1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/debug.c 4 * 5 * Print the CFS rbtree and other debugging details 6 * 7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar 8 */ 9 #include "sched.h" 10 11 static DEFINE_SPINLOCK(sched_debug_lock); 12 13 /* 14 * This allows printing both to /proc/sched_debug and 15 * to the console 16 */ 17 #define SEQ_printf(m, x...) \ 18 do { \ 19 if (m) \ 20 seq_printf(m, x); \ 21 else \ 22 pr_cont(x); \ 23 } while (0) 24 25 /* 26 * Ease the printing of nsec fields: 27 */ 28 static long long nsec_high(unsigned long long nsec) 29 { 30 if ((long long)nsec < 0) { 31 nsec = -nsec; 32 do_div(nsec, 1000000); 33 return -nsec; 34 } 35 do_div(nsec, 1000000); 36 37 return nsec; 38 } 39 40 static unsigned long nsec_low(unsigned long long nsec) 41 { 42 if ((long long)nsec < 0) 43 nsec = -nsec; 44 45 return do_div(nsec, 1000000); 46 } 47 48 #define SPLIT_NS(x) nsec_high(x), nsec_low(x) 49 50 #define SCHED_FEAT(name, enabled) \ 51 #name , 52 53 static const char * const sched_feat_names[] = { 54 #include "features.h" 55 }; 56 57 #undef SCHED_FEAT 58 59 static int sched_feat_show(struct seq_file *m, void *v) 60 { 61 int i; 62 63 for (i = 0; i < __SCHED_FEAT_NR; i++) { 64 if (!(sysctl_sched_features & (1UL << i))) 65 seq_puts(m, "NO_"); 66 seq_printf(m, "%s ", sched_feat_names[i]); 67 } 68 seq_puts(m, "\n"); 69 70 return 0; 71 } 72 73 #ifdef CONFIG_JUMP_LABEL 74 75 #define jump_label_key__true STATIC_KEY_INIT_TRUE 76 #define jump_label_key__false STATIC_KEY_INIT_FALSE 77 78 #define SCHED_FEAT(name, enabled) \ 79 jump_label_key__##enabled , 80 81 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 82 #include "features.h" 83 }; 84 85 #undef SCHED_FEAT 86 87 static void sched_feat_disable(int i) 88 { 89 static_key_disable_cpuslocked(&sched_feat_keys[i]); 90 } 91 92 static void sched_feat_enable(int i) 93 { 94 static_key_enable_cpuslocked(&sched_feat_keys[i]); 95 } 96 #else 97 static void sched_feat_disable(int i) { }; 98 static void sched_feat_enable(int i) { }; 99 #endif /* CONFIG_JUMP_LABEL */ 100 101 static int sched_feat_set(char *cmp) 102 { 103 int i; 104 int neg = 0; 105 106 if (strncmp(cmp, "NO_", 3) == 0) { 107 neg = 1; 108 cmp += 3; 109 } 110 111 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp); 112 if (i < 0) 113 return i; 114 115 if (neg) { 116 sysctl_sched_features &= ~(1UL << i); 117 sched_feat_disable(i); 118 } else { 119 sysctl_sched_features |= (1UL << i); 120 sched_feat_enable(i); 121 } 122 123 return 0; 124 } 125 126 static ssize_t 127 sched_feat_write(struct file *filp, const char __user *ubuf, 128 size_t cnt, loff_t *ppos) 129 { 130 char buf[64]; 131 char *cmp; 132 int ret; 133 struct inode *inode; 134 135 if (cnt > 63) 136 cnt = 63; 137 138 if (copy_from_user(&buf, ubuf, cnt)) 139 return -EFAULT; 140 141 buf[cnt] = 0; 142 cmp = strstrip(buf); 143 144 /* Ensure the static_key remains in a consistent state */ 145 inode = file_inode(filp); 146 cpus_read_lock(); 147 inode_lock(inode); 148 ret = sched_feat_set(cmp); 149 inode_unlock(inode); 150 cpus_read_unlock(); 151 if (ret < 0) 152 return ret; 153 154 *ppos += cnt; 155 156 return cnt; 157 } 158 159 static int sched_feat_open(struct inode *inode, struct file *filp) 160 { 161 return single_open(filp, sched_feat_show, NULL); 162 } 163 164 static const struct file_operations sched_feat_fops = { 165 .open = sched_feat_open, 166 .write = sched_feat_write, 167 .read = seq_read, 168 .llseek = seq_lseek, 169 .release = single_release, 170 }; 171 172 __read_mostly bool sched_debug_enabled; 173 174 static __init int sched_init_debug(void) 175 { 176 debugfs_create_file("sched_features", 0644, NULL, NULL, 177 &sched_feat_fops); 178 179 debugfs_create_bool("sched_debug", 0644, NULL, 180 &sched_debug_enabled); 181 182 return 0; 183 } 184 late_initcall(sched_init_debug); 185 186 #ifdef CONFIG_SMP 187 188 #ifdef CONFIG_SYSCTL 189 190 static struct ctl_table sd_ctl_dir[] = { 191 { 192 .procname = "sched_domain", 193 .mode = 0555, 194 }, 195 {} 196 }; 197 198 static struct ctl_table sd_ctl_root[] = { 199 { 200 .procname = "kernel", 201 .mode = 0555, 202 .child = sd_ctl_dir, 203 }, 204 {} 205 }; 206 207 static struct ctl_table *sd_alloc_ctl_entry(int n) 208 { 209 struct ctl_table *entry = 210 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 211 212 return entry; 213 } 214 215 static void sd_free_ctl_entry(struct ctl_table **tablep) 216 { 217 struct ctl_table *entry; 218 219 /* 220 * In the intermediate directories, both the child directory and 221 * procname are dynamically allocated and could fail but the mode 222 * will always be set. In the lowest directory the names are 223 * static strings and all have proc handlers. 224 */ 225 for (entry = *tablep; entry->mode; entry++) { 226 if (entry->child) 227 sd_free_ctl_entry(&entry->child); 228 if (entry->proc_handler == NULL) 229 kfree(entry->procname); 230 } 231 232 kfree(*tablep); 233 *tablep = NULL; 234 } 235 236 static int min_load_idx = 0; 237 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 238 239 static void 240 set_table_entry(struct ctl_table *entry, 241 const char *procname, void *data, int maxlen, 242 umode_t mode, proc_handler *proc_handler, 243 bool load_idx) 244 { 245 entry->procname = procname; 246 entry->data = data; 247 entry->maxlen = maxlen; 248 entry->mode = mode; 249 entry->proc_handler = proc_handler; 250 251 if (load_idx) { 252 entry->extra1 = &min_load_idx; 253 entry->extra2 = &max_load_idx; 254 } 255 } 256 257 static struct ctl_table * 258 sd_alloc_ctl_domain_table(struct sched_domain *sd) 259 { 260 struct ctl_table *table = sd_alloc_ctl_entry(14); 261 262 if (table == NULL) 263 return NULL; 264 265 set_table_entry(&table[0] , "min_interval", &sd->min_interval, sizeof(long), 0644, proc_doulongvec_minmax, false); 266 set_table_entry(&table[1] , "max_interval", &sd->max_interval, sizeof(long), 0644, proc_doulongvec_minmax, false); 267 set_table_entry(&table[2] , "busy_idx", &sd->busy_idx, sizeof(int) , 0644, proc_dointvec_minmax, true ); 268 set_table_entry(&table[3] , "idle_idx", &sd->idle_idx, sizeof(int) , 0644, proc_dointvec_minmax, true ); 269 set_table_entry(&table[4] , "newidle_idx", &sd->newidle_idx, sizeof(int) , 0644, proc_dointvec_minmax, true ); 270 set_table_entry(&table[5] , "wake_idx", &sd->wake_idx, sizeof(int) , 0644, proc_dointvec_minmax, true ); 271 set_table_entry(&table[6] , "forkexec_idx", &sd->forkexec_idx, sizeof(int) , 0644, proc_dointvec_minmax, true ); 272 set_table_entry(&table[7] , "busy_factor", &sd->busy_factor, sizeof(int) , 0644, proc_dointvec_minmax, false); 273 set_table_entry(&table[8] , "imbalance_pct", &sd->imbalance_pct, sizeof(int) , 0644, proc_dointvec_minmax, false); 274 set_table_entry(&table[9] , "cache_nice_tries", &sd->cache_nice_tries, sizeof(int) , 0644, proc_dointvec_minmax, false); 275 set_table_entry(&table[10], "flags", &sd->flags, sizeof(int) , 0644, proc_dointvec_minmax, false); 276 set_table_entry(&table[11], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax, false); 277 set_table_entry(&table[12], "name", sd->name, CORENAME_MAX_SIZE, 0444, proc_dostring, false); 278 /* &table[13] is terminator */ 279 280 return table; 281 } 282 283 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 284 { 285 struct ctl_table *entry, *table; 286 struct sched_domain *sd; 287 int domain_num = 0, i; 288 char buf[32]; 289 290 for_each_domain(cpu, sd) 291 domain_num++; 292 entry = table = sd_alloc_ctl_entry(domain_num + 1); 293 if (table == NULL) 294 return NULL; 295 296 i = 0; 297 for_each_domain(cpu, sd) { 298 snprintf(buf, 32, "domain%d", i); 299 entry->procname = kstrdup(buf, GFP_KERNEL); 300 entry->mode = 0555; 301 entry->child = sd_alloc_ctl_domain_table(sd); 302 entry++; 303 i++; 304 } 305 return table; 306 } 307 308 static cpumask_var_t sd_sysctl_cpus; 309 static struct ctl_table_header *sd_sysctl_header; 310 311 void register_sched_domain_sysctl(void) 312 { 313 static struct ctl_table *cpu_entries; 314 static struct ctl_table **cpu_idx; 315 static bool init_done = false; 316 char buf[32]; 317 int i; 318 319 if (!cpu_entries) { 320 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1); 321 if (!cpu_entries) 322 return; 323 324 WARN_ON(sd_ctl_dir[0].child); 325 sd_ctl_dir[0].child = cpu_entries; 326 } 327 328 if (!cpu_idx) { 329 struct ctl_table *e = cpu_entries; 330 331 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL); 332 if (!cpu_idx) 333 return; 334 335 /* deal with sparse possible map */ 336 for_each_possible_cpu(i) { 337 cpu_idx[i] = e; 338 e++; 339 } 340 } 341 342 if (!cpumask_available(sd_sysctl_cpus)) { 343 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL)) 344 return; 345 } 346 347 if (!init_done) { 348 init_done = true; 349 /* init to possible to not have holes in @cpu_entries */ 350 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask); 351 } 352 353 for_each_cpu(i, sd_sysctl_cpus) { 354 struct ctl_table *e = cpu_idx[i]; 355 356 if (e->child) 357 sd_free_ctl_entry(&e->child); 358 359 if (!e->procname) { 360 snprintf(buf, 32, "cpu%d", i); 361 e->procname = kstrdup(buf, GFP_KERNEL); 362 } 363 e->mode = 0555; 364 e->child = sd_alloc_ctl_cpu_table(i); 365 366 __cpumask_clear_cpu(i, sd_sysctl_cpus); 367 } 368 369 WARN_ON(sd_sysctl_header); 370 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 371 } 372 373 void dirty_sched_domain_sysctl(int cpu) 374 { 375 if (cpumask_available(sd_sysctl_cpus)) 376 __cpumask_set_cpu(cpu, sd_sysctl_cpus); 377 } 378 379 /* may be called multiple times per register */ 380 void unregister_sched_domain_sysctl(void) 381 { 382 unregister_sysctl_table(sd_sysctl_header); 383 sd_sysctl_header = NULL; 384 } 385 #endif /* CONFIG_SYSCTL */ 386 #endif /* CONFIG_SMP */ 387 388 #ifdef CONFIG_FAIR_GROUP_SCHED 389 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) 390 { 391 struct sched_entity *se = tg->se[cpu]; 392 393 #define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) 394 #define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F)) 395 #define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) 396 #define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F))) 397 398 if (!se) 399 return; 400 401 PN(se->exec_start); 402 PN(se->vruntime); 403 PN(se->sum_exec_runtime); 404 405 if (schedstat_enabled()) { 406 PN_SCHEDSTAT(se->statistics.wait_start); 407 PN_SCHEDSTAT(se->statistics.sleep_start); 408 PN_SCHEDSTAT(se->statistics.block_start); 409 PN_SCHEDSTAT(se->statistics.sleep_max); 410 PN_SCHEDSTAT(se->statistics.block_max); 411 PN_SCHEDSTAT(se->statistics.exec_max); 412 PN_SCHEDSTAT(se->statistics.slice_max); 413 PN_SCHEDSTAT(se->statistics.wait_max); 414 PN_SCHEDSTAT(se->statistics.wait_sum); 415 P_SCHEDSTAT(se->statistics.wait_count); 416 } 417 418 P(se->load.weight); 419 P(se->runnable_weight); 420 #ifdef CONFIG_SMP 421 P(se->avg.load_avg); 422 P(se->avg.util_avg); 423 P(se->avg.runnable_load_avg); 424 #endif 425 426 #undef PN_SCHEDSTAT 427 #undef PN 428 #undef P_SCHEDSTAT 429 #undef P 430 } 431 #endif 432 433 #ifdef CONFIG_CGROUP_SCHED 434 static char group_path[PATH_MAX]; 435 436 static char *task_group_path(struct task_group *tg) 437 { 438 if (autogroup_path(tg, group_path, PATH_MAX)) 439 return group_path; 440 441 cgroup_path(tg->css.cgroup, group_path, PATH_MAX); 442 443 return group_path; 444 } 445 #endif 446 447 static void 448 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) 449 { 450 if (rq->curr == p) 451 SEQ_printf(m, ">R"); 452 else 453 SEQ_printf(m, " %c", task_state_to_char(p)); 454 455 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ", 456 p->comm, task_pid_nr(p), 457 SPLIT_NS(p->se.vruntime), 458 (long long)(p->nvcsw + p->nivcsw), 459 p->prio); 460 461 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", 462 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)), 463 SPLIT_NS(p->se.sum_exec_runtime), 464 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime))); 465 466 #ifdef CONFIG_NUMA_BALANCING 467 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p)); 468 #endif 469 #ifdef CONFIG_CGROUP_SCHED 470 SEQ_printf(m, " %s", task_group_path(task_group(p))); 471 #endif 472 473 SEQ_printf(m, "\n"); 474 } 475 476 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) 477 { 478 struct task_struct *g, *p; 479 480 SEQ_printf(m, "\n"); 481 SEQ_printf(m, "runnable tasks:\n"); 482 SEQ_printf(m, " S task PID tree-key switches prio" 483 " wait-time sum-exec sum-sleep\n"); 484 SEQ_printf(m, "-------------------------------------------------------" 485 "----------------------------------------------------\n"); 486 487 rcu_read_lock(); 488 for_each_process_thread(g, p) { 489 if (task_cpu(p) != rq_cpu) 490 continue; 491 492 print_task(m, rq, p); 493 } 494 rcu_read_unlock(); 495 } 496 497 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 498 { 499 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, 500 spread, rq0_min_vruntime, spread0; 501 struct rq *rq = cpu_rq(cpu); 502 struct sched_entity *last; 503 unsigned long flags; 504 505 #ifdef CONFIG_FAIR_GROUP_SCHED 506 SEQ_printf(m, "\n"); 507 SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg)); 508 #else 509 SEQ_printf(m, "\n"); 510 SEQ_printf(m, "cfs_rq[%d]:\n", cpu); 511 #endif 512 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", 513 SPLIT_NS(cfs_rq->exec_clock)); 514 515 raw_spin_lock_irqsave(&rq->lock, flags); 516 if (rb_first_cached(&cfs_rq->tasks_timeline)) 517 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; 518 last = __pick_last_entity(cfs_rq); 519 if (last) 520 max_vruntime = last->vruntime; 521 min_vruntime = cfs_rq->min_vruntime; 522 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; 523 raw_spin_unlock_irqrestore(&rq->lock, flags); 524 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", 525 SPLIT_NS(MIN_vruntime)); 526 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", 527 SPLIT_NS(min_vruntime)); 528 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", 529 SPLIT_NS(max_vruntime)); 530 spread = max_vruntime - MIN_vruntime; 531 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", 532 SPLIT_NS(spread)); 533 spread0 = min_vruntime - rq0_min_vruntime; 534 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", 535 SPLIT_NS(spread0)); 536 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", 537 cfs_rq->nr_spread_over); 538 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); 539 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); 540 #ifdef CONFIG_SMP 541 SEQ_printf(m, " .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight); 542 SEQ_printf(m, " .%-30s: %lu\n", "load_avg", 543 cfs_rq->avg.load_avg); 544 SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg", 545 cfs_rq->avg.runnable_load_avg); 546 SEQ_printf(m, " .%-30s: %lu\n", "util_avg", 547 cfs_rq->avg.util_avg); 548 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued", 549 cfs_rq->avg.util_est.enqueued); 550 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg", 551 cfs_rq->removed.load_avg); 552 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg", 553 cfs_rq->removed.util_avg); 554 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_sum", 555 cfs_rq->removed.runnable_sum); 556 #ifdef CONFIG_FAIR_GROUP_SCHED 557 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib", 558 cfs_rq->tg_load_avg_contrib); 559 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", 560 atomic_long_read(&cfs_rq->tg->load_avg)); 561 #endif 562 #endif 563 #ifdef CONFIG_CFS_BANDWIDTH 564 SEQ_printf(m, " .%-30s: %d\n", "throttled", 565 cfs_rq->throttled); 566 SEQ_printf(m, " .%-30s: %d\n", "throttle_count", 567 cfs_rq->throttle_count); 568 #endif 569 570 #ifdef CONFIG_FAIR_GROUP_SCHED 571 print_cfs_group_stats(m, cpu, cfs_rq->tg); 572 #endif 573 } 574 575 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) 576 { 577 #ifdef CONFIG_RT_GROUP_SCHED 578 SEQ_printf(m, "\n"); 579 SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg)); 580 #else 581 SEQ_printf(m, "\n"); 582 SEQ_printf(m, "rt_rq[%d]:\n", cpu); 583 #endif 584 585 #define P(x) \ 586 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) 587 #define PU(x) \ 588 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x)) 589 #define PN(x) \ 590 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) 591 592 PU(rt_nr_running); 593 #ifdef CONFIG_SMP 594 PU(rt_nr_migratory); 595 #endif 596 P(rt_throttled); 597 PN(rt_time); 598 PN(rt_runtime); 599 600 #undef PN 601 #undef PU 602 #undef P 603 } 604 605 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq) 606 { 607 struct dl_bw *dl_bw; 608 609 SEQ_printf(m, "\n"); 610 SEQ_printf(m, "dl_rq[%d]:\n", cpu); 611 612 #define PU(x) \ 613 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x)) 614 615 PU(dl_nr_running); 616 #ifdef CONFIG_SMP 617 PU(dl_nr_migratory); 618 dl_bw = &cpu_rq(cpu)->rd->dl_bw; 619 #else 620 dl_bw = &dl_rq->dl_bw; 621 #endif 622 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw); 623 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw); 624 625 #undef PU 626 } 627 628 static void print_cpu(struct seq_file *m, int cpu) 629 { 630 struct rq *rq = cpu_rq(cpu); 631 unsigned long flags; 632 633 #ifdef CONFIG_X86 634 { 635 unsigned int freq = cpu_khz ? : 1; 636 637 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", 638 cpu, freq / 1000, (freq % 1000)); 639 } 640 #else 641 SEQ_printf(m, "cpu#%d\n", cpu); 642 #endif 643 644 #define P(x) \ 645 do { \ 646 if (sizeof(rq->x) == 4) \ 647 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \ 648 else \ 649 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ 650 } while (0) 651 652 #define PN(x) \ 653 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) 654 655 P(nr_running); 656 SEQ_printf(m, " .%-30s: %lu\n", "load", 657 rq->load.weight); 658 P(nr_switches); 659 P(nr_load_updates); 660 P(nr_uninterruptible); 661 PN(next_balance); 662 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); 663 PN(clock); 664 PN(clock_task); 665 P(cpu_load[0]); 666 P(cpu_load[1]); 667 P(cpu_load[2]); 668 P(cpu_load[3]); 669 P(cpu_load[4]); 670 #undef P 671 #undef PN 672 673 #ifdef CONFIG_SMP 674 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); 675 P64(avg_idle); 676 P64(max_idle_balance_cost); 677 #undef P64 678 #endif 679 680 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n)); 681 if (schedstat_enabled()) { 682 P(yld_count); 683 P(sched_count); 684 P(sched_goidle); 685 P(ttwu_count); 686 P(ttwu_local); 687 } 688 #undef P 689 690 spin_lock_irqsave(&sched_debug_lock, flags); 691 print_cfs_stats(m, cpu); 692 print_rt_stats(m, cpu); 693 print_dl_stats(m, cpu); 694 695 print_rq(m, rq, cpu); 696 spin_unlock_irqrestore(&sched_debug_lock, flags); 697 SEQ_printf(m, "\n"); 698 } 699 700 static const char *sched_tunable_scaling_names[] = { 701 "none", 702 "logarithmic", 703 "linear" 704 }; 705 706 static void sched_debug_header(struct seq_file *m) 707 { 708 u64 ktime, sched_clk, cpu_clk; 709 unsigned long flags; 710 711 local_irq_save(flags); 712 ktime = ktime_to_ns(ktime_get()); 713 sched_clk = sched_clock(); 714 cpu_clk = local_clock(); 715 local_irq_restore(flags); 716 717 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", 718 init_utsname()->release, 719 (int)strcspn(init_utsname()->version, " "), 720 init_utsname()->version); 721 722 #define P(x) \ 723 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) 724 #define PN(x) \ 725 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 726 PN(ktime); 727 PN(sched_clk); 728 PN(cpu_clk); 729 P(jiffies); 730 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 731 P(sched_clock_stable()); 732 #endif 733 #undef PN 734 #undef P 735 736 SEQ_printf(m, "\n"); 737 SEQ_printf(m, "sysctl_sched\n"); 738 739 #define P(x) \ 740 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) 741 #define PN(x) \ 742 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 743 PN(sysctl_sched_latency); 744 PN(sysctl_sched_min_granularity); 745 PN(sysctl_sched_wakeup_granularity); 746 P(sysctl_sched_child_runs_first); 747 P(sysctl_sched_features); 748 #undef PN 749 #undef P 750 751 SEQ_printf(m, " .%-40s: %d (%s)\n", 752 "sysctl_sched_tunable_scaling", 753 sysctl_sched_tunable_scaling, 754 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); 755 SEQ_printf(m, "\n"); 756 } 757 758 static int sched_debug_show(struct seq_file *m, void *v) 759 { 760 int cpu = (unsigned long)(v - 2); 761 762 if (cpu != -1) 763 print_cpu(m, cpu); 764 else 765 sched_debug_header(m); 766 767 return 0; 768 } 769 770 void sysrq_sched_debug_show(void) 771 { 772 int cpu; 773 774 sched_debug_header(NULL); 775 for_each_online_cpu(cpu) 776 print_cpu(NULL, cpu); 777 778 } 779 780 /* 781 * This itererator needs some explanation. 782 * It returns 1 for the header position. 783 * This means 2 is CPU 0. 784 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have 785 * to use cpumask_* to iterate over the CPUs. 786 */ 787 static void *sched_debug_start(struct seq_file *file, loff_t *offset) 788 { 789 unsigned long n = *offset; 790 791 if (n == 0) 792 return (void *) 1; 793 794 n--; 795 796 if (n > 0) 797 n = cpumask_next(n - 1, cpu_online_mask); 798 else 799 n = cpumask_first(cpu_online_mask); 800 801 *offset = n + 1; 802 803 if (n < nr_cpu_ids) 804 return (void *)(unsigned long)(n + 2); 805 806 return NULL; 807 } 808 809 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset) 810 { 811 (*offset)++; 812 return sched_debug_start(file, offset); 813 } 814 815 static void sched_debug_stop(struct seq_file *file, void *data) 816 { 817 } 818 819 static const struct seq_operations sched_debug_sops = { 820 .start = sched_debug_start, 821 .next = sched_debug_next, 822 .stop = sched_debug_stop, 823 .show = sched_debug_show, 824 }; 825 826 static int __init init_sched_debug_procfs(void) 827 { 828 if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops)) 829 return -ENOMEM; 830 return 0; 831 } 832 833 __initcall(init_sched_debug_procfs); 834 835 #define __P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) 836 #define P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) 837 #define __PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 838 #define PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 839 840 841 #ifdef CONFIG_NUMA_BALANCING 842 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 843 unsigned long tpf, unsigned long gsf, unsigned long gpf) 844 { 845 SEQ_printf(m, "numa_faults node=%d ", node); 846 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf); 847 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf); 848 } 849 #endif 850 851 852 static void sched_show_numa(struct task_struct *p, struct seq_file *m) 853 { 854 #ifdef CONFIG_NUMA_BALANCING 855 struct mempolicy *pol; 856 857 if (p->mm) 858 P(mm->numa_scan_seq); 859 860 task_lock(p); 861 pol = p->mempolicy; 862 if (pol && !(pol->flags & MPOL_F_MORON)) 863 pol = NULL; 864 mpol_get(pol); 865 task_unlock(p); 866 867 P(numa_pages_migrated); 868 P(numa_preferred_nid); 869 P(total_numa_faults); 870 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n", 871 task_node(p), task_numa_group_id(p)); 872 show_numa_stats(p, m); 873 mpol_put(pol); 874 #endif 875 } 876 877 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns, 878 struct seq_file *m) 879 { 880 unsigned long nr_switches; 881 882 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns), 883 get_nr_threads(p)); 884 SEQ_printf(m, 885 "---------------------------------------------------------" 886 "----------\n"); 887 #define __P(F) \ 888 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) 889 #define P(F) \ 890 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) 891 #define P_SCHEDSTAT(F) \ 892 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F)) 893 #define __PN(F) \ 894 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 895 #define PN(F) \ 896 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 897 #define PN_SCHEDSTAT(F) \ 898 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F))) 899 900 PN(se.exec_start); 901 PN(se.vruntime); 902 PN(se.sum_exec_runtime); 903 904 nr_switches = p->nvcsw + p->nivcsw; 905 906 P(se.nr_migrations); 907 908 if (schedstat_enabled()) { 909 u64 avg_atom, avg_per_cpu; 910 911 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime); 912 PN_SCHEDSTAT(se.statistics.wait_start); 913 PN_SCHEDSTAT(se.statistics.sleep_start); 914 PN_SCHEDSTAT(se.statistics.block_start); 915 PN_SCHEDSTAT(se.statistics.sleep_max); 916 PN_SCHEDSTAT(se.statistics.block_max); 917 PN_SCHEDSTAT(se.statistics.exec_max); 918 PN_SCHEDSTAT(se.statistics.slice_max); 919 PN_SCHEDSTAT(se.statistics.wait_max); 920 PN_SCHEDSTAT(se.statistics.wait_sum); 921 P_SCHEDSTAT(se.statistics.wait_count); 922 PN_SCHEDSTAT(se.statistics.iowait_sum); 923 P_SCHEDSTAT(se.statistics.iowait_count); 924 P_SCHEDSTAT(se.statistics.nr_migrations_cold); 925 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine); 926 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running); 927 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot); 928 P_SCHEDSTAT(se.statistics.nr_forced_migrations); 929 P_SCHEDSTAT(se.statistics.nr_wakeups); 930 P_SCHEDSTAT(se.statistics.nr_wakeups_sync); 931 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate); 932 P_SCHEDSTAT(se.statistics.nr_wakeups_local); 933 P_SCHEDSTAT(se.statistics.nr_wakeups_remote); 934 P_SCHEDSTAT(se.statistics.nr_wakeups_affine); 935 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts); 936 P_SCHEDSTAT(se.statistics.nr_wakeups_passive); 937 P_SCHEDSTAT(se.statistics.nr_wakeups_idle); 938 939 avg_atom = p->se.sum_exec_runtime; 940 if (nr_switches) 941 avg_atom = div64_ul(avg_atom, nr_switches); 942 else 943 avg_atom = -1LL; 944 945 avg_per_cpu = p->se.sum_exec_runtime; 946 if (p->se.nr_migrations) { 947 avg_per_cpu = div64_u64(avg_per_cpu, 948 p->se.nr_migrations); 949 } else { 950 avg_per_cpu = -1LL; 951 } 952 953 __PN(avg_atom); 954 __PN(avg_per_cpu); 955 } 956 957 __P(nr_switches); 958 SEQ_printf(m, "%-45s:%21Ld\n", 959 "nr_voluntary_switches", (long long)p->nvcsw); 960 SEQ_printf(m, "%-45s:%21Ld\n", 961 "nr_involuntary_switches", (long long)p->nivcsw); 962 963 P(se.load.weight); 964 P(se.runnable_weight); 965 #ifdef CONFIG_SMP 966 P(se.avg.load_sum); 967 P(se.avg.runnable_load_sum); 968 P(se.avg.util_sum); 969 P(se.avg.load_avg); 970 P(se.avg.runnable_load_avg); 971 P(se.avg.util_avg); 972 P(se.avg.last_update_time); 973 P(se.avg.util_est.ewma); 974 P(se.avg.util_est.enqueued); 975 #endif 976 P(policy); 977 P(prio); 978 if (task_has_dl_policy(p)) { 979 P(dl.runtime); 980 P(dl.deadline); 981 } 982 #undef PN_SCHEDSTAT 983 #undef PN 984 #undef __PN 985 #undef P_SCHEDSTAT 986 #undef P 987 #undef __P 988 989 { 990 unsigned int this_cpu = raw_smp_processor_id(); 991 u64 t0, t1; 992 993 t0 = cpu_clock(this_cpu); 994 t1 = cpu_clock(this_cpu); 995 SEQ_printf(m, "%-45s:%21Ld\n", 996 "clock-delta", (long long)(t1-t0)); 997 } 998 999 sched_show_numa(p, m); 1000 } 1001 1002 void proc_sched_set_task(struct task_struct *p) 1003 { 1004 #ifdef CONFIG_SCHEDSTATS 1005 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1006 #endif 1007 } 1008