1 /* 2 * kernel/sched/debug.c 3 * 4 * Print the CFS rbtree 5 * 6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/proc_fs.h> 14 #include <linux/sched.h> 15 #include <linux/seq_file.h> 16 #include <linux/kallsyms.h> 17 #include <linux/utsname.h> 18 19 #include "sched.h" 20 21 static DEFINE_SPINLOCK(sched_debug_lock); 22 23 /* 24 * This allows printing both to /proc/sched_debug and 25 * to the console 26 */ 27 #define SEQ_printf(m, x...) \ 28 do { \ 29 if (m) \ 30 seq_printf(m, x); \ 31 else \ 32 printk(x); \ 33 } while (0) 34 35 /* 36 * Ease the printing of nsec fields: 37 */ 38 static long long nsec_high(unsigned long long nsec) 39 { 40 if ((long long)nsec < 0) { 41 nsec = -nsec; 42 do_div(nsec, 1000000); 43 return -nsec; 44 } 45 do_div(nsec, 1000000); 46 47 return nsec; 48 } 49 50 static unsigned long nsec_low(unsigned long long nsec) 51 { 52 if ((long long)nsec < 0) 53 nsec = -nsec; 54 55 return do_div(nsec, 1000000); 56 } 57 58 #define SPLIT_NS(x) nsec_high(x), nsec_low(x) 59 60 #ifdef CONFIG_FAIR_GROUP_SCHED 61 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) 62 { 63 struct sched_entity *se = tg->se[cpu]; 64 65 #define P(F) \ 66 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) 67 #define PN(F) \ 68 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) 69 70 if (!se) { 71 struct sched_avg *avg = &cpu_rq(cpu)->avg; 72 P(avg->runnable_avg_sum); 73 P(avg->runnable_avg_period); 74 return; 75 } 76 77 78 PN(se->exec_start); 79 PN(se->vruntime); 80 PN(se->sum_exec_runtime); 81 #ifdef CONFIG_SCHEDSTATS 82 PN(se->statistics.wait_start); 83 PN(se->statistics.sleep_start); 84 PN(se->statistics.block_start); 85 PN(se->statistics.sleep_max); 86 PN(se->statistics.block_max); 87 PN(se->statistics.exec_max); 88 PN(se->statistics.slice_max); 89 PN(se->statistics.wait_max); 90 PN(se->statistics.wait_sum); 91 P(se->statistics.wait_count); 92 #endif 93 P(se->load.weight); 94 #ifdef CONFIG_SMP 95 P(se->avg.runnable_avg_sum); 96 P(se->avg.runnable_avg_period); 97 #endif 98 #undef PN 99 #undef P 100 } 101 #endif 102 103 #ifdef CONFIG_CGROUP_SCHED 104 static char group_path[PATH_MAX]; 105 106 static char *task_group_path(struct task_group *tg) 107 { 108 if (autogroup_path(tg, group_path, PATH_MAX)) 109 return group_path; 110 111 /* 112 * May be NULL if the underlying cgroup isn't fully-created yet 113 */ 114 if (!tg->css.cgroup) { 115 group_path[0] = '\0'; 116 return group_path; 117 } 118 cgroup_path(tg->css.cgroup, group_path, PATH_MAX); 119 return group_path; 120 } 121 #endif 122 123 static void 124 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) 125 { 126 if (rq->curr == p) 127 SEQ_printf(m, "R"); 128 else 129 SEQ_printf(m, " "); 130 131 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ", 132 p->comm, p->pid, 133 SPLIT_NS(p->se.vruntime), 134 (long long)(p->nvcsw + p->nivcsw), 135 p->prio); 136 #ifdef CONFIG_SCHEDSTATS 137 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", 138 SPLIT_NS(p->se.vruntime), 139 SPLIT_NS(p->se.sum_exec_runtime), 140 SPLIT_NS(p->se.statistics.sum_sleep_runtime)); 141 #else 142 SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld", 143 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L); 144 #endif 145 #ifdef CONFIG_CGROUP_SCHED 146 SEQ_printf(m, " %s", task_group_path(task_group(p))); 147 #endif 148 149 SEQ_printf(m, "\n"); 150 } 151 152 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) 153 { 154 struct task_struct *g, *p; 155 unsigned long flags; 156 157 SEQ_printf(m, 158 "\nrunnable tasks:\n" 159 " task PID tree-key switches prio" 160 " exec-runtime sum-exec sum-sleep\n" 161 "------------------------------------------------------" 162 "----------------------------------------------------\n"); 163 164 read_lock_irqsave(&tasklist_lock, flags); 165 166 do_each_thread(g, p) { 167 if (!p->on_rq || task_cpu(p) != rq_cpu) 168 continue; 169 170 print_task(m, rq, p); 171 } while_each_thread(g, p); 172 173 read_unlock_irqrestore(&tasklist_lock, flags); 174 } 175 176 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 177 { 178 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, 179 spread, rq0_min_vruntime, spread0; 180 struct rq *rq = cpu_rq(cpu); 181 struct sched_entity *last; 182 unsigned long flags; 183 184 #ifdef CONFIG_FAIR_GROUP_SCHED 185 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg)); 186 #else 187 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu); 188 #endif 189 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", 190 SPLIT_NS(cfs_rq->exec_clock)); 191 192 raw_spin_lock_irqsave(&rq->lock, flags); 193 if (cfs_rq->rb_leftmost) 194 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; 195 last = __pick_last_entity(cfs_rq); 196 if (last) 197 max_vruntime = last->vruntime; 198 min_vruntime = cfs_rq->min_vruntime; 199 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; 200 raw_spin_unlock_irqrestore(&rq->lock, flags); 201 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", 202 SPLIT_NS(MIN_vruntime)); 203 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", 204 SPLIT_NS(min_vruntime)); 205 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", 206 SPLIT_NS(max_vruntime)); 207 spread = max_vruntime - MIN_vruntime; 208 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", 209 SPLIT_NS(spread)); 210 spread0 = min_vruntime - rq0_min_vruntime; 211 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", 212 SPLIT_NS(spread0)); 213 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", 214 cfs_rq->nr_spread_over); 215 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); 216 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); 217 #ifdef CONFIG_FAIR_GROUP_SCHED 218 #ifdef CONFIG_SMP 219 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "load_avg", 220 SPLIT_NS(cfs_rq->load_avg)); 221 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "load_period", 222 SPLIT_NS(cfs_rq->load_period)); 223 SEQ_printf(m, " .%-30s: %ld\n", "load_contrib", 224 cfs_rq->load_contribution); 225 SEQ_printf(m, " .%-30s: %d\n", "load_tg", 226 atomic_read(&cfs_rq->tg->load_weight)); 227 #endif 228 229 print_cfs_group_stats(m, cpu, cfs_rq->tg); 230 #endif 231 } 232 233 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) 234 { 235 #ifdef CONFIG_RT_GROUP_SCHED 236 SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg)); 237 #else 238 SEQ_printf(m, "\nrt_rq[%d]:\n", cpu); 239 #endif 240 241 #define P(x) \ 242 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) 243 #define PN(x) \ 244 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) 245 246 P(rt_nr_running); 247 P(rt_throttled); 248 PN(rt_time); 249 PN(rt_runtime); 250 251 #undef PN 252 #undef P 253 } 254 255 extern __read_mostly int sched_clock_running; 256 257 static void print_cpu(struct seq_file *m, int cpu) 258 { 259 struct rq *rq = cpu_rq(cpu); 260 unsigned long flags; 261 262 #ifdef CONFIG_X86 263 { 264 unsigned int freq = cpu_khz ? : 1; 265 266 SEQ_printf(m, "\ncpu#%d, %u.%03u MHz\n", 267 cpu, freq / 1000, (freq % 1000)); 268 } 269 #else 270 SEQ_printf(m, "\ncpu#%d\n", cpu); 271 #endif 272 273 #define P(x) \ 274 do { \ 275 if (sizeof(rq->x) == 4) \ 276 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \ 277 else \ 278 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ 279 } while (0) 280 281 #define PN(x) \ 282 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) 283 284 P(nr_running); 285 SEQ_printf(m, " .%-30s: %lu\n", "load", 286 rq->load.weight); 287 P(nr_switches); 288 P(nr_load_updates); 289 P(nr_uninterruptible); 290 PN(next_balance); 291 P(curr->pid); 292 PN(clock); 293 P(cpu_load[0]); 294 P(cpu_load[1]); 295 P(cpu_load[2]); 296 P(cpu_load[3]); 297 P(cpu_load[4]); 298 #undef P 299 #undef PN 300 301 #ifdef CONFIG_SCHEDSTATS 302 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n); 303 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); 304 305 P(yld_count); 306 307 P(sched_count); 308 P(sched_goidle); 309 #ifdef CONFIG_SMP 310 P64(avg_idle); 311 #endif 312 313 P(ttwu_count); 314 P(ttwu_local); 315 316 #undef P 317 #undef P64 318 #endif 319 spin_lock_irqsave(&sched_debug_lock, flags); 320 print_cfs_stats(m, cpu); 321 print_rt_stats(m, cpu); 322 323 rcu_read_lock(); 324 print_rq(m, rq, cpu); 325 rcu_read_unlock(); 326 spin_unlock_irqrestore(&sched_debug_lock, flags); 327 } 328 329 static const char *sched_tunable_scaling_names[] = { 330 "none", 331 "logaritmic", 332 "linear" 333 }; 334 335 static int sched_debug_show(struct seq_file *m, void *v) 336 { 337 u64 ktime, sched_clk, cpu_clk; 338 unsigned long flags; 339 int cpu; 340 341 local_irq_save(flags); 342 ktime = ktime_to_ns(ktime_get()); 343 sched_clk = sched_clock(); 344 cpu_clk = local_clock(); 345 local_irq_restore(flags); 346 347 SEQ_printf(m, "Sched Debug Version: v0.10, %s %.*s\n", 348 init_utsname()->release, 349 (int)strcspn(init_utsname()->version, " "), 350 init_utsname()->version); 351 352 #define P(x) \ 353 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) 354 #define PN(x) \ 355 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 356 PN(ktime); 357 PN(sched_clk); 358 PN(cpu_clk); 359 P(jiffies); 360 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 361 P(sched_clock_stable); 362 #endif 363 #undef PN 364 #undef P 365 366 SEQ_printf(m, "\n"); 367 SEQ_printf(m, "sysctl_sched\n"); 368 369 #define P(x) \ 370 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) 371 #define PN(x) \ 372 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 373 PN(sysctl_sched_latency); 374 PN(sysctl_sched_min_granularity); 375 PN(sysctl_sched_wakeup_granularity); 376 P(sysctl_sched_child_runs_first); 377 P(sysctl_sched_features); 378 #undef PN 379 #undef P 380 381 SEQ_printf(m, " .%-40s: %d (%s)\n", "sysctl_sched_tunable_scaling", 382 sysctl_sched_tunable_scaling, 383 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); 384 385 for_each_online_cpu(cpu) 386 print_cpu(m, cpu); 387 388 SEQ_printf(m, "\n"); 389 390 return 0; 391 } 392 393 void sysrq_sched_debug_show(void) 394 { 395 sched_debug_show(NULL, NULL); 396 } 397 398 static int sched_debug_open(struct inode *inode, struct file *filp) 399 { 400 return single_open(filp, sched_debug_show, NULL); 401 } 402 403 static const struct file_operations sched_debug_fops = { 404 .open = sched_debug_open, 405 .read = seq_read, 406 .llseek = seq_lseek, 407 .release = single_release, 408 }; 409 410 static int __init init_sched_debug_procfs(void) 411 { 412 struct proc_dir_entry *pe; 413 414 pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops); 415 if (!pe) 416 return -ENOMEM; 417 return 0; 418 } 419 420 __initcall(init_sched_debug_procfs); 421 422 void proc_sched_show_task(struct task_struct *p, struct seq_file *m) 423 { 424 unsigned long nr_switches; 425 426 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid, 427 get_nr_threads(p)); 428 SEQ_printf(m, 429 "---------------------------------------------------------\n"); 430 #define __P(F) \ 431 SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)F) 432 #define P(F) \ 433 SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)p->F) 434 #define __PN(F) \ 435 SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 436 #define PN(F) \ 437 SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 438 439 PN(se.exec_start); 440 PN(se.vruntime); 441 PN(se.sum_exec_runtime); 442 443 nr_switches = p->nvcsw + p->nivcsw; 444 445 #ifdef CONFIG_SCHEDSTATS 446 PN(se.statistics.wait_start); 447 PN(se.statistics.sleep_start); 448 PN(se.statistics.block_start); 449 PN(se.statistics.sleep_max); 450 PN(se.statistics.block_max); 451 PN(se.statistics.exec_max); 452 PN(se.statistics.slice_max); 453 PN(se.statistics.wait_max); 454 PN(se.statistics.wait_sum); 455 P(se.statistics.wait_count); 456 PN(se.statistics.iowait_sum); 457 P(se.statistics.iowait_count); 458 P(se.nr_migrations); 459 P(se.statistics.nr_migrations_cold); 460 P(se.statistics.nr_failed_migrations_affine); 461 P(se.statistics.nr_failed_migrations_running); 462 P(se.statistics.nr_failed_migrations_hot); 463 P(se.statistics.nr_forced_migrations); 464 P(se.statistics.nr_wakeups); 465 P(se.statistics.nr_wakeups_sync); 466 P(se.statistics.nr_wakeups_migrate); 467 P(se.statistics.nr_wakeups_local); 468 P(se.statistics.nr_wakeups_remote); 469 P(se.statistics.nr_wakeups_affine); 470 P(se.statistics.nr_wakeups_affine_attempts); 471 P(se.statistics.nr_wakeups_passive); 472 P(se.statistics.nr_wakeups_idle); 473 474 { 475 u64 avg_atom, avg_per_cpu; 476 477 avg_atom = p->se.sum_exec_runtime; 478 if (nr_switches) 479 do_div(avg_atom, nr_switches); 480 else 481 avg_atom = -1LL; 482 483 avg_per_cpu = p->se.sum_exec_runtime; 484 if (p->se.nr_migrations) { 485 avg_per_cpu = div64_u64(avg_per_cpu, 486 p->se.nr_migrations); 487 } else { 488 avg_per_cpu = -1LL; 489 } 490 491 __PN(avg_atom); 492 __PN(avg_per_cpu); 493 } 494 #endif 495 __P(nr_switches); 496 SEQ_printf(m, "%-35s:%21Ld\n", 497 "nr_voluntary_switches", (long long)p->nvcsw); 498 SEQ_printf(m, "%-35s:%21Ld\n", 499 "nr_involuntary_switches", (long long)p->nivcsw); 500 501 P(se.load.weight); 502 P(policy); 503 P(prio); 504 #undef PN 505 #undef __PN 506 #undef P 507 #undef __P 508 509 { 510 unsigned int this_cpu = raw_smp_processor_id(); 511 u64 t0, t1; 512 513 t0 = cpu_clock(this_cpu); 514 t1 = cpu_clock(this_cpu); 515 SEQ_printf(m, "%-35s:%21Ld\n", 516 "clock-delta", (long long)(t1-t0)); 517 } 518 } 519 520 void proc_sched_set_task(struct task_struct *p) 521 { 522 #ifdef CONFIG_SCHEDSTATS 523 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 524 #endif 525 } 526