xref: /openbmc/linux/kernel/sched/debug.c (revision 11a163f2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/sched/debug.c
4  *
5  * Print the CFS rbtree and other debugging details
6  *
7  * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8  */
9 #include "sched.h"
10 
11 static DEFINE_SPINLOCK(sched_debug_lock);
12 
13 /*
14  * This allows printing both to /proc/sched_debug and
15  * to the console
16  */
17 #define SEQ_printf(m, x...)			\
18  do {						\
19 	if (m)					\
20 		seq_printf(m, x);		\
21 	else					\
22 		pr_cont(x);			\
23  } while (0)
24 
25 /*
26  * Ease the printing of nsec fields:
27  */
28 static long long nsec_high(unsigned long long nsec)
29 {
30 	if ((long long)nsec < 0) {
31 		nsec = -nsec;
32 		do_div(nsec, 1000000);
33 		return -nsec;
34 	}
35 	do_div(nsec, 1000000);
36 
37 	return nsec;
38 }
39 
40 static unsigned long nsec_low(unsigned long long nsec)
41 {
42 	if ((long long)nsec < 0)
43 		nsec = -nsec;
44 
45 	return do_div(nsec, 1000000);
46 }
47 
48 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
49 
50 #define SCHED_FEAT(name, enabled)	\
51 	#name ,
52 
53 static const char * const sched_feat_names[] = {
54 #include "features.h"
55 };
56 
57 #undef SCHED_FEAT
58 
59 static int sched_feat_show(struct seq_file *m, void *v)
60 {
61 	int i;
62 
63 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
64 		if (!(sysctl_sched_features & (1UL << i)))
65 			seq_puts(m, "NO_");
66 		seq_printf(m, "%s ", sched_feat_names[i]);
67 	}
68 	seq_puts(m, "\n");
69 
70 	return 0;
71 }
72 
73 #ifdef CONFIG_JUMP_LABEL
74 
75 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
76 #define jump_label_key__false STATIC_KEY_INIT_FALSE
77 
78 #define SCHED_FEAT(name, enabled)	\
79 	jump_label_key__##enabled ,
80 
81 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
82 #include "features.h"
83 };
84 
85 #undef SCHED_FEAT
86 
87 static void sched_feat_disable(int i)
88 {
89 	static_key_disable_cpuslocked(&sched_feat_keys[i]);
90 }
91 
92 static void sched_feat_enable(int i)
93 {
94 	static_key_enable_cpuslocked(&sched_feat_keys[i]);
95 }
96 #else
97 static void sched_feat_disable(int i) { };
98 static void sched_feat_enable(int i) { };
99 #endif /* CONFIG_JUMP_LABEL */
100 
101 static int sched_feat_set(char *cmp)
102 {
103 	int i;
104 	int neg = 0;
105 
106 	if (strncmp(cmp, "NO_", 3) == 0) {
107 		neg = 1;
108 		cmp += 3;
109 	}
110 
111 	i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
112 	if (i < 0)
113 		return i;
114 
115 	if (neg) {
116 		sysctl_sched_features &= ~(1UL << i);
117 		sched_feat_disable(i);
118 	} else {
119 		sysctl_sched_features |= (1UL << i);
120 		sched_feat_enable(i);
121 	}
122 
123 	return 0;
124 }
125 
126 static ssize_t
127 sched_feat_write(struct file *filp, const char __user *ubuf,
128 		size_t cnt, loff_t *ppos)
129 {
130 	char buf[64];
131 	char *cmp;
132 	int ret;
133 	struct inode *inode;
134 
135 	if (cnt > 63)
136 		cnt = 63;
137 
138 	if (copy_from_user(&buf, ubuf, cnt))
139 		return -EFAULT;
140 
141 	buf[cnt] = 0;
142 	cmp = strstrip(buf);
143 
144 	/* Ensure the static_key remains in a consistent state */
145 	inode = file_inode(filp);
146 	cpus_read_lock();
147 	inode_lock(inode);
148 	ret = sched_feat_set(cmp);
149 	inode_unlock(inode);
150 	cpus_read_unlock();
151 	if (ret < 0)
152 		return ret;
153 
154 	*ppos += cnt;
155 
156 	return cnt;
157 }
158 
159 static int sched_feat_open(struct inode *inode, struct file *filp)
160 {
161 	return single_open(filp, sched_feat_show, NULL);
162 }
163 
164 static const struct file_operations sched_feat_fops = {
165 	.open		= sched_feat_open,
166 	.write		= sched_feat_write,
167 	.read		= seq_read,
168 	.llseek		= seq_lseek,
169 	.release	= single_release,
170 };
171 
172 __read_mostly bool sched_debug_enabled;
173 
174 static __init int sched_init_debug(void)
175 {
176 	debugfs_create_file("sched_features", 0644, NULL, NULL,
177 			&sched_feat_fops);
178 
179 	debugfs_create_bool("sched_debug", 0644, NULL,
180 			&sched_debug_enabled);
181 
182 	return 0;
183 }
184 late_initcall(sched_init_debug);
185 
186 #ifdef CONFIG_SMP
187 
188 #ifdef CONFIG_SYSCTL
189 
190 static struct ctl_table sd_ctl_dir[] = {
191 	{
192 		.procname	= "sched_domain",
193 		.mode		= 0555,
194 	},
195 	{}
196 };
197 
198 static struct ctl_table sd_ctl_root[] = {
199 	{
200 		.procname	= "kernel",
201 		.mode		= 0555,
202 		.child		= sd_ctl_dir,
203 	},
204 	{}
205 };
206 
207 static struct ctl_table *sd_alloc_ctl_entry(int n)
208 {
209 	struct ctl_table *entry =
210 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
211 
212 	return entry;
213 }
214 
215 static void sd_free_ctl_entry(struct ctl_table **tablep)
216 {
217 	struct ctl_table *entry;
218 
219 	/*
220 	 * In the intermediate directories, both the child directory and
221 	 * procname are dynamically allocated and could fail but the mode
222 	 * will always be set. In the lowest directory the names are
223 	 * static strings and all have proc handlers.
224 	 */
225 	for (entry = *tablep; entry->mode; entry++) {
226 		if (entry->child)
227 			sd_free_ctl_entry(&entry->child);
228 		if (entry->proc_handler == NULL)
229 			kfree(entry->procname);
230 	}
231 
232 	kfree(*tablep);
233 	*tablep = NULL;
234 }
235 
236 static void
237 set_table_entry(struct ctl_table *entry,
238 		const char *procname, void *data, int maxlen,
239 		umode_t mode, proc_handler *proc_handler)
240 {
241 	entry->procname = procname;
242 	entry->data = data;
243 	entry->maxlen = maxlen;
244 	entry->mode = mode;
245 	entry->proc_handler = proc_handler;
246 }
247 
248 static int sd_ctl_doflags(struct ctl_table *table, int write,
249 			  void *buffer, size_t *lenp, loff_t *ppos)
250 {
251 	unsigned long flags = *(unsigned long *)table->data;
252 	size_t data_size = 0;
253 	size_t len = 0;
254 	char *tmp;
255 	int idx;
256 
257 	if (write)
258 		return 0;
259 
260 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
261 		char *name = sd_flag_debug[idx].name;
262 
263 		/* Name plus whitespace */
264 		data_size += strlen(name) + 1;
265 	}
266 
267 	if (*ppos > data_size) {
268 		*lenp = 0;
269 		return 0;
270 	}
271 
272 	tmp = kcalloc(data_size + 1, sizeof(*tmp), GFP_KERNEL);
273 	if (!tmp)
274 		return -ENOMEM;
275 
276 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
277 		char *name = sd_flag_debug[idx].name;
278 
279 		len += snprintf(tmp + len, strlen(name) + 2, "%s ", name);
280 	}
281 
282 	tmp += *ppos;
283 	len -= *ppos;
284 
285 	if (len > *lenp)
286 		len = *lenp;
287 	if (len)
288 		memcpy(buffer, tmp, len);
289 	if (len < *lenp) {
290 		((char *)buffer)[len] = '\n';
291 		len++;
292 	}
293 
294 	*lenp = len;
295 	*ppos += len;
296 
297 	kfree(tmp);
298 
299 	return 0;
300 }
301 
302 static struct ctl_table *
303 sd_alloc_ctl_domain_table(struct sched_domain *sd)
304 {
305 	struct ctl_table *table = sd_alloc_ctl_entry(9);
306 
307 	if (table == NULL)
308 		return NULL;
309 
310 	set_table_entry(&table[0], "min_interval",	  &sd->min_interval,	    sizeof(long), 0644, proc_doulongvec_minmax);
311 	set_table_entry(&table[1], "max_interval",	  &sd->max_interval,	    sizeof(long), 0644, proc_doulongvec_minmax);
312 	set_table_entry(&table[2], "busy_factor",	  &sd->busy_factor,	    sizeof(int),  0644, proc_dointvec_minmax);
313 	set_table_entry(&table[3], "imbalance_pct",	  &sd->imbalance_pct,	    sizeof(int),  0644, proc_dointvec_minmax);
314 	set_table_entry(&table[4], "cache_nice_tries",	  &sd->cache_nice_tries,    sizeof(int),  0644, proc_dointvec_minmax);
315 	set_table_entry(&table[5], "flags",		  &sd->flags,		    sizeof(int),  0444, sd_ctl_doflags);
316 	set_table_entry(&table[6], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax);
317 	set_table_entry(&table[7], "name",		  sd->name,	       CORENAME_MAX_SIZE, 0444, proc_dostring);
318 	/* &table[8] is terminator */
319 
320 	return table;
321 }
322 
323 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
324 {
325 	struct ctl_table *entry, *table;
326 	struct sched_domain *sd;
327 	int domain_num = 0, i;
328 	char buf[32];
329 
330 	for_each_domain(cpu, sd)
331 		domain_num++;
332 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
333 	if (table == NULL)
334 		return NULL;
335 
336 	i = 0;
337 	for_each_domain(cpu, sd) {
338 		snprintf(buf, 32, "domain%d", i);
339 		entry->procname = kstrdup(buf, GFP_KERNEL);
340 		entry->mode = 0555;
341 		entry->child = sd_alloc_ctl_domain_table(sd);
342 		entry++;
343 		i++;
344 	}
345 	return table;
346 }
347 
348 static cpumask_var_t		sd_sysctl_cpus;
349 static struct ctl_table_header	*sd_sysctl_header;
350 
351 void register_sched_domain_sysctl(void)
352 {
353 	static struct ctl_table *cpu_entries;
354 	static struct ctl_table **cpu_idx;
355 	static bool init_done = false;
356 	char buf[32];
357 	int i;
358 
359 	if (!cpu_entries) {
360 		cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
361 		if (!cpu_entries)
362 			return;
363 
364 		WARN_ON(sd_ctl_dir[0].child);
365 		sd_ctl_dir[0].child = cpu_entries;
366 	}
367 
368 	if (!cpu_idx) {
369 		struct ctl_table *e = cpu_entries;
370 
371 		cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
372 		if (!cpu_idx)
373 			return;
374 
375 		/* deal with sparse possible map */
376 		for_each_possible_cpu(i) {
377 			cpu_idx[i] = e;
378 			e++;
379 		}
380 	}
381 
382 	if (!cpumask_available(sd_sysctl_cpus)) {
383 		if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
384 			return;
385 	}
386 
387 	if (!init_done) {
388 		init_done = true;
389 		/* init to possible to not have holes in @cpu_entries */
390 		cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
391 	}
392 
393 	for_each_cpu(i, sd_sysctl_cpus) {
394 		struct ctl_table *e = cpu_idx[i];
395 
396 		if (e->child)
397 			sd_free_ctl_entry(&e->child);
398 
399 		if (!e->procname) {
400 			snprintf(buf, 32, "cpu%d", i);
401 			e->procname = kstrdup(buf, GFP_KERNEL);
402 		}
403 		e->mode = 0555;
404 		e->child = sd_alloc_ctl_cpu_table(i);
405 
406 		__cpumask_clear_cpu(i, sd_sysctl_cpus);
407 	}
408 
409 	WARN_ON(sd_sysctl_header);
410 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
411 }
412 
413 void dirty_sched_domain_sysctl(int cpu)
414 {
415 	if (cpumask_available(sd_sysctl_cpus))
416 		__cpumask_set_cpu(cpu, sd_sysctl_cpus);
417 }
418 
419 /* may be called multiple times per register */
420 void unregister_sched_domain_sysctl(void)
421 {
422 	unregister_sysctl_table(sd_sysctl_header);
423 	sd_sysctl_header = NULL;
424 }
425 #endif /* CONFIG_SYSCTL */
426 #endif /* CONFIG_SMP */
427 
428 #ifdef CONFIG_FAIR_GROUP_SCHED
429 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
430 {
431 	struct sched_entity *se = tg->se[cpu];
432 
433 #define P(F)		SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)F)
434 #define P_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)schedstat_val(F))
435 #define PN(F)		SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
436 #define PN_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
437 
438 	if (!se)
439 		return;
440 
441 	PN(se->exec_start);
442 	PN(se->vruntime);
443 	PN(se->sum_exec_runtime);
444 
445 	if (schedstat_enabled()) {
446 		PN_SCHEDSTAT(se->statistics.wait_start);
447 		PN_SCHEDSTAT(se->statistics.sleep_start);
448 		PN_SCHEDSTAT(se->statistics.block_start);
449 		PN_SCHEDSTAT(se->statistics.sleep_max);
450 		PN_SCHEDSTAT(se->statistics.block_max);
451 		PN_SCHEDSTAT(se->statistics.exec_max);
452 		PN_SCHEDSTAT(se->statistics.slice_max);
453 		PN_SCHEDSTAT(se->statistics.wait_max);
454 		PN_SCHEDSTAT(se->statistics.wait_sum);
455 		P_SCHEDSTAT(se->statistics.wait_count);
456 	}
457 
458 	P(se->load.weight);
459 #ifdef CONFIG_SMP
460 	P(se->avg.load_avg);
461 	P(se->avg.util_avg);
462 	P(se->avg.runnable_avg);
463 #endif
464 
465 #undef PN_SCHEDSTAT
466 #undef PN
467 #undef P_SCHEDSTAT
468 #undef P
469 }
470 #endif
471 
472 #ifdef CONFIG_CGROUP_SCHED
473 static char group_path[PATH_MAX];
474 
475 static char *task_group_path(struct task_group *tg)
476 {
477 	if (autogroup_path(tg, group_path, PATH_MAX))
478 		return group_path;
479 
480 	cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
481 
482 	return group_path;
483 }
484 #endif
485 
486 static void
487 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
488 {
489 	if (rq->curr == p)
490 		SEQ_printf(m, ">R");
491 	else
492 		SEQ_printf(m, " %c", task_state_to_char(p));
493 
494 	SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d ",
495 		p->comm, task_pid_nr(p),
496 		SPLIT_NS(p->se.vruntime),
497 		(long long)(p->nvcsw + p->nivcsw),
498 		p->prio);
499 
500 	SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
501 		SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
502 		SPLIT_NS(p->se.sum_exec_runtime),
503 		SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
504 
505 #ifdef CONFIG_NUMA_BALANCING
506 	SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
507 #endif
508 #ifdef CONFIG_CGROUP_SCHED
509 	SEQ_printf(m, " %s", task_group_path(task_group(p)));
510 #endif
511 
512 	SEQ_printf(m, "\n");
513 }
514 
515 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
516 {
517 	struct task_struct *g, *p;
518 
519 	SEQ_printf(m, "\n");
520 	SEQ_printf(m, "runnable tasks:\n");
521 	SEQ_printf(m, " S            task   PID         tree-key  switches  prio"
522 		   "     wait-time             sum-exec        sum-sleep\n");
523 	SEQ_printf(m, "-------------------------------------------------------"
524 		   "------------------------------------------------------\n");
525 
526 	rcu_read_lock();
527 	for_each_process_thread(g, p) {
528 		if (task_cpu(p) != rq_cpu)
529 			continue;
530 
531 		print_task(m, rq, p);
532 	}
533 	rcu_read_unlock();
534 }
535 
536 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
537 {
538 	s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
539 		spread, rq0_min_vruntime, spread0;
540 	struct rq *rq = cpu_rq(cpu);
541 	struct sched_entity *last;
542 	unsigned long flags;
543 
544 #ifdef CONFIG_FAIR_GROUP_SCHED
545 	SEQ_printf(m, "\n");
546 	SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
547 #else
548 	SEQ_printf(m, "\n");
549 	SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
550 #endif
551 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
552 			SPLIT_NS(cfs_rq->exec_clock));
553 
554 	raw_spin_lock_irqsave(&rq->lock, flags);
555 	if (rb_first_cached(&cfs_rq->tasks_timeline))
556 		MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
557 	last = __pick_last_entity(cfs_rq);
558 	if (last)
559 		max_vruntime = last->vruntime;
560 	min_vruntime = cfs_rq->min_vruntime;
561 	rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
562 	raw_spin_unlock_irqrestore(&rq->lock, flags);
563 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
564 			SPLIT_NS(MIN_vruntime));
565 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
566 			SPLIT_NS(min_vruntime));
567 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
568 			SPLIT_NS(max_vruntime));
569 	spread = max_vruntime - MIN_vruntime;
570 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
571 			SPLIT_NS(spread));
572 	spread0 = min_vruntime - rq0_min_vruntime;
573 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
574 			SPLIT_NS(spread0));
575 	SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
576 			cfs_rq->nr_spread_over);
577 	SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
578 	SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
579 #ifdef CONFIG_SMP
580 	SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
581 			cfs_rq->avg.load_avg);
582 	SEQ_printf(m, "  .%-30s: %lu\n", "runnable_avg",
583 			cfs_rq->avg.runnable_avg);
584 	SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
585 			cfs_rq->avg.util_avg);
586 	SEQ_printf(m, "  .%-30s: %u\n", "util_est_enqueued",
587 			cfs_rq->avg.util_est.enqueued);
588 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.load_avg",
589 			cfs_rq->removed.load_avg);
590 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.util_avg",
591 			cfs_rq->removed.util_avg);
592 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.runnable_avg",
593 			cfs_rq->removed.runnable_avg);
594 #ifdef CONFIG_FAIR_GROUP_SCHED
595 	SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
596 			cfs_rq->tg_load_avg_contrib);
597 	SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
598 			atomic_long_read(&cfs_rq->tg->load_avg));
599 #endif
600 #endif
601 #ifdef CONFIG_CFS_BANDWIDTH
602 	SEQ_printf(m, "  .%-30s: %d\n", "throttled",
603 			cfs_rq->throttled);
604 	SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
605 			cfs_rq->throttle_count);
606 #endif
607 
608 #ifdef CONFIG_FAIR_GROUP_SCHED
609 	print_cfs_group_stats(m, cpu, cfs_rq->tg);
610 #endif
611 }
612 
613 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
614 {
615 #ifdef CONFIG_RT_GROUP_SCHED
616 	SEQ_printf(m, "\n");
617 	SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
618 #else
619 	SEQ_printf(m, "\n");
620 	SEQ_printf(m, "rt_rq[%d]:\n", cpu);
621 #endif
622 
623 #define P(x) \
624 	SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
625 #define PU(x) \
626 	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
627 #define PN(x) \
628 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
629 
630 	PU(rt_nr_running);
631 #ifdef CONFIG_SMP
632 	PU(rt_nr_migratory);
633 #endif
634 	P(rt_throttled);
635 	PN(rt_time);
636 	PN(rt_runtime);
637 
638 #undef PN
639 #undef PU
640 #undef P
641 }
642 
643 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
644 {
645 	struct dl_bw *dl_bw;
646 
647 	SEQ_printf(m, "\n");
648 	SEQ_printf(m, "dl_rq[%d]:\n", cpu);
649 
650 #define PU(x) \
651 	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
652 
653 	PU(dl_nr_running);
654 #ifdef CONFIG_SMP
655 	PU(dl_nr_migratory);
656 	dl_bw = &cpu_rq(cpu)->rd->dl_bw;
657 #else
658 	dl_bw = &dl_rq->dl_bw;
659 #endif
660 	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
661 	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
662 
663 #undef PU
664 }
665 
666 static void print_cpu(struct seq_file *m, int cpu)
667 {
668 	struct rq *rq = cpu_rq(cpu);
669 	unsigned long flags;
670 
671 #ifdef CONFIG_X86
672 	{
673 		unsigned int freq = cpu_khz ? : 1;
674 
675 		SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
676 			   cpu, freq / 1000, (freq % 1000));
677 	}
678 #else
679 	SEQ_printf(m, "cpu#%d\n", cpu);
680 #endif
681 
682 #define P(x)								\
683 do {									\
684 	if (sizeof(rq->x) == 4)						\
685 		SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));	\
686 	else								\
687 		SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
688 } while (0)
689 
690 #define PN(x) \
691 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
692 
693 	P(nr_running);
694 	P(nr_switches);
695 	P(nr_uninterruptible);
696 	PN(next_balance);
697 	SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
698 	PN(clock);
699 	PN(clock_task);
700 #undef P
701 #undef PN
702 
703 #ifdef CONFIG_SMP
704 #define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
705 	P64(avg_idle);
706 	P64(max_idle_balance_cost);
707 #undef P64
708 #endif
709 
710 #define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
711 	if (schedstat_enabled()) {
712 		P(yld_count);
713 		P(sched_count);
714 		P(sched_goidle);
715 		P(ttwu_count);
716 		P(ttwu_local);
717 	}
718 #undef P
719 
720 	spin_lock_irqsave(&sched_debug_lock, flags);
721 	print_cfs_stats(m, cpu);
722 	print_rt_stats(m, cpu);
723 	print_dl_stats(m, cpu);
724 
725 	print_rq(m, rq, cpu);
726 	spin_unlock_irqrestore(&sched_debug_lock, flags);
727 	SEQ_printf(m, "\n");
728 }
729 
730 static const char *sched_tunable_scaling_names[] = {
731 	"none",
732 	"logarithmic",
733 	"linear"
734 };
735 
736 static void sched_debug_header(struct seq_file *m)
737 {
738 	u64 ktime, sched_clk, cpu_clk;
739 	unsigned long flags;
740 
741 	local_irq_save(flags);
742 	ktime = ktime_to_ns(ktime_get());
743 	sched_clk = sched_clock();
744 	cpu_clk = local_clock();
745 	local_irq_restore(flags);
746 
747 	SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
748 		init_utsname()->release,
749 		(int)strcspn(init_utsname()->version, " "),
750 		init_utsname()->version);
751 
752 #define P(x) \
753 	SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
754 #define PN(x) \
755 	SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
756 	PN(ktime);
757 	PN(sched_clk);
758 	PN(cpu_clk);
759 	P(jiffies);
760 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
761 	P(sched_clock_stable());
762 #endif
763 #undef PN
764 #undef P
765 
766 	SEQ_printf(m, "\n");
767 	SEQ_printf(m, "sysctl_sched\n");
768 
769 #define P(x) \
770 	SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
771 #define PN(x) \
772 	SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
773 	PN(sysctl_sched_latency);
774 	PN(sysctl_sched_min_granularity);
775 	PN(sysctl_sched_wakeup_granularity);
776 	P(sysctl_sched_child_runs_first);
777 	P(sysctl_sched_features);
778 #undef PN
779 #undef P
780 
781 	SEQ_printf(m, "  .%-40s: %d (%s)\n",
782 		"sysctl_sched_tunable_scaling",
783 		sysctl_sched_tunable_scaling,
784 		sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
785 	SEQ_printf(m, "\n");
786 }
787 
788 static int sched_debug_show(struct seq_file *m, void *v)
789 {
790 	int cpu = (unsigned long)(v - 2);
791 
792 	if (cpu != -1)
793 		print_cpu(m, cpu);
794 	else
795 		sched_debug_header(m);
796 
797 	return 0;
798 }
799 
800 void sysrq_sched_debug_show(void)
801 {
802 	int cpu;
803 
804 	sched_debug_header(NULL);
805 	for_each_online_cpu(cpu) {
806 		/*
807 		 * Need to reset softlockup watchdogs on all CPUs, because
808 		 * another CPU might be blocked waiting for us to process
809 		 * an IPI or stop_machine.
810 		 */
811 		touch_nmi_watchdog();
812 		touch_all_softlockup_watchdogs();
813 		print_cpu(NULL, cpu);
814 	}
815 }
816 
817 /*
818  * This itererator needs some explanation.
819  * It returns 1 for the header position.
820  * This means 2 is CPU 0.
821  * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
822  * to use cpumask_* to iterate over the CPUs.
823  */
824 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
825 {
826 	unsigned long n = *offset;
827 
828 	if (n == 0)
829 		return (void *) 1;
830 
831 	n--;
832 
833 	if (n > 0)
834 		n = cpumask_next(n - 1, cpu_online_mask);
835 	else
836 		n = cpumask_first(cpu_online_mask);
837 
838 	*offset = n + 1;
839 
840 	if (n < nr_cpu_ids)
841 		return (void *)(unsigned long)(n + 2);
842 
843 	return NULL;
844 }
845 
846 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
847 {
848 	(*offset)++;
849 	return sched_debug_start(file, offset);
850 }
851 
852 static void sched_debug_stop(struct seq_file *file, void *data)
853 {
854 }
855 
856 static const struct seq_operations sched_debug_sops = {
857 	.start		= sched_debug_start,
858 	.next		= sched_debug_next,
859 	.stop		= sched_debug_stop,
860 	.show		= sched_debug_show,
861 };
862 
863 static int __init init_sched_debug_procfs(void)
864 {
865 	if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops))
866 		return -ENOMEM;
867 	return 0;
868 }
869 
870 __initcall(init_sched_debug_procfs);
871 
872 #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
873 #define __P(F) __PS(#F, F)
874 #define   P(F) __PS(#F, p->F)
875 #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
876 #define __PN(F) __PSN(#F, F)
877 #define   PN(F) __PSN(#F, p->F)
878 
879 
880 #ifdef CONFIG_NUMA_BALANCING
881 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
882 		unsigned long tpf, unsigned long gsf, unsigned long gpf)
883 {
884 	SEQ_printf(m, "numa_faults node=%d ", node);
885 	SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
886 	SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
887 }
888 #endif
889 
890 
891 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
892 {
893 #ifdef CONFIG_NUMA_BALANCING
894 	struct mempolicy *pol;
895 
896 	if (p->mm)
897 		P(mm->numa_scan_seq);
898 
899 	task_lock(p);
900 	pol = p->mempolicy;
901 	if (pol && !(pol->flags & MPOL_F_MORON))
902 		pol = NULL;
903 	mpol_get(pol);
904 	task_unlock(p);
905 
906 	P(numa_pages_migrated);
907 	P(numa_preferred_nid);
908 	P(total_numa_faults);
909 	SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
910 			task_node(p), task_numa_group_id(p));
911 	show_numa_stats(p, m);
912 	mpol_put(pol);
913 #endif
914 }
915 
916 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
917 						  struct seq_file *m)
918 {
919 	unsigned long nr_switches;
920 
921 	SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
922 						get_nr_threads(p));
923 	SEQ_printf(m,
924 		"---------------------------------------------------------"
925 		"----------\n");
926 
927 #define P_SCHEDSTAT(F)  __PS(#F, schedstat_val(p->F))
928 #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->F))
929 
930 	PN(se.exec_start);
931 	PN(se.vruntime);
932 	PN(se.sum_exec_runtime);
933 
934 	nr_switches = p->nvcsw + p->nivcsw;
935 
936 	P(se.nr_migrations);
937 
938 	if (schedstat_enabled()) {
939 		u64 avg_atom, avg_per_cpu;
940 
941 		PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
942 		PN_SCHEDSTAT(se.statistics.wait_start);
943 		PN_SCHEDSTAT(se.statistics.sleep_start);
944 		PN_SCHEDSTAT(se.statistics.block_start);
945 		PN_SCHEDSTAT(se.statistics.sleep_max);
946 		PN_SCHEDSTAT(se.statistics.block_max);
947 		PN_SCHEDSTAT(se.statistics.exec_max);
948 		PN_SCHEDSTAT(se.statistics.slice_max);
949 		PN_SCHEDSTAT(se.statistics.wait_max);
950 		PN_SCHEDSTAT(se.statistics.wait_sum);
951 		P_SCHEDSTAT(se.statistics.wait_count);
952 		PN_SCHEDSTAT(se.statistics.iowait_sum);
953 		P_SCHEDSTAT(se.statistics.iowait_count);
954 		P_SCHEDSTAT(se.statistics.nr_migrations_cold);
955 		P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
956 		P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
957 		P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
958 		P_SCHEDSTAT(se.statistics.nr_forced_migrations);
959 		P_SCHEDSTAT(se.statistics.nr_wakeups);
960 		P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
961 		P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
962 		P_SCHEDSTAT(se.statistics.nr_wakeups_local);
963 		P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
964 		P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
965 		P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
966 		P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
967 		P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
968 
969 		avg_atom = p->se.sum_exec_runtime;
970 		if (nr_switches)
971 			avg_atom = div64_ul(avg_atom, nr_switches);
972 		else
973 			avg_atom = -1LL;
974 
975 		avg_per_cpu = p->se.sum_exec_runtime;
976 		if (p->se.nr_migrations) {
977 			avg_per_cpu = div64_u64(avg_per_cpu,
978 						p->se.nr_migrations);
979 		} else {
980 			avg_per_cpu = -1LL;
981 		}
982 
983 		__PN(avg_atom);
984 		__PN(avg_per_cpu);
985 	}
986 
987 	__P(nr_switches);
988 	__PS("nr_voluntary_switches", p->nvcsw);
989 	__PS("nr_involuntary_switches", p->nivcsw);
990 
991 	P(se.load.weight);
992 #ifdef CONFIG_SMP
993 	P(se.avg.load_sum);
994 	P(se.avg.runnable_sum);
995 	P(se.avg.util_sum);
996 	P(se.avg.load_avg);
997 	P(se.avg.runnable_avg);
998 	P(se.avg.util_avg);
999 	P(se.avg.last_update_time);
1000 	P(se.avg.util_est.ewma);
1001 	P(se.avg.util_est.enqueued);
1002 #endif
1003 #ifdef CONFIG_UCLAMP_TASK
1004 	__PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
1005 	__PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
1006 	__PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
1007 	__PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
1008 #endif
1009 	P(policy);
1010 	P(prio);
1011 	if (task_has_dl_policy(p)) {
1012 		P(dl.runtime);
1013 		P(dl.deadline);
1014 	}
1015 #undef PN_SCHEDSTAT
1016 #undef P_SCHEDSTAT
1017 
1018 	{
1019 		unsigned int this_cpu = raw_smp_processor_id();
1020 		u64 t0, t1;
1021 
1022 		t0 = cpu_clock(this_cpu);
1023 		t1 = cpu_clock(this_cpu);
1024 		__PS("clock-delta", t1-t0);
1025 	}
1026 
1027 	sched_show_numa(p, m);
1028 }
1029 
1030 void proc_sched_set_task(struct task_struct *p)
1031 {
1032 #ifdef CONFIG_SCHEDSTATS
1033 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1034 #endif
1035 }
1036