1 /* 2 * kernel/sched/debug.c 3 * 4 * Print the CFS rbtree 5 * 6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/proc_fs.h> 14 #include <linux/sched.h> 15 #include <linux/seq_file.h> 16 #include <linux/kallsyms.h> 17 #include <linux/utsname.h> 18 #include <linux/mempolicy.h> 19 #include <linux/debugfs.h> 20 21 #include "sched.h" 22 23 static DEFINE_SPINLOCK(sched_debug_lock); 24 25 /* 26 * This allows printing both to /proc/sched_debug and 27 * to the console 28 */ 29 #define SEQ_printf(m, x...) \ 30 do { \ 31 if (m) \ 32 seq_printf(m, x); \ 33 else \ 34 printk(x); \ 35 } while (0) 36 37 /* 38 * Ease the printing of nsec fields: 39 */ 40 static long long nsec_high(unsigned long long nsec) 41 { 42 if ((long long)nsec < 0) { 43 nsec = -nsec; 44 do_div(nsec, 1000000); 45 return -nsec; 46 } 47 do_div(nsec, 1000000); 48 49 return nsec; 50 } 51 52 static unsigned long nsec_low(unsigned long long nsec) 53 { 54 if ((long long)nsec < 0) 55 nsec = -nsec; 56 57 return do_div(nsec, 1000000); 58 } 59 60 #define SPLIT_NS(x) nsec_high(x), nsec_low(x) 61 62 #define SCHED_FEAT(name, enabled) \ 63 #name , 64 65 static const char * const sched_feat_names[] = { 66 #include "features.h" 67 }; 68 69 #undef SCHED_FEAT 70 71 static int sched_feat_show(struct seq_file *m, void *v) 72 { 73 int i; 74 75 for (i = 0; i < __SCHED_FEAT_NR; i++) { 76 if (!(sysctl_sched_features & (1UL << i))) 77 seq_puts(m, "NO_"); 78 seq_printf(m, "%s ", sched_feat_names[i]); 79 } 80 seq_puts(m, "\n"); 81 82 return 0; 83 } 84 85 #ifdef HAVE_JUMP_LABEL 86 87 #define jump_label_key__true STATIC_KEY_INIT_TRUE 88 #define jump_label_key__false STATIC_KEY_INIT_FALSE 89 90 #define SCHED_FEAT(name, enabled) \ 91 jump_label_key__##enabled , 92 93 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 94 #include "features.h" 95 }; 96 97 #undef SCHED_FEAT 98 99 static void sched_feat_disable(int i) 100 { 101 static_key_disable(&sched_feat_keys[i]); 102 } 103 104 static void sched_feat_enable(int i) 105 { 106 static_key_enable(&sched_feat_keys[i]); 107 } 108 #else 109 static void sched_feat_disable(int i) { }; 110 static void sched_feat_enable(int i) { }; 111 #endif /* HAVE_JUMP_LABEL */ 112 113 static int sched_feat_set(char *cmp) 114 { 115 int i; 116 int neg = 0; 117 118 if (strncmp(cmp, "NO_", 3) == 0) { 119 neg = 1; 120 cmp += 3; 121 } 122 123 for (i = 0; i < __SCHED_FEAT_NR; i++) { 124 if (strcmp(cmp, sched_feat_names[i]) == 0) { 125 if (neg) { 126 sysctl_sched_features &= ~(1UL << i); 127 sched_feat_disable(i); 128 } else { 129 sysctl_sched_features |= (1UL << i); 130 sched_feat_enable(i); 131 } 132 break; 133 } 134 } 135 136 return i; 137 } 138 139 static ssize_t 140 sched_feat_write(struct file *filp, const char __user *ubuf, 141 size_t cnt, loff_t *ppos) 142 { 143 char buf[64]; 144 char *cmp; 145 int i; 146 struct inode *inode; 147 148 if (cnt > 63) 149 cnt = 63; 150 151 if (copy_from_user(&buf, ubuf, cnt)) 152 return -EFAULT; 153 154 buf[cnt] = 0; 155 cmp = strstrip(buf); 156 157 /* Ensure the static_key remains in a consistent state */ 158 inode = file_inode(filp); 159 inode_lock(inode); 160 i = sched_feat_set(cmp); 161 inode_unlock(inode); 162 if (i == __SCHED_FEAT_NR) 163 return -EINVAL; 164 165 *ppos += cnt; 166 167 return cnt; 168 } 169 170 static int sched_feat_open(struct inode *inode, struct file *filp) 171 { 172 return single_open(filp, sched_feat_show, NULL); 173 } 174 175 static const struct file_operations sched_feat_fops = { 176 .open = sched_feat_open, 177 .write = sched_feat_write, 178 .read = seq_read, 179 .llseek = seq_lseek, 180 .release = single_release, 181 }; 182 183 static __init int sched_init_debug(void) 184 { 185 debugfs_create_file("sched_features", 0644, NULL, NULL, 186 &sched_feat_fops); 187 188 return 0; 189 } 190 late_initcall(sched_init_debug); 191 192 #ifdef CONFIG_SMP 193 194 #ifdef CONFIG_SYSCTL 195 196 static struct ctl_table sd_ctl_dir[] = { 197 { 198 .procname = "sched_domain", 199 .mode = 0555, 200 }, 201 {} 202 }; 203 204 static struct ctl_table sd_ctl_root[] = { 205 { 206 .procname = "kernel", 207 .mode = 0555, 208 .child = sd_ctl_dir, 209 }, 210 {} 211 }; 212 213 static struct ctl_table *sd_alloc_ctl_entry(int n) 214 { 215 struct ctl_table *entry = 216 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 217 218 return entry; 219 } 220 221 static void sd_free_ctl_entry(struct ctl_table **tablep) 222 { 223 struct ctl_table *entry; 224 225 /* 226 * In the intermediate directories, both the child directory and 227 * procname are dynamically allocated and could fail but the mode 228 * will always be set. In the lowest directory the names are 229 * static strings and all have proc handlers. 230 */ 231 for (entry = *tablep; entry->mode; entry++) { 232 if (entry->child) 233 sd_free_ctl_entry(&entry->child); 234 if (entry->proc_handler == NULL) 235 kfree(entry->procname); 236 } 237 238 kfree(*tablep); 239 *tablep = NULL; 240 } 241 242 static int min_load_idx = 0; 243 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 244 245 static void 246 set_table_entry(struct ctl_table *entry, 247 const char *procname, void *data, int maxlen, 248 umode_t mode, proc_handler *proc_handler, 249 bool load_idx) 250 { 251 entry->procname = procname; 252 entry->data = data; 253 entry->maxlen = maxlen; 254 entry->mode = mode; 255 entry->proc_handler = proc_handler; 256 257 if (load_idx) { 258 entry->extra1 = &min_load_idx; 259 entry->extra2 = &max_load_idx; 260 } 261 } 262 263 static struct ctl_table * 264 sd_alloc_ctl_domain_table(struct sched_domain *sd) 265 { 266 struct ctl_table *table = sd_alloc_ctl_entry(14); 267 268 if (table == NULL) 269 return NULL; 270 271 set_table_entry(&table[0], "min_interval", &sd->min_interval, 272 sizeof(long), 0644, proc_doulongvec_minmax, false); 273 set_table_entry(&table[1], "max_interval", &sd->max_interval, 274 sizeof(long), 0644, proc_doulongvec_minmax, false); 275 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 276 sizeof(int), 0644, proc_dointvec_minmax, true); 277 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 278 sizeof(int), 0644, proc_dointvec_minmax, true); 279 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 280 sizeof(int), 0644, proc_dointvec_minmax, true); 281 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 282 sizeof(int), 0644, proc_dointvec_minmax, true); 283 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 284 sizeof(int), 0644, proc_dointvec_minmax, true); 285 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 286 sizeof(int), 0644, proc_dointvec_minmax, false); 287 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 288 sizeof(int), 0644, proc_dointvec_minmax, false); 289 set_table_entry(&table[9], "cache_nice_tries", 290 &sd->cache_nice_tries, 291 sizeof(int), 0644, proc_dointvec_minmax, false); 292 set_table_entry(&table[10], "flags", &sd->flags, 293 sizeof(int), 0644, proc_dointvec_minmax, false); 294 set_table_entry(&table[11], "max_newidle_lb_cost", 295 &sd->max_newidle_lb_cost, 296 sizeof(long), 0644, proc_doulongvec_minmax, false); 297 set_table_entry(&table[12], "name", sd->name, 298 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 299 /* &table[13] is terminator */ 300 301 return table; 302 } 303 304 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 305 { 306 struct ctl_table *entry, *table; 307 struct sched_domain *sd; 308 int domain_num = 0, i; 309 char buf[32]; 310 311 for_each_domain(cpu, sd) 312 domain_num++; 313 entry = table = sd_alloc_ctl_entry(domain_num + 1); 314 if (table == NULL) 315 return NULL; 316 317 i = 0; 318 for_each_domain(cpu, sd) { 319 snprintf(buf, 32, "domain%d", i); 320 entry->procname = kstrdup(buf, GFP_KERNEL); 321 entry->mode = 0555; 322 entry->child = sd_alloc_ctl_domain_table(sd); 323 entry++; 324 i++; 325 } 326 return table; 327 } 328 329 static struct ctl_table_header *sd_sysctl_header; 330 void register_sched_domain_sysctl(void) 331 { 332 int i, cpu_num = num_possible_cpus(); 333 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 334 char buf[32]; 335 336 WARN_ON(sd_ctl_dir[0].child); 337 sd_ctl_dir[0].child = entry; 338 339 if (entry == NULL) 340 return; 341 342 for_each_possible_cpu(i) { 343 snprintf(buf, 32, "cpu%d", i); 344 entry->procname = kstrdup(buf, GFP_KERNEL); 345 entry->mode = 0555; 346 entry->child = sd_alloc_ctl_cpu_table(i); 347 entry++; 348 } 349 350 WARN_ON(sd_sysctl_header); 351 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 352 } 353 354 /* may be called multiple times per register */ 355 void unregister_sched_domain_sysctl(void) 356 { 357 unregister_sysctl_table(sd_sysctl_header); 358 sd_sysctl_header = NULL; 359 if (sd_ctl_dir[0].child) 360 sd_free_ctl_entry(&sd_ctl_dir[0].child); 361 } 362 #endif /* CONFIG_SYSCTL */ 363 #endif /* CONFIG_SMP */ 364 365 #ifdef CONFIG_FAIR_GROUP_SCHED 366 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) 367 { 368 struct sched_entity *se = tg->se[cpu]; 369 370 #define P(F) \ 371 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) 372 #define PN(F) \ 373 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) 374 375 if (!se) 376 return; 377 378 PN(se->exec_start); 379 PN(se->vruntime); 380 PN(se->sum_exec_runtime); 381 #ifdef CONFIG_SCHEDSTATS 382 if (schedstat_enabled()) { 383 PN(se->statistics.wait_start); 384 PN(se->statistics.sleep_start); 385 PN(se->statistics.block_start); 386 PN(se->statistics.sleep_max); 387 PN(se->statistics.block_max); 388 PN(se->statistics.exec_max); 389 PN(se->statistics.slice_max); 390 PN(se->statistics.wait_max); 391 PN(se->statistics.wait_sum); 392 P(se->statistics.wait_count); 393 } 394 #endif 395 P(se->load.weight); 396 #ifdef CONFIG_SMP 397 P(se->avg.load_avg); 398 P(se->avg.util_avg); 399 #endif 400 #undef PN 401 #undef P 402 } 403 #endif 404 405 #ifdef CONFIG_CGROUP_SCHED 406 static char group_path[PATH_MAX]; 407 408 static char *task_group_path(struct task_group *tg) 409 { 410 if (autogroup_path(tg, group_path, PATH_MAX)) 411 return group_path; 412 413 return cgroup_path(tg->css.cgroup, group_path, PATH_MAX); 414 } 415 #endif 416 417 static void 418 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) 419 { 420 if (rq->curr == p) 421 SEQ_printf(m, "R"); 422 else 423 SEQ_printf(m, " "); 424 425 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ", 426 p->comm, task_pid_nr(p), 427 SPLIT_NS(p->se.vruntime), 428 (long long)(p->nvcsw + p->nivcsw), 429 p->prio); 430 431 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", 432 SPLIT_NS(schedstat_val(p, se.statistics.wait_sum)), 433 SPLIT_NS(p->se.sum_exec_runtime), 434 SPLIT_NS(schedstat_val(p, se.statistics.sum_sleep_runtime))); 435 436 #ifdef CONFIG_NUMA_BALANCING 437 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p)); 438 #endif 439 #ifdef CONFIG_CGROUP_SCHED 440 SEQ_printf(m, " %s", task_group_path(task_group(p))); 441 #endif 442 443 SEQ_printf(m, "\n"); 444 } 445 446 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) 447 { 448 struct task_struct *g, *p; 449 450 SEQ_printf(m, 451 "\nrunnable tasks:\n" 452 " task PID tree-key switches prio" 453 " wait-time sum-exec sum-sleep\n" 454 "------------------------------------------------------" 455 "----------------------------------------------------\n"); 456 457 rcu_read_lock(); 458 for_each_process_thread(g, p) { 459 if (task_cpu(p) != rq_cpu) 460 continue; 461 462 print_task(m, rq, p); 463 } 464 rcu_read_unlock(); 465 } 466 467 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 468 { 469 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, 470 spread, rq0_min_vruntime, spread0; 471 struct rq *rq = cpu_rq(cpu); 472 struct sched_entity *last; 473 unsigned long flags; 474 475 #ifdef CONFIG_FAIR_GROUP_SCHED 476 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg)); 477 #else 478 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu); 479 #endif 480 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", 481 SPLIT_NS(cfs_rq->exec_clock)); 482 483 raw_spin_lock_irqsave(&rq->lock, flags); 484 if (cfs_rq->rb_leftmost) 485 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; 486 last = __pick_last_entity(cfs_rq); 487 if (last) 488 max_vruntime = last->vruntime; 489 min_vruntime = cfs_rq->min_vruntime; 490 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; 491 raw_spin_unlock_irqrestore(&rq->lock, flags); 492 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", 493 SPLIT_NS(MIN_vruntime)); 494 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", 495 SPLIT_NS(min_vruntime)); 496 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", 497 SPLIT_NS(max_vruntime)); 498 spread = max_vruntime - MIN_vruntime; 499 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", 500 SPLIT_NS(spread)); 501 spread0 = min_vruntime - rq0_min_vruntime; 502 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", 503 SPLIT_NS(spread0)); 504 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", 505 cfs_rq->nr_spread_over); 506 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); 507 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); 508 #ifdef CONFIG_SMP 509 SEQ_printf(m, " .%-30s: %lu\n", "load_avg", 510 cfs_rq->avg.load_avg); 511 SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg", 512 cfs_rq->runnable_load_avg); 513 SEQ_printf(m, " .%-30s: %lu\n", "util_avg", 514 cfs_rq->avg.util_avg); 515 SEQ_printf(m, " .%-30s: %ld\n", "removed_load_avg", 516 atomic_long_read(&cfs_rq->removed_load_avg)); 517 SEQ_printf(m, " .%-30s: %ld\n", "removed_util_avg", 518 atomic_long_read(&cfs_rq->removed_util_avg)); 519 #ifdef CONFIG_FAIR_GROUP_SCHED 520 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib", 521 cfs_rq->tg_load_avg_contrib); 522 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", 523 atomic_long_read(&cfs_rq->tg->load_avg)); 524 #endif 525 #endif 526 #ifdef CONFIG_CFS_BANDWIDTH 527 SEQ_printf(m, " .%-30s: %d\n", "throttled", 528 cfs_rq->throttled); 529 SEQ_printf(m, " .%-30s: %d\n", "throttle_count", 530 cfs_rq->throttle_count); 531 #endif 532 533 #ifdef CONFIG_FAIR_GROUP_SCHED 534 print_cfs_group_stats(m, cpu, cfs_rq->tg); 535 #endif 536 } 537 538 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) 539 { 540 #ifdef CONFIG_RT_GROUP_SCHED 541 SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg)); 542 #else 543 SEQ_printf(m, "\nrt_rq[%d]:\n", cpu); 544 #endif 545 546 #define P(x) \ 547 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) 548 #define PN(x) \ 549 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) 550 551 P(rt_nr_running); 552 P(rt_throttled); 553 PN(rt_time); 554 PN(rt_runtime); 555 556 #undef PN 557 #undef P 558 } 559 560 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq) 561 { 562 struct dl_bw *dl_bw; 563 564 SEQ_printf(m, "\ndl_rq[%d]:\n", cpu); 565 SEQ_printf(m, " .%-30s: %ld\n", "dl_nr_running", dl_rq->dl_nr_running); 566 #ifdef CONFIG_SMP 567 dl_bw = &cpu_rq(cpu)->rd->dl_bw; 568 #else 569 dl_bw = &dl_rq->dl_bw; 570 #endif 571 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw); 572 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw); 573 } 574 575 extern __read_mostly int sched_clock_running; 576 577 static void print_cpu(struct seq_file *m, int cpu) 578 { 579 struct rq *rq = cpu_rq(cpu); 580 unsigned long flags; 581 582 #ifdef CONFIG_X86 583 { 584 unsigned int freq = cpu_khz ? : 1; 585 586 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", 587 cpu, freq / 1000, (freq % 1000)); 588 } 589 #else 590 SEQ_printf(m, "cpu#%d\n", cpu); 591 #endif 592 593 #define P(x) \ 594 do { \ 595 if (sizeof(rq->x) == 4) \ 596 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \ 597 else \ 598 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ 599 } while (0) 600 601 #define PN(x) \ 602 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) 603 604 P(nr_running); 605 SEQ_printf(m, " .%-30s: %lu\n", "load", 606 rq->load.weight); 607 P(nr_switches); 608 P(nr_load_updates); 609 P(nr_uninterruptible); 610 PN(next_balance); 611 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); 612 PN(clock); 613 PN(clock_task); 614 P(cpu_load[0]); 615 P(cpu_load[1]); 616 P(cpu_load[2]); 617 P(cpu_load[3]); 618 P(cpu_load[4]); 619 #undef P 620 #undef PN 621 622 #ifdef CONFIG_SMP 623 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); 624 P64(avg_idle); 625 P64(max_idle_balance_cost); 626 #undef P64 627 #endif 628 629 #ifdef CONFIG_SCHEDSTATS 630 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n); 631 632 if (schedstat_enabled()) { 633 P(yld_count); 634 P(sched_count); 635 P(sched_goidle); 636 P(ttwu_count); 637 P(ttwu_local); 638 } 639 640 #undef P 641 #endif 642 spin_lock_irqsave(&sched_debug_lock, flags); 643 print_cfs_stats(m, cpu); 644 print_rt_stats(m, cpu); 645 print_dl_stats(m, cpu); 646 647 print_rq(m, rq, cpu); 648 spin_unlock_irqrestore(&sched_debug_lock, flags); 649 SEQ_printf(m, "\n"); 650 } 651 652 static const char *sched_tunable_scaling_names[] = { 653 "none", 654 "logaritmic", 655 "linear" 656 }; 657 658 static void sched_debug_header(struct seq_file *m) 659 { 660 u64 ktime, sched_clk, cpu_clk; 661 unsigned long flags; 662 663 local_irq_save(flags); 664 ktime = ktime_to_ns(ktime_get()); 665 sched_clk = sched_clock(); 666 cpu_clk = local_clock(); 667 local_irq_restore(flags); 668 669 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", 670 init_utsname()->release, 671 (int)strcspn(init_utsname()->version, " "), 672 init_utsname()->version); 673 674 #define P(x) \ 675 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) 676 #define PN(x) \ 677 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 678 PN(ktime); 679 PN(sched_clk); 680 PN(cpu_clk); 681 P(jiffies); 682 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 683 P(sched_clock_stable()); 684 #endif 685 #undef PN 686 #undef P 687 688 SEQ_printf(m, "\n"); 689 SEQ_printf(m, "sysctl_sched\n"); 690 691 #define P(x) \ 692 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) 693 #define PN(x) \ 694 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 695 PN(sysctl_sched_latency); 696 PN(sysctl_sched_min_granularity); 697 PN(sysctl_sched_wakeup_granularity); 698 P(sysctl_sched_child_runs_first); 699 P(sysctl_sched_features); 700 #undef PN 701 #undef P 702 703 SEQ_printf(m, " .%-40s: %d (%s)\n", 704 "sysctl_sched_tunable_scaling", 705 sysctl_sched_tunable_scaling, 706 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); 707 SEQ_printf(m, "\n"); 708 } 709 710 static int sched_debug_show(struct seq_file *m, void *v) 711 { 712 int cpu = (unsigned long)(v - 2); 713 714 if (cpu != -1) 715 print_cpu(m, cpu); 716 else 717 sched_debug_header(m); 718 719 return 0; 720 } 721 722 void sysrq_sched_debug_show(void) 723 { 724 int cpu; 725 726 sched_debug_header(NULL); 727 for_each_online_cpu(cpu) 728 print_cpu(NULL, cpu); 729 730 } 731 732 /* 733 * This itererator needs some explanation. 734 * It returns 1 for the header position. 735 * This means 2 is cpu 0. 736 * In a hotplugged system some cpus, including cpu 0, may be missing so we have 737 * to use cpumask_* to iterate over the cpus. 738 */ 739 static void *sched_debug_start(struct seq_file *file, loff_t *offset) 740 { 741 unsigned long n = *offset; 742 743 if (n == 0) 744 return (void *) 1; 745 746 n--; 747 748 if (n > 0) 749 n = cpumask_next(n - 1, cpu_online_mask); 750 else 751 n = cpumask_first(cpu_online_mask); 752 753 *offset = n + 1; 754 755 if (n < nr_cpu_ids) 756 return (void *)(unsigned long)(n + 2); 757 return NULL; 758 } 759 760 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset) 761 { 762 (*offset)++; 763 return sched_debug_start(file, offset); 764 } 765 766 static void sched_debug_stop(struct seq_file *file, void *data) 767 { 768 } 769 770 static const struct seq_operations sched_debug_sops = { 771 .start = sched_debug_start, 772 .next = sched_debug_next, 773 .stop = sched_debug_stop, 774 .show = sched_debug_show, 775 }; 776 777 static int sched_debug_release(struct inode *inode, struct file *file) 778 { 779 seq_release(inode, file); 780 781 return 0; 782 } 783 784 static int sched_debug_open(struct inode *inode, struct file *filp) 785 { 786 int ret = 0; 787 788 ret = seq_open(filp, &sched_debug_sops); 789 790 return ret; 791 } 792 793 static const struct file_operations sched_debug_fops = { 794 .open = sched_debug_open, 795 .read = seq_read, 796 .llseek = seq_lseek, 797 .release = sched_debug_release, 798 }; 799 800 static int __init init_sched_debug_procfs(void) 801 { 802 struct proc_dir_entry *pe; 803 804 pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops); 805 if (!pe) 806 return -ENOMEM; 807 return 0; 808 } 809 810 __initcall(init_sched_debug_procfs); 811 812 #define __P(F) \ 813 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) 814 #define P(F) \ 815 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) 816 #define __PN(F) \ 817 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 818 #define PN(F) \ 819 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 820 821 822 #ifdef CONFIG_NUMA_BALANCING 823 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 824 unsigned long tpf, unsigned long gsf, unsigned long gpf) 825 { 826 SEQ_printf(m, "numa_faults node=%d ", node); 827 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tsf, tpf); 828 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gsf, gpf); 829 } 830 #endif 831 832 833 static void sched_show_numa(struct task_struct *p, struct seq_file *m) 834 { 835 #ifdef CONFIG_NUMA_BALANCING 836 struct mempolicy *pol; 837 838 if (p->mm) 839 P(mm->numa_scan_seq); 840 841 task_lock(p); 842 pol = p->mempolicy; 843 if (pol && !(pol->flags & MPOL_F_MORON)) 844 pol = NULL; 845 mpol_get(pol); 846 task_unlock(p); 847 848 P(numa_pages_migrated); 849 P(numa_preferred_nid); 850 P(total_numa_faults); 851 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n", 852 task_node(p), task_numa_group_id(p)); 853 show_numa_stats(p, m); 854 mpol_put(pol); 855 #endif 856 } 857 858 void proc_sched_show_task(struct task_struct *p, struct seq_file *m) 859 { 860 unsigned long nr_switches; 861 862 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr(p), 863 get_nr_threads(p)); 864 SEQ_printf(m, 865 "---------------------------------------------------------" 866 "----------\n"); 867 #define __P(F) \ 868 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) 869 #define P(F) \ 870 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) 871 #define __PN(F) \ 872 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 873 #define PN(F) \ 874 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 875 876 PN(se.exec_start); 877 PN(se.vruntime); 878 PN(se.sum_exec_runtime); 879 880 nr_switches = p->nvcsw + p->nivcsw; 881 882 P(se.nr_migrations); 883 884 #ifdef CONFIG_SCHEDSTATS 885 if (schedstat_enabled()) { 886 u64 avg_atom, avg_per_cpu; 887 888 PN(se.statistics.sum_sleep_runtime); 889 PN(se.statistics.wait_start); 890 PN(se.statistics.sleep_start); 891 PN(se.statistics.block_start); 892 PN(se.statistics.sleep_max); 893 PN(se.statistics.block_max); 894 PN(se.statistics.exec_max); 895 PN(se.statistics.slice_max); 896 PN(se.statistics.wait_max); 897 PN(se.statistics.wait_sum); 898 P(se.statistics.wait_count); 899 PN(se.statistics.iowait_sum); 900 P(se.statistics.iowait_count); 901 P(se.statistics.nr_migrations_cold); 902 P(se.statistics.nr_failed_migrations_affine); 903 P(se.statistics.nr_failed_migrations_running); 904 P(se.statistics.nr_failed_migrations_hot); 905 P(se.statistics.nr_forced_migrations); 906 P(se.statistics.nr_wakeups); 907 P(se.statistics.nr_wakeups_sync); 908 P(se.statistics.nr_wakeups_migrate); 909 P(se.statistics.nr_wakeups_local); 910 P(se.statistics.nr_wakeups_remote); 911 P(se.statistics.nr_wakeups_affine); 912 P(se.statistics.nr_wakeups_affine_attempts); 913 P(se.statistics.nr_wakeups_passive); 914 P(se.statistics.nr_wakeups_idle); 915 916 avg_atom = p->se.sum_exec_runtime; 917 if (nr_switches) 918 avg_atom = div64_ul(avg_atom, nr_switches); 919 else 920 avg_atom = -1LL; 921 922 avg_per_cpu = p->se.sum_exec_runtime; 923 if (p->se.nr_migrations) { 924 avg_per_cpu = div64_u64(avg_per_cpu, 925 p->se.nr_migrations); 926 } else { 927 avg_per_cpu = -1LL; 928 } 929 930 __PN(avg_atom); 931 __PN(avg_per_cpu); 932 } 933 #endif 934 __P(nr_switches); 935 SEQ_printf(m, "%-45s:%21Ld\n", 936 "nr_voluntary_switches", (long long)p->nvcsw); 937 SEQ_printf(m, "%-45s:%21Ld\n", 938 "nr_involuntary_switches", (long long)p->nivcsw); 939 940 P(se.load.weight); 941 #ifdef CONFIG_SMP 942 P(se.avg.load_sum); 943 P(se.avg.util_sum); 944 P(se.avg.load_avg); 945 P(se.avg.util_avg); 946 P(se.avg.last_update_time); 947 #endif 948 P(policy); 949 P(prio); 950 #undef PN 951 #undef __PN 952 #undef P 953 #undef __P 954 955 { 956 unsigned int this_cpu = raw_smp_processor_id(); 957 u64 t0, t1; 958 959 t0 = cpu_clock(this_cpu); 960 t1 = cpu_clock(this_cpu); 961 SEQ_printf(m, "%-45s:%21Ld\n", 962 "clock-delta", (long long)(t1-t0)); 963 } 964 965 sched_show_numa(p, m); 966 } 967 968 void proc_sched_set_task(struct task_struct *p) 969 { 970 #ifdef CONFIG_SCHEDSTATS 971 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 972 #endif 973 } 974