1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Deadline Scheduling Class (SCHED_DEADLINE) 4 * 5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 6 * 7 * Tasks that periodically executes their instances for less than their 8 * runtime won't miss any of their deadlines. 9 * Tasks that are not periodic or sporadic or that tries to execute more 10 * than their reserved bandwidth will be slowed down (and may potentially 11 * miss some of their deadlines), and won't affect any other task. 12 * 13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 14 * Juri Lelli <juri.lelli@gmail.com>, 15 * Michael Trimarchi <michael@amarulasolutions.com>, 16 * Fabio Checconi <fchecconi@gmail.com> 17 */ 18 19 /* 20 * Default limits for DL period; on the top end we guard against small util 21 * tasks still getting ridiculously long effective runtimes, on the bottom end we 22 * guard against timer DoS. 23 */ 24 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */ 25 static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */ 26 #ifdef CONFIG_SYSCTL 27 static struct ctl_table sched_dl_sysctls[] = { 28 { 29 .procname = "sched_deadline_period_max_us", 30 .data = &sysctl_sched_dl_period_max, 31 .maxlen = sizeof(unsigned int), 32 .mode = 0644, 33 .proc_handler = proc_dointvec, 34 }, 35 { 36 .procname = "sched_deadline_period_min_us", 37 .data = &sysctl_sched_dl_period_min, 38 .maxlen = sizeof(unsigned int), 39 .mode = 0644, 40 .proc_handler = proc_dointvec, 41 }, 42 {} 43 }; 44 45 static int __init sched_dl_sysctl_init(void) 46 { 47 register_sysctl_init("kernel", sched_dl_sysctls); 48 return 0; 49 } 50 late_initcall(sched_dl_sysctl_init); 51 #endif 52 53 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 54 { 55 return container_of(dl_se, struct task_struct, dl); 56 } 57 58 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 59 { 60 return container_of(dl_rq, struct rq, dl); 61 } 62 63 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 64 { 65 struct task_struct *p = dl_task_of(dl_se); 66 struct rq *rq = task_rq(p); 67 68 return &rq->dl; 69 } 70 71 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 72 { 73 return !RB_EMPTY_NODE(&dl_se->rb_node); 74 } 75 76 #ifdef CONFIG_RT_MUTEXES 77 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 78 { 79 return dl_se->pi_se; 80 } 81 82 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 83 { 84 return pi_of(dl_se) != dl_se; 85 } 86 #else 87 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 88 { 89 return dl_se; 90 } 91 92 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 93 { 94 return false; 95 } 96 #endif 97 98 #ifdef CONFIG_SMP 99 static inline struct dl_bw *dl_bw_of(int i) 100 { 101 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 102 "sched RCU must be held"); 103 return &cpu_rq(i)->rd->dl_bw; 104 } 105 106 static inline int dl_bw_cpus(int i) 107 { 108 struct root_domain *rd = cpu_rq(i)->rd; 109 int cpus; 110 111 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 112 "sched RCU must be held"); 113 114 if (cpumask_subset(rd->span, cpu_active_mask)) 115 return cpumask_weight(rd->span); 116 117 cpus = 0; 118 119 for_each_cpu_and(i, rd->span, cpu_active_mask) 120 cpus++; 121 122 return cpus; 123 } 124 125 static inline unsigned long __dl_bw_capacity(int i) 126 { 127 struct root_domain *rd = cpu_rq(i)->rd; 128 unsigned long cap = 0; 129 130 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 131 "sched RCU must be held"); 132 133 for_each_cpu_and(i, rd->span, cpu_active_mask) 134 cap += capacity_orig_of(i); 135 136 return cap; 137 } 138 139 /* 140 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity 141 * of the CPU the task is running on rather rd's \Sum CPU capacity. 142 */ 143 static inline unsigned long dl_bw_capacity(int i) 144 { 145 if (!static_branch_unlikely(&sched_asym_cpucapacity) && 146 capacity_orig_of(i) == SCHED_CAPACITY_SCALE) { 147 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT; 148 } else { 149 return __dl_bw_capacity(i); 150 } 151 } 152 153 static inline bool dl_bw_visited(int cpu, u64 gen) 154 { 155 struct root_domain *rd = cpu_rq(cpu)->rd; 156 157 if (rd->visit_gen == gen) 158 return true; 159 160 rd->visit_gen = gen; 161 return false; 162 } 163 164 static inline 165 void __dl_update(struct dl_bw *dl_b, s64 bw) 166 { 167 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); 168 int i; 169 170 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 171 "sched RCU must be held"); 172 for_each_cpu_and(i, rd->span, cpu_active_mask) { 173 struct rq *rq = cpu_rq(i); 174 175 rq->dl.extra_bw += bw; 176 } 177 } 178 #else 179 static inline struct dl_bw *dl_bw_of(int i) 180 { 181 return &cpu_rq(i)->dl.dl_bw; 182 } 183 184 static inline int dl_bw_cpus(int i) 185 { 186 return 1; 187 } 188 189 static inline unsigned long dl_bw_capacity(int i) 190 { 191 return SCHED_CAPACITY_SCALE; 192 } 193 194 static inline bool dl_bw_visited(int cpu, u64 gen) 195 { 196 return false; 197 } 198 199 static inline 200 void __dl_update(struct dl_bw *dl_b, s64 bw) 201 { 202 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw); 203 204 dl->extra_bw += bw; 205 } 206 #endif 207 208 static inline 209 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 210 { 211 dl_b->total_bw -= tsk_bw; 212 __dl_update(dl_b, (s32)tsk_bw / cpus); 213 } 214 215 static inline 216 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 217 { 218 dl_b->total_bw += tsk_bw; 219 __dl_update(dl_b, -((s32)tsk_bw / cpus)); 220 } 221 222 static inline bool 223 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw) 224 { 225 return dl_b->bw != -1 && 226 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw; 227 } 228 229 static inline 230 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 231 { 232 u64 old = dl_rq->running_bw; 233 234 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 235 dl_rq->running_bw += dl_bw; 236 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */ 237 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 238 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 239 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 240 } 241 242 static inline 243 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 244 { 245 u64 old = dl_rq->running_bw; 246 247 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 248 dl_rq->running_bw -= dl_bw; 249 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */ 250 if (dl_rq->running_bw > old) 251 dl_rq->running_bw = 0; 252 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 253 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 254 } 255 256 static inline 257 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 258 { 259 u64 old = dl_rq->this_bw; 260 261 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 262 dl_rq->this_bw += dl_bw; 263 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */ 264 } 265 266 static inline 267 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 268 { 269 u64 old = dl_rq->this_bw; 270 271 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 272 dl_rq->this_bw -= dl_bw; 273 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */ 274 if (dl_rq->this_bw > old) 275 dl_rq->this_bw = 0; 276 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 277 } 278 279 static inline 280 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 281 { 282 if (!dl_entity_is_special(dl_se)) 283 __add_rq_bw(dl_se->dl_bw, dl_rq); 284 } 285 286 static inline 287 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 288 { 289 if (!dl_entity_is_special(dl_se)) 290 __sub_rq_bw(dl_se->dl_bw, dl_rq); 291 } 292 293 static inline 294 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 295 { 296 if (!dl_entity_is_special(dl_se)) 297 __add_running_bw(dl_se->dl_bw, dl_rq); 298 } 299 300 static inline 301 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 302 { 303 if (!dl_entity_is_special(dl_se)) 304 __sub_running_bw(dl_se->dl_bw, dl_rq); 305 } 306 307 static void dl_change_utilization(struct task_struct *p, u64 new_bw) 308 { 309 struct rq *rq; 310 311 BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV); 312 313 if (task_on_rq_queued(p)) 314 return; 315 316 rq = task_rq(p); 317 if (p->dl.dl_non_contending) { 318 sub_running_bw(&p->dl, &rq->dl); 319 p->dl.dl_non_contending = 0; 320 /* 321 * If the timer handler is currently running and the 322 * timer cannot be canceled, inactive_task_timer() 323 * will see that dl_not_contending is not set, and 324 * will not touch the rq's active utilization, 325 * so we are still safe. 326 */ 327 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 328 put_task_struct(p); 329 } 330 __sub_rq_bw(p->dl.dl_bw, &rq->dl); 331 __add_rq_bw(new_bw, &rq->dl); 332 } 333 334 /* 335 * The utilization of a task cannot be immediately removed from 336 * the rq active utilization (running_bw) when the task blocks. 337 * Instead, we have to wait for the so called "0-lag time". 338 * 339 * If a task blocks before the "0-lag time", a timer (the inactive 340 * timer) is armed, and running_bw is decreased when the timer 341 * fires. 342 * 343 * If the task wakes up again before the inactive timer fires, 344 * the timer is canceled, whereas if the task wakes up after the 345 * inactive timer fired (and running_bw has been decreased) the 346 * task's utilization has to be added to running_bw again. 347 * A flag in the deadline scheduling entity (dl_non_contending) 348 * is used to avoid race conditions between the inactive timer handler 349 * and task wakeups. 350 * 351 * The following diagram shows how running_bw is updated. A task is 352 * "ACTIVE" when its utilization contributes to running_bw; an 353 * "ACTIVE contending" task is in the TASK_RUNNING state, while an 354 * "ACTIVE non contending" task is a blocked task for which the "0-lag time" 355 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag" 356 * time already passed, which does not contribute to running_bw anymore. 357 * +------------------+ 358 * wakeup | ACTIVE | 359 * +------------------>+ contending | 360 * | add_running_bw | | 361 * | +----+------+------+ 362 * | | ^ 363 * | dequeue | | 364 * +--------+-------+ | | 365 * | | t >= 0-lag | | wakeup 366 * | INACTIVE |<---------------+ | 367 * | | sub_running_bw | | 368 * +--------+-------+ | | 369 * ^ | | 370 * | t < 0-lag | | 371 * | | | 372 * | V | 373 * | +----+------+------+ 374 * | sub_running_bw | ACTIVE | 375 * +-------------------+ | 376 * inactive timer | non contending | 377 * fired +------------------+ 378 * 379 * The task_non_contending() function is invoked when a task 380 * blocks, and checks if the 0-lag time already passed or 381 * not (in the first case, it directly updates running_bw; 382 * in the second case, it arms the inactive timer). 383 * 384 * The task_contending() function is invoked when a task wakes 385 * up, and checks if the task is still in the "ACTIVE non contending" 386 * state or not (in the second case, it updates running_bw). 387 */ 388 static void task_non_contending(struct task_struct *p) 389 { 390 struct sched_dl_entity *dl_se = &p->dl; 391 struct hrtimer *timer = &dl_se->inactive_timer; 392 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 393 struct rq *rq = rq_of_dl_rq(dl_rq); 394 s64 zerolag_time; 395 396 /* 397 * If this is a non-deadline task that has been boosted, 398 * do nothing 399 */ 400 if (dl_se->dl_runtime == 0) 401 return; 402 403 if (dl_entity_is_special(dl_se)) 404 return; 405 406 WARN_ON(dl_se->dl_non_contending); 407 408 zerolag_time = dl_se->deadline - 409 div64_long((dl_se->runtime * dl_se->dl_period), 410 dl_se->dl_runtime); 411 412 /* 413 * Using relative times instead of the absolute "0-lag time" 414 * allows to simplify the code 415 */ 416 zerolag_time -= rq_clock(rq); 417 418 /* 419 * If the "0-lag time" already passed, decrease the active 420 * utilization now, instead of starting a timer 421 */ 422 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) { 423 if (dl_task(p)) 424 sub_running_bw(dl_se, dl_rq); 425 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) { 426 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 427 428 if (READ_ONCE(p->__state) == TASK_DEAD) 429 sub_rq_bw(&p->dl, &rq->dl); 430 raw_spin_lock(&dl_b->lock); 431 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 432 __dl_clear_params(p); 433 raw_spin_unlock(&dl_b->lock); 434 } 435 436 return; 437 } 438 439 dl_se->dl_non_contending = 1; 440 get_task_struct(p); 441 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD); 442 } 443 444 static void task_contending(struct sched_dl_entity *dl_se, int flags) 445 { 446 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 447 448 /* 449 * If this is a non-deadline task that has been boosted, 450 * do nothing 451 */ 452 if (dl_se->dl_runtime == 0) 453 return; 454 455 if (flags & ENQUEUE_MIGRATED) 456 add_rq_bw(dl_se, dl_rq); 457 458 if (dl_se->dl_non_contending) { 459 dl_se->dl_non_contending = 0; 460 /* 461 * If the timer handler is currently running and the 462 * timer cannot be canceled, inactive_task_timer() 463 * will see that dl_not_contending is not set, and 464 * will not touch the rq's active utilization, 465 * so we are still safe. 466 */ 467 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) 468 put_task_struct(dl_task_of(dl_se)); 469 } else { 470 /* 471 * Since "dl_non_contending" is not set, the 472 * task's utilization has already been removed from 473 * active utilization (either when the task blocked, 474 * when the "inactive timer" fired). 475 * So, add it back. 476 */ 477 add_running_bw(dl_se, dl_rq); 478 } 479 } 480 481 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) 482 { 483 struct sched_dl_entity *dl_se = &p->dl; 484 485 return rb_first_cached(&dl_rq->root) == &dl_se->rb_node; 486 } 487 488 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq); 489 490 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) 491 { 492 raw_spin_lock_init(&dl_b->dl_runtime_lock); 493 dl_b->dl_period = period; 494 dl_b->dl_runtime = runtime; 495 } 496 497 void init_dl_bw(struct dl_bw *dl_b) 498 { 499 raw_spin_lock_init(&dl_b->lock); 500 if (global_rt_runtime() == RUNTIME_INF) 501 dl_b->bw = -1; 502 else 503 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 504 dl_b->total_bw = 0; 505 } 506 507 void init_dl_rq(struct dl_rq *dl_rq) 508 { 509 dl_rq->root = RB_ROOT_CACHED; 510 511 #ifdef CONFIG_SMP 512 /* zero means no -deadline tasks */ 513 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 514 515 dl_rq->dl_nr_migratory = 0; 516 dl_rq->overloaded = 0; 517 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED; 518 #else 519 init_dl_bw(&dl_rq->dl_bw); 520 #endif 521 522 dl_rq->running_bw = 0; 523 dl_rq->this_bw = 0; 524 init_dl_rq_bw_ratio(dl_rq); 525 } 526 527 #ifdef CONFIG_SMP 528 529 static inline int dl_overloaded(struct rq *rq) 530 { 531 return atomic_read(&rq->rd->dlo_count); 532 } 533 534 static inline void dl_set_overload(struct rq *rq) 535 { 536 if (!rq->online) 537 return; 538 539 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 540 /* 541 * Must be visible before the overload count is 542 * set (as in sched_rt.c). 543 * 544 * Matched by the barrier in pull_dl_task(). 545 */ 546 smp_wmb(); 547 atomic_inc(&rq->rd->dlo_count); 548 } 549 550 static inline void dl_clear_overload(struct rq *rq) 551 { 552 if (!rq->online) 553 return; 554 555 atomic_dec(&rq->rd->dlo_count); 556 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 557 } 558 559 static void update_dl_migration(struct dl_rq *dl_rq) 560 { 561 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { 562 if (!dl_rq->overloaded) { 563 dl_set_overload(rq_of_dl_rq(dl_rq)); 564 dl_rq->overloaded = 1; 565 } 566 } else if (dl_rq->overloaded) { 567 dl_clear_overload(rq_of_dl_rq(dl_rq)); 568 dl_rq->overloaded = 0; 569 } 570 } 571 572 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 573 { 574 struct task_struct *p = dl_task_of(dl_se); 575 576 if (p->nr_cpus_allowed > 1) 577 dl_rq->dl_nr_migratory++; 578 579 update_dl_migration(dl_rq); 580 } 581 582 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 583 { 584 struct task_struct *p = dl_task_of(dl_se); 585 586 if (p->nr_cpus_allowed > 1) 587 dl_rq->dl_nr_migratory--; 588 589 update_dl_migration(dl_rq); 590 } 591 592 #define __node_2_pdl(node) \ 593 rb_entry((node), struct task_struct, pushable_dl_tasks) 594 595 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b) 596 { 597 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl); 598 } 599 600 /* 601 * The list of pushable -deadline task is not a plist, like in 602 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 603 */ 604 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 605 { 606 struct rb_node *leftmost; 607 608 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 609 610 leftmost = rb_add_cached(&p->pushable_dl_tasks, 611 &rq->dl.pushable_dl_tasks_root, 612 __pushable_less); 613 if (leftmost) 614 rq->dl.earliest_dl.next = p->dl.deadline; 615 } 616 617 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 618 { 619 struct dl_rq *dl_rq = &rq->dl; 620 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root; 621 struct rb_node *leftmost; 622 623 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 624 return; 625 626 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root); 627 if (leftmost) 628 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline; 629 630 RB_CLEAR_NODE(&p->pushable_dl_tasks); 631 } 632 633 static inline int has_pushable_dl_tasks(struct rq *rq) 634 { 635 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root); 636 } 637 638 static int push_dl_task(struct rq *rq); 639 640 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 641 { 642 return rq->online && dl_task(prev); 643 } 644 645 static DEFINE_PER_CPU(struct callback_head, dl_push_head); 646 static DEFINE_PER_CPU(struct callback_head, dl_pull_head); 647 648 static void push_dl_tasks(struct rq *); 649 static void pull_dl_task(struct rq *); 650 651 static inline void deadline_queue_push_tasks(struct rq *rq) 652 { 653 if (!has_pushable_dl_tasks(rq)) 654 return; 655 656 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); 657 } 658 659 static inline void deadline_queue_pull_task(struct rq *rq) 660 { 661 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); 662 } 663 664 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); 665 666 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) 667 { 668 struct rq *later_rq = NULL; 669 struct dl_bw *dl_b; 670 671 later_rq = find_lock_later_rq(p, rq); 672 if (!later_rq) { 673 int cpu; 674 675 /* 676 * If we cannot preempt any rq, fall back to pick any 677 * online CPU: 678 */ 679 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr); 680 if (cpu >= nr_cpu_ids) { 681 /* 682 * Failed to find any suitable CPU. 683 * The task will never come back! 684 */ 685 BUG_ON(dl_bandwidth_enabled()); 686 687 /* 688 * If admission control is disabled we 689 * try a little harder to let the task 690 * run. 691 */ 692 cpu = cpumask_any(cpu_active_mask); 693 } 694 later_rq = cpu_rq(cpu); 695 double_lock_balance(rq, later_rq); 696 } 697 698 if (p->dl.dl_non_contending || p->dl.dl_throttled) { 699 /* 700 * Inactive timer is armed (or callback is running, but 701 * waiting for us to release rq locks). In any case, when it 702 * will fire (or continue), it will see running_bw of this 703 * task migrated to later_rq (and correctly handle it). 704 */ 705 sub_running_bw(&p->dl, &rq->dl); 706 sub_rq_bw(&p->dl, &rq->dl); 707 708 add_rq_bw(&p->dl, &later_rq->dl); 709 add_running_bw(&p->dl, &later_rq->dl); 710 } else { 711 sub_rq_bw(&p->dl, &rq->dl); 712 add_rq_bw(&p->dl, &later_rq->dl); 713 } 714 715 /* 716 * And we finally need to fixup root_domain(s) bandwidth accounting, 717 * since p is still hanging out in the old (now moved to default) root 718 * domain. 719 */ 720 dl_b = &rq->rd->dl_bw; 721 raw_spin_lock(&dl_b->lock); 722 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 723 raw_spin_unlock(&dl_b->lock); 724 725 dl_b = &later_rq->rd->dl_bw; 726 raw_spin_lock(&dl_b->lock); 727 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span)); 728 raw_spin_unlock(&dl_b->lock); 729 730 set_task_cpu(p, later_rq->cpu); 731 double_unlock_balance(later_rq, rq); 732 733 return later_rq; 734 } 735 736 #else 737 738 static inline 739 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 740 { 741 } 742 743 static inline 744 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 745 { 746 } 747 748 static inline 749 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 750 { 751 } 752 753 static inline 754 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 755 { 756 } 757 758 static inline void deadline_queue_push_tasks(struct rq *rq) 759 { 760 } 761 762 static inline void deadline_queue_pull_task(struct rq *rq) 763 { 764 } 765 #endif /* CONFIG_SMP */ 766 767 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 768 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); 769 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags); 770 771 /* 772 * We are being explicitly informed that a new instance is starting, 773 * and this means that: 774 * - the absolute deadline of the entity has to be placed at 775 * current time + relative deadline; 776 * - the runtime of the entity has to be set to the maximum value. 777 * 778 * The capability of specifying such event is useful whenever a -deadline 779 * entity wants to (try to!) synchronize its behaviour with the scheduler's 780 * one, and to (try to!) reconcile itself with its own scheduling 781 * parameters. 782 */ 783 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) 784 { 785 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 786 struct rq *rq = rq_of_dl_rq(dl_rq); 787 788 WARN_ON(is_dl_boosted(dl_se)); 789 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); 790 791 /* 792 * We are racing with the deadline timer. So, do nothing because 793 * the deadline timer handler will take care of properly recharging 794 * the runtime and postponing the deadline 795 */ 796 if (dl_se->dl_throttled) 797 return; 798 799 /* 800 * We use the regular wall clock time to set deadlines in the 801 * future; in fact, we must consider execution overheads (time 802 * spent on hardirq context, etc.). 803 */ 804 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline; 805 dl_se->runtime = dl_se->dl_runtime; 806 } 807 808 /* 809 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 810 * possibility of a entity lasting more than what it declared, and thus 811 * exhausting its runtime. 812 * 813 * Here we are interested in making runtime overrun possible, but we do 814 * not want a entity which is misbehaving to affect the scheduling of all 815 * other entities. 816 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 817 * is used, in order to confine each entity within its own bandwidth. 818 * 819 * This function deals exactly with that, and ensures that when the runtime 820 * of a entity is replenished, its deadline is also postponed. That ensures 821 * the overrunning entity can't interfere with other entity in the system and 822 * can't make them miss their deadlines. Reasons why this kind of overruns 823 * could happen are, typically, a entity voluntarily trying to overcome its 824 * runtime, or it just underestimated it during sched_setattr(). 825 */ 826 static void replenish_dl_entity(struct sched_dl_entity *dl_se) 827 { 828 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 829 struct rq *rq = rq_of_dl_rq(dl_rq); 830 831 BUG_ON(pi_of(dl_se)->dl_runtime <= 0); 832 833 /* 834 * This could be the case for a !-dl task that is boosted. 835 * Just go with full inherited parameters. 836 */ 837 if (dl_se->dl_deadline == 0) { 838 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; 839 dl_se->runtime = pi_of(dl_se)->dl_runtime; 840 } 841 842 if (dl_se->dl_yielded && dl_se->runtime > 0) 843 dl_se->runtime = 0; 844 845 /* 846 * We keep moving the deadline away until we get some 847 * available runtime for the entity. This ensures correct 848 * handling of situations where the runtime overrun is 849 * arbitrary large. 850 */ 851 while (dl_se->runtime <= 0) { 852 dl_se->deadline += pi_of(dl_se)->dl_period; 853 dl_se->runtime += pi_of(dl_se)->dl_runtime; 854 } 855 856 /* 857 * At this point, the deadline really should be "in 858 * the future" with respect to rq->clock. If it's 859 * not, we are, for some reason, lagging too much! 860 * Anyway, after having warn userspace abut that, 861 * we still try to keep the things running by 862 * resetting the deadline and the budget of the 863 * entity. 864 */ 865 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 866 printk_deferred_once("sched: DL replenish lagged too much\n"); 867 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; 868 dl_se->runtime = pi_of(dl_se)->dl_runtime; 869 } 870 871 if (dl_se->dl_yielded) 872 dl_se->dl_yielded = 0; 873 if (dl_se->dl_throttled) 874 dl_se->dl_throttled = 0; 875 } 876 877 /* 878 * Here we check if --at time t-- an entity (which is probably being 879 * [re]activated or, in general, enqueued) can use its remaining runtime 880 * and its current deadline _without_ exceeding the bandwidth it is 881 * assigned (function returns true if it can't). We are in fact applying 882 * one of the CBS rules: when a task wakes up, if the residual runtime 883 * over residual deadline fits within the allocated bandwidth, then we 884 * can keep the current (absolute) deadline and residual budget without 885 * disrupting the schedulability of the system. Otherwise, we should 886 * refill the runtime and set the deadline a period in the future, 887 * because keeping the current (absolute) deadline of the task would 888 * result in breaking guarantees promised to other tasks (refer to 889 * Documentation/scheduler/sched-deadline.rst for more information). 890 * 891 * This function returns true if: 892 * 893 * runtime / (deadline - t) > dl_runtime / dl_deadline , 894 * 895 * IOW we can't recycle current parameters. 896 * 897 * Notice that the bandwidth check is done against the deadline. For 898 * task with deadline equal to period this is the same of using 899 * dl_period instead of dl_deadline in the equation above. 900 */ 901 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t) 902 { 903 u64 left, right; 904 905 /* 906 * left and right are the two sides of the equation above, 907 * after a bit of shuffling to use multiplications instead 908 * of divisions. 909 * 910 * Note that none of the time values involved in the two 911 * multiplications are absolute: dl_deadline and dl_runtime 912 * are the relative deadline and the maximum runtime of each 913 * instance, runtime is the runtime left for the last instance 914 * and (deadline - t), since t is rq->clock, is the time left 915 * to the (absolute) deadline. Even if overflowing the u64 type 916 * is very unlikely to occur in both cases, here we scale down 917 * as we want to avoid that risk at all. Scaling down by 10 918 * means that we reduce granularity to 1us. We are fine with it, 919 * since this is only a true/false check and, anyway, thinking 920 * of anything below microseconds resolution is actually fiction 921 * (but still we want to give the user that illusion >;). 922 */ 923 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 924 right = ((dl_se->deadline - t) >> DL_SCALE) * 925 (pi_of(dl_se)->dl_runtime >> DL_SCALE); 926 927 return dl_time_before(right, left); 928 } 929 930 /* 931 * Revised wakeup rule [1]: For self-suspending tasks, rather then 932 * re-initializing task's runtime and deadline, the revised wakeup 933 * rule adjusts the task's runtime to avoid the task to overrun its 934 * density. 935 * 936 * Reasoning: a task may overrun the density if: 937 * runtime / (deadline - t) > dl_runtime / dl_deadline 938 * 939 * Therefore, runtime can be adjusted to: 940 * runtime = (dl_runtime / dl_deadline) * (deadline - t) 941 * 942 * In such way that runtime will be equal to the maximum density 943 * the task can use without breaking any rule. 944 * 945 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant 946 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24. 947 */ 948 static void 949 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq) 950 { 951 u64 laxity = dl_se->deadline - rq_clock(rq); 952 953 /* 954 * If the task has deadline < period, and the deadline is in the past, 955 * it should already be throttled before this check. 956 * 957 * See update_dl_entity() comments for further details. 958 */ 959 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq))); 960 961 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT; 962 } 963 964 /* 965 * Regarding the deadline, a task with implicit deadline has a relative 966 * deadline == relative period. A task with constrained deadline has a 967 * relative deadline <= relative period. 968 * 969 * We support constrained deadline tasks. However, there are some restrictions 970 * applied only for tasks which do not have an implicit deadline. See 971 * update_dl_entity() to know more about such restrictions. 972 * 973 * The dl_is_implicit() returns true if the task has an implicit deadline. 974 */ 975 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se) 976 { 977 return dl_se->dl_deadline == dl_se->dl_period; 978 } 979 980 /* 981 * When a deadline entity is placed in the runqueue, its runtime and deadline 982 * might need to be updated. This is done by a CBS wake up rule. There are two 983 * different rules: 1) the original CBS; and 2) the Revisited CBS. 984 * 985 * When the task is starting a new period, the Original CBS is used. In this 986 * case, the runtime is replenished and a new absolute deadline is set. 987 * 988 * When a task is queued before the begin of the next period, using the 989 * remaining runtime and deadline could make the entity to overflow, see 990 * dl_entity_overflow() to find more about runtime overflow. When such case 991 * is detected, the runtime and deadline need to be updated. 992 * 993 * If the task has an implicit deadline, i.e., deadline == period, the Original 994 * CBS is applied. the runtime is replenished and a new absolute deadline is 995 * set, as in the previous cases. 996 * 997 * However, the Original CBS does not work properly for tasks with 998 * deadline < period, which are said to have a constrained deadline. By 999 * applying the Original CBS, a constrained deadline task would be able to run 1000 * runtime/deadline in a period. With deadline < period, the task would 1001 * overrun the runtime/period allowed bandwidth, breaking the admission test. 1002 * 1003 * In order to prevent this misbehave, the Revisited CBS is used for 1004 * constrained deadline tasks when a runtime overflow is detected. In the 1005 * Revisited CBS, rather than replenishing & setting a new absolute deadline, 1006 * the remaining runtime of the task is reduced to avoid runtime overflow. 1007 * Please refer to the comments update_dl_revised_wakeup() function to find 1008 * more about the Revised CBS rule. 1009 */ 1010 static void update_dl_entity(struct sched_dl_entity *dl_se) 1011 { 1012 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1013 struct rq *rq = rq_of_dl_rq(dl_rq); 1014 1015 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 1016 dl_entity_overflow(dl_se, rq_clock(rq))) { 1017 1018 if (unlikely(!dl_is_implicit(dl_se) && 1019 !dl_time_before(dl_se->deadline, rq_clock(rq)) && 1020 !is_dl_boosted(dl_se))) { 1021 update_dl_revised_wakeup(dl_se, rq); 1022 return; 1023 } 1024 1025 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; 1026 dl_se->runtime = pi_of(dl_se)->dl_runtime; 1027 } 1028 } 1029 1030 static inline u64 dl_next_period(struct sched_dl_entity *dl_se) 1031 { 1032 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period; 1033 } 1034 1035 /* 1036 * If the entity depleted all its runtime, and if we want it to sleep 1037 * while waiting for some new execution time to become available, we 1038 * set the bandwidth replenishment timer to the replenishment instant 1039 * and try to activate it. 1040 * 1041 * Notice that it is important for the caller to know if the timer 1042 * actually started or not (i.e., the replenishment instant is in 1043 * the future or in the past). 1044 */ 1045 static int start_dl_timer(struct task_struct *p) 1046 { 1047 struct sched_dl_entity *dl_se = &p->dl; 1048 struct hrtimer *timer = &dl_se->dl_timer; 1049 struct rq *rq = task_rq(p); 1050 ktime_t now, act; 1051 s64 delta; 1052 1053 lockdep_assert_rq_held(rq); 1054 1055 /* 1056 * We want the timer to fire at the deadline, but considering 1057 * that it is actually coming from rq->clock and not from 1058 * hrtimer's time base reading. 1059 */ 1060 act = ns_to_ktime(dl_next_period(dl_se)); 1061 now = hrtimer_cb_get_time(timer); 1062 delta = ktime_to_ns(now) - rq_clock(rq); 1063 act = ktime_add_ns(act, delta); 1064 1065 /* 1066 * If the expiry time already passed, e.g., because the value 1067 * chosen as the deadline is too small, don't even try to 1068 * start the timer in the past! 1069 */ 1070 if (ktime_us_delta(act, now) < 0) 1071 return 0; 1072 1073 /* 1074 * !enqueued will guarantee another callback; even if one is already in 1075 * progress. This ensures a balanced {get,put}_task_struct(). 1076 * 1077 * The race against __run_timer() clearing the enqueued state is 1078 * harmless because we're holding task_rq()->lock, therefore the timer 1079 * expiring after we've done the check will wait on its task_rq_lock() 1080 * and observe our state. 1081 */ 1082 if (!hrtimer_is_queued(timer)) { 1083 get_task_struct(p); 1084 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD); 1085 } 1086 1087 return 1; 1088 } 1089 1090 /* 1091 * This is the bandwidth enforcement timer callback. If here, we know 1092 * a task is not on its dl_rq, since the fact that the timer was running 1093 * means the task is throttled and needs a runtime replenishment. 1094 * 1095 * However, what we actually do depends on the fact the task is active, 1096 * (it is on its rq) or has been removed from there by a call to 1097 * dequeue_task_dl(). In the former case we must issue the runtime 1098 * replenishment and add the task back to the dl_rq; in the latter, we just 1099 * do nothing but clearing dl_throttled, so that runtime and deadline 1100 * updating (and the queueing back to dl_rq) will be done by the 1101 * next call to enqueue_task_dl(). 1102 */ 1103 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 1104 { 1105 struct sched_dl_entity *dl_se = container_of(timer, 1106 struct sched_dl_entity, 1107 dl_timer); 1108 struct task_struct *p = dl_task_of(dl_se); 1109 struct rq_flags rf; 1110 struct rq *rq; 1111 1112 rq = task_rq_lock(p, &rf); 1113 1114 /* 1115 * The task might have changed its scheduling policy to something 1116 * different than SCHED_DEADLINE (through switched_from_dl()). 1117 */ 1118 if (!dl_task(p)) 1119 goto unlock; 1120 1121 /* 1122 * The task might have been boosted by someone else and might be in the 1123 * boosting/deboosting path, its not throttled. 1124 */ 1125 if (is_dl_boosted(dl_se)) 1126 goto unlock; 1127 1128 /* 1129 * Spurious timer due to start_dl_timer() race; or we already received 1130 * a replenishment from rt_mutex_setprio(). 1131 */ 1132 if (!dl_se->dl_throttled) 1133 goto unlock; 1134 1135 sched_clock_tick(); 1136 update_rq_clock(rq); 1137 1138 /* 1139 * If the throttle happened during sched-out; like: 1140 * 1141 * schedule() 1142 * deactivate_task() 1143 * dequeue_task_dl() 1144 * update_curr_dl() 1145 * start_dl_timer() 1146 * __dequeue_task_dl() 1147 * prev->on_rq = 0; 1148 * 1149 * We can be both throttled and !queued. Replenish the counter 1150 * but do not enqueue -- wait for our wakeup to do that. 1151 */ 1152 if (!task_on_rq_queued(p)) { 1153 replenish_dl_entity(dl_se); 1154 goto unlock; 1155 } 1156 1157 #ifdef CONFIG_SMP 1158 if (unlikely(!rq->online)) { 1159 /* 1160 * If the runqueue is no longer available, migrate the 1161 * task elsewhere. This necessarily changes rq. 1162 */ 1163 lockdep_unpin_lock(__rq_lockp(rq), rf.cookie); 1164 rq = dl_task_offline_migration(rq, p); 1165 rf.cookie = lockdep_pin_lock(__rq_lockp(rq)); 1166 update_rq_clock(rq); 1167 1168 /* 1169 * Now that the task has been migrated to the new RQ and we 1170 * have that locked, proceed as normal and enqueue the task 1171 * there. 1172 */ 1173 } 1174 #endif 1175 1176 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 1177 if (dl_task(rq->curr)) 1178 check_preempt_curr_dl(rq, p, 0); 1179 else 1180 resched_curr(rq); 1181 1182 #ifdef CONFIG_SMP 1183 /* 1184 * Queueing this task back might have overloaded rq, check if we need 1185 * to kick someone away. 1186 */ 1187 if (has_pushable_dl_tasks(rq)) { 1188 /* 1189 * Nothing relies on rq->lock after this, so its safe to drop 1190 * rq->lock. 1191 */ 1192 rq_unpin_lock(rq, &rf); 1193 push_dl_task(rq); 1194 rq_repin_lock(rq, &rf); 1195 } 1196 #endif 1197 1198 unlock: 1199 task_rq_unlock(rq, p, &rf); 1200 1201 /* 1202 * This can free the task_struct, including this hrtimer, do not touch 1203 * anything related to that after this. 1204 */ 1205 put_task_struct(p); 1206 1207 return HRTIMER_NORESTART; 1208 } 1209 1210 void init_dl_task_timer(struct sched_dl_entity *dl_se) 1211 { 1212 struct hrtimer *timer = &dl_se->dl_timer; 1213 1214 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1215 timer->function = dl_task_timer; 1216 } 1217 1218 /* 1219 * During the activation, CBS checks if it can reuse the current task's 1220 * runtime and period. If the deadline of the task is in the past, CBS 1221 * cannot use the runtime, and so it replenishes the task. This rule 1222 * works fine for implicit deadline tasks (deadline == period), and the 1223 * CBS was designed for implicit deadline tasks. However, a task with 1224 * constrained deadline (deadline < period) might be awakened after the 1225 * deadline, but before the next period. In this case, replenishing the 1226 * task would allow it to run for runtime / deadline. As in this case 1227 * deadline < period, CBS enables a task to run for more than the 1228 * runtime / period. In a very loaded system, this can cause a domino 1229 * effect, making other tasks miss their deadlines. 1230 * 1231 * To avoid this problem, in the activation of a constrained deadline 1232 * task after the deadline but before the next period, throttle the 1233 * task and set the replenishing timer to the begin of the next period, 1234 * unless it is boosted. 1235 */ 1236 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) 1237 { 1238 struct task_struct *p = dl_task_of(dl_se); 1239 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se)); 1240 1241 if (dl_time_before(dl_se->deadline, rq_clock(rq)) && 1242 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) { 1243 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p))) 1244 return; 1245 dl_se->dl_throttled = 1; 1246 if (dl_se->runtime > 0) 1247 dl_se->runtime = 0; 1248 } 1249 } 1250 1251 static 1252 int dl_runtime_exceeded(struct sched_dl_entity *dl_se) 1253 { 1254 return (dl_se->runtime <= 0); 1255 } 1256 1257 /* 1258 * This function implements the GRUB accounting rule: 1259 * according to the GRUB reclaiming algorithm, the runtime is 1260 * not decreased as "dq = -dt", but as 1261 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt", 1262 * where u is the utilization of the task, Umax is the maximum reclaimable 1263 * utilization, Uinact is the (per-runqueue) inactive utilization, computed 1264 * as the difference between the "total runqueue utilization" and the 1265 * runqueue active utilization, and Uextra is the (per runqueue) extra 1266 * reclaimable utilization. 1267 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations 1268 * multiplied by 2^BW_SHIFT, the result has to be shifted right by 1269 * BW_SHIFT. 1270 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, 1271 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT. 1272 * Since delta is a 64 bit variable, to have an overflow its value 1273 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds. 1274 * So, overflow is not an issue here. 1275 */ 1276 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se) 1277 { 1278 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */ 1279 u64 u_act; 1280 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT; 1281 1282 /* 1283 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)}, 1284 * we compare u_inact + rq->dl.extra_bw with 1285 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because 1286 * u_inact + rq->dl.extra_bw can be larger than 1287 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative 1288 * leading to wrong results) 1289 */ 1290 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min) 1291 u_act = u_act_min; 1292 else 1293 u_act = BW_UNIT - u_inact - rq->dl.extra_bw; 1294 1295 return (delta * u_act) >> BW_SHIFT; 1296 } 1297 1298 /* 1299 * Update the current task's runtime statistics (provided it is still 1300 * a -deadline task and has not been removed from the dl_rq). 1301 */ 1302 static void update_curr_dl(struct rq *rq) 1303 { 1304 struct task_struct *curr = rq->curr; 1305 struct sched_dl_entity *dl_se = &curr->dl; 1306 u64 delta_exec, scaled_delta_exec; 1307 int cpu = cpu_of(rq); 1308 u64 now; 1309 1310 if (!dl_task(curr) || !on_dl_rq(dl_se)) 1311 return; 1312 1313 /* 1314 * Consumed budget is computed considering the time as 1315 * observed by schedulable tasks (excluding time spent 1316 * in hardirq context, etc.). Deadlines are instead 1317 * computed using hard walltime. This seems to be the more 1318 * natural solution, but the full ramifications of this 1319 * approach need further study. 1320 */ 1321 now = rq_clock_task(rq); 1322 delta_exec = now - curr->se.exec_start; 1323 if (unlikely((s64)delta_exec <= 0)) { 1324 if (unlikely(dl_se->dl_yielded)) 1325 goto throttle; 1326 return; 1327 } 1328 1329 schedstat_set(curr->stats.exec_max, 1330 max(curr->stats.exec_max, delta_exec)); 1331 1332 trace_sched_stat_runtime(curr, delta_exec, 0); 1333 1334 curr->se.sum_exec_runtime += delta_exec; 1335 account_group_exec_runtime(curr, delta_exec); 1336 1337 curr->se.exec_start = now; 1338 cgroup_account_cputime(curr, delta_exec); 1339 1340 if (dl_entity_is_special(dl_se)) 1341 return; 1342 1343 /* 1344 * For tasks that participate in GRUB, we implement GRUB-PA: the 1345 * spare reclaimed bandwidth is used to clock down frequency. 1346 * 1347 * For the others, we still need to scale reservation parameters 1348 * according to current frequency and CPU maximum capacity. 1349 */ 1350 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) { 1351 scaled_delta_exec = grub_reclaim(delta_exec, 1352 rq, 1353 &curr->dl); 1354 } else { 1355 unsigned long scale_freq = arch_scale_freq_capacity(cpu); 1356 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu); 1357 1358 scaled_delta_exec = cap_scale(delta_exec, scale_freq); 1359 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu); 1360 } 1361 1362 dl_se->runtime -= scaled_delta_exec; 1363 1364 throttle: 1365 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) { 1366 dl_se->dl_throttled = 1; 1367 1368 /* If requested, inform the user about runtime overruns. */ 1369 if (dl_runtime_exceeded(dl_se) && 1370 (dl_se->flags & SCHED_FLAG_DL_OVERRUN)) 1371 dl_se->dl_overrun = 1; 1372 1373 __dequeue_task_dl(rq, curr, 0); 1374 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr))) 1375 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); 1376 1377 if (!is_leftmost(curr, &rq->dl)) 1378 resched_curr(rq); 1379 } 1380 1381 /* 1382 * Because -- for now -- we share the rt bandwidth, we need to 1383 * account our runtime there too, otherwise actual rt tasks 1384 * would be able to exceed the shared quota. 1385 * 1386 * Account to the root rt group for now. 1387 * 1388 * The solution we're working towards is having the RT groups scheduled 1389 * using deadline servers -- however there's a few nasties to figure 1390 * out before that can happen. 1391 */ 1392 if (rt_bandwidth_enabled()) { 1393 struct rt_rq *rt_rq = &rq->rt; 1394 1395 raw_spin_lock(&rt_rq->rt_runtime_lock); 1396 /* 1397 * We'll let actual RT tasks worry about the overflow here, we 1398 * have our own CBS to keep us inline; only account when RT 1399 * bandwidth is relevant. 1400 */ 1401 if (sched_rt_bandwidth_account(rt_rq)) 1402 rt_rq->rt_time += delta_exec; 1403 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1404 } 1405 } 1406 1407 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer) 1408 { 1409 struct sched_dl_entity *dl_se = container_of(timer, 1410 struct sched_dl_entity, 1411 inactive_timer); 1412 struct task_struct *p = dl_task_of(dl_se); 1413 struct rq_flags rf; 1414 struct rq *rq; 1415 1416 rq = task_rq_lock(p, &rf); 1417 1418 sched_clock_tick(); 1419 update_rq_clock(rq); 1420 1421 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) { 1422 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1423 1424 if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) { 1425 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl)); 1426 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl)); 1427 dl_se->dl_non_contending = 0; 1428 } 1429 1430 raw_spin_lock(&dl_b->lock); 1431 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 1432 raw_spin_unlock(&dl_b->lock); 1433 __dl_clear_params(p); 1434 1435 goto unlock; 1436 } 1437 if (dl_se->dl_non_contending == 0) 1438 goto unlock; 1439 1440 sub_running_bw(dl_se, &rq->dl); 1441 dl_se->dl_non_contending = 0; 1442 unlock: 1443 task_rq_unlock(rq, p, &rf); 1444 put_task_struct(p); 1445 1446 return HRTIMER_NORESTART; 1447 } 1448 1449 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se) 1450 { 1451 struct hrtimer *timer = &dl_se->inactive_timer; 1452 1453 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1454 timer->function = inactive_task_timer; 1455 } 1456 1457 #define __node_2_dle(node) \ 1458 rb_entry((node), struct sched_dl_entity, rb_node) 1459 1460 #ifdef CONFIG_SMP 1461 1462 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1463 { 1464 struct rq *rq = rq_of_dl_rq(dl_rq); 1465 1466 if (dl_rq->earliest_dl.curr == 0 || 1467 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 1468 if (dl_rq->earliest_dl.curr == 0) 1469 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER); 1470 dl_rq->earliest_dl.curr = deadline; 1471 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline); 1472 } 1473 } 1474 1475 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1476 { 1477 struct rq *rq = rq_of_dl_rq(dl_rq); 1478 1479 /* 1480 * Since we may have removed our earliest (and/or next earliest) 1481 * task we must recompute them. 1482 */ 1483 if (!dl_rq->dl_nr_running) { 1484 dl_rq->earliest_dl.curr = 0; 1485 dl_rq->earliest_dl.next = 0; 1486 cpudl_clear(&rq->rd->cpudl, rq->cpu); 1487 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 1488 } else { 1489 struct rb_node *leftmost = rb_first_cached(&dl_rq->root); 1490 struct sched_dl_entity *entry = __node_2_dle(leftmost); 1491 1492 dl_rq->earliest_dl.curr = entry->deadline; 1493 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline); 1494 } 1495 } 1496 1497 #else 1498 1499 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1500 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1501 1502 #endif /* CONFIG_SMP */ 1503 1504 static inline 1505 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1506 { 1507 int prio = dl_task_of(dl_se)->prio; 1508 u64 deadline = dl_se->deadline; 1509 1510 WARN_ON(!dl_prio(prio)); 1511 dl_rq->dl_nr_running++; 1512 add_nr_running(rq_of_dl_rq(dl_rq), 1); 1513 1514 inc_dl_deadline(dl_rq, deadline); 1515 inc_dl_migration(dl_se, dl_rq); 1516 } 1517 1518 static inline 1519 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1520 { 1521 int prio = dl_task_of(dl_se)->prio; 1522 1523 WARN_ON(!dl_prio(prio)); 1524 WARN_ON(!dl_rq->dl_nr_running); 1525 dl_rq->dl_nr_running--; 1526 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 1527 1528 dec_dl_deadline(dl_rq, dl_se->deadline); 1529 dec_dl_migration(dl_se, dl_rq); 1530 } 1531 1532 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b) 1533 { 1534 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline); 1535 } 1536 1537 static inline struct sched_statistics * 1538 __schedstats_from_dl_se(struct sched_dl_entity *dl_se) 1539 { 1540 return &dl_task_of(dl_se)->stats; 1541 } 1542 1543 static inline void 1544 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1545 { 1546 struct sched_statistics *stats; 1547 1548 if (!schedstat_enabled()) 1549 return; 1550 1551 stats = __schedstats_from_dl_se(dl_se); 1552 __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1553 } 1554 1555 static inline void 1556 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1557 { 1558 struct sched_statistics *stats; 1559 1560 if (!schedstat_enabled()) 1561 return; 1562 1563 stats = __schedstats_from_dl_se(dl_se); 1564 __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1565 } 1566 1567 static inline void 1568 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1569 { 1570 struct sched_statistics *stats; 1571 1572 if (!schedstat_enabled()) 1573 return; 1574 1575 stats = __schedstats_from_dl_se(dl_se); 1576 __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1577 } 1578 1579 static inline void 1580 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 1581 int flags) 1582 { 1583 if (!schedstat_enabled()) 1584 return; 1585 1586 if (flags & ENQUEUE_WAKEUP) 1587 update_stats_enqueue_sleeper_dl(dl_rq, dl_se); 1588 } 1589 1590 static inline void 1591 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 1592 int flags) 1593 { 1594 struct task_struct *p = dl_task_of(dl_se); 1595 1596 if (!schedstat_enabled()) 1597 return; 1598 1599 if ((flags & DEQUEUE_SLEEP)) { 1600 unsigned int state; 1601 1602 state = READ_ONCE(p->__state); 1603 if (state & TASK_INTERRUPTIBLE) 1604 __schedstat_set(p->stats.sleep_start, 1605 rq_clock(rq_of_dl_rq(dl_rq))); 1606 1607 if (state & TASK_UNINTERRUPTIBLE) 1608 __schedstat_set(p->stats.block_start, 1609 rq_clock(rq_of_dl_rq(dl_rq))); 1610 } 1611 } 1612 1613 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 1614 { 1615 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1616 1617 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node)); 1618 1619 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less); 1620 1621 inc_dl_tasks(dl_se, dl_rq); 1622 } 1623 1624 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 1625 { 1626 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1627 1628 if (RB_EMPTY_NODE(&dl_se->rb_node)) 1629 return; 1630 1631 rb_erase_cached(&dl_se->rb_node, &dl_rq->root); 1632 1633 RB_CLEAR_NODE(&dl_se->rb_node); 1634 1635 dec_dl_tasks(dl_se, dl_rq); 1636 } 1637 1638 static void 1639 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags) 1640 { 1641 BUG_ON(on_dl_rq(dl_se)); 1642 1643 update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags); 1644 1645 /* 1646 * If this is a wakeup or a new instance, the scheduling 1647 * parameters of the task might need updating. Otherwise, 1648 * we want a replenishment of its runtime. 1649 */ 1650 if (flags & ENQUEUE_WAKEUP) { 1651 task_contending(dl_se, flags); 1652 update_dl_entity(dl_se); 1653 } else if (flags & ENQUEUE_REPLENISH) { 1654 replenish_dl_entity(dl_se); 1655 } else if ((flags & ENQUEUE_RESTORE) && 1656 dl_time_before(dl_se->deadline, 1657 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) { 1658 setup_new_dl_entity(dl_se); 1659 } 1660 1661 __enqueue_dl_entity(dl_se); 1662 } 1663 1664 static void dequeue_dl_entity(struct sched_dl_entity *dl_se) 1665 { 1666 __dequeue_dl_entity(dl_se); 1667 } 1668 1669 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1670 { 1671 if (is_dl_boosted(&p->dl)) { 1672 /* 1673 * Because of delays in the detection of the overrun of a 1674 * thread's runtime, it might be the case that a thread 1675 * goes to sleep in a rt mutex with negative runtime. As 1676 * a consequence, the thread will be throttled. 1677 * 1678 * While waiting for the mutex, this thread can also be 1679 * boosted via PI, resulting in a thread that is throttled 1680 * and boosted at the same time. 1681 * 1682 * In this case, the boost overrides the throttle. 1683 */ 1684 if (p->dl.dl_throttled) { 1685 /* 1686 * The replenish timer needs to be canceled. No 1687 * problem if it fires concurrently: boosted threads 1688 * are ignored in dl_task_timer(). 1689 */ 1690 hrtimer_try_to_cancel(&p->dl.dl_timer); 1691 p->dl.dl_throttled = 0; 1692 } 1693 } else if (!dl_prio(p->normal_prio)) { 1694 /* 1695 * Special case in which we have a !SCHED_DEADLINE task that is going 1696 * to be deboosted, but exceeds its runtime while doing so. No point in 1697 * replenishing it, as it's going to return back to its original 1698 * scheduling class after this. If it has been throttled, we need to 1699 * clear the flag, otherwise the task may wake up as throttled after 1700 * being boosted again with no means to replenish the runtime and clear 1701 * the throttle. 1702 */ 1703 p->dl.dl_throttled = 0; 1704 if (!(flags & ENQUEUE_REPLENISH)) 1705 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n", 1706 task_pid_nr(p)); 1707 1708 return; 1709 } 1710 1711 /* 1712 * Check if a constrained deadline task was activated 1713 * after the deadline but before the next period. 1714 * If that is the case, the task will be throttled and 1715 * the replenishment timer will be set to the next period. 1716 */ 1717 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl)) 1718 dl_check_constrained_dl(&p->dl); 1719 1720 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) { 1721 add_rq_bw(&p->dl, &rq->dl); 1722 add_running_bw(&p->dl, &rq->dl); 1723 } 1724 1725 /* 1726 * If p is throttled, we do not enqueue it. In fact, if it exhausted 1727 * its budget it needs a replenishment and, since it now is on 1728 * its rq, the bandwidth timer callback (which clearly has not 1729 * run yet) will take care of this. 1730 * However, the active utilization does not depend on the fact 1731 * that the task is on the runqueue or not (but depends on the 1732 * task's state - in GRUB parlance, "inactive" vs "active contending"). 1733 * In other words, even if a task is throttled its utilization must 1734 * be counted in the active utilization; hence, we need to call 1735 * add_running_bw(). 1736 */ 1737 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) { 1738 if (flags & ENQUEUE_WAKEUP) 1739 task_contending(&p->dl, flags); 1740 1741 return; 1742 } 1743 1744 check_schedstat_required(); 1745 update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl); 1746 1747 enqueue_dl_entity(&p->dl, flags); 1748 1749 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1750 enqueue_pushable_dl_task(rq, p); 1751 } 1752 1753 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1754 { 1755 update_stats_dequeue_dl(&rq->dl, &p->dl, flags); 1756 dequeue_dl_entity(&p->dl); 1757 dequeue_pushable_dl_task(rq, p); 1758 } 1759 1760 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1761 { 1762 update_curr_dl(rq); 1763 __dequeue_task_dl(rq, p, flags); 1764 1765 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) { 1766 sub_running_bw(&p->dl, &rq->dl); 1767 sub_rq_bw(&p->dl, &rq->dl); 1768 } 1769 1770 /* 1771 * This check allows to start the inactive timer (or to immediately 1772 * decrease the active utilization, if needed) in two cases: 1773 * when the task blocks and when it is terminating 1774 * (p->state == TASK_DEAD). We can handle the two cases in the same 1775 * way, because from GRUB's point of view the same thing is happening 1776 * (the task moves from "active contending" to "active non contending" 1777 * or "inactive") 1778 */ 1779 if (flags & DEQUEUE_SLEEP) 1780 task_non_contending(p); 1781 } 1782 1783 /* 1784 * Yield task semantic for -deadline tasks is: 1785 * 1786 * get off from the CPU until our next instance, with 1787 * a new runtime. This is of little use now, since we 1788 * don't have a bandwidth reclaiming mechanism. Anyway, 1789 * bandwidth reclaiming is planned for the future, and 1790 * yield_task_dl will indicate that some spare budget 1791 * is available for other task instances to use it. 1792 */ 1793 static void yield_task_dl(struct rq *rq) 1794 { 1795 /* 1796 * We make the task go to sleep until its current deadline by 1797 * forcing its runtime to zero. This way, update_curr_dl() stops 1798 * it and the bandwidth timer will wake it up and will give it 1799 * new scheduling parameters (thanks to dl_yielded=1). 1800 */ 1801 rq->curr->dl.dl_yielded = 1; 1802 1803 update_rq_clock(rq); 1804 update_curr_dl(rq); 1805 /* 1806 * Tell update_rq_clock() that we've just updated, 1807 * so we don't do microscopic update in schedule() 1808 * and double the fastpath cost. 1809 */ 1810 rq_clock_skip_update(rq); 1811 } 1812 1813 #ifdef CONFIG_SMP 1814 1815 static int find_later_rq(struct task_struct *task); 1816 1817 static int 1818 select_task_rq_dl(struct task_struct *p, int cpu, int flags) 1819 { 1820 struct task_struct *curr; 1821 bool select_rq; 1822 struct rq *rq; 1823 1824 if (!(flags & WF_TTWU)) 1825 goto out; 1826 1827 rq = cpu_rq(cpu); 1828 1829 rcu_read_lock(); 1830 curr = READ_ONCE(rq->curr); /* unlocked access */ 1831 1832 /* 1833 * If we are dealing with a -deadline task, we must 1834 * decide where to wake it up. 1835 * If it has a later deadline and the current task 1836 * on this rq can't move (provided the waking task 1837 * can!) we prefer to send it somewhere else. On the 1838 * other hand, if it has a shorter deadline, we 1839 * try to make it stay here, it might be important. 1840 */ 1841 select_rq = unlikely(dl_task(curr)) && 1842 (curr->nr_cpus_allowed < 2 || 1843 !dl_entity_preempt(&p->dl, &curr->dl)) && 1844 p->nr_cpus_allowed > 1; 1845 1846 /* 1847 * Take the capacity of the CPU into account to 1848 * ensure it fits the requirement of the task. 1849 */ 1850 if (static_branch_unlikely(&sched_asym_cpucapacity)) 1851 select_rq |= !dl_task_fits_capacity(p, cpu); 1852 1853 if (select_rq) { 1854 int target = find_later_rq(p); 1855 1856 if (target != -1 && 1857 (dl_time_before(p->dl.deadline, 1858 cpu_rq(target)->dl.earliest_dl.curr) || 1859 (cpu_rq(target)->dl.dl_nr_running == 0))) 1860 cpu = target; 1861 } 1862 rcu_read_unlock(); 1863 1864 out: 1865 return cpu; 1866 } 1867 1868 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused) 1869 { 1870 struct rq_flags rf; 1871 struct rq *rq; 1872 1873 if (READ_ONCE(p->__state) != TASK_WAKING) 1874 return; 1875 1876 rq = task_rq(p); 1877 /* 1878 * Since p->state == TASK_WAKING, set_task_cpu() has been called 1879 * from try_to_wake_up(). Hence, p->pi_lock is locked, but 1880 * rq->lock is not... So, lock it 1881 */ 1882 rq_lock(rq, &rf); 1883 if (p->dl.dl_non_contending) { 1884 update_rq_clock(rq); 1885 sub_running_bw(&p->dl, &rq->dl); 1886 p->dl.dl_non_contending = 0; 1887 /* 1888 * If the timer handler is currently running and the 1889 * timer cannot be canceled, inactive_task_timer() 1890 * will see that dl_not_contending is not set, and 1891 * will not touch the rq's active utilization, 1892 * so we are still safe. 1893 */ 1894 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 1895 put_task_struct(p); 1896 } 1897 sub_rq_bw(&p->dl, &rq->dl); 1898 rq_unlock(rq, &rf); 1899 } 1900 1901 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 1902 { 1903 /* 1904 * Current can't be migrated, useless to reschedule, 1905 * let's hope p can move out. 1906 */ 1907 if (rq->curr->nr_cpus_allowed == 1 || 1908 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL)) 1909 return; 1910 1911 /* 1912 * p is migratable, so let's not schedule it and 1913 * see if it is pushed or pulled somewhere else. 1914 */ 1915 if (p->nr_cpus_allowed != 1 && 1916 cpudl_find(&rq->rd->cpudl, p, NULL)) 1917 return; 1918 1919 resched_curr(rq); 1920 } 1921 1922 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1923 { 1924 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) { 1925 /* 1926 * This is OK, because current is on_cpu, which avoids it being 1927 * picked for load-balance and preemption/IRQs are still 1928 * disabled avoiding further scheduler activity on it and we've 1929 * not yet started the picking loop. 1930 */ 1931 rq_unpin_lock(rq, rf); 1932 pull_dl_task(rq); 1933 rq_repin_lock(rq, rf); 1934 } 1935 1936 return sched_stop_runnable(rq) || sched_dl_runnable(rq); 1937 } 1938 #endif /* CONFIG_SMP */ 1939 1940 /* 1941 * Only called when both the current and waking task are -deadline 1942 * tasks. 1943 */ 1944 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 1945 int flags) 1946 { 1947 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { 1948 resched_curr(rq); 1949 return; 1950 } 1951 1952 #ifdef CONFIG_SMP 1953 /* 1954 * In the unlikely case current and p have the same deadline 1955 * let us try to decide what's the best thing to do... 1956 */ 1957 if ((p->dl.deadline == rq->curr->dl.deadline) && 1958 !test_tsk_need_resched(rq->curr)) 1959 check_preempt_equal_dl(rq, p); 1960 #endif /* CONFIG_SMP */ 1961 } 1962 1963 #ifdef CONFIG_SCHED_HRTICK 1964 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1965 { 1966 hrtick_start(rq, p->dl.runtime); 1967 } 1968 #else /* !CONFIG_SCHED_HRTICK */ 1969 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1970 { 1971 } 1972 #endif 1973 1974 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first) 1975 { 1976 struct sched_dl_entity *dl_se = &p->dl; 1977 struct dl_rq *dl_rq = &rq->dl; 1978 1979 p->se.exec_start = rq_clock_task(rq); 1980 if (on_dl_rq(&p->dl)) 1981 update_stats_wait_end_dl(dl_rq, dl_se); 1982 1983 /* You can't push away the running task */ 1984 dequeue_pushable_dl_task(rq, p); 1985 1986 if (!first) 1987 return; 1988 1989 if (hrtick_enabled_dl(rq)) 1990 start_hrtick_dl(rq, p); 1991 1992 if (rq->curr->sched_class != &dl_sched_class) 1993 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 1994 1995 deadline_queue_push_tasks(rq); 1996 } 1997 1998 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq) 1999 { 2000 struct rb_node *left = rb_first_cached(&dl_rq->root); 2001 2002 if (!left) 2003 return NULL; 2004 2005 return __node_2_dle(left); 2006 } 2007 2008 static struct task_struct *pick_task_dl(struct rq *rq) 2009 { 2010 struct sched_dl_entity *dl_se; 2011 struct dl_rq *dl_rq = &rq->dl; 2012 struct task_struct *p; 2013 2014 if (!sched_dl_runnable(rq)) 2015 return NULL; 2016 2017 dl_se = pick_next_dl_entity(dl_rq); 2018 BUG_ON(!dl_se); 2019 p = dl_task_of(dl_se); 2020 2021 return p; 2022 } 2023 2024 static struct task_struct *pick_next_task_dl(struct rq *rq) 2025 { 2026 struct task_struct *p; 2027 2028 p = pick_task_dl(rq); 2029 if (p) 2030 set_next_task_dl(rq, p, true); 2031 2032 return p; 2033 } 2034 2035 static void put_prev_task_dl(struct rq *rq, struct task_struct *p) 2036 { 2037 struct sched_dl_entity *dl_se = &p->dl; 2038 struct dl_rq *dl_rq = &rq->dl; 2039 2040 if (on_dl_rq(&p->dl)) 2041 update_stats_wait_start_dl(dl_rq, dl_se); 2042 2043 update_curr_dl(rq); 2044 2045 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2046 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 2047 enqueue_pushable_dl_task(rq, p); 2048 } 2049 2050 /* 2051 * scheduler tick hitting a task of our scheduling class. 2052 * 2053 * NOTE: This function can be called remotely by the tick offload that 2054 * goes along full dynticks. Therefore no local assumption can be made 2055 * and everything must be accessed through the @rq and @curr passed in 2056 * parameters. 2057 */ 2058 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 2059 { 2060 update_curr_dl(rq); 2061 2062 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2063 /* 2064 * Even when we have runtime, update_curr_dl() might have resulted in us 2065 * not being the leftmost task anymore. In that case NEED_RESCHED will 2066 * be set and schedule() will start a new hrtick for the next task. 2067 */ 2068 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 && 2069 is_leftmost(p, &rq->dl)) 2070 start_hrtick_dl(rq, p); 2071 } 2072 2073 static void task_fork_dl(struct task_struct *p) 2074 { 2075 /* 2076 * SCHED_DEADLINE tasks cannot fork and this is achieved through 2077 * sched_fork() 2078 */ 2079 } 2080 2081 #ifdef CONFIG_SMP 2082 2083 /* Only try algorithms three times */ 2084 #define DL_MAX_TRIES 3 2085 2086 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) 2087 { 2088 if (!task_running(rq, p) && 2089 cpumask_test_cpu(cpu, &p->cpus_mask)) 2090 return 1; 2091 return 0; 2092 } 2093 2094 /* 2095 * Return the earliest pushable rq's task, which is suitable to be executed 2096 * on the CPU, NULL otherwise: 2097 */ 2098 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) 2099 { 2100 struct task_struct *p = NULL; 2101 struct rb_node *next_node; 2102 2103 if (!has_pushable_dl_tasks(rq)) 2104 return NULL; 2105 2106 next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root); 2107 2108 next_node: 2109 if (next_node) { 2110 p = __node_2_pdl(next_node); 2111 2112 if (pick_dl_task(rq, p, cpu)) 2113 return p; 2114 2115 next_node = rb_next(next_node); 2116 goto next_node; 2117 } 2118 2119 return NULL; 2120 } 2121 2122 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 2123 2124 static int find_later_rq(struct task_struct *task) 2125 { 2126 struct sched_domain *sd; 2127 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 2128 int this_cpu = smp_processor_id(); 2129 int cpu = task_cpu(task); 2130 2131 /* Make sure the mask is initialized first */ 2132 if (unlikely(!later_mask)) 2133 return -1; 2134 2135 if (task->nr_cpus_allowed == 1) 2136 return -1; 2137 2138 /* 2139 * We have to consider system topology and task affinity 2140 * first, then we can look for a suitable CPU. 2141 */ 2142 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask)) 2143 return -1; 2144 2145 /* 2146 * If we are here, some targets have been found, including 2147 * the most suitable which is, among the runqueues where the 2148 * current tasks have later deadlines than the task's one, the 2149 * rq with the latest possible one. 2150 * 2151 * Now we check how well this matches with task's 2152 * affinity and system topology. 2153 * 2154 * The last CPU where the task run is our first 2155 * guess, since it is most likely cache-hot there. 2156 */ 2157 if (cpumask_test_cpu(cpu, later_mask)) 2158 return cpu; 2159 /* 2160 * Check if this_cpu is to be skipped (i.e., it is 2161 * not in the mask) or not. 2162 */ 2163 if (!cpumask_test_cpu(this_cpu, later_mask)) 2164 this_cpu = -1; 2165 2166 rcu_read_lock(); 2167 for_each_domain(cpu, sd) { 2168 if (sd->flags & SD_WAKE_AFFINE) { 2169 int best_cpu; 2170 2171 /* 2172 * If possible, preempting this_cpu is 2173 * cheaper than migrating. 2174 */ 2175 if (this_cpu != -1 && 2176 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 2177 rcu_read_unlock(); 2178 return this_cpu; 2179 } 2180 2181 best_cpu = cpumask_any_and_distribute(later_mask, 2182 sched_domain_span(sd)); 2183 /* 2184 * Last chance: if a CPU being in both later_mask 2185 * and current sd span is valid, that becomes our 2186 * choice. Of course, the latest possible CPU is 2187 * already under consideration through later_mask. 2188 */ 2189 if (best_cpu < nr_cpu_ids) { 2190 rcu_read_unlock(); 2191 return best_cpu; 2192 } 2193 } 2194 } 2195 rcu_read_unlock(); 2196 2197 /* 2198 * At this point, all our guesses failed, we just return 2199 * 'something', and let the caller sort the things out. 2200 */ 2201 if (this_cpu != -1) 2202 return this_cpu; 2203 2204 cpu = cpumask_any_distribute(later_mask); 2205 if (cpu < nr_cpu_ids) 2206 return cpu; 2207 2208 return -1; 2209 } 2210 2211 /* Locks the rq it finds */ 2212 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 2213 { 2214 struct rq *later_rq = NULL; 2215 int tries; 2216 int cpu; 2217 2218 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 2219 cpu = find_later_rq(task); 2220 2221 if ((cpu == -1) || (cpu == rq->cpu)) 2222 break; 2223 2224 later_rq = cpu_rq(cpu); 2225 2226 if (later_rq->dl.dl_nr_running && 2227 !dl_time_before(task->dl.deadline, 2228 later_rq->dl.earliest_dl.curr)) { 2229 /* 2230 * Target rq has tasks of equal or earlier deadline, 2231 * retrying does not release any lock and is unlikely 2232 * to yield a different result. 2233 */ 2234 later_rq = NULL; 2235 break; 2236 } 2237 2238 /* Retry if something changed. */ 2239 if (double_lock_balance(rq, later_rq)) { 2240 if (unlikely(task_rq(task) != rq || 2241 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) || 2242 task_running(rq, task) || 2243 !dl_task(task) || 2244 !task_on_rq_queued(task))) { 2245 double_unlock_balance(rq, later_rq); 2246 later_rq = NULL; 2247 break; 2248 } 2249 } 2250 2251 /* 2252 * If the rq we found has no -deadline task, or 2253 * its earliest one has a later deadline than our 2254 * task, the rq is a good one. 2255 */ 2256 if (!later_rq->dl.dl_nr_running || 2257 dl_time_before(task->dl.deadline, 2258 later_rq->dl.earliest_dl.curr)) 2259 break; 2260 2261 /* Otherwise we try again. */ 2262 double_unlock_balance(rq, later_rq); 2263 later_rq = NULL; 2264 } 2265 2266 return later_rq; 2267 } 2268 2269 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 2270 { 2271 struct task_struct *p; 2272 2273 if (!has_pushable_dl_tasks(rq)) 2274 return NULL; 2275 2276 p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root)); 2277 2278 BUG_ON(rq->cpu != task_cpu(p)); 2279 BUG_ON(task_current(rq, p)); 2280 BUG_ON(p->nr_cpus_allowed <= 1); 2281 2282 BUG_ON(!task_on_rq_queued(p)); 2283 BUG_ON(!dl_task(p)); 2284 2285 return p; 2286 } 2287 2288 /* 2289 * See if the non running -deadline tasks on this rq 2290 * can be sent to some other CPU where they can preempt 2291 * and start executing. 2292 */ 2293 static int push_dl_task(struct rq *rq) 2294 { 2295 struct task_struct *next_task; 2296 struct rq *later_rq; 2297 int ret = 0; 2298 2299 if (!rq->dl.overloaded) 2300 return 0; 2301 2302 next_task = pick_next_pushable_dl_task(rq); 2303 if (!next_task) 2304 return 0; 2305 2306 retry: 2307 /* 2308 * If next_task preempts rq->curr, and rq->curr 2309 * can move away, it makes sense to just reschedule 2310 * without going further in pushing next_task. 2311 */ 2312 if (dl_task(rq->curr) && 2313 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && 2314 rq->curr->nr_cpus_allowed > 1) { 2315 resched_curr(rq); 2316 return 0; 2317 } 2318 2319 if (is_migration_disabled(next_task)) 2320 return 0; 2321 2322 if (WARN_ON(next_task == rq->curr)) 2323 return 0; 2324 2325 /* We might release rq lock */ 2326 get_task_struct(next_task); 2327 2328 /* Will lock the rq it'll find */ 2329 later_rq = find_lock_later_rq(next_task, rq); 2330 if (!later_rq) { 2331 struct task_struct *task; 2332 2333 /* 2334 * We must check all this again, since 2335 * find_lock_later_rq releases rq->lock and it is 2336 * then possible that next_task has migrated. 2337 */ 2338 task = pick_next_pushable_dl_task(rq); 2339 if (task == next_task) { 2340 /* 2341 * The task is still there. We don't try 2342 * again, some other CPU will pull it when ready. 2343 */ 2344 goto out; 2345 } 2346 2347 if (!task) 2348 /* No more tasks */ 2349 goto out; 2350 2351 put_task_struct(next_task); 2352 next_task = task; 2353 goto retry; 2354 } 2355 2356 deactivate_task(rq, next_task, 0); 2357 set_task_cpu(next_task, later_rq->cpu); 2358 activate_task(later_rq, next_task, 0); 2359 ret = 1; 2360 2361 resched_curr(later_rq); 2362 2363 double_unlock_balance(rq, later_rq); 2364 2365 out: 2366 put_task_struct(next_task); 2367 2368 return ret; 2369 } 2370 2371 static void push_dl_tasks(struct rq *rq) 2372 { 2373 /* push_dl_task() will return true if it moved a -deadline task */ 2374 while (push_dl_task(rq)) 2375 ; 2376 } 2377 2378 static void pull_dl_task(struct rq *this_rq) 2379 { 2380 int this_cpu = this_rq->cpu, cpu; 2381 struct task_struct *p, *push_task; 2382 bool resched = false; 2383 struct rq *src_rq; 2384 u64 dmin = LONG_MAX; 2385 2386 if (likely(!dl_overloaded(this_rq))) 2387 return; 2388 2389 /* 2390 * Match the barrier from dl_set_overloaded; this guarantees that if we 2391 * see overloaded we must also see the dlo_mask bit. 2392 */ 2393 smp_rmb(); 2394 2395 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 2396 if (this_cpu == cpu) 2397 continue; 2398 2399 src_rq = cpu_rq(cpu); 2400 2401 /* 2402 * It looks racy, abd it is! However, as in sched_rt.c, 2403 * we are fine with this. 2404 */ 2405 if (this_rq->dl.dl_nr_running && 2406 dl_time_before(this_rq->dl.earliest_dl.curr, 2407 src_rq->dl.earliest_dl.next)) 2408 continue; 2409 2410 /* Might drop this_rq->lock */ 2411 push_task = NULL; 2412 double_lock_balance(this_rq, src_rq); 2413 2414 /* 2415 * If there are no more pullable tasks on the 2416 * rq, we're done with it. 2417 */ 2418 if (src_rq->dl.dl_nr_running <= 1) 2419 goto skip; 2420 2421 p = pick_earliest_pushable_dl_task(src_rq, this_cpu); 2422 2423 /* 2424 * We found a task to be pulled if: 2425 * - it preempts our current (if there's one), 2426 * - it will preempt the last one we pulled (if any). 2427 */ 2428 if (p && dl_time_before(p->dl.deadline, dmin) && 2429 (!this_rq->dl.dl_nr_running || 2430 dl_time_before(p->dl.deadline, 2431 this_rq->dl.earliest_dl.curr))) { 2432 WARN_ON(p == src_rq->curr); 2433 WARN_ON(!task_on_rq_queued(p)); 2434 2435 /* 2436 * Then we pull iff p has actually an earlier 2437 * deadline than the current task of its runqueue. 2438 */ 2439 if (dl_time_before(p->dl.deadline, 2440 src_rq->curr->dl.deadline)) 2441 goto skip; 2442 2443 if (is_migration_disabled(p)) { 2444 push_task = get_push_task(src_rq); 2445 } else { 2446 deactivate_task(src_rq, p, 0); 2447 set_task_cpu(p, this_cpu); 2448 activate_task(this_rq, p, 0); 2449 dmin = p->dl.deadline; 2450 resched = true; 2451 } 2452 2453 /* Is there any other task even earlier? */ 2454 } 2455 skip: 2456 double_unlock_balance(this_rq, src_rq); 2457 2458 if (push_task) { 2459 raw_spin_rq_unlock(this_rq); 2460 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, 2461 push_task, &src_rq->push_work); 2462 raw_spin_rq_lock(this_rq); 2463 } 2464 } 2465 2466 if (resched) 2467 resched_curr(this_rq); 2468 } 2469 2470 /* 2471 * Since the task is not running and a reschedule is not going to happen 2472 * anytime soon on its runqueue, we try pushing it away now. 2473 */ 2474 static void task_woken_dl(struct rq *rq, struct task_struct *p) 2475 { 2476 if (!task_running(rq, p) && 2477 !test_tsk_need_resched(rq->curr) && 2478 p->nr_cpus_allowed > 1 && 2479 dl_task(rq->curr) && 2480 (rq->curr->nr_cpus_allowed < 2 || 2481 !dl_entity_preempt(&p->dl, &rq->curr->dl))) { 2482 push_dl_tasks(rq); 2483 } 2484 } 2485 2486 static void set_cpus_allowed_dl(struct task_struct *p, 2487 const struct cpumask *new_mask, 2488 u32 flags) 2489 { 2490 struct root_domain *src_rd; 2491 struct rq *rq; 2492 2493 BUG_ON(!dl_task(p)); 2494 2495 rq = task_rq(p); 2496 src_rd = rq->rd; 2497 /* 2498 * Migrating a SCHED_DEADLINE task between exclusive 2499 * cpusets (different root_domains) entails a bandwidth 2500 * update. We already made space for us in the destination 2501 * domain (see cpuset_can_attach()). 2502 */ 2503 if (!cpumask_intersects(src_rd->span, new_mask)) { 2504 struct dl_bw *src_dl_b; 2505 2506 src_dl_b = dl_bw_of(cpu_of(rq)); 2507 /* 2508 * We now free resources of the root_domain we are migrating 2509 * off. In the worst case, sched_setattr() may temporary fail 2510 * until we complete the update. 2511 */ 2512 raw_spin_lock(&src_dl_b->lock); 2513 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 2514 raw_spin_unlock(&src_dl_b->lock); 2515 } 2516 2517 set_cpus_allowed_common(p, new_mask, flags); 2518 } 2519 2520 /* Assumes rq->lock is held */ 2521 static void rq_online_dl(struct rq *rq) 2522 { 2523 if (rq->dl.overloaded) 2524 dl_set_overload(rq); 2525 2526 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu); 2527 if (rq->dl.dl_nr_running > 0) 2528 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr); 2529 } 2530 2531 /* Assumes rq->lock is held */ 2532 static void rq_offline_dl(struct rq *rq) 2533 { 2534 if (rq->dl.overloaded) 2535 dl_clear_overload(rq); 2536 2537 cpudl_clear(&rq->rd->cpudl, rq->cpu); 2538 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu); 2539 } 2540 2541 void __init init_sched_dl_class(void) 2542 { 2543 unsigned int i; 2544 2545 for_each_possible_cpu(i) 2546 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 2547 GFP_KERNEL, cpu_to_node(i)); 2548 } 2549 2550 void dl_add_task_root_domain(struct task_struct *p) 2551 { 2552 struct rq_flags rf; 2553 struct rq *rq; 2554 struct dl_bw *dl_b; 2555 2556 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2557 if (!dl_task(p)) { 2558 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 2559 return; 2560 } 2561 2562 rq = __task_rq_lock(p, &rf); 2563 2564 dl_b = &rq->rd->dl_bw; 2565 raw_spin_lock(&dl_b->lock); 2566 2567 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 2568 2569 raw_spin_unlock(&dl_b->lock); 2570 2571 task_rq_unlock(rq, p, &rf); 2572 } 2573 2574 void dl_clear_root_domain(struct root_domain *rd) 2575 { 2576 unsigned long flags; 2577 2578 raw_spin_lock_irqsave(&rd->dl_bw.lock, flags); 2579 rd->dl_bw.total_bw = 0; 2580 raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags); 2581 } 2582 2583 #endif /* CONFIG_SMP */ 2584 2585 static void switched_from_dl(struct rq *rq, struct task_struct *p) 2586 { 2587 /* 2588 * task_non_contending() can start the "inactive timer" (if the 0-lag 2589 * time is in the future). If the task switches back to dl before 2590 * the "inactive timer" fires, it can continue to consume its current 2591 * runtime using its current deadline. If it stays outside of 2592 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer() 2593 * will reset the task parameters. 2594 */ 2595 if (task_on_rq_queued(p) && p->dl.dl_runtime) 2596 task_non_contending(p); 2597 2598 if (!task_on_rq_queued(p)) { 2599 /* 2600 * Inactive timer is armed. However, p is leaving DEADLINE and 2601 * might migrate away from this rq while continuing to run on 2602 * some other class. We need to remove its contribution from 2603 * this rq running_bw now, or sub_rq_bw (below) will complain. 2604 */ 2605 if (p->dl.dl_non_contending) 2606 sub_running_bw(&p->dl, &rq->dl); 2607 sub_rq_bw(&p->dl, &rq->dl); 2608 } 2609 2610 /* 2611 * We cannot use inactive_task_timer() to invoke sub_running_bw() 2612 * at the 0-lag time, because the task could have been migrated 2613 * while SCHED_OTHER in the meanwhile. 2614 */ 2615 if (p->dl.dl_non_contending) 2616 p->dl.dl_non_contending = 0; 2617 2618 /* 2619 * Since this might be the only -deadline task on the rq, 2620 * this is the right place to try to pull some other one 2621 * from an overloaded CPU, if any. 2622 */ 2623 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 2624 return; 2625 2626 deadline_queue_pull_task(rq); 2627 } 2628 2629 /* 2630 * When switching to -deadline, we may overload the rq, then 2631 * we try to push someone off, if possible. 2632 */ 2633 static void switched_to_dl(struct rq *rq, struct task_struct *p) 2634 { 2635 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 2636 put_task_struct(p); 2637 2638 /* If p is not queued we will update its parameters at next wakeup. */ 2639 if (!task_on_rq_queued(p)) { 2640 add_rq_bw(&p->dl, &rq->dl); 2641 2642 return; 2643 } 2644 2645 if (rq->curr != p) { 2646 #ifdef CONFIG_SMP 2647 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) 2648 deadline_queue_push_tasks(rq); 2649 #endif 2650 if (dl_task(rq->curr)) 2651 check_preempt_curr_dl(rq, p, 0); 2652 else 2653 resched_curr(rq); 2654 } else { 2655 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2656 } 2657 } 2658 2659 /* 2660 * If the scheduling parameters of a -deadline task changed, 2661 * a push or pull operation might be needed. 2662 */ 2663 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 2664 int oldprio) 2665 { 2666 if (task_on_rq_queued(p) || task_current(rq, p)) { 2667 #ifdef CONFIG_SMP 2668 /* 2669 * This might be too much, but unfortunately 2670 * we don't have the old deadline value, and 2671 * we can't argue if the task is increasing 2672 * or lowering its prio, so... 2673 */ 2674 if (!rq->dl.overloaded) 2675 deadline_queue_pull_task(rq); 2676 2677 /* 2678 * If we now have a earlier deadline task than p, 2679 * then reschedule, provided p is still on this 2680 * runqueue. 2681 */ 2682 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) 2683 resched_curr(rq); 2684 #else 2685 /* 2686 * Again, we don't know if p has a earlier 2687 * or later deadline, so let's blindly set a 2688 * (maybe not needed) rescheduling point. 2689 */ 2690 resched_curr(rq); 2691 #endif /* CONFIG_SMP */ 2692 } 2693 } 2694 2695 DEFINE_SCHED_CLASS(dl) = { 2696 2697 .enqueue_task = enqueue_task_dl, 2698 .dequeue_task = dequeue_task_dl, 2699 .yield_task = yield_task_dl, 2700 2701 .check_preempt_curr = check_preempt_curr_dl, 2702 2703 .pick_next_task = pick_next_task_dl, 2704 .put_prev_task = put_prev_task_dl, 2705 .set_next_task = set_next_task_dl, 2706 2707 #ifdef CONFIG_SMP 2708 .balance = balance_dl, 2709 .pick_task = pick_task_dl, 2710 .select_task_rq = select_task_rq_dl, 2711 .migrate_task_rq = migrate_task_rq_dl, 2712 .set_cpus_allowed = set_cpus_allowed_dl, 2713 .rq_online = rq_online_dl, 2714 .rq_offline = rq_offline_dl, 2715 .task_woken = task_woken_dl, 2716 .find_lock_rq = find_lock_later_rq, 2717 #endif 2718 2719 .task_tick = task_tick_dl, 2720 .task_fork = task_fork_dl, 2721 2722 .prio_changed = prio_changed_dl, 2723 .switched_from = switched_from_dl, 2724 .switched_to = switched_to_dl, 2725 2726 .update_curr = update_curr_dl, 2727 }; 2728 2729 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */ 2730 static u64 dl_generation; 2731 2732 int sched_dl_global_validate(void) 2733 { 2734 u64 runtime = global_rt_runtime(); 2735 u64 period = global_rt_period(); 2736 u64 new_bw = to_ratio(period, runtime); 2737 u64 gen = ++dl_generation; 2738 struct dl_bw *dl_b; 2739 int cpu, cpus, ret = 0; 2740 unsigned long flags; 2741 2742 /* 2743 * Here we want to check the bandwidth not being set to some 2744 * value smaller than the currently allocated bandwidth in 2745 * any of the root_domains. 2746 */ 2747 for_each_possible_cpu(cpu) { 2748 rcu_read_lock_sched(); 2749 2750 if (dl_bw_visited(cpu, gen)) 2751 goto next; 2752 2753 dl_b = dl_bw_of(cpu); 2754 cpus = dl_bw_cpus(cpu); 2755 2756 raw_spin_lock_irqsave(&dl_b->lock, flags); 2757 if (new_bw * cpus < dl_b->total_bw) 2758 ret = -EBUSY; 2759 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2760 2761 next: 2762 rcu_read_unlock_sched(); 2763 2764 if (ret) 2765 break; 2766 } 2767 2768 return ret; 2769 } 2770 2771 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq) 2772 { 2773 if (global_rt_runtime() == RUNTIME_INF) { 2774 dl_rq->bw_ratio = 1 << RATIO_SHIFT; 2775 dl_rq->extra_bw = 1 << BW_SHIFT; 2776 } else { 2777 dl_rq->bw_ratio = to_ratio(global_rt_runtime(), 2778 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT); 2779 dl_rq->extra_bw = to_ratio(global_rt_period(), 2780 global_rt_runtime()); 2781 } 2782 } 2783 2784 void sched_dl_do_global(void) 2785 { 2786 u64 new_bw = -1; 2787 u64 gen = ++dl_generation; 2788 struct dl_bw *dl_b; 2789 int cpu; 2790 unsigned long flags; 2791 2792 if (global_rt_runtime() != RUNTIME_INF) 2793 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 2794 2795 for_each_possible_cpu(cpu) { 2796 rcu_read_lock_sched(); 2797 2798 if (dl_bw_visited(cpu, gen)) { 2799 rcu_read_unlock_sched(); 2800 continue; 2801 } 2802 2803 dl_b = dl_bw_of(cpu); 2804 2805 raw_spin_lock_irqsave(&dl_b->lock, flags); 2806 dl_b->bw = new_bw; 2807 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2808 2809 rcu_read_unlock_sched(); 2810 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl); 2811 } 2812 } 2813 2814 /* 2815 * We must be sure that accepting a new task (or allowing changing the 2816 * parameters of an existing one) is consistent with the bandwidth 2817 * constraints. If yes, this function also accordingly updates the currently 2818 * allocated bandwidth to reflect the new situation. 2819 * 2820 * This function is called while holding p's rq->lock. 2821 */ 2822 int sched_dl_overflow(struct task_struct *p, int policy, 2823 const struct sched_attr *attr) 2824 { 2825 u64 period = attr->sched_period ?: attr->sched_deadline; 2826 u64 runtime = attr->sched_runtime; 2827 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2828 int cpus, err = -1, cpu = task_cpu(p); 2829 struct dl_bw *dl_b = dl_bw_of(cpu); 2830 unsigned long cap; 2831 2832 if (attr->sched_flags & SCHED_FLAG_SUGOV) 2833 return 0; 2834 2835 /* !deadline task may carry old deadline bandwidth */ 2836 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 2837 return 0; 2838 2839 /* 2840 * Either if a task, enters, leave, or stays -deadline but changes 2841 * its parameters, we may need to update accordingly the total 2842 * allocated bandwidth of the container. 2843 */ 2844 raw_spin_lock(&dl_b->lock); 2845 cpus = dl_bw_cpus(cpu); 2846 cap = dl_bw_capacity(cpu); 2847 2848 if (dl_policy(policy) && !task_has_dl_policy(p) && 2849 !__dl_overflow(dl_b, cap, 0, new_bw)) { 2850 if (hrtimer_active(&p->dl.inactive_timer)) 2851 __dl_sub(dl_b, p->dl.dl_bw, cpus); 2852 __dl_add(dl_b, new_bw, cpus); 2853 err = 0; 2854 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2855 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) { 2856 /* 2857 * XXX this is slightly incorrect: when the task 2858 * utilization decreases, we should delay the total 2859 * utilization change until the task's 0-lag point. 2860 * But this would require to set the task's "inactive 2861 * timer" when the task is not inactive. 2862 */ 2863 __dl_sub(dl_b, p->dl.dl_bw, cpus); 2864 __dl_add(dl_b, new_bw, cpus); 2865 dl_change_utilization(p, new_bw); 2866 err = 0; 2867 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2868 /* 2869 * Do not decrease the total deadline utilization here, 2870 * switched_from_dl() will take care to do it at the correct 2871 * (0-lag) time. 2872 */ 2873 err = 0; 2874 } 2875 raw_spin_unlock(&dl_b->lock); 2876 2877 return err; 2878 } 2879 2880 /* 2881 * This function initializes the sched_dl_entity of a newly becoming 2882 * SCHED_DEADLINE task. 2883 * 2884 * Only the static values are considered here, the actual runtime and the 2885 * absolute deadline will be properly calculated when the task is enqueued 2886 * for the first time with its new policy. 2887 */ 2888 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 2889 { 2890 struct sched_dl_entity *dl_se = &p->dl; 2891 2892 dl_se->dl_runtime = attr->sched_runtime; 2893 dl_se->dl_deadline = attr->sched_deadline; 2894 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 2895 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS; 2896 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 2897 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 2898 } 2899 2900 void __getparam_dl(struct task_struct *p, struct sched_attr *attr) 2901 { 2902 struct sched_dl_entity *dl_se = &p->dl; 2903 2904 attr->sched_priority = p->rt_priority; 2905 attr->sched_runtime = dl_se->dl_runtime; 2906 attr->sched_deadline = dl_se->dl_deadline; 2907 attr->sched_period = dl_se->dl_period; 2908 attr->sched_flags &= ~SCHED_DL_FLAGS; 2909 attr->sched_flags |= dl_se->flags; 2910 } 2911 2912 /* 2913 * This function validates the new parameters of a -deadline task. 2914 * We ask for the deadline not being zero, and greater or equal 2915 * than the runtime, as well as the period of being zero or 2916 * greater than deadline. Furthermore, we have to be sure that 2917 * user parameters are above the internal resolution of 1us (we 2918 * check sched_runtime only since it is always the smaller one) and 2919 * below 2^63 ns (we have to check both sched_deadline and 2920 * sched_period, as the latter can be zero). 2921 */ 2922 bool __checkparam_dl(const struct sched_attr *attr) 2923 { 2924 u64 period, max, min; 2925 2926 /* special dl tasks don't actually use any parameter */ 2927 if (attr->sched_flags & SCHED_FLAG_SUGOV) 2928 return true; 2929 2930 /* deadline != 0 */ 2931 if (attr->sched_deadline == 0) 2932 return false; 2933 2934 /* 2935 * Since we truncate DL_SCALE bits, make sure we're at least 2936 * that big. 2937 */ 2938 if (attr->sched_runtime < (1ULL << DL_SCALE)) 2939 return false; 2940 2941 /* 2942 * Since we use the MSB for wrap-around and sign issues, make 2943 * sure it's not set (mind that period can be equal to zero). 2944 */ 2945 if (attr->sched_deadline & (1ULL << 63) || 2946 attr->sched_period & (1ULL << 63)) 2947 return false; 2948 2949 period = attr->sched_period; 2950 if (!period) 2951 period = attr->sched_deadline; 2952 2953 /* runtime <= deadline <= period (if period != 0) */ 2954 if (period < attr->sched_deadline || 2955 attr->sched_deadline < attr->sched_runtime) 2956 return false; 2957 2958 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC; 2959 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC; 2960 2961 if (period < min || period > max) 2962 return false; 2963 2964 return true; 2965 } 2966 2967 /* 2968 * This function clears the sched_dl_entity static params. 2969 */ 2970 void __dl_clear_params(struct task_struct *p) 2971 { 2972 struct sched_dl_entity *dl_se = &p->dl; 2973 2974 dl_se->dl_runtime = 0; 2975 dl_se->dl_deadline = 0; 2976 dl_se->dl_period = 0; 2977 dl_se->flags = 0; 2978 dl_se->dl_bw = 0; 2979 dl_se->dl_density = 0; 2980 2981 dl_se->dl_throttled = 0; 2982 dl_se->dl_yielded = 0; 2983 dl_se->dl_non_contending = 0; 2984 dl_se->dl_overrun = 0; 2985 2986 #ifdef CONFIG_RT_MUTEXES 2987 dl_se->pi_se = dl_se; 2988 #endif 2989 } 2990 2991 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) 2992 { 2993 struct sched_dl_entity *dl_se = &p->dl; 2994 2995 if (dl_se->dl_runtime != attr->sched_runtime || 2996 dl_se->dl_deadline != attr->sched_deadline || 2997 dl_se->dl_period != attr->sched_period || 2998 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS)) 2999 return true; 3000 3001 return false; 3002 } 3003 3004 #ifdef CONFIG_SMP 3005 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, 3006 const struct cpumask *trial) 3007 { 3008 int ret = 1, trial_cpus; 3009 struct dl_bw *cur_dl_b; 3010 unsigned long flags; 3011 3012 rcu_read_lock_sched(); 3013 cur_dl_b = dl_bw_of(cpumask_any(cur)); 3014 trial_cpus = cpumask_weight(trial); 3015 3016 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 3017 if (cur_dl_b->bw != -1 && 3018 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 3019 ret = 0; 3020 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 3021 rcu_read_unlock_sched(); 3022 3023 return ret; 3024 } 3025 3026 int dl_cpu_busy(int cpu, struct task_struct *p) 3027 { 3028 unsigned long flags, cap; 3029 struct dl_bw *dl_b; 3030 bool overflow; 3031 3032 rcu_read_lock_sched(); 3033 dl_b = dl_bw_of(cpu); 3034 raw_spin_lock_irqsave(&dl_b->lock, flags); 3035 cap = dl_bw_capacity(cpu); 3036 overflow = __dl_overflow(dl_b, cap, 0, p ? p->dl.dl_bw : 0); 3037 3038 if (!overflow && p) { 3039 /* 3040 * We reserve space for this task in the destination 3041 * root_domain, as we can't fail after this point. 3042 * We will free resources in the source root_domain 3043 * later on (see set_cpus_allowed_dl()). 3044 */ 3045 __dl_add(dl_b, p->dl.dl_bw, dl_bw_cpus(cpu)); 3046 } 3047 3048 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3049 rcu_read_unlock_sched(); 3050 3051 return overflow ? -EBUSY : 0; 3052 } 3053 #endif 3054 3055 #ifdef CONFIG_SCHED_DEBUG 3056 void print_dl_stats(struct seq_file *m, int cpu) 3057 { 3058 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 3059 } 3060 #endif /* CONFIG_SCHED_DEBUG */ 3061