1 /* 2 * kernel/sched/debug.c 3 * 4 * Print the CFS rbtree 5 * 6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/proc_fs.h> 14 #include <linux/sched.h> 15 #include <linux/seq_file.h> 16 #include <linux/kallsyms.h> 17 #include <linux/utsname.h> 18 #include <linux/mempolicy.h> 19 #include <linux/debugfs.h> 20 21 #include "sched.h" 22 23 static DEFINE_SPINLOCK(sched_debug_lock); 24 25 /* 26 * This allows printing both to /proc/sched_debug and 27 * to the console 28 */ 29 #define SEQ_printf(m, x...) \ 30 do { \ 31 if (m) \ 32 seq_printf(m, x); \ 33 else \ 34 printk(x); \ 35 } while (0) 36 37 /* 38 * Ease the printing of nsec fields: 39 */ 40 static long long nsec_high(unsigned long long nsec) 41 { 42 if ((long long)nsec < 0) { 43 nsec = -nsec; 44 do_div(nsec, 1000000); 45 return -nsec; 46 } 47 do_div(nsec, 1000000); 48 49 return nsec; 50 } 51 52 static unsigned long nsec_low(unsigned long long nsec) 53 { 54 if ((long long)nsec < 0) 55 nsec = -nsec; 56 57 return do_div(nsec, 1000000); 58 } 59 60 #define SPLIT_NS(x) nsec_high(x), nsec_low(x) 61 62 #define SCHED_FEAT(name, enabled) \ 63 #name , 64 65 static const char * const sched_feat_names[] = { 66 #include "features.h" 67 }; 68 69 #undef SCHED_FEAT 70 71 static int sched_feat_show(struct seq_file *m, void *v) 72 { 73 int i; 74 75 for (i = 0; i < __SCHED_FEAT_NR; i++) { 76 if (!(sysctl_sched_features & (1UL << i))) 77 seq_puts(m, "NO_"); 78 seq_printf(m, "%s ", sched_feat_names[i]); 79 } 80 seq_puts(m, "\n"); 81 82 return 0; 83 } 84 85 #ifdef HAVE_JUMP_LABEL 86 87 #define jump_label_key__true STATIC_KEY_INIT_TRUE 88 #define jump_label_key__false STATIC_KEY_INIT_FALSE 89 90 #define SCHED_FEAT(name, enabled) \ 91 jump_label_key__##enabled , 92 93 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 94 #include "features.h" 95 }; 96 97 #undef SCHED_FEAT 98 99 static void sched_feat_disable(int i) 100 { 101 static_key_disable(&sched_feat_keys[i]); 102 } 103 104 static void sched_feat_enable(int i) 105 { 106 static_key_enable(&sched_feat_keys[i]); 107 } 108 #else 109 static void sched_feat_disable(int i) { }; 110 static void sched_feat_enable(int i) { }; 111 #endif /* HAVE_JUMP_LABEL */ 112 113 static int sched_feat_set(char *cmp) 114 { 115 int i; 116 int neg = 0; 117 118 if (strncmp(cmp, "NO_", 3) == 0) { 119 neg = 1; 120 cmp += 3; 121 } 122 123 for (i = 0; i < __SCHED_FEAT_NR; i++) { 124 if (strcmp(cmp, sched_feat_names[i]) == 0) { 125 if (neg) { 126 sysctl_sched_features &= ~(1UL << i); 127 sched_feat_disable(i); 128 } else { 129 sysctl_sched_features |= (1UL << i); 130 sched_feat_enable(i); 131 } 132 break; 133 } 134 } 135 136 return i; 137 } 138 139 static ssize_t 140 sched_feat_write(struct file *filp, const char __user *ubuf, 141 size_t cnt, loff_t *ppos) 142 { 143 char buf[64]; 144 char *cmp; 145 int i; 146 struct inode *inode; 147 148 if (cnt > 63) 149 cnt = 63; 150 151 if (copy_from_user(&buf, ubuf, cnt)) 152 return -EFAULT; 153 154 buf[cnt] = 0; 155 cmp = strstrip(buf); 156 157 /* Ensure the static_key remains in a consistent state */ 158 inode = file_inode(filp); 159 inode_lock(inode); 160 i = sched_feat_set(cmp); 161 inode_unlock(inode); 162 if (i == __SCHED_FEAT_NR) 163 return -EINVAL; 164 165 *ppos += cnt; 166 167 return cnt; 168 } 169 170 static int sched_feat_open(struct inode *inode, struct file *filp) 171 { 172 return single_open(filp, sched_feat_show, NULL); 173 } 174 175 static const struct file_operations sched_feat_fops = { 176 .open = sched_feat_open, 177 .write = sched_feat_write, 178 .read = seq_read, 179 .llseek = seq_lseek, 180 .release = single_release, 181 }; 182 183 static __init int sched_init_debug(void) 184 { 185 debugfs_create_file("sched_features", 0644, NULL, NULL, 186 &sched_feat_fops); 187 188 return 0; 189 } 190 late_initcall(sched_init_debug); 191 192 #ifdef CONFIG_SMP 193 194 #ifdef CONFIG_SYSCTL 195 196 static struct ctl_table sd_ctl_dir[] = { 197 { 198 .procname = "sched_domain", 199 .mode = 0555, 200 }, 201 {} 202 }; 203 204 static struct ctl_table sd_ctl_root[] = { 205 { 206 .procname = "kernel", 207 .mode = 0555, 208 .child = sd_ctl_dir, 209 }, 210 {} 211 }; 212 213 static struct ctl_table *sd_alloc_ctl_entry(int n) 214 { 215 struct ctl_table *entry = 216 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 217 218 return entry; 219 } 220 221 static void sd_free_ctl_entry(struct ctl_table **tablep) 222 { 223 struct ctl_table *entry; 224 225 /* 226 * In the intermediate directories, both the child directory and 227 * procname are dynamically allocated and could fail but the mode 228 * will always be set. In the lowest directory the names are 229 * static strings and all have proc handlers. 230 */ 231 for (entry = *tablep; entry->mode; entry++) { 232 if (entry->child) 233 sd_free_ctl_entry(&entry->child); 234 if (entry->proc_handler == NULL) 235 kfree(entry->procname); 236 } 237 238 kfree(*tablep); 239 *tablep = NULL; 240 } 241 242 static int min_load_idx = 0; 243 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 244 245 static void 246 set_table_entry(struct ctl_table *entry, 247 const char *procname, void *data, int maxlen, 248 umode_t mode, proc_handler *proc_handler, 249 bool load_idx) 250 { 251 entry->procname = procname; 252 entry->data = data; 253 entry->maxlen = maxlen; 254 entry->mode = mode; 255 entry->proc_handler = proc_handler; 256 257 if (load_idx) { 258 entry->extra1 = &min_load_idx; 259 entry->extra2 = &max_load_idx; 260 } 261 } 262 263 static struct ctl_table * 264 sd_alloc_ctl_domain_table(struct sched_domain *sd) 265 { 266 struct ctl_table *table = sd_alloc_ctl_entry(14); 267 268 if (table == NULL) 269 return NULL; 270 271 set_table_entry(&table[0], "min_interval", &sd->min_interval, 272 sizeof(long), 0644, proc_doulongvec_minmax, false); 273 set_table_entry(&table[1], "max_interval", &sd->max_interval, 274 sizeof(long), 0644, proc_doulongvec_minmax, false); 275 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 276 sizeof(int), 0644, proc_dointvec_minmax, true); 277 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 278 sizeof(int), 0644, proc_dointvec_minmax, true); 279 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 280 sizeof(int), 0644, proc_dointvec_minmax, true); 281 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 282 sizeof(int), 0644, proc_dointvec_minmax, true); 283 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 284 sizeof(int), 0644, proc_dointvec_minmax, true); 285 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 286 sizeof(int), 0644, proc_dointvec_minmax, false); 287 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 288 sizeof(int), 0644, proc_dointvec_minmax, false); 289 set_table_entry(&table[9], "cache_nice_tries", 290 &sd->cache_nice_tries, 291 sizeof(int), 0644, proc_dointvec_minmax, false); 292 set_table_entry(&table[10], "flags", &sd->flags, 293 sizeof(int), 0644, proc_dointvec_minmax, false); 294 set_table_entry(&table[11], "max_newidle_lb_cost", 295 &sd->max_newidle_lb_cost, 296 sizeof(long), 0644, proc_doulongvec_minmax, false); 297 set_table_entry(&table[12], "name", sd->name, 298 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 299 /* &table[13] is terminator */ 300 301 return table; 302 } 303 304 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 305 { 306 struct ctl_table *entry, *table; 307 struct sched_domain *sd; 308 int domain_num = 0, i; 309 char buf[32]; 310 311 for_each_domain(cpu, sd) 312 domain_num++; 313 entry = table = sd_alloc_ctl_entry(domain_num + 1); 314 if (table == NULL) 315 return NULL; 316 317 i = 0; 318 for_each_domain(cpu, sd) { 319 snprintf(buf, 32, "domain%d", i); 320 entry->procname = kstrdup(buf, GFP_KERNEL); 321 entry->mode = 0555; 322 entry->child = sd_alloc_ctl_domain_table(sd); 323 entry++; 324 i++; 325 } 326 return table; 327 } 328 329 static struct ctl_table_header *sd_sysctl_header; 330 void register_sched_domain_sysctl(void) 331 { 332 int i, cpu_num = num_possible_cpus(); 333 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 334 char buf[32]; 335 336 WARN_ON(sd_ctl_dir[0].child); 337 sd_ctl_dir[0].child = entry; 338 339 if (entry == NULL) 340 return; 341 342 for_each_possible_cpu(i) { 343 snprintf(buf, 32, "cpu%d", i); 344 entry->procname = kstrdup(buf, GFP_KERNEL); 345 entry->mode = 0555; 346 entry->child = sd_alloc_ctl_cpu_table(i); 347 entry++; 348 } 349 350 WARN_ON(sd_sysctl_header); 351 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 352 } 353 354 /* may be called multiple times per register */ 355 void unregister_sched_domain_sysctl(void) 356 { 357 unregister_sysctl_table(sd_sysctl_header); 358 sd_sysctl_header = NULL; 359 if (sd_ctl_dir[0].child) 360 sd_free_ctl_entry(&sd_ctl_dir[0].child); 361 } 362 #endif /* CONFIG_SYSCTL */ 363 #endif /* CONFIG_SMP */ 364 365 #ifdef CONFIG_FAIR_GROUP_SCHED 366 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) 367 { 368 struct sched_entity *se = tg->se[cpu]; 369 370 #define P(F) \ 371 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) 372 #define P_SCHEDSTAT(F) \ 373 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F)) 374 #define PN(F) \ 375 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) 376 #define PN_SCHEDSTAT(F) \ 377 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F))) 378 379 if (!se) 380 return; 381 382 PN(se->exec_start); 383 PN(se->vruntime); 384 PN(se->sum_exec_runtime); 385 if (schedstat_enabled()) { 386 PN_SCHEDSTAT(se->statistics.wait_start); 387 PN_SCHEDSTAT(se->statistics.sleep_start); 388 PN_SCHEDSTAT(se->statistics.block_start); 389 PN_SCHEDSTAT(se->statistics.sleep_max); 390 PN_SCHEDSTAT(se->statistics.block_max); 391 PN_SCHEDSTAT(se->statistics.exec_max); 392 PN_SCHEDSTAT(se->statistics.slice_max); 393 PN_SCHEDSTAT(se->statistics.wait_max); 394 PN_SCHEDSTAT(se->statistics.wait_sum); 395 P_SCHEDSTAT(se->statistics.wait_count); 396 } 397 P(se->load.weight); 398 #ifdef CONFIG_SMP 399 P(se->avg.load_avg); 400 P(se->avg.util_avg); 401 #endif 402 403 #undef PN_SCHEDSTAT 404 #undef PN 405 #undef P_SCHEDSTAT 406 #undef P 407 } 408 #endif 409 410 #ifdef CONFIG_CGROUP_SCHED 411 static char group_path[PATH_MAX]; 412 413 static char *task_group_path(struct task_group *tg) 414 { 415 if (autogroup_path(tg, group_path, PATH_MAX)) 416 return group_path; 417 418 cgroup_path(tg->css.cgroup, group_path, PATH_MAX); 419 return group_path; 420 } 421 #endif 422 423 static void 424 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) 425 { 426 if (rq->curr == p) 427 SEQ_printf(m, "R"); 428 else 429 SEQ_printf(m, " "); 430 431 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ", 432 p->comm, task_pid_nr(p), 433 SPLIT_NS(p->se.vruntime), 434 (long long)(p->nvcsw + p->nivcsw), 435 p->prio); 436 437 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", 438 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)), 439 SPLIT_NS(p->se.sum_exec_runtime), 440 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime))); 441 442 #ifdef CONFIG_NUMA_BALANCING 443 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p)); 444 #endif 445 #ifdef CONFIG_CGROUP_SCHED 446 SEQ_printf(m, " %s", task_group_path(task_group(p))); 447 #endif 448 449 SEQ_printf(m, "\n"); 450 } 451 452 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) 453 { 454 struct task_struct *g, *p; 455 456 SEQ_printf(m, 457 "\nrunnable tasks:\n" 458 " task PID tree-key switches prio" 459 " wait-time sum-exec sum-sleep\n" 460 "------------------------------------------------------" 461 "----------------------------------------------------\n"); 462 463 rcu_read_lock(); 464 for_each_process_thread(g, p) { 465 if (task_cpu(p) != rq_cpu) 466 continue; 467 468 print_task(m, rq, p); 469 } 470 rcu_read_unlock(); 471 } 472 473 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 474 { 475 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, 476 spread, rq0_min_vruntime, spread0; 477 struct rq *rq = cpu_rq(cpu); 478 struct sched_entity *last; 479 unsigned long flags; 480 481 #ifdef CONFIG_FAIR_GROUP_SCHED 482 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg)); 483 #else 484 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu); 485 #endif 486 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", 487 SPLIT_NS(cfs_rq->exec_clock)); 488 489 raw_spin_lock_irqsave(&rq->lock, flags); 490 if (cfs_rq->rb_leftmost) 491 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; 492 last = __pick_last_entity(cfs_rq); 493 if (last) 494 max_vruntime = last->vruntime; 495 min_vruntime = cfs_rq->min_vruntime; 496 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; 497 raw_spin_unlock_irqrestore(&rq->lock, flags); 498 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", 499 SPLIT_NS(MIN_vruntime)); 500 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", 501 SPLIT_NS(min_vruntime)); 502 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", 503 SPLIT_NS(max_vruntime)); 504 spread = max_vruntime - MIN_vruntime; 505 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", 506 SPLIT_NS(spread)); 507 spread0 = min_vruntime - rq0_min_vruntime; 508 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", 509 SPLIT_NS(spread0)); 510 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", 511 cfs_rq->nr_spread_over); 512 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); 513 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); 514 #ifdef CONFIG_SMP 515 SEQ_printf(m, " .%-30s: %lu\n", "load_avg", 516 cfs_rq->avg.load_avg); 517 SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg", 518 cfs_rq->runnable_load_avg); 519 SEQ_printf(m, " .%-30s: %lu\n", "util_avg", 520 cfs_rq->avg.util_avg); 521 SEQ_printf(m, " .%-30s: %ld\n", "removed_load_avg", 522 atomic_long_read(&cfs_rq->removed_load_avg)); 523 SEQ_printf(m, " .%-30s: %ld\n", "removed_util_avg", 524 atomic_long_read(&cfs_rq->removed_util_avg)); 525 #ifdef CONFIG_FAIR_GROUP_SCHED 526 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib", 527 cfs_rq->tg_load_avg_contrib); 528 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", 529 atomic_long_read(&cfs_rq->tg->load_avg)); 530 #endif 531 #endif 532 #ifdef CONFIG_CFS_BANDWIDTH 533 SEQ_printf(m, " .%-30s: %d\n", "throttled", 534 cfs_rq->throttled); 535 SEQ_printf(m, " .%-30s: %d\n", "throttle_count", 536 cfs_rq->throttle_count); 537 #endif 538 539 #ifdef CONFIG_FAIR_GROUP_SCHED 540 print_cfs_group_stats(m, cpu, cfs_rq->tg); 541 #endif 542 } 543 544 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) 545 { 546 #ifdef CONFIG_RT_GROUP_SCHED 547 SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg)); 548 #else 549 SEQ_printf(m, "\nrt_rq[%d]:\n", cpu); 550 #endif 551 552 #define P(x) \ 553 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) 554 #define PN(x) \ 555 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) 556 557 P(rt_nr_running); 558 P(rt_throttled); 559 PN(rt_time); 560 PN(rt_runtime); 561 562 #undef PN 563 #undef P 564 } 565 566 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq) 567 { 568 struct dl_bw *dl_bw; 569 570 SEQ_printf(m, "\ndl_rq[%d]:\n", cpu); 571 SEQ_printf(m, " .%-30s: %ld\n", "dl_nr_running", dl_rq->dl_nr_running); 572 #ifdef CONFIG_SMP 573 dl_bw = &cpu_rq(cpu)->rd->dl_bw; 574 #else 575 dl_bw = &dl_rq->dl_bw; 576 #endif 577 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw); 578 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw); 579 } 580 581 extern __read_mostly int sched_clock_running; 582 583 static void print_cpu(struct seq_file *m, int cpu) 584 { 585 struct rq *rq = cpu_rq(cpu); 586 unsigned long flags; 587 588 #ifdef CONFIG_X86 589 { 590 unsigned int freq = cpu_khz ? : 1; 591 592 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", 593 cpu, freq / 1000, (freq % 1000)); 594 } 595 #else 596 SEQ_printf(m, "cpu#%d\n", cpu); 597 #endif 598 599 #define P(x) \ 600 do { \ 601 if (sizeof(rq->x) == 4) \ 602 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \ 603 else \ 604 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ 605 } while (0) 606 607 #define PN(x) \ 608 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) 609 610 P(nr_running); 611 SEQ_printf(m, " .%-30s: %lu\n", "load", 612 rq->load.weight); 613 P(nr_switches); 614 P(nr_load_updates); 615 P(nr_uninterruptible); 616 PN(next_balance); 617 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); 618 PN(clock); 619 PN(clock_task); 620 P(cpu_load[0]); 621 P(cpu_load[1]); 622 P(cpu_load[2]); 623 P(cpu_load[3]); 624 P(cpu_load[4]); 625 #undef P 626 #undef PN 627 628 #ifdef CONFIG_SMP 629 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); 630 P64(avg_idle); 631 P64(max_idle_balance_cost); 632 #undef P64 633 #endif 634 635 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n)); 636 if (schedstat_enabled()) { 637 P(yld_count); 638 P(sched_count); 639 P(sched_goidle); 640 P(ttwu_count); 641 P(ttwu_local); 642 } 643 #undef P 644 645 spin_lock_irqsave(&sched_debug_lock, flags); 646 print_cfs_stats(m, cpu); 647 print_rt_stats(m, cpu); 648 print_dl_stats(m, cpu); 649 650 print_rq(m, rq, cpu); 651 spin_unlock_irqrestore(&sched_debug_lock, flags); 652 SEQ_printf(m, "\n"); 653 } 654 655 static const char *sched_tunable_scaling_names[] = { 656 "none", 657 "logaritmic", 658 "linear" 659 }; 660 661 static void sched_debug_header(struct seq_file *m) 662 { 663 u64 ktime, sched_clk, cpu_clk; 664 unsigned long flags; 665 666 local_irq_save(flags); 667 ktime = ktime_to_ns(ktime_get()); 668 sched_clk = sched_clock(); 669 cpu_clk = local_clock(); 670 local_irq_restore(flags); 671 672 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", 673 init_utsname()->release, 674 (int)strcspn(init_utsname()->version, " "), 675 init_utsname()->version); 676 677 #define P(x) \ 678 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) 679 #define PN(x) \ 680 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 681 PN(ktime); 682 PN(sched_clk); 683 PN(cpu_clk); 684 P(jiffies); 685 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 686 P(sched_clock_stable()); 687 #endif 688 #undef PN 689 #undef P 690 691 SEQ_printf(m, "\n"); 692 SEQ_printf(m, "sysctl_sched\n"); 693 694 #define P(x) \ 695 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) 696 #define PN(x) \ 697 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 698 PN(sysctl_sched_latency); 699 PN(sysctl_sched_min_granularity); 700 PN(sysctl_sched_wakeup_granularity); 701 P(sysctl_sched_child_runs_first); 702 P(sysctl_sched_features); 703 #undef PN 704 #undef P 705 706 SEQ_printf(m, " .%-40s: %d (%s)\n", 707 "sysctl_sched_tunable_scaling", 708 sysctl_sched_tunable_scaling, 709 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); 710 SEQ_printf(m, "\n"); 711 } 712 713 static int sched_debug_show(struct seq_file *m, void *v) 714 { 715 int cpu = (unsigned long)(v - 2); 716 717 if (cpu != -1) 718 print_cpu(m, cpu); 719 else 720 sched_debug_header(m); 721 722 return 0; 723 } 724 725 void sysrq_sched_debug_show(void) 726 { 727 int cpu; 728 729 sched_debug_header(NULL); 730 for_each_online_cpu(cpu) 731 print_cpu(NULL, cpu); 732 733 } 734 735 /* 736 * This itererator needs some explanation. 737 * It returns 1 for the header position. 738 * This means 2 is cpu 0. 739 * In a hotplugged system some cpus, including cpu 0, may be missing so we have 740 * to use cpumask_* to iterate over the cpus. 741 */ 742 static void *sched_debug_start(struct seq_file *file, loff_t *offset) 743 { 744 unsigned long n = *offset; 745 746 if (n == 0) 747 return (void *) 1; 748 749 n--; 750 751 if (n > 0) 752 n = cpumask_next(n - 1, cpu_online_mask); 753 else 754 n = cpumask_first(cpu_online_mask); 755 756 *offset = n + 1; 757 758 if (n < nr_cpu_ids) 759 return (void *)(unsigned long)(n + 2); 760 return NULL; 761 } 762 763 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset) 764 { 765 (*offset)++; 766 return sched_debug_start(file, offset); 767 } 768 769 static void sched_debug_stop(struct seq_file *file, void *data) 770 { 771 } 772 773 static const struct seq_operations sched_debug_sops = { 774 .start = sched_debug_start, 775 .next = sched_debug_next, 776 .stop = sched_debug_stop, 777 .show = sched_debug_show, 778 }; 779 780 static int sched_debug_release(struct inode *inode, struct file *file) 781 { 782 seq_release(inode, file); 783 784 return 0; 785 } 786 787 static int sched_debug_open(struct inode *inode, struct file *filp) 788 { 789 int ret = 0; 790 791 ret = seq_open(filp, &sched_debug_sops); 792 793 return ret; 794 } 795 796 static const struct file_operations sched_debug_fops = { 797 .open = sched_debug_open, 798 .read = seq_read, 799 .llseek = seq_lseek, 800 .release = sched_debug_release, 801 }; 802 803 static int __init init_sched_debug_procfs(void) 804 { 805 struct proc_dir_entry *pe; 806 807 pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops); 808 if (!pe) 809 return -ENOMEM; 810 return 0; 811 } 812 813 __initcall(init_sched_debug_procfs); 814 815 #define __P(F) \ 816 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) 817 #define P(F) \ 818 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) 819 #define __PN(F) \ 820 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 821 #define PN(F) \ 822 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 823 824 825 #ifdef CONFIG_NUMA_BALANCING 826 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 827 unsigned long tpf, unsigned long gsf, unsigned long gpf) 828 { 829 SEQ_printf(m, "numa_faults node=%d ", node); 830 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tsf, tpf); 831 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gsf, gpf); 832 } 833 #endif 834 835 836 static void sched_show_numa(struct task_struct *p, struct seq_file *m) 837 { 838 #ifdef CONFIG_NUMA_BALANCING 839 struct mempolicy *pol; 840 841 if (p->mm) 842 P(mm->numa_scan_seq); 843 844 task_lock(p); 845 pol = p->mempolicy; 846 if (pol && !(pol->flags & MPOL_F_MORON)) 847 pol = NULL; 848 mpol_get(pol); 849 task_unlock(p); 850 851 P(numa_pages_migrated); 852 P(numa_preferred_nid); 853 P(total_numa_faults); 854 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n", 855 task_node(p), task_numa_group_id(p)); 856 show_numa_stats(p, m); 857 mpol_put(pol); 858 #endif 859 } 860 861 void proc_sched_show_task(struct task_struct *p, struct seq_file *m) 862 { 863 unsigned long nr_switches; 864 865 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr(p), 866 get_nr_threads(p)); 867 SEQ_printf(m, 868 "---------------------------------------------------------" 869 "----------\n"); 870 #define __P(F) \ 871 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) 872 #define P(F) \ 873 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) 874 #define P_SCHEDSTAT(F) \ 875 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F)) 876 #define __PN(F) \ 877 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) 878 #define PN(F) \ 879 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) 880 #define PN_SCHEDSTAT(F) \ 881 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F))) 882 883 PN(se.exec_start); 884 PN(se.vruntime); 885 PN(se.sum_exec_runtime); 886 887 nr_switches = p->nvcsw + p->nivcsw; 888 889 P(se.nr_migrations); 890 891 if (schedstat_enabled()) { 892 u64 avg_atom, avg_per_cpu; 893 894 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime); 895 PN_SCHEDSTAT(se.statistics.wait_start); 896 PN_SCHEDSTAT(se.statistics.sleep_start); 897 PN_SCHEDSTAT(se.statistics.block_start); 898 PN_SCHEDSTAT(se.statistics.sleep_max); 899 PN_SCHEDSTAT(se.statistics.block_max); 900 PN_SCHEDSTAT(se.statistics.exec_max); 901 PN_SCHEDSTAT(se.statistics.slice_max); 902 PN_SCHEDSTAT(se.statistics.wait_max); 903 PN_SCHEDSTAT(se.statistics.wait_sum); 904 P_SCHEDSTAT(se.statistics.wait_count); 905 PN_SCHEDSTAT(se.statistics.iowait_sum); 906 P_SCHEDSTAT(se.statistics.iowait_count); 907 P_SCHEDSTAT(se.statistics.nr_migrations_cold); 908 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine); 909 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running); 910 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot); 911 P_SCHEDSTAT(se.statistics.nr_forced_migrations); 912 P_SCHEDSTAT(se.statistics.nr_wakeups); 913 P_SCHEDSTAT(se.statistics.nr_wakeups_sync); 914 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate); 915 P_SCHEDSTAT(se.statistics.nr_wakeups_local); 916 P_SCHEDSTAT(se.statistics.nr_wakeups_remote); 917 P_SCHEDSTAT(se.statistics.nr_wakeups_affine); 918 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts); 919 P_SCHEDSTAT(se.statistics.nr_wakeups_passive); 920 P_SCHEDSTAT(se.statistics.nr_wakeups_idle); 921 922 avg_atom = p->se.sum_exec_runtime; 923 if (nr_switches) 924 avg_atom = div64_ul(avg_atom, nr_switches); 925 else 926 avg_atom = -1LL; 927 928 avg_per_cpu = p->se.sum_exec_runtime; 929 if (p->se.nr_migrations) { 930 avg_per_cpu = div64_u64(avg_per_cpu, 931 p->se.nr_migrations); 932 } else { 933 avg_per_cpu = -1LL; 934 } 935 936 __PN(avg_atom); 937 __PN(avg_per_cpu); 938 } 939 940 __P(nr_switches); 941 SEQ_printf(m, "%-45s:%21Ld\n", 942 "nr_voluntary_switches", (long long)p->nvcsw); 943 SEQ_printf(m, "%-45s:%21Ld\n", 944 "nr_involuntary_switches", (long long)p->nivcsw); 945 946 P(se.load.weight); 947 #ifdef CONFIG_SMP 948 P(se.avg.load_sum); 949 P(se.avg.util_sum); 950 P(se.avg.load_avg); 951 P(se.avg.util_avg); 952 P(se.avg.last_update_time); 953 #endif 954 P(policy); 955 P(prio); 956 if (p->policy == SCHED_DEADLINE) { 957 P(dl.runtime); 958 P(dl.deadline); 959 } 960 #undef PN_SCHEDSTAT 961 #undef PN 962 #undef __PN 963 #undef P_SCHEDSTAT 964 #undef P 965 #undef __P 966 967 { 968 unsigned int this_cpu = raw_smp_processor_id(); 969 u64 t0, t1; 970 971 t0 = cpu_clock(this_cpu); 972 t1 = cpu_clock(this_cpu); 973 SEQ_printf(m, "%-45s:%21Ld\n", 974 "clock-delta", (long long)(t1-t0)); 975 } 976 977 sched_show_numa(p, m); 978 } 979 980 void proc_sched_set_task(struct task_struct *p) 981 { 982 #ifdef CONFIG_SCHEDSTATS 983 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 984 #endif 985 } 986