xref: /openbmc/linux/kernel/sched/debug.c (revision 37b9b9a5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/sched/debug.c
4  *
5  * Print the CFS rbtree and other debugging details
6  *
7  * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8  */
9 #include "sched.h"
10 
11 static DEFINE_SPINLOCK(sched_debug_lock);
12 
13 /*
14  * This allows printing both to /proc/sched_debug and
15  * to the console
16  */
17 #define SEQ_printf(m, x...)			\
18  do {						\
19 	if (m)					\
20 		seq_printf(m, x);		\
21 	else					\
22 		pr_cont(x);			\
23  } while (0)
24 
25 /*
26  * Ease the printing of nsec fields:
27  */
28 static long long nsec_high(unsigned long long nsec)
29 {
30 	if ((long long)nsec < 0) {
31 		nsec = -nsec;
32 		do_div(nsec, 1000000);
33 		return -nsec;
34 	}
35 	do_div(nsec, 1000000);
36 
37 	return nsec;
38 }
39 
40 static unsigned long nsec_low(unsigned long long nsec)
41 {
42 	if ((long long)nsec < 0)
43 		nsec = -nsec;
44 
45 	return do_div(nsec, 1000000);
46 }
47 
48 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
49 
50 #define SCHED_FEAT(name, enabled)	\
51 	#name ,
52 
53 static const char * const sched_feat_names[] = {
54 #include "features.h"
55 };
56 
57 #undef SCHED_FEAT
58 
59 static int sched_feat_show(struct seq_file *m, void *v)
60 {
61 	int i;
62 
63 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
64 		if (!(sysctl_sched_features & (1UL << i)))
65 			seq_puts(m, "NO_");
66 		seq_printf(m, "%s ", sched_feat_names[i]);
67 	}
68 	seq_puts(m, "\n");
69 
70 	return 0;
71 }
72 
73 #ifdef CONFIG_JUMP_LABEL
74 
75 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
76 #define jump_label_key__false STATIC_KEY_INIT_FALSE
77 
78 #define SCHED_FEAT(name, enabled)	\
79 	jump_label_key__##enabled ,
80 
81 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
82 #include "features.h"
83 };
84 
85 #undef SCHED_FEAT
86 
87 static void sched_feat_disable(int i)
88 {
89 	static_key_disable_cpuslocked(&sched_feat_keys[i]);
90 }
91 
92 static void sched_feat_enable(int i)
93 {
94 	static_key_enable_cpuslocked(&sched_feat_keys[i]);
95 }
96 #else
97 static void sched_feat_disable(int i) { };
98 static void sched_feat_enable(int i) { };
99 #endif /* CONFIG_JUMP_LABEL */
100 
101 static int sched_feat_set(char *cmp)
102 {
103 	int i;
104 	int neg = 0;
105 
106 	if (strncmp(cmp, "NO_", 3) == 0) {
107 		neg = 1;
108 		cmp += 3;
109 	}
110 
111 	i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
112 	if (i < 0)
113 		return i;
114 
115 	if (neg) {
116 		sysctl_sched_features &= ~(1UL << i);
117 		sched_feat_disable(i);
118 	} else {
119 		sysctl_sched_features |= (1UL << i);
120 		sched_feat_enable(i);
121 	}
122 
123 	return 0;
124 }
125 
126 static ssize_t
127 sched_feat_write(struct file *filp, const char __user *ubuf,
128 		size_t cnt, loff_t *ppos)
129 {
130 	char buf[64];
131 	char *cmp;
132 	int ret;
133 	struct inode *inode;
134 
135 	if (cnt > 63)
136 		cnt = 63;
137 
138 	if (copy_from_user(&buf, ubuf, cnt))
139 		return -EFAULT;
140 
141 	buf[cnt] = 0;
142 	cmp = strstrip(buf);
143 
144 	/* Ensure the static_key remains in a consistent state */
145 	inode = file_inode(filp);
146 	cpus_read_lock();
147 	inode_lock(inode);
148 	ret = sched_feat_set(cmp);
149 	inode_unlock(inode);
150 	cpus_read_unlock();
151 	if (ret < 0)
152 		return ret;
153 
154 	*ppos += cnt;
155 
156 	return cnt;
157 }
158 
159 static int sched_feat_open(struct inode *inode, struct file *filp)
160 {
161 	return single_open(filp, sched_feat_show, NULL);
162 }
163 
164 static const struct file_operations sched_feat_fops = {
165 	.open		= sched_feat_open,
166 	.write		= sched_feat_write,
167 	.read		= seq_read,
168 	.llseek		= seq_lseek,
169 	.release	= single_release,
170 };
171 
172 __read_mostly bool sched_debug_enabled;
173 
174 static __init int sched_init_debug(void)
175 {
176 	debugfs_create_file("sched_features", 0644, NULL, NULL,
177 			&sched_feat_fops);
178 
179 	debugfs_create_bool("sched_debug", 0644, NULL,
180 			&sched_debug_enabled);
181 
182 	return 0;
183 }
184 late_initcall(sched_init_debug);
185 
186 #ifdef CONFIG_SMP
187 
188 #ifdef CONFIG_SYSCTL
189 
190 static struct ctl_table sd_ctl_dir[] = {
191 	{
192 		.procname	= "sched_domain",
193 		.mode		= 0555,
194 	},
195 	{}
196 };
197 
198 static struct ctl_table sd_ctl_root[] = {
199 	{
200 		.procname	= "kernel",
201 		.mode		= 0555,
202 		.child		= sd_ctl_dir,
203 	},
204 	{}
205 };
206 
207 static struct ctl_table *sd_alloc_ctl_entry(int n)
208 {
209 	struct ctl_table *entry =
210 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
211 
212 	return entry;
213 }
214 
215 static void sd_free_ctl_entry(struct ctl_table **tablep)
216 {
217 	struct ctl_table *entry;
218 
219 	/*
220 	 * In the intermediate directories, both the child directory and
221 	 * procname are dynamically allocated and could fail but the mode
222 	 * will always be set. In the lowest directory the names are
223 	 * static strings and all have proc handlers.
224 	 */
225 	for (entry = *tablep; entry->mode; entry++) {
226 		if (entry->child)
227 			sd_free_ctl_entry(&entry->child);
228 		if (entry->proc_handler == NULL)
229 			kfree(entry->procname);
230 	}
231 
232 	kfree(*tablep);
233 	*tablep = NULL;
234 }
235 
236 static void
237 set_table_entry(struct ctl_table *entry,
238 		const char *procname, void *data, int maxlen,
239 		umode_t mode, proc_handler *proc_handler)
240 {
241 	entry->procname = procname;
242 	entry->data = data;
243 	entry->maxlen = maxlen;
244 	entry->mode = mode;
245 	entry->proc_handler = proc_handler;
246 }
247 
248 static struct ctl_table *
249 sd_alloc_ctl_domain_table(struct sched_domain *sd)
250 {
251 	struct ctl_table *table = sd_alloc_ctl_entry(9);
252 
253 	if (table == NULL)
254 		return NULL;
255 
256 	set_table_entry(&table[0], "min_interval",	  &sd->min_interval,	    sizeof(long), 0644, proc_doulongvec_minmax);
257 	set_table_entry(&table[1], "max_interval",	  &sd->max_interval,	    sizeof(long), 0644, proc_doulongvec_minmax);
258 	set_table_entry(&table[2], "busy_factor",	  &sd->busy_factor,	    sizeof(int),  0644, proc_dointvec_minmax);
259 	set_table_entry(&table[3], "imbalance_pct",	  &sd->imbalance_pct,	    sizeof(int),  0644, proc_dointvec_minmax);
260 	set_table_entry(&table[4], "cache_nice_tries",	  &sd->cache_nice_tries,    sizeof(int),  0644, proc_dointvec_minmax);
261 	set_table_entry(&table[5], "flags",		  &sd->flags,		    sizeof(int),  0644, proc_dointvec_minmax);
262 	set_table_entry(&table[6], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax);
263 	set_table_entry(&table[7], "name",		  sd->name,	       CORENAME_MAX_SIZE, 0444, proc_dostring);
264 	/* &table[8] is terminator */
265 
266 	return table;
267 }
268 
269 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
270 {
271 	struct ctl_table *entry, *table;
272 	struct sched_domain *sd;
273 	int domain_num = 0, i;
274 	char buf[32];
275 
276 	for_each_domain(cpu, sd)
277 		domain_num++;
278 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
279 	if (table == NULL)
280 		return NULL;
281 
282 	i = 0;
283 	for_each_domain(cpu, sd) {
284 		snprintf(buf, 32, "domain%d", i);
285 		entry->procname = kstrdup(buf, GFP_KERNEL);
286 		entry->mode = 0555;
287 		entry->child = sd_alloc_ctl_domain_table(sd);
288 		entry++;
289 		i++;
290 	}
291 	return table;
292 }
293 
294 static cpumask_var_t		sd_sysctl_cpus;
295 static struct ctl_table_header	*sd_sysctl_header;
296 
297 void register_sched_domain_sysctl(void)
298 {
299 	static struct ctl_table *cpu_entries;
300 	static struct ctl_table **cpu_idx;
301 	static bool init_done = false;
302 	char buf[32];
303 	int i;
304 
305 	if (!cpu_entries) {
306 		cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
307 		if (!cpu_entries)
308 			return;
309 
310 		WARN_ON(sd_ctl_dir[0].child);
311 		sd_ctl_dir[0].child = cpu_entries;
312 	}
313 
314 	if (!cpu_idx) {
315 		struct ctl_table *e = cpu_entries;
316 
317 		cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
318 		if (!cpu_idx)
319 			return;
320 
321 		/* deal with sparse possible map */
322 		for_each_possible_cpu(i) {
323 			cpu_idx[i] = e;
324 			e++;
325 		}
326 	}
327 
328 	if (!cpumask_available(sd_sysctl_cpus)) {
329 		if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
330 			return;
331 	}
332 
333 	if (!init_done) {
334 		init_done = true;
335 		/* init to possible to not have holes in @cpu_entries */
336 		cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
337 	}
338 
339 	for_each_cpu(i, sd_sysctl_cpus) {
340 		struct ctl_table *e = cpu_idx[i];
341 
342 		if (e->child)
343 			sd_free_ctl_entry(&e->child);
344 
345 		if (!e->procname) {
346 			snprintf(buf, 32, "cpu%d", i);
347 			e->procname = kstrdup(buf, GFP_KERNEL);
348 		}
349 		e->mode = 0555;
350 		e->child = sd_alloc_ctl_cpu_table(i);
351 
352 		__cpumask_clear_cpu(i, sd_sysctl_cpus);
353 	}
354 
355 	WARN_ON(sd_sysctl_header);
356 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
357 }
358 
359 void dirty_sched_domain_sysctl(int cpu)
360 {
361 	if (cpumask_available(sd_sysctl_cpus))
362 		__cpumask_set_cpu(cpu, sd_sysctl_cpus);
363 }
364 
365 /* may be called multiple times per register */
366 void unregister_sched_domain_sysctl(void)
367 {
368 	unregister_sysctl_table(sd_sysctl_header);
369 	sd_sysctl_header = NULL;
370 }
371 #endif /* CONFIG_SYSCTL */
372 #endif /* CONFIG_SMP */
373 
374 #ifdef CONFIG_FAIR_GROUP_SCHED
375 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
376 {
377 	struct sched_entity *se = tg->se[cpu];
378 
379 #define P(F)		SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)F)
380 #define P_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)schedstat_val(F))
381 #define PN(F)		SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
382 #define PN_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
383 
384 	if (!se)
385 		return;
386 
387 	PN(se->exec_start);
388 	PN(se->vruntime);
389 	PN(se->sum_exec_runtime);
390 
391 	if (schedstat_enabled()) {
392 		PN_SCHEDSTAT(se->statistics.wait_start);
393 		PN_SCHEDSTAT(se->statistics.sleep_start);
394 		PN_SCHEDSTAT(se->statistics.block_start);
395 		PN_SCHEDSTAT(se->statistics.sleep_max);
396 		PN_SCHEDSTAT(se->statistics.block_max);
397 		PN_SCHEDSTAT(se->statistics.exec_max);
398 		PN_SCHEDSTAT(se->statistics.slice_max);
399 		PN_SCHEDSTAT(se->statistics.wait_max);
400 		PN_SCHEDSTAT(se->statistics.wait_sum);
401 		P_SCHEDSTAT(se->statistics.wait_count);
402 	}
403 
404 	P(se->load.weight);
405 	P(se->runnable_weight);
406 #ifdef CONFIG_SMP
407 	P(se->avg.load_avg);
408 	P(se->avg.util_avg);
409 	P(se->avg.runnable_load_avg);
410 #endif
411 
412 #undef PN_SCHEDSTAT
413 #undef PN
414 #undef P_SCHEDSTAT
415 #undef P
416 }
417 #endif
418 
419 #ifdef CONFIG_CGROUP_SCHED
420 static char group_path[PATH_MAX];
421 
422 static char *task_group_path(struct task_group *tg)
423 {
424 	if (autogroup_path(tg, group_path, PATH_MAX))
425 		return group_path;
426 
427 	cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
428 
429 	return group_path;
430 }
431 #endif
432 
433 static void
434 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
435 {
436 	if (rq->curr == p)
437 		SEQ_printf(m, ">R");
438 	else
439 		SEQ_printf(m, " %c", task_state_to_char(p));
440 
441 	SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
442 		p->comm, task_pid_nr(p),
443 		SPLIT_NS(p->se.vruntime),
444 		(long long)(p->nvcsw + p->nivcsw),
445 		p->prio);
446 
447 	SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
448 		SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
449 		SPLIT_NS(p->se.sum_exec_runtime),
450 		SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
451 
452 #ifdef CONFIG_NUMA_BALANCING
453 	SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
454 #endif
455 #ifdef CONFIG_CGROUP_SCHED
456 	SEQ_printf(m, " %s", task_group_path(task_group(p)));
457 #endif
458 
459 	SEQ_printf(m, "\n");
460 }
461 
462 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
463 {
464 	struct task_struct *g, *p;
465 
466 	SEQ_printf(m, "\n");
467 	SEQ_printf(m, "runnable tasks:\n");
468 	SEQ_printf(m, " S           task   PID         tree-key  switches  prio"
469 		   "     wait-time             sum-exec        sum-sleep\n");
470 	SEQ_printf(m, "-------------------------------------------------------"
471 		   "----------------------------------------------------\n");
472 
473 	rcu_read_lock();
474 	for_each_process_thread(g, p) {
475 		if (task_cpu(p) != rq_cpu)
476 			continue;
477 
478 		print_task(m, rq, p);
479 	}
480 	rcu_read_unlock();
481 }
482 
483 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
484 {
485 	s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
486 		spread, rq0_min_vruntime, spread0;
487 	struct rq *rq = cpu_rq(cpu);
488 	struct sched_entity *last;
489 	unsigned long flags;
490 
491 #ifdef CONFIG_FAIR_GROUP_SCHED
492 	SEQ_printf(m, "\n");
493 	SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
494 #else
495 	SEQ_printf(m, "\n");
496 	SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
497 #endif
498 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
499 			SPLIT_NS(cfs_rq->exec_clock));
500 
501 	raw_spin_lock_irqsave(&rq->lock, flags);
502 	if (rb_first_cached(&cfs_rq->tasks_timeline))
503 		MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
504 	last = __pick_last_entity(cfs_rq);
505 	if (last)
506 		max_vruntime = last->vruntime;
507 	min_vruntime = cfs_rq->min_vruntime;
508 	rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
509 	raw_spin_unlock_irqrestore(&rq->lock, flags);
510 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
511 			SPLIT_NS(MIN_vruntime));
512 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
513 			SPLIT_NS(min_vruntime));
514 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
515 			SPLIT_NS(max_vruntime));
516 	spread = max_vruntime - MIN_vruntime;
517 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
518 			SPLIT_NS(spread));
519 	spread0 = min_vruntime - rq0_min_vruntime;
520 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
521 			SPLIT_NS(spread0));
522 	SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
523 			cfs_rq->nr_spread_over);
524 	SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
525 	SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
526 #ifdef CONFIG_SMP
527 	SEQ_printf(m, "  .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight);
528 	SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
529 			cfs_rq->avg.load_avg);
530 	SEQ_printf(m, "  .%-30s: %lu\n", "runnable_load_avg",
531 			cfs_rq->avg.runnable_load_avg);
532 	SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
533 			cfs_rq->avg.util_avg);
534 	SEQ_printf(m, "  .%-30s: %u\n", "util_est_enqueued",
535 			cfs_rq->avg.util_est.enqueued);
536 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.load_avg",
537 			cfs_rq->removed.load_avg);
538 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.util_avg",
539 			cfs_rq->removed.util_avg);
540 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.runnable_sum",
541 			cfs_rq->removed.runnable_sum);
542 #ifdef CONFIG_FAIR_GROUP_SCHED
543 	SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
544 			cfs_rq->tg_load_avg_contrib);
545 	SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
546 			atomic_long_read(&cfs_rq->tg->load_avg));
547 #endif
548 #endif
549 #ifdef CONFIG_CFS_BANDWIDTH
550 	SEQ_printf(m, "  .%-30s: %d\n", "throttled",
551 			cfs_rq->throttled);
552 	SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
553 			cfs_rq->throttle_count);
554 #endif
555 
556 #ifdef CONFIG_FAIR_GROUP_SCHED
557 	print_cfs_group_stats(m, cpu, cfs_rq->tg);
558 #endif
559 }
560 
561 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
562 {
563 #ifdef CONFIG_RT_GROUP_SCHED
564 	SEQ_printf(m, "\n");
565 	SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
566 #else
567 	SEQ_printf(m, "\n");
568 	SEQ_printf(m, "rt_rq[%d]:\n", cpu);
569 #endif
570 
571 #define P(x) \
572 	SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
573 #define PU(x) \
574 	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
575 #define PN(x) \
576 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
577 
578 	PU(rt_nr_running);
579 #ifdef CONFIG_SMP
580 	PU(rt_nr_migratory);
581 #endif
582 	P(rt_throttled);
583 	PN(rt_time);
584 	PN(rt_runtime);
585 
586 #undef PN
587 #undef PU
588 #undef P
589 }
590 
591 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
592 {
593 	struct dl_bw *dl_bw;
594 
595 	SEQ_printf(m, "\n");
596 	SEQ_printf(m, "dl_rq[%d]:\n", cpu);
597 
598 #define PU(x) \
599 	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
600 
601 	PU(dl_nr_running);
602 #ifdef CONFIG_SMP
603 	PU(dl_nr_migratory);
604 	dl_bw = &cpu_rq(cpu)->rd->dl_bw;
605 #else
606 	dl_bw = &dl_rq->dl_bw;
607 #endif
608 	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
609 	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
610 
611 #undef PU
612 }
613 
614 static void print_cpu(struct seq_file *m, int cpu)
615 {
616 	struct rq *rq = cpu_rq(cpu);
617 	unsigned long flags;
618 
619 #ifdef CONFIG_X86
620 	{
621 		unsigned int freq = cpu_khz ? : 1;
622 
623 		SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
624 			   cpu, freq / 1000, (freq % 1000));
625 	}
626 #else
627 	SEQ_printf(m, "cpu#%d\n", cpu);
628 #endif
629 
630 #define P(x)								\
631 do {									\
632 	if (sizeof(rq->x) == 4)						\
633 		SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));	\
634 	else								\
635 		SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
636 } while (0)
637 
638 #define PN(x) \
639 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
640 
641 	P(nr_running);
642 	P(nr_switches);
643 	P(nr_load_updates);
644 	P(nr_uninterruptible);
645 	PN(next_balance);
646 	SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
647 	PN(clock);
648 	PN(clock_task);
649 #undef P
650 #undef PN
651 
652 #ifdef CONFIG_SMP
653 #define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
654 	P64(avg_idle);
655 	P64(max_idle_balance_cost);
656 #undef P64
657 #endif
658 
659 #define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
660 	if (schedstat_enabled()) {
661 		P(yld_count);
662 		P(sched_count);
663 		P(sched_goidle);
664 		P(ttwu_count);
665 		P(ttwu_local);
666 	}
667 #undef P
668 
669 	spin_lock_irqsave(&sched_debug_lock, flags);
670 	print_cfs_stats(m, cpu);
671 	print_rt_stats(m, cpu);
672 	print_dl_stats(m, cpu);
673 
674 	print_rq(m, rq, cpu);
675 	spin_unlock_irqrestore(&sched_debug_lock, flags);
676 	SEQ_printf(m, "\n");
677 }
678 
679 static const char *sched_tunable_scaling_names[] = {
680 	"none",
681 	"logarithmic",
682 	"linear"
683 };
684 
685 static void sched_debug_header(struct seq_file *m)
686 {
687 	u64 ktime, sched_clk, cpu_clk;
688 	unsigned long flags;
689 
690 	local_irq_save(flags);
691 	ktime = ktime_to_ns(ktime_get());
692 	sched_clk = sched_clock();
693 	cpu_clk = local_clock();
694 	local_irq_restore(flags);
695 
696 	SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
697 		init_utsname()->release,
698 		(int)strcspn(init_utsname()->version, " "),
699 		init_utsname()->version);
700 
701 #define P(x) \
702 	SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
703 #define PN(x) \
704 	SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
705 	PN(ktime);
706 	PN(sched_clk);
707 	PN(cpu_clk);
708 	P(jiffies);
709 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
710 	P(sched_clock_stable());
711 #endif
712 #undef PN
713 #undef P
714 
715 	SEQ_printf(m, "\n");
716 	SEQ_printf(m, "sysctl_sched\n");
717 
718 #define P(x) \
719 	SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
720 #define PN(x) \
721 	SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
722 	PN(sysctl_sched_latency);
723 	PN(sysctl_sched_min_granularity);
724 	PN(sysctl_sched_wakeup_granularity);
725 	P(sysctl_sched_child_runs_first);
726 	P(sysctl_sched_features);
727 #undef PN
728 #undef P
729 
730 	SEQ_printf(m, "  .%-40s: %d (%s)\n",
731 		"sysctl_sched_tunable_scaling",
732 		sysctl_sched_tunable_scaling,
733 		sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
734 	SEQ_printf(m, "\n");
735 }
736 
737 static int sched_debug_show(struct seq_file *m, void *v)
738 {
739 	int cpu = (unsigned long)(v - 2);
740 
741 	if (cpu != -1)
742 		print_cpu(m, cpu);
743 	else
744 		sched_debug_header(m);
745 
746 	return 0;
747 }
748 
749 void sysrq_sched_debug_show(void)
750 {
751 	int cpu;
752 
753 	sched_debug_header(NULL);
754 	for_each_online_cpu(cpu)
755 		print_cpu(NULL, cpu);
756 
757 }
758 
759 /*
760  * This itererator needs some explanation.
761  * It returns 1 for the header position.
762  * This means 2 is CPU 0.
763  * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
764  * to use cpumask_* to iterate over the CPUs.
765  */
766 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
767 {
768 	unsigned long n = *offset;
769 
770 	if (n == 0)
771 		return (void *) 1;
772 
773 	n--;
774 
775 	if (n > 0)
776 		n = cpumask_next(n - 1, cpu_online_mask);
777 	else
778 		n = cpumask_first(cpu_online_mask);
779 
780 	*offset = n + 1;
781 
782 	if (n < nr_cpu_ids)
783 		return (void *)(unsigned long)(n + 2);
784 
785 	return NULL;
786 }
787 
788 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
789 {
790 	(*offset)++;
791 	return sched_debug_start(file, offset);
792 }
793 
794 static void sched_debug_stop(struct seq_file *file, void *data)
795 {
796 }
797 
798 static const struct seq_operations sched_debug_sops = {
799 	.start		= sched_debug_start,
800 	.next		= sched_debug_next,
801 	.stop		= sched_debug_stop,
802 	.show		= sched_debug_show,
803 };
804 
805 static int __init init_sched_debug_procfs(void)
806 {
807 	if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops))
808 		return -ENOMEM;
809 	return 0;
810 }
811 
812 __initcall(init_sched_debug_procfs);
813 
814 #define __P(F)	SEQ_printf(m, "%-45s:%21Ld\n",	     #F, (long long)F)
815 #define   P(F)	SEQ_printf(m, "%-45s:%21Ld\n",	     #F, (long long)p->F)
816 #define __PN(F)	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
817 #define   PN(F)	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
818 
819 
820 #ifdef CONFIG_NUMA_BALANCING
821 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
822 		unsigned long tpf, unsigned long gsf, unsigned long gpf)
823 {
824 	SEQ_printf(m, "numa_faults node=%d ", node);
825 	SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
826 	SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
827 }
828 #endif
829 
830 
831 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
832 {
833 #ifdef CONFIG_NUMA_BALANCING
834 	struct mempolicy *pol;
835 
836 	if (p->mm)
837 		P(mm->numa_scan_seq);
838 
839 	task_lock(p);
840 	pol = p->mempolicy;
841 	if (pol && !(pol->flags & MPOL_F_MORON))
842 		pol = NULL;
843 	mpol_get(pol);
844 	task_unlock(p);
845 
846 	P(numa_pages_migrated);
847 	P(numa_preferred_nid);
848 	P(total_numa_faults);
849 	SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
850 			task_node(p), task_numa_group_id(p));
851 	show_numa_stats(p, m);
852 	mpol_put(pol);
853 #endif
854 }
855 
856 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
857 						  struct seq_file *m)
858 {
859 	unsigned long nr_switches;
860 
861 	SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
862 						get_nr_threads(p));
863 	SEQ_printf(m,
864 		"---------------------------------------------------------"
865 		"----------\n");
866 #define __P(F) \
867 	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
868 #define P(F) \
869 	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
870 #define P_SCHEDSTAT(F) \
871 	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
872 #define __PN(F) \
873 	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
874 #define PN(F) \
875 	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
876 #define PN_SCHEDSTAT(F) \
877 	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
878 
879 	PN(se.exec_start);
880 	PN(se.vruntime);
881 	PN(se.sum_exec_runtime);
882 
883 	nr_switches = p->nvcsw + p->nivcsw;
884 
885 	P(se.nr_migrations);
886 
887 	if (schedstat_enabled()) {
888 		u64 avg_atom, avg_per_cpu;
889 
890 		PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
891 		PN_SCHEDSTAT(se.statistics.wait_start);
892 		PN_SCHEDSTAT(se.statistics.sleep_start);
893 		PN_SCHEDSTAT(se.statistics.block_start);
894 		PN_SCHEDSTAT(se.statistics.sleep_max);
895 		PN_SCHEDSTAT(se.statistics.block_max);
896 		PN_SCHEDSTAT(se.statistics.exec_max);
897 		PN_SCHEDSTAT(se.statistics.slice_max);
898 		PN_SCHEDSTAT(se.statistics.wait_max);
899 		PN_SCHEDSTAT(se.statistics.wait_sum);
900 		P_SCHEDSTAT(se.statistics.wait_count);
901 		PN_SCHEDSTAT(se.statistics.iowait_sum);
902 		P_SCHEDSTAT(se.statistics.iowait_count);
903 		P_SCHEDSTAT(se.statistics.nr_migrations_cold);
904 		P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
905 		P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
906 		P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
907 		P_SCHEDSTAT(se.statistics.nr_forced_migrations);
908 		P_SCHEDSTAT(se.statistics.nr_wakeups);
909 		P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
910 		P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
911 		P_SCHEDSTAT(se.statistics.nr_wakeups_local);
912 		P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
913 		P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
914 		P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
915 		P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
916 		P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
917 
918 		avg_atom = p->se.sum_exec_runtime;
919 		if (nr_switches)
920 			avg_atom = div64_ul(avg_atom, nr_switches);
921 		else
922 			avg_atom = -1LL;
923 
924 		avg_per_cpu = p->se.sum_exec_runtime;
925 		if (p->se.nr_migrations) {
926 			avg_per_cpu = div64_u64(avg_per_cpu,
927 						p->se.nr_migrations);
928 		} else {
929 			avg_per_cpu = -1LL;
930 		}
931 
932 		__PN(avg_atom);
933 		__PN(avg_per_cpu);
934 	}
935 
936 	__P(nr_switches);
937 	SEQ_printf(m, "%-45s:%21Ld\n",
938 		   "nr_voluntary_switches", (long long)p->nvcsw);
939 	SEQ_printf(m, "%-45s:%21Ld\n",
940 		   "nr_involuntary_switches", (long long)p->nivcsw);
941 
942 	P(se.load.weight);
943 	P(se.runnable_weight);
944 #ifdef CONFIG_SMP
945 	P(se.avg.load_sum);
946 	P(se.avg.runnable_load_sum);
947 	P(se.avg.util_sum);
948 	P(se.avg.load_avg);
949 	P(se.avg.runnable_load_avg);
950 	P(se.avg.util_avg);
951 	P(se.avg.last_update_time);
952 	P(se.avg.util_est.ewma);
953 	P(se.avg.util_est.enqueued);
954 #endif
955 	P(policy);
956 	P(prio);
957 	if (task_has_dl_policy(p)) {
958 		P(dl.runtime);
959 		P(dl.deadline);
960 	}
961 #undef PN_SCHEDSTAT
962 #undef PN
963 #undef __PN
964 #undef P_SCHEDSTAT
965 #undef P
966 #undef __P
967 
968 	{
969 		unsigned int this_cpu = raw_smp_processor_id();
970 		u64 t0, t1;
971 
972 		t0 = cpu_clock(this_cpu);
973 		t1 = cpu_clock(this_cpu);
974 		SEQ_printf(m, "%-45s:%21Ld\n",
975 			   "clock-delta", (long long)(t1-t0));
976 	}
977 
978 	sched_show_numa(p, m);
979 }
980 
981 void proc_sched_set_task(struct task_struct *p)
982 {
983 #ifdef CONFIG_SCHEDSTATS
984 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
985 #endif
986 }
987