = seq_read, 166 .llseek = seq_lseek, 167 .release = single_release, 168 }; 169 170 #ifdef CONFIG_SMP 171 172 static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf, 173 size_t cnt, loff_t *ppos) 174 { 175 char buf[16]; 176 unsigned int scaling; 177 178 if (cnt > 15) 179 cnt = 15; 180 181 if (copy_from_user(&buf, ubuf, cnt)) 182 return -EFAULT; 183 buf[cnt] = '\0'; 184 185 if (kstrtouint(buf, 10, &scaling)) 186 return -EINVAL; 187 188 if (scaling >= SCHED_TUNABLESCALING_END) 189 return -EINVAL; 190 191 sysctl_sched_tunable_scaling = scaling; 192 if (sched_update_scaling()) 193 return -EINVAL; 194 195 *ppos += cnt; 196 return cnt; 197 } 198 199 static int sched_scaling_show(struct seq_file *m, void *v) 200 { 201 seq_printf(m, "%d\n", sysctl_sched_tunable_scaling); 202 return 0; 203 } 204 205 static int sched_scaling_open(struct inode *inode, struct file *filp) 206 { 207 return single_open(filp, sched_scaling_show, NULL); 208 } 209 210 static const struct file_operations sched_scaling_fops = { 211 .open = sched_scaling_open, 212 .write = sched_scaling_write, 213 .read = seq_read, 214 .llseek = seq_lseek, 215 .release = single_release, 216 }; 217 218 #endif /* SMP */ 219 220 #ifdef CONFIG_PREEMPT_DYNAMIC 221 222 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf, 223 size_t cnt, loff_t *ppos) 224 { 225 char buf[16]; 226 int mode; 227 228 if (cnt > 15) 229 cnt = 15; 230 231 if (copy_from_user(&buf, ubuf, cnt)) 232 return -EFAULT; 233 234 buf[cnt] = 0; 235 mode = sched_dynamic_mode(strstrip(buf)); 236 if (mode < 0) 237 return mode; 238 239 sched_dynamic_update(mode); 240 241 *ppos += cnt; 242 243 return cnt; 244 } 245 246 static int sched_dynamic_show(struct seq_file *m, void *v) 247 { 248 static const char * preempt_modes[] = { 249 "none", "voluntary", "full" 250 }; 251 int i; 252 253 for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) { 254 if (preempt_dynamic_mode == i) 255 seq_puts(m, "("); 256 seq_puts(m, preempt_modes[i]); 257 if (preempt_dynamic_mode == i) 258 seq_puts(m, ")"); 259 260 seq_puts(m, " "); 261 } 262 263 seq_puts(m, "\n"); 264 return 0; 265 } 266 267 static int sched_dynamic_open(struct inode *inode, struct file *filp) 268 { 269 return single_open(filp, sched_dynamic_show, NULL); 270 } 271 272 static const struct file_operations sched_dynamic_fops = { 273 .open = sched_dynamic_open, 274 .write = sched_dynamic_write, 275 .read = seq_read, 276 .llseek = seq_lseek, 277 .release = single_release, 278 }; 279 280 #endif /* CONFIG_PREEMPT_DYNAMIC */ 281 282 __read_mostly bool sched_debug_verbose; 283 284 static const struct seq_operations sched_debug_sops; 285 286 static int sched_debug_open(struct inode *inode, struct file *filp) 287 { 288 return seq_open(filp, &sched_debug_sops); 289 } 290 291 static const struct file_operations sched_debug_fops = { 292 .open = sched_debug_open, 293 .read = seq_read, 294 .llseek = seq_lseek, 295 .release = seq_release, 296 }; 297 298 static struct dentry *debugfs_sched; 299 300 static __init int sched_init_debug(void) 301 { 302 struct dentry __maybe_unused *numa; 303 304 debugfs_sched = debugfs_create_dir("sched", NULL); 305 306 debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops); 307 debugfs_create_bool("verbose", 0644, debugfs_sched, &sched_debug_verbose); 308 #ifdef CONFIG_PREEMPT_DYNAMIC 309 debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops); 310 #endif 311 312 debugfs_create_u32("latency_ns", 0644, debugfs_sched, &sysctl_sched_latency); 313 debugfs_create_u32("min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_min_granularity); 314 debugfs_create_u32("wakeup_granularity_ns", 0644, debugfs_sched, &sysctl_sched_wakeup_granularity); 315 316 debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms); 317 debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once); 318 319 #ifdef CONFIG_SMP 320 debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops); 321 debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost); 322 debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate); 323 324 mutex_lock(&sched_domains_mutex); 325 update_sched_domain_debugfs(); 326 mutex_unlock(&sched_domains_mutex); 327 #endif 328 329 #ifdef CONFIG_NUMA_BALANCING 330 numa = debugfs_create_dir("numa_balancing", debugfs_sched); 331 332 debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay); 333 debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min); 334 debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max); 335 debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size); 336 #endif 337 338 debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops); 339 340 return 0; 341 } 342 late_initcall(sched_init_debug); 343 344 #ifdef CONFIG_SMP 345 346 static cpumask_var_t sd_sysctl_cpus; 347 static struct dentry *sd_dentry; 348 349 static int sd_flags_show(struct seq_file *m, void *v) 350 { 351 unsigned long flags = *(unsigned int *)m->private; 352 int idx; 353 354 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { 355 seq_puts(m, sd_flag_debug[idx].name); 356 seq_puts(m, " "); 357 } 358 seq_puts(m, "\n"); 359 360 return 0; 361 } 362 363 static int sd_flags_open(struct inode *inode, struct file *file) 364 { 365 return single_open(file, sd_flags_show, inode->i_private); 366 } 367 368 static const struct file_operations sd_flags_fops = { 369 .open = sd_flags_open, 370 .read = seq_read, 371 .llseek = seq_lseek, 372 .release = single_release, 373 }; 374 375 static void register_sd(struct sched_domain *sd, struct dentry *parent) 376 { 377 #define SDM(type, mode, member) \ 378 debugfs_create_##type(#member, mode, parent, &sd->member) 379 380 SDM(ulong, 0644, min_interval); 381 SDM(ulong, 0644, max_interval); 382 SDM(u64, 0644, max_newidle_lb_cost); 383 SDM(u32, 0644, busy_factor); 384 SDM(u32, 0644, imbalance_pct); 385 SDM(u32, 0644, cache_nice_tries); 386 SDM(str, 0444, name); 387 388 #undef SDM 389 390 debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops); 391 } 392 393 void update_sched_domain_debugfs(void) 394 { 395 int cpu, i; 396 397 /* 398 * This can unfortunately be invoked before sched_debug_init() creates 399 * the debug directory. Don't touch sd_sysctl_cpus until then. 400 */ 401 if (!debugfs_sched) 402 return; 403 404 if (!cpumask_available(sd_sysctl_cpus)) { 405 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL)) 406 return; 407 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask); 408 } 409 410 if (!sd_dentry) 411 sd_dentry = debugfs_create_dir("domains", debugfs_sched); 412 413 for_each_cpu(cpu, sd_sysctl_cpus) { 414 struct sched_domain *sd; 415 struct dentry *d_cpu; 416 char buf[32]; 417 418 snprintf(buf, sizeof(buf), "cpu%d", cpu); 419 debugfs_remove(debugfs_lookup(buf, sd_dentry)); 420 d_cpu = debugfs_create_dir(buf, sd_dentry); 421 422 i = 0; 423 for_each_domain(cpu, sd) { 424 struct dentry *d_sd; 425 426 snprintf(buf, sizeof(buf), "domain%d", i); 427 d_sd = debugfs_create_dir(buf, d_cpu); 428 429 register_sd(sd, d_sd); 430 i++; 431 } 432 433 __cpumask_clear_cpu(cpu, sd_sysctl_cpus); 434 } 435 } 436 437 void dirty_sched_domain_sysctl(int cpu) 438 { 439 if (cpumask_available(sd_sysctl_cpus)) 440 __cpumask_set_cpu(cpu, sd_sysctl_cpus); 441 } 442 443 #endif /* CONFIG_SMP */ 444 445 #ifdef CONFIG_FAIR_GROUP_SCHED 446 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) 447 { 448 struct sched_entity *se = tg->se[cpu]; 449 450 #define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) 451 #define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F)) 452 #define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) 453 #define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F))) 454 455 if (!se) 456 return; 457 458 PN(se->exec_start); 459 PN(se->vruntime); 460 PN(se->sum_exec_runtime); 461 462 if (schedstat_enabled()) { 463 PN_SCHEDSTAT(se->statistics.wait_start); 464 PN_SCHEDSTAT(se->statistics.sleep_start); 465 PN_SCHEDSTAT(se->statistics.block_start); 466 PN_SCHEDSTAT(se->statistics.sleep_max); 467 PN_SCHEDSTAT(se->statistics.block_max); 468 PN_SCHEDSTAT(se->statistics.exec_max); 469 PN_SCHEDSTAT(se->statistics.slice_max); 470 PN_SCHEDSTAT(se->statistics.wait_max); 471 PN_SCHEDSTAT(se->statistics.wait_sum); 472 P_SCHEDSTAT(se->statistics.wait_count); 473 } 474 475 P(se->load.weight); 476 #ifdef CONFIG_SMP 477 P(se->avg.load_avg); 478 P(se->avg.util_avg); 479 P(se->avg.runnable_avg); 480 #endif 481 482 #undef PN_SCHEDSTAT 483 #undef PN 484 #undef P_SCHEDSTAT 485 #undef P 486 } 487 #endif 488 489 #ifdef CONFIG_CGROUP_SCHED 490 static DEFINE_SPINLOCK(sched_debug_lock); 491 static char group_path[PATH_MAX]; 492 493 static void task_group_path(struct task_group *tg, char *path, int plen) 494 { 495 if (autogroup_path(tg, path, plen)) 496 return; 497 498 cgroup_path(tg->css.cgroup, path, plen); 499 } 500 501 /* 502 * Only 1 SEQ_printf_task_group_path() caller can use the full length 503 * group_path[] for cgroup path. Other simultaneous callers will have 504 * to use a shorter stack buffer. A "..." suffix is appended at the end 505 * of the stack buffer so that it will show up in case the output length 506 * matches the given buffer size to indicate possible path name truncation. 507 */ 508 #define SEQ_printf_task_group_path(m, tg, fmt...) \ 509 { \ 510 if (spin_trylock(&sched_debug_lock)) { \ 511 task_group_path(tg, group_path, sizeof(group_path)); \ 512 SEQ_printf(m, fmt, group_path); \ 513 spin_unlock(&sched_debug_lock); \ 514 } else { \ 515 char buf[128]; \ 516 char *bufend = buf + sizeof(buf) - 3; \ 517 task_group_path(tg, buf, bufend - buf); \ 518 strcpy(bufend - 1, "..."); \ 519 SEQ_printf(m, fmt, buf); \ 520 } \ 521 } 522 #endif 523 524 static void 525 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) 526 { 527 if (task_current(rq, p)) 528 SEQ_printf(m, ">R"); 529 else 530 SEQ_printf(m, " %c", task_state_to_char(p)); 531 532 SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d ", 533 p->comm, task_pid_nr(p), 534 SPLIT_NS(p->se.vruntime), 535 (long long)(p->nvcsw + p->nivcsw), 536 p->prio); 537 538 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", 539 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)), 540 SPLIT_NS(p->se.sum_exec_runtime), 541 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime))); 542 543 #ifdef CONFIG_NUMA_BALANCING 544 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p)); 545 #endif 546 #ifdef CONFIG_CGROUP_SCHED 547 SEQ_printf_task_group_path(m, task_group(p), " %s") 548 #endif 549 550 SEQ_printf(m, "\n"); 551 } 552 553 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) 554 { 555 struct task_struct *g, *p; 556 557 SEQ_printf(m, "\n"); 558 SEQ_printf(m, "runnable tasks:\n"); 559 SEQ_printf(m, " S task PID tree-key switches prio" 560 " wait-time sum-exec sum-sleep\n"); 561 SEQ_printf(m, "-------------------------------------------------------" 562 "------------------------------------------------------\n"); 563 564 rcu_read_lock(); 565 for_each_process_thread(g, p) { 566 if (task_cpu(p) != rq_cpu) 567 continue; 568 569 print_task(m, rq, p); 570 } 571 rcu_read_unlock(); 572 } 573 574 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 575 { 576 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, 577 spread, rq0_min_vruntime, spread0; 578 struct rq *rq = cpu_rq(cpu); 579 struct sched_entity *last; 580 unsigned long flags; 581 582 #ifdef CONFIG_FAIR_GROUP_SCHED 583 SEQ_printf(m, "\n"); 584 SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu); 585 #else 586 SEQ_printf(m, "\n"); 587 SEQ_printf(m, "cfs_rq[%d]:\n", cpu); 588 #endif 589 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", 590 SPLIT_NS(cfs_rq->exec_clock)); 591 592 raw_spin_rq_lock_irqsave(rq, flags); 593 if (rb_first_cached(&cfs_rq->tasks_timeline)) 594 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; 595 last = __pick_last_entity(cfs_rq); 596 if (last) 597 max_vruntime = last->vruntime; 598 min_vruntime = cfs_rq->min_vruntime; 599 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; 600 raw_spin_rq_unlock_irqrestore(rq, flags); 601 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", 602 SPLIT_NS(MIN_vruntime)); 603 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", 604 SPLIT_NS(min_vruntime)); 605 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", 606 SPLIT_NS(max_vruntime)); 607 spread = max_vruntime - MIN_vruntime; 608 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", 609 SPLIT_NS(spread)); 610 spread0 = min_vruntime - rq0_min_vruntime; 611 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", 612 SPLIT_NS(spread0)); 613 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", 614 cfs_rq->nr_spread_over); 615 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); 616 SEQ_printf(m, " .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running); 617 SEQ_printf(m, " .%-30s: %d\n", "idle_h_nr_running", 618 cfs_rq->idle_h_nr_running); 619 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); 620 #ifdef CONFIG_SMP 621 SEQ_printf(m, " .%-30s: %lu\n", "load_avg", 622 cfs_rq->avg.load_avg); 623 SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg", 624 cfs_rq->avg.runnable_avg); 625 SEQ_printf(m, " .%-30s: %lu\n", "util_avg", 626 cfs_rq->avg.util_avg); 627 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued", 628 cfs_rq->avg.util_est.enqueued); 629 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg", 630 cfs_rq->removed.load_avg); 631 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg", 632 cfs_rq->removed.util_avg); 633 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_avg", 634 cfs_rq->removed.runnable_avg); 635 #ifdef CONFIG_FAIR_GROUP_SCHED 636 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib", 637 cfs_rq->tg_load_avg_contrib); 638 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", 639 atomic_long_read(&cfs_rq->tg->load_avg)); 640 #endif 641 #endif 642 #ifdef CONFIG_CFS_BANDWIDTH 643 SEQ_printf(m, " .%-30s: %d\n", "throttled", 644 cfs_rq->throttled); 645 SEQ_printf(m, " .%-30s: %d\n", "throttle_count", 646 cfs_rq->throttle_count); 647 #endif 648 649 #ifdef CONFIG_FAIR_GROUP_SCHED 650 print_cfs_group_stats(m, cpu, cfs_rq->tg); 651 #endif 652 } 653 654 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) 655 { 656 #ifdef CONFIG_RT_GROUP_SCHED 657 SEQ_printf(m, "\n"); 658 SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu); 659 #else 660 SEQ_printf(m, "\n"); 661 SEQ_printf(m, "rt_rq[%d]:\n", cpu); 662 #endif 663 664 #define P(x) \ 665 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) 666 #define PU(x) \ 667 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x)) 668 #define PN(x) \ 669 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) 670 671 PU(rt_nr_running); 672 #ifdef CONFIG_SMP 673 PU(rt_nr_migratory); 674 #endif 675 P(rt_throttled); 676 PN(rt_time); 677 PN(rt_runtime); 678 679 #undef PN 680 #undef PU 681 #undef P 682 } 683 684 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq) 685 { 686 struct dl_bw *dl_bw; 687 688 SEQ_printf(m, "\n"); 689 SEQ_printf(m, "dl_rq[%d]:\n", cpu); 690 691 #define PU(x) \ 692 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x)) 693 694 PU(dl_nr_running); 695 #ifdef CONFIG_SMP 696 PU(dl_nr_migratory); 697 dl_bw = &cpu_rq(cpu)->rd->dl_bw; 698 #else 699 dl_bw = &dl_rq->dl_bw; 700 #endif 701 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw); 702 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw); 703 704 #undef PU 705 } 706 707 static void print_cpu(struct seq_file *m, int cpu) 708 { 709 struct rq *rq = cpu_rq(cpu); 710 711 #ifdef CONFIG_X86 712 { 713 unsigned int freq = cpu_khz ? : 1; 714 715 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", 716 cpu, freq / 1000, (freq % 1000)); 717 } 718 #else 719 SEQ_printf(m, "cpu#%d\n", cpu); 720 #endif 721 722 #define P(x) \ 723 do { \ 724 if (sizeof(rq->x) == 4) \ 725 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \ 726 else \ 727 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ 728 } while (0) 729 730 #define PN(x) \ 731 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) 732 733 P(nr_running); 734 P(nr_switches); 735 P(nr_uninterruptible); 736 PN(next_balance); 737 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); 738 PN(clock); 739 PN(clock_task); 740 #undef P 741 #undef PN 742 743 #ifdef CONFIG_SMP 744 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); 745 P64(avg_idle); 746 P64(max_idle_balance_cost); 747 #undef P64 748 #endif 749 750 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n)); 751 if (schedstat_enabled()) { 752 P(yld_count); 753 P(sched_count); 754 P(sched_goidle); 755 P(ttwu_count); 756 P(ttwu_local); 757 } 758 #undef P 759 760 print_cfs_stats(m, cpu); 761 print_rt_stats(m, cpu); 762 print_dl_stats(m, cpu); 763 764 print_rq(m, rq, cpu); 765 SEQ_printf(m, "\n"); 766 } 767 768 static const char *sched_tunable_scaling_names[] = { 769 "none", 770 "logarithmic", 771 "linear" 772 }; 773 774 static void sched_debug_header(struct seq_file *m) 775 { 776 u64 ktime, sched_clk, cpu_clk; 777 unsigned long flags; 778 779 local_irq_save(flags); 780 ktime = ktime_to_ns(ktime_get()); 781 sched_clk = sched_clock(); 782 cpu_clk = local_clock(); 783 local_irq_restore(flags); 784 785 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", 786 init_utsname()->release, 787 (int)strcspn(init_utsname()->version, " "), 788 init_utsname()->version); 789 790 #define P(x) \ 791 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) 792 #define PN(x) \ 793 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 794 PN(ktime); 795 PN(sched_clk); 796 PN(cpu_clk); 797 P(jiffies); 798 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 799 P(sched_clock_stable()); 800 #endif 801 #undef PN 802 #undef P 803 804 SEQ_printf(m, "\n"); 805 SEQ_printf(m, "sysctl_sched\n"); 806 807 #define P(x) \ 808 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) 809 #define PN(x) \ 810 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 811 PN(sysctl_sched_latency); 812 PN(sysctl_sched_min_granularity); 813 PN(sysctl_sched_wakeup_granularity); 814 P(sysctl_sched_child_runs_first); 815 P(sysctl_sched_features); 816 #undef PN 817 #undef P 818 819 SEQ_printf(m, " .%-40s: %d (%s)\n", 820 "sysctl_sched_tunable_scaling", 821 sysctl_sched_tunable_scaling, 822 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); 823 SEQ_printf(m, "\n"); 824 } 825 826 static int sched_debug_show(struct seq_file *m, void *v) 827 { 828 int cpu = (unsigned long)(v - 2); 829 830 if (cpu != -1) 831 print_cpu(m, cpu); 832 else 833 sched_debug_header(m); 834 835 return 0; 836 } 837 838 void sysrq_sched_debug_show(void) 839 { 840 int cpu; 841 842 sched_debug_header(NULL); 843 for_each_online_cpu(cpu) { 844 /* 845 * Need to reset softlockup watchdogs on all CPUs, because 846 * another CPU might be blocked waiting for us to process 847 * an IPI or stop_machine. 848 */ 849 touch_nmi_watchdog(); 850 touch_all_softlockup_watchdogs(); 851 print_cpu(NULL, cpu); 852 } 853 } 854 855 /* 856 * This iterator needs some explanation. 857 * It returns 1 for the header position. 858 * This means 2 is CPU 0. 859 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have 860 * to use cpumask_* to iterate over the CPUs. 861 */ 862 static void *sched_debug_start(struct seq_file *file, loff_t *offset) 863 { 864 unsigned long n = *offset; 865 866 if (n == 0) 867 return (void *) 1; 868 869 n--; 870 871 if (n > 0) 872 n = cpumask_next(n - 1, cpu_online_mask); 873 else 874 n = cpumask_first(cpu_online_mask); 875 876 *offset = n + 1; 877 878 if (n < nr_cpu_ids) 879 return (void *)(unsigned long)(n + 2); 880 881 return NULL; 882 } 883 884 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset) 885 { 886 (*offset)++; 887 return sched_debug_start(file, offset); 888 } 889 890 static void sched_debug_stop(struct seq_file *file, void *data) 891 { 892 } 893 894 static const struct seq_operations sched_debug_sops = { 895 .start = sched_debug_start, 896 .next = sched_debug_next, 897 .stop = sched_debug_stop, 898 .show = sched_debug_show, 899 }; 900 901 #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F)) 902 #define __P(F) __PS(#F, F) 903 #define P(F) __PS(#F, p->F) 904 #define PM(F, M) __PS(#F, p->F & (M)) 905 #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F))) 906 #define __PN(F) __PSN(#F, F) 907 #define PN(F) __PSN(#F, p->F) 908 909 910 #ifdef CONFIG_NUMA_BALANCING 911 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 912 unsigned long tpf, unsigned long gsf, unsigned long gpf) 913 { 914 SEQ_printf(m, "numa_faults node=%d ", node); 915 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf); 916 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf); 917 } 918 #endif 919 920 921 static void sched_show_numa(struct task_struct *p, struct seq_file *m) 922 { 923 #ifdef CONFIG_NUMA_BALANCING 924 struct mempolicy *pol; 925 926 if (p->mm) 927 P(mm->numa_scan_seq); 928 929 task_lock(p); 930 pol = p->mempolicy; 931 if (pol && !(pol->flags & MPOL_F_MORON)) 932 pol = NULL; 933 mpol_get(pol); 934 task_unlock(p); 935 936 P(numa_pages_migrated); 937 P(numa_preferred_nid); 938 P(total_numa_faults); 939 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n", 940 task_node(p), task_numa_group_id(p)); 941 show_numa_stats(p, m); 942 mpol_put(pol); 943 #endif 944 } 945 946 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns, 947 struct seq_file *m) 948 { 949 unsigned long nr_switches; 950 951 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns), 952 get_nr_threads(p)); 953 SEQ_printf(m, 954 "---------------------------------------------------------" 955 "----------\n"); 956 957 #define P_SCHEDSTAT(F) __PS(#F, schedstat_val(p->F)) 958 #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->F)) 959 960 PN(se.exec_start); 961 PN(se.vruntime); 962 PN(se.sum_exec_runtime); 963 964 nr_switches = p->nvcsw + p->nivcsw; 965 966 P(se.nr_migrations); 967 968 if (schedstat_enabled()) { 969 u64 avg_atom, avg_per_cpu; 970 971 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime); 972 PN_SCHEDSTAT(se.statistics.wait_start); 973 PN_SCHEDSTAT(se.statistics.sleep_start); 974 PN_SCHEDSTAT(se.statistics.block_start); 975 PN_SCHEDSTAT(se.statistics.sleep_max); 976 PN_SCHEDSTAT(se.statistics.block_max); 977 PN_SCHEDSTAT(se.statistics.exec_max); 978 PN_SCHEDSTAT(se.statistics.slice_max); 979 PN_SCHEDSTAT(se.statistics.wait_max); 980 PN_SCHEDSTAT(se.statistics.wait_sum); 981 P_SCHEDSTAT(se.statistics.wait_count); 982 PN_SCHEDSTAT(se.statistics.iowait_sum); 983 P_SCHEDSTAT(se.statistics.iowait_count); 984 P_SCHEDSTAT(se.statistics.nr_migrations_cold); 985 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine); 986 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running); 987 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot); 988 P_SCHEDSTAT(se.statistics.nr_forced_migrations); 989 P_SCHEDSTAT(se.statistics.nr_wakeups); 990 P_SCHEDSTAT(se.statistics.nr_wakeups_sync); 991 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate); 992 P_SCHEDSTAT(se.statistics.nr_wakeups_local); 993 P_SCHEDSTAT(se.statistics.nr_wakeups_remote); 994 P_SCHEDSTAT(se.statistics.nr_wakeups_affine); 995 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts); 996 P_SCHEDSTAT(se.statistics.nr_wakeups_passive); 997 P_SCHEDSTAT(se.statistics.nr_wakeups_idle); 998 999 avg_atom = p->se.sum_exec_runtime; 1000 if (nr_switches) 1001 avg_atom = div64_ul(avg_atom, nr_switches); 1002 else 1003 avg_atom = -1LL; 1004 1005 avg_per_cpu = p->se.sum_exec_runtime; 1006 if (p->se.nr_migrations) { 1007 avg_per_cpu = div64_u64(avg_per_cpu, 1008 p->se.nr_migrations); 1009 } else { 1010 avg_per_cpu = -1LL; 1011 } 1012 1013 __PN(avg_atom); 1014 __PN(avg_per_cpu); 1015 } 1016 1017 __P(nr_switches); 1018 __PS("nr_voluntary_switches", p->nvcsw); 1019 __PS("nr_involuntary_switches", p->nivcsw); 1020 1021 P(se.load.weight); 1022 #ifdef CONFIG_SMP 1023 P(se.avg.load_sum); 1024 P(se.avg.runnable_sum); 1025 P(se.avg.util_sum); 1026 P(se.avg.load_avg); 1027 P(se.avg.runnable_avg); 1028 P(se.avg.util_avg); 1029 P(se.avg.last_update_time); 1030 P(se.avg.util_est.ewma); 1031 PM(se.avg.util_est.enqueued, ~UTIL_AVG_UNCHANGED); 1032 #endif 1033 #ifdef CONFIG_UCLAMP_TASK 1034 __PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value); 1035 __PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value); 1036 __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN)); 1037 __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX)); 1038 #endif 1039 P(policy); 1040 P(prio); 1041 if (task_has_dl_policy(p)) { 1042 P(dl.runtime); 1043 P(dl.deadline); 1044 } 1045 #undef PN_SCHEDSTAT 1046 #undef P_SCHEDSTAT 1047 1048 { 1049 unsigned int this_cpu = raw_smp_processor_id(); 1050 u64 t0, t1; 1051 1052 t0 = cpu_clock(this_cpu); 1053 t1 = cpu_clock(this_cpu); 1054 __PS("clock-delta", t1-t0); 1055 } 1056 1057 sched_show_numa(p, m); 1058 } 1059 1060 void proc_sched_set_task(struct task_struct *p) 1061 { 1062 #ifdef CONFIG_SCHEDSTATS 1063 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1064 #endif 1065 } 1066 1067 void resched_latency_warn(int cpu, u64 latency) 1068 { 1069 static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1); 1070 1071 WARN(__ratelimit(&latency_check_ratelimit), 1072 "sched: CPU %d need_resched set for > %llu ns (%d ticks) " 1073 "without schedule\n", 1074 cpu, latency, cpu_rq(cpu)->ticks_without_resched); 1075 } 1076