xref: /openbmc/linux/kernel/sched/debug.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 /*
2  * kernel/sched/debug.c
3  *
4  * Print the CFS rbtree and other debugging details
5  *
6  * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include "sched.h"
13 
14 static DEFINE_SPINLOCK(sched_debug_lock);
15 
16 /*
17  * This allows printing both to /proc/sched_debug and
18  * to the console
19  */
20 #define SEQ_printf(m, x...)			\
21  do {						\
22 	if (m)					\
23 		seq_printf(m, x);		\
24 	else					\
25 		pr_cont(x);			\
26  } while (0)
27 
28 /*
29  * Ease the printing of nsec fields:
30  */
31 static long long nsec_high(unsigned long long nsec)
32 {
33 	if ((long long)nsec < 0) {
34 		nsec = -nsec;
35 		do_div(nsec, 1000000);
36 		return -nsec;
37 	}
38 	do_div(nsec, 1000000);
39 
40 	return nsec;
41 }
42 
43 static unsigned long nsec_low(unsigned long long nsec)
44 {
45 	if ((long long)nsec < 0)
46 		nsec = -nsec;
47 
48 	return do_div(nsec, 1000000);
49 }
50 
51 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
52 
53 #define SCHED_FEAT(name, enabled)	\
54 	#name ,
55 
56 static const char * const sched_feat_names[] = {
57 #include "features.h"
58 };
59 
60 #undef SCHED_FEAT
61 
62 static int sched_feat_show(struct seq_file *m, void *v)
63 {
64 	int i;
65 
66 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
67 		if (!(sysctl_sched_features & (1UL << i)))
68 			seq_puts(m, "NO_");
69 		seq_printf(m, "%s ", sched_feat_names[i]);
70 	}
71 	seq_puts(m, "\n");
72 
73 	return 0;
74 }
75 
76 #ifdef HAVE_JUMP_LABEL
77 
78 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
79 #define jump_label_key__false STATIC_KEY_INIT_FALSE
80 
81 #define SCHED_FEAT(name, enabled)	\
82 	jump_label_key__##enabled ,
83 
84 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
85 #include "features.h"
86 };
87 
88 #undef SCHED_FEAT
89 
90 static void sched_feat_disable(int i)
91 {
92 	static_key_disable(&sched_feat_keys[i]);
93 }
94 
95 static void sched_feat_enable(int i)
96 {
97 	static_key_enable(&sched_feat_keys[i]);
98 }
99 #else
100 static void sched_feat_disable(int i) { };
101 static void sched_feat_enable(int i) { };
102 #endif /* HAVE_JUMP_LABEL */
103 
104 static int sched_feat_set(char *cmp)
105 {
106 	int i;
107 	int neg = 0;
108 
109 	if (strncmp(cmp, "NO_", 3) == 0) {
110 		neg = 1;
111 		cmp += 3;
112 	}
113 
114 	i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
115 	if (i < 0)
116 		return i;
117 
118 	if (neg) {
119 		sysctl_sched_features &= ~(1UL << i);
120 		sched_feat_disable(i);
121 	} else {
122 		sysctl_sched_features |= (1UL << i);
123 		sched_feat_enable(i);
124 	}
125 
126 	return 0;
127 }
128 
129 static ssize_t
130 sched_feat_write(struct file *filp, const char __user *ubuf,
131 		size_t cnt, loff_t *ppos)
132 {
133 	char buf[64];
134 	char *cmp;
135 	int ret;
136 	struct inode *inode;
137 
138 	if (cnt > 63)
139 		cnt = 63;
140 
141 	if (copy_from_user(&buf, ubuf, cnt))
142 		return -EFAULT;
143 
144 	buf[cnt] = 0;
145 	cmp = strstrip(buf);
146 
147 	/* Ensure the static_key remains in a consistent state */
148 	inode = file_inode(filp);
149 	inode_lock(inode);
150 	ret = sched_feat_set(cmp);
151 	inode_unlock(inode);
152 	if (ret < 0)
153 		return ret;
154 
155 	*ppos += cnt;
156 
157 	return cnt;
158 }
159 
160 static int sched_feat_open(struct inode *inode, struct file *filp)
161 {
162 	return single_open(filp, sched_feat_show, NULL);
163 }
164 
165 static const struct file_operations sched_feat_fops = {
166 	.open		= sched_feat_open,
167 	.write		= sched_feat_write,
168 	.read		= seq_read,
169 	.llseek		= seq_lseek,
170 	.release	= single_release,
171 };
172 
173 __read_mostly bool sched_debug_enabled;
174 
175 static __init int sched_init_debug(void)
176 {
177 	debugfs_create_file("sched_features", 0644, NULL, NULL,
178 			&sched_feat_fops);
179 
180 	debugfs_create_bool("sched_debug", 0644, NULL,
181 			&sched_debug_enabled);
182 
183 	return 0;
184 }
185 late_initcall(sched_init_debug);
186 
187 #ifdef CONFIG_SMP
188 
189 #ifdef CONFIG_SYSCTL
190 
191 static struct ctl_table sd_ctl_dir[] = {
192 	{
193 		.procname	= "sched_domain",
194 		.mode		= 0555,
195 	},
196 	{}
197 };
198 
199 static struct ctl_table sd_ctl_root[] = {
200 	{
201 		.procname	= "kernel",
202 		.mode		= 0555,
203 		.child		= sd_ctl_dir,
204 	},
205 	{}
206 };
207 
208 static struct ctl_table *sd_alloc_ctl_entry(int n)
209 {
210 	struct ctl_table *entry =
211 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
212 
213 	return entry;
214 }
215 
216 static void sd_free_ctl_entry(struct ctl_table **tablep)
217 {
218 	struct ctl_table *entry;
219 
220 	/*
221 	 * In the intermediate directories, both the child directory and
222 	 * procname are dynamically allocated and could fail but the mode
223 	 * will always be set. In the lowest directory the names are
224 	 * static strings and all have proc handlers.
225 	 */
226 	for (entry = *tablep; entry->mode; entry++) {
227 		if (entry->child)
228 			sd_free_ctl_entry(&entry->child);
229 		if (entry->proc_handler == NULL)
230 			kfree(entry->procname);
231 	}
232 
233 	kfree(*tablep);
234 	*tablep = NULL;
235 }
236 
237 static int min_load_idx = 0;
238 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
239 
240 static void
241 set_table_entry(struct ctl_table *entry,
242 		const char *procname, void *data, int maxlen,
243 		umode_t mode, proc_handler *proc_handler,
244 		bool load_idx)
245 {
246 	entry->procname = procname;
247 	entry->data = data;
248 	entry->maxlen = maxlen;
249 	entry->mode = mode;
250 	entry->proc_handler = proc_handler;
251 
252 	if (load_idx) {
253 		entry->extra1 = &min_load_idx;
254 		entry->extra2 = &max_load_idx;
255 	}
256 }
257 
258 static struct ctl_table *
259 sd_alloc_ctl_domain_table(struct sched_domain *sd)
260 {
261 	struct ctl_table *table = sd_alloc_ctl_entry(14);
262 
263 	if (table == NULL)
264 		return NULL;
265 
266 	set_table_entry(&table[0] , "min_interval",	   &sd->min_interval,	     sizeof(long), 0644, proc_doulongvec_minmax, false);
267 	set_table_entry(&table[1] , "max_interval",	   &sd->max_interval,	     sizeof(long), 0644, proc_doulongvec_minmax, false);
268 	set_table_entry(&table[2] , "busy_idx",		   &sd->busy_idx,	     sizeof(int) , 0644, proc_dointvec_minmax,   true );
269 	set_table_entry(&table[3] , "idle_idx",		   &sd->idle_idx,	     sizeof(int) , 0644, proc_dointvec_minmax,   true );
270 	set_table_entry(&table[4] , "newidle_idx",	   &sd->newidle_idx,	     sizeof(int) , 0644, proc_dointvec_minmax,   true );
271 	set_table_entry(&table[5] , "wake_idx",		   &sd->wake_idx,	     sizeof(int) , 0644, proc_dointvec_minmax,   true );
272 	set_table_entry(&table[6] , "forkexec_idx",	   &sd->forkexec_idx,	     sizeof(int) , 0644, proc_dointvec_minmax,   true );
273 	set_table_entry(&table[7] , "busy_factor",	   &sd->busy_factor,	     sizeof(int) , 0644, proc_dointvec_minmax,   false);
274 	set_table_entry(&table[8] , "imbalance_pct",	   &sd->imbalance_pct,	     sizeof(int) , 0644, proc_dointvec_minmax,   false);
275 	set_table_entry(&table[9] , "cache_nice_tries",	   &sd->cache_nice_tries,    sizeof(int) , 0644, proc_dointvec_minmax,   false);
276 	set_table_entry(&table[10], "flags",		   &sd->flags,		     sizeof(int) , 0644, proc_dointvec_minmax,   false);
277 	set_table_entry(&table[11], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax, false);
278 	set_table_entry(&table[12], "name",		   sd->name,		CORENAME_MAX_SIZE, 0444, proc_dostring,		 false);
279 	/* &table[13] is terminator */
280 
281 	return table;
282 }
283 
284 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
285 {
286 	struct ctl_table *entry, *table;
287 	struct sched_domain *sd;
288 	int domain_num = 0, i;
289 	char buf[32];
290 
291 	for_each_domain(cpu, sd)
292 		domain_num++;
293 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
294 	if (table == NULL)
295 		return NULL;
296 
297 	i = 0;
298 	for_each_domain(cpu, sd) {
299 		snprintf(buf, 32, "domain%d", i);
300 		entry->procname = kstrdup(buf, GFP_KERNEL);
301 		entry->mode = 0555;
302 		entry->child = sd_alloc_ctl_domain_table(sd);
303 		entry++;
304 		i++;
305 	}
306 	return table;
307 }
308 
309 static cpumask_var_t		sd_sysctl_cpus;
310 static struct ctl_table_header	*sd_sysctl_header;
311 
312 void register_sched_domain_sysctl(void)
313 {
314 	static struct ctl_table *cpu_entries;
315 	static struct ctl_table **cpu_idx;
316 	char buf[32];
317 	int i;
318 
319 	if (!cpu_entries) {
320 		cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
321 		if (!cpu_entries)
322 			return;
323 
324 		WARN_ON(sd_ctl_dir[0].child);
325 		sd_ctl_dir[0].child = cpu_entries;
326 	}
327 
328 	if (!cpu_idx) {
329 		struct ctl_table *e = cpu_entries;
330 
331 		cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
332 		if (!cpu_idx)
333 			return;
334 
335 		/* deal with sparse possible map */
336 		for_each_possible_cpu(i) {
337 			cpu_idx[i] = e;
338 			e++;
339 		}
340 	}
341 
342 	if (!cpumask_available(sd_sysctl_cpus)) {
343 		if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
344 			return;
345 
346 		/* init to possible to not have holes in @cpu_entries */
347 		cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
348 	}
349 
350 	for_each_cpu(i, sd_sysctl_cpus) {
351 		struct ctl_table *e = cpu_idx[i];
352 
353 		if (e->child)
354 			sd_free_ctl_entry(&e->child);
355 
356 		if (!e->procname) {
357 			snprintf(buf, 32, "cpu%d", i);
358 			e->procname = kstrdup(buf, GFP_KERNEL);
359 		}
360 		e->mode = 0555;
361 		e->child = sd_alloc_ctl_cpu_table(i);
362 
363 		__cpumask_clear_cpu(i, sd_sysctl_cpus);
364 	}
365 
366 	WARN_ON(sd_sysctl_header);
367 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
368 }
369 
370 void dirty_sched_domain_sysctl(int cpu)
371 {
372 	if (cpumask_available(sd_sysctl_cpus))
373 		__cpumask_set_cpu(cpu, sd_sysctl_cpus);
374 }
375 
376 /* may be called multiple times per register */
377 void unregister_sched_domain_sysctl(void)
378 {
379 	unregister_sysctl_table(sd_sysctl_header);
380 	sd_sysctl_header = NULL;
381 }
382 #endif /* CONFIG_SYSCTL */
383 #endif /* CONFIG_SMP */
384 
385 #ifdef CONFIG_FAIR_GROUP_SCHED
386 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
387 {
388 	struct sched_entity *se = tg->se[cpu];
389 
390 #define P(F)		SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)F)
391 #define P_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)schedstat_val(F))
392 #define PN(F)		SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
393 #define PN_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
394 
395 	if (!se)
396 		return;
397 
398 	PN(se->exec_start);
399 	PN(se->vruntime);
400 	PN(se->sum_exec_runtime);
401 
402 	if (schedstat_enabled()) {
403 		PN_SCHEDSTAT(se->statistics.wait_start);
404 		PN_SCHEDSTAT(se->statistics.sleep_start);
405 		PN_SCHEDSTAT(se->statistics.block_start);
406 		PN_SCHEDSTAT(se->statistics.sleep_max);
407 		PN_SCHEDSTAT(se->statistics.block_max);
408 		PN_SCHEDSTAT(se->statistics.exec_max);
409 		PN_SCHEDSTAT(se->statistics.slice_max);
410 		PN_SCHEDSTAT(se->statistics.wait_max);
411 		PN_SCHEDSTAT(se->statistics.wait_sum);
412 		P_SCHEDSTAT(se->statistics.wait_count);
413 	}
414 
415 	P(se->load.weight);
416 	P(se->runnable_weight);
417 #ifdef CONFIG_SMP
418 	P(se->avg.load_avg);
419 	P(se->avg.util_avg);
420 	P(se->avg.runnable_load_avg);
421 #endif
422 
423 #undef PN_SCHEDSTAT
424 #undef PN
425 #undef P_SCHEDSTAT
426 #undef P
427 }
428 #endif
429 
430 #ifdef CONFIG_CGROUP_SCHED
431 static char group_path[PATH_MAX];
432 
433 static char *task_group_path(struct task_group *tg)
434 {
435 	if (autogroup_path(tg, group_path, PATH_MAX))
436 		return group_path;
437 
438 	cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
439 
440 	return group_path;
441 }
442 #endif
443 
444 static void
445 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
446 {
447 	if (rq->curr == p)
448 		SEQ_printf(m, ">R");
449 	else
450 		SEQ_printf(m, " %c", task_state_to_char(p));
451 
452 	SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
453 		p->comm, task_pid_nr(p),
454 		SPLIT_NS(p->se.vruntime),
455 		(long long)(p->nvcsw + p->nivcsw),
456 		p->prio);
457 
458 	SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
459 		SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
460 		SPLIT_NS(p->se.sum_exec_runtime),
461 		SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
462 
463 #ifdef CONFIG_NUMA_BALANCING
464 	SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
465 #endif
466 #ifdef CONFIG_CGROUP_SCHED
467 	SEQ_printf(m, " %s", task_group_path(task_group(p)));
468 #endif
469 
470 	SEQ_printf(m, "\n");
471 }
472 
473 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
474 {
475 	struct task_struct *g, *p;
476 
477 	SEQ_printf(m, "\n");
478 	SEQ_printf(m, "runnable tasks:\n");
479 	SEQ_printf(m, " S           task   PID         tree-key  switches  prio"
480 		   "     wait-time             sum-exec        sum-sleep\n");
481 	SEQ_printf(m, "-------------------------------------------------------"
482 		   "----------------------------------------------------\n");
483 
484 	rcu_read_lock();
485 	for_each_process_thread(g, p) {
486 		if (task_cpu(p) != rq_cpu)
487 			continue;
488 
489 		print_task(m, rq, p);
490 	}
491 	rcu_read_unlock();
492 }
493 
494 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
495 {
496 	s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
497 		spread, rq0_min_vruntime, spread0;
498 	struct rq *rq = cpu_rq(cpu);
499 	struct sched_entity *last;
500 	unsigned long flags;
501 
502 #ifdef CONFIG_FAIR_GROUP_SCHED
503 	SEQ_printf(m, "\n");
504 	SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
505 #else
506 	SEQ_printf(m, "\n");
507 	SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
508 #endif
509 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
510 			SPLIT_NS(cfs_rq->exec_clock));
511 
512 	raw_spin_lock_irqsave(&rq->lock, flags);
513 	if (rb_first_cached(&cfs_rq->tasks_timeline))
514 		MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
515 	last = __pick_last_entity(cfs_rq);
516 	if (last)
517 		max_vruntime = last->vruntime;
518 	min_vruntime = cfs_rq->min_vruntime;
519 	rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
520 	raw_spin_unlock_irqrestore(&rq->lock, flags);
521 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
522 			SPLIT_NS(MIN_vruntime));
523 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
524 			SPLIT_NS(min_vruntime));
525 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
526 			SPLIT_NS(max_vruntime));
527 	spread = max_vruntime - MIN_vruntime;
528 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
529 			SPLIT_NS(spread));
530 	spread0 = min_vruntime - rq0_min_vruntime;
531 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
532 			SPLIT_NS(spread0));
533 	SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
534 			cfs_rq->nr_spread_over);
535 	SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
536 	SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
537 #ifdef CONFIG_SMP
538 	SEQ_printf(m, "  .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight);
539 	SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
540 			cfs_rq->avg.load_avg);
541 	SEQ_printf(m, "  .%-30s: %lu\n", "runnable_load_avg",
542 			cfs_rq->avg.runnable_load_avg);
543 	SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
544 			cfs_rq->avg.util_avg);
545 	SEQ_printf(m, "  .%-30s: %u\n", "util_est_enqueued",
546 			cfs_rq->avg.util_est.enqueued);
547 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.load_avg",
548 			cfs_rq->removed.load_avg);
549 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.util_avg",
550 			cfs_rq->removed.util_avg);
551 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.runnable_sum",
552 			cfs_rq->removed.runnable_sum);
553 #ifdef CONFIG_FAIR_GROUP_SCHED
554 	SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
555 			cfs_rq->tg_load_avg_contrib);
556 	SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
557 			atomic_long_read(&cfs_rq->tg->load_avg));
558 #endif
559 #endif
560 #ifdef CONFIG_CFS_BANDWIDTH
561 	SEQ_printf(m, "  .%-30s: %d\n", "throttled",
562 			cfs_rq->throttled);
563 	SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
564 			cfs_rq->throttle_count);
565 #endif
566 
567 #ifdef CONFIG_FAIR_GROUP_SCHED
568 	print_cfs_group_stats(m, cpu, cfs_rq->tg);
569 #endif
570 }
571 
572 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
573 {
574 #ifdef CONFIG_RT_GROUP_SCHED
575 	SEQ_printf(m, "\n");
576 	SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
577 #else
578 	SEQ_printf(m, "\n");
579 	SEQ_printf(m, "rt_rq[%d]:\n", cpu);
580 #endif
581 
582 #define P(x) \
583 	SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
584 #define PU(x) \
585 	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
586 #define PN(x) \
587 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
588 
589 	PU(rt_nr_running);
590 #ifdef CONFIG_SMP
591 	PU(rt_nr_migratory);
592 #endif
593 	P(rt_throttled);
594 	PN(rt_time);
595 	PN(rt_runtime);
596 
597 #undef PN
598 #undef PU
599 #undef P
600 }
601 
602 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
603 {
604 	struct dl_bw *dl_bw;
605 
606 	SEQ_printf(m, "\n");
607 	SEQ_printf(m, "dl_rq[%d]:\n", cpu);
608 
609 #define PU(x) \
610 	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
611 
612 	PU(dl_nr_running);
613 #ifdef CONFIG_SMP
614 	PU(dl_nr_migratory);
615 	dl_bw = &cpu_rq(cpu)->rd->dl_bw;
616 #else
617 	dl_bw = &dl_rq->dl_bw;
618 #endif
619 	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
620 	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
621 
622 #undef PU
623 }
624 
625 static void print_cpu(struct seq_file *m, int cpu)
626 {
627 	struct rq *rq = cpu_rq(cpu);
628 	unsigned long flags;
629 
630 #ifdef CONFIG_X86
631 	{
632 		unsigned int freq = cpu_khz ? : 1;
633 
634 		SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
635 			   cpu, freq / 1000, (freq % 1000));
636 	}
637 #else
638 	SEQ_printf(m, "cpu#%d\n", cpu);
639 #endif
640 
641 #define P(x)								\
642 do {									\
643 	if (sizeof(rq->x) == 4)						\
644 		SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));	\
645 	else								\
646 		SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
647 } while (0)
648 
649 #define PN(x) \
650 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
651 
652 	P(nr_running);
653 	SEQ_printf(m, "  .%-30s: %lu\n", "load",
654 		   rq->load.weight);
655 	P(nr_switches);
656 	P(nr_load_updates);
657 	P(nr_uninterruptible);
658 	PN(next_balance);
659 	SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
660 	PN(clock);
661 	PN(clock_task);
662 	P(cpu_load[0]);
663 	P(cpu_load[1]);
664 	P(cpu_load[2]);
665 	P(cpu_load[3]);
666 	P(cpu_load[4]);
667 #undef P
668 #undef PN
669 
670 #ifdef CONFIG_SMP
671 #define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
672 	P64(avg_idle);
673 	P64(max_idle_balance_cost);
674 #undef P64
675 #endif
676 
677 #define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
678 	if (schedstat_enabled()) {
679 		P(yld_count);
680 		P(sched_count);
681 		P(sched_goidle);
682 		P(ttwu_count);
683 		P(ttwu_local);
684 	}
685 #undef P
686 
687 	spin_lock_irqsave(&sched_debug_lock, flags);
688 	print_cfs_stats(m, cpu);
689 	print_rt_stats(m, cpu);
690 	print_dl_stats(m, cpu);
691 
692 	print_rq(m, rq, cpu);
693 	spin_unlock_irqrestore(&sched_debug_lock, flags);
694 	SEQ_printf(m, "\n");
695 }
696 
697 static const char *sched_tunable_scaling_names[] = {
698 	"none",
699 	"logaritmic",
700 	"linear"
701 };
702 
703 static void sched_debug_header(struct seq_file *m)
704 {
705 	u64 ktime, sched_clk, cpu_clk;
706 	unsigned long flags;
707 
708 	local_irq_save(flags);
709 	ktime = ktime_to_ns(ktime_get());
710 	sched_clk = sched_clock();
711 	cpu_clk = local_clock();
712 	local_irq_restore(flags);
713 
714 	SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
715 		init_utsname()->release,
716 		(int)strcspn(init_utsname()->version, " "),
717 		init_utsname()->version);
718 
719 #define P(x) \
720 	SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
721 #define PN(x) \
722 	SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
723 	PN(ktime);
724 	PN(sched_clk);
725 	PN(cpu_clk);
726 	P(jiffies);
727 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
728 	P(sched_clock_stable());
729 #endif
730 #undef PN
731 #undef P
732 
733 	SEQ_printf(m, "\n");
734 	SEQ_printf(m, "sysctl_sched\n");
735 
736 #define P(x) \
737 	SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
738 #define PN(x) \
739 	SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
740 	PN(sysctl_sched_latency);
741 	PN(sysctl_sched_min_granularity);
742 	PN(sysctl_sched_wakeup_granularity);
743 	P(sysctl_sched_child_runs_first);
744 	P(sysctl_sched_features);
745 #undef PN
746 #undef P
747 
748 	SEQ_printf(m, "  .%-40s: %d (%s)\n",
749 		"sysctl_sched_tunable_scaling",
750 		sysctl_sched_tunable_scaling,
751 		sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
752 	SEQ_printf(m, "\n");
753 }
754 
755 static int sched_debug_show(struct seq_file *m, void *v)
756 {
757 	int cpu = (unsigned long)(v - 2);
758 
759 	if (cpu != -1)
760 		print_cpu(m, cpu);
761 	else
762 		sched_debug_header(m);
763 
764 	return 0;
765 }
766 
767 void sysrq_sched_debug_show(void)
768 {
769 	int cpu;
770 
771 	sched_debug_header(NULL);
772 	for_each_online_cpu(cpu)
773 		print_cpu(NULL, cpu);
774 
775 }
776 
777 /*
778  * This itererator needs some explanation.
779  * It returns 1 for the header position.
780  * This means 2 is CPU 0.
781  * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
782  * to use cpumask_* to iterate over the CPUs.
783  */
784 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
785 {
786 	unsigned long n = *offset;
787 
788 	if (n == 0)
789 		return (void *) 1;
790 
791 	n--;
792 
793 	if (n > 0)
794 		n = cpumask_next(n - 1, cpu_online_mask);
795 	else
796 		n = cpumask_first(cpu_online_mask);
797 
798 	*offset = n + 1;
799 
800 	if (n < nr_cpu_ids)
801 		return (void *)(unsigned long)(n + 2);
802 
803 	return NULL;
804 }
805 
806 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
807 {
808 	(*offset)++;
809 	return sched_debug_start(file, offset);
810 }
811 
812 static void sched_debug_stop(struct seq_file *file, void *data)
813 {
814 }
815 
816 static const struct seq_operations sched_debug_sops = {
817 	.start		= sched_debug_start,
818 	.next		= sched_debug_next,
819 	.stop		= sched_debug_stop,
820 	.show		= sched_debug_show,
821 };
822 
823 static int __init init_sched_debug_procfs(void)
824 {
825 	if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops))
826 		return -ENOMEM;
827 	return 0;
828 }
829 
830 __initcall(init_sched_debug_procfs);
831 
832 #define __P(F)	SEQ_printf(m, "%-45s:%21Ld\n",	     #F, (long long)F)
833 #define   P(F)	SEQ_printf(m, "%-45s:%21Ld\n",	     #F, (long long)p->F)
834 #define __PN(F)	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
835 #define   PN(F)	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
836 
837 
838 #ifdef CONFIG_NUMA_BALANCING
839 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
840 		unsigned long tpf, unsigned long gsf, unsigned long gpf)
841 {
842 	SEQ_printf(m, "numa_faults node=%d ", node);
843 	SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
844 	SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
845 }
846 #endif
847 
848 
849 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
850 {
851 #ifdef CONFIG_NUMA_BALANCING
852 	struct mempolicy *pol;
853 
854 	if (p->mm)
855 		P(mm->numa_scan_seq);
856 
857 	task_lock(p);
858 	pol = p->mempolicy;
859 	if (pol && !(pol->flags & MPOL_F_MORON))
860 		pol = NULL;
861 	mpol_get(pol);
862 	task_unlock(p);
863 
864 	P(numa_pages_migrated);
865 	P(numa_preferred_nid);
866 	P(total_numa_faults);
867 	SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
868 			task_node(p), task_numa_group_id(p));
869 	show_numa_stats(p, m);
870 	mpol_put(pol);
871 #endif
872 }
873 
874 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
875 						  struct seq_file *m)
876 {
877 	unsigned long nr_switches;
878 
879 	SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
880 						get_nr_threads(p));
881 	SEQ_printf(m,
882 		"---------------------------------------------------------"
883 		"----------\n");
884 #define __P(F) \
885 	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
886 #define P(F) \
887 	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
888 #define P_SCHEDSTAT(F) \
889 	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
890 #define __PN(F) \
891 	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
892 #define PN(F) \
893 	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
894 #define PN_SCHEDSTAT(F) \
895 	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
896 
897 	PN(se.exec_start);
898 	PN(se.vruntime);
899 	PN(se.sum_exec_runtime);
900 
901 	nr_switches = p->nvcsw + p->nivcsw;
902 
903 	P(se.nr_migrations);
904 
905 	if (schedstat_enabled()) {
906 		u64 avg_atom, avg_per_cpu;
907 
908 		PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
909 		PN_SCHEDSTAT(se.statistics.wait_start);
910 		PN_SCHEDSTAT(se.statistics.sleep_start);
911 		PN_SCHEDSTAT(se.statistics.block_start);
912 		PN_SCHEDSTAT(se.statistics.sleep_max);
913 		PN_SCHEDSTAT(se.statistics.block_max);
914 		PN_SCHEDSTAT(se.statistics.exec_max);
915 		PN_SCHEDSTAT(se.statistics.slice_max);
916 		PN_SCHEDSTAT(se.statistics.wait_max);
917 		PN_SCHEDSTAT(se.statistics.wait_sum);
918 		P_SCHEDSTAT(se.statistics.wait_count);
919 		PN_SCHEDSTAT(se.statistics.iowait_sum);
920 		P_SCHEDSTAT(se.statistics.iowait_count);
921 		P_SCHEDSTAT(se.statistics.nr_migrations_cold);
922 		P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
923 		P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
924 		P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
925 		P_SCHEDSTAT(se.statistics.nr_forced_migrations);
926 		P_SCHEDSTAT(se.statistics.nr_wakeups);
927 		P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
928 		P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
929 		P_SCHEDSTAT(se.statistics.nr_wakeups_local);
930 		P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
931 		P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
932 		P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
933 		P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
934 		P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
935 
936 		avg_atom = p->se.sum_exec_runtime;
937 		if (nr_switches)
938 			avg_atom = div64_ul(avg_atom, nr_switches);
939 		else
940 			avg_atom = -1LL;
941 
942 		avg_per_cpu = p->se.sum_exec_runtime;
943 		if (p->se.nr_migrations) {
944 			avg_per_cpu = div64_u64(avg_per_cpu,
945 						p->se.nr_migrations);
946 		} else {
947 			avg_per_cpu = -1LL;
948 		}
949 
950 		__PN(avg_atom);
951 		__PN(avg_per_cpu);
952 	}
953 
954 	__P(nr_switches);
955 	SEQ_printf(m, "%-45s:%21Ld\n",
956 		   "nr_voluntary_switches", (long long)p->nvcsw);
957 	SEQ_printf(m, "%-45s:%21Ld\n",
958 		   "nr_involuntary_switches", (long long)p->nivcsw);
959 
960 	P(se.load.weight);
961 	P(se.runnable_weight);
962 #ifdef CONFIG_SMP
963 	P(se.avg.load_sum);
964 	P(se.avg.runnable_load_sum);
965 	P(se.avg.util_sum);
966 	P(se.avg.load_avg);
967 	P(se.avg.runnable_load_avg);
968 	P(se.avg.util_avg);
969 	P(se.avg.last_update_time);
970 	P(se.avg.util_est.ewma);
971 	P(se.avg.util_est.enqueued);
972 #endif
973 	P(policy);
974 	P(prio);
975 	if (p->policy == SCHED_DEADLINE) {
976 		P(dl.runtime);
977 		P(dl.deadline);
978 	}
979 #undef PN_SCHEDSTAT
980 #undef PN
981 #undef __PN
982 #undef P_SCHEDSTAT
983 #undef P
984 #undef __P
985 
986 	{
987 		unsigned int this_cpu = raw_smp_processor_id();
988 		u64 t0, t1;
989 
990 		t0 = cpu_clock(this_cpu);
991 		t1 = cpu_clock(this_cpu);
992 		SEQ_printf(m, "%-45s:%21Ld\n",
993 			   "clock-delta", (long long)(t1-t0));
994 	}
995 
996 	sched_show_numa(p, m);
997 }
998 
999 void proc_sched_set_task(struct task_struct *p)
1000 {
1001 #ifdef CONFIG_SCHEDSTATS
1002 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1003 #endif
1004 }
1005