1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/debug.c 4 * 5 * Print the CFS rbtree and other debugging details 6 * 7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar 8 */ 9 #include "sched.h" 10 11 /* 12 * This allows printing both to /proc/sched_debug and 13 * to the console 14 */ 15 #define SEQ_printf(m, x...) \ 16 do { \ 17 if (m) \ 18 seq_printf(m, x); \ 19 else \ 20 pr_cont(x); \ 21 } while (0) 22 23 /* 24 * Ease the printing of nsec fields: 25 */ 26 static long long nsec_high(unsigned long long nsec) 27 { 28 if ((long long)nsec < 0) { 29 nsec = -nsec; 30 do_div(nsec, 1000000); 31 return -nsec; 32 } 33 do_div(nsec, 1000000); 34 35 return nsec; 36 } 37 38 static unsigned long nsec_low(unsigned long long nsec) 39 { 40 if ((long long)nsec < 0) 41 nsec = -nsec; 42 43 return do_div(nsec, 1000000); 44 } 45 46 #define SPLIT_NS(x) nsec_high(x), nsec_low(x) 47 48 #define SCHED_FEAT(name, enabled) \ 49 #name , 50 51 static const char * const sched_feat_names[] = { 52 #include "features.h" 53 }; 54 55 #undef SCHED_FEAT 56 57 static int sched_feat_show(struct seq_file *m, void *v) 58 { 59 int i; 60 61 for (i = 0; i < __SCHED_FEAT_NR; i++) { 62 if (!(sysctl_sched_features & (1UL << i))) 63 seq_puts(m, "NO_"); 64 seq_printf(m, "%s ", sched_feat_names[i]); 65 } 66 seq_puts(m, "\n"); 67 68 return 0; 69 } 70 71 #ifdef CONFIG_JUMP_LABEL 72 73 #define jump_label_key__true STATIC_KEY_INIT_TRUE 74 #define jump_label_key__false STATIC_KEY_INIT_FALSE 75 76 #define SCHED_FEAT(name, enabled) \ 77 jump_label_key__##enabled , 78 79 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 80 #include "features.h" 81 }; 82 83 #undef SCHED_FEAT 84 85 static void sched_feat_disable(int i) 86 { 87 static_key_disable_cpuslocked(&sched_feat_keys[i]); 88 } 89 90 static void sched_feat_enable(int i) 91 { 92 static_key_enable_cpuslocked(&sched_feat_keys[i]); 93 } 94 #else 95 static void sched_feat_disable(int i) { }; 96 static void sched_feat_enable(int i) { }; 97 #endif /* CONFIG_JUMP_LABEL */ 98 99 static int sched_feat_set(char *cmp) 100 { 101 int i; 102 int neg = 0; 103 104 if (strncmp(cmp, "NO_", 3) == 0) { 105 neg = 1; 106 cmp += 3; 107 } 108 109 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp); 110 if (i < 0) 111 return i; 112 113 if (neg) { 114 sysctl_sched_features &= ~(1UL << i); 115 sched_feat_disable(i); 116 } else { 117 sysctl_sched_features |= (1UL << i); 118 sched_feat_enable(i); 119 } 120 121 return 0; 122 } 123 124 static ssize_t 125 sched_feat_write(struct file *filp, const char __user *ubuf, 126 size_t cnt, loff_t *ppos) 127 { 128 char buf[64]; 129 char *cmp; 130 int ret; 131 struct inode *inode; 132 133 if (cnt > 63) 134 cnt = 63; 135 136 if (copy_from_user(&buf, ubuf, cnt)) 137 return -EFAULT; 138 139 buf[cnt] = 0; 140 cmp = strstrip(buf); 141 142 /* Ensure the static_key remains in a consistent state */ 143 inode = file_inode(filp); 144 cpus_read_lock(); 145 inode_lock(inode); 146 ret = sched_feat_set(cmp); 147 inode_unlock(inode); 148 cpus_read_unlock(); 149 if (ret < 0) 150 return ret; 151 152 *ppos += cnt; 153 154 return cnt; 155 } 156 157 static int sched_feat_open(struct inode *inode, struct file *filp) 158 { 159 return single_open(filp, sched_feat_show, NULL); 160 } 161 162 static const struct file_operations sched_feat_fops = { 163 .open = sched_feat_open, 164 .write = sched_feat_write, 165 .read = seq_read, 166 .llseek = seq_lseek, 167 .release = single_release, 168 }; 169 170 __read_mostly bool sched_debug_enabled; 171 172 static __init int sched_init_debug(void) 173 { 174 debugfs_create_file("sched_features", 0644, NULL, NULL, 175 &sched_feat_fops); 176 177 debugfs_create_bool("sched_debug", 0644, NULL, 178 &sched_debug_enabled); 179 180 return 0; 181 } 182 late_initcall(sched_init_debug); 183 184 #ifdef CONFIG_SMP 185 186 #ifdef CONFIG_SYSCTL 187 188 static struct ctl_table sd_ctl_dir[] = { 189 { 190 .procname = "sched_domain", 191 .mode = 0555, 192 }, 193 {} 194 }; 195 196 static struct ctl_table sd_ctl_root[] = { 197 { 198 .procname = "kernel", 199 .mode = 0555, 200 .child = sd_ctl_dir, 201 }, 202 {} 203 }; 204 205 static struct ctl_table *sd_alloc_ctl_entry(int n) 206 { 207 struct ctl_table *entry = 208 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 209 210 return entry; 211 } 212 213 static void sd_free_ctl_entry(struct ctl_table **tablep) 214 { 215 struct ctl_table *entry; 216 217 /* 218 * In the intermediate directories, both the child directory and 219 * procname are dynamically allocated and could fail but the mode 220 * will always be set. In the lowest directory the names are 221 * static strings and all have proc handlers. 222 */ 223 for (entry = *tablep; entry->mode; entry++) { 224 if (entry->child) 225 sd_free_ctl_entry(&entry->child); 226 if (entry->proc_handler == NULL) 227 kfree(entry->procname); 228 } 229 230 kfree(*tablep); 231 *tablep = NULL; 232 } 233 234 static void 235 set_table_entry(struct ctl_table *entry, 236 const char *procname, void *data, int maxlen, 237 umode_t mode, proc_handler *proc_handler) 238 { 239 entry->procname = procname; 240 entry->data = data; 241 entry->maxlen = maxlen; 242 entry->mode = mode; 243 entry->proc_handler = proc_handler; 244 } 245 246 static int sd_ctl_doflags(struct ctl_table *table, int write, 247 void *buffer, size_t *lenp, loff_t *ppos) 248 { 249 unsigned long flags = *(unsigned long *)table->data; 250 size_t data_size = 0; 251 size_t len = 0; 252 char *tmp, *buf; 253 int idx; 254 255 if (write) 256 return 0; 257 258 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { 259 char *name = sd_flag_debug[idx].name; 260 261 /* Name plus whitespace */ 262 data_size += strlen(name) + 1; 263 } 264 265 if (*ppos > data_size) { 266 *lenp = 0; 267 return 0; 268 } 269 270 buf = kcalloc(data_size + 1, sizeof(*buf), GFP_KERNEL); 271 if (!buf) 272 return -ENOMEM; 273 274 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { 275 char *name = sd_flag_debug[idx].name; 276 277 len += snprintf(buf + len, strlen(name) + 2, "%s ", name); 278 } 279 280 tmp = buf + *ppos; 281 len -= *ppos; 282 283 if (len > *lenp) 284 len = *lenp; 285 if (len) 286 memcpy(buffer, tmp, len); 287 if (len < *lenp) { 288 ((char *)buffer)[len] = '\n'; 289 len++; 290 } 291 292 *lenp = len; 293 *ppos += len; 294 295 kfree(buf); 296 297 return 0; 298 } 299 300 static struct ctl_table * 301 sd_alloc_ctl_domain_table(struct sched_domain *sd) 302 { 303 struct ctl_table *table = sd_alloc_ctl_entry(9); 304 305 if (table == NULL) 306 return NULL; 307 308 set_table_entry(&table[0], "min_interval", &sd->min_interval, sizeof(long), 0644, proc_doulongvec_minmax); 309 set_table_entry(&table[1], "max_interval", &sd->max_interval, sizeof(long), 0644, proc_doulongvec_minmax); 310 set_table_entry(&table[2], "busy_factor", &sd->busy_factor, sizeof(int), 0644, proc_dointvec_minmax); 311 set_table_entry(&table[3], "imbalance_pct", &sd->imbalance_pct, sizeof(int), 0644, proc_dointvec_minmax); 312 set_table_entry(&table[4], "cache_nice_tries", &sd->cache_nice_tries, sizeof(int), 0644, proc_dointvec_minmax); 313 set_table_entry(&table[5], "flags", &sd->flags, sizeof(int), 0444, sd_ctl_doflags); 314 set_table_entry(&table[6], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax); 315 set_table_entry(&table[7], "name", sd->name, CORENAME_MAX_SIZE, 0444, proc_dostring); 316 /* &table[8] is terminator */ 317 318 return table; 319 } 320 321 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 322 { 323 struct ctl_table *entry, *table; 324 struct sched_domain *sd; 325 int domain_num = 0, i; 326 char buf[32]; 327 328 for_each_domain(cpu, sd) 329 domain_num++; 330 entry = table = sd_alloc_ctl_entry(domain_num + 1); 331 if (table == NULL) 332 return NULL; 333 334 i = 0; 335 for_each_domain(cpu, sd) { 336 snprintf(buf, 32, "domain%d", i); 337 entry->procname = kstrdup(buf, GFP_KERNEL); 338 entry->mode = 0555; 339 entry->child = sd_alloc_ctl_domain_table(sd); 340 entry++; 341 i++; 342 } 343 return table; 344 } 345 346 static cpumask_var_t sd_sysctl_cpus; 347 static struct ctl_table_header *sd_sysctl_header; 348 349 void register_sched_domain_sysctl(void) 350 { 351 static struct ctl_table *cpu_entries; 352 static struct ctl_table **cpu_idx; 353 static bool init_done = false; 354 char buf[32]; 355 int i; 356 357 if (!cpu_entries) { 358 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1); 359 if (!cpu_entries) 360 return; 361 362 WARN_ON(sd_ctl_dir[0].child); 363 sd_ctl_dir[0].child = cpu_entries; 364 } 365 366 if (!cpu_idx) { 367 struct ctl_table *e = cpu_entries; 368 369 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL); 370 if (!cpu_idx) 371 return; 372 373 /* deal with sparse possible map */ 374 for_each_possible_cpu(i) { 375 cpu_idx[i] = e; 376 e++; 377 } 378 } 379 380 if (!cpumask_available(sd_sysctl_cpus)) { 381 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL)) 382 return; 383 } 384 385 if (!init_done) { 386 init_done = true; 387 /* init to possible to not have holes in @cpu_entries */ 388 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask); 389 } 390 391 for_each_cpu(i, sd_sysctl_cpus) { 392 struct ctl_table *e = cpu_idx[i]; 393 394 if (e->child) 395 sd_free_ctl_entry(&e->child); 396 397 if (!e->procname) { 398 snprintf(buf, 32, "cpu%d", i); 399 e->procname = kstrdup(buf, GFP_KERNEL); 400 } 401 e->mode = 0555; 402 e->child = sd_alloc_ctl_cpu_table(i); 403 404 __cpumask_clear_cpu(i, sd_sysctl_cpus); 405 } 406 407 WARN_ON(sd_sysctl_header); 408 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 409 } 410 411 void dirty_sched_domain_sysctl(int cpu) 412 { 413 if (cpumask_available(sd_sysctl_cpus)) 414 __cpumask_set_cpu(cpu, sd_sysctl_cpus); 415 } 416 417 /* may be called multiple times per register */ 418 void unregister_sched_domain_sysctl(void) 419 { 420 unregister_sysctl_table(sd_sysctl_header); 421 sd_sysctl_header = NULL; 422 } 423 #endif /* CONFIG_SYSCTL */ 424 #endif /* CONFIG_SMP */ 425 426 #ifdef CONFIG_FAIR_GROUP_SCHED 427 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) 428 { 429 struct sched_entity *se = tg->se[cpu]; 430 431 #define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) 432 #define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F)) 433 #define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) 434 #define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F))) 435 436 if (!se) 437 return; 438 439 PN(se->exec_start); 440 PN(se->vruntime); 441 PN(se->sum_exec_runtime); 442 443 if (schedstat_enabled()) { 444 PN_SCHEDSTAT(se->statistics.wait_start); 445 PN_SCHEDSTAT(se->statistics.sleep_start); 446 PN_SCHEDSTAT(se->statistics.block_start); 447 PN_SCHEDSTAT(se->statistics.sleep_max); 448 PN_SCHEDSTAT(se->statistics.block_max); 449 PN_SCHEDSTAT(se->statistics.exec_max); 450 PN_SCHEDSTAT(se->statistics.slice_max); 451 PN_SCHEDSTAT(se->statistics.wait_max); 452 PN_SCHEDSTAT(se->statistics.wait_sum); 453 P_SCHEDSTAT(se->statistics.wait_count); 454 } 455 456 P(se->load.weight); 457 #ifdef CONFIG_SMP 458 P(se->avg.load_avg); 459 P(se->avg.util_avg); 460 P(se->avg.runnable_avg); 461 #endif 462 463 #undef PN_SCHEDSTAT 464 #undef PN 465 #undef P_SCHEDSTAT 466 #undef P 467 } 468 #endif 469 470 #ifdef CONFIG_CGROUP_SCHED 471 static DEFINE_SPINLOCK(sched_debug_lock); 472 static char group_path[PATH_MAX]; 473 474 static void task_group_path(struct task_group *tg, char *path, int plen) 475 { 476 if (autogroup_path(tg, path, plen)) 477 return; 478 479 cgroup_path(tg->css.cgroup, path, plen); 480 } 481 482 /* 483 * Only 1 SEQ_printf_task_group_path() caller can use the full length 484 * group_path[] for cgroup path. Other simultaneous callers will have 485 * to use a shorter stack buffer. A "..." suffix is appended at the end 486 * of the stack buffer so that it will show up in case the output length 487 * matches the given buffer size to indicate possible path name truncation. 488 */ 489 #define SEQ_printf_task_group_path(m, tg, fmt...) \ 490 { \ 491 if (spin_trylock(&sched_debug_lock)) { \ 492 task_group_path(tg, group_path, sizeof(group_path)); \ 493 SEQ_printf(m, fmt, group_path); \ 494 spin_unlock(&sched_debug_lock); \ 495 } else { \ 496 char buf[128]; \ 497 char *bufend = buf + sizeof(buf) - 3; \ 498 task_group_path(tg, buf, bufend - buf); \ 499 strcpy(bufend - 1, "..."); \ 500 SEQ_printf(m, fmt, buf); \ 501 } \ 502 } 503 #endif 504 505 static void 506 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) 507 { 508 if (rq->curr == p) 509 SEQ_printf(m, ">R"); 510 else 511 SEQ_printf(m, " %c", task_state_to_char(p)); 512 513 SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d ", 514 p->comm, task_pid_nr(p), 515 SPLIT_NS(p->se.vruntime), 516 (long long)(p->nvcsw + p->nivcsw), 517 p->prio); 518 519 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", 520 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)), 521 SPLIT_NS(p->se.sum_exec_runtime), 522 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime))); 523 524 #ifdef CONFIG_NUMA_BALANCING 525 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p)); 526 #endif 527 #ifdef CONFIG_CGROUP_SCHED 528 SEQ_printf_task_group_path(m, task_group(p), " %s") 529 #endif 530 531 SEQ_printf(m, "\n"); 532 } 533 534 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) 535 { 536 struct task_struct *g, *p; 537 538 SEQ_printf(m, "\n"); 539 SEQ_printf(m, "runnable tasks:\n"); 540 SEQ_printf(m, " S task PID tree-key switches prio" 541 " wait-time sum-exec sum-sleep\n"); 542 SEQ_printf(m, "-------------------------------------------------------" 543 "------------------------------------------------------\n"); 544 545 rcu_read_lock(); 546 for_each_process_thread(g, p) { 547 if (task_cpu(p) != rq_cpu) 548 continue; 549 550 print_task(m, rq, p); 551 } 552 rcu_read_unlock(); 553 } 554 555 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 556 { 557 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, 558 spread, rq0_min_vruntime, spread0; 559 struct rq *rq = cpu_rq(cpu); 560 struct sched_entity *last; 561 unsigned long flags; 562 563 #ifdef CONFIG_FAIR_GROUP_SCHED 564 SEQ_printf(m, "\n"); 565 SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu); 566 #else 567 SEQ_printf(m, "\n"); 568 SEQ_printf(m, "cfs_rq[%d]:\n", cpu); 569 #endif 570 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", 571 SPLIT_NS(cfs_rq->exec_clock)); 572 573 raw_spin_lock_irqsave(&rq->lock, flags); 574 if (rb_first_cached(&cfs_rq->tasks_timeline)) 575 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; 576 last = __pick_last_entity(cfs_rq); 577 if (last) 578 max_vruntime = last->vruntime; 579 min_vruntime = cfs_rq->min_vruntime; 580 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; 581 raw_spin_unlock_irqrestore(&rq->lock, flags); 582 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", 583 SPLIT_NS(MIN_vruntime)); 584 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", 585 SPLIT_NS(min_vruntime)); 586 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", 587 SPLIT_NS(max_vruntime)); 588 spread = max_vruntime - MIN_vruntime; 589 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", 590 SPLIT_NS(spread)); 591 spread0 = min_vruntime - rq0_min_vruntime; 592 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", 593 SPLIT_NS(spread0)); 594 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", 595 cfs_rq->nr_spread_over); 596 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); 597 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); 598 #ifdef CONFIG_SMP 599 SEQ_printf(m, " .%-30s: %lu\n", "load_avg", 600 cfs_rq->avg.load_avg); 601 SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg", 602 cfs_rq->avg.runnable_avg); 603 SEQ_printf(m, " .%-30s: %lu\n", "util_avg", 604 cfs_rq->avg.util_avg); 605 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued", 606 cfs_rq->avg.util_est.enqueued); 607 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg", 608 cfs_rq->removed.load_avg); 609 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg", 610 cfs_rq->removed.util_avg); 611 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_avg", 612 cfs_rq->removed.runnable_avg); 613 #ifdef CONFIG_FAIR_GROUP_SCHED 614 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib", 615 cfs_rq->tg_load_avg_contrib); 616 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", 617 atomic_long_read(&cfs_rq->tg->load_avg)); 618 #endif 619 #endif 620 #ifdef CONFIG_CFS_BANDWIDTH 621 SEQ_printf(m, " .%-30s: %d\n", "throttled", 622 cfs_rq->throttled); 623 SEQ_printf(m, " .%-30s: %d\n", "throttle_count", 624 cfs_rq->throttle_count); 625 #endif 626 627 #ifdef CONFIG_FAIR_GROUP_SCHED 628 print_cfs_group_stats(m, cpu, cfs_rq->tg); 629 #endif 630 } 631 632 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) 633 { 634 #ifdef CONFIG_RT_GROUP_SCHED 635 SEQ_printf(m, "\n"); 636 SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu); 637 #else 638 SEQ_printf(m, "\n"); 639 SEQ_printf(m, "rt_rq[%d]:\n", cpu); 640 #endif 641 642 #define P(x) \ 643 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) 644 #define PU(x) \ 645 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x)) 646 #define PN(x) \ 647 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) 648 649 PU(rt_nr_running); 650 #ifdef CONFIG_SMP 651 PU(rt_nr_migratory); 652 #endif 653 P(rt_throttled); 654 PN(rt_time); 655 PN(rt_runtime); 656 657 #undef PN 658 #undef PU 659 #undef P 660 } 661 662 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq) 663 { 664 struct dl_bw *dl_bw; 665 666 SEQ_printf(m, "\n"); 667 SEQ_printf(m, "dl_rq[%d]:\n", cpu); 668 669 #define PU(x) \ 670 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x)) 671 672 PU(dl_nr_running); 673 #ifdef CONFIG_SMP 674 PU(dl_nr_migratory); 675 dl_bw = &cpu_rq(cpu)->rd->dl_bw; 676 #else 677 dl_bw = &dl_rq->dl_bw; 678 #endif 679 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw); 680 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw); 681 682 #undef PU 683 } 684 685 static void print_cpu(struct seq_file *m, int cpu) 686 { 687 struct rq *rq = cpu_rq(cpu); 688 689 #ifdef CONFIG_X86 690 { 691 unsigned int freq = cpu_khz ? : 1; 692 693 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", 694 cpu, freq / 1000, (freq % 1000)); 695 } 696 #else 697 SEQ_printf(m, "cpu#%d\n", cpu); 698 #endif 699 700 #define P(x) \ 701 do { \ 702 if (sizeof(rq->x) == 4) \ 703 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \ 704 else \ 705 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ 706 } while (0) 707 708 #define PN(x) \ 709 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) 710 711 P(nr_running); 712 P(nr_switches); 713 P(nr_uninterruptible); 714 PN(next_balance); 715 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); 716 PN(clock); 717 PN(clock_task); 718 #undef P 719 #undef PN 720 721 #ifdef CONFIG_SMP 722 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); 723 P64(avg_idle); 724 P64(max_idle_balance_cost); 725 #undef P64 726 #endif 727 728 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n)); 729 if (schedstat_enabled()) { 730 P(yld_count); 731 P(sched_count); 732 P(sched_goidle); 733 P(ttwu_count); 734 P(ttwu_local); 735 } 736 #undef P 737 738 print_cfs_stats(m, cpu); 739 print_rt_stats(m, cpu); 740 print_dl_stats(m, cpu); 741 742 print_rq(m, rq, cpu); 743 SEQ_printf(m, "\n"); 744 } 745 746 static const char *sched_tunable_scaling_names[] = { 747 "none", 748 "logarithmic", 749 "linear" 750 }; 751 752 static void sched_debug_header(struct seq_file *m) 753 { 754 u64 ktime, sched_clk, cpu_clk; 755 unsigned long flags; 756 757 local_irq_save(flags); 758 ktime = ktime_to_ns(ktime_get()); 759 sched_clk = sched_clock(); 760 cpu_clk = local_clock(); 761 local_irq_restore(flags); 762 763 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", 764 init_utsname()->release, 765 (int)strcspn(init_utsname()->version, " "), 766 init_utsname()->version); 767 768 #define P(x) \ 769 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) 770 #define PN(x) \ 771 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 772 PN(ktime); 773 PN(sched_clk); 774 PN(cpu_clk); 775 P(jiffies); 776 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 777 P(sched_clock_stable()); 778 #endif 779 #undef PN 780 #undef P 781 782 SEQ_printf(m, "\n"); 783 SEQ_printf(m, "sysctl_sched\n"); 784 785 #define P(x) \ 786 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) 787 #define PN(x) \ 788 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 789 PN(sysctl_sched_latency); 790 PN(sysctl_sched_min_granularity); 791 PN(sysctl_sched_wakeup_granularity); 792 P(sysctl_sched_child_runs_first); 793 P(sysctl_sched_features); 794 #undef PN 795 #undef P 796 797 SEQ_printf(m, " .%-40s: %d (%s)\n", 798 "sysctl_sched_tunable_scaling", 799 sysctl_sched_tunable_scaling, 800 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); 801 SEQ_printf(m, "\n"); 802 } 803 804 static int sched_debug_show(struct seq_file *m, void *v) 805 { 806 int cpu = (unsigned long)(v - 2); 807 808 if (cpu != -1) 809 print_cpu(m, cpu); 810 else 811 sched_debug_header(m); 812 813 return 0; 814 } 815 816 void sysrq_sched_debug_show(void) 817 { 818 int cpu; 819 820 sched_debug_header(NULL); 821 for_each_online_cpu(cpu) { 822 /* 823 * Need to reset softlockup watchdogs on all CPUs, because 824 * another CPU might be blocked waiting for us to process 825 * an IPI or stop_machine. 826 */ 827 touch_nmi_watchdog(); 828 touch_all_softlockup_watchdogs(); 829 print_cpu(NULL, cpu); 830 } 831 } 832 833 /* 834 * This itererator needs some explanation. 835 * It returns 1 for the header position. 836 * This means 2 is CPU 0. 837 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have 838 * to use cpumask_* to iterate over the CPUs. 839 */ 840 static void *sched_debug_start(struct seq_file *file, loff_t *offset) 841 { 842 unsigned long n = *offset; 843 844 if (n == 0) 845 return (void *) 1; 846 847 n--; 848 849 if (n > 0) 850 n = cpumask_next(n - 1, cpu_online_mask); 851 else 852 n = cpumask_first(cpu_online_mask); 853 854 *offset = n + 1; 855 856 if (n < nr_cpu_ids) 857 return (void *)(unsigned long)(n + 2); 858 859 return NULL; 860 } 861 862 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset) 863 { 864 (*offset)++; 865 return sched_debug_start(file, offset); 866 } 867 868 static void sched_debug_stop(struct seq_file *file, void *data) 869 { 870 } 871 872 static const struct seq_operations sched_debug_sops = { 873 .start = sched_debug_start, 874 .next = sched_debug_next, 875 .stop = sched_debug_stop, 876 .show = sched_debug_show, 877 }; 878 879 static int __init init_sched_debug_procfs(void) 880 { 881 if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops)) 882 return -ENOMEM; 883 return 0; 884 } 885 886 __initcall(init_sched_debug_procfs); 887 888 #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F)) 889 #define __P(F) __PS(#F, F) 890 #define P(F) __PS(#F, p->F) 891 #define PM(F, M) __PS(#F, p->F & (M)) 892 #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F))) 893 #define __PN(F) __PSN(#F, F) 894 #define PN(F) __PSN(#F, p->F) 895 896 897 #ifdef CONFIG_NUMA_BALANCING 898 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 899 unsigned long tpf, unsigned long gsf, unsigned long gpf) 900 { 901 SEQ_printf(m, "numa_faults node=%d ", node); 902 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf); 903 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf); 904 } 905 #endif 906 907 908 static void sched_show_numa(struct task_struct *p, struct seq_file *m) 909 { 910 #ifdef CONFIG_NUMA_BALANCING 911 struct mempolicy *pol; 912 913 if (p->mm) 914 P(mm->numa_scan_seq); 915 916 task_lock(p); 917 pol = p->mempolicy; 918 if (pol && !(pol->flags & MPOL_F_MORON)) 919 pol = NULL; 920 mpol_get(pol); 921 task_unlock(p); 922 923 P(numa_pages_migrated); 924 P(numa_preferred_nid); 925 P(total_numa_faults); 926 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n", 927 task_node(p), task_numa_group_id(p)); 928 show_numa_stats(p, m); 929 mpol_put(pol); 930 #endif 931 } 932 933 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns, 934 struct seq_file *m) 935 { 936 unsigned long nr_switches; 937 938 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns), 939 get_nr_threads(p)); 940 SEQ_printf(m, 941 "---------------------------------------------------------" 942 "----------\n"); 943 944 #define P_SCHEDSTAT(F) __PS(#F, schedstat_val(p->F)) 945 #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->F)) 946 947 PN(se.exec_start); 948 PN(se.vruntime); 949 PN(se.sum_exec_runtime); 950 951 nr_switches = p->nvcsw + p->nivcsw; 952 953 P(se.nr_migrations); 954 955 if (schedstat_enabled()) { 956 u64 avg_atom, avg_per_cpu; 957 958 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime); 959 PN_SCHEDSTAT(se.statistics.wait_start); 960 PN_SCHEDSTAT(se.statistics.sleep_start); 961 PN_SCHEDSTAT(se.statistics.block_start); 962 PN_SCHEDSTAT(se.statistics.sleep_max); 963 PN_SCHEDSTAT(se.statistics.block_max); 964 PN_SCHEDSTAT(se.statistics.exec_max); 965 PN_SCHEDSTAT(se.statistics.slice_max); 966 PN_SCHEDSTAT(se.statistics.wait_max); 967 PN_SCHEDSTAT(se.statistics.wait_sum); 968 P_SCHEDSTAT(se.statistics.wait_count); 969 PN_SCHEDSTAT(se.statistics.iowait_sum); 970 P_SCHEDSTAT(se.statistics.iowait_count); 971 P_SCHEDSTAT(se.statistics.nr_migrations_cold); 972 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine); 973 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running); 974 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot); 975 P_SCHEDSTAT(se.statistics.nr_forced_migrations); 976 P_SCHEDSTAT(se.statistics.nr_wakeups); 977 P_SCHEDSTAT(se.statistics.nr_wakeups_sync); 978 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate); 979 P_SCHEDSTAT(se.statistics.nr_wakeups_local); 980 P_SCHEDSTAT(se.statistics.nr_wakeups_remote); 981 P_SCHEDSTAT(se.statistics.nr_wakeups_affine); 982 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts); 983 P_SCHEDSTAT(se.statistics.nr_wakeups_passive); 984 P_SCHEDSTAT(se.statistics.nr_wakeups_idle); 985 986 avg_atom = p->se.sum_exec_runtime; 987 if (nr_switches) 988 avg_atom = div64_ul(avg_atom, nr_switches); 989 else 990 avg_atom = -1LL; 991 992 avg_per_cpu = p->se.sum_exec_runtime; 993 if (p->se.nr_migrations) { 994 avg_per_cpu = div64_u64(avg_per_cpu, 995 p->se.nr_migrations); 996 } else { 997 avg_per_cpu = -1LL; 998 } 999 1000 __PN(avg_atom); 1001 __PN(avg_per_cpu); 1002 } 1003 1004 __P(nr_switches); 1005 __PS("nr_voluntary_switches", p->nvcsw); 1006 __PS("nr_involuntary_switches", p->nivcsw); 1007 1008 P(se.load.weight); 1009 #ifdef CONFIG_SMP 1010 P(se.avg.load_sum); 1011 P(se.avg.runnable_sum); 1012 P(se.avg.util_sum); 1013 P(se.avg.load_avg); 1014 P(se.avg.runnable_avg); 1015 P(se.avg.util_avg); 1016 P(se.avg.last_update_time); 1017 P(se.avg.util_est.ewma); 1018 PM(se.avg.util_est.enqueued, ~UTIL_AVG_UNCHANGED); 1019 #endif 1020 #ifdef CONFIG_UCLAMP_TASK 1021 __PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value); 1022 __PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value); 1023 __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN)); 1024 __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX)); 1025 #endif 1026 P(policy); 1027 P(prio); 1028 if (task_has_dl_policy(p)) { 1029 P(dl.runtime); 1030 P(dl.deadline); 1031 } 1032 #undef PN_SCHEDSTAT 1033 #undef P_SCHEDSTAT 1034 1035 { 1036 unsigned int this_cpu = raw_smp_processor_id(); 1037 u64 t0, t1; 1038 1039 t0 = cpu_clock(this_cpu); 1040 t1 = cpu_clock(this_cpu); 1041 __PS("clock-delta", t1-t0); 1042 } 1043 1044 sched_show_numa(p, m); 1045 } 1046 1047 void proc_sched_set_task(struct task_struct *p) 1048 { 1049 #ifdef CONFIG_SCHEDSTATS 1050 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1051 #endif 1052 } 1053