xref: /openbmc/linux/kernel/sched/deadline.c (revision df202b452fe6c6d6f1351bad485e2367ef1e644e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Deadline Scheduling Class (SCHED_DEADLINE)
4  *
5  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6  *
7  * Tasks that periodically executes their instances for less than their
8  * runtime won't miss any of their deadlines.
9  * Tasks that are not periodic or sporadic or that tries to execute more
10  * than their reserved bandwidth will be slowed down (and may potentially
11  * miss some of their deadlines), and won't affect any other task.
12  *
13  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14  *                    Juri Lelli <juri.lelli@gmail.com>,
15  *                    Michael Trimarchi <michael@amarulasolutions.com>,
16  *                    Fabio Checconi <fchecconi@gmail.com>
17  */
18 
19 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
20 {
21 	return container_of(dl_se, struct task_struct, dl);
22 }
23 
24 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
25 {
26 	return container_of(dl_rq, struct rq, dl);
27 }
28 
29 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
30 {
31 	struct task_struct *p = dl_task_of(dl_se);
32 	struct rq *rq = task_rq(p);
33 
34 	return &rq->dl;
35 }
36 
37 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
38 {
39 	return !RB_EMPTY_NODE(&dl_se->rb_node);
40 }
41 
42 #ifdef CONFIG_RT_MUTEXES
43 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
44 {
45 	return dl_se->pi_se;
46 }
47 
48 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
49 {
50 	return pi_of(dl_se) != dl_se;
51 }
52 #else
53 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
54 {
55 	return dl_se;
56 }
57 
58 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
59 {
60 	return false;
61 }
62 #endif
63 
64 #ifdef CONFIG_SMP
65 static inline struct dl_bw *dl_bw_of(int i)
66 {
67 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
68 			 "sched RCU must be held");
69 	return &cpu_rq(i)->rd->dl_bw;
70 }
71 
72 static inline int dl_bw_cpus(int i)
73 {
74 	struct root_domain *rd = cpu_rq(i)->rd;
75 	int cpus;
76 
77 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
78 			 "sched RCU must be held");
79 
80 	if (cpumask_subset(rd->span, cpu_active_mask))
81 		return cpumask_weight(rd->span);
82 
83 	cpus = 0;
84 
85 	for_each_cpu_and(i, rd->span, cpu_active_mask)
86 		cpus++;
87 
88 	return cpus;
89 }
90 
91 static inline unsigned long __dl_bw_capacity(int i)
92 {
93 	struct root_domain *rd = cpu_rq(i)->rd;
94 	unsigned long cap = 0;
95 
96 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
97 			 "sched RCU must be held");
98 
99 	for_each_cpu_and(i, rd->span, cpu_active_mask)
100 		cap += capacity_orig_of(i);
101 
102 	return cap;
103 }
104 
105 /*
106  * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
107  * of the CPU the task is running on rather rd's \Sum CPU capacity.
108  */
109 static inline unsigned long dl_bw_capacity(int i)
110 {
111 	if (!static_branch_unlikely(&sched_asym_cpucapacity) &&
112 	    capacity_orig_of(i) == SCHED_CAPACITY_SCALE) {
113 		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
114 	} else {
115 		return __dl_bw_capacity(i);
116 	}
117 }
118 
119 static inline bool dl_bw_visited(int cpu, u64 gen)
120 {
121 	struct root_domain *rd = cpu_rq(cpu)->rd;
122 
123 	if (rd->visit_gen == gen)
124 		return true;
125 
126 	rd->visit_gen = gen;
127 	return false;
128 }
129 
130 static inline
131 void __dl_update(struct dl_bw *dl_b, s64 bw)
132 {
133 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
134 	int i;
135 
136 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
137 			 "sched RCU must be held");
138 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
139 		struct rq *rq = cpu_rq(i);
140 
141 		rq->dl.extra_bw += bw;
142 	}
143 }
144 #else
145 static inline struct dl_bw *dl_bw_of(int i)
146 {
147 	return &cpu_rq(i)->dl.dl_bw;
148 }
149 
150 static inline int dl_bw_cpus(int i)
151 {
152 	return 1;
153 }
154 
155 static inline unsigned long dl_bw_capacity(int i)
156 {
157 	return SCHED_CAPACITY_SCALE;
158 }
159 
160 static inline bool dl_bw_visited(int cpu, u64 gen)
161 {
162 	return false;
163 }
164 
165 static inline
166 void __dl_update(struct dl_bw *dl_b, s64 bw)
167 {
168 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
169 
170 	dl->extra_bw += bw;
171 }
172 #endif
173 
174 static inline
175 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
176 {
177 	dl_b->total_bw -= tsk_bw;
178 	__dl_update(dl_b, (s32)tsk_bw / cpus);
179 }
180 
181 static inline
182 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
183 {
184 	dl_b->total_bw += tsk_bw;
185 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
186 }
187 
188 static inline bool
189 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
190 {
191 	return dl_b->bw != -1 &&
192 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
193 }
194 
195 static inline
196 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
197 {
198 	u64 old = dl_rq->running_bw;
199 
200 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
201 	dl_rq->running_bw += dl_bw;
202 	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
203 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
204 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
205 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
206 }
207 
208 static inline
209 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
210 {
211 	u64 old = dl_rq->running_bw;
212 
213 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
214 	dl_rq->running_bw -= dl_bw;
215 	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
216 	if (dl_rq->running_bw > old)
217 		dl_rq->running_bw = 0;
218 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
219 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
220 }
221 
222 static inline
223 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
224 {
225 	u64 old = dl_rq->this_bw;
226 
227 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
228 	dl_rq->this_bw += dl_bw;
229 	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
230 }
231 
232 static inline
233 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
234 {
235 	u64 old = dl_rq->this_bw;
236 
237 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
238 	dl_rq->this_bw -= dl_bw;
239 	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
240 	if (dl_rq->this_bw > old)
241 		dl_rq->this_bw = 0;
242 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
243 }
244 
245 static inline
246 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
247 {
248 	if (!dl_entity_is_special(dl_se))
249 		__add_rq_bw(dl_se->dl_bw, dl_rq);
250 }
251 
252 static inline
253 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
254 {
255 	if (!dl_entity_is_special(dl_se))
256 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
257 }
258 
259 static inline
260 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
261 {
262 	if (!dl_entity_is_special(dl_se))
263 		__add_running_bw(dl_se->dl_bw, dl_rq);
264 }
265 
266 static inline
267 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
268 {
269 	if (!dl_entity_is_special(dl_se))
270 		__sub_running_bw(dl_se->dl_bw, dl_rq);
271 }
272 
273 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
274 {
275 	struct rq *rq;
276 
277 	BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
278 
279 	if (task_on_rq_queued(p))
280 		return;
281 
282 	rq = task_rq(p);
283 	if (p->dl.dl_non_contending) {
284 		sub_running_bw(&p->dl, &rq->dl);
285 		p->dl.dl_non_contending = 0;
286 		/*
287 		 * If the timer handler is currently running and the
288 		 * timer cannot be canceled, inactive_task_timer()
289 		 * will see that dl_not_contending is not set, and
290 		 * will not touch the rq's active utilization,
291 		 * so we are still safe.
292 		 */
293 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
294 			put_task_struct(p);
295 	}
296 	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
297 	__add_rq_bw(new_bw, &rq->dl);
298 }
299 
300 /*
301  * The utilization of a task cannot be immediately removed from
302  * the rq active utilization (running_bw) when the task blocks.
303  * Instead, we have to wait for the so called "0-lag time".
304  *
305  * If a task blocks before the "0-lag time", a timer (the inactive
306  * timer) is armed, and running_bw is decreased when the timer
307  * fires.
308  *
309  * If the task wakes up again before the inactive timer fires,
310  * the timer is canceled, whereas if the task wakes up after the
311  * inactive timer fired (and running_bw has been decreased) the
312  * task's utilization has to be added to running_bw again.
313  * A flag in the deadline scheduling entity (dl_non_contending)
314  * is used to avoid race conditions between the inactive timer handler
315  * and task wakeups.
316  *
317  * The following diagram shows how running_bw is updated. A task is
318  * "ACTIVE" when its utilization contributes to running_bw; an
319  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
320  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
321  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
322  * time already passed, which does not contribute to running_bw anymore.
323  *                              +------------------+
324  *             wakeup           |    ACTIVE        |
325  *          +------------------>+   contending     |
326  *          | add_running_bw    |                  |
327  *          |                   +----+------+------+
328  *          |                        |      ^
329  *          |                dequeue |      |
330  * +--------+-------+                |      |
331  * |                |   t >= 0-lag   |      | wakeup
332  * |    INACTIVE    |<---------------+      |
333  * |                | sub_running_bw |      |
334  * +--------+-------+                |      |
335  *          ^                        |      |
336  *          |              t < 0-lag |      |
337  *          |                        |      |
338  *          |                        V      |
339  *          |                   +----+------+------+
340  *          | sub_running_bw    |    ACTIVE        |
341  *          +-------------------+                  |
342  *            inactive timer    |  non contending  |
343  *            fired             +------------------+
344  *
345  * The task_non_contending() function is invoked when a task
346  * blocks, and checks if the 0-lag time already passed or
347  * not (in the first case, it directly updates running_bw;
348  * in the second case, it arms the inactive timer).
349  *
350  * The task_contending() function is invoked when a task wakes
351  * up, and checks if the task is still in the "ACTIVE non contending"
352  * state or not (in the second case, it updates running_bw).
353  */
354 static void task_non_contending(struct task_struct *p)
355 {
356 	struct sched_dl_entity *dl_se = &p->dl;
357 	struct hrtimer *timer = &dl_se->inactive_timer;
358 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
359 	struct rq *rq = rq_of_dl_rq(dl_rq);
360 	s64 zerolag_time;
361 
362 	/*
363 	 * If this is a non-deadline task that has been boosted,
364 	 * do nothing
365 	 */
366 	if (dl_se->dl_runtime == 0)
367 		return;
368 
369 	if (dl_entity_is_special(dl_se))
370 		return;
371 
372 	WARN_ON(dl_se->dl_non_contending);
373 
374 	zerolag_time = dl_se->deadline -
375 		 div64_long((dl_se->runtime * dl_se->dl_period),
376 			dl_se->dl_runtime);
377 
378 	/*
379 	 * Using relative times instead of the absolute "0-lag time"
380 	 * allows to simplify the code
381 	 */
382 	zerolag_time -= rq_clock(rq);
383 
384 	/*
385 	 * If the "0-lag time" already passed, decrease the active
386 	 * utilization now, instead of starting a timer
387 	 */
388 	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
389 		if (dl_task(p))
390 			sub_running_bw(dl_se, dl_rq);
391 		if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
392 			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
393 
394 			if (READ_ONCE(p->__state) == TASK_DEAD)
395 				sub_rq_bw(&p->dl, &rq->dl);
396 			raw_spin_lock(&dl_b->lock);
397 			__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
398 			__dl_clear_params(p);
399 			raw_spin_unlock(&dl_b->lock);
400 		}
401 
402 		return;
403 	}
404 
405 	dl_se->dl_non_contending = 1;
406 	get_task_struct(p);
407 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
408 }
409 
410 static void task_contending(struct sched_dl_entity *dl_se, int flags)
411 {
412 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
413 
414 	/*
415 	 * If this is a non-deadline task that has been boosted,
416 	 * do nothing
417 	 */
418 	if (dl_se->dl_runtime == 0)
419 		return;
420 
421 	if (flags & ENQUEUE_MIGRATED)
422 		add_rq_bw(dl_se, dl_rq);
423 
424 	if (dl_se->dl_non_contending) {
425 		dl_se->dl_non_contending = 0;
426 		/*
427 		 * If the timer handler is currently running and the
428 		 * timer cannot be canceled, inactive_task_timer()
429 		 * will see that dl_not_contending is not set, and
430 		 * will not touch the rq's active utilization,
431 		 * so we are still safe.
432 		 */
433 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
434 			put_task_struct(dl_task_of(dl_se));
435 	} else {
436 		/*
437 		 * Since "dl_non_contending" is not set, the
438 		 * task's utilization has already been removed from
439 		 * active utilization (either when the task blocked,
440 		 * when the "inactive timer" fired).
441 		 * So, add it back.
442 		 */
443 		add_running_bw(dl_se, dl_rq);
444 	}
445 }
446 
447 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
448 {
449 	struct sched_dl_entity *dl_se = &p->dl;
450 
451 	return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
452 }
453 
454 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
455 
456 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
457 {
458 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
459 	dl_b->dl_period = period;
460 	dl_b->dl_runtime = runtime;
461 }
462 
463 void init_dl_bw(struct dl_bw *dl_b)
464 {
465 	raw_spin_lock_init(&dl_b->lock);
466 	if (global_rt_runtime() == RUNTIME_INF)
467 		dl_b->bw = -1;
468 	else
469 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
470 	dl_b->total_bw = 0;
471 }
472 
473 void init_dl_rq(struct dl_rq *dl_rq)
474 {
475 	dl_rq->root = RB_ROOT_CACHED;
476 
477 #ifdef CONFIG_SMP
478 	/* zero means no -deadline tasks */
479 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
480 
481 	dl_rq->dl_nr_migratory = 0;
482 	dl_rq->overloaded = 0;
483 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
484 #else
485 	init_dl_bw(&dl_rq->dl_bw);
486 #endif
487 
488 	dl_rq->running_bw = 0;
489 	dl_rq->this_bw = 0;
490 	init_dl_rq_bw_ratio(dl_rq);
491 }
492 
493 #ifdef CONFIG_SMP
494 
495 static inline int dl_overloaded(struct rq *rq)
496 {
497 	return atomic_read(&rq->rd->dlo_count);
498 }
499 
500 static inline void dl_set_overload(struct rq *rq)
501 {
502 	if (!rq->online)
503 		return;
504 
505 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
506 	/*
507 	 * Must be visible before the overload count is
508 	 * set (as in sched_rt.c).
509 	 *
510 	 * Matched by the barrier in pull_dl_task().
511 	 */
512 	smp_wmb();
513 	atomic_inc(&rq->rd->dlo_count);
514 }
515 
516 static inline void dl_clear_overload(struct rq *rq)
517 {
518 	if (!rq->online)
519 		return;
520 
521 	atomic_dec(&rq->rd->dlo_count);
522 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
523 }
524 
525 static void update_dl_migration(struct dl_rq *dl_rq)
526 {
527 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
528 		if (!dl_rq->overloaded) {
529 			dl_set_overload(rq_of_dl_rq(dl_rq));
530 			dl_rq->overloaded = 1;
531 		}
532 	} else if (dl_rq->overloaded) {
533 		dl_clear_overload(rq_of_dl_rq(dl_rq));
534 		dl_rq->overloaded = 0;
535 	}
536 }
537 
538 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
539 {
540 	struct task_struct *p = dl_task_of(dl_se);
541 
542 	if (p->nr_cpus_allowed > 1)
543 		dl_rq->dl_nr_migratory++;
544 
545 	update_dl_migration(dl_rq);
546 }
547 
548 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
549 {
550 	struct task_struct *p = dl_task_of(dl_se);
551 
552 	if (p->nr_cpus_allowed > 1)
553 		dl_rq->dl_nr_migratory--;
554 
555 	update_dl_migration(dl_rq);
556 }
557 
558 #define __node_2_pdl(node) \
559 	rb_entry((node), struct task_struct, pushable_dl_tasks)
560 
561 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
562 {
563 	return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
564 }
565 
566 /*
567  * The list of pushable -deadline task is not a plist, like in
568  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
569  */
570 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
571 {
572 	struct rb_node *leftmost;
573 
574 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
575 
576 	leftmost = rb_add_cached(&p->pushable_dl_tasks,
577 				 &rq->dl.pushable_dl_tasks_root,
578 				 __pushable_less);
579 	if (leftmost)
580 		rq->dl.earliest_dl.next = p->dl.deadline;
581 }
582 
583 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
584 {
585 	struct dl_rq *dl_rq = &rq->dl;
586 	struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
587 	struct rb_node *leftmost;
588 
589 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
590 		return;
591 
592 	leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
593 	if (leftmost)
594 		dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
595 
596 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
597 }
598 
599 static inline int has_pushable_dl_tasks(struct rq *rq)
600 {
601 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
602 }
603 
604 static int push_dl_task(struct rq *rq);
605 
606 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
607 {
608 	return rq->online && dl_task(prev);
609 }
610 
611 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
612 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
613 
614 static void push_dl_tasks(struct rq *);
615 static void pull_dl_task(struct rq *);
616 
617 static inline void deadline_queue_push_tasks(struct rq *rq)
618 {
619 	if (!has_pushable_dl_tasks(rq))
620 		return;
621 
622 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
623 }
624 
625 static inline void deadline_queue_pull_task(struct rq *rq)
626 {
627 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
628 }
629 
630 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
631 
632 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
633 {
634 	struct rq *later_rq = NULL;
635 	struct dl_bw *dl_b;
636 
637 	later_rq = find_lock_later_rq(p, rq);
638 	if (!later_rq) {
639 		int cpu;
640 
641 		/*
642 		 * If we cannot preempt any rq, fall back to pick any
643 		 * online CPU:
644 		 */
645 		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
646 		if (cpu >= nr_cpu_ids) {
647 			/*
648 			 * Failed to find any suitable CPU.
649 			 * The task will never come back!
650 			 */
651 			BUG_ON(dl_bandwidth_enabled());
652 
653 			/*
654 			 * If admission control is disabled we
655 			 * try a little harder to let the task
656 			 * run.
657 			 */
658 			cpu = cpumask_any(cpu_active_mask);
659 		}
660 		later_rq = cpu_rq(cpu);
661 		double_lock_balance(rq, later_rq);
662 	}
663 
664 	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
665 		/*
666 		 * Inactive timer is armed (or callback is running, but
667 		 * waiting for us to release rq locks). In any case, when it
668 		 * will fire (or continue), it will see running_bw of this
669 		 * task migrated to later_rq (and correctly handle it).
670 		 */
671 		sub_running_bw(&p->dl, &rq->dl);
672 		sub_rq_bw(&p->dl, &rq->dl);
673 
674 		add_rq_bw(&p->dl, &later_rq->dl);
675 		add_running_bw(&p->dl, &later_rq->dl);
676 	} else {
677 		sub_rq_bw(&p->dl, &rq->dl);
678 		add_rq_bw(&p->dl, &later_rq->dl);
679 	}
680 
681 	/*
682 	 * And we finally need to fixup root_domain(s) bandwidth accounting,
683 	 * since p is still hanging out in the old (now moved to default) root
684 	 * domain.
685 	 */
686 	dl_b = &rq->rd->dl_bw;
687 	raw_spin_lock(&dl_b->lock);
688 	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
689 	raw_spin_unlock(&dl_b->lock);
690 
691 	dl_b = &later_rq->rd->dl_bw;
692 	raw_spin_lock(&dl_b->lock);
693 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
694 	raw_spin_unlock(&dl_b->lock);
695 
696 	set_task_cpu(p, later_rq->cpu);
697 	double_unlock_balance(later_rq, rq);
698 
699 	return later_rq;
700 }
701 
702 #else
703 
704 static inline
705 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
706 {
707 }
708 
709 static inline
710 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
711 {
712 }
713 
714 static inline
715 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
716 {
717 }
718 
719 static inline
720 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
721 {
722 }
723 
724 static inline void deadline_queue_push_tasks(struct rq *rq)
725 {
726 }
727 
728 static inline void deadline_queue_pull_task(struct rq *rq)
729 {
730 }
731 #endif /* CONFIG_SMP */
732 
733 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
734 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
735 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
736 
737 /*
738  * We are being explicitly informed that a new instance is starting,
739  * and this means that:
740  *  - the absolute deadline of the entity has to be placed at
741  *    current time + relative deadline;
742  *  - the runtime of the entity has to be set to the maximum value.
743  *
744  * The capability of specifying such event is useful whenever a -deadline
745  * entity wants to (try to!) synchronize its behaviour with the scheduler's
746  * one, and to (try to!) reconcile itself with its own scheduling
747  * parameters.
748  */
749 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
750 {
751 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
752 	struct rq *rq = rq_of_dl_rq(dl_rq);
753 
754 	WARN_ON(is_dl_boosted(dl_se));
755 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
756 
757 	/*
758 	 * We are racing with the deadline timer. So, do nothing because
759 	 * the deadline timer handler will take care of properly recharging
760 	 * the runtime and postponing the deadline
761 	 */
762 	if (dl_se->dl_throttled)
763 		return;
764 
765 	/*
766 	 * We use the regular wall clock time to set deadlines in the
767 	 * future; in fact, we must consider execution overheads (time
768 	 * spent on hardirq context, etc.).
769 	 */
770 	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
771 	dl_se->runtime = dl_se->dl_runtime;
772 }
773 
774 /*
775  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
776  * possibility of a entity lasting more than what it declared, and thus
777  * exhausting its runtime.
778  *
779  * Here we are interested in making runtime overrun possible, but we do
780  * not want a entity which is misbehaving to affect the scheduling of all
781  * other entities.
782  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
783  * is used, in order to confine each entity within its own bandwidth.
784  *
785  * This function deals exactly with that, and ensures that when the runtime
786  * of a entity is replenished, its deadline is also postponed. That ensures
787  * the overrunning entity can't interfere with other entity in the system and
788  * can't make them miss their deadlines. Reasons why this kind of overruns
789  * could happen are, typically, a entity voluntarily trying to overcome its
790  * runtime, or it just underestimated it during sched_setattr().
791  */
792 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
793 {
794 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
795 	struct rq *rq = rq_of_dl_rq(dl_rq);
796 
797 	BUG_ON(pi_of(dl_se)->dl_runtime <= 0);
798 
799 	/*
800 	 * This could be the case for a !-dl task that is boosted.
801 	 * Just go with full inherited parameters.
802 	 */
803 	if (dl_se->dl_deadline == 0) {
804 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
805 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
806 	}
807 
808 	if (dl_se->dl_yielded && dl_se->runtime > 0)
809 		dl_se->runtime = 0;
810 
811 	/*
812 	 * We keep moving the deadline away until we get some
813 	 * available runtime for the entity. This ensures correct
814 	 * handling of situations where the runtime overrun is
815 	 * arbitrary large.
816 	 */
817 	while (dl_se->runtime <= 0) {
818 		dl_se->deadline += pi_of(dl_se)->dl_period;
819 		dl_se->runtime += pi_of(dl_se)->dl_runtime;
820 	}
821 
822 	/*
823 	 * At this point, the deadline really should be "in
824 	 * the future" with respect to rq->clock. If it's
825 	 * not, we are, for some reason, lagging too much!
826 	 * Anyway, after having warn userspace abut that,
827 	 * we still try to keep the things running by
828 	 * resetting the deadline and the budget of the
829 	 * entity.
830 	 */
831 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
832 		printk_deferred_once("sched: DL replenish lagged too much\n");
833 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
834 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
835 	}
836 
837 	if (dl_se->dl_yielded)
838 		dl_se->dl_yielded = 0;
839 	if (dl_se->dl_throttled)
840 		dl_se->dl_throttled = 0;
841 }
842 
843 /*
844  * Here we check if --at time t-- an entity (which is probably being
845  * [re]activated or, in general, enqueued) can use its remaining runtime
846  * and its current deadline _without_ exceeding the bandwidth it is
847  * assigned (function returns true if it can't). We are in fact applying
848  * one of the CBS rules: when a task wakes up, if the residual runtime
849  * over residual deadline fits within the allocated bandwidth, then we
850  * can keep the current (absolute) deadline and residual budget without
851  * disrupting the schedulability of the system. Otherwise, we should
852  * refill the runtime and set the deadline a period in the future,
853  * because keeping the current (absolute) deadline of the task would
854  * result in breaking guarantees promised to other tasks (refer to
855  * Documentation/scheduler/sched-deadline.rst for more information).
856  *
857  * This function returns true if:
858  *
859  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
860  *
861  * IOW we can't recycle current parameters.
862  *
863  * Notice that the bandwidth check is done against the deadline. For
864  * task with deadline equal to period this is the same of using
865  * dl_period instead of dl_deadline in the equation above.
866  */
867 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
868 {
869 	u64 left, right;
870 
871 	/*
872 	 * left and right are the two sides of the equation above,
873 	 * after a bit of shuffling to use multiplications instead
874 	 * of divisions.
875 	 *
876 	 * Note that none of the time values involved in the two
877 	 * multiplications are absolute: dl_deadline and dl_runtime
878 	 * are the relative deadline and the maximum runtime of each
879 	 * instance, runtime is the runtime left for the last instance
880 	 * and (deadline - t), since t is rq->clock, is the time left
881 	 * to the (absolute) deadline. Even if overflowing the u64 type
882 	 * is very unlikely to occur in both cases, here we scale down
883 	 * as we want to avoid that risk at all. Scaling down by 10
884 	 * means that we reduce granularity to 1us. We are fine with it,
885 	 * since this is only a true/false check and, anyway, thinking
886 	 * of anything below microseconds resolution is actually fiction
887 	 * (but still we want to give the user that illusion >;).
888 	 */
889 	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
890 	right = ((dl_se->deadline - t) >> DL_SCALE) *
891 		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
892 
893 	return dl_time_before(right, left);
894 }
895 
896 /*
897  * Revised wakeup rule [1]: For self-suspending tasks, rather then
898  * re-initializing task's runtime and deadline, the revised wakeup
899  * rule adjusts the task's runtime to avoid the task to overrun its
900  * density.
901  *
902  * Reasoning: a task may overrun the density if:
903  *    runtime / (deadline - t) > dl_runtime / dl_deadline
904  *
905  * Therefore, runtime can be adjusted to:
906  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
907  *
908  * In such way that runtime will be equal to the maximum density
909  * the task can use without breaking any rule.
910  *
911  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
912  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
913  */
914 static void
915 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
916 {
917 	u64 laxity = dl_se->deadline - rq_clock(rq);
918 
919 	/*
920 	 * If the task has deadline < period, and the deadline is in the past,
921 	 * it should already be throttled before this check.
922 	 *
923 	 * See update_dl_entity() comments for further details.
924 	 */
925 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
926 
927 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
928 }
929 
930 /*
931  * Regarding the deadline, a task with implicit deadline has a relative
932  * deadline == relative period. A task with constrained deadline has a
933  * relative deadline <= relative period.
934  *
935  * We support constrained deadline tasks. However, there are some restrictions
936  * applied only for tasks which do not have an implicit deadline. See
937  * update_dl_entity() to know more about such restrictions.
938  *
939  * The dl_is_implicit() returns true if the task has an implicit deadline.
940  */
941 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
942 {
943 	return dl_se->dl_deadline == dl_se->dl_period;
944 }
945 
946 /*
947  * When a deadline entity is placed in the runqueue, its runtime and deadline
948  * might need to be updated. This is done by a CBS wake up rule. There are two
949  * different rules: 1) the original CBS; and 2) the Revisited CBS.
950  *
951  * When the task is starting a new period, the Original CBS is used. In this
952  * case, the runtime is replenished and a new absolute deadline is set.
953  *
954  * When a task is queued before the begin of the next period, using the
955  * remaining runtime and deadline could make the entity to overflow, see
956  * dl_entity_overflow() to find more about runtime overflow. When such case
957  * is detected, the runtime and deadline need to be updated.
958  *
959  * If the task has an implicit deadline, i.e., deadline == period, the Original
960  * CBS is applied. the runtime is replenished and a new absolute deadline is
961  * set, as in the previous cases.
962  *
963  * However, the Original CBS does not work properly for tasks with
964  * deadline < period, which are said to have a constrained deadline. By
965  * applying the Original CBS, a constrained deadline task would be able to run
966  * runtime/deadline in a period. With deadline < period, the task would
967  * overrun the runtime/period allowed bandwidth, breaking the admission test.
968  *
969  * In order to prevent this misbehave, the Revisited CBS is used for
970  * constrained deadline tasks when a runtime overflow is detected. In the
971  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
972  * the remaining runtime of the task is reduced to avoid runtime overflow.
973  * Please refer to the comments update_dl_revised_wakeup() function to find
974  * more about the Revised CBS rule.
975  */
976 static void update_dl_entity(struct sched_dl_entity *dl_se)
977 {
978 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
979 	struct rq *rq = rq_of_dl_rq(dl_rq);
980 
981 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
982 	    dl_entity_overflow(dl_se, rq_clock(rq))) {
983 
984 		if (unlikely(!dl_is_implicit(dl_se) &&
985 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
986 			     !is_dl_boosted(dl_se))) {
987 			update_dl_revised_wakeup(dl_se, rq);
988 			return;
989 		}
990 
991 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
992 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
993 	}
994 }
995 
996 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
997 {
998 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
999 }
1000 
1001 /*
1002  * If the entity depleted all its runtime, and if we want it to sleep
1003  * while waiting for some new execution time to become available, we
1004  * set the bandwidth replenishment timer to the replenishment instant
1005  * and try to activate it.
1006  *
1007  * Notice that it is important for the caller to know if the timer
1008  * actually started or not (i.e., the replenishment instant is in
1009  * the future or in the past).
1010  */
1011 static int start_dl_timer(struct task_struct *p)
1012 {
1013 	struct sched_dl_entity *dl_se = &p->dl;
1014 	struct hrtimer *timer = &dl_se->dl_timer;
1015 	struct rq *rq = task_rq(p);
1016 	ktime_t now, act;
1017 	s64 delta;
1018 
1019 	lockdep_assert_rq_held(rq);
1020 
1021 	/*
1022 	 * We want the timer to fire at the deadline, but considering
1023 	 * that it is actually coming from rq->clock and not from
1024 	 * hrtimer's time base reading.
1025 	 */
1026 	act = ns_to_ktime(dl_next_period(dl_se));
1027 	now = hrtimer_cb_get_time(timer);
1028 	delta = ktime_to_ns(now) - rq_clock(rq);
1029 	act = ktime_add_ns(act, delta);
1030 
1031 	/*
1032 	 * If the expiry time already passed, e.g., because the value
1033 	 * chosen as the deadline is too small, don't even try to
1034 	 * start the timer in the past!
1035 	 */
1036 	if (ktime_us_delta(act, now) < 0)
1037 		return 0;
1038 
1039 	/*
1040 	 * !enqueued will guarantee another callback; even if one is already in
1041 	 * progress. This ensures a balanced {get,put}_task_struct().
1042 	 *
1043 	 * The race against __run_timer() clearing the enqueued state is
1044 	 * harmless because we're holding task_rq()->lock, therefore the timer
1045 	 * expiring after we've done the check will wait on its task_rq_lock()
1046 	 * and observe our state.
1047 	 */
1048 	if (!hrtimer_is_queued(timer)) {
1049 		get_task_struct(p);
1050 		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1051 	}
1052 
1053 	return 1;
1054 }
1055 
1056 /*
1057  * This is the bandwidth enforcement timer callback. If here, we know
1058  * a task is not on its dl_rq, since the fact that the timer was running
1059  * means the task is throttled and needs a runtime replenishment.
1060  *
1061  * However, what we actually do depends on the fact the task is active,
1062  * (it is on its rq) or has been removed from there by a call to
1063  * dequeue_task_dl(). In the former case we must issue the runtime
1064  * replenishment and add the task back to the dl_rq; in the latter, we just
1065  * do nothing but clearing dl_throttled, so that runtime and deadline
1066  * updating (and the queueing back to dl_rq) will be done by the
1067  * next call to enqueue_task_dl().
1068  */
1069 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1070 {
1071 	struct sched_dl_entity *dl_se = container_of(timer,
1072 						     struct sched_dl_entity,
1073 						     dl_timer);
1074 	struct task_struct *p = dl_task_of(dl_se);
1075 	struct rq_flags rf;
1076 	struct rq *rq;
1077 
1078 	rq = task_rq_lock(p, &rf);
1079 
1080 	/*
1081 	 * The task might have changed its scheduling policy to something
1082 	 * different than SCHED_DEADLINE (through switched_from_dl()).
1083 	 */
1084 	if (!dl_task(p))
1085 		goto unlock;
1086 
1087 	/*
1088 	 * The task might have been boosted by someone else and might be in the
1089 	 * boosting/deboosting path, its not throttled.
1090 	 */
1091 	if (is_dl_boosted(dl_se))
1092 		goto unlock;
1093 
1094 	/*
1095 	 * Spurious timer due to start_dl_timer() race; or we already received
1096 	 * a replenishment from rt_mutex_setprio().
1097 	 */
1098 	if (!dl_se->dl_throttled)
1099 		goto unlock;
1100 
1101 	sched_clock_tick();
1102 	update_rq_clock(rq);
1103 
1104 	/*
1105 	 * If the throttle happened during sched-out; like:
1106 	 *
1107 	 *   schedule()
1108 	 *     deactivate_task()
1109 	 *       dequeue_task_dl()
1110 	 *         update_curr_dl()
1111 	 *           start_dl_timer()
1112 	 *         __dequeue_task_dl()
1113 	 *     prev->on_rq = 0;
1114 	 *
1115 	 * We can be both throttled and !queued. Replenish the counter
1116 	 * but do not enqueue -- wait for our wakeup to do that.
1117 	 */
1118 	if (!task_on_rq_queued(p)) {
1119 		replenish_dl_entity(dl_se);
1120 		goto unlock;
1121 	}
1122 
1123 #ifdef CONFIG_SMP
1124 	if (unlikely(!rq->online)) {
1125 		/*
1126 		 * If the runqueue is no longer available, migrate the
1127 		 * task elsewhere. This necessarily changes rq.
1128 		 */
1129 		lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1130 		rq = dl_task_offline_migration(rq, p);
1131 		rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1132 		update_rq_clock(rq);
1133 
1134 		/*
1135 		 * Now that the task has been migrated to the new RQ and we
1136 		 * have that locked, proceed as normal and enqueue the task
1137 		 * there.
1138 		 */
1139 	}
1140 #endif
1141 
1142 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1143 	if (dl_task(rq->curr))
1144 		check_preempt_curr_dl(rq, p, 0);
1145 	else
1146 		resched_curr(rq);
1147 
1148 #ifdef CONFIG_SMP
1149 	/*
1150 	 * Queueing this task back might have overloaded rq, check if we need
1151 	 * to kick someone away.
1152 	 */
1153 	if (has_pushable_dl_tasks(rq)) {
1154 		/*
1155 		 * Nothing relies on rq->lock after this, so its safe to drop
1156 		 * rq->lock.
1157 		 */
1158 		rq_unpin_lock(rq, &rf);
1159 		push_dl_task(rq);
1160 		rq_repin_lock(rq, &rf);
1161 	}
1162 #endif
1163 
1164 unlock:
1165 	task_rq_unlock(rq, p, &rf);
1166 
1167 	/*
1168 	 * This can free the task_struct, including this hrtimer, do not touch
1169 	 * anything related to that after this.
1170 	 */
1171 	put_task_struct(p);
1172 
1173 	return HRTIMER_NORESTART;
1174 }
1175 
1176 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1177 {
1178 	struct hrtimer *timer = &dl_se->dl_timer;
1179 
1180 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1181 	timer->function = dl_task_timer;
1182 }
1183 
1184 /*
1185  * During the activation, CBS checks if it can reuse the current task's
1186  * runtime and period. If the deadline of the task is in the past, CBS
1187  * cannot use the runtime, and so it replenishes the task. This rule
1188  * works fine for implicit deadline tasks (deadline == period), and the
1189  * CBS was designed for implicit deadline tasks. However, a task with
1190  * constrained deadline (deadline < period) might be awakened after the
1191  * deadline, but before the next period. In this case, replenishing the
1192  * task would allow it to run for runtime / deadline. As in this case
1193  * deadline < period, CBS enables a task to run for more than the
1194  * runtime / period. In a very loaded system, this can cause a domino
1195  * effect, making other tasks miss their deadlines.
1196  *
1197  * To avoid this problem, in the activation of a constrained deadline
1198  * task after the deadline but before the next period, throttle the
1199  * task and set the replenishing timer to the begin of the next period,
1200  * unless it is boosted.
1201  */
1202 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1203 {
1204 	struct task_struct *p = dl_task_of(dl_se);
1205 	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1206 
1207 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1208 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1209 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p)))
1210 			return;
1211 		dl_se->dl_throttled = 1;
1212 		if (dl_se->runtime > 0)
1213 			dl_se->runtime = 0;
1214 	}
1215 }
1216 
1217 static
1218 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1219 {
1220 	return (dl_se->runtime <= 0);
1221 }
1222 
1223 /*
1224  * This function implements the GRUB accounting rule:
1225  * according to the GRUB reclaiming algorithm, the runtime is
1226  * not decreased as "dq = -dt", but as
1227  * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1228  * where u is the utilization of the task, Umax is the maximum reclaimable
1229  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1230  * as the difference between the "total runqueue utilization" and the
1231  * runqueue active utilization, and Uextra is the (per runqueue) extra
1232  * reclaimable utilization.
1233  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1234  * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1235  * BW_SHIFT.
1236  * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT,
1237  * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1238  * Since delta is a 64 bit variable, to have an overflow its value
1239  * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1240  * So, overflow is not an issue here.
1241  */
1242 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1243 {
1244 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1245 	u64 u_act;
1246 	u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1247 
1248 	/*
1249 	 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1250 	 * we compare u_inact + rq->dl.extra_bw with
1251 	 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1252 	 * u_inact + rq->dl.extra_bw can be larger than
1253 	 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1254 	 * leading to wrong results)
1255 	 */
1256 	if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1257 		u_act = u_act_min;
1258 	else
1259 		u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1260 
1261 	return (delta * u_act) >> BW_SHIFT;
1262 }
1263 
1264 /*
1265  * Update the current task's runtime statistics (provided it is still
1266  * a -deadline task and has not been removed from the dl_rq).
1267  */
1268 static void update_curr_dl(struct rq *rq)
1269 {
1270 	struct task_struct *curr = rq->curr;
1271 	struct sched_dl_entity *dl_se = &curr->dl;
1272 	u64 delta_exec, scaled_delta_exec;
1273 	int cpu = cpu_of(rq);
1274 	u64 now;
1275 
1276 	if (!dl_task(curr) || !on_dl_rq(dl_se))
1277 		return;
1278 
1279 	/*
1280 	 * Consumed budget is computed considering the time as
1281 	 * observed by schedulable tasks (excluding time spent
1282 	 * in hardirq context, etc.). Deadlines are instead
1283 	 * computed using hard walltime. This seems to be the more
1284 	 * natural solution, but the full ramifications of this
1285 	 * approach need further study.
1286 	 */
1287 	now = rq_clock_task(rq);
1288 	delta_exec = now - curr->se.exec_start;
1289 	if (unlikely((s64)delta_exec <= 0)) {
1290 		if (unlikely(dl_se->dl_yielded))
1291 			goto throttle;
1292 		return;
1293 	}
1294 
1295 	schedstat_set(curr->stats.exec_max,
1296 		      max(curr->stats.exec_max, delta_exec));
1297 
1298 	trace_sched_stat_runtime(curr, delta_exec, 0);
1299 
1300 	curr->se.sum_exec_runtime += delta_exec;
1301 	account_group_exec_runtime(curr, delta_exec);
1302 
1303 	curr->se.exec_start = now;
1304 	cgroup_account_cputime(curr, delta_exec);
1305 
1306 	if (dl_entity_is_special(dl_se))
1307 		return;
1308 
1309 	/*
1310 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1311 	 * spare reclaimed bandwidth is used to clock down frequency.
1312 	 *
1313 	 * For the others, we still need to scale reservation parameters
1314 	 * according to current frequency and CPU maximum capacity.
1315 	 */
1316 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1317 		scaled_delta_exec = grub_reclaim(delta_exec,
1318 						 rq,
1319 						 &curr->dl);
1320 	} else {
1321 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1322 		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1323 
1324 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1325 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1326 	}
1327 
1328 	dl_se->runtime -= scaled_delta_exec;
1329 
1330 throttle:
1331 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1332 		dl_se->dl_throttled = 1;
1333 
1334 		/* If requested, inform the user about runtime overruns. */
1335 		if (dl_runtime_exceeded(dl_se) &&
1336 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1337 			dl_se->dl_overrun = 1;
1338 
1339 		__dequeue_task_dl(rq, curr, 0);
1340 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr)))
1341 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1342 
1343 		if (!is_leftmost(curr, &rq->dl))
1344 			resched_curr(rq);
1345 	}
1346 
1347 	/*
1348 	 * Because -- for now -- we share the rt bandwidth, we need to
1349 	 * account our runtime there too, otherwise actual rt tasks
1350 	 * would be able to exceed the shared quota.
1351 	 *
1352 	 * Account to the root rt group for now.
1353 	 *
1354 	 * The solution we're working towards is having the RT groups scheduled
1355 	 * using deadline servers -- however there's a few nasties to figure
1356 	 * out before that can happen.
1357 	 */
1358 	if (rt_bandwidth_enabled()) {
1359 		struct rt_rq *rt_rq = &rq->rt;
1360 
1361 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1362 		/*
1363 		 * We'll let actual RT tasks worry about the overflow here, we
1364 		 * have our own CBS to keep us inline; only account when RT
1365 		 * bandwidth is relevant.
1366 		 */
1367 		if (sched_rt_bandwidth_account(rt_rq))
1368 			rt_rq->rt_time += delta_exec;
1369 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1370 	}
1371 }
1372 
1373 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1374 {
1375 	struct sched_dl_entity *dl_se = container_of(timer,
1376 						     struct sched_dl_entity,
1377 						     inactive_timer);
1378 	struct task_struct *p = dl_task_of(dl_se);
1379 	struct rq_flags rf;
1380 	struct rq *rq;
1381 
1382 	rq = task_rq_lock(p, &rf);
1383 
1384 	sched_clock_tick();
1385 	update_rq_clock(rq);
1386 
1387 	if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1388 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1389 
1390 		if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1391 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1392 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1393 			dl_se->dl_non_contending = 0;
1394 		}
1395 
1396 		raw_spin_lock(&dl_b->lock);
1397 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1398 		raw_spin_unlock(&dl_b->lock);
1399 		__dl_clear_params(p);
1400 
1401 		goto unlock;
1402 	}
1403 	if (dl_se->dl_non_contending == 0)
1404 		goto unlock;
1405 
1406 	sub_running_bw(dl_se, &rq->dl);
1407 	dl_se->dl_non_contending = 0;
1408 unlock:
1409 	task_rq_unlock(rq, p, &rf);
1410 	put_task_struct(p);
1411 
1412 	return HRTIMER_NORESTART;
1413 }
1414 
1415 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1416 {
1417 	struct hrtimer *timer = &dl_se->inactive_timer;
1418 
1419 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1420 	timer->function = inactive_task_timer;
1421 }
1422 
1423 #define __node_2_dle(node) \
1424 	rb_entry((node), struct sched_dl_entity, rb_node)
1425 
1426 #ifdef CONFIG_SMP
1427 
1428 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1429 {
1430 	struct rq *rq = rq_of_dl_rq(dl_rq);
1431 
1432 	if (dl_rq->earliest_dl.curr == 0 ||
1433 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1434 		if (dl_rq->earliest_dl.curr == 0)
1435 			cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1436 		dl_rq->earliest_dl.curr = deadline;
1437 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1438 	}
1439 }
1440 
1441 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1442 {
1443 	struct rq *rq = rq_of_dl_rq(dl_rq);
1444 
1445 	/*
1446 	 * Since we may have removed our earliest (and/or next earliest)
1447 	 * task we must recompute them.
1448 	 */
1449 	if (!dl_rq->dl_nr_running) {
1450 		dl_rq->earliest_dl.curr = 0;
1451 		dl_rq->earliest_dl.next = 0;
1452 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1453 		cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1454 	} else {
1455 		struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1456 		struct sched_dl_entity *entry = __node_2_dle(leftmost);
1457 
1458 		dl_rq->earliest_dl.curr = entry->deadline;
1459 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1460 	}
1461 }
1462 
1463 #else
1464 
1465 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1466 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1467 
1468 #endif /* CONFIG_SMP */
1469 
1470 static inline
1471 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1472 {
1473 	int prio = dl_task_of(dl_se)->prio;
1474 	u64 deadline = dl_se->deadline;
1475 
1476 	WARN_ON(!dl_prio(prio));
1477 	dl_rq->dl_nr_running++;
1478 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1479 
1480 	inc_dl_deadline(dl_rq, deadline);
1481 	inc_dl_migration(dl_se, dl_rq);
1482 }
1483 
1484 static inline
1485 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1486 {
1487 	int prio = dl_task_of(dl_se)->prio;
1488 
1489 	WARN_ON(!dl_prio(prio));
1490 	WARN_ON(!dl_rq->dl_nr_running);
1491 	dl_rq->dl_nr_running--;
1492 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1493 
1494 	dec_dl_deadline(dl_rq, dl_se->deadline);
1495 	dec_dl_migration(dl_se, dl_rq);
1496 }
1497 
1498 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1499 {
1500 	return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1501 }
1502 
1503 static inline struct sched_statistics *
1504 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1505 {
1506 	return &dl_task_of(dl_se)->stats;
1507 }
1508 
1509 static inline void
1510 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1511 {
1512 	struct sched_statistics *stats;
1513 
1514 	if (!schedstat_enabled())
1515 		return;
1516 
1517 	stats = __schedstats_from_dl_se(dl_se);
1518 	__update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1519 }
1520 
1521 static inline void
1522 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1523 {
1524 	struct sched_statistics *stats;
1525 
1526 	if (!schedstat_enabled())
1527 		return;
1528 
1529 	stats = __schedstats_from_dl_se(dl_se);
1530 	__update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1531 }
1532 
1533 static inline void
1534 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1535 {
1536 	struct sched_statistics *stats;
1537 
1538 	if (!schedstat_enabled())
1539 		return;
1540 
1541 	stats = __schedstats_from_dl_se(dl_se);
1542 	__update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1543 }
1544 
1545 static inline void
1546 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1547 			int flags)
1548 {
1549 	if (!schedstat_enabled())
1550 		return;
1551 
1552 	if (flags & ENQUEUE_WAKEUP)
1553 		update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1554 }
1555 
1556 static inline void
1557 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1558 			int flags)
1559 {
1560 	struct task_struct *p = dl_task_of(dl_se);
1561 
1562 	if (!schedstat_enabled())
1563 		return;
1564 
1565 	if ((flags & DEQUEUE_SLEEP)) {
1566 		unsigned int state;
1567 
1568 		state = READ_ONCE(p->__state);
1569 		if (state & TASK_INTERRUPTIBLE)
1570 			__schedstat_set(p->stats.sleep_start,
1571 					rq_clock(rq_of_dl_rq(dl_rq)));
1572 
1573 		if (state & TASK_UNINTERRUPTIBLE)
1574 			__schedstat_set(p->stats.block_start,
1575 					rq_clock(rq_of_dl_rq(dl_rq)));
1576 	}
1577 }
1578 
1579 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1580 {
1581 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1582 
1583 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1584 
1585 	rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1586 
1587 	inc_dl_tasks(dl_se, dl_rq);
1588 }
1589 
1590 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1591 {
1592 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1593 
1594 	if (RB_EMPTY_NODE(&dl_se->rb_node))
1595 		return;
1596 
1597 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1598 
1599 	RB_CLEAR_NODE(&dl_se->rb_node);
1600 
1601 	dec_dl_tasks(dl_se, dl_rq);
1602 }
1603 
1604 static void
1605 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1606 {
1607 	BUG_ON(on_dl_rq(dl_se));
1608 
1609 	update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1610 
1611 	/*
1612 	 * If this is a wakeup or a new instance, the scheduling
1613 	 * parameters of the task might need updating. Otherwise,
1614 	 * we want a replenishment of its runtime.
1615 	 */
1616 	if (flags & ENQUEUE_WAKEUP) {
1617 		task_contending(dl_se, flags);
1618 		update_dl_entity(dl_se);
1619 	} else if (flags & ENQUEUE_REPLENISH) {
1620 		replenish_dl_entity(dl_se);
1621 	} else if ((flags & ENQUEUE_RESTORE) &&
1622 		  dl_time_before(dl_se->deadline,
1623 				 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1624 		setup_new_dl_entity(dl_se);
1625 	}
1626 
1627 	__enqueue_dl_entity(dl_se);
1628 }
1629 
1630 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1631 {
1632 	__dequeue_dl_entity(dl_se);
1633 }
1634 
1635 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1636 {
1637 	if (is_dl_boosted(&p->dl)) {
1638 		/*
1639 		 * Because of delays in the detection of the overrun of a
1640 		 * thread's runtime, it might be the case that a thread
1641 		 * goes to sleep in a rt mutex with negative runtime. As
1642 		 * a consequence, the thread will be throttled.
1643 		 *
1644 		 * While waiting for the mutex, this thread can also be
1645 		 * boosted via PI, resulting in a thread that is throttled
1646 		 * and boosted at the same time.
1647 		 *
1648 		 * In this case, the boost overrides the throttle.
1649 		 */
1650 		if (p->dl.dl_throttled) {
1651 			/*
1652 			 * The replenish timer needs to be canceled. No
1653 			 * problem if it fires concurrently: boosted threads
1654 			 * are ignored in dl_task_timer().
1655 			 */
1656 			hrtimer_try_to_cancel(&p->dl.dl_timer);
1657 			p->dl.dl_throttled = 0;
1658 		}
1659 	} else if (!dl_prio(p->normal_prio)) {
1660 		/*
1661 		 * Special case in which we have a !SCHED_DEADLINE task that is going
1662 		 * to be deboosted, but exceeds its runtime while doing so. No point in
1663 		 * replenishing it, as it's going to return back to its original
1664 		 * scheduling class after this. If it has been throttled, we need to
1665 		 * clear the flag, otherwise the task may wake up as throttled after
1666 		 * being boosted again with no means to replenish the runtime and clear
1667 		 * the throttle.
1668 		 */
1669 		p->dl.dl_throttled = 0;
1670 		BUG_ON(!is_dl_boosted(&p->dl) || flags != ENQUEUE_REPLENISH);
1671 		return;
1672 	}
1673 
1674 	/*
1675 	 * Check if a constrained deadline task was activated
1676 	 * after the deadline but before the next period.
1677 	 * If that is the case, the task will be throttled and
1678 	 * the replenishment timer will be set to the next period.
1679 	 */
1680 	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1681 		dl_check_constrained_dl(&p->dl);
1682 
1683 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1684 		add_rq_bw(&p->dl, &rq->dl);
1685 		add_running_bw(&p->dl, &rq->dl);
1686 	}
1687 
1688 	/*
1689 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1690 	 * its budget it needs a replenishment and, since it now is on
1691 	 * its rq, the bandwidth timer callback (which clearly has not
1692 	 * run yet) will take care of this.
1693 	 * However, the active utilization does not depend on the fact
1694 	 * that the task is on the runqueue or not (but depends on the
1695 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1696 	 * In other words, even if a task is throttled its utilization must
1697 	 * be counted in the active utilization; hence, we need to call
1698 	 * add_running_bw().
1699 	 */
1700 	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1701 		if (flags & ENQUEUE_WAKEUP)
1702 			task_contending(&p->dl, flags);
1703 
1704 		return;
1705 	}
1706 
1707 	check_schedstat_required();
1708 	update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
1709 
1710 	enqueue_dl_entity(&p->dl, flags);
1711 
1712 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1713 		enqueue_pushable_dl_task(rq, p);
1714 }
1715 
1716 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1717 {
1718 	update_stats_dequeue_dl(&rq->dl, &p->dl, flags);
1719 	dequeue_dl_entity(&p->dl);
1720 	dequeue_pushable_dl_task(rq, p);
1721 }
1722 
1723 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1724 {
1725 	update_curr_dl(rq);
1726 	__dequeue_task_dl(rq, p, flags);
1727 
1728 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1729 		sub_running_bw(&p->dl, &rq->dl);
1730 		sub_rq_bw(&p->dl, &rq->dl);
1731 	}
1732 
1733 	/*
1734 	 * This check allows to start the inactive timer (or to immediately
1735 	 * decrease the active utilization, if needed) in two cases:
1736 	 * when the task blocks and when it is terminating
1737 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1738 	 * way, because from GRUB's point of view the same thing is happening
1739 	 * (the task moves from "active contending" to "active non contending"
1740 	 * or "inactive")
1741 	 */
1742 	if (flags & DEQUEUE_SLEEP)
1743 		task_non_contending(p);
1744 }
1745 
1746 /*
1747  * Yield task semantic for -deadline tasks is:
1748  *
1749  *   get off from the CPU until our next instance, with
1750  *   a new runtime. This is of little use now, since we
1751  *   don't have a bandwidth reclaiming mechanism. Anyway,
1752  *   bandwidth reclaiming is planned for the future, and
1753  *   yield_task_dl will indicate that some spare budget
1754  *   is available for other task instances to use it.
1755  */
1756 static void yield_task_dl(struct rq *rq)
1757 {
1758 	/*
1759 	 * We make the task go to sleep until its current deadline by
1760 	 * forcing its runtime to zero. This way, update_curr_dl() stops
1761 	 * it and the bandwidth timer will wake it up and will give it
1762 	 * new scheduling parameters (thanks to dl_yielded=1).
1763 	 */
1764 	rq->curr->dl.dl_yielded = 1;
1765 
1766 	update_rq_clock(rq);
1767 	update_curr_dl(rq);
1768 	/*
1769 	 * Tell update_rq_clock() that we've just updated,
1770 	 * so we don't do microscopic update in schedule()
1771 	 * and double the fastpath cost.
1772 	 */
1773 	rq_clock_skip_update(rq);
1774 }
1775 
1776 #ifdef CONFIG_SMP
1777 
1778 static int find_later_rq(struct task_struct *task);
1779 
1780 static int
1781 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
1782 {
1783 	struct task_struct *curr;
1784 	bool select_rq;
1785 	struct rq *rq;
1786 
1787 	if (!(flags & WF_TTWU))
1788 		goto out;
1789 
1790 	rq = cpu_rq(cpu);
1791 
1792 	rcu_read_lock();
1793 	curr = READ_ONCE(rq->curr); /* unlocked access */
1794 
1795 	/*
1796 	 * If we are dealing with a -deadline task, we must
1797 	 * decide where to wake it up.
1798 	 * If it has a later deadline and the current task
1799 	 * on this rq can't move (provided the waking task
1800 	 * can!) we prefer to send it somewhere else. On the
1801 	 * other hand, if it has a shorter deadline, we
1802 	 * try to make it stay here, it might be important.
1803 	 */
1804 	select_rq = unlikely(dl_task(curr)) &&
1805 		    (curr->nr_cpus_allowed < 2 ||
1806 		     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1807 		    p->nr_cpus_allowed > 1;
1808 
1809 	/*
1810 	 * Take the capacity of the CPU into account to
1811 	 * ensure it fits the requirement of the task.
1812 	 */
1813 	if (static_branch_unlikely(&sched_asym_cpucapacity))
1814 		select_rq |= !dl_task_fits_capacity(p, cpu);
1815 
1816 	if (select_rq) {
1817 		int target = find_later_rq(p);
1818 
1819 		if (target != -1 &&
1820 				(dl_time_before(p->dl.deadline,
1821 					cpu_rq(target)->dl.earliest_dl.curr) ||
1822 				(cpu_rq(target)->dl.dl_nr_running == 0)))
1823 			cpu = target;
1824 	}
1825 	rcu_read_unlock();
1826 
1827 out:
1828 	return cpu;
1829 }
1830 
1831 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1832 {
1833 	struct rq_flags rf;
1834 	struct rq *rq;
1835 
1836 	if (READ_ONCE(p->__state) != TASK_WAKING)
1837 		return;
1838 
1839 	rq = task_rq(p);
1840 	/*
1841 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1842 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1843 	 * rq->lock is not... So, lock it
1844 	 */
1845 	rq_lock(rq, &rf);
1846 	if (p->dl.dl_non_contending) {
1847 		update_rq_clock(rq);
1848 		sub_running_bw(&p->dl, &rq->dl);
1849 		p->dl.dl_non_contending = 0;
1850 		/*
1851 		 * If the timer handler is currently running and the
1852 		 * timer cannot be canceled, inactive_task_timer()
1853 		 * will see that dl_not_contending is not set, and
1854 		 * will not touch the rq's active utilization,
1855 		 * so we are still safe.
1856 		 */
1857 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1858 			put_task_struct(p);
1859 	}
1860 	sub_rq_bw(&p->dl, &rq->dl);
1861 	rq_unlock(rq, &rf);
1862 }
1863 
1864 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1865 {
1866 	/*
1867 	 * Current can't be migrated, useless to reschedule,
1868 	 * let's hope p can move out.
1869 	 */
1870 	if (rq->curr->nr_cpus_allowed == 1 ||
1871 	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1872 		return;
1873 
1874 	/*
1875 	 * p is migratable, so let's not schedule it and
1876 	 * see if it is pushed or pulled somewhere else.
1877 	 */
1878 	if (p->nr_cpus_allowed != 1 &&
1879 	    cpudl_find(&rq->rd->cpudl, p, NULL))
1880 		return;
1881 
1882 	resched_curr(rq);
1883 }
1884 
1885 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1886 {
1887 	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1888 		/*
1889 		 * This is OK, because current is on_cpu, which avoids it being
1890 		 * picked for load-balance and preemption/IRQs are still
1891 		 * disabled avoiding further scheduler activity on it and we've
1892 		 * not yet started the picking loop.
1893 		 */
1894 		rq_unpin_lock(rq, rf);
1895 		pull_dl_task(rq);
1896 		rq_repin_lock(rq, rf);
1897 	}
1898 
1899 	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1900 }
1901 #endif /* CONFIG_SMP */
1902 
1903 /*
1904  * Only called when both the current and waking task are -deadline
1905  * tasks.
1906  */
1907 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1908 				  int flags)
1909 {
1910 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1911 		resched_curr(rq);
1912 		return;
1913 	}
1914 
1915 #ifdef CONFIG_SMP
1916 	/*
1917 	 * In the unlikely case current and p have the same deadline
1918 	 * let us try to decide what's the best thing to do...
1919 	 */
1920 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1921 	    !test_tsk_need_resched(rq->curr))
1922 		check_preempt_equal_dl(rq, p);
1923 #endif /* CONFIG_SMP */
1924 }
1925 
1926 #ifdef CONFIG_SCHED_HRTICK
1927 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1928 {
1929 	hrtick_start(rq, p->dl.runtime);
1930 }
1931 #else /* !CONFIG_SCHED_HRTICK */
1932 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1933 {
1934 }
1935 #endif
1936 
1937 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1938 {
1939 	struct sched_dl_entity *dl_se = &p->dl;
1940 	struct dl_rq *dl_rq = &rq->dl;
1941 
1942 	p->se.exec_start = rq_clock_task(rq);
1943 	if (on_dl_rq(&p->dl))
1944 		update_stats_wait_end_dl(dl_rq, dl_se);
1945 
1946 	/* You can't push away the running task */
1947 	dequeue_pushable_dl_task(rq, p);
1948 
1949 	if (!first)
1950 		return;
1951 
1952 	if (hrtick_enabled_dl(rq))
1953 		start_hrtick_dl(rq, p);
1954 
1955 	if (rq->curr->sched_class != &dl_sched_class)
1956 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1957 
1958 	deadline_queue_push_tasks(rq);
1959 }
1960 
1961 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
1962 {
1963 	struct rb_node *left = rb_first_cached(&dl_rq->root);
1964 
1965 	if (!left)
1966 		return NULL;
1967 
1968 	return __node_2_dle(left);
1969 }
1970 
1971 static struct task_struct *pick_task_dl(struct rq *rq)
1972 {
1973 	struct sched_dl_entity *dl_se;
1974 	struct dl_rq *dl_rq = &rq->dl;
1975 	struct task_struct *p;
1976 
1977 	if (!sched_dl_runnable(rq))
1978 		return NULL;
1979 
1980 	dl_se = pick_next_dl_entity(dl_rq);
1981 	BUG_ON(!dl_se);
1982 	p = dl_task_of(dl_se);
1983 
1984 	return p;
1985 }
1986 
1987 static struct task_struct *pick_next_task_dl(struct rq *rq)
1988 {
1989 	struct task_struct *p;
1990 
1991 	p = pick_task_dl(rq);
1992 	if (p)
1993 		set_next_task_dl(rq, p, true);
1994 
1995 	return p;
1996 }
1997 
1998 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1999 {
2000 	struct sched_dl_entity *dl_se = &p->dl;
2001 	struct dl_rq *dl_rq = &rq->dl;
2002 
2003 	if (on_dl_rq(&p->dl))
2004 		update_stats_wait_start_dl(dl_rq, dl_se);
2005 
2006 	update_curr_dl(rq);
2007 
2008 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2009 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2010 		enqueue_pushable_dl_task(rq, p);
2011 }
2012 
2013 /*
2014  * scheduler tick hitting a task of our scheduling class.
2015  *
2016  * NOTE: This function can be called remotely by the tick offload that
2017  * goes along full dynticks. Therefore no local assumption can be made
2018  * and everything must be accessed through the @rq and @curr passed in
2019  * parameters.
2020  */
2021 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2022 {
2023 	update_curr_dl(rq);
2024 
2025 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2026 	/*
2027 	 * Even when we have runtime, update_curr_dl() might have resulted in us
2028 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
2029 	 * be set and schedule() will start a new hrtick for the next task.
2030 	 */
2031 	if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2032 	    is_leftmost(p, &rq->dl))
2033 		start_hrtick_dl(rq, p);
2034 }
2035 
2036 static void task_fork_dl(struct task_struct *p)
2037 {
2038 	/*
2039 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2040 	 * sched_fork()
2041 	 */
2042 }
2043 
2044 #ifdef CONFIG_SMP
2045 
2046 /* Only try algorithms three times */
2047 #define DL_MAX_TRIES 3
2048 
2049 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
2050 {
2051 	if (!task_running(rq, p) &&
2052 	    cpumask_test_cpu(cpu, &p->cpus_mask))
2053 		return 1;
2054 	return 0;
2055 }
2056 
2057 /*
2058  * Return the earliest pushable rq's task, which is suitable to be executed
2059  * on the CPU, NULL otherwise:
2060  */
2061 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2062 {
2063 	struct task_struct *p = NULL;
2064 	struct rb_node *next_node;
2065 
2066 	if (!has_pushable_dl_tasks(rq))
2067 		return NULL;
2068 
2069 	next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2070 
2071 next_node:
2072 	if (next_node) {
2073 		p = __node_2_pdl(next_node);
2074 
2075 		if (pick_dl_task(rq, p, cpu))
2076 			return p;
2077 
2078 		next_node = rb_next(next_node);
2079 		goto next_node;
2080 	}
2081 
2082 	return NULL;
2083 }
2084 
2085 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2086 
2087 static int find_later_rq(struct task_struct *task)
2088 {
2089 	struct sched_domain *sd;
2090 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2091 	int this_cpu = smp_processor_id();
2092 	int cpu = task_cpu(task);
2093 
2094 	/* Make sure the mask is initialized first */
2095 	if (unlikely(!later_mask))
2096 		return -1;
2097 
2098 	if (task->nr_cpus_allowed == 1)
2099 		return -1;
2100 
2101 	/*
2102 	 * We have to consider system topology and task affinity
2103 	 * first, then we can look for a suitable CPU.
2104 	 */
2105 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2106 		return -1;
2107 
2108 	/*
2109 	 * If we are here, some targets have been found, including
2110 	 * the most suitable which is, among the runqueues where the
2111 	 * current tasks have later deadlines than the task's one, the
2112 	 * rq with the latest possible one.
2113 	 *
2114 	 * Now we check how well this matches with task's
2115 	 * affinity and system topology.
2116 	 *
2117 	 * The last CPU where the task run is our first
2118 	 * guess, since it is most likely cache-hot there.
2119 	 */
2120 	if (cpumask_test_cpu(cpu, later_mask))
2121 		return cpu;
2122 	/*
2123 	 * Check if this_cpu is to be skipped (i.e., it is
2124 	 * not in the mask) or not.
2125 	 */
2126 	if (!cpumask_test_cpu(this_cpu, later_mask))
2127 		this_cpu = -1;
2128 
2129 	rcu_read_lock();
2130 	for_each_domain(cpu, sd) {
2131 		if (sd->flags & SD_WAKE_AFFINE) {
2132 			int best_cpu;
2133 
2134 			/*
2135 			 * If possible, preempting this_cpu is
2136 			 * cheaper than migrating.
2137 			 */
2138 			if (this_cpu != -1 &&
2139 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2140 				rcu_read_unlock();
2141 				return this_cpu;
2142 			}
2143 
2144 			best_cpu = cpumask_any_and_distribute(later_mask,
2145 							      sched_domain_span(sd));
2146 			/*
2147 			 * Last chance: if a CPU being in both later_mask
2148 			 * and current sd span is valid, that becomes our
2149 			 * choice. Of course, the latest possible CPU is
2150 			 * already under consideration through later_mask.
2151 			 */
2152 			if (best_cpu < nr_cpu_ids) {
2153 				rcu_read_unlock();
2154 				return best_cpu;
2155 			}
2156 		}
2157 	}
2158 	rcu_read_unlock();
2159 
2160 	/*
2161 	 * At this point, all our guesses failed, we just return
2162 	 * 'something', and let the caller sort the things out.
2163 	 */
2164 	if (this_cpu != -1)
2165 		return this_cpu;
2166 
2167 	cpu = cpumask_any_distribute(later_mask);
2168 	if (cpu < nr_cpu_ids)
2169 		return cpu;
2170 
2171 	return -1;
2172 }
2173 
2174 /* Locks the rq it finds */
2175 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2176 {
2177 	struct rq *later_rq = NULL;
2178 	int tries;
2179 	int cpu;
2180 
2181 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2182 		cpu = find_later_rq(task);
2183 
2184 		if ((cpu == -1) || (cpu == rq->cpu))
2185 			break;
2186 
2187 		later_rq = cpu_rq(cpu);
2188 
2189 		if (later_rq->dl.dl_nr_running &&
2190 		    !dl_time_before(task->dl.deadline,
2191 					later_rq->dl.earliest_dl.curr)) {
2192 			/*
2193 			 * Target rq has tasks of equal or earlier deadline,
2194 			 * retrying does not release any lock and is unlikely
2195 			 * to yield a different result.
2196 			 */
2197 			later_rq = NULL;
2198 			break;
2199 		}
2200 
2201 		/* Retry if something changed. */
2202 		if (double_lock_balance(rq, later_rq)) {
2203 			if (unlikely(task_rq(task) != rq ||
2204 				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2205 				     task_running(rq, task) ||
2206 				     !dl_task(task) ||
2207 				     !task_on_rq_queued(task))) {
2208 				double_unlock_balance(rq, later_rq);
2209 				later_rq = NULL;
2210 				break;
2211 			}
2212 		}
2213 
2214 		/*
2215 		 * If the rq we found has no -deadline task, or
2216 		 * its earliest one has a later deadline than our
2217 		 * task, the rq is a good one.
2218 		 */
2219 		if (!later_rq->dl.dl_nr_running ||
2220 		    dl_time_before(task->dl.deadline,
2221 				   later_rq->dl.earliest_dl.curr))
2222 			break;
2223 
2224 		/* Otherwise we try again. */
2225 		double_unlock_balance(rq, later_rq);
2226 		later_rq = NULL;
2227 	}
2228 
2229 	return later_rq;
2230 }
2231 
2232 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2233 {
2234 	struct task_struct *p;
2235 
2236 	if (!has_pushable_dl_tasks(rq))
2237 		return NULL;
2238 
2239 	p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2240 
2241 	BUG_ON(rq->cpu != task_cpu(p));
2242 	BUG_ON(task_current(rq, p));
2243 	BUG_ON(p->nr_cpus_allowed <= 1);
2244 
2245 	BUG_ON(!task_on_rq_queued(p));
2246 	BUG_ON(!dl_task(p));
2247 
2248 	return p;
2249 }
2250 
2251 /*
2252  * See if the non running -deadline tasks on this rq
2253  * can be sent to some other CPU where they can preempt
2254  * and start executing.
2255  */
2256 static int push_dl_task(struct rq *rq)
2257 {
2258 	struct task_struct *next_task;
2259 	struct rq *later_rq;
2260 	int ret = 0;
2261 
2262 	if (!rq->dl.overloaded)
2263 		return 0;
2264 
2265 	next_task = pick_next_pushable_dl_task(rq);
2266 	if (!next_task)
2267 		return 0;
2268 
2269 retry:
2270 	/*
2271 	 * If next_task preempts rq->curr, and rq->curr
2272 	 * can move away, it makes sense to just reschedule
2273 	 * without going further in pushing next_task.
2274 	 */
2275 	if (dl_task(rq->curr) &&
2276 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2277 	    rq->curr->nr_cpus_allowed > 1) {
2278 		resched_curr(rq);
2279 		return 0;
2280 	}
2281 
2282 	if (is_migration_disabled(next_task))
2283 		return 0;
2284 
2285 	if (WARN_ON(next_task == rq->curr))
2286 		return 0;
2287 
2288 	/* We might release rq lock */
2289 	get_task_struct(next_task);
2290 
2291 	/* Will lock the rq it'll find */
2292 	later_rq = find_lock_later_rq(next_task, rq);
2293 	if (!later_rq) {
2294 		struct task_struct *task;
2295 
2296 		/*
2297 		 * We must check all this again, since
2298 		 * find_lock_later_rq releases rq->lock and it is
2299 		 * then possible that next_task has migrated.
2300 		 */
2301 		task = pick_next_pushable_dl_task(rq);
2302 		if (task == next_task) {
2303 			/*
2304 			 * The task is still there. We don't try
2305 			 * again, some other CPU will pull it when ready.
2306 			 */
2307 			goto out;
2308 		}
2309 
2310 		if (!task)
2311 			/* No more tasks */
2312 			goto out;
2313 
2314 		put_task_struct(next_task);
2315 		next_task = task;
2316 		goto retry;
2317 	}
2318 
2319 	deactivate_task(rq, next_task, 0);
2320 	set_task_cpu(next_task, later_rq->cpu);
2321 	activate_task(later_rq, next_task, 0);
2322 	ret = 1;
2323 
2324 	resched_curr(later_rq);
2325 
2326 	double_unlock_balance(rq, later_rq);
2327 
2328 out:
2329 	put_task_struct(next_task);
2330 
2331 	return ret;
2332 }
2333 
2334 static void push_dl_tasks(struct rq *rq)
2335 {
2336 	/* push_dl_task() will return true if it moved a -deadline task */
2337 	while (push_dl_task(rq))
2338 		;
2339 }
2340 
2341 static void pull_dl_task(struct rq *this_rq)
2342 {
2343 	int this_cpu = this_rq->cpu, cpu;
2344 	struct task_struct *p, *push_task;
2345 	bool resched = false;
2346 	struct rq *src_rq;
2347 	u64 dmin = LONG_MAX;
2348 
2349 	if (likely(!dl_overloaded(this_rq)))
2350 		return;
2351 
2352 	/*
2353 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2354 	 * see overloaded we must also see the dlo_mask bit.
2355 	 */
2356 	smp_rmb();
2357 
2358 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2359 		if (this_cpu == cpu)
2360 			continue;
2361 
2362 		src_rq = cpu_rq(cpu);
2363 
2364 		/*
2365 		 * It looks racy, abd it is! However, as in sched_rt.c,
2366 		 * we are fine with this.
2367 		 */
2368 		if (this_rq->dl.dl_nr_running &&
2369 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2370 				   src_rq->dl.earliest_dl.next))
2371 			continue;
2372 
2373 		/* Might drop this_rq->lock */
2374 		push_task = NULL;
2375 		double_lock_balance(this_rq, src_rq);
2376 
2377 		/*
2378 		 * If there are no more pullable tasks on the
2379 		 * rq, we're done with it.
2380 		 */
2381 		if (src_rq->dl.dl_nr_running <= 1)
2382 			goto skip;
2383 
2384 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2385 
2386 		/*
2387 		 * We found a task to be pulled if:
2388 		 *  - it preempts our current (if there's one),
2389 		 *  - it will preempt the last one we pulled (if any).
2390 		 */
2391 		if (p && dl_time_before(p->dl.deadline, dmin) &&
2392 		    (!this_rq->dl.dl_nr_running ||
2393 		     dl_time_before(p->dl.deadline,
2394 				    this_rq->dl.earliest_dl.curr))) {
2395 			WARN_ON(p == src_rq->curr);
2396 			WARN_ON(!task_on_rq_queued(p));
2397 
2398 			/*
2399 			 * Then we pull iff p has actually an earlier
2400 			 * deadline than the current task of its runqueue.
2401 			 */
2402 			if (dl_time_before(p->dl.deadline,
2403 					   src_rq->curr->dl.deadline))
2404 				goto skip;
2405 
2406 			if (is_migration_disabled(p)) {
2407 				push_task = get_push_task(src_rq);
2408 			} else {
2409 				deactivate_task(src_rq, p, 0);
2410 				set_task_cpu(p, this_cpu);
2411 				activate_task(this_rq, p, 0);
2412 				dmin = p->dl.deadline;
2413 				resched = true;
2414 			}
2415 
2416 			/* Is there any other task even earlier? */
2417 		}
2418 skip:
2419 		double_unlock_balance(this_rq, src_rq);
2420 
2421 		if (push_task) {
2422 			raw_spin_rq_unlock(this_rq);
2423 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2424 					    push_task, &src_rq->push_work);
2425 			raw_spin_rq_lock(this_rq);
2426 		}
2427 	}
2428 
2429 	if (resched)
2430 		resched_curr(this_rq);
2431 }
2432 
2433 /*
2434  * Since the task is not running and a reschedule is not going to happen
2435  * anytime soon on its runqueue, we try pushing it away now.
2436  */
2437 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2438 {
2439 	if (!task_running(rq, p) &&
2440 	    !test_tsk_need_resched(rq->curr) &&
2441 	    p->nr_cpus_allowed > 1 &&
2442 	    dl_task(rq->curr) &&
2443 	    (rq->curr->nr_cpus_allowed < 2 ||
2444 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2445 		push_dl_tasks(rq);
2446 	}
2447 }
2448 
2449 static void set_cpus_allowed_dl(struct task_struct *p,
2450 				const struct cpumask *new_mask,
2451 				u32 flags)
2452 {
2453 	struct root_domain *src_rd;
2454 	struct rq *rq;
2455 
2456 	BUG_ON(!dl_task(p));
2457 
2458 	rq = task_rq(p);
2459 	src_rd = rq->rd;
2460 	/*
2461 	 * Migrating a SCHED_DEADLINE task between exclusive
2462 	 * cpusets (different root_domains) entails a bandwidth
2463 	 * update. We already made space for us in the destination
2464 	 * domain (see cpuset_can_attach()).
2465 	 */
2466 	if (!cpumask_intersects(src_rd->span, new_mask)) {
2467 		struct dl_bw *src_dl_b;
2468 
2469 		src_dl_b = dl_bw_of(cpu_of(rq));
2470 		/*
2471 		 * We now free resources of the root_domain we are migrating
2472 		 * off. In the worst case, sched_setattr() may temporary fail
2473 		 * until we complete the update.
2474 		 */
2475 		raw_spin_lock(&src_dl_b->lock);
2476 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2477 		raw_spin_unlock(&src_dl_b->lock);
2478 	}
2479 
2480 	set_cpus_allowed_common(p, new_mask, flags);
2481 }
2482 
2483 /* Assumes rq->lock is held */
2484 static void rq_online_dl(struct rq *rq)
2485 {
2486 	if (rq->dl.overloaded)
2487 		dl_set_overload(rq);
2488 
2489 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2490 	if (rq->dl.dl_nr_running > 0)
2491 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2492 }
2493 
2494 /* Assumes rq->lock is held */
2495 static void rq_offline_dl(struct rq *rq)
2496 {
2497 	if (rq->dl.overloaded)
2498 		dl_clear_overload(rq);
2499 
2500 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2501 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2502 }
2503 
2504 void __init init_sched_dl_class(void)
2505 {
2506 	unsigned int i;
2507 
2508 	for_each_possible_cpu(i)
2509 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2510 					GFP_KERNEL, cpu_to_node(i));
2511 }
2512 
2513 void dl_add_task_root_domain(struct task_struct *p)
2514 {
2515 	struct rq_flags rf;
2516 	struct rq *rq;
2517 	struct dl_bw *dl_b;
2518 
2519 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2520 	if (!dl_task(p)) {
2521 		raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2522 		return;
2523 	}
2524 
2525 	rq = __task_rq_lock(p, &rf);
2526 
2527 	dl_b = &rq->rd->dl_bw;
2528 	raw_spin_lock(&dl_b->lock);
2529 
2530 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2531 
2532 	raw_spin_unlock(&dl_b->lock);
2533 
2534 	task_rq_unlock(rq, p, &rf);
2535 }
2536 
2537 void dl_clear_root_domain(struct root_domain *rd)
2538 {
2539 	unsigned long flags;
2540 
2541 	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2542 	rd->dl_bw.total_bw = 0;
2543 	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2544 }
2545 
2546 #endif /* CONFIG_SMP */
2547 
2548 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2549 {
2550 	/*
2551 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2552 	 * time is in the future). If the task switches back to dl before
2553 	 * the "inactive timer" fires, it can continue to consume its current
2554 	 * runtime using its current deadline. If it stays outside of
2555 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2556 	 * will reset the task parameters.
2557 	 */
2558 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2559 		task_non_contending(p);
2560 
2561 	if (!task_on_rq_queued(p)) {
2562 		/*
2563 		 * Inactive timer is armed. However, p is leaving DEADLINE and
2564 		 * might migrate away from this rq while continuing to run on
2565 		 * some other class. We need to remove its contribution from
2566 		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2567 		 */
2568 		if (p->dl.dl_non_contending)
2569 			sub_running_bw(&p->dl, &rq->dl);
2570 		sub_rq_bw(&p->dl, &rq->dl);
2571 	}
2572 
2573 	/*
2574 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2575 	 * at the 0-lag time, because the task could have been migrated
2576 	 * while SCHED_OTHER in the meanwhile.
2577 	 */
2578 	if (p->dl.dl_non_contending)
2579 		p->dl.dl_non_contending = 0;
2580 
2581 	/*
2582 	 * Since this might be the only -deadline task on the rq,
2583 	 * this is the right place to try to pull some other one
2584 	 * from an overloaded CPU, if any.
2585 	 */
2586 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2587 		return;
2588 
2589 	deadline_queue_pull_task(rq);
2590 }
2591 
2592 /*
2593  * When switching to -deadline, we may overload the rq, then
2594  * we try to push someone off, if possible.
2595  */
2596 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2597 {
2598 	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2599 		put_task_struct(p);
2600 
2601 	/* If p is not queued we will update its parameters at next wakeup. */
2602 	if (!task_on_rq_queued(p)) {
2603 		add_rq_bw(&p->dl, &rq->dl);
2604 
2605 		return;
2606 	}
2607 
2608 	if (rq->curr != p) {
2609 #ifdef CONFIG_SMP
2610 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2611 			deadline_queue_push_tasks(rq);
2612 #endif
2613 		if (dl_task(rq->curr))
2614 			check_preempt_curr_dl(rq, p, 0);
2615 		else
2616 			resched_curr(rq);
2617 	} else {
2618 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2619 	}
2620 }
2621 
2622 /*
2623  * If the scheduling parameters of a -deadline task changed,
2624  * a push or pull operation might be needed.
2625  */
2626 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2627 			    int oldprio)
2628 {
2629 	if (task_on_rq_queued(p) || task_current(rq, p)) {
2630 #ifdef CONFIG_SMP
2631 		/*
2632 		 * This might be too much, but unfortunately
2633 		 * we don't have the old deadline value, and
2634 		 * we can't argue if the task is increasing
2635 		 * or lowering its prio, so...
2636 		 */
2637 		if (!rq->dl.overloaded)
2638 			deadline_queue_pull_task(rq);
2639 
2640 		/*
2641 		 * If we now have a earlier deadline task than p,
2642 		 * then reschedule, provided p is still on this
2643 		 * runqueue.
2644 		 */
2645 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2646 			resched_curr(rq);
2647 #else
2648 		/*
2649 		 * Again, we don't know if p has a earlier
2650 		 * or later deadline, so let's blindly set a
2651 		 * (maybe not needed) rescheduling point.
2652 		 */
2653 		resched_curr(rq);
2654 #endif /* CONFIG_SMP */
2655 	}
2656 }
2657 
2658 DEFINE_SCHED_CLASS(dl) = {
2659 
2660 	.enqueue_task		= enqueue_task_dl,
2661 	.dequeue_task		= dequeue_task_dl,
2662 	.yield_task		= yield_task_dl,
2663 
2664 	.check_preempt_curr	= check_preempt_curr_dl,
2665 
2666 	.pick_next_task		= pick_next_task_dl,
2667 	.put_prev_task		= put_prev_task_dl,
2668 	.set_next_task		= set_next_task_dl,
2669 
2670 #ifdef CONFIG_SMP
2671 	.balance		= balance_dl,
2672 	.pick_task		= pick_task_dl,
2673 	.select_task_rq		= select_task_rq_dl,
2674 	.migrate_task_rq	= migrate_task_rq_dl,
2675 	.set_cpus_allowed       = set_cpus_allowed_dl,
2676 	.rq_online              = rq_online_dl,
2677 	.rq_offline             = rq_offline_dl,
2678 	.task_woken		= task_woken_dl,
2679 	.find_lock_rq		= find_lock_later_rq,
2680 #endif
2681 
2682 	.task_tick		= task_tick_dl,
2683 	.task_fork              = task_fork_dl,
2684 
2685 	.prio_changed           = prio_changed_dl,
2686 	.switched_from		= switched_from_dl,
2687 	.switched_to		= switched_to_dl,
2688 
2689 	.update_curr		= update_curr_dl,
2690 };
2691 
2692 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
2693 static u64 dl_generation;
2694 
2695 int sched_dl_global_validate(void)
2696 {
2697 	u64 runtime = global_rt_runtime();
2698 	u64 period = global_rt_period();
2699 	u64 new_bw = to_ratio(period, runtime);
2700 	u64 gen = ++dl_generation;
2701 	struct dl_bw *dl_b;
2702 	int cpu, cpus, ret = 0;
2703 	unsigned long flags;
2704 
2705 	/*
2706 	 * Here we want to check the bandwidth not being set to some
2707 	 * value smaller than the currently allocated bandwidth in
2708 	 * any of the root_domains.
2709 	 */
2710 	for_each_possible_cpu(cpu) {
2711 		rcu_read_lock_sched();
2712 
2713 		if (dl_bw_visited(cpu, gen))
2714 			goto next;
2715 
2716 		dl_b = dl_bw_of(cpu);
2717 		cpus = dl_bw_cpus(cpu);
2718 
2719 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2720 		if (new_bw * cpus < dl_b->total_bw)
2721 			ret = -EBUSY;
2722 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2723 
2724 next:
2725 		rcu_read_unlock_sched();
2726 
2727 		if (ret)
2728 			break;
2729 	}
2730 
2731 	return ret;
2732 }
2733 
2734 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2735 {
2736 	if (global_rt_runtime() == RUNTIME_INF) {
2737 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2738 		dl_rq->extra_bw = 1 << BW_SHIFT;
2739 	} else {
2740 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2741 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2742 		dl_rq->extra_bw = to_ratio(global_rt_period(),
2743 						    global_rt_runtime());
2744 	}
2745 }
2746 
2747 void sched_dl_do_global(void)
2748 {
2749 	u64 new_bw = -1;
2750 	u64 gen = ++dl_generation;
2751 	struct dl_bw *dl_b;
2752 	int cpu;
2753 	unsigned long flags;
2754 
2755 	if (global_rt_runtime() != RUNTIME_INF)
2756 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2757 
2758 	for_each_possible_cpu(cpu) {
2759 		rcu_read_lock_sched();
2760 
2761 		if (dl_bw_visited(cpu, gen)) {
2762 			rcu_read_unlock_sched();
2763 			continue;
2764 		}
2765 
2766 		dl_b = dl_bw_of(cpu);
2767 
2768 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2769 		dl_b->bw = new_bw;
2770 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2771 
2772 		rcu_read_unlock_sched();
2773 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2774 	}
2775 }
2776 
2777 /*
2778  * We must be sure that accepting a new task (or allowing changing the
2779  * parameters of an existing one) is consistent with the bandwidth
2780  * constraints. If yes, this function also accordingly updates the currently
2781  * allocated bandwidth to reflect the new situation.
2782  *
2783  * This function is called while holding p's rq->lock.
2784  */
2785 int sched_dl_overflow(struct task_struct *p, int policy,
2786 		      const struct sched_attr *attr)
2787 {
2788 	u64 period = attr->sched_period ?: attr->sched_deadline;
2789 	u64 runtime = attr->sched_runtime;
2790 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2791 	int cpus, err = -1, cpu = task_cpu(p);
2792 	struct dl_bw *dl_b = dl_bw_of(cpu);
2793 	unsigned long cap;
2794 
2795 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2796 		return 0;
2797 
2798 	/* !deadline task may carry old deadline bandwidth */
2799 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2800 		return 0;
2801 
2802 	/*
2803 	 * Either if a task, enters, leave, or stays -deadline but changes
2804 	 * its parameters, we may need to update accordingly the total
2805 	 * allocated bandwidth of the container.
2806 	 */
2807 	raw_spin_lock(&dl_b->lock);
2808 	cpus = dl_bw_cpus(cpu);
2809 	cap = dl_bw_capacity(cpu);
2810 
2811 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2812 	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
2813 		if (hrtimer_active(&p->dl.inactive_timer))
2814 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2815 		__dl_add(dl_b, new_bw, cpus);
2816 		err = 0;
2817 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2818 		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2819 		/*
2820 		 * XXX this is slightly incorrect: when the task
2821 		 * utilization decreases, we should delay the total
2822 		 * utilization change until the task's 0-lag point.
2823 		 * But this would require to set the task's "inactive
2824 		 * timer" when the task is not inactive.
2825 		 */
2826 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2827 		__dl_add(dl_b, new_bw, cpus);
2828 		dl_change_utilization(p, new_bw);
2829 		err = 0;
2830 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2831 		/*
2832 		 * Do not decrease the total deadline utilization here,
2833 		 * switched_from_dl() will take care to do it at the correct
2834 		 * (0-lag) time.
2835 		 */
2836 		err = 0;
2837 	}
2838 	raw_spin_unlock(&dl_b->lock);
2839 
2840 	return err;
2841 }
2842 
2843 /*
2844  * This function initializes the sched_dl_entity of a newly becoming
2845  * SCHED_DEADLINE task.
2846  *
2847  * Only the static values are considered here, the actual runtime and the
2848  * absolute deadline will be properly calculated when the task is enqueued
2849  * for the first time with its new policy.
2850  */
2851 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2852 {
2853 	struct sched_dl_entity *dl_se = &p->dl;
2854 
2855 	dl_se->dl_runtime = attr->sched_runtime;
2856 	dl_se->dl_deadline = attr->sched_deadline;
2857 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2858 	dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
2859 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2860 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2861 }
2862 
2863 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2864 {
2865 	struct sched_dl_entity *dl_se = &p->dl;
2866 
2867 	attr->sched_priority = p->rt_priority;
2868 	attr->sched_runtime = dl_se->dl_runtime;
2869 	attr->sched_deadline = dl_se->dl_deadline;
2870 	attr->sched_period = dl_se->dl_period;
2871 	attr->sched_flags &= ~SCHED_DL_FLAGS;
2872 	attr->sched_flags |= dl_se->flags;
2873 }
2874 
2875 /*
2876  * Default limits for DL period; on the top end we guard against small util
2877  * tasks still getting ridiculously long effective runtimes, on the bottom end we
2878  * guard against timer DoS.
2879  */
2880 unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
2881 unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
2882 
2883 /*
2884  * This function validates the new parameters of a -deadline task.
2885  * We ask for the deadline not being zero, and greater or equal
2886  * than the runtime, as well as the period of being zero or
2887  * greater than deadline. Furthermore, we have to be sure that
2888  * user parameters are above the internal resolution of 1us (we
2889  * check sched_runtime only since it is always the smaller one) and
2890  * below 2^63 ns (we have to check both sched_deadline and
2891  * sched_period, as the latter can be zero).
2892  */
2893 bool __checkparam_dl(const struct sched_attr *attr)
2894 {
2895 	u64 period, max, min;
2896 
2897 	/* special dl tasks don't actually use any parameter */
2898 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2899 		return true;
2900 
2901 	/* deadline != 0 */
2902 	if (attr->sched_deadline == 0)
2903 		return false;
2904 
2905 	/*
2906 	 * Since we truncate DL_SCALE bits, make sure we're at least
2907 	 * that big.
2908 	 */
2909 	if (attr->sched_runtime < (1ULL << DL_SCALE))
2910 		return false;
2911 
2912 	/*
2913 	 * Since we use the MSB for wrap-around and sign issues, make
2914 	 * sure it's not set (mind that period can be equal to zero).
2915 	 */
2916 	if (attr->sched_deadline & (1ULL << 63) ||
2917 	    attr->sched_period & (1ULL << 63))
2918 		return false;
2919 
2920 	period = attr->sched_period;
2921 	if (!period)
2922 		period = attr->sched_deadline;
2923 
2924 	/* runtime <= deadline <= period (if period != 0) */
2925 	if (period < attr->sched_deadline ||
2926 	    attr->sched_deadline < attr->sched_runtime)
2927 		return false;
2928 
2929 	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
2930 	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
2931 
2932 	if (period < min || period > max)
2933 		return false;
2934 
2935 	return true;
2936 }
2937 
2938 /*
2939  * This function clears the sched_dl_entity static params.
2940  */
2941 void __dl_clear_params(struct task_struct *p)
2942 {
2943 	struct sched_dl_entity *dl_se = &p->dl;
2944 
2945 	dl_se->dl_runtime		= 0;
2946 	dl_se->dl_deadline		= 0;
2947 	dl_se->dl_period		= 0;
2948 	dl_se->flags			= 0;
2949 	dl_se->dl_bw			= 0;
2950 	dl_se->dl_density		= 0;
2951 
2952 	dl_se->dl_throttled		= 0;
2953 	dl_se->dl_yielded		= 0;
2954 	dl_se->dl_non_contending	= 0;
2955 	dl_se->dl_overrun		= 0;
2956 
2957 #ifdef CONFIG_RT_MUTEXES
2958 	dl_se->pi_se			= dl_se;
2959 #endif
2960 }
2961 
2962 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2963 {
2964 	struct sched_dl_entity *dl_se = &p->dl;
2965 
2966 	if (dl_se->dl_runtime != attr->sched_runtime ||
2967 	    dl_se->dl_deadline != attr->sched_deadline ||
2968 	    dl_se->dl_period != attr->sched_period ||
2969 	    dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
2970 		return true;
2971 
2972 	return false;
2973 }
2974 
2975 #ifdef CONFIG_SMP
2976 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2977 				 const struct cpumask *trial)
2978 {
2979 	int ret = 1, trial_cpus;
2980 	struct dl_bw *cur_dl_b;
2981 	unsigned long flags;
2982 
2983 	rcu_read_lock_sched();
2984 	cur_dl_b = dl_bw_of(cpumask_any(cur));
2985 	trial_cpus = cpumask_weight(trial);
2986 
2987 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2988 	if (cur_dl_b->bw != -1 &&
2989 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2990 		ret = 0;
2991 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2992 	rcu_read_unlock_sched();
2993 
2994 	return ret;
2995 }
2996 
2997 int dl_cpu_busy(int cpu, struct task_struct *p)
2998 {
2999 	unsigned long flags, cap;
3000 	struct dl_bw *dl_b;
3001 	bool overflow;
3002 
3003 	rcu_read_lock_sched();
3004 	dl_b = dl_bw_of(cpu);
3005 	raw_spin_lock_irqsave(&dl_b->lock, flags);
3006 	cap = dl_bw_capacity(cpu);
3007 	overflow = __dl_overflow(dl_b, cap, 0, p ? p->dl.dl_bw : 0);
3008 
3009 	if (!overflow && p) {
3010 		/*
3011 		 * We reserve space for this task in the destination
3012 		 * root_domain, as we can't fail after this point.
3013 		 * We will free resources in the source root_domain
3014 		 * later on (see set_cpus_allowed_dl()).
3015 		 */
3016 		__dl_add(dl_b, p->dl.dl_bw, dl_bw_cpus(cpu));
3017 	}
3018 
3019 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3020 	rcu_read_unlock_sched();
3021 
3022 	return overflow ? -EBUSY : 0;
3023 }
3024 #endif
3025 
3026 #ifdef CONFIG_SCHED_DEBUG
3027 void print_dl_stats(struct seq_file *m, int cpu)
3028 {
3029 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3030 }
3031 #endif /* CONFIG_SCHED_DEBUG */
3032