1 /* 2 * Deadline Scheduling Class (SCHED_DEADLINE) 3 * 4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 5 * 6 * Tasks that periodically executes their instances for less than their 7 * runtime won't miss any of their deadlines. 8 * Tasks that are not periodic or sporadic or that tries to execute more 9 * than their reserved bandwidth will be slowed down (and may potentially 10 * miss some of their deadlines), and won't affect any other task. 11 * 12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 13 * Juri Lelli <juri.lelli@gmail.com>, 14 * Michael Trimarchi <michael@amarulasolutions.com>, 15 * Fabio Checconi <fchecconi@gmail.com> 16 */ 17 #include "sched.h" 18 19 #include <linux/slab.h> 20 21 struct dl_bandwidth def_dl_bandwidth; 22 23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 24 { 25 return container_of(dl_se, struct task_struct, dl); 26 } 27 28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 29 { 30 return container_of(dl_rq, struct rq, dl); 31 } 32 33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 34 { 35 struct task_struct *p = dl_task_of(dl_se); 36 struct rq *rq = task_rq(p); 37 38 return &rq->dl; 39 } 40 41 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 42 { 43 return !RB_EMPTY_NODE(&dl_se->rb_node); 44 } 45 46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) 47 { 48 struct sched_dl_entity *dl_se = &p->dl; 49 50 return dl_rq->rb_leftmost == &dl_se->rb_node; 51 } 52 53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) 54 { 55 raw_spin_lock_init(&dl_b->dl_runtime_lock); 56 dl_b->dl_period = period; 57 dl_b->dl_runtime = runtime; 58 } 59 60 void init_dl_bw(struct dl_bw *dl_b) 61 { 62 raw_spin_lock_init(&dl_b->lock); 63 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock); 64 if (global_rt_runtime() == RUNTIME_INF) 65 dl_b->bw = -1; 66 else 67 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 68 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock); 69 dl_b->total_bw = 0; 70 } 71 72 void init_dl_rq(struct dl_rq *dl_rq) 73 { 74 dl_rq->rb_root = RB_ROOT; 75 76 #ifdef CONFIG_SMP 77 /* zero means no -deadline tasks */ 78 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 79 80 dl_rq->dl_nr_migratory = 0; 81 dl_rq->overloaded = 0; 82 dl_rq->pushable_dl_tasks_root = RB_ROOT; 83 #else 84 init_dl_bw(&dl_rq->dl_bw); 85 #endif 86 } 87 88 #ifdef CONFIG_SMP 89 90 static inline int dl_overloaded(struct rq *rq) 91 { 92 return atomic_read(&rq->rd->dlo_count); 93 } 94 95 static inline void dl_set_overload(struct rq *rq) 96 { 97 if (!rq->online) 98 return; 99 100 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 101 /* 102 * Must be visible before the overload count is 103 * set (as in sched_rt.c). 104 * 105 * Matched by the barrier in pull_dl_task(). 106 */ 107 smp_wmb(); 108 atomic_inc(&rq->rd->dlo_count); 109 } 110 111 static inline void dl_clear_overload(struct rq *rq) 112 { 113 if (!rq->online) 114 return; 115 116 atomic_dec(&rq->rd->dlo_count); 117 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 118 } 119 120 static void update_dl_migration(struct dl_rq *dl_rq) 121 { 122 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { 123 if (!dl_rq->overloaded) { 124 dl_set_overload(rq_of_dl_rq(dl_rq)); 125 dl_rq->overloaded = 1; 126 } 127 } else if (dl_rq->overloaded) { 128 dl_clear_overload(rq_of_dl_rq(dl_rq)); 129 dl_rq->overloaded = 0; 130 } 131 } 132 133 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 134 { 135 struct task_struct *p = dl_task_of(dl_se); 136 137 if (p->nr_cpus_allowed > 1) 138 dl_rq->dl_nr_migratory++; 139 140 update_dl_migration(dl_rq); 141 } 142 143 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 144 { 145 struct task_struct *p = dl_task_of(dl_se); 146 147 if (p->nr_cpus_allowed > 1) 148 dl_rq->dl_nr_migratory--; 149 150 update_dl_migration(dl_rq); 151 } 152 153 /* 154 * The list of pushable -deadline task is not a plist, like in 155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 156 */ 157 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 158 { 159 struct dl_rq *dl_rq = &rq->dl; 160 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node; 161 struct rb_node *parent = NULL; 162 struct task_struct *entry; 163 int leftmost = 1; 164 165 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 166 167 while (*link) { 168 parent = *link; 169 entry = rb_entry(parent, struct task_struct, 170 pushable_dl_tasks); 171 if (dl_entity_preempt(&p->dl, &entry->dl)) 172 link = &parent->rb_left; 173 else { 174 link = &parent->rb_right; 175 leftmost = 0; 176 } 177 } 178 179 if (leftmost) 180 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks; 181 182 rb_link_node(&p->pushable_dl_tasks, parent, link); 183 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 184 } 185 186 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 187 { 188 struct dl_rq *dl_rq = &rq->dl; 189 190 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 191 return; 192 193 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) { 194 struct rb_node *next_node; 195 196 next_node = rb_next(&p->pushable_dl_tasks); 197 dl_rq->pushable_dl_tasks_leftmost = next_node; 198 } 199 200 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 201 RB_CLEAR_NODE(&p->pushable_dl_tasks); 202 } 203 204 static inline int has_pushable_dl_tasks(struct rq *rq) 205 { 206 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root); 207 } 208 209 static int push_dl_task(struct rq *rq); 210 211 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 212 { 213 return dl_task(prev); 214 } 215 216 static DEFINE_PER_CPU(struct callback_head, dl_push_head); 217 static DEFINE_PER_CPU(struct callback_head, dl_pull_head); 218 219 static void push_dl_tasks(struct rq *); 220 static void pull_dl_task(struct rq *); 221 222 static inline void queue_push_tasks(struct rq *rq) 223 { 224 if (!has_pushable_dl_tasks(rq)) 225 return; 226 227 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); 228 } 229 230 static inline void queue_pull_task(struct rq *rq) 231 { 232 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); 233 } 234 235 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); 236 237 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) 238 { 239 struct rq *later_rq = NULL; 240 bool fallback = false; 241 242 later_rq = find_lock_later_rq(p, rq); 243 244 if (!later_rq) { 245 int cpu; 246 247 /* 248 * If we cannot preempt any rq, fall back to pick any 249 * online cpu. 250 */ 251 fallback = true; 252 cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p)); 253 if (cpu >= nr_cpu_ids) { 254 /* 255 * Fail to find any suitable cpu. 256 * The task will never come back! 257 */ 258 BUG_ON(dl_bandwidth_enabled()); 259 260 /* 261 * If admission control is disabled we 262 * try a little harder to let the task 263 * run. 264 */ 265 cpu = cpumask_any(cpu_active_mask); 266 } 267 later_rq = cpu_rq(cpu); 268 double_lock_balance(rq, later_rq); 269 } 270 271 /* 272 * By now the task is replenished and enqueued; migrate it. 273 */ 274 deactivate_task(rq, p, 0); 275 set_task_cpu(p, later_rq->cpu); 276 activate_task(later_rq, p, 0); 277 278 if (!fallback) 279 resched_curr(later_rq); 280 281 double_unlock_balance(later_rq, rq); 282 283 return later_rq; 284 } 285 286 #else 287 288 static inline 289 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 290 { 291 } 292 293 static inline 294 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 295 { 296 } 297 298 static inline 299 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 300 { 301 } 302 303 static inline 304 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 305 { 306 } 307 308 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 309 { 310 return false; 311 } 312 313 static inline void pull_dl_task(struct rq *rq) 314 { 315 } 316 317 static inline void queue_push_tasks(struct rq *rq) 318 { 319 } 320 321 static inline void queue_pull_task(struct rq *rq) 322 { 323 } 324 #endif /* CONFIG_SMP */ 325 326 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 327 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); 328 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 329 int flags); 330 331 /* 332 * We are being explicitly informed that a new instance is starting, 333 * and this means that: 334 * - the absolute deadline of the entity has to be placed at 335 * current time + relative deadline; 336 * - the runtime of the entity has to be set to the maximum value. 337 * 338 * The capability of specifying such event is useful whenever a -deadline 339 * entity wants to (try to!) synchronize its behaviour with the scheduler's 340 * one, and to (try to!) reconcile itself with its own scheduling 341 * parameters. 342 */ 343 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se, 344 struct sched_dl_entity *pi_se) 345 { 346 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 347 struct rq *rq = rq_of_dl_rq(dl_rq); 348 349 WARN_ON(!dl_se->dl_new || dl_se->dl_throttled); 350 351 /* 352 * We use the regular wall clock time to set deadlines in the 353 * future; in fact, we must consider execution overheads (time 354 * spent on hardirq context, etc.). 355 */ 356 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 357 dl_se->runtime = pi_se->dl_runtime; 358 dl_se->dl_new = 0; 359 } 360 361 /* 362 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 363 * possibility of a entity lasting more than what it declared, and thus 364 * exhausting its runtime. 365 * 366 * Here we are interested in making runtime overrun possible, but we do 367 * not want a entity which is misbehaving to affect the scheduling of all 368 * other entities. 369 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 370 * is used, in order to confine each entity within its own bandwidth. 371 * 372 * This function deals exactly with that, and ensures that when the runtime 373 * of a entity is replenished, its deadline is also postponed. That ensures 374 * the overrunning entity can't interfere with other entity in the system and 375 * can't make them miss their deadlines. Reasons why this kind of overruns 376 * could happen are, typically, a entity voluntarily trying to overcome its 377 * runtime, or it just underestimated it during sched_setattr(). 378 */ 379 static void replenish_dl_entity(struct sched_dl_entity *dl_se, 380 struct sched_dl_entity *pi_se) 381 { 382 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 383 struct rq *rq = rq_of_dl_rq(dl_rq); 384 385 BUG_ON(pi_se->dl_runtime <= 0); 386 387 /* 388 * This could be the case for a !-dl task that is boosted. 389 * Just go with full inherited parameters. 390 */ 391 if (dl_se->dl_deadline == 0) { 392 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 393 dl_se->runtime = pi_se->dl_runtime; 394 } 395 396 /* 397 * We keep moving the deadline away until we get some 398 * available runtime for the entity. This ensures correct 399 * handling of situations where the runtime overrun is 400 * arbitrary large. 401 */ 402 while (dl_se->runtime <= 0) { 403 dl_se->deadline += pi_se->dl_period; 404 dl_se->runtime += pi_se->dl_runtime; 405 } 406 407 /* 408 * At this point, the deadline really should be "in 409 * the future" with respect to rq->clock. If it's 410 * not, we are, for some reason, lagging too much! 411 * Anyway, after having warn userspace abut that, 412 * we still try to keep the things running by 413 * resetting the deadline and the budget of the 414 * entity. 415 */ 416 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 417 printk_deferred_once("sched: DL replenish lagged to much\n"); 418 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 419 dl_se->runtime = pi_se->dl_runtime; 420 } 421 422 if (dl_se->dl_yielded) 423 dl_se->dl_yielded = 0; 424 if (dl_se->dl_throttled) 425 dl_se->dl_throttled = 0; 426 } 427 428 /* 429 * Here we check if --at time t-- an entity (which is probably being 430 * [re]activated or, in general, enqueued) can use its remaining runtime 431 * and its current deadline _without_ exceeding the bandwidth it is 432 * assigned (function returns true if it can't). We are in fact applying 433 * one of the CBS rules: when a task wakes up, if the residual runtime 434 * over residual deadline fits within the allocated bandwidth, then we 435 * can keep the current (absolute) deadline and residual budget without 436 * disrupting the schedulability of the system. Otherwise, we should 437 * refill the runtime and set the deadline a period in the future, 438 * because keeping the current (absolute) deadline of the task would 439 * result in breaking guarantees promised to other tasks (refer to 440 * Documentation/scheduler/sched-deadline.txt for more informations). 441 * 442 * This function returns true if: 443 * 444 * runtime / (deadline - t) > dl_runtime / dl_period , 445 * 446 * IOW we can't recycle current parameters. 447 * 448 * Notice that the bandwidth check is done against the period. For 449 * task with deadline equal to period this is the same of using 450 * dl_deadline instead of dl_period in the equation above. 451 */ 452 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, 453 struct sched_dl_entity *pi_se, u64 t) 454 { 455 u64 left, right; 456 457 /* 458 * left and right are the two sides of the equation above, 459 * after a bit of shuffling to use multiplications instead 460 * of divisions. 461 * 462 * Note that none of the time values involved in the two 463 * multiplications are absolute: dl_deadline and dl_runtime 464 * are the relative deadline and the maximum runtime of each 465 * instance, runtime is the runtime left for the last instance 466 * and (deadline - t), since t is rq->clock, is the time left 467 * to the (absolute) deadline. Even if overflowing the u64 type 468 * is very unlikely to occur in both cases, here we scale down 469 * as we want to avoid that risk at all. Scaling down by 10 470 * means that we reduce granularity to 1us. We are fine with it, 471 * since this is only a true/false check and, anyway, thinking 472 * of anything below microseconds resolution is actually fiction 473 * (but still we want to give the user that illusion >;). 474 */ 475 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 476 right = ((dl_se->deadline - t) >> DL_SCALE) * 477 (pi_se->dl_runtime >> DL_SCALE); 478 479 return dl_time_before(right, left); 480 } 481 482 /* 483 * When a -deadline entity is queued back on the runqueue, its runtime and 484 * deadline might need updating. 485 * 486 * The policy here is that we update the deadline of the entity only if: 487 * - the current deadline is in the past, 488 * - using the remaining runtime with the current deadline would make 489 * the entity exceed its bandwidth. 490 */ 491 static void update_dl_entity(struct sched_dl_entity *dl_se, 492 struct sched_dl_entity *pi_se) 493 { 494 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 495 struct rq *rq = rq_of_dl_rq(dl_rq); 496 497 /* 498 * The arrival of a new instance needs special treatment, i.e., 499 * the actual scheduling parameters have to be "renewed". 500 */ 501 if (dl_se->dl_new) { 502 setup_new_dl_entity(dl_se, pi_se); 503 return; 504 } 505 506 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 507 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) { 508 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 509 dl_se->runtime = pi_se->dl_runtime; 510 } 511 } 512 513 /* 514 * If the entity depleted all its runtime, and if we want it to sleep 515 * while waiting for some new execution time to become available, we 516 * set the bandwidth enforcement timer to the replenishment instant 517 * and try to activate it. 518 * 519 * Notice that it is important for the caller to know if the timer 520 * actually started or not (i.e., the replenishment instant is in 521 * the future or in the past). 522 */ 523 static int start_dl_timer(struct task_struct *p) 524 { 525 struct sched_dl_entity *dl_se = &p->dl; 526 struct hrtimer *timer = &dl_se->dl_timer; 527 struct rq *rq = task_rq(p); 528 ktime_t now, act; 529 s64 delta; 530 531 lockdep_assert_held(&rq->lock); 532 533 /* 534 * We want the timer to fire at the deadline, but considering 535 * that it is actually coming from rq->clock and not from 536 * hrtimer's time base reading. 537 */ 538 act = ns_to_ktime(dl_se->deadline); 539 now = hrtimer_cb_get_time(timer); 540 delta = ktime_to_ns(now) - rq_clock(rq); 541 act = ktime_add_ns(act, delta); 542 543 /* 544 * If the expiry time already passed, e.g., because the value 545 * chosen as the deadline is too small, don't even try to 546 * start the timer in the past! 547 */ 548 if (ktime_us_delta(act, now) < 0) 549 return 0; 550 551 /* 552 * !enqueued will guarantee another callback; even if one is already in 553 * progress. This ensures a balanced {get,put}_task_struct(). 554 * 555 * The race against __run_timer() clearing the enqueued state is 556 * harmless because we're holding task_rq()->lock, therefore the timer 557 * expiring after we've done the check will wait on its task_rq_lock() 558 * and observe our state. 559 */ 560 if (!hrtimer_is_queued(timer)) { 561 get_task_struct(p); 562 hrtimer_start(timer, act, HRTIMER_MODE_ABS); 563 } 564 565 return 1; 566 } 567 568 /* 569 * This is the bandwidth enforcement timer callback. If here, we know 570 * a task is not on its dl_rq, since the fact that the timer was running 571 * means the task is throttled and needs a runtime replenishment. 572 * 573 * However, what we actually do depends on the fact the task is active, 574 * (it is on its rq) or has been removed from there by a call to 575 * dequeue_task_dl(). In the former case we must issue the runtime 576 * replenishment and add the task back to the dl_rq; in the latter, we just 577 * do nothing but clearing dl_throttled, so that runtime and deadline 578 * updating (and the queueing back to dl_rq) will be done by the 579 * next call to enqueue_task_dl(). 580 */ 581 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 582 { 583 struct sched_dl_entity *dl_se = container_of(timer, 584 struct sched_dl_entity, 585 dl_timer); 586 struct task_struct *p = dl_task_of(dl_se); 587 unsigned long flags; 588 struct rq *rq; 589 590 rq = task_rq_lock(p, &flags); 591 592 /* 593 * The task might have changed its scheduling policy to something 594 * different than SCHED_DEADLINE (through switched_fromd_dl()). 595 */ 596 if (!dl_task(p)) { 597 __dl_clear_params(p); 598 goto unlock; 599 } 600 601 /* 602 * This is possible if switched_from_dl() raced against a running 603 * callback that took the above !dl_task() path and we've since then 604 * switched back into SCHED_DEADLINE. 605 * 606 * There's nothing to do except drop our task reference. 607 */ 608 if (dl_se->dl_new) 609 goto unlock; 610 611 /* 612 * The task might have been boosted by someone else and might be in the 613 * boosting/deboosting path, its not throttled. 614 */ 615 if (dl_se->dl_boosted) 616 goto unlock; 617 618 /* 619 * Spurious timer due to start_dl_timer() race; or we already received 620 * a replenishment from rt_mutex_setprio(). 621 */ 622 if (!dl_se->dl_throttled) 623 goto unlock; 624 625 sched_clock_tick(); 626 update_rq_clock(rq); 627 628 /* 629 * If the throttle happened during sched-out; like: 630 * 631 * schedule() 632 * deactivate_task() 633 * dequeue_task_dl() 634 * update_curr_dl() 635 * start_dl_timer() 636 * __dequeue_task_dl() 637 * prev->on_rq = 0; 638 * 639 * We can be both throttled and !queued. Replenish the counter 640 * but do not enqueue -- wait for our wakeup to do that. 641 */ 642 if (!task_on_rq_queued(p)) { 643 replenish_dl_entity(dl_se, dl_se); 644 goto unlock; 645 } 646 647 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 648 if (dl_task(rq->curr)) 649 check_preempt_curr_dl(rq, p, 0); 650 else 651 resched_curr(rq); 652 653 #ifdef CONFIG_SMP 654 /* 655 * Perform balancing operations here; after the replenishments. We 656 * cannot drop rq->lock before this, otherwise the assertion in 657 * start_dl_timer() about not missing updates is not true. 658 * 659 * If we find that the rq the task was on is no longer available, we 660 * need to select a new rq. 661 * 662 * XXX figure out if select_task_rq_dl() deals with offline cpus. 663 */ 664 if (unlikely(!rq->online)) 665 rq = dl_task_offline_migration(rq, p); 666 667 /* 668 * Queueing this task back might have overloaded rq, check if we need 669 * to kick someone away. 670 */ 671 if (has_pushable_dl_tasks(rq)) 672 push_dl_task(rq); 673 #endif 674 675 unlock: 676 task_rq_unlock(rq, p, &flags); 677 678 /* 679 * This can free the task_struct, including this hrtimer, do not touch 680 * anything related to that after this. 681 */ 682 put_task_struct(p); 683 684 return HRTIMER_NORESTART; 685 } 686 687 void init_dl_task_timer(struct sched_dl_entity *dl_se) 688 { 689 struct hrtimer *timer = &dl_se->dl_timer; 690 691 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 692 timer->function = dl_task_timer; 693 } 694 695 static 696 int dl_runtime_exceeded(struct sched_dl_entity *dl_se) 697 { 698 return (dl_se->runtime <= 0); 699 } 700 701 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 702 703 /* 704 * Update the current task's runtime statistics (provided it is still 705 * a -deadline task and has not been removed from the dl_rq). 706 */ 707 static void update_curr_dl(struct rq *rq) 708 { 709 struct task_struct *curr = rq->curr; 710 struct sched_dl_entity *dl_se = &curr->dl; 711 u64 delta_exec; 712 713 if (!dl_task(curr) || !on_dl_rq(dl_se)) 714 return; 715 716 /* 717 * Consumed budget is computed considering the time as 718 * observed by schedulable tasks (excluding time spent 719 * in hardirq context, etc.). Deadlines are instead 720 * computed using hard walltime. This seems to be the more 721 * natural solution, but the full ramifications of this 722 * approach need further study. 723 */ 724 delta_exec = rq_clock_task(rq) - curr->se.exec_start; 725 if (unlikely((s64)delta_exec <= 0)) 726 return; 727 728 schedstat_set(curr->se.statistics.exec_max, 729 max(curr->se.statistics.exec_max, delta_exec)); 730 731 curr->se.sum_exec_runtime += delta_exec; 732 account_group_exec_runtime(curr, delta_exec); 733 734 curr->se.exec_start = rq_clock_task(rq); 735 cpuacct_charge(curr, delta_exec); 736 737 sched_rt_avg_update(rq, delta_exec); 738 739 dl_se->runtime -= dl_se->dl_yielded ? 0 : delta_exec; 740 if (dl_runtime_exceeded(dl_se)) { 741 dl_se->dl_throttled = 1; 742 __dequeue_task_dl(rq, curr, 0); 743 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr))) 744 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); 745 746 if (!is_leftmost(curr, &rq->dl)) 747 resched_curr(rq); 748 } 749 750 /* 751 * Because -- for now -- we share the rt bandwidth, we need to 752 * account our runtime there too, otherwise actual rt tasks 753 * would be able to exceed the shared quota. 754 * 755 * Account to the root rt group for now. 756 * 757 * The solution we're working towards is having the RT groups scheduled 758 * using deadline servers -- however there's a few nasties to figure 759 * out before that can happen. 760 */ 761 if (rt_bandwidth_enabled()) { 762 struct rt_rq *rt_rq = &rq->rt; 763 764 raw_spin_lock(&rt_rq->rt_runtime_lock); 765 /* 766 * We'll let actual RT tasks worry about the overflow here, we 767 * have our own CBS to keep us inline; only account when RT 768 * bandwidth is relevant. 769 */ 770 if (sched_rt_bandwidth_account(rt_rq)) 771 rt_rq->rt_time += delta_exec; 772 raw_spin_unlock(&rt_rq->rt_runtime_lock); 773 } 774 } 775 776 #ifdef CONFIG_SMP 777 778 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu); 779 780 static inline u64 next_deadline(struct rq *rq) 781 { 782 struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu); 783 784 if (next && dl_prio(next->prio)) 785 return next->dl.deadline; 786 else 787 return 0; 788 } 789 790 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 791 { 792 struct rq *rq = rq_of_dl_rq(dl_rq); 793 794 if (dl_rq->earliest_dl.curr == 0 || 795 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 796 /* 797 * If the dl_rq had no -deadline tasks, or if the new task 798 * has shorter deadline than the current one on dl_rq, we 799 * know that the previous earliest becomes our next earliest, 800 * as the new task becomes the earliest itself. 801 */ 802 dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr; 803 dl_rq->earliest_dl.curr = deadline; 804 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1); 805 } else if (dl_rq->earliest_dl.next == 0 || 806 dl_time_before(deadline, dl_rq->earliest_dl.next)) { 807 /* 808 * On the other hand, if the new -deadline task has a 809 * a later deadline than the earliest one on dl_rq, but 810 * it is earlier than the next (if any), we must 811 * recompute the next-earliest. 812 */ 813 dl_rq->earliest_dl.next = next_deadline(rq); 814 } 815 } 816 817 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 818 { 819 struct rq *rq = rq_of_dl_rq(dl_rq); 820 821 /* 822 * Since we may have removed our earliest (and/or next earliest) 823 * task we must recompute them. 824 */ 825 if (!dl_rq->dl_nr_running) { 826 dl_rq->earliest_dl.curr = 0; 827 dl_rq->earliest_dl.next = 0; 828 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); 829 } else { 830 struct rb_node *leftmost = dl_rq->rb_leftmost; 831 struct sched_dl_entity *entry; 832 833 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node); 834 dl_rq->earliest_dl.curr = entry->deadline; 835 dl_rq->earliest_dl.next = next_deadline(rq); 836 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1); 837 } 838 } 839 840 #else 841 842 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 843 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 844 845 #endif /* CONFIG_SMP */ 846 847 static inline 848 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 849 { 850 int prio = dl_task_of(dl_se)->prio; 851 u64 deadline = dl_se->deadline; 852 853 WARN_ON(!dl_prio(prio)); 854 dl_rq->dl_nr_running++; 855 add_nr_running(rq_of_dl_rq(dl_rq), 1); 856 857 inc_dl_deadline(dl_rq, deadline); 858 inc_dl_migration(dl_se, dl_rq); 859 } 860 861 static inline 862 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 863 { 864 int prio = dl_task_of(dl_se)->prio; 865 866 WARN_ON(!dl_prio(prio)); 867 WARN_ON(!dl_rq->dl_nr_running); 868 dl_rq->dl_nr_running--; 869 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 870 871 dec_dl_deadline(dl_rq, dl_se->deadline); 872 dec_dl_migration(dl_se, dl_rq); 873 } 874 875 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 876 { 877 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 878 struct rb_node **link = &dl_rq->rb_root.rb_node; 879 struct rb_node *parent = NULL; 880 struct sched_dl_entity *entry; 881 int leftmost = 1; 882 883 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node)); 884 885 while (*link) { 886 parent = *link; 887 entry = rb_entry(parent, struct sched_dl_entity, rb_node); 888 if (dl_time_before(dl_se->deadline, entry->deadline)) 889 link = &parent->rb_left; 890 else { 891 link = &parent->rb_right; 892 leftmost = 0; 893 } 894 } 895 896 if (leftmost) 897 dl_rq->rb_leftmost = &dl_se->rb_node; 898 899 rb_link_node(&dl_se->rb_node, parent, link); 900 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root); 901 902 inc_dl_tasks(dl_se, dl_rq); 903 } 904 905 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 906 { 907 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 908 909 if (RB_EMPTY_NODE(&dl_se->rb_node)) 910 return; 911 912 if (dl_rq->rb_leftmost == &dl_se->rb_node) { 913 struct rb_node *next_node; 914 915 next_node = rb_next(&dl_se->rb_node); 916 dl_rq->rb_leftmost = next_node; 917 } 918 919 rb_erase(&dl_se->rb_node, &dl_rq->rb_root); 920 RB_CLEAR_NODE(&dl_se->rb_node); 921 922 dec_dl_tasks(dl_se, dl_rq); 923 } 924 925 static void 926 enqueue_dl_entity(struct sched_dl_entity *dl_se, 927 struct sched_dl_entity *pi_se, int flags) 928 { 929 BUG_ON(on_dl_rq(dl_se)); 930 931 /* 932 * If this is a wakeup or a new instance, the scheduling 933 * parameters of the task might need updating. Otherwise, 934 * we want a replenishment of its runtime. 935 */ 936 if (dl_se->dl_new || flags & ENQUEUE_WAKEUP) 937 update_dl_entity(dl_se, pi_se); 938 else if (flags & ENQUEUE_REPLENISH) 939 replenish_dl_entity(dl_se, pi_se); 940 941 __enqueue_dl_entity(dl_se); 942 } 943 944 static void dequeue_dl_entity(struct sched_dl_entity *dl_se) 945 { 946 __dequeue_dl_entity(dl_se); 947 } 948 949 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 950 { 951 struct task_struct *pi_task = rt_mutex_get_top_task(p); 952 struct sched_dl_entity *pi_se = &p->dl; 953 954 /* 955 * Use the scheduling parameters of the top pi-waiter 956 * task if we have one and its (relative) deadline is 957 * smaller than our one... OTW we keep our runtime and 958 * deadline. 959 */ 960 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) { 961 pi_se = &pi_task->dl; 962 } else if (!dl_prio(p->normal_prio)) { 963 /* 964 * Special case in which we have a !SCHED_DEADLINE task 965 * that is going to be deboosted, but exceedes its 966 * runtime while doing so. No point in replenishing 967 * it, as it's going to return back to its original 968 * scheduling class after this. 969 */ 970 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH); 971 return; 972 } 973 974 /* 975 * If p is throttled, we do nothing. In fact, if it exhausted 976 * its budget it needs a replenishment and, since it now is on 977 * its rq, the bandwidth timer callback (which clearly has not 978 * run yet) will take care of this. 979 */ 980 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) 981 return; 982 983 enqueue_dl_entity(&p->dl, pi_se, flags); 984 985 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 986 enqueue_pushable_dl_task(rq, p); 987 } 988 989 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 990 { 991 dequeue_dl_entity(&p->dl); 992 dequeue_pushable_dl_task(rq, p); 993 } 994 995 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 996 { 997 update_curr_dl(rq); 998 __dequeue_task_dl(rq, p, flags); 999 } 1000 1001 /* 1002 * Yield task semantic for -deadline tasks is: 1003 * 1004 * get off from the CPU until our next instance, with 1005 * a new runtime. This is of little use now, since we 1006 * don't have a bandwidth reclaiming mechanism. Anyway, 1007 * bandwidth reclaiming is planned for the future, and 1008 * yield_task_dl will indicate that some spare budget 1009 * is available for other task instances to use it. 1010 */ 1011 static void yield_task_dl(struct rq *rq) 1012 { 1013 struct task_struct *p = rq->curr; 1014 1015 /* 1016 * We make the task go to sleep until its current deadline by 1017 * forcing its runtime to zero. This way, update_curr_dl() stops 1018 * it and the bandwidth timer will wake it up and will give it 1019 * new scheduling parameters (thanks to dl_yielded=1). 1020 */ 1021 if (p->dl.runtime > 0) { 1022 rq->curr->dl.dl_yielded = 1; 1023 p->dl.runtime = 0; 1024 } 1025 update_rq_clock(rq); 1026 update_curr_dl(rq); 1027 /* 1028 * Tell update_rq_clock() that we've just updated, 1029 * so we don't do microscopic update in schedule() 1030 * and double the fastpath cost. 1031 */ 1032 rq_clock_skip_update(rq, true); 1033 } 1034 1035 #ifdef CONFIG_SMP 1036 1037 static int find_later_rq(struct task_struct *task); 1038 1039 static int 1040 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags) 1041 { 1042 struct task_struct *curr; 1043 struct rq *rq; 1044 1045 if (sd_flag != SD_BALANCE_WAKE) 1046 goto out; 1047 1048 rq = cpu_rq(cpu); 1049 1050 rcu_read_lock(); 1051 curr = READ_ONCE(rq->curr); /* unlocked access */ 1052 1053 /* 1054 * If we are dealing with a -deadline task, we must 1055 * decide where to wake it up. 1056 * If it has a later deadline and the current task 1057 * on this rq can't move (provided the waking task 1058 * can!) we prefer to send it somewhere else. On the 1059 * other hand, if it has a shorter deadline, we 1060 * try to make it stay here, it might be important. 1061 */ 1062 if (unlikely(dl_task(curr)) && 1063 (curr->nr_cpus_allowed < 2 || 1064 !dl_entity_preempt(&p->dl, &curr->dl)) && 1065 (p->nr_cpus_allowed > 1)) { 1066 int target = find_later_rq(p); 1067 1068 if (target != -1 && 1069 dl_time_before(p->dl.deadline, 1070 cpu_rq(target)->dl.earliest_dl.curr)) 1071 cpu = target; 1072 } 1073 rcu_read_unlock(); 1074 1075 out: 1076 return cpu; 1077 } 1078 1079 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 1080 { 1081 /* 1082 * Current can't be migrated, useless to reschedule, 1083 * let's hope p can move out. 1084 */ 1085 if (rq->curr->nr_cpus_allowed == 1 || 1086 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1) 1087 return; 1088 1089 /* 1090 * p is migratable, so let's not schedule it and 1091 * see if it is pushed or pulled somewhere else. 1092 */ 1093 if (p->nr_cpus_allowed != 1 && 1094 cpudl_find(&rq->rd->cpudl, p, NULL) != -1) 1095 return; 1096 1097 resched_curr(rq); 1098 } 1099 1100 #endif /* CONFIG_SMP */ 1101 1102 /* 1103 * Only called when both the current and waking task are -deadline 1104 * tasks. 1105 */ 1106 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 1107 int flags) 1108 { 1109 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { 1110 resched_curr(rq); 1111 return; 1112 } 1113 1114 #ifdef CONFIG_SMP 1115 /* 1116 * In the unlikely case current and p have the same deadline 1117 * let us try to decide what's the best thing to do... 1118 */ 1119 if ((p->dl.deadline == rq->curr->dl.deadline) && 1120 !test_tsk_need_resched(rq->curr)) 1121 check_preempt_equal_dl(rq, p); 1122 #endif /* CONFIG_SMP */ 1123 } 1124 1125 #ifdef CONFIG_SCHED_HRTICK 1126 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1127 { 1128 hrtick_start(rq, p->dl.runtime); 1129 } 1130 #else /* !CONFIG_SCHED_HRTICK */ 1131 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1132 { 1133 } 1134 #endif 1135 1136 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq, 1137 struct dl_rq *dl_rq) 1138 { 1139 struct rb_node *left = dl_rq->rb_leftmost; 1140 1141 if (!left) 1142 return NULL; 1143 1144 return rb_entry(left, struct sched_dl_entity, rb_node); 1145 } 1146 1147 struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev) 1148 { 1149 struct sched_dl_entity *dl_se; 1150 struct task_struct *p; 1151 struct dl_rq *dl_rq; 1152 1153 dl_rq = &rq->dl; 1154 1155 if (need_pull_dl_task(rq, prev)) { 1156 /* 1157 * This is OK, because current is on_cpu, which avoids it being 1158 * picked for load-balance and preemption/IRQs are still 1159 * disabled avoiding further scheduler activity on it and we're 1160 * being very careful to re-start the picking loop. 1161 */ 1162 lockdep_unpin_lock(&rq->lock); 1163 pull_dl_task(rq); 1164 lockdep_pin_lock(&rq->lock); 1165 /* 1166 * pull_rt_task() can drop (and re-acquire) rq->lock; this 1167 * means a stop task can slip in, in which case we need to 1168 * re-start task selection. 1169 */ 1170 if (rq->stop && task_on_rq_queued(rq->stop)) 1171 return RETRY_TASK; 1172 } 1173 1174 /* 1175 * When prev is DL, we may throttle it in put_prev_task(). 1176 * So, we update time before we check for dl_nr_running. 1177 */ 1178 if (prev->sched_class == &dl_sched_class) 1179 update_curr_dl(rq); 1180 1181 if (unlikely(!dl_rq->dl_nr_running)) 1182 return NULL; 1183 1184 put_prev_task(rq, prev); 1185 1186 dl_se = pick_next_dl_entity(rq, dl_rq); 1187 BUG_ON(!dl_se); 1188 1189 p = dl_task_of(dl_se); 1190 p->se.exec_start = rq_clock_task(rq); 1191 1192 /* Running task will never be pushed. */ 1193 dequeue_pushable_dl_task(rq, p); 1194 1195 if (hrtick_enabled(rq)) 1196 start_hrtick_dl(rq, p); 1197 1198 queue_push_tasks(rq); 1199 1200 return p; 1201 } 1202 1203 static void put_prev_task_dl(struct rq *rq, struct task_struct *p) 1204 { 1205 update_curr_dl(rq); 1206 1207 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 1208 enqueue_pushable_dl_task(rq, p); 1209 } 1210 1211 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 1212 { 1213 update_curr_dl(rq); 1214 1215 /* 1216 * Even when we have runtime, update_curr_dl() might have resulted in us 1217 * not being the leftmost task anymore. In that case NEED_RESCHED will 1218 * be set and schedule() will start a new hrtick for the next task. 1219 */ 1220 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 && 1221 is_leftmost(p, &rq->dl)) 1222 start_hrtick_dl(rq, p); 1223 } 1224 1225 static void task_fork_dl(struct task_struct *p) 1226 { 1227 /* 1228 * SCHED_DEADLINE tasks cannot fork and this is achieved through 1229 * sched_fork() 1230 */ 1231 } 1232 1233 static void task_dead_dl(struct task_struct *p) 1234 { 1235 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1236 1237 /* 1238 * Since we are TASK_DEAD we won't slip out of the domain! 1239 */ 1240 raw_spin_lock_irq(&dl_b->lock); 1241 /* XXX we should retain the bw until 0-lag */ 1242 dl_b->total_bw -= p->dl.dl_bw; 1243 raw_spin_unlock_irq(&dl_b->lock); 1244 } 1245 1246 static void set_curr_task_dl(struct rq *rq) 1247 { 1248 struct task_struct *p = rq->curr; 1249 1250 p->se.exec_start = rq_clock_task(rq); 1251 1252 /* You can't push away the running task */ 1253 dequeue_pushable_dl_task(rq, p); 1254 } 1255 1256 #ifdef CONFIG_SMP 1257 1258 /* Only try algorithms three times */ 1259 #define DL_MAX_TRIES 3 1260 1261 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) 1262 { 1263 if (!task_running(rq, p) && 1264 cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 1265 return 1; 1266 return 0; 1267 } 1268 1269 /* Returns the second earliest -deadline task, NULL otherwise */ 1270 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu) 1271 { 1272 struct rb_node *next_node = rq->dl.rb_leftmost; 1273 struct sched_dl_entity *dl_se; 1274 struct task_struct *p = NULL; 1275 1276 next_node: 1277 next_node = rb_next(next_node); 1278 if (next_node) { 1279 dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node); 1280 p = dl_task_of(dl_se); 1281 1282 if (pick_dl_task(rq, p, cpu)) 1283 return p; 1284 1285 goto next_node; 1286 } 1287 1288 return NULL; 1289 } 1290 1291 /* 1292 * Return the earliest pushable rq's task, which is suitable to be executed 1293 * on the CPU, NULL otherwise: 1294 */ 1295 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) 1296 { 1297 struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost; 1298 struct task_struct *p = NULL; 1299 1300 if (!has_pushable_dl_tasks(rq)) 1301 return NULL; 1302 1303 next_node: 1304 if (next_node) { 1305 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks); 1306 1307 if (pick_dl_task(rq, p, cpu)) 1308 return p; 1309 1310 next_node = rb_next(next_node); 1311 goto next_node; 1312 } 1313 1314 return NULL; 1315 } 1316 1317 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 1318 1319 static int find_later_rq(struct task_struct *task) 1320 { 1321 struct sched_domain *sd; 1322 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 1323 int this_cpu = smp_processor_id(); 1324 int best_cpu, cpu = task_cpu(task); 1325 1326 /* Make sure the mask is initialized first */ 1327 if (unlikely(!later_mask)) 1328 return -1; 1329 1330 if (task->nr_cpus_allowed == 1) 1331 return -1; 1332 1333 /* 1334 * We have to consider system topology and task affinity 1335 * first, then we can look for a suitable cpu. 1336 */ 1337 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl, 1338 task, later_mask); 1339 if (best_cpu == -1) 1340 return -1; 1341 1342 /* 1343 * If we are here, some target has been found, 1344 * the most suitable of which is cached in best_cpu. 1345 * This is, among the runqueues where the current tasks 1346 * have later deadlines than the task's one, the rq 1347 * with the latest possible one. 1348 * 1349 * Now we check how well this matches with task's 1350 * affinity and system topology. 1351 * 1352 * The last cpu where the task run is our first 1353 * guess, since it is most likely cache-hot there. 1354 */ 1355 if (cpumask_test_cpu(cpu, later_mask)) 1356 return cpu; 1357 /* 1358 * Check if this_cpu is to be skipped (i.e., it is 1359 * not in the mask) or not. 1360 */ 1361 if (!cpumask_test_cpu(this_cpu, later_mask)) 1362 this_cpu = -1; 1363 1364 rcu_read_lock(); 1365 for_each_domain(cpu, sd) { 1366 if (sd->flags & SD_WAKE_AFFINE) { 1367 1368 /* 1369 * If possible, preempting this_cpu is 1370 * cheaper than migrating. 1371 */ 1372 if (this_cpu != -1 && 1373 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1374 rcu_read_unlock(); 1375 return this_cpu; 1376 } 1377 1378 /* 1379 * Last chance: if best_cpu is valid and is 1380 * in the mask, that becomes our choice. 1381 */ 1382 if (best_cpu < nr_cpu_ids && 1383 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) { 1384 rcu_read_unlock(); 1385 return best_cpu; 1386 } 1387 } 1388 } 1389 rcu_read_unlock(); 1390 1391 /* 1392 * At this point, all our guesses failed, we just return 1393 * 'something', and let the caller sort the things out. 1394 */ 1395 if (this_cpu != -1) 1396 return this_cpu; 1397 1398 cpu = cpumask_any(later_mask); 1399 if (cpu < nr_cpu_ids) 1400 return cpu; 1401 1402 return -1; 1403 } 1404 1405 /* Locks the rq it finds */ 1406 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 1407 { 1408 struct rq *later_rq = NULL; 1409 int tries; 1410 int cpu; 1411 1412 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 1413 cpu = find_later_rq(task); 1414 1415 if ((cpu == -1) || (cpu == rq->cpu)) 1416 break; 1417 1418 later_rq = cpu_rq(cpu); 1419 1420 if (!dl_time_before(task->dl.deadline, 1421 later_rq->dl.earliest_dl.curr)) { 1422 /* 1423 * Target rq has tasks of equal or earlier deadline, 1424 * retrying does not release any lock and is unlikely 1425 * to yield a different result. 1426 */ 1427 later_rq = NULL; 1428 break; 1429 } 1430 1431 /* Retry if something changed. */ 1432 if (double_lock_balance(rq, later_rq)) { 1433 if (unlikely(task_rq(task) != rq || 1434 !cpumask_test_cpu(later_rq->cpu, 1435 &task->cpus_allowed) || 1436 task_running(rq, task) || 1437 !task_on_rq_queued(task))) { 1438 double_unlock_balance(rq, later_rq); 1439 later_rq = NULL; 1440 break; 1441 } 1442 } 1443 1444 /* 1445 * If the rq we found has no -deadline task, or 1446 * its earliest one has a later deadline than our 1447 * task, the rq is a good one. 1448 */ 1449 if (!later_rq->dl.dl_nr_running || 1450 dl_time_before(task->dl.deadline, 1451 later_rq->dl.earliest_dl.curr)) 1452 break; 1453 1454 /* Otherwise we try again. */ 1455 double_unlock_balance(rq, later_rq); 1456 later_rq = NULL; 1457 } 1458 1459 return later_rq; 1460 } 1461 1462 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 1463 { 1464 struct task_struct *p; 1465 1466 if (!has_pushable_dl_tasks(rq)) 1467 return NULL; 1468 1469 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost, 1470 struct task_struct, pushable_dl_tasks); 1471 1472 BUG_ON(rq->cpu != task_cpu(p)); 1473 BUG_ON(task_current(rq, p)); 1474 BUG_ON(p->nr_cpus_allowed <= 1); 1475 1476 BUG_ON(!task_on_rq_queued(p)); 1477 BUG_ON(!dl_task(p)); 1478 1479 return p; 1480 } 1481 1482 /* 1483 * See if the non running -deadline tasks on this rq 1484 * can be sent to some other CPU where they can preempt 1485 * and start executing. 1486 */ 1487 static int push_dl_task(struct rq *rq) 1488 { 1489 struct task_struct *next_task; 1490 struct rq *later_rq; 1491 int ret = 0; 1492 1493 if (!rq->dl.overloaded) 1494 return 0; 1495 1496 next_task = pick_next_pushable_dl_task(rq); 1497 if (!next_task) 1498 return 0; 1499 1500 retry: 1501 if (unlikely(next_task == rq->curr)) { 1502 WARN_ON(1); 1503 return 0; 1504 } 1505 1506 /* 1507 * If next_task preempts rq->curr, and rq->curr 1508 * can move away, it makes sense to just reschedule 1509 * without going further in pushing next_task. 1510 */ 1511 if (dl_task(rq->curr) && 1512 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && 1513 rq->curr->nr_cpus_allowed > 1) { 1514 resched_curr(rq); 1515 return 0; 1516 } 1517 1518 /* We might release rq lock */ 1519 get_task_struct(next_task); 1520 1521 /* Will lock the rq it'll find */ 1522 later_rq = find_lock_later_rq(next_task, rq); 1523 if (!later_rq) { 1524 struct task_struct *task; 1525 1526 /* 1527 * We must check all this again, since 1528 * find_lock_later_rq releases rq->lock and it is 1529 * then possible that next_task has migrated. 1530 */ 1531 task = pick_next_pushable_dl_task(rq); 1532 if (task_cpu(next_task) == rq->cpu && task == next_task) { 1533 /* 1534 * The task is still there. We don't try 1535 * again, some other cpu will pull it when ready. 1536 */ 1537 goto out; 1538 } 1539 1540 if (!task) 1541 /* No more tasks */ 1542 goto out; 1543 1544 put_task_struct(next_task); 1545 next_task = task; 1546 goto retry; 1547 } 1548 1549 deactivate_task(rq, next_task, 0); 1550 set_task_cpu(next_task, later_rq->cpu); 1551 activate_task(later_rq, next_task, 0); 1552 ret = 1; 1553 1554 resched_curr(later_rq); 1555 1556 double_unlock_balance(rq, later_rq); 1557 1558 out: 1559 put_task_struct(next_task); 1560 1561 return ret; 1562 } 1563 1564 static void push_dl_tasks(struct rq *rq) 1565 { 1566 /* Terminates as it moves a -deadline task */ 1567 while (push_dl_task(rq)) 1568 ; 1569 } 1570 1571 static void pull_dl_task(struct rq *this_rq) 1572 { 1573 int this_cpu = this_rq->cpu, cpu; 1574 struct task_struct *p; 1575 bool resched = false; 1576 struct rq *src_rq; 1577 u64 dmin = LONG_MAX; 1578 1579 if (likely(!dl_overloaded(this_rq))) 1580 return; 1581 1582 /* 1583 * Match the barrier from dl_set_overloaded; this guarantees that if we 1584 * see overloaded we must also see the dlo_mask bit. 1585 */ 1586 smp_rmb(); 1587 1588 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 1589 if (this_cpu == cpu) 1590 continue; 1591 1592 src_rq = cpu_rq(cpu); 1593 1594 /* 1595 * It looks racy, abd it is! However, as in sched_rt.c, 1596 * we are fine with this. 1597 */ 1598 if (this_rq->dl.dl_nr_running && 1599 dl_time_before(this_rq->dl.earliest_dl.curr, 1600 src_rq->dl.earliest_dl.next)) 1601 continue; 1602 1603 /* Might drop this_rq->lock */ 1604 double_lock_balance(this_rq, src_rq); 1605 1606 /* 1607 * If there are no more pullable tasks on the 1608 * rq, we're done with it. 1609 */ 1610 if (src_rq->dl.dl_nr_running <= 1) 1611 goto skip; 1612 1613 p = pick_earliest_pushable_dl_task(src_rq, this_cpu); 1614 1615 /* 1616 * We found a task to be pulled if: 1617 * - it preempts our current (if there's one), 1618 * - it will preempt the last one we pulled (if any). 1619 */ 1620 if (p && dl_time_before(p->dl.deadline, dmin) && 1621 (!this_rq->dl.dl_nr_running || 1622 dl_time_before(p->dl.deadline, 1623 this_rq->dl.earliest_dl.curr))) { 1624 WARN_ON(p == src_rq->curr); 1625 WARN_ON(!task_on_rq_queued(p)); 1626 1627 /* 1628 * Then we pull iff p has actually an earlier 1629 * deadline than the current task of its runqueue. 1630 */ 1631 if (dl_time_before(p->dl.deadline, 1632 src_rq->curr->dl.deadline)) 1633 goto skip; 1634 1635 resched = true; 1636 1637 deactivate_task(src_rq, p, 0); 1638 set_task_cpu(p, this_cpu); 1639 activate_task(this_rq, p, 0); 1640 dmin = p->dl.deadline; 1641 1642 /* Is there any other task even earlier? */ 1643 } 1644 skip: 1645 double_unlock_balance(this_rq, src_rq); 1646 } 1647 1648 if (resched) 1649 resched_curr(this_rq); 1650 } 1651 1652 /* 1653 * Since the task is not running and a reschedule is not going to happen 1654 * anytime soon on its runqueue, we try pushing it away now. 1655 */ 1656 static void task_woken_dl(struct rq *rq, struct task_struct *p) 1657 { 1658 if (!task_running(rq, p) && 1659 !test_tsk_need_resched(rq->curr) && 1660 has_pushable_dl_tasks(rq) && 1661 p->nr_cpus_allowed > 1 && 1662 dl_task(rq->curr) && 1663 (rq->curr->nr_cpus_allowed < 2 || 1664 !dl_entity_preempt(&p->dl, &rq->curr->dl))) { 1665 push_dl_tasks(rq); 1666 } 1667 } 1668 1669 static void set_cpus_allowed_dl(struct task_struct *p, 1670 const struct cpumask *new_mask) 1671 { 1672 struct rq *rq; 1673 struct root_domain *src_rd; 1674 int weight; 1675 1676 BUG_ON(!dl_task(p)); 1677 1678 rq = task_rq(p); 1679 src_rd = rq->rd; 1680 /* 1681 * Migrating a SCHED_DEADLINE task between exclusive 1682 * cpusets (different root_domains) entails a bandwidth 1683 * update. We already made space for us in the destination 1684 * domain (see cpuset_can_attach()). 1685 */ 1686 if (!cpumask_intersects(src_rd->span, new_mask)) { 1687 struct dl_bw *src_dl_b; 1688 1689 src_dl_b = dl_bw_of(cpu_of(rq)); 1690 /* 1691 * We now free resources of the root_domain we are migrating 1692 * off. In the worst case, sched_setattr() may temporary fail 1693 * until we complete the update. 1694 */ 1695 raw_spin_lock(&src_dl_b->lock); 1696 __dl_clear(src_dl_b, p->dl.dl_bw); 1697 raw_spin_unlock(&src_dl_b->lock); 1698 } 1699 1700 /* 1701 * Update only if the task is actually running (i.e., 1702 * it is on the rq AND it is not throttled). 1703 */ 1704 if (!on_dl_rq(&p->dl)) 1705 return; 1706 1707 weight = cpumask_weight(new_mask); 1708 1709 /* 1710 * Only update if the process changes its state from whether it 1711 * can migrate or not. 1712 */ 1713 if ((p->nr_cpus_allowed > 1) == (weight > 1)) 1714 return; 1715 1716 /* 1717 * The process used to be able to migrate OR it can now migrate 1718 */ 1719 if (weight <= 1) { 1720 if (!task_current(rq, p)) 1721 dequeue_pushable_dl_task(rq, p); 1722 BUG_ON(!rq->dl.dl_nr_migratory); 1723 rq->dl.dl_nr_migratory--; 1724 } else { 1725 if (!task_current(rq, p)) 1726 enqueue_pushable_dl_task(rq, p); 1727 rq->dl.dl_nr_migratory++; 1728 } 1729 1730 update_dl_migration(&rq->dl); 1731 } 1732 1733 /* Assumes rq->lock is held */ 1734 static void rq_online_dl(struct rq *rq) 1735 { 1736 if (rq->dl.overloaded) 1737 dl_set_overload(rq); 1738 1739 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu); 1740 if (rq->dl.dl_nr_running > 0) 1741 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1); 1742 } 1743 1744 /* Assumes rq->lock is held */ 1745 static void rq_offline_dl(struct rq *rq) 1746 { 1747 if (rq->dl.overloaded) 1748 dl_clear_overload(rq); 1749 1750 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); 1751 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu); 1752 } 1753 1754 void __init init_sched_dl_class(void) 1755 { 1756 unsigned int i; 1757 1758 for_each_possible_cpu(i) 1759 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 1760 GFP_KERNEL, cpu_to_node(i)); 1761 } 1762 1763 #endif /* CONFIG_SMP */ 1764 1765 static void switched_from_dl(struct rq *rq, struct task_struct *p) 1766 { 1767 /* 1768 * Start the deadline timer; if we switch back to dl before this we'll 1769 * continue consuming our current CBS slice. If we stay outside of 1770 * SCHED_DEADLINE until the deadline passes, the timer will reset the 1771 * task. 1772 */ 1773 if (!start_dl_timer(p)) 1774 __dl_clear_params(p); 1775 1776 /* 1777 * Since this might be the only -deadline task on the rq, 1778 * this is the right place to try to pull some other one 1779 * from an overloaded cpu, if any. 1780 */ 1781 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 1782 return; 1783 1784 queue_pull_task(rq); 1785 } 1786 1787 /* 1788 * When switching to -deadline, we may overload the rq, then 1789 * we try to push someone off, if possible. 1790 */ 1791 static void switched_to_dl(struct rq *rq, struct task_struct *p) 1792 { 1793 if (task_on_rq_queued(p) && rq->curr != p) { 1794 #ifdef CONFIG_SMP 1795 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) 1796 queue_push_tasks(rq); 1797 #else 1798 if (dl_task(rq->curr)) 1799 check_preempt_curr_dl(rq, p, 0); 1800 else 1801 resched_curr(rq); 1802 #endif 1803 } 1804 } 1805 1806 /* 1807 * If the scheduling parameters of a -deadline task changed, 1808 * a push or pull operation might be needed. 1809 */ 1810 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 1811 int oldprio) 1812 { 1813 if (task_on_rq_queued(p) || rq->curr == p) { 1814 #ifdef CONFIG_SMP 1815 /* 1816 * This might be too much, but unfortunately 1817 * we don't have the old deadline value, and 1818 * we can't argue if the task is increasing 1819 * or lowering its prio, so... 1820 */ 1821 if (!rq->dl.overloaded) 1822 queue_pull_task(rq); 1823 1824 /* 1825 * If we now have a earlier deadline task than p, 1826 * then reschedule, provided p is still on this 1827 * runqueue. 1828 */ 1829 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) 1830 resched_curr(rq); 1831 #else 1832 /* 1833 * Again, we don't know if p has a earlier 1834 * or later deadline, so let's blindly set a 1835 * (maybe not needed) rescheduling point. 1836 */ 1837 resched_curr(rq); 1838 #endif /* CONFIG_SMP */ 1839 } else 1840 switched_to_dl(rq, p); 1841 } 1842 1843 const struct sched_class dl_sched_class = { 1844 .next = &rt_sched_class, 1845 .enqueue_task = enqueue_task_dl, 1846 .dequeue_task = dequeue_task_dl, 1847 .yield_task = yield_task_dl, 1848 1849 .check_preempt_curr = check_preempt_curr_dl, 1850 1851 .pick_next_task = pick_next_task_dl, 1852 .put_prev_task = put_prev_task_dl, 1853 1854 #ifdef CONFIG_SMP 1855 .select_task_rq = select_task_rq_dl, 1856 .set_cpus_allowed = set_cpus_allowed_dl, 1857 .rq_online = rq_online_dl, 1858 .rq_offline = rq_offline_dl, 1859 .task_woken = task_woken_dl, 1860 #endif 1861 1862 .set_curr_task = set_curr_task_dl, 1863 .task_tick = task_tick_dl, 1864 .task_fork = task_fork_dl, 1865 .task_dead = task_dead_dl, 1866 1867 .prio_changed = prio_changed_dl, 1868 .switched_from = switched_from_dl, 1869 .switched_to = switched_to_dl, 1870 1871 .update_curr = update_curr_dl, 1872 }; 1873 1874 #ifdef CONFIG_SCHED_DEBUG 1875 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 1876 1877 void print_dl_stats(struct seq_file *m, int cpu) 1878 { 1879 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 1880 } 1881 #endif /* CONFIG_SCHED_DEBUG */ 1882