1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/debug.c 4 * 5 * Print the CFS rbtree and other debugging details 6 * 7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar 8 */ 9 #include "sched.h" 10 11 static DEFINE_SPINLOCK(sched_debug_lock); 12 13 /* 14 * This allows printing both to /proc/sched_debug and 15 * to the console 16 */ 17 #define SEQ_printf(m, x...) \ 18 do { \ 19 if (m) \ 20 seq_printf(m, x); \ 21 else \ 22 pr_cont(x); \ 23 } while (0) 24 25 /* 26 * Ease the printing of nsec fields: 27 */ 28 static long long nsec_high(unsigned long long nsec) 29 { 30 if ((long long)nsec < 0) { 31 nsec = -nsec; 32 do_div(nsec, 1000000); 33 return -nsec; 34 } 35 do_div(nsec, 1000000); 36 37 return nsec; 38 } 39 40 static unsigned long nsec_low(unsigned long long nsec) 41 { 42 if ((long long)nsec < 0) 43 nsec = -nsec; 44 45 return do_div(nsec, 1000000); 46 } 47 48 #define SPLIT_NS(x) nsec_high(x), nsec_low(x) 49 50 #define SCHED_FEAT(name, enabled) \ 51 #name , 52 53 static const char * const sched_feat_names[] = { 54 #include "features.h" 55 }; 56 57 #undef SCHED_FEAT 58 59 static int sched_feat_show(struct seq_file *m, void *v) 60 { 61 int i; 62 63 for (i = 0; i < __SCHED_FEAT_NR; i++) { 64 if (!(sysctl_sched_features & (1UL << i))) 65 seq_puts(m, "NO_"); 66 seq_printf(m, "%s ", sched_feat_names[i]); 67 } 68 seq_puts(m, "\n"); 69 70 return 0; 71 } 72 73 #ifdef CONFIG_JUMP_LABEL 74 75 #define jump_label_key__true STATIC_KEY_INIT_TRUE 76 #define jump_label_key__false STATIC_KEY_INIT_FALSE 77 78 #define SCHED_FEAT(name, enabled) \ 79 jump_label_key__##enabled , 80 81 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 82 #include "features.h" 83 }; 84 85 #undef SCHED_FEAT 86 87 static void sched_feat_disable(int i) 88 { 89 static_key_disable_cpuslocked(&sched_feat_keys[i]); 90 } 91 92 static void sched_feat_enable(int i) 93 { 94 static_key_enable_cpuslocked(&sched_feat_keys[i]); 95 } 96 #else 97 static void sched_feat_disable(int i) { }; 98 static void sched_feat_enable(int i) { }; 99 #endif /* CONFIG_JUMP_LABEL */ 100 101 static int sched_feat_set(char *cmp) 102 { 103 int i; 104 int neg = 0; 105 106 if (strncmp(cmp, "NO_", 3) == 0) { 107 neg = 1; 108 cmp += 3; 109 } 110 111 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp); 112 if (i < 0) 113 return i; 114 115 if (neg) { 116 sysctl_sched_features &= ~(1UL << i); 117 sched_feat_disable(i); 118 } else { 119 sysctl_sched_features |= (1UL << i); 120 sched_feat_enable(i); 121 } 122 123 return 0; 124 } 125 126 static ssize_t 127 sched_feat_write(struct file *filp, const char __user *ubuf, 128 size_t cnt, loff_t *ppos) 129 { 130 char buf[64]; 131 char *cmp; 132 int ret; 133 struct inode *inode; 134 135 if (cnt > 63) 136 cnt = 63; 137 138 if (copy_from_user(&buf, ubuf, cnt)) 139 return -EFAULT; 140 141 buf[cnt] = 0; 142 cmp = strstrip(buf); 143 144 /* Ensure the static_key remains in a consistent state */ 145 inode = file_inode(filp); 146 cpus_read_lock(); 147 inode_lock(inode); 148 ret = sched_feat_set(cmp); 149 inode_unlock(inode); 150 cpus_read_unlock(); 151 if (ret < 0) 152 return ret; 153 154 *ppos += cnt; 155 156 return cnt; 157 } 158 159 static int sched_feat_open(struct inode *inode, struct file *filp) 160 { 161 return single_open(filp, sched_feat_show, NULL); 162 } 163 164 static const struct file_operations sched_feat_fops = { 165 .open = sched_feat_open, 166 .write = sched_feat_write, 167 .read = seq_read, 168 .llseek = seq_lseek, 169 .release = single_release, 170 }; 171 172 __read_mostly bool sched_debug_enabled; 173 174 static __init int sched_init_debug(void) 175 { 176 debugfs_create_file("sched_features", 0644, NULL, NULL, 177 &sched_feat_fops); 178 179 debugfs_create_bool("sched_debug", 0644, NULL, 180 &sched_debug_enabled); 181 182 return 0; 183 } 184 late_initcall(sched_init_debug); 185 186 #ifdef CONFIG_SMP 187 188 #ifdef CONFIG_SYSCTL 189 190 static struct ctl_table sd_ctl_dir[] = { 191 { 192 .procname = "sched_domain", 193 .mode = 0555, 194 }, 195 {} 196 }; 197 198 static struct ctl_table sd_ctl_root[] = { 199 { 200 .procname = "kernel", 201 .mode = 0555, 202 .child = sd_ctl_dir, 203 }, 204 {} 205 }; 206 207 static struct ctl_table *sd_alloc_ctl_entry(int n) 208 { 209 struct ctl_table *entry = 210 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 211 212 return entry; 213 } 214 215 static void sd_free_ctl_entry(struct ctl_table **tablep) 216 { 217 struct ctl_table *entry; 218 219 /* 220 * In the intermediate directories, both the child directory and 221 * procname are dynamically allocated and could fail but the mode 222 * will always be set. In the lowest directory the names are 223 * static strings and all have proc handlers. 224 */ 225 for (entry = *tablep; entry->mode; entry++) { 226 if (entry->child) 227 sd_free_ctl_entry(&entry->child); 228 if (entry->proc_handler == NULL) 229 kfree(entry->procname); 230 } 231 232 kfree(*tablep); 233 *tablep = NULL; 234 } 235 236 static void 237 set_table_entry(struct ctl_table *entry, 238 const char *procname, void *data, int maxlen, 239 umode_t mode, proc_handler *proc_handler) 240 { 241 entry->procname = procname; 242 entry->data = data; 243 entry->maxlen = maxlen; 244 entry->mode = mode; 245 entry->proc_handler = proc_handler; 246 } 247 248 static struct ctl_table * 249 sd_alloc_ctl_domain_table(struct sched_domain *sd) 250 { 251 struct ctl_table *table = sd_alloc_ctl_entry(9); 252 253 if (table == NULL) 254 return NULL; 255 256 set_table_entry(&table[0], "min_interval", &sd->min_interval, sizeof(long), 0644, proc_doulongvec_minmax); 257 set_table_entry(&table[1], "max_interval", &sd->max_interval, sizeof(long), 0644, proc_doulongvec_minmax); 258 set_table_entry(&table[2], "busy_factor", &sd->busy_factor, sizeof(int), 0644, proc_dointvec_minmax); 259 set_table_entry(&table[3], "imbalance_pct", &sd->imbalance_pct, sizeof(int), 0644, proc_dointvec_minmax); 260 set_table_entry(&table[4], "cache_nice_tries", &sd->cache_nice_tries, sizeof(int), 0644, proc_dointvec_minmax); 261 set_table_entry(&table[5], "flags", &sd->flags, sizeof(int), 0644, proc_dointvec_minmax); 262 set_table_entry(&table[6], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax); 263 set_table_entry(&table[7], "name", sd->name, CORENAME_MAX_SIZE, 0444, proc_dostring); 264 /* &table[8] is terminator */ 265 266 return table; 267 } 268 269 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 270 { 271 struct ctl_table *entry, *table; 272 struct sched_domain *sd; 273 int domain_num = 0, i; 274 char buf[32]; 275 276 for_each_domain(cpu, sd) 277 domain_num++; 278 entry = table = sd_alloc_ctl_entry(domain_num + 1); 279 if (table == NULL) 280 return NULL; 281 282 i = 0; 283 for_each_domain(cpu, sd) { 284 snprintf(buf, 32, "domain%d", i); 285 entry->procname = kstrdup(buf, GFP_KERNEL); 286 entry->mode = 0555; 287 entry->child = sd_alloc_ctl_domain_table(sd); 288 entry++; 289 i++; 290 } 291 return table; 292 } 293 294 static cpumask_var_t sd_sysctl_cpus; 295 static struct ctl_table_header *sd_sysctl_header; 296 297 void register_sched_domain_sysctl(void) 298 { 299 static struct ctl_table *cpu_entries; 300 static struct ctl_table **cpu_idx; 301 static bool init_done = false; 302 char buf[32]; 303 int i; 304 305 if (!cpu_entries) { 306 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1); 307 if (!cpu_entries) 308 return; 309 310 WARN_ON(sd_ctl_dir[0].child); 311 sd_ctl_dir[0].child = cpu_entries; 312 } 313 314 if (!cpu_idx) { 315 struct ctl_table *e = cpu_entries; 316 317 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL); 318 if (!cpu_idx) 319 return; 320 321 /* deal with sparse possible map */ 322 for_each_possible_cpu(i) { 323 cpu_idx[i] = e; 324 e++; 325 } 326 } 327 328 if (!cpumask_available(sd_sysctl_cpus)) { 329 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL)) 330 return; 331 } 332 333 if (!init_done) { 334 init_done = true; 335 /* init to possible to not have holes in @cpu_entries */ 336 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask); 337 } 338 339 for_each_cpu(i, sd_sysctl_cpus) { 340 struct ctl_table *e = cpu_idx[i]; 341 342 if (e->child) 343 sd_free_ctl_entry(&e->child); 344 345 if (!e->procname) { 346 snprintf(buf, 32, "cpu%d", i); 347 e->procname = kstrdup(buf, GFP_KERNEL); 348 } 349 e->mode = 0555; 350 e->child = sd_alloc_ctl_cpu_table(i); 351 352 __cpumask_clear_cpu(i, sd_sysctl_cpus); 353 } 354 355 WARN_ON(sd_sysctl_header); 356 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 357 } 358 359 void dirty_sched_domain_sysctl(int cpu) 360 { 361 if (cpumask_available(sd_sysctl_cpus)) 362 __cpumask_set_cpu(cpu, sd_sysctl_cpus); 363 } 364 365 /* may be called multiple times per register */ 366 void unregister_sched_domain_sysctl(void) 367 { 368 unregister_sysctl_table(sd_sysctl_header); 369 sd_sysctl_header = NULL; 370 } 371 #endif /* CONFIG_SYSCTL */ 372 #endif /* CONFIG_SMP */ 373 374 #ifdef CONFIG_FAIR_GROUP_SCHED 375 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) 376 { 377 struct sched_entity *se = tg->se[cpu]; 378 379 #define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) 380 #define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F)) 381 #define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) 382 #define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F))) 383 384 if (!se) 385 return; 386 387 PN(se->exec_start); 388 PN(se->vruntime); 389 PN(se->sum_exec_runtime); 390 391 if (schedstat_enabled()) { 392 PN_SCHEDSTAT(se->statistics.wait_start); 393 PN_SCHEDSTAT(se->statistics.sleep_start); 394 PN_SCHEDSTAT(se->statistics.block_start); 395 PN_SCHEDSTAT(se->statistics.sleep_max); 396 PN_SCHEDSTAT(se->statistics.block_max); 397 PN_SCHEDSTAT(se->statistics.exec_max); 398 PN_SCHEDSTAT(se->statistics.slice_max); 399 PN_SCHEDSTAT(se->statistics.wait_max); 400 PN_SCHEDSTAT(se->statistics.wait_sum); 401 P_SCHEDSTAT(se->statistics.wait_count); 402 } 403 404 P(se->load.weight); 405 P(se->runnable_weight); 406 #ifdef CONFIG_SMP 407 P(se->avg.load_avg); 408 P(se->avg.util_avg); 409 P(se->avg.runnable_load_avg); 410 #endif 411 412 #undef PN_SCHEDSTAT 413 #undef PN 414 #undef P_SCHEDSTAT 415 #undef P 416 } 417 #endif 418 419 #ifdef CONFIG_CGROUP_SCHED 420 static char group_path[PATH_MAX]; 421 422 static char *task_group_path(struct task_group *tg) 423 { 424 if (autogroup_path(tg, group_path, PATH_MAX)) 425 return group_path; 426 427 cgroup_path(tg->css.cgroup, group_path, PATH_MAX); 428 429 return group_path; 430 } 431 #endif 432 433 static void 434 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) 435 { 436 if (rq->curr == p) 437 SEQ_printf(m, ">R"); 438 else 439 SEQ_printf(m, " %c", task_state_to_char(p)); 440 441 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ", 442 p->comm, task_pid_nr(p), 443 SPLIT_NS(p->se.vruntime), 444 (long long)(p->nvcsw + p->nivcsw), 445 p->prio); 446 447 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", 448 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)), 449 SPLIT_NS(p->se.sum_exec_runtime), 450 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime))); 451 452 #ifdef CONFIG_NUMA_BALANCING 453 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p)); 454 #endif 455 #ifdef CONFIG_CGROUP_SCHED 456 SEQ_printf(m, " %s", task_group_path(task_group(p))); 457 #endif 458 459 SEQ_printf(m, "\n"); 460 } 461 462 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) 463 { 464 struct task_struct *g, *p; 465 466 SEQ_printf(m, "\n"); 467 SEQ_printf(m, "runnable tasks:\n"); 468 SEQ_printf(m, " S task PID tree-key switches prio" 469 " wait-time sum-exec sum-sleep\n"); 470 SEQ_printf(m, "-------------------------------------------------------" 471 "----------------------------------------------------\n"); 472 473 rcu_read_lock(); 474 for_each_process_thread(g, p) { 475 if (task_cpu(p) != rq_cpu) 476 continue; 477 478 print_task(m, rq, p); 479 } 480 rcu_read_unlock(); 481 } 482 483 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 484 { 485 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, 486 spread, rq0_min_vruntime, spread0; 487 struct rq *rq = cpu_rq(cpu); 488 struct sched_entity *last; 489 unsigned long flags; 490 491 #ifdef CONFIG_FAIR_GROUP_SCHED 492 SEQ_printf(m, "\n"); 493 SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg)); 494 #else 495 SEQ_printf(m, "\n"); 496 SEQ_printf(m, "cfs_rq[%d]:\n", cpu); 497 #endif 498 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", 499 SPLIT_NS(cfs_rq->exec_clock)); 500 501 raw_spin_lock_irqsave(&rq->lock, flags); 502 if (rb_first_cached(&cfs_rq->tasks_timeline)) 503 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; 504 last = __pick_last_entity(cfs_rq); 505 if (last) 506 max_vruntime = last->vruntime; 507 min_vruntime = cfs_rq->min_vruntime; 508 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; 509 raw_spin_unlock_irqrestore(&rq->lock, flags); 510 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", 511 SPLIT_NS(MIN_vruntime)); 512 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", 513 SPLIT_NS(min_vruntime)); 514 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", 515 SPLIT_NS(max_vruntime)); 516 spread = max_vruntime - MIN_vruntime; 517 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", 518 SPLIT_NS(spread)); 519 spread0 = min_vruntime - rq0_min_vruntime; 520 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", 521 SPLIT_NS(spread0)); 522 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", 523 cfs_rq->nr_spread_over); 524 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); 525 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); 526 #ifdef CONFIG_SMP 527 SEQ_printf(m, " .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight); 528 SEQ_printf(m, " .%-30s: %lu\n", "load_avg", 529 cfs_rq->avg.load_avg); 530 SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg", 531 cfs_rq->avg.runnable_load_avg); 532 SEQ_printf(m, " .%-30s: %lu\n", "util_avg", 533 cfs_rq->avg.util_avg); 534 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued", 535 cfs_rq->avg.util_est.enqueued); 536 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg", 537 cfs_rq->removed.load_avg); 538 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg", 539 cfs_rq->removed.util_avg); 540 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_sum", 541 cfs_rq->removed.runnable_sum); 542 #ifdef CONFIG_FAIR_GROUP_SCHED 543 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib", 544 cfs_rq->tg_load_avg_contrib); 545 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", 546 atomic_long_read(&cfs_rq->tg->load_avg)); 547 #endif 548 #endif 549 #ifdef CONFIG_CFS_BANDWIDTH 550 SEQ_printf(m, " .%-30s: %d\n", "throttled", 551 cfs_rq->throttled); 552 SEQ_printf(m, " .%-30s: %d\n", "throttle_count", 553 cfs_rq->throttle_count); 554 #endif 555 556 #ifdef CONFIG_FAIR_GROUP_SCHED 557 print_cfs_group_stats(m, cpu, cfs_rq->tg); 558 #endif 559 } 560 561 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) 562 { 563 #ifdef CONFIG_RT_GROUP_SCHED 564 SEQ_printf(m, "\n"); 565 SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg)); 566 #else 567 SEQ_printf(m, "\n"); 568 SEQ_printf(m, "rt_rq[%d]:\n", cpu); 569 #endif 570 571 #define P(x) \ 572 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) 573 #define PU(x) \ 574 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x)) 575 #define PN(x) \ 576 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) 577 578 PU(rt_nr_running); 579 #ifdef CONFIG_SMP 580 PU(rt_nr_migratory); 581 #endif 582 P(rt_throttled); 583 PN(rt_time); 584 PN(rt_runtime); 585 586 #undef PN 587 #undef PU 588 #undef P 589 } 590 591 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq) 592 { 593 struct dl_bw *dl_bw; 594 595 SEQ_printf(m, "\n"); 596 SEQ_printf(m, "dl_rq[%d]:\n", cpu); 597 598 #define PU(x) \ 599 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x)) 600 601 PU(dl_nr_running); 602 #ifdef CONFIG_SMP 603 PU(dl_nr_migratory); 604 dl_bw = &cpu_rq(cpu)->rd->dl_bw; 605 #else 606 dl_bw = &dl_rq->dl_bw; 607 #endif 608 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw); 609 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw); 610 611 #undef PU 612 } 613 614 static void print_cpu(struct seq_file *m, int cpu) 615 { 616 struct rq *rq = cpu_rq(cpu); 617 unsigned long flags; 618 619 #ifdef CONFIG_X86 620 { 621 unsigned int freq = cpu_khz ? : 1; 622 623 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", 624 cpu, freq / 1000, (freq % 1000)); 625 } 626 #else 627 SEQ_printf(m, "cpu#%d\n", cpu); 628 #endif 629 630 #define P(x) \ 631 do { \ 632 if (sizeof(rq->x) == 4) \ 633 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \ 634 else \ 635 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ 636 } while (0) 637 638 #define PN(x) \ 639 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) 640 641 P(nr_running); 642 P(nr_switches); 643 P(nr_load_updates); 644 P(nr_uninterruptible); 645 PN(next_balance); 646 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); 647 PN(clock); 648 PN(clock_task); 649 #undef P 650 #undef PN 651 652 #ifdef CONFIG_SMP 653 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); 654 P64(avg_idle); 655 P64(max_idle_balance_cost); 656 #undef P64 657 #endif 658 659 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n)); 660 if (schedstat_enabled()) { 661 P(yld_count); 662 P(sched_count); 663 P(sched_goidle); 664 P(ttwu_count); 665 P(ttwu_local); 666 } 667 #undef P 668 669 spin_lock_irqsave(&sched_debug_lock, flags); 670 print_cfs_stats(m, cpu); 671 print_rt_stats(m, cpu); 672 print_dl_stats(m, cpu); 673 674 print_rq(m, rq, cpu); 675 spin_unlock_irqrestore(&sched_debug_lock, flags); 676 SEQ_printf(m, "\n"); 677 } 678 679 static const char *sched_tunable_scaling_names[] = { 680 "none", 681 "logarithmic", 682 "linear" 683 }; 684 685 static void sched_debug_header(struct seq_file *m) 686 { 687 u64 ktime, sched_clk, cpu_clk; 688 unsigned long flags; 689 690 local_irq_save(flags); 691 ktime = ktime_to_ns(ktime_get()); 692 sched_clk = sched_clock(); 693 cpu_clk = local_clock(); 694 local_irq_restore(flags); 695 696 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", 697 init_utsname()->release, 698 (int)strcspn(init_utsname()->version, " "), 699 init_utsname()->version); 700 701 #define P(x) \ 702 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) 703 #define PN(x) \ 704 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 705 PN(ktime); 706 PN(sched_clk); 707 PN(cpu_clk); 708 P(jiffies); 709 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 710 P(sched_clock_stable()); 711 #endif 712 #undef PN 713 #undef P 714 715 SEQ_printf(m, "\n"); 716 SEQ_printf(m, "sysctl_sched\n"); 717 718 #define P(x) \ 719 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) 720 #define PN(x) \ 721 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 722 PN(sysctl_sched_latency); 723 PN(sysctl_sched_min_granularity); 724 PN(sysctl_sched_wakeup_granularity); 725 P(sysctl_sched_child_runs_first); 726 P(sysctl_sched_features); 727 #undef PN 728 #undef P 729 730 SEQ_printf(m, " .%-40s: %d (%s)\n", 731 "sysctl_sched_tunable_scaling", 732 sysctl_sched_tunable_scaling, 733 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); 734 SEQ_printf(m, "\n"); 735 } 736 737 static int sched_debug_show(struct seq_file *m, void *v) 738 { 739 int cpu = (unsigned long)(v - 2); 740 741 if (cpu != -1) 742 print_cpu(m, cpu); 743 else 744 sched_debug_header(m); 745 746 return 0; 747 } 748 749 void sysrq_sched_debug_show(void) 750 { 751 int cpu; 752 753 sched_debug_header(NULL); 754 for_each_online_cpu(cpu) 755 print_cpu(NULL, cpu); 756 757 } 758 759 /* 760 * This itererator needs some explanation. 761 * It returns 1 for the header position. 762 * This means 2 is CPU 0. 763 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have 764 * to use cpumask_* to iterate over the CPUs. 765 */ 766 static void *sched_debug_start(struct seq_file *file, loff_t *offset) 767 { 768 unsigned long n = *offset; 769 770 if (n == 0) 771 return (void *) 1; 772 773 n--; 774 775 if (n > 0) 776 n = cpumask_next(n - 1, cpu_online_mask); 777 else 778 n = cpumask_first(cpu_online_mask); 779 780 *offset = n + 1; 781 782 if (n < nr_cpu_ids) 783 return (void *)(unsigned long)(n + 2); 784 785 return NULL; 786 } 787 788 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset) 789 { 790 (*offset)++; 791 return sched_debug_start(file, offset); 792 } 793 794 static void sched_debug_stop(struct seq_file *file, void *data) 795 { 796 } 797 798 static const struct seq_operations sched_debug_sops = { 799 .start = sched_debug_start, 800 .next = sched_debug_next, 801 .stop = sched_debug_stop, 802 .show = sched_debug_show, 803 }; 804 805 static int __init init_sched_debug_procfs(void) 806 { 807 if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops)) 808 return -ENOMEM; 809 return 0; 810 } 811 812 __initcall(init_sched_debug_procfs); 813 814 #define __P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) 815 #define P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) 816 #define __PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 817 #define PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 818 819 820 #ifdef CONFIG_NUMA_BALANCING 821 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 822 unsigned long tpf, unsigned long gsf, unsigned long gpf) 823 { 824 SEQ_printf(m, "numa_faults node=%d ", node); 825 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf); 826 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf); 827 } 828 #endif 829 830 831 static void sched_show_numa(struct task_struct *p, struct seq_file *m) 832 { 833 #ifdef CONFIG_NUMA_BALANCING 834 struct mempolicy *pol; 835 836 if (p->mm) 837 P(mm->numa_scan_seq); 838 839 task_lock(p); 840 pol = p->mempolicy; 841 if (pol && !(pol->flags & MPOL_F_MORON)) 842 pol = NULL; 843 mpol_get(pol); 844 task_unlock(p); 845 846 P(numa_pages_migrated); 847 P(numa_preferred_nid); 848 P(total_numa_faults); 849 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n", 850 task_node(p), task_numa_group_id(p)); 851 show_numa_stats(p, m); 852 mpol_put(pol); 853 #endif 854 } 855 856 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns, 857 struct seq_file *m) 858 { 859 unsigned long nr_switches; 860 861 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns), 862 get_nr_threads(p)); 863 SEQ_printf(m, 864 "---------------------------------------------------------" 865 "----------\n"); 866 #define __P(F) \ 867 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) 868 #define P(F) \ 869 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) 870 #define P_SCHEDSTAT(F) \ 871 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F)) 872 #define __PN(F) \ 873 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 874 #define PN(F) \ 875 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 876 #define PN_SCHEDSTAT(F) \ 877 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F))) 878 879 PN(se.exec_start); 880 PN(se.vruntime); 881 PN(se.sum_exec_runtime); 882 883 nr_switches = p->nvcsw + p->nivcsw; 884 885 P(se.nr_migrations); 886 887 if (schedstat_enabled()) { 888 u64 avg_atom, avg_per_cpu; 889 890 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime); 891 PN_SCHEDSTAT(se.statistics.wait_start); 892 PN_SCHEDSTAT(se.statistics.sleep_start); 893 PN_SCHEDSTAT(se.statistics.block_start); 894 PN_SCHEDSTAT(se.statistics.sleep_max); 895 PN_SCHEDSTAT(se.statistics.block_max); 896 PN_SCHEDSTAT(se.statistics.exec_max); 897 PN_SCHEDSTAT(se.statistics.slice_max); 898 PN_SCHEDSTAT(se.statistics.wait_max); 899 PN_SCHEDSTAT(se.statistics.wait_sum); 900 P_SCHEDSTAT(se.statistics.wait_count); 901 PN_SCHEDSTAT(se.statistics.iowait_sum); 902 P_SCHEDSTAT(se.statistics.iowait_count); 903 P_SCHEDSTAT(se.statistics.nr_migrations_cold); 904 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine); 905 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running); 906 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot); 907 P_SCHEDSTAT(se.statistics.nr_forced_migrations); 908 P_SCHEDSTAT(se.statistics.nr_wakeups); 909 P_SCHEDSTAT(se.statistics.nr_wakeups_sync); 910 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate); 911 P_SCHEDSTAT(se.statistics.nr_wakeups_local); 912 P_SCHEDSTAT(se.statistics.nr_wakeups_remote); 913 P_SCHEDSTAT(se.statistics.nr_wakeups_affine); 914 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts); 915 P_SCHEDSTAT(se.statistics.nr_wakeups_passive); 916 P_SCHEDSTAT(se.statistics.nr_wakeups_idle); 917 918 avg_atom = p->se.sum_exec_runtime; 919 if (nr_switches) 920 avg_atom = div64_ul(avg_atom, nr_switches); 921 else 922 avg_atom = -1LL; 923 924 avg_per_cpu = p->se.sum_exec_runtime; 925 if (p->se.nr_migrations) { 926 avg_per_cpu = div64_u64(avg_per_cpu, 927 p->se.nr_migrations); 928 } else { 929 avg_per_cpu = -1LL; 930 } 931 932 __PN(avg_atom); 933 __PN(avg_per_cpu); 934 } 935 936 __P(nr_switches); 937 SEQ_printf(m, "%-45s:%21Ld\n", 938 "nr_voluntary_switches", (long long)p->nvcsw); 939 SEQ_printf(m, "%-45s:%21Ld\n", 940 "nr_involuntary_switches", (long long)p->nivcsw); 941 942 P(se.load.weight); 943 P(se.runnable_weight); 944 #ifdef CONFIG_SMP 945 P(se.avg.load_sum); 946 P(se.avg.runnable_load_sum); 947 P(se.avg.util_sum); 948 P(se.avg.load_avg); 949 P(se.avg.runnable_load_avg); 950 P(se.avg.util_avg); 951 P(se.avg.last_update_time); 952 P(se.avg.util_est.ewma); 953 P(se.avg.util_est.enqueued); 954 #endif 955 P(policy); 956 P(prio); 957 if (task_has_dl_policy(p)) { 958 P(dl.runtime); 959 P(dl.deadline); 960 } 961 #undef PN_SCHEDSTAT 962 #undef PN 963 #undef __PN 964 #undef P_SCHEDSTAT 965 #undef P 966 #undef __P 967 968 { 969 unsigned int this_cpu = raw_smp_processor_id(); 970 u64 t0, t1; 971 972 t0 = cpu_clock(this_cpu); 973 t1 = cpu_clock(this_cpu); 974 SEQ_printf(m, "%-45s:%21Ld\n", 975 "clock-delta", (long long)(t1-t0)); 976 } 977 978 sched_show_numa(p, m); 979 } 980 981 void proc_sched_set_task(struct task_struct *p) 982 { 983 #ifdef CONFIG_SCHEDSTATS 984 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 985 #endif 986 } 987