1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Deadline Scheduling Class (SCHED_DEADLINE) 4 * 5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 6 * 7 * Tasks that periodically executes their instances for less than their 8 * runtime won't miss any of their deadlines. 9 * Tasks that are not periodic or sporadic or that tries to execute more 10 * than their reserved bandwidth will be slowed down (and may potentially 11 * miss some of their deadlines), and won't affect any other task. 12 * 13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 14 * Juri Lelli <juri.lelli@gmail.com>, 15 * Michael Trimarchi <michael@amarulasolutions.com>, 16 * Fabio Checconi <fchecconi@gmail.com> 17 */ 18 19 /* 20 * Default limits for DL period; on the top end we guard against small util 21 * tasks still getting ridiculously long effective runtimes, on the bottom end we 22 * guard against timer DoS. 23 */ 24 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */ 25 static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */ 26 #ifdef CONFIG_SYSCTL 27 static struct ctl_table sched_dl_sysctls[] = { 28 { 29 .procname = "sched_deadline_period_max_us", 30 .data = &sysctl_sched_dl_period_max, 31 .maxlen = sizeof(unsigned int), 32 .mode = 0644, 33 .proc_handler = proc_douintvec_minmax, 34 .extra1 = (void *)&sysctl_sched_dl_period_min, 35 }, 36 { 37 .procname = "sched_deadline_period_min_us", 38 .data = &sysctl_sched_dl_period_min, 39 .maxlen = sizeof(unsigned int), 40 .mode = 0644, 41 .proc_handler = proc_douintvec_minmax, 42 .extra2 = (void *)&sysctl_sched_dl_period_max, 43 }, 44 {} 45 }; 46 47 static int __init sched_dl_sysctl_init(void) 48 { 49 register_sysctl_init("kernel", sched_dl_sysctls); 50 return 0; 51 } 52 late_initcall(sched_dl_sysctl_init); 53 #endif 54 55 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 56 { 57 return container_of(dl_se, struct task_struct, dl); 58 } 59 60 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 61 { 62 return container_of(dl_rq, struct rq, dl); 63 } 64 65 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 66 { 67 struct task_struct *p = dl_task_of(dl_se); 68 struct rq *rq = task_rq(p); 69 70 return &rq->dl; 71 } 72 73 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 74 { 75 return !RB_EMPTY_NODE(&dl_se->rb_node); 76 } 77 78 #ifdef CONFIG_RT_MUTEXES 79 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 80 { 81 return dl_se->pi_se; 82 } 83 84 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 85 { 86 return pi_of(dl_se) != dl_se; 87 } 88 #else 89 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 90 { 91 return dl_se; 92 } 93 94 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 95 { 96 return false; 97 } 98 #endif 99 100 #ifdef CONFIG_SMP 101 static inline struct dl_bw *dl_bw_of(int i) 102 { 103 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 104 "sched RCU must be held"); 105 return &cpu_rq(i)->rd->dl_bw; 106 } 107 108 static inline int dl_bw_cpus(int i) 109 { 110 struct root_domain *rd = cpu_rq(i)->rd; 111 int cpus; 112 113 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 114 "sched RCU must be held"); 115 116 if (cpumask_subset(rd->span, cpu_active_mask)) 117 return cpumask_weight(rd->span); 118 119 cpus = 0; 120 121 for_each_cpu_and(i, rd->span, cpu_active_mask) 122 cpus++; 123 124 return cpus; 125 } 126 127 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask) 128 { 129 unsigned long cap = 0; 130 int i; 131 132 for_each_cpu_and(i, mask, cpu_active_mask) 133 cap += capacity_orig_of(i); 134 135 return cap; 136 } 137 138 /* 139 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity 140 * of the CPU the task is running on rather rd's \Sum CPU capacity. 141 */ 142 static inline unsigned long dl_bw_capacity(int i) 143 { 144 if (!sched_asym_cpucap_active() && 145 capacity_orig_of(i) == SCHED_CAPACITY_SCALE) { 146 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT; 147 } else { 148 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 149 "sched RCU must be held"); 150 151 return __dl_bw_capacity(cpu_rq(i)->rd->span); 152 } 153 } 154 155 static inline bool dl_bw_visited(int cpu, u64 gen) 156 { 157 struct root_domain *rd = cpu_rq(cpu)->rd; 158 159 if (rd->visit_gen == gen) 160 return true; 161 162 rd->visit_gen = gen; 163 return false; 164 } 165 166 static inline 167 void __dl_update(struct dl_bw *dl_b, s64 bw) 168 { 169 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); 170 int i; 171 172 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 173 "sched RCU must be held"); 174 for_each_cpu_and(i, rd->span, cpu_active_mask) { 175 struct rq *rq = cpu_rq(i); 176 177 rq->dl.extra_bw += bw; 178 } 179 } 180 #else 181 static inline struct dl_bw *dl_bw_of(int i) 182 { 183 return &cpu_rq(i)->dl.dl_bw; 184 } 185 186 static inline int dl_bw_cpus(int i) 187 { 188 return 1; 189 } 190 191 static inline unsigned long dl_bw_capacity(int i) 192 { 193 return SCHED_CAPACITY_SCALE; 194 } 195 196 static inline bool dl_bw_visited(int cpu, u64 gen) 197 { 198 return false; 199 } 200 201 static inline 202 void __dl_update(struct dl_bw *dl_b, s64 bw) 203 { 204 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw); 205 206 dl->extra_bw += bw; 207 } 208 #endif 209 210 static inline 211 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 212 { 213 dl_b->total_bw -= tsk_bw; 214 __dl_update(dl_b, (s32)tsk_bw / cpus); 215 } 216 217 static inline 218 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 219 { 220 dl_b->total_bw += tsk_bw; 221 __dl_update(dl_b, -((s32)tsk_bw / cpus)); 222 } 223 224 static inline bool 225 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw) 226 { 227 return dl_b->bw != -1 && 228 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw; 229 } 230 231 static inline 232 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 233 { 234 u64 old = dl_rq->running_bw; 235 236 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 237 dl_rq->running_bw += dl_bw; 238 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */ 239 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 240 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 241 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 242 } 243 244 static inline 245 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 246 { 247 u64 old = dl_rq->running_bw; 248 249 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 250 dl_rq->running_bw -= dl_bw; 251 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */ 252 if (dl_rq->running_bw > old) 253 dl_rq->running_bw = 0; 254 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 255 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 256 } 257 258 static inline 259 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 260 { 261 u64 old = dl_rq->this_bw; 262 263 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 264 dl_rq->this_bw += dl_bw; 265 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */ 266 } 267 268 static inline 269 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 270 { 271 u64 old = dl_rq->this_bw; 272 273 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 274 dl_rq->this_bw -= dl_bw; 275 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */ 276 if (dl_rq->this_bw > old) 277 dl_rq->this_bw = 0; 278 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 279 } 280 281 static inline 282 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 283 { 284 if (!dl_entity_is_special(dl_se)) 285 __add_rq_bw(dl_se->dl_bw, dl_rq); 286 } 287 288 static inline 289 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 290 { 291 if (!dl_entity_is_special(dl_se)) 292 __sub_rq_bw(dl_se->dl_bw, dl_rq); 293 } 294 295 static inline 296 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 297 { 298 if (!dl_entity_is_special(dl_se)) 299 __add_running_bw(dl_se->dl_bw, dl_rq); 300 } 301 302 static inline 303 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 304 { 305 if (!dl_entity_is_special(dl_se)) 306 __sub_running_bw(dl_se->dl_bw, dl_rq); 307 } 308 309 static void dl_change_utilization(struct task_struct *p, u64 new_bw) 310 { 311 struct rq *rq; 312 313 WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV); 314 315 if (task_on_rq_queued(p)) 316 return; 317 318 rq = task_rq(p); 319 if (p->dl.dl_non_contending) { 320 sub_running_bw(&p->dl, &rq->dl); 321 p->dl.dl_non_contending = 0; 322 /* 323 * If the timer handler is currently running and the 324 * timer cannot be canceled, inactive_task_timer() 325 * will see that dl_not_contending is not set, and 326 * will not touch the rq's active utilization, 327 * so we are still safe. 328 */ 329 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 330 put_task_struct(p); 331 } 332 __sub_rq_bw(p->dl.dl_bw, &rq->dl); 333 __add_rq_bw(new_bw, &rq->dl); 334 } 335 336 /* 337 * The utilization of a task cannot be immediately removed from 338 * the rq active utilization (running_bw) when the task blocks. 339 * Instead, we have to wait for the so called "0-lag time". 340 * 341 * If a task blocks before the "0-lag time", a timer (the inactive 342 * timer) is armed, and running_bw is decreased when the timer 343 * fires. 344 * 345 * If the task wakes up again before the inactive timer fires, 346 * the timer is canceled, whereas if the task wakes up after the 347 * inactive timer fired (and running_bw has been decreased) the 348 * task's utilization has to be added to running_bw again. 349 * A flag in the deadline scheduling entity (dl_non_contending) 350 * is used to avoid race conditions between the inactive timer handler 351 * and task wakeups. 352 * 353 * The following diagram shows how running_bw is updated. A task is 354 * "ACTIVE" when its utilization contributes to running_bw; an 355 * "ACTIVE contending" task is in the TASK_RUNNING state, while an 356 * "ACTIVE non contending" task is a blocked task for which the "0-lag time" 357 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag" 358 * time already passed, which does not contribute to running_bw anymore. 359 * +------------------+ 360 * wakeup | ACTIVE | 361 * +------------------>+ contending | 362 * | add_running_bw | | 363 * | +----+------+------+ 364 * | | ^ 365 * | dequeue | | 366 * +--------+-------+ | | 367 * | | t >= 0-lag | | wakeup 368 * | INACTIVE |<---------------+ | 369 * | | sub_running_bw | | 370 * +--------+-------+ | | 371 * ^ | | 372 * | t < 0-lag | | 373 * | | | 374 * | V | 375 * | +----+------+------+ 376 * | sub_running_bw | ACTIVE | 377 * +-------------------+ | 378 * inactive timer | non contending | 379 * fired +------------------+ 380 * 381 * The task_non_contending() function is invoked when a task 382 * blocks, and checks if the 0-lag time already passed or 383 * not (in the first case, it directly updates running_bw; 384 * in the second case, it arms the inactive timer). 385 * 386 * The task_contending() function is invoked when a task wakes 387 * up, and checks if the task is still in the "ACTIVE non contending" 388 * state or not (in the second case, it updates running_bw). 389 */ 390 static void task_non_contending(struct task_struct *p) 391 { 392 struct sched_dl_entity *dl_se = &p->dl; 393 struct hrtimer *timer = &dl_se->inactive_timer; 394 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 395 struct rq *rq = rq_of_dl_rq(dl_rq); 396 s64 zerolag_time; 397 398 /* 399 * If this is a non-deadline task that has been boosted, 400 * do nothing 401 */ 402 if (dl_se->dl_runtime == 0) 403 return; 404 405 if (dl_entity_is_special(dl_se)) 406 return; 407 408 WARN_ON(dl_se->dl_non_contending); 409 410 zerolag_time = dl_se->deadline - 411 div64_long((dl_se->runtime * dl_se->dl_period), 412 dl_se->dl_runtime); 413 414 /* 415 * Using relative times instead of the absolute "0-lag time" 416 * allows to simplify the code 417 */ 418 zerolag_time -= rq_clock(rq); 419 420 /* 421 * If the "0-lag time" already passed, decrease the active 422 * utilization now, instead of starting a timer 423 */ 424 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) { 425 if (dl_task(p)) 426 sub_running_bw(dl_se, dl_rq); 427 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) { 428 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 429 430 if (READ_ONCE(p->__state) == TASK_DEAD) 431 sub_rq_bw(&p->dl, &rq->dl); 432 raw_spin_lock(&dl_b->lock); 433 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 434 raw_spin_unlock(&dl_b->lock); 435 __dl_clear_params(p); 436 } 437 438 return; 439 } 440 441 dl_se->dl_non_contending = 1; 442 get_task_struct(p); 443 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD); 444 } 445 446 static void task_contending(struct sched_dl_entity *dl_se, int flags) 447 { 448 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 449 450 /* 451 * If this is a non-deadline task that has been boosted, 452 * do nothing 453 */ 454 if (dl_se->dl_runtime == 0) 455 return; 456 457 if (flags & ENQUEUE_MIGRATED) 458 add_rq_bw(dl_se, dl_rq); 459 460 if (dl_se->dl_non_contending) { 461 dl_se->dl_non_contending = 0; 462 /* 463 * If the timer handler is currently running and the 464 * timer cannot be canceled, inactive_task_timer() 465 * will see that dl_not_contending is not set, and 466 * will not touch the rq's active utilization, 467 * so we are still safe. 468 */ 469 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) 470 put_task_struct(dl_task_of(dl_se)); 471 } else { 472 /* 473 * Since "dl_non_contending" is not set, the 474 * task's utilization has already been removed from 475 * active utilization (either when the task blocked, 476 * when the "inactive timer" fired). 477 * So, add it back. 478 */ 479 add_running_bw(dl_se, dl_rq); 480 } 481 } 482 483 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) 484 { 485 struct sched_dl_entity *dl_se = &p->dl; 486 487 return rb_first_cached(&dl_rq->root) == &dl_se->rb_node; 488 } 489 490 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq); 491 492 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) 493 { 494 raw_spin_lock_init(&dl_b->dl_runtime_lock); 495 dl_b->dl_period = period; 496 dl_b->dl_runtime = runtime; 497 } 498 499 void init_dl_bw(struct dl_bw *dl_b) 500 { 501 raw_spin_lock_init(&dl_b->lock); 502 if (global_rt_runtime() == RUNTIME_INF) 503 dl_b->bw = -1; 504 else 505 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 506 dl_b->total_bw = 0; 507 } 508 509 void init_dl_rq(struct dl_rq *dl_rq) 510 { 511 dl_rq->root = RB_ROOT_CACHED; 512 513 #ifdef CONFIG_SMP 514 /* zero means no -deadline tasks */ 515 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 516 517 dl_rq->dl_nr_migratory = 0; 518 dl_rq->overloaded = 0; 519 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED; 520 #else 521 init_dl_bw(&dl_rq->dl_bw); 522 #endif 523 524 dl_rq->running_bw = 0; 525 dl_rq->this_bw = 0; 526 init_dl_rq_bw_ratio(dl_rq); 527 } 528 529 #ifdef CONFIG_SMP 530 531 static inline int dl_overloaded(struct rq *rq) 532 { 533 return atomic_read(&rq->rd->dlo_count); 534 } 535 536 static inline void dl_set_overload(struct rq *rq) 537 { 538 if (!rq->online) 539 return; 540 541 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 542 /* 543 * Must be visible before the overload count is 544 * set (as in sched_rt.c). 545 * 546 * Matched by the barrier in pull_dl_task(). 547 */ 548 smp_wmb(); 549 atomic_inc(&rq->rd->dlo_count); 550 } 551 552 static inline void dl_clear_overload(struct rq *rq) 553 { 554 if (!rq->online) 555 return; 556 557 atomic_dec(&rq->rd->dlo_count); 558 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 559 } 560 561 static void update_dl_migration(struct dl_rq *dl_rq) 562 { 563 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { 564 if (!dl_rq->overloaded) { 565 dl_set_overload(rq_of_dl_rq(dl_rq)); 566 dl_rq->overloaded = 1; 567 } 568 } else if (dl_rq->overloaded) { 569 dl_clear_overload(rq_of_dl_rq(dl_rq)); 570 dl_rq->overloaded = 0; 571 } 572 } 573 574 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 575 { 576 struct task_struct *p = dl_task_of(dl_se); 577 578 if (p->nr_cpus_allowed > 1) 579 dl_rq->dl_nr_migratory++; 580 581 update_dl_migration(dl_rq); 582 } 583 584 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 585 { 586 struct task_struct *p = dl_task_of(dl_se); 587 588 if (p->nr_cpus_allowed > 1) 589 dl_rq->dl_nr_migratory--; 590 591 update_dl_migration(dl_rq); 592 } 593 594 #define __node_2_pdl(node) \ 595 rb_entry((node), struct task_struct, pushable_dl_tasks) 596 597 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b) 598 { 599 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl); 600 } 601 602 /* 603 * The list of pushable -deadline task is not a plist, like in 604 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 605 */ 606 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 607 { 608 struct rb_node *leftmost; 609 610 WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 611 612 leftmost = rb_add_cached(&p->pushable_dl_tasks, 613 &rq->dl.pushable_dl_tasks_root, 614 __pushable_less); 615 if (leftmost) 616 rq->dl.earliest_dl.next = p->dl.deadline; 617 } 618 619 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 620 { 621 struct dl_rq *dl_rq = &rq->dl; 622 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root; 623 struct rb_node *leftmost; 624 625 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 626 return; 627 628 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root); 629 if (leftmost) 630 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline; 631 632 RB_CLEAR_NODE(&p->pushable_dl_tasks); 633 } 634 635 static inline int has_pushable_dl_tasks(struct rq *rq) 636 { 637 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root); 638 } 639 640 static int push_dl_task(struct rq *rq); 641 642 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 643 { 644 return rq->online && dl_task(prev); 645 } 646 647 static DEFINE_PER_CPU(struct balance_callback, dl_push_head); 648 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head); 649 650 static void push_dl_tasks(struct rq *); 651 static void pull_dl_task(struct rq *); 652 653 static inline void deadline_queue_push_tasks(struct rq *rq) 654 { 655 if (!has_pushable_dl_tasks(rq)) 656 return; 657 658 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); 659 } 660 661 static inline void deadline_queue_pull_task(struct rq *rq) 662 { 663 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); 664 } 665 666 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); 667 668 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) 669 { 670 struct rq *later_rq = NULL; 671 struct dl_bw *dl_b; 672 673 later_rq = find_lock_later_rq(p, rq); 674 if (!later_rq) { 675 int cpu; 676 677 /* 678 * If we cannot preempt any rq, fall back to pick any 679 * online CPU: 680 */ 681 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr); 682 if (cpu >= nr_cpu_ids) { 683 /* 684 * Failed to find any suitable CPU. 685 * The task will never come back! 686 */ 687 WARN_ON_ONCE(dl_bandwidth_enabled()); 688 689 /* 690 * If admission control is disabled we 691 * try a little harder to let the task 692 * run. 693 */ 694 cpu = cpumask_any(cpu_active_mask); 695 } 696 later_rq = cpu_rq(cpu); 697 double_lock_balance(rq, later_rq); 698 } 699 700 if (p->dl.dl_non_contending || p->dl.dl_throttled) { 701 /* 702 * Inactive timer is armed (or callback is running, but 703 * waiting for us to release rq locks). In any case, when it 704 * will fire (or continue), it will see running_bw of this 705 * task migrated to later_rq (and correctly handle it). 706 */ 707 sub_running_bw(&p->dl, &rq->dl); 708 sub_rq_bw(&p->dl, &rq->dl); 709 710 add_rq_bw(&p->dl, &later_rq->dl); 711 add_running_bw(&p->dl, &later_rq->dl); 712 } else { 713 sub_rq_bw(&p->dl, &rq->dl); 714 add_rq_bw(&p->dl, &later_rq->dl); 715 } 716 717 /* 718 * And we finally need to fixup root_domain(s) bandwidth accounting, 719 * since p is still hanging out in the old (now moved to default) root 720 * domain. 721 */ 722 dl_b = &rq->rd->dl_bw; 723 raw_spin_lock(&dl_b->lock); 724 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 725 raw_spin_unlock(&dl_b->lock); 726 727 dl_b = &later_rq->rd->dl_bw; 728 raw_spin_lock(&dl_b->lock); 729 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span)); 730 raw_spin_unlock(&dl_b->lock); 731 732 set_task_cpu(p, later_rq->cpu); 733 double_unlock_balance(later_rq, rq); 734 735 return later_rq; 736 } 737 738 #else 739 740 static inline 741 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 742 { 743 } 744 745 static inline 746 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 747 { 748 } 749 750 static inline 751 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 752 { 753 } 754 755 static inline 756 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 757 { 758 } 759 760 static inline void deadline_queue_push_tasks(struct rq *rq) 761 { 762 } 763 764 static inline void deadline_queue_pull_task(struct rq *rq) 765 { 766 } 767 #endif /* CONFIG_SMP */ 768 769 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 770 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); 771 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags); 772 773 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se, 774 struct rq *rq) 775 { 776 /* for non-boosted task, pi_of(dl_se) == dl_se */ 777 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; 778 dl_se->runtime = pi_of(dl_se)->dl_runtime; 779 } 780 781 /* 782 * We are being explicitly informed that a new instance is starting, 783 * and this means that: 784 * - the absolute deadline of the entity has to be placed at 785 * current time + relative deadline; 786 * - the runtime of the entity has to be set to the maximum value. 787 * 788 * The capability of specifying such event is useful whenever a -deadline 789 * entity wants to (try to!) synchronize its behaviour with the scheduler's 790 * one, and to (try to!) reconcile itself with its own scheduling 791 * parameters. 792 */ 793 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) 794 { 795 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 796 struct rq *rq = rq_of_dl_rq(dl_rq); 797 798 WARN_ON(is_dl_boosted(dl_se)); 799 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); 800 801 /* 802 * We are racing with the deadline timer. So, do nothing because 803 * the deadline timer handler will take care of properly recharging 804 * the runtime and postponing the deadline 805 */ 806 if (dl_se->dl_throttled) 807 return; 808 809 /* 810 * We use the regular wall clock time to set deadlines in the 811 * future; in fact, we must consider execution overheads (time 812 * spent on hardirq context, etc.). 813 */ 814 replenish_dl_new_period(dl_se, rq); 815 } 816 817 /* 818 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 819 * possibility of a entity lasting more than what it declared, and thus 820 * exhausting its runtime. 821 * 822 * Here we are interested in making runtime overrun possible, but we do 823 * not want a entity which is misbehaving to affect the scheduling of all 824 * other entities. 825 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 826 * is used, in order to confine each entity within its own bandwidth. 827 * 828 * This function deals exactly with that, and ensures that when the runtime 829 * of a entity is replenished, its deadline is also postponed. That ensures 830 * the overrunning entity can't interfere with other entity in the system and 831 * can't make them miss their deadlines. Reasons why this kind of overruns 832 * could happen are, typically, a entity voluntarily trying to overcome its 833 * runtime, or it just underestimated it during sched_setattr(). 834 */ 835 static void replenish_dl_entity(struct sched_dl_entity *dl_se) 836 { 837 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 838 struct rq *rq = rq_of_dl_rq(dl_rq); 839 840 WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0); 841 842 /* 843 * This could be the case for a !-dl task that is boosted. 844 * Just go with full inherited parameters. 845 */ 846 if (dl_se->dl_deadline == 0) 847 replenish_dl_new_period(dl_se, rq); 848 849 if (dl_se->dl_yielded && dl_se->runtime > 0) 850 dl_se->runtime = 0; 851 852 /* 853 * We keep moving the deadline away until we get some 854 * available runtime for the entity. This ensures correct 855 * handling of situations where the runtime overrun is 856 * arbitrary large. 857 */ 858 while (dl_se->runtime <= 0) { 859 dl_se->deadline += pi_of(dl_se)->dl_period; 860 dl_se->runtime += pi_of(dl_se)->dl_runtime; 861 } 862 863 /* 864 * At this point, the deadline really should be "in 865 * the future" with respect to rq->clock. If it's 866 * not, we are, for some reason, lagging too much! 867 * Anyway, after having warn userspace abut that, 868 * we still try to keep the things running by 869 * resetting the deadline and the budget of the 870 * entity. 871 */ 872 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 873 printk_deferred_once("sched: DL replenish lagged too much\n"); 874 replenish_dl_new_period(dl_se, rq); 875 } 876 877 if (dl_se->dl_yielded) 878 dl_se->dl_yielded = 0; 879 if (dl_se->dl_throttled) 880 dl_se->dl_throttled = 0; 881 } 882 883 /* 884 * Here we check if --at time t-- an entity (which is probably being 885 * [re]activated or, in general, enqueued) can use its remaining runtime 886 * and its current deadline _without_ exceeding the bandwidth it is 887 * assigned (function returns true if it can't). We are in fact applying 888 * one of the CBS rules: when a task wakes up, if the residual runtime 889 * over residual deadline fits within the allocated bandwidth, then we 890 * can keep the current (absolute) deadline and residual budget without 891 * disrupting the schedulability of the system. Otherwise, we should 892 * refill the runtime and set the deadline a period in the future, 893 * because keeping the current (absolute) deadline of the task would 894 * result in breaking guarantees promised to other tasks (refer to 895 * Documentation/scheduler/sched-deadline.rst for more information). 896 * 897 * This function returns true if: 898 * 899 * runtime / (deadline - t) > dl_runtime / dl_deadline , 900 * 901 * IOW we can't recycle current parameters. 902 * 903 * Notice that the bandwidth check is done against the deadline. For 904 * task with deadline equal to period this is the same of using 905 * dl_period instead of dl_deadline in the equation above. 906 */ 907 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t) 908 { 909 u64 left, right; 910 911 /* 912 * left and right are the two sides of the equation above, 913 * after a bit of shuffling to use multiplications instead 914 * of divisions. 915 * 916 * Note that none of the time values involved in the two 917 * multiplications are absolute: dl_deadline and dl_runtime 918 * are the relative deadline and the maximum runtime of each 919 * instance, runtime is the runtime left for the last instance 920 * and (deadline - t), since t is rq->clock, is the time left 921 * to the (absolute) deadline. Even if overflowing the u64 type 922 * is very unlikely to occur in both cases, here we scale down 923 * as we want to avoid that risk at all. Scaling down by 10 924 * means that we reduce granularity to 1us. We are fine with it, 925 * since this is only a true/false check and, anyway, thinking 926 * of anything below microseconds resolution is actually fiction 927 * (but still we want to give the user that illusion >;). 928 */ 929 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 930 right = ((dl_se->deadline - t) >> DL_SCALE) * 931 (pi_of(dl_se)->dl_runtime >> DL_SCALE); 932 933 return dl_time_before(right, left); 934 } 935 936 /* 937 * Revised wakeup rule [1]: For self-suspending tasks, rather then 938 * re-initializing task's runtime and deadline, the revised wakeup 939 * rule adjusts the task's runtime to avoid the task to overrun its 940 * density. 941 * 942 * Reasoning: a task may overrun the density if: 943 * runtime / (deadline - t) > dl_runtime / dl_deadline 944 * 945 * Therefore, runtime can be adjusted to: 946 * runtime = (dl_runtime / dl_deadline) * (deadline - t) 947 * 948 * In such way that runtime will be equal to the maximum density 949 * the task can use without breaking any rule. 950 * 951 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant 952 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24. 953 */ 954 static void 955 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq) 956 { 957 u64 laxity = dl_se->deadline - rq_clock(rq); 958 959 /* 960 * If the task has deadline < period, and the deadline is in the past, 961 * it should already be throttled before this check. 962 * 963 * See update_dl_entity() comments for further details. 964 */ 965 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq))); 966 967 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT; 968 } 969 970 /* 971 * Regarding the deadline, a task with implicit deadline has a relative 972 * deadline == relative period. A task with constrained deadline has a 973 * relative deadline <= relative period. 974 * 975 * We support constrained deadline tasks. However, there are some restrictions 976 * applied only for tasks which do not have an implicit deadline. See 977 * update_dl_entity() to know more about such restrictions. 978 * 979 * The dl_is_implicit() returns true if the task has an implicit deadline. 980 */ 981 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se) 982 { 983 return dl_se->dl_deadline == dl_se->dl_period; 984 } 985 986 /* 987 * When a deadline entity is placed in the runqueue, its runtime and deadline 988 * might need to be updated. This is done by a CBS wake up rule. There are two 989 * different rules: 1) the original CBS; and 2) the Revisited CBS. 990 * 991 * When the task is starting a new period, the Original CBS is used. In this 992 * case, the runtime is replenished and a new absolute deadline is set. 993 * 994 * When a task is queued before the begin of the next period, using the 995 * remaining runtime and deadline could make the entity to overflow, see 996 * dl_entity_overflow() to find more about runtime overflow. When such case 997 * is detected, the runtime and deadline need to be updated. 998 * 999 * If the task has an implicit deadline, i.e., deadline == period, the Original 1000 * CBS is applied. the runtime is replenished and a new absolute deadline is 1001 * set, as in the previous cases. 1002 * 1003 * However, the Original CBS does not work properly for tasks with 1004 * deadline < period, which are said to have a constrained deadline. By 1005 * applying the Original CBS, a constrained deadline task would be able to run 1006 * runtime/deadline in a period. With deadline < period, the task would 1007 * overrun the runtime/period allowed bandwidth, breaking the admission test. 1008 * 1009 * In order to prevent this misbehave, the Revisited CBS is used for 1010 * constrained deadline tasks when a runtime overflow is detected. In the 1011 * Revisited CBS, rather than replenishing & setting a new absolute deadline, 1012 * the remaining runtime of the task is reduced to avoid runtime overflow. 1013 * Please refer to the comments update_dl_revised_wakeup() function to find 1014 * more about the Revised CBS rule. 1015 */ 1016 static void update_dl_entity(struct sched_dl_entity *dl_se) 1017 { 1018 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1019 struct rq *rq = rq_of_dl_rq(dl_rq); 1020 1021 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 1022 dl_entity_overflow(dl_se, rq_clock(rq))) { 1023 1024 if (unlikely(!dl_is_implicit(dl_se) && 1025 !dl_time_before(dl_se->deadline, rq_clock(rq)) && 1026 !is_dl_boosted(dl_se))) { 1027 update_dl_revised_wakeup(dl_se, rq); 1028 return; 1029 } 1030 1031 replenish_dl_new_period(dl_se, rq); 1032 } 1033 } 1034 1035 static inline u64 dl_next_period(struct sched_dl_entity *dl_se) 1036 { 1037 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period; 1038 } 1039 1040 /* 1041 * If the entity depleted all its runtime, and if we want it to sleep 1042 * while waiting for some new execution time to become available, we 1043 * set the bandwidth replenishment timer to the replenishment instant 1044 * and try to activate it. 1045 * 1046 * Notice that it is important for the caller to know if the timer 1047 * actually started or not (i.e., the replenishment instant is in 1048 * the future or in the past). 1049 */ 1050 static int start_dl_timer(struct task_struct *p) 1051 { 1052 struct sched_dl_entity *dl_se = &p->dl; 1053 struct hrtimer *timer = &dl_se->dl_timer; 1054 struct rq *rq = task_rq(p); 1055 ktime_t now, act; 1056 s64 delta; 1057 1058 lockdep_assert_rq_held(rq); 1059 1060 /* 1061 * We want the timer to fire at the deadline, but considering 1062 * that it is actually coming from rq->clock and not from 1063 * hrtimer's time base reading. 1064 */ 1065 act = ns_to_ktime(dl_next_period(dl_se)); 1066 now = hrtimer_cb_get_time(timer); 1067 delta = ktime_to_ns(now) - rq_clock(rq); 1068 act = ktime_add_ns(act, delta); 1069 1070 /* 1071 * If the expiry time already passed, e.g., because the value 1072 * chosen as the deadline is too small, don't even try to 1073 * start the timer in the past! 1074 */ 1075 if (ktime_us_delta(act, now) < 0) 1076 return 0; 1077 1078 /* 1079 * !enqueued will guarantee another callback; even if one is already in 1080 * progress. This ensures a balanced {get,put}_task_struct(). 1081 * 1082 * The race against __run_timer() clearing the enqueued state is 1083 * harmless because we're holding task_rq()->lock, therefore the timer 1084 * expiring after we've done the check will wait on its task_rq_lock() 1085 * and observe our state. 1086 */ 1087 if (!hrtimer_is_queued(timer)) { 1088 get_task_struct(p); 1089 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD); 1090 } 1091 1092 return 1; 1093 } 1094 1095 /* 1096 * This is the bandwidth enforcement timer callback. If here, we know 1097 * a task is not on its dl_rq, since the fact that the timer was running 1098 * means the task is throttled and needs a runtime replenishment. 1099 * 1100 * However, what we actually do depends on the fact the task is active, 1101 * (it is on its rq) or has been removed from there by a call to 1102 * dequeue_task_dl(). In the former case we must issue the runtime 1103 * replenishment and add the task back to the dl_rq; in the latter, we just 1104 * do nothing but clearing dl_throttled, so that runtime and deadline 1105 * updating (and the queueing back to dl_rq) will be done by the 1106 * next call to enqueue_task_dl(). 1107 */ 1108 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 1109 { 1110 struct sched_dl_entity *dl_se = container_of(timer, 1111 struct sched_dl_entity, 1112 dl_timer); 1113 struct task_struct *p = dl_task_of(dl_se); 1114 struct rq_flags rf; 1115 struct rq *rq; 1116 1117 rq = task_rq_lock(p, &rf); 1118 1119 /* 1120 * The task might have changed its scheduling policy to something 1121 * different than SCHED_DEADLINE (through switched_from_dl()). 1122 */ 1123 if (!dl_task(p)) 1124 goto unlock; 1125 1126 /* 1127 * The task might have been boosted by someone else and might be in the 1128 * boosting/deboosting path, its not throttled. 1129 */ 1130 if (is_dl_boosted(dl_se)) 1131 goto unlock; 1132 1133 /* 1134 * Spurious timer due to start_dl_timer() race; or we already received 1135 * a replenishment from rt_mutex_setprio(). 1136 */ 1137 if (!dl_se->dl_throttled) 1138 goto unlock; 1139 1140 sched_clock_tick(); 1141 update_rq_clock(rq); 1142 1143 /* 1144 * If the throttle happened during sched-out; like: 1145 * 1146 * schedule() 1147 * deactivate_task() 1148 * dequeue_task_dl() 1149 * update_curr_dl() 1150 * start_dl_timer() 1151 * __dequeue_task_dl() 1152 * prev->on_rq = 0; 1153 * 1154 * We can be both throttled and !queued. Replenish the counter 1155 * but do not enqueue -- wait for our wakeup to do that. 1156 */ 1157 if (!task_on_rq_queued(p)) { 1158 replenish_dl_entity(dl_se); 1159 goto unlock; 1160 } 1161 1162 #ifdef CONFIG_SMP 1163 if (unlikely(!rq->online)) { 1164 /* 1165 * If the runqueue is no longer available, migrate the 1166 * task elsewhere. This necessarily changes rq. 1167 */ 1168 lockdep_unpin_lock(__rq_lockp(rq), rf.cookie); 1169 rq = dl_task_offline_migration(rq, p); 1170 rf.cookie = lockdep_pin_lock(__rq_lockp(rq)); 1171 update_rq_clock(rq); 1172 1173 /* 1174 * Now that the task has been migrated to the new RQ and we 1175 * have that locked, proceed as normal and enqueue the task 1176 * there. 1177 */ 1178 } 1179 #endif 1180 1181 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 1182 if (dl_task(rq->curr)) 1183 check_preempt_curr_dl(rq, p, 0); 1184 else 1185 resched_curr(rq); 1186 1187 #ifdef CONFIG_SMP 1188 /* 1189 * Queueing this task back might have overloaded rq, check if we need 1190 * to kick someone away. 1191 */ 1192 if (has_pushable_dl_tasks(rq)) { 1193 /* 1194 * Nothing relies on rq->lock after this, so its safe to drop 1195 * rq->lock. 1196 */ 1197 rq_unpin_lock(rq, &rf); 1198 push_dl_task(rq); 1199 rq_repin_lock(rq, &rf); 1200 } 1201 #endif 1202 1203 unlock: 1204 task_rq_unlock(rq, p, &rf); 1205 1206 /* 1207 * This can free the task_struct, including this hrtimer, do not touch 1208 * anything related to that after this. 1209 */ 1210 put_task_struct(p); 1211 1212 return HRTIMER_NORESTART; 1213 } 1214 1215 void init_dl_task_timer(struct sched_dl_entity *dl_se) 1216 { 1217 struct hrtimer *timer = &dl_se->dl_timer; 1218 1219 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1220 timer->function = dl_task_timer; 1221 } 1222 1223 /* 1224 * During the activation, CBS checks if it can reuse the current task's 1225 * runtime and period. If the deadline of the task is in the past, CBS 1226 * cannot use the runtime, and so it replenishes the task. This rule 1227 * works fine for implicit deadline tasks (deadline == period), and the 1228 * CBS was designed for implicit deadline tasks. However, a task with 1229 * constrained deadline (deadline < period) might be awakened after the 1230 * deadline, but before the next period. In this case, replenishing the 1231 * task would allow it to run for runtime / deadline. As in this case 1232 * deadline < period, CBS enables a task to run for more than the 1233 * runtime / period. In a very loaded system, this can cause a domino 1234 * effect, making other tasks miss their deadlines. 1235 * 1236 * To avoid this problem, in the activation of a constrained deadline 1237 * task after the deadline but before the next period, throttle the 1238 * task and set the replenishing timer to the begin of the next period, 1239 * unless it is boosted. 1240 */ 1241 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) 1242 { 1243 struct task_struct *p = dl_task_of(dl_se); 1244 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se)); 1245 1246 if (dl_time_before(dl_se->deadline, rq_clock(rq)) && 1247 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) { 1248 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p))) 1249 return; 1250 dl_se->dl_throttled = 1; 1251 if (dl_se->runtime > 0) 1252 dl_se->runtime = 0; 1253 } 1254 } 1255 1256 static 1257 int dl_runtime_exceeded(struct sched_dl_entity *dl_se) 1258 { 1259 return (dl_se->runtime <= 0); 1260 } 1261 1262 /* 1263 * This function implements the GRUB accounting rule: 1264 * according to the GRUB reclaiming algorithm, the runtime is 1265 * not decreased as "dq = -dt", but as 1266 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt", 1267 * where u is the utilization of the task, Umax is the maximum reclaimable 1268 * utilization, Uinact is the (per-runqueue) inactive utilization, computed 1269 * as the difference between the "total runqueue utilization" and the 1270 * runqueue active utilization, and Uextra is the (per runqueue) extra 1271 * reclaimable utilization. 1272 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations 1273 * multiplied by 2^BW_SHIFT, the result has to be shifted right by 1274 * BW_SHIFT. 1275 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, 1276 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT. 1277 * Since delta is a 64 bit variable, to have an overflow its value 1278 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds. 1279 * So, overflow is not an issue here. 1280 */ 1281 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se) 1282 { 1283 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */ 1284 u64 u_act; 1285 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT; 1286 1287 /* 1288 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)}, 1289 * we compare u_inact + rq->dl.extra_bw with 1290 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because 1291 * u_inact + rq->dl.extra_bw can be larger than 1292 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative 1293 * leading to wrong results) 1294 */ 1295 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min) 1296 u_act = u_act_min; 1297 else 1298 u_act = BW_UNIT - u_inact - rq->dl.extra_bw; 1299 1300 return (delta * u_act) >> BW_SHIFT; 1301 } 1302 1303 /* 1304 * Update the current task's runtime statistics (provided it is still 1305 * a -deadline task and has not been removed from the dl_rq). 1306 */ 1307 static void update_curr_dl(struct rq *rq) 1308 { 1309 struct task_struct *curr = rq->curr; 1310 struct sched_dl_entity *dl_se = &curr->dl; 1311 u64 delta_exec, scaled_delta_exec; 1312 int cpu = cpu_of(rq); 1313 u64 now; 1314 1315 if (!dl_task(curr) || !on_dl_rq(dl_se)) 1316 return; 1317 1318 /* 1319 * Consumed budget is computed considering the time as 1320 * observed by schedulable tasks (excluding time spent 1321 * in hardirq context, etc.). Deadlines are instead 1322 * computed using hard walltime. This seems to be the more 1323 * natural solution, but the full ramifications of this 1324 * approach need further study. 1325 */ 1326 now = rq_clock_task(rq); 1327 delta_exec = now - curr->se.exec_start; 1328 if (unlikely((s64)delta_exec <= 0)) { 1329 if (unlikely(dl_se->dl_yielded)) 1330 goto throttle; 1331 return; 1332 } 1333 1334 schedstat_set(curr->stats.exec_max, 1335 max(curr->stats.exec_max, delta_exec)); 1336 1337 trace_sched_stat_runtime(curr, delta_exec, 0); 1338 1339 update_current_exec_runtime(curr, now, delta_exec); 1340 1341 if (dl_entity_is_special(dl_se)) 1342 return; 1343 1344 /* 1345 * For tasks that participate in GRUB, we implement GRUB-PA: the 1346 * spare reclaimed bandwidth is used to clock down frequency. 1347 * 1348 * For the others, we still need to scale reservation parameters 1349 * according to current frequency and CPU maximum capacity. 1350 */ 1351 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) { 1352 scaled_delta_exec = grub_reclaim(delta_exec, 1353 rq, 1354 &curr->dl); 1355 } else { 1356 unsigned long scale_freq = arch_scale_freq_capacity(cpu); 1357 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu); 1358 1359 scaled_delta_exec = cap_scale(delta_exec, scale_freq); 1360 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu); 1361 } 1362 1363 dl_se->runtime -= scaled_delta_exec; 1364 1365 throttle: 1366 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) { 1367 dl_se->dl_throttled = 1; 1368 1369 /* If requested, inform the user about runtime overruns. */ 1370 if (dl_runtime_exceeded(dl_se) && 1371 (dl_se->flags & SCHED_FLAG_DL_OVERRUN)) 1372 dl_se->dl_overrun = 1; 1373 1374 __dequeue_task_dl(rq, curr, 0); 1375 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr))) 1376 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); 1377 1378 if (!is_leftmost(curr, &rq->dl)) 1379 resched_curr(rq); 1380 } 1381 1382 /* 1383 * Because -- for now -- we share the rt bandwidth, we need to 1384 * account our runtime there too, otherwise actual rt tasks 1385 * would be able to exceed the shared quota. 1386 * 1387 * Account to the root rt group for now. 1388 * 1389 * The solution we're working towards is having the RT groups scheduled 1390 * using deadline servers -- however there's a few nasties to figure 1391 * out before that can happen. 1392 */ 1393 if (rt_bandwidth_enabled()) { 1394 struct rt_rq *rt_rq = &rq->rt; 1395 1396 raw_spin_lock(&rt_rq->rt_runtime_lock); 1397 /* 1398 * We'll let actual RT tasks worry about the overflow here, we 1399 * have our own CBS to keep us inline; only account when RT 1400 * bandwidth is relevant. 1401 */ 1402 if (sched_rt_bandwidth_account(rt_rq)) 1403 rt_rq->rt_time += delta_exec; 1404 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1405 } 1406 } 1407 1408 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer) 1409 { 1410 struct sched_dl_entity *dl_se = container_of(timer, 1411 struct sched_dl_entity, 1412 inactive_timer); 1413 struct task_struct *p = dl_task_of(dl_se); 1414 struct rq_flags rf; 1415 struct rq *rq; 1416 1417 rq = task_rq_lock(p, &rf); 1418 1419 sched_clock_tick(); 1420 update_rq_clock(rq); 1421 1422 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) { 1423 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1424 1425 if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) { 1426 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl)); 1427 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl)); 1428 dl_se->dl_non_contending = 0; 1429 } 1430 1431 raw_spin_lock(&dl_b->lock); 1432 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 1433 raw_spin_unlock(&dl_b->lock); 1434 __dl_clear_params(p); 1435 1436 goto unlock; 1437 } 1438 if (dl_se->dl_non_contending == 0) 1439 goto unlock; 1440 1441 sub_running_bw(dl_se, &rq->dl); 1442 dl_se->dl_non_contending = 0; 1443 unlock: 1444 task_rq_unlock(rq, p, &rf); 1445 put_task_struct(p); 1446 1447 return HRTIMER_NORESTART; 1448 } 1449 1450 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se) 1451 { 1452 struct hrtimer *timer = &dl_se->inactive_timer; 1453 1454 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1455 timer->function = inactive_task_timer; 1456 } 1457 1458 #define __node_2_dle(node) \ 1459 rb_entry((node), struct sched_dl_entity, rb_node) 1460 1461 #ifdef CONFIG_SMP 1462 1463 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1464 { 1465 struct rq *rq = rq_of_dl_rq(dl_rq); 1466 1467 if (dl_rq->earliest_dl.curr == 0 || 1468 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 1469 if (dl_rq->earliest_dl.curr == 0) 1470 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER); 1471 dl_rq->earliest_dl.curr = deadline; 1472 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline); 1473 } 1474 } 1475 1476 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1477 { 1478 struct rq *rq = rq_of_dl_rq(dl_rq); 1479 1480 /* 1481 * Since we may have removed our earliest (and/or next earliest) 1482 * task we must recompute them. 1483 */ 1484 if (!dl_rq->dl_nr_running) { 1485 dl_rq->earliest_dl.curr = 0; 1486 dl_rq->earliest_dl.next = 0; 1487 cpudl_clear(&rq->rd->cpudl, rq->cpu); 1488 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 1489 } else { 1490 struct rb_node *leftmost = rb_first_cached(&dl_rq->root); 1491 struct sched_dl_entity *entry = __node_2_dle(leftmost); 1492 1493 dl_rq->earliest_dl.curr = entry->deadline; 1494 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline); 1495 } 1496 } 1497 1498 #else 1499 1500 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1501 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1502 1503 #endif /* CONFIG_SMP */ 1504 1505 static inline 1506 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1507 { 1508 int prio = dl_task_of(dl_se)->prio; 1509 u64 deadline = dl_se->deadline; 1510 1511 WARN_ON(!dl_prio(prio)); 1512 dl_rq->dl_nr_running++; 1513 add_nr_running(rq_of_dl_rq(dl_rq), 1); 1514 1515 inc_dl_deadline(dl_rq, deadline); 1516 inc_dl_migration(dl_se, dl_rq); 1517 } 1518 1519 static inline 1520 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1521 { 1522 int prio = dl_task_of(dl_se)->prio; 1523 1524 WARN_ON(!dl_prio(prio)); 1525 WARN_ON(!dl_rq->dl_nr_running); 1526 dl_rq->dl_nr_running--; 1527 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 1528 1529 dec_dl_deadline(dl_rq, dl_se->deadline); 1530 dec_dl_migration(dl_se, dl_rq); 1531 } 1532 1533 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b) 1534 { 1535 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline); 1536 } 1537 1538 static inline struct sched_statistics * 1539 __schedstats_from_dl_se(struct sched_dl_entity *dl_se) 1540 { 1541 return &dl_task_of(dl_se)->stats; 1542 } 1543 1544 static inline void 1545 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1546 { 1547 struct sched_statistics *stats; 1548 1549 if (!schedstat_enabled()) 1550 return; 1551 1552 stats = __schedstats_from_dl_se(dl_se); 1553 __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1554 } 1555 1556 static inline void 1557 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1558 { 1559 struct sched_statistics *stats; 1560 1561 if (!schedstat_enabled()) 1562 return; 1563 1564 stats = __schedstats_from_dl_se(dl_se); 1565 __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1566 } 1567 1568 static inline void 1569 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1570 { 1571 struct sched_statistics *stats; 1572 1573 if (!schedstat_enabled()) 1574 return; 1575 1576 stats = __schedstats_from_dl_se(dl_se); 1577 __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1578 } 1579 1580 static inline void 1581 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 1582 int flags) 1583 { 1584 if (!schedstat_enabled()) 1585 return; 1586 1587 if (flags & ENQUEUE_WAKEUP) 1588 update_stats_enqueue_sleeper_dl(dl_rq, dl_se); 1589 } 1590 1591 static inline void 1592 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 1593 int flags) 1594 { 1595 struct task_struct *p = dl_task_of(dl_se); 1596 1597 if (!schedstat_enabled()) 1598 return; 1599 1600 if ((flags & DEQUEUE_SLEEP)) { 1601 unsigned int state; 1602 1603 state = READ_ONCE(p->__state); 1604 if (state & TASK_INTERRUPTIBLE) 1605 __schedstat_set(p->stats.sleep_start, 1606 rq_clock(rq_of_dl_rq(dl_rq))); 1607 1608 if (state & TASK_UNINTERRUPTIBLE) 1609 __schedstat_set(p->stats.block_start, 1610 rq_clock(rq_of_dl_rq(dl_rq))); 1611 } 1612 } 1613 1614 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 1615 { 1616 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1617 1618 WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node)); 1619 1620 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less); 1621 1622 inc_dl_tasks(dl_se, dl_rq); 1623 } 1624 1625 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 1626 { 1627 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1628 1629 if (RB_EMPTY_NODE(&dl_se->rb_node)) 1630 return; 1631 1632 rb_erase_cached(&dl_se->rb_node, &dl_rq->root); 1633 1634 RB_CLEAR_NODE(&dl_se->rb_node); 1635 1636 dec_dl_tasks(dl_se, dl_rq); 1637 } 1638 1639 static void 1640 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags) 1641 { 1642 WARN_ON_ONCE(on_dl_rq(dl_se)); 1643 1644 update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags); 1645 1646 /* 1647 * If this is a wakeup or a new instance, the scheduling 1648 * parameters of the task might need updating. Otherwise, 1649 * we want a replenishment of its runtime. 1650 */ 1651 if (flags & ENQUEUE_WAKEUP) { 1652 task_contending(dl_se, flags); 1653 update_dl_entity(dl_se); 1654 } else if (flags & ENQUEUE_REPLENISH) { 1655 replenish_dl_entity(dl_se); 1656 } else if ((flags & ENQUEUE_RESTORE) && 1657 dl_time_before(dl_se->deadline, 1658 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) { 1659 setup_new_dl_entity(dl_se); 1660 } 1661 1662 __enqueue_dl_entity(dl_se); 1663 } 1664 1665 static void dequeue_dl_entity(struct sched_dl_entity *dl_se) 1666 { 1667 __dequeue_dl_entity(dl_se); 1668 } 1669 1670 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1671 { 1672 if (is_dl_boosted(&p->dl)) { 1673 /* 1674 * Because of delays in the detection of the overrun of a 1675 * thread's runtime, it might be the case that a thread 1676 * goes to sleep in a rt mutex with negative runtime. As 1677 * a consequence, the thread will be throttled. 1678 * 1679 * While waiting for the mutex, this thread can also be 1680 * boosted via PI, resulting in a thread that is throttled 1681 * and boosted at the same time. 1682 * 1683 * In this case, the boost overrides the throttle. 1684 */ 1685 if (p->dl.dl_throttled) { 1686 /* 1687 * The replenish timer needs to be canceled. No 1688 * problem if it fires concurrently: boosted threads 1689 * are ignored in dl_task_timer(). 1690 */ 1691 hrtimer_try_to_cancel(&p->dl.dl_timer); 1692 p->dl.dl_throttled = 0; 1693 } 1694 } else if (!dl_prio(p->normal_prio)) { 1695 /* 1696 * Special case in which we have a !SCHED_DEADLINE task that is going 1697 * to be deboosted, but exceeds its runtime while doing so. No point in 1698 * replenishing it, as it's going to return back to its original 1699 * scheduling class after this. If it has been throttled, we need to 1700 * clear the flag, otherwise the task may wake up as throttled after 1701 * being boosted again with no means to replenish the runtime and clear 1702 * the throttle. 1703 */ 1704 p->dl.dl_throttled = 0; 1705 if (!(flags & ENQUEUE_REPLENISH)) 1706 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n", 1707 task_pid_nr(p)); 1708 1709 return; 1710 } 1711 1712 /* 1713 * Check if a constrained deadline task was activated 1714 * after the deadline but before the next period. 1715 * If that is the case, the task will be throttled and 1716 * the replenishment timer will be set to the next period. 1717 */ 1718 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl)) 1719 dl_check_constrained_dl(&p->dl); 1720 1721 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) { 1722 add_rq_bw(&p->dl, &rq->dl); 1723 add_running_bw(&p->dl, &rq->dl); 1724 } 1725 1726 /* 1727 * If p is throttled, we do not enqueue it. In fact, if it exhausted 1728 * its budget it needs a replenishment and, since it now is on 1729 * its rq, the bandwidth timer callback (which clearly has not 1730 * run yet) will take care of this. 1731 * However, the active utilization does not depend on the fact 1732 * that the task is on the runqueue or not (but depends on the 1733 * task's state - in GRUB parlance, "inactive" vs "active contending"). 1734 * In other words, even if a task is throttled its utilization must 1735 * be counted in the active utilization; hence, we need to call 1736 * add_running_bw(). 1737 */ 1738 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) { 1739 if (flags & ENQUEUE_WAKEUP) 1740 task_contending(&p->dl, flags); 1741 1742 return; 1743 } 1744 1745 check_schedstat_required(); 1746 update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl); 1747 1748 enqueue_dl_entity(&p->dl, flags); 1749 1750 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1751 enqueue_pushable_dl_task(rq, p); 1752 } 1753 1754 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1755 { 1756 update_stats_dequeue_dl(&rq->dl, &p->dl, flags); 1757 dequeue_dl_entity(&p->dl); 1758 dequeue_pushable_dl_task(rq, p); 1759 } 1760 1761 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1762 { 1763 update_curr_dl(rq); 1764 __dequeue_task_dl(rq, p, flags); 1765 1766 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) { 1767 sub_running_bw(&p->dl, &rq->dl); 1768 sub_rq_bw(&p->dl, &rq->dl); 1769 } 1770 1771 /* 1772 * This check allows to start the inactive timer (or to immediately 1773 * decrease the active utilization, if needed) in two cases: 1774 * when the task blocks and when it is terminating 1775 * (p->state == TASK_DEAD). We can handle the two cases in the same 1776 * way, because from GRUB's point of view the same thing is happening 1777 * (the task moves from "active contending" to "active non contending" 1778 * or "inactive") 1779 */ 1780 if (flags & DEQUEUE_SLEEP) 1781 task_non_contending(p); 1782 } 1783 1784 /* 1785 * Yield task semantic for -deadline tasks is: 1786 * 1787 * get off from the CPU until our next instance, with 1788 * a new runtime. This is of little use now, since we 1789 * don't have a bandwidth reclaiming mechanism. Anyway, 1790 * bandwidth reclaiming is planned for the future, and 1791 * yield_task_dl will indicate that some spare budget 1792 * is available for other task instances to use it. 1793 */ 1794 static void yield_task_dl(struct rq *rq) 1795 { 1796 /* 1797 * We make the task go to sleep until its current deadline by 1798 * forcing its runtime to zero. This way, update_curr_dl() stops 1799 * it and the bandwidth timer will wake it up and will give it 1800 * new scheduling parameters (thanks to dl_yielded=1). 1801 */ 1802 rq->curr->dl.dl_yielded = 1; 1803 1804 update_rq_clock(rq); 1805 update_curr_dl(rq); 1806 /* 1807 * Tell update_rq_clock() that we've just updated, 1808 * so we don't do microscopic update in schedule() 1809 * and double the fastpath cost. 1810 */ 1811 rq_clock_skip_update(rq); 1812 } 1813 1814 #ifdef CONFIG_SMP 1815 1816 static inline bool dl_task_is_earliest_deadline(struct task_struct *p, 1817 struct rq *rq) 1818 { 1819 return (!rq->dl.dl_nr_running || 1820 dl_time_before(p->dl.deadline, 1821 rq->dl.earliest_dl.curr)); 1822 } 1823 1824 static int find_later_rq(struct task_struct *task); 1825 1826 static int 1827 select_task_rq_dl(struct task_struct *p, int cpu, int flags) 1828 { 1829 struct task_struct *curr; 1830 bool select_rq; 1831 struct rq *rq; 1832 1833 if (!(flags & WF_TTWU)) 1834 goto out; 1835 1836 rq = cpu_rq(cpu); 1837 1838 rcu_read_lock(); 1839 curr = READ_ONCE(rq->curr); /* unlocked access */ 1840 1841 /* 1842 * If we are dealing with a -deadline task, we must 1843 * decide where to wake it up. 1844 * If it has a later deadline and the current task 1845 * on this rq can't move (provided the waking task 1846 * can!) we prefer to send it somewhere else. On the 1847 * other hand, if it has a shorter deadline, we 1848 * try to make it stay here, it might be important. 1849 */ 1850 select_rq = unlikely(dl_task(curr)) && 1851 (curr->nr_cpus_allowed < 2 || 1852 !dl_entity_preempt(&p->dl, &curr->dl)) && 1853 p->nr_cpus_allowed > 1; 1854 1855 /* 1856 * Take the capacity of the CPU into account to 1857 * ensure it fits the requirement of the task. 1858 */ 1859 if (sched_asym_cpucap_active()) 1860 select_rq |= !dl_task_fits_capacity(p, cpu); 1861 1862 if (select_rq) { 1863 int target = find_later_rq(p); 1864 1865 if (target != -1 && 1866 dl_task_is_earliest_deadline(p, cpu_rq(target))) 1867 cpu = target; 1868 } 1869 rcu_read_unlock(); 1870 1871 out: 1872 return cpu; 1873 } 1874 1875 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused) 1876 { 1877 struct rq_flags rf; 1878 struct rq *rq; 1879 1880 if (READ_ONCE(p->__state) != TASK_WAKING) 1881 return; 1882 1883 rq = task_rq(p); 1884 /* 1885 * Since p->state == TASK_WAKING, set_task_cpu() has been called 1886 * from try_to_wake_up(). Hence, p->pi_lock is locked, but 1887 * rq->lock is not... So, lock it 1888 */ 1889 rq_lock(rq, &rf); 1890 if (p->dl.dl_non_contending) { 1891 update_rq_clock(rq); 1892 sub_running_bw(&p->dl, &rq->dl); 1893 p->dl.dl_non_contending = 0; 1894 /* 1895 * If the timer handler is currently running and the 1896 * timer cannot be canceled, inactive_task_timer() 1897 * will see that dl_not_contending is not set, and 1898 * will not touch the rq's active utilization, 1899 * so we are still safe. 1900 */ 1901 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 1902 put_task_struct(p); 1903 } 1904 sub_rq_bw(&p->dl, &rq->dl); 1905 rq_unlock(rq, &rf); 1906 } 1907 1908 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 1909 { 1910 /* 1911 * Current can't be migrated, useless to reschedule, 1912 * let's hope p can move out. 1913 */ 1914 if (rq->curr->nr_cpus_allowed == 1 || 1915 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL)) 1916 return; 1917 1918 /* 1919 * p is migratable, so let's not schedule it and 1920 * see if it is pushed or pulled somewhere else. 1921 */ 1922 if (p->nr_cpus_allowed != 1 && 1923 cpudl_find(&rq->rd->cpudl, p, NULL)) 1924 return; 1925 1926 resched_curr(rq); 1927 } 1928 1929 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1930 { 1931 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) { 1932 /* 1933 * This is OK, because current is on_cpu, which avoids it being 1934 * picked for load-balance and preemption/IRQs are still 1935 * disabled avoiding further scheduler activity on it and we've 1936 * not yet started the picking loop. 1937 */ 1938 rq_unpin_lock(rq, rf); 1939 pull_dl_task(rq); 1940 rq_repin_lock(rq, rf); 1941 } 1942 1943 return sched_stop_runnable(rq) || sched_dl_runnable(rq); 1944 } 1945 #endif /* CONFIG_SMP */ 1946 1947 /* 1948 * Only called when both the current and waking task are -deadline 1949 * tasks. 1950 */ 1951 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 1952 int flags) 1953 { 1954 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { 1955 resched_curr(rq); 1956 return; 1957 } 1958 1959 #ifdef CONFIG_SMP 1960 /* 1961 * In the unlikely case current and p have the same deadline 1962 * let us try to decide what's the best thing to do... 1963 */ 1964 if ((p->dl.deadline == rq->curr->dl.deadline) && 1965 !test_tsk_need_resched(rq->curr)) 1966 check_preempt_equal_dl(rq, p); 1967 #endif /* CONFIG_SMP */ 1968 } 1969 1970 #ifdef CONFIG_SCHED_HRTICK 1971 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1972 { 1973 hrtick_start(rq, p->dl.runtime); 1974 } 1975 #else /* !CONFIG_SCHED_HRTICK */ 1976 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1977 { 1978 } 1979 #endif 1980 1981 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first) 1982 { 1983 struct sched_dl_entity *dl_se = &p->dl; 1984 struct dl_rq *dl_rq = &rq->dl; 1985 1986 p->se.exec_start = rq_clock_task(rq); 1987 if (on_dl_rq(&p->dl)) 1988 update_stats_wait_end_dl(dl_rq, dl_se); 1989 1990 /* You can't push away the running task */ 1991 dequeue_pushable_dl_task(rq, p); 1992 1993 if (!first) 1994 return; 1995 1996 if (hrtick_enabled_dl(rq)) 1997 start_hrtick_dl(rq, p); 1998 1999 if (rq->curr->sched_class != &dl_sched_class) 2000 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2001 2002 deadline_queue_push_tasks(rq); 2003 } 2004 2005 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq) 2006 { 2007 struct rb_node *left = rb_first_cached(&dl_rq->root); 2008 2009 if (!left) 2010 return NULL; 2011 2012 return __node_2_dle(left); 2013 } 2014 2015 static struct task_struct *pick_task_dl(struct rq *rq) 2016 { 2017 struct sched_dl_entity *dl_se; 2018 struct dl_rq *dl_rq = &rq->dl; 2019 struct task_struct *p; 2020 2021 if (!sched_dl_runnable(rq)) 2022 return NULL; 2023 2024 dl_se = pick_next_dl_entity(dl_rq); 2025 WARN_ON_ONCE(!dl_se); 2026 p = dl_task_of(dl_se); 2027 2028 return p; 2029 } 2030 2031 static struct task_struct *pick_next_task_dl(struct rq *rq) 2032 { 2033 struct task_struct *p; 2034 2035 p = pick_task_dl(rq); 2036 if (p) 2037 set_next_task_dl(rq, p, true); 2038 2039 return p; 2040 } 2041 2042 static void put_prev_task_dl(struct rq *rq, struct task_struct *p) 2043 { 2044 struct sched_dl_entity *dl_se = &p->dl; 2045 struct dl_rq *dl_rq = &rq->dl; 2046 2047 if (on_dl_rq(&p->dl)) 2048 update_stats_wait_start_dl(dl_rq, dl_se); 2049 2050 update_curr_dl(rq); 2051 2052 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2053 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 2054 enqueue_pushable_dl_task(rq, p); 2055 } 2056 2057 /* 2058 * scheduler tick hitting a task of our scheduling class. 2059 * 2060 * NOTE: This function can be called remotely by the tick offload that 2061 * goes along full dynticks. Therefore no local assumption can be made 2062 * and everything must be accessed through the @rq and @curr passed in 2063 * parameters. 2064 */ 2065 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 2066 { 2067 update_curr_dl(rq); 2068 2069 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2070 /* 2071 * Even when we have runtime, update_curr_dl() might have resulted in us 2072 * not being the leftmost task anymore. In that case NEED_RESCHED will 2073 * be set and schedule() will start a new hrtick for the next task. 2074 */ 2075 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 && 2076 is_leftmost(p, &rq->dl)) 2077 start_hrtick_dl(rq, p); 2078 } 2079 2080 static void task_fork_dl(struct task_struct *p) 2081 { 2082 /* 2083 * SCHED_DEADLINE tasks cannot fork and this is achieved through 2084 * sched_fork() 2085 */ 2086 } 2087 2088 #ifdef CONFIG_SMP 2089 2090 /* Only try algorithms three times */ 2091 #define DL_MAX_TRIES 3 2092 2093 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) 2094 { 2095 if (!task_on_cpu(rq, p) && 2096 cpumask_test_cpu(cpu, &p->cpus_mask)) 2097 return 1; 2098 return 0; 2099 } 2100 2101 /* 2102 * Return the earliest pushable rq's task, which is suitable to be executed 2103 * on the CPU, NULL otherwise: 2104 */ 2105 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) 2106 { 2107 struct task_struct *p = NULL; 2108 struct rb_node *next_node; 2109 2110 if (!has_pushable_dl_tasks(rq)) 2111 return NULL; 2112 2113 next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root); 2114 2115 next_node: 2116 if (next_node) { 2117 p = __node_2_pdl(next_node); 2118 2119 if (pick_dl_task(rq, p, cpu)) 2120 return p; 2121 2122 next_node = rb_next(next_node); 2123 goto next_node; 2124 } 2125 2126 return NULL; 2127 } 2128 2129 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 2130 2131 static int find_later_rq(struct task_struct *task) 2132 { 2133 struct sched_domain *sd; 2134 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 2135 int this_cpu = smp_processor_id(); 2136 int cpu = task_cpu(task); 2137 2138 /* Make sure the mask is initialized first */ 2139 if (unlikely(!later_mask)) 2140 return -1; 2141 2142 if (task->nr_cpus_allowed == 1) 2143 return -1; 2144 2145 /* 2146 * We have to consider system topology and task affinity 2147 * first, then we can look for a suitable CPU. 2148 */ 2149 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask)) 2150 return -1; 2151 2152 /* 2153 * If we are here, some targets have been found, including 2154 * the most suitable which is, among the runqueues where the 2155 * current tasks have later deadlines than the task's one, the 2156 * rq with the latest possible one. 2157 * 2158 * Now we check how well this matches with task's 2159 * affinity and system topology. 2160 * 2161 * The last CPU where the task run is our first 2162 * guess, since it is most likely cache-hot there. 2163 */ 2164 if (cpumask_test_cpu(cpu, later_mask)) 2165 return cpu; 2166 /* 2167 * Check if this_cpu is to be skipped (i.e., it is 2168 * not in the mask) or not. 2169 */ 2170 if (!cpumask_test_cpu(this_cpu, later_mask)) 2171 this_cpu = -1; 2172 2173 rcu_read_lock(); 2174 for_each_domain(cpu, sd) { 2175 if (sd->flags & SD_WAKE_AFFINE) { 2176 int best_cpu; 2177 2178 /* 2179 * If possible, preempting this_cpu is 2180 * cheaper than migrating. 2181 */ 2182 if (this_cpu != -1 && 2183 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 2184 rcu_read_unlock(); 2185 return this_cpu; 2186 } 2187 2188 best_cpu = cpumask_any_and_distribute(later_mask, 2189 sched_domain_span(sd)); 2190 /* 2191 * Last chance: if a CPU being in both later_mask 2192 * and current sd span is valid, that becomes our 2193 * choice. Of course, the latest possible CPU is 2194 * already under consideration through later_mask. 2195 */ 2196 if (best_cpu < nr_cpu_ids) { 2197 rcu_read_unlock(); 2198 return best_cpu; 2199 } 2200 } 2201 } 2202 rcu_read_unlock(); 2203 2204 /* 2205 * At this point, all our guesses failed, we just return 2206 * 'something', and let the caller sort the things out. 2207 */ 2208 if (this_cpu != -1) 2209 return this_cpu; 2210 2211 cpu = cpumask_any_distribute(later_mask); 2212 if (cpu < nr_cpu_ids) 2213 return cpu; 2214 2215 return -1; 2216 } 2217 2218 /* Locks the rq it finds */ 2219 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 2220 { 2221 struct rq *later_rq = NULL; 2222 int tries; 2223 int cpu; 2224 2225 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 2226 cpu = find_later_rq(task); 2227 2228 if ((cpu == -1) || (cpu == rq->cpu)) 2229 break; 2230 2231 later_rq = cpu_rq(cpu); 2232 2233 if (!dl_task_is_earliest_deadline(task, later_rq)) { 2234 /* 2235 * Target rq has tasks of equal or earlier deadline, 2236 * retrying does not release any lock and is unlikely 2237 * to yield a different result. 2238 */ 2239 later_rq = NULL; 2240 break; 2241 } 2242 2243 /* Retry if something changed. */ 2244 if (double_lock_balance(rq, later_rq)) { 2245 if (unlikely(task_rq(task) != rq || 2246 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) || 2247 task_on_cpu(rq, task) || 2248 !dl_task(task) || 2249 !task_on_rq_queued(task))) { 2250 double_unlock_balance(rq, later_rq); 2251 later_rq = NULL; 2252 break; 2253 } 2254 } 2255 2256 /* 2257 * If the rq we found has no -deadline task, or 2258 * its earliest one has a later deadline than our 2259 * task, the rq is a good one. 2260 */ 2261 if (dl_task_is_earliest_deadline(task, later_rq)) 2262 break; 2263 2264 /* Otherwise we try again. */ 2265 double_unlock_balance(rq, later_rq); 2266 later_rq = NULL; 2267 } 2268 2269 return later_rq; 2270 } 2271 2272 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 2273 { 2274 struct task_struct *p; 2275 2276 if (!has_pushable_dl_tasks(rq)) 2277 return NULL; 2278 2279 p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root)); 2280 2281 WARN_ON_ONCE(rq->cpu != task_cpu(p)); 2282 WARN_ON_ONCE(task_current(rq, p)); 2283 WARN_ON_ONCE(p->nr_cpus_allowed <= 1); 2284 2285 WARN_ON_ONCE(!task_on_rq_queued(p)); 2286 WARN_ON_ONCE(!dl_task(p)); 2287 2288 return p; 2289 } 2290 2291 /* 2292 * See if the non running -deadline tasks on this rq 2293 * can be sent to some other CPU where they can preempt 2294 * and start executing. 2295 */ 2296 static int push_dl_task(struct rq *rq) 2297 { 2298 struct task_struct *next_task; 2299 struct rq *later_rq; 2300 int ret = 0; 2301 2302 if (!rq->dl.overloaded) 2303 return 0; 2304 2305 next_task = pick_next_pushable_dl_task(rq); 2306 if (!next_task) 2307 return 0; 2308 2309 retry: 2310 /* 2311 * If next_task preempts rq->curr, and rq->curr 2312 * can move away, it makes sense to just reschedule 2313 * without going further in pushing next_task. 2314 */ 2315 if (dl_task(rq->curr) && 2316 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && 2317 rq->curr->nr_cpus_allowed > 1) { 2318 resched_curr(rq); 2319 return 0; 2320 } 2321 2322 if (is_migration_disabled(next_task)) 2323 return 0; 2324 2325 if (WARN_ON(next_task == rq->curr)) 2326 return 0; 2327 2328 /* We might release rq lock */ 2329 get_task_struct(next_task); 2330 2331 /* Will lock the rq it'll find */ 2332 later_rq = find_lock_later_rq(next_task, rq); 2333 if (!later_rq) { 2334 struct task_struct *task; 2335 2336 /* 2337 * We must check all this again, since 2338 * find_lock_later_rq releases rq->lock and it is 2339 * then possible that next_task has migrated. 2340 */ 2341 task = pick_next_pushable_dl_task(rq); 2342 if (task == next_task) { 2343 /* 2344 * The task is still there. We don't try 2345 * again, some other CPU will pull it when ready. 2346 */ 2347 goto out; 2348 } 2349 2350 if (!task) 2351 /* No more tasks */ 2352 goto out; 2353 2354 put_task_struct(next_task); 2355 next_task = task; 2356 goto retry; 2357 } 2358 2359 deactivate_task(rq, next_task, 0); 2360 set_task_cpu(next_task, later_rq->cpu); 2361 activate_task(later_rq, next_task, 0); 2362 ret = 1; 2363 2364 resched_curr(later_rq); 2365 2366 double_unlock_balance(rq, later_rq); 2367 2368 out: 2369 put_task_struct(next_task); 2370 2371 return ret; 2372 } 2373 2374 static void push_dl_tasks(struct rq *rq) 2375 { 2376 /* push_dl_task() will return true if it moved a -deadline task */ 2377 while (push_dl_task(rq)) 2378 ; 2379 } 2380 2381 static void pull_dl_task(struct rq *this_rq) 2382 { 2383 int this_cpu = this_rq->cpu, cpu; 2384 struct task_struct *p, *push_task; 2385 bool resched = false; 2386 struct rq *src_rq; 2387 u64 dmin = LONG_MAX; 2388 2389 if (likely(!dl_overloaded(this_rq))) 2390 return; 2391 2392 /* 2393 * Match the barrier from dl_set_overloaded; this guarantees that if we 2394 * see overloaded we must also see the dlo_mask bit. 2395 */ 2396 smp_rmb(); 2397 2398 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 2399 if (this_cpu == cpu) 2400 continue; 2401 2402 src_rq = cpu_rq(cpu); 2403 2404 /* 2405 * It looks racy, abd it is! However, as in sched_rt.c, 2406 * we are fine with this. 2407 */ 2408 if (this_rq->dl.dl_nr_running && 2409 dl_time_before(this_rq->dl.earliest_dl.curr, 2410 src_rq->dl.earliest_dl.next)) 2411 continue; 2412 2413 /* Might drop this_rq->lock */ 2414 push_task = NULL; 2415 double_lock_balance(this_rq, src_rq); 2416 2417 /* 2418 * If there are no more pullable tasks on the 2419 * rq, we're done with it. 2420 */ 2421 if (src_rq->dl.dl_nr_running <= 1) 2422 goto skip; 2423 2424 p = pick_earliest_pushable_dl_task(src_rq, this_cpu); 2425 2426 /* 2427 * We found a task to be pulled if: 2428 * - it preempts our current (if there's one), 2429 * - it will preempt the last one we pulled (if any). 2430 */ 2431 if (p && dl_time_before(p->dl.deadline, dmin) && 2432 dl_task_is_earliest_deadline(p, this_rq)) { 2433 WARN_ON(p == src_rq->curr); 2434 WARN_ON(!task_on_rq_queued(p)); 2435 2436 /* 2437 * Then we pull iff p has actually an earlier 2438 * deadline than the current task of its runqueue. 2439 */ 2440 if (dl_time_before(p->dl.deadline, 2441 src_rq->curr->dl.deadline)) 2442 goto skip; 2443 2444 if (is_migration_disabled(p)) { 2445 push_task = get_push_task(src_rq); 2446 } else { 2447 deactivate_task(src_rq, p, 0); 2448 set_task_cpu(p, this_cpu); 2449 activate_task(this_rq, p, 0); 2450 dmin = p->dl.deadline; 2451 resched = true; 2452 } 2453 2454 /* Is there any other task even earlier? */ 2455 } 2456 skip: 2457 double_unlock_balance(this_rq, src_rq); 2458 2459 if (push_task) { 2460 raw_spin_rq_unlock(this_rq); 2461 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, 2462 push_task, &src_rq->push_work); 2463 raw_spin_rq_lock(this_rq); 2464 } 2465 } 2466 2467 if (resched) 2468 resched_curr(this_rq); 2469 } 2470 2471 /* 2472 * Since the task is not running and a reschedule is not going to happen 2473 * anytime soon on its runqueue, we try pushing it away now. 2474 */ 2475 static void task_woken_dl(struct rq *rq, struct task_struct *p) 2476 { 2477 if (!task_on_cpu(rq, p) && 2478 !test_tsk_need_resched(rq->curr) && 2479 p->nr_cpus_allowed > 1 && 2480 dl_task(rq->curr) && 2481 (rq->curr->nr_cpus_allowed < 2 || 2482 !dl_entity_preempt(&p->dl, &rq->curr->dl))) { 2483 push_dl_tasks(rq); 2484 } 2485 } 2486 2487 static void set_cpus_allowed_dl(struct task_struct *p, 2488 struct affinity_context *ctx) 2489 { 2490 struct root_domain *src_rd; 2491 struct rq *rq; 2492 2493 WARN_ON_ONCE(!dl_task(p)); 2494 2495 rq = task_rq(p); 2496 src_rd = rq->rd; 2497 /* 2498 * Migrating a SCHED_DEADLINE task between exclusive 2499 * cpusets (different root_domains) entails a bandwidth 2500 * update. We already made space for us in the destination 2501 * domain (see cpuset_can_attach()). 2502 */ 2503 if (!cpumask_intersects(src_rd->span, ctx->new_mask)) { 2504 struct dl_bw *src_dl_b; 2505 2506 src_dl_b = dl_bw_of(cpu_of(rq)); 2507 /* 2508 * We now free resources of the root_domain we are migrating 2509 * off. In the worst case, sched_setattr() may temporary fail 2510 * until we complete the update. 2511 */ 2512 raw_spin_lock(&src_dl_b->lock); 2513 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 2514 raw_spin_unlock(&src_dl_b->lock); 2515 } 2516 2517 set_cpus_allowed_common(p, ctx); 2518 } 2519 2520 /* Assumes rq->lock is held */ 2521 static void rq_online_dl(struct rq *rq) 2522 { 2523 if (rq->dl.overloaded) 2524 dl_set_overload(rq); 2525 2526 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu); 2527 if (rq->dl.dl_nr_running > 0) 2528 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr); 2529 } 2530 2531 /* Assumes rq->lock is held */ 2532 static void rq_offline_dl(struct rq *rq) 2533 { 2534 if (rq->dl.overloaded) 2535 dl_clear_overload(rq); 2536 2537 cpudl_clear(&rq->rd->cpudl, rq->cpu); 2538 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu); 2539 } 2540 2541 void __init init_sched_dl_class(void) 2542 { 2543 unsigned int i; 2544 2545 for_each_possible_cpu(i) 2546 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 2547 GFP_KERNEL, cpu_to_node(i)); 2548 } 2549 2550 void dl_add_task_root_domain(struct task_struct *p) 2551 { 2552 struct rq_flags rf; 2553 struct rq *rq; 2554 struct dl_bw *dl_b; 2555 2556 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2557 if (!dl_task(p)) { 2558 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 2559 return; 2560 } 2561 2562 rq = __task_rq_lock(p, &rf); 2563 2564 dl_b = &rq->rd->dl_bw; 2565 raw_spin_lock(&dl_b->lock); 2566 2567 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 2568 2569 raw_spin_unlock(&dl_b->lock); 2570 2571 task_rq_unlock(rq, p, &rf); 2572 } 2573 2574 void dl_clear_root_domain(struct root_domain *rd) 2575 { 2576 unsigned long flags; 2577 2578 raw_spin_lock_irqsave(&rd->dl_bw.lock, flags); 2579 rd->dl_bw.total_bw = 0; 2580 raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags); 2581 } 2582 2583 #endif /* CONFIG_SMP */ 2584 2585 static void switched_from_dl(struct rq *rq, struct task_struct *p) 2586 { 2587 /* 2588 * task_non_contending() can start the "inactive timer" (if the 0-lag 2589 * time is in the future). If the task switches back to dl before 2590 * the "inactive timer" fires, it can continue to consume its current 2591 * runtime using its current deadline. If it stays outside of 2592 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer() 2593 * will reset the task parameters. 2594 */ 2595 if (task_on_rq_queued(p) && p->dl.dl_runtime) 2596 task_non_contending(p); 2597 2598 if (!task_on_rq_queued(p)) { 2599 /* 2600 * Inactive timer is armed. However, p is leaving DEADLINE and 2601 * might migrate away from this rq while continuing to run on 2602 * some other class. We need to remove its contribution from 2603 * this rq running_bw now, or sub_rq_bw (below) will complain. 2604 */ 2605 if (p->dl.dl_non_contending) 2606 sub_running_bw(&p->dl, &rq->dl); 2607 sub_rq_bw(&p->dl, &rq->dl); 2608 } 2609 2610 /* 2611 * We cannot use inactive_task_timer() to invoke sub_running_bw() 2612 * at the 0-lag time, because the task could have been migrated 2613 * while SCHED_OTHER in the meanwhile. 2614 */ 2615 if (p->dl.dl_non_contending) 2616 p->dl.dl_non_contending = 0; 2617 2618 /* 2619 * Since this might be the only -deadline task on the rq, 2620 * this is the right place to try to pull some other one 2621 * from an overloaded CPU, if any. 2622 */ 2623 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 2624 return; 2625 2626 deadline_queue_pull_task(rq); 2627 } 2628 2629 /* 2630 * When switching to -deadline, we may overload the rq, then 2631 * we try to push someone off, if possible. 2632 */ 2633 static void switched_to_dl(struct rq *rq, struct task_struct *p) 2634 { 2635 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 2636 put_task_struct(p); 2637 2638 /* If p is not queued we will update its parameters at next wakeup. */ 2639 if (!task_on_rq_queued(p)) { 2640 add_rq_bw(&p->dl, &rq->dl); 2641 2642 return; 2643 } 2644 2645 if (rq->curr != p) { 2646 #ifdef CONFIG_SMP 2647 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) 2648 deadline_queue_push_tasks(rq); 2649 #endif 2650 if (dl_task(rq->curr)) 2651 check_preempt_curr_dl(rq, p, 0); 2652 else 2653 resched_curr(rq); 2654 } else { 2655 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2656 } 2657 } 2658 2659 /* 2660 * If the scheduling parameters of a -deadline task changed, 2661 * a push or pull operation might be needed. 2662 */ 2663 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 2664 int oldprio) 2665 { 2666 if (!task_on_rq_queued(p)) 2667 return; 2668 2669 #ifdef CONFIG_SMP 2670 /* 2671 * This might be too much, but unfortunately 2672 * we don't have the old deadline value, and 2673 * we can't argue if the task is increasing 2674 * or lowering its prio, so... 2675 */ 2676 if (!rq->dl.overloaded) 2677 deadline_queue_pull_task(rq); 2678 2679 if (task_current(rq, p)) { 2680 /* 2681 * If we now have a earlier deadline task than p, 2682 * then reschedule, provided p is still on this 2683 * runqueue. 2684 */ 2685 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) 2686 resched_curr(rq); 2687 } else { 2688 /* 2689 * Current may not be deadline in case p was throttled but we 2690 * have just replenished it (e.g. rt_mutex_setprio()). 2691 * 2692 * Otherwise, if p was given an earlier deadline, reschedule. 2693 */ 2694 if (!dl_task(rq->curr) || 2695 dl_time_before(p->dl.deadline, rq->curr->dl.deadline)) 2696 resched_curr(rq); 2697 } 2698 #else 2699 /* 2700 * We don't know if p has a earlier or later deadline, so let's blindly 2701 * set a (maybe not needed) rescheduling point. 2702 */ 2703 resched_curr(rq); 2704 #endif 2705 } 2706 2707 #ifdef CONFIG_SCHED_CORE 2708 static int task_is_throttled_dl(struct task_struct *p, int cpu) 2709 { 2710 return p->dl.dl_throttled; 2711 } 2712 #endif 2713 2714 DEFINE_SCHED_CLASS(dl) = { 2715 2716 .enqueue_task = enqueue_task_dl, 2717 .dequeue_task = dequeue_task_dl, 2718 .yield_task = yield_task_dl, 2719 2720 .check_preempt_curr = check_preempt_curr_dl, 2721 2722 .pick_next_task = pick_next_task_dl, 2723 .put_prev_task = put_prev_task_dl, 2724 .set_next_task = set_next_task_dl, 2725 2726 #ifdef CONFIG_SMP 2727 .balance = balance_dl, 2728 .pick_task = pick_task_dl, 2729 .select_task_rq = select_task_rq_dl, 2730 .migrate_task_rq = migrate_task_rq_dl, 2731 .set_cpus_allowed = set_cpus_allowed_dl, 2732 .rq_online = rq_online_dl, 2733 .rq_offline = rq_offline_dl, 2734 .task_woken = task_woken_dl, 2735 .find_lock_rq = find_lock_later_rq, 2736 #endif 2737 2738 .task_tick = task_tick_dl, 2739 .task_fork = task_fork_dl, 2740 2741 .prio_changed = prio_changed_dl, 2742 .switched_from = switched_from_dl, 2743 .switched_to = switched_to_dl, 2744 2745 .update_curr = update_curr_dl, 2746 #ifdef CONFIG_SCHED_CORE 2747 .task_is_throttled = task_is_throttled_dl, 2748 #endif 2749 }; 2750 2751 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */ 2752 static u64 dl_generation; 2753 2754 int sched_dl_global_validate(void) 2755 { 2756 u64 runtime = global_rt_runtime(); 2757 u64 period = global_rt_period(); 2758 u64 new_bw = to_ratio(period, runtime); 2759 u64 gen = ++dl_generation; 2760 struct dl_bw *dl_b; 2761 int cpu, cpus, ret = 0; 2762 unsigned long flags; 2763 2764 /* 2765 * Here we want to check the bandwidth not being set to some 2766 * value smaller than the currently allocated bandwidth in 2767 * any of the root_domains. 2768 */ 2769 for_each_possible_cpu(cpu) { 2770 rcu_read_lock_sched(); 2771 2772 if (dl_bw_visited(cpu, gen)) 2773 goto next; 2774 2775 dl_b = dl_bw_of(cpu); 2776 cpus = dl_bw_cpus(cpu); 2777 2778 raw_spin_lock_irqsave(&dl_b->lock, flags); 2779 if (new_bw * cpus < dl_b->total_bw) 2780 ret = -EBUSY; 2781 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2782 2783 next: 2784 rcu_read_unlock_sched(); 2785 2786 if (ret) 2787 break; 2788 } 2789 2790 return ret; 2791 } 2792 2793 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq) 2794 { 2795 if (global_rt_runtime() == RUNTIME_INF) { 2796 dl_rq->bw_ratio = 1 << RATIO_SHIFT; 2797 dl_rq->extra_bw = 1 << BW_SHIFT; 2798 } else { 2799 dl_rq->bw_ratio = to_ratio(global_rt_runtime(), 2800 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT); 2801 dl_rq->extra_bw = to_ratio(global_rt_period(), 2802 global_rt_runtime()); 2803 } 2804 } 2805 2806 void sched_dl_do_global(void) 2807 { 2808 u64 new_bw = -1; 2809 u64 gen = ++dl_generation; 2810 struct dl_bw *dl_b; 2811 int cpu; 2812 unsigned long flags; 2813 2814 if (global_rt_runtime() != RUNTIME_INF) 2815 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 2816 2817 for_each_possible_cpu(cpu) { 2818 rcu_read_lock_sched(); 2819 2820 if (dl_bw_visited(cpu, gen)) { 2821 rcu_read_unlock_sched(); 2822 continue; 2823 } 2824 2825 dl_b = dl_bw_of(cpu); 2826 2827 raw_spin_lock_irqsave(&dl_b->lock, flags); 2828 dl_b->bw = new_bw; 2829 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2830 2831 rcu_read_unlock_sched(); 2832 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl); 2833 } 2834 } 2835 2836 /* 2837 * We must be sure that accepting a new task (or allowing changing the 2838 * parameters of an existing one) is consistent with the bandwidth 2839 * constraints. If yes, this function also accordingly updates the currently 2840 * allocated bandwidth to reflect the new situation. 2841 * 2842 * This function is called while holding p's rq->lock. 2843 */ 2844 int sched_dl_overflow(struct task_struct *p, int policy, 2845 const struct sched_attr *attr) 2846 { 2847 u64 period = attr->sched_period ?: attr->sched_deadline; 2848 u64 runtime = attr->sched_runtime; 2849 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2850 int cpus, err = -1, cpu = task_cpu(p); 2851 struct dl_bw *dl_b = dl_bw_of(cpu); 2852 unsigned long cap; 2853 2854 if (attr->sched_flags & SCHED_FLAG_SUGOV) 2855 return 0; 2856 2857 /* !deadline task may carry old deadline bandwidth */ 2858 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 2859 return 0; 2860 2861 /* 2862 * Either if a task, enters, leave, or stays -deadline but changes 2863 * its parameters, we may need to update accordingly the total 2864 * allocated bandwidth of the container. 2865 */ 2866 raw_spin_lock(&dl_b->lock); 2867 cpus = dl_bw_cpus(cpu); 2868 cap = dl_bw_capacity(cpu); 2869 2870 if (dl_policy(policy) && !task_has_dl_policy(p) && 2871 !__dl_overflow(dl_b, cap, 0, new_bw)) { 2872 if (hrtimer_active(&p->dl.inactive_timer)) 2873 __dl_sub(dl_b, p->dl.dl_bw, cpus); 2874 __dl_add(dl_b, new_bw, cpus); 2875 err = 0; 2876 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2877 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) { 2878 /* 2879 * XXX this is slightly incorrect: when the task 2880 * utilization decreases, we should delay the total 2881 * utilization change until the task's 0-lag point. 2882 * But this would require to set the task's "inactive 2883 * timer" when the task is not inactive. 2884 */ 2885 __dl_sub(dl_b, p->dl.dl_bw, cpus); 2886 __dl_add(dl_b, new_bw, cpus); 2887 dl_change_utilization(p, new_bw); 2888 err = 0; 2889 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2890 /* 2891 * Do not decrease the total deadline utilization here, 2892 * switched_from_dl() will take care to do it at the correct 2893 * (0-lag) time. 2894 */ 2895 err = 0; 2896 } 2897 raw_spin_unlock(&dl_b->lock); 2898 2899 return err; 2900 } 2901 2902 /* 2903 * This function initializes the sched_dl_entity of a newly becoming 2904 * SCHED_DEADLINE task. 2905 * 2906 * Only the static values are considered here, the actual runtime and the 2907 * absolute deadline will be properly calculated when the task is enqueued 2908 * for the first time with its new policy. 2909 */ 2910 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 2911 { 2912 struct sched_dl_entity *dl_se = &p->dl; 2913 2914 dl_se->dl_runtime = attr->sched_runtime; 2915 dl_se->dl_deadline = attr->sched_deadline; 2916 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 2917 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS; 2918 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 2919 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 2920 } 2921 2922 void __getparam_dl(struct task_struct *p, struct sched_attr *attr) 2923 { 2924 struct sched_dl_entity *dl_se = &p->dl; 2925 2926 attr->sched_priority = p->rt_priority; 2927 attr->sched_runtime = dl_se->dl_runtime; 2928 attr->sched_deadline = dl_se->dl_deadline; 2929 attr->sched_period = dl_se->dl_period; 2930 attr->sched_flags &= ~SCHED_DL_FLAGS; 2931 attr->sched_flags |= dl_se->flags; 2932 } 2933 2934 /* 2935 * This function validates the new parameters of a -deadline task. 2936 * We ask for the deadline not being zero, and greater or equal 2937 * than the runtime, as well as the period of being zero or 2938 * greater than deadline. Furthermore, we have to be sure that 2939 * user parameters are above the internal resolution of 1us (we 2940 * check sched_runtime only since it is always the smaller one) and 2941 * below 2^63 ns (we have to check both sched_deadline and 2942 * sched_period, as the latter can be zero). 2943 */ 2944 bool __checkparam_dl(const struct sched_attr *attr) 2945 { 2946 u64 period, max, min; 2947 2948 /* special dl tasks don't actually use any parameter */ 2949 if (attr->sched_flags & SCHED_FLAG_SUGOV) 2950 return true; 2951 2952 /* deadline != 0 */ 2953 if (attr->sched_deadline == 0) 2954 return false; 2955 2956 /* 2957 * Since we truncate DL_SCALE bits, make sure we're at least 2958 * that big. 2959 */ 2960 if (attr->sched_runtime < (1ULL << DL_SCALE)) 2961 return false; 2962 2963 /* 2964 * Since we use the MSB for wrap-around and sign issues, make 2965 * sure it's not set (mind that period can be equal to zero). 2966 */ 2967 if (attr->sched_deadline & (1ULL << 63) || 2968 attr->sched_period & (1ULL << 63)) 2969 return false; 2970 2971 period = attr->sched_period; 2972 if (!period) 2973 period = attr->sched_deadline; 2974 2975 /* runtime <= deadline <= period (if period != 0) */ 2976 if (period < attr->sched_deadline || 2977 attr->sched_deadline < attr->sched_runtime) 2978 return false; 2979 2980 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC; 2981 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC; 2982 2983 if (period < min || period > max) 2984 return false; 2985 2986 return true; 2987 } 2988 2989 /* 2990 * This function clears the sched_dl_entity static params. 2991 */ 2992 void __dl_clear_params(struct task_struct *p) 2993 { 2994 struct sched_dl_entity *dl_se = &p->dl; 2995 2996 dl_se->dl_runtime = 0; 2997 dl_se->dl_deadline = 0; 2998 dl_se->dl_period = 0; 2999 dl_se->flags = 0; 3000 dl_se->dl_bw = 0; 3001 dl_se->dl_density = 0; 3002 3003 dl_se->dl_throttled = 0; 3004 dl_se->dl_yielded = 0; 3005 dl_se->dl_non_contending = 0; 3006 dl_se->dl_overrun = 0; 3007 3008 #ifdef CONFIG_RT_MUTEXES 3009 dl_se->pi_se = dl_se; 3010 #endif 3011 } 3012 3013 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) 3014 { 3015 struct sched_dl_entity *dl_se = &p->dl; 3016 3017 if (dl_se->dl_runtime != attr->sched_runtime || 3018 dl_se->dl_deadline != attr->sched_deadline || 3019 dl_se->dl_period != attr->sched_period || 3020 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS)) 3021 return true; 3022 3023 return false; 3024 } 3025 3026 #ifdef CONFIG_SMP 3027 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, 3028 const struct cpumask *trial) 3029 { 3030 unsigned long flags, cap; 3031 struct dl_bw *cur_dl_b; 3032 int ret = 1; 3033 3034 rcu_read_lock_sched(); 3035 cur_dl_b = dl_bw_of(cpumask_any(cur)); 3036 cap = __dl_bw_capacity(trial); 3037 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 3038 if (__dl_overflow(cur_dl_b, cap, 0, 0)) 3039 ret = 0; 3040 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 3041 rcu_read_unlock_sched(); 3042 3043 return ret; 3044 } 3045 3046 int dl_cpu_busy(int cpu, struct task_struct *p) 3047 { 3048 unsigned long flags, cap; 3049 struct dl_bw *dl_b; 3050 bool overflow; 3051 3052 rcu_read_lock_sched(); 3053 dl_b = dl_bw_of(cpu); 3054 raw_spin_lock_irqsave(&dl_b->lock, flags); 3055 cap = dl_bw_capacity(cpu); 3056 overflow = __dl_overflow(dl_b, cap, 0, p ? p->dl.dl_bw : 0); 3057 3058 if (!overflow && p) { 3059 /* 3060 * We reserve space for this task in the destination 3061 * root_domain, as we can't fail after this point. 3062 * We will free resources in the source root_domain 3063 * later on (see set_cpus_allowed_dl()). 3064 */ 3065 __dl_add(dl_b, p->dl.dl_bw, dl_bw_cpus(cpu)); 3066 } 3067 3068 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3069 rcu_read_unlock_sched(); 3070 3071 return overflow ? -EBUSY : 0; 3072 } 3073 #endif 3074 3075 #ifdef CONFIG_SCHED_DEBUG 3076 void print_dl_stats(struct seq_file *m, int cpu) 3077 { 3078 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 3079 } 3080 #endif /* CONFIG_SCHED_DEBUG */ 3081