1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Deadline Scheduling Class (SCHED_DEADLINE) 4 * 5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 6 * 7 * Tasks that periodically executes their instances for less than their 8 * runtime won't miss any of their deadlines. 9 * Tasks that are not periodic or sporadic or that tries to execute more 10 * than their reserved bandwidth will be slowed down (and may potentially 11 * miss some of their deadlines), and won't affect any other task. 12 * 13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 14 * Juri Lelli <juri.lelli@gmail.com>, 15 * Michael Trimarchi <michael@amarulasolutions.com>, 16 * Fabio Checconi <fchecconi@gmail.com> 17 */ 18 #include "sched.h" 19 #include "pelt.h" 20 21 struct dl_bandwidth def_dl_bandwidth; 22 23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 24 { 25 return container_of(dl_se, struct task_struct, dl); 26 } 27 28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 29 { 30 return container_of(dl_rq, struct rq, dl); 31 } 32 33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 34 { 35 struct task_struct *p = dl_task_of(dl_se); 36 struct rq *rq = task_rq(p); 37 38 return &rq->dl; 39 } 40 41 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 42 { 43 return !RB_EMPTY_NODE(&dl_se->rb_node); 44 } 45 46 #ifdef CONFIG_SMP 47 static inline struct dl_bw *dl_bw_of(int i) 48 { 49 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 50 "sched RCU must be held"); 51 return &cpu_rq(i)->rd->dl_bw; 52 } 53 54 static inline int dl_bw_cpus(int i) 55 { 56 struct root_domain *rd = cpu_rq(i)->rd; 57 int cpus = 0; 58 59 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 60 "sched RCU must be held"); 61 for_each_cpu_and(i, rd->span, cpu_active_mask) 62 cpus++; 63 64 return cpus; 65 } 66 #else 67 static inline struct dl_bw *dl_bw_of(int i) 68 { 69 return &cpu_rq(i)->dl.dl_bw; 70 } 71 72 static inline int dl_bw_cpus(int i) 73 { 74 return 1; 75 } 76 #endif 77 78 static inline 79 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 80 { 81 u64 old = dl_rq->running_bw; 82 83 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 84 dl_rq->running_bw += dl_bw; 85 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */ 86 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 87 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 88 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 89 } 90 91 static inline 92 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 93 { 94 u64 old = dl_rq->running_bw; 95 96 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 97 dl_rq->running_bw -= dl_bw; 98 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */ 99 if (dl_rq->running_bw > old) 100 dl_rq->running_bw = 0; 101 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 102 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 103 } 104 105 static inline 106 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 107 { 108 u64 old = dl_rq->this_bw; 109 110 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 111 dl_rq->this_bw += dl_bw; 112 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */ 113 } 114 115 static inline 116 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 117 { 118 u64 old = dl_rq->this_bw; 119 120 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 121 dl_rq->this_bw -= dl_bw; 122 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */ 123 if (dl_rq->this_bw > old) 124 dl_rq->this_bw = 0; 125 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 126 } 127 128 static inline 129 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 130 { 131 if (!dl_entity_is_special(dl_se)) 132 __add_rq_bw(dl_se->dl_bw, dl_rq); 133 } 134 135 static inline 136 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 137 { 138 if (!dl_entity_is_special(dl_se)) 139 __sub_rq_bw(dl_se->dl_bw, dl_rq); 140 } 141 142 static inline 143 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 144 { 145 if (!dl_entity_is_special(dl_se)) 146 __add_running_bw(dl_se->dl_bw, dl_rq); 147 } 148 149 static inline 150 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 151 { 152 if (!dl_entity_is_special(dl_se)) 153 __sub_running_bw(dl_se->dl_bw, dl_rq); 154 } 155 156 void dl_change_utilization(struct task_struct *p, u64 new_bw) 157 { 158 struct rq *rq; 159 160 BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV); 161 162 if (task_on_rq_queued(p)) 163 return; 164 165 rq = task_rq(p); 166 if (p->dl.dl_non_contending) { 167 sub_running_bw(&p->dl, &rq->dl); 168 p->dl.dl_non_contending = 0; 169 /* 170 * If the timer handler is currently running and the 171 * timer cannot be cancelled, inactive_task_timer() 172 * will see that dl_not_contending is not set, and 173 * will not touch the rq's active utilization, 174 * so we are still safe. 175 */ 176 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 177 put_task_struct(p); 178 } 179 __sub_rq_bw(p->dl.dl_bw, &rq->dl); 180 __add_rq_bw(new_bw, &rq->dl); 181 } 182 183 /* 184 * The utilization of a task cannot be immediately removed from 185 * the rq active utilization (running_bw) when the task blocks. 186 * Instead, we have to wait for the so called "0-lag time". 187 * 188 * If a task blocks before the "0-lag time", a timer (the inactive 189 * timer) is armed, and running_bw is decreased when the timer 190 * fires. 191 * 192 * If the task wakes up again before the inactive timer fires, 193 * the timer is cancelled, whereas if the task wakes up after the 194 * inactive timer fired (and running_bw has been decreased) the 195 * task's utilization has to be added to running_bw again. 196 * A flag in the deadline scheduling entity (dl_non_contending) 197 * is used to avoid race conditions between the inactive timer handler 198 * and task wakeups. 199 * 200 * The following diagram shows how running_bw is updated. A task is 201 * "ACTIVE" when its utilization contributes to running_bw; an 202 * "ACTIVE contending" task is in the TASK_RUNNING state, while an 203 * "ACTIVE non contending" task is a blocked task for which the "0-lag time" 204 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag" 205 * time already passed, which does not contribute to running_bw anymore. 206 * +------------------+ 207 * wakeup | ACTIVE | 208 * +------------------>+ contending | 209 * | add_running_bw | | 210 * | +----+------+------+ 211 * | | ^ 212 * | dequeue | | 213 * +--------+-------+ | | 214 * | | t >= 0-lag | | wakeup 215 * | INACTIVE |<---------------+ | 216 * | | sub_running_bw | | 217 * +--------+-------+ | | 218 * ^ | | 219 * | t < 0-lag | | 220 * | | | 221 * | V | 222 * | +----+------+------+ 223 * | sub_running_bw | ACTIVE | 224 * +-------------------+ | 225 * inactive timer | non contending | 226 * fired +------------------+ 227 * 228 * The task_non_contending() function is invoked when a task 229 * blocks, and checks if the 0-lag time already passed or 230 * not (in the first case, it directly updates running_bw; 231 * in the second case, it arms the inactive timer). 232 * 233 * The task_contending() function is invoked when a task wakes 234 * up, and checks if the task is still in the "ACTIVE non contending" 235 * state or not (in the second case, it updates running_bw). 236 */ 237 static void task_non_contending(struct task_struct *p) 238 { 239 struct sched_dl_entity *dl_se = &p->dl; 240 struct hrtimer *timer = &dl_se->inactive_timer; 241 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 242 struct rq *rq = rq_of_dl_rq(dl_rq); 243 s64 zerolag_time; 244 245 /* 246 * If this is a non-deadline task that has been boosted, 247 * do nothing 248 */ 249 if (dl_se->dl_runtime == 0) 250 return; 251 252 if (dl_entity_is_special(dl_se)) 253 return; 254 255 WARN_ON(hrtimer_active(&dl_se->inactive_timer)); 256 WARN_ON(dl_se->dl_non_contending); 257 258 zerolag_time = dl_se->deadline - 259 div64_long((dl_se->runtime * dl_se->dl_period), 260 dl_se->dl_runtime); 261 262 /* 263 * Using relative times instead of the absolute "0-lag time" 264 * allows to simplify the code 265 */ 266 zerolag_time -= rq_clock(rq); 267 268 /* 269 * If the "0-lag time" already passed, decrease the active 270 * utilization now, instead of starting a timer 271 */ 272 if (zerolag_time < 0) { 273 if (dl_task(p)) 274 sub_running_bw(dl_se, dl_rq); 275 if (!dl_task(p) || p->state == TASK_DEAD) { 276 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 277 278 if (p->state == TASK_DEAD) 279 sub_rq_bw(&p->dl, &rq->dl); 280 raw_spin_lock(&dl_b->lock); 281 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 282 __dl_clear_params(p); 283 raw_spin_unlock(&dl_b->lock); 284 } 285 286 return; 287 } 288 289 dl_se->dl_non_contending = 1; 290 get_task_struct(p); 291 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL); 292 } 293 294 static void task_contending(struct sched_dl_entity *dl_se, int flags) 295 { 296 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 297 298 /* 299 * If this is a non-deadline task that has been boosted, 300 * do nothing 301 */ 302 if (dl_se->dl_runtime == 0) 303 return; 304 305 if (flags & ENQUEUE_MIGRATED) 306 add_rq_bw(dl_se, dl_rq); 307 308 if (dl_se->dl_non_contending) { 309 dl_se->dl_non_contending = 0; 310 /* 311 * If the timer handler is currently running and the 312 * timer cannot be cancelled, inactive_task_timer() 313 * will see that dl_not_contending is not set, and 314 * will not touch the rq's active utilization, 315 * so we are still safe. 316 */ 317 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) 318 put_task_struct(dl_task_of(dl_se)); 319 } else { 320 /* 321 * Since "dl_non_contending" is not set, the 322 * task's utilization has already been removed from 323 * active utilization (either when the task blocked, 324 * when the "inactive timer" fired). 325 * So, add it back. 326 */ 327 add_running_bw(dl_se, dl_rq); 328 } 329 } 330 331 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) 332 { 333 struct sched_dl_entity *dl_se = &p->dl; 334 335 return dl_rq->root.rb_leftmost == &dl_se->rb_node; 336 } 337 338 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) 339 { 340 raw_spin_lock_init(&dl_b->dl_runtime_lock); 341 dl_b->dl_period = period; 342 dl_b->dl_runtime = runtime; 343 } 344 345 void init_dl_bw(struct dl_bw *dl_b) 346 { 347 raw_spin_lock_init(&dl_b->lock); 348 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock); 349 if (global_rt_runtime() == RUNTIME_INF) 350 dl_b->bw = -1; 351 else 352 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 353 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock); 354 dl_b->total_bw = 0; 355 } 356 357 void init_dl_rq(struct dl_rq *dl_rq) 358 { 359 dl_rq->root = RB_ROOT_CACHED; 360 361 #ifdef CONFIG_SMP 362 /* zero means no -deadline tasks */ 363 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 364 365 dl_rq->dl_nr_migratory = 0; 366 dl_rq->overloaded = 0; 367 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED; 368 #else 369 init_dl_bw(&dl_rq->dl_bw); 370 #endif 371 372 dl_rq->running_bw = 0; 373 dl_rq->this_bw = 0; 374 init_dl_rq_bw_ratio(dl_rq); 375 } 376 377 #ifdef CONFIG_SMP 378 379 static inline int dl_overloaded(struct rq *rq) 380 { 381 return atomic_read(&rq->rd->dlo_count); 382 } 383 384 static inline void dl_set_overload(struct rq *rq) 385 { 386 if (!rq->online) 387 return; 388 389 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 390 /* 391 * Must be visible before the overload count is 392 * set (as in sched_rt.c). 393 * 394 * Matched by the barrier in pull_dl_task(). 395 */ 396 smp_wmb(); 397 atomic_inc(&rq->rd->dlo_count); 398 } 399 400 static inline void dl_clear_overload(struct rq *rq) 401 { 402 if (!rq->online) 403 return; 404 405 atomic_dec(&rq->rd->dlo_count); 406 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 407 } 408 409 static void update_dl_migration(struct dl_rq *dl_rq) 410 { 411 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { 412 if (!dl_rq->overloaded) { 413 dl_set_overload(rq_of_dl_rq(dl_rq)); 414 dl_rq->overloaded = 1; 415 } 416 } else if (dl_rq->overloaded) { 417 dl_clear_overload(rq_of_dl_rq(dl_rq)); 418 dl_rq->overloaded = 0; 419 } 420 } 421 422 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 423 { 424 struct task_struct *p = dl_task_of(dl_se); 425 426 if (p->nr_cpus_allowed > 1) 427 dl_rq->dl_nr_migratory++; 428 429 update_dl_migration(dl_rq); 430 } 431 432 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 433 { 434 struct task_struct *p = dl_task_of(dl_se); 435 436 if (p->nr_cpus_allowed > 1) 437 dl_rq->dl_nr_migratory--; 438 439 update_dl_migration(dl_rq); 440 } 441 442 /* 443 * The list of pushable -deadline task is not a plist, like in 444 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 445 */ 446 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 447 { 448 struct dl_rq *dl_rq = &rq->dl; 449 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node; 450 struct rb_node *parent = NULL; 451 struct task_struct *entry; 452 bool leftmost = true; 453 454 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 455 456 while (*link) { 457 parent = *link; 458 entry = rb_entry(parent, struct task_struct, 459 pushable_dl_tasks); 460 if (dl_entity_preempt(&p->dl, &entry->dl)) 461 link = &parent->rb_left; 462 else { 463 link = &parent->rb_right; 464 leftmost = false; 465 } 466 } 467 468 if (leftmost) 469 dl_rq->earliest_dl.next = p->dl.deadline; 470 471 rb_link_node(&p->pushable_dl_tasks, parent, link); 472 rb_insert_color_cached(&p->pushable_dl_tasks, 473 &dl_rq->pushable_dl_tasks_root, leftmost); 474 } 475 476 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 477 { 478 struct dl_rq *dl_rq = &rq->dl; 479 480 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 481 return; 482 483 if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) { 484 struct rb_node *next_node; 485 486 next_node = rb_next(&p->pushable_dl_tasks); 487 if (next_node) { 488 dl_rq->earliest_dl.next = rb_entry(next_node, 489 struct task_struct, pushable_dl_tasks)->dl.deadline; 490 } 491 } 492 493 rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 494 RB_CLEAR_NODE(&p->pushable_dl_tasks); 495 } 496 497 static inline int has_pushable_dl_tasks(struct rq *rq) 498 { 499 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root); 500 } 501 502 static int push_dl_task(struct rq *rq); 503 504 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 505 { 506 return dl_task(prev); 507 } 508 509 static DEFINE_PER_CPU(struct callback_head, dl_push_head); 510 static DEFINE_PER_CPU(struct callback_head, dl_pull_head); 511 512 static void push_dl_tasks(struct rq *); 513 static void pull_dl_task(struct rq *); 514 515 static inline void deadline_queue_push_tasks(struct rq *rq) 516 { 517 if (!has_pushable_dl_tasks(rq)) 518 return; 519 520 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); 521 } 522 523 static inline void deadline_queue_pull_task(struct rq *rq) 524 { 525 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); 526 } 527 528 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); 529 530 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) 531 { 532 struct rq *later_rq = NULL; 533 534 later_rq = find_lock_later_rq(p, rq); 535 if (!later_rq) { 536 int cpu; 537 538 /* 539 * If we cannot preempt any rq, fall back to pick any 540 * online CPU: 541 */ 542 cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed); 543 if (cpu >= nr_cpu_ids) { 544 /* 545 * Failed to find any suitable CPU. 546 * The task will never come back! 547 */ 548 BUG_ON(dl_bandwidth_enabled()); 549 550 /* 551 * If admission control is disabled we 552 * try a little harder to let the task 553 * run. 554 */ 555 cpu = cpumask_any(cpu_active_mask); 556 } 557 later_rq = cpu_rq(cpu); 558 double_lock_balance(rq, later_rq); 559 } 560 561 set_task_cpu(p, later_rq->cpu); 562 double_unlock_balance(later_rq, rq); 563 564 return later_rq; 565 } 566 567 #else 568 569 static inline 570 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 571 { 572 } 573 574 static inline 575 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 576 { 577 } 578 579 static inline 580 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 581 { 582 } 583 584 static inline 585 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 586 { 587 } 588 589 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 590 { 591 return false; 592 } 593 594 static inline void pull_dl_task(struct rq *rq) 595 { 596 } 597 598 static inline void deadline_queue_push_tasks(struct rq *rq) 599 { 600 } 601 602 static inline void deadline_queue_pull_task(struct rq *rq) 603 { 604 } 605 #endif /* CONFIG_SMP */ 606 607 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 608 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); 609 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags); 610 611 /* 612 * We are being explicitly informed that a new instance is starting, 613 * and this means that: 614 * - the absolute deadline of the entity has to be placed at 615 * current time + relative deadline; 616 * - the runtime of the entity has to be set to the maximum value. 617 * 618 * The capability of specifying such event is useful whenever a -deadline 619 * entity wants to (try to!) synchronize its behaviour with the scheduler's 620 * one, and to (try to!) reconcile itself with its own scheduling 621 * parameters. 622 */ 623 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) 624 { 625 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 626 struct rq *rq = rq_of_dl_rq(dl_rq); 627 628 WARN_ON(dl_se->dl_boosted); 629 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); 630 631 /* 632 * We are racing with the deadline timer. So, do nothing because 633 * the deadline timer handler will take care of properly recharging 634 * the runtime and postponing the deadline 635 */ 636 if (dl_se->dl_throttled) 637 return; 638 639 /* 640 * We use the regular wall clock time to set deadlines in the 641 * future; in fact, we must consider execution overheads (time 642 * spent on hardirq context, etc.). 643 */ 644 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline; 645 dl_se->runtime = dl_se->dl_runtime; 646 } 647 648 /* 649 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 650 * possibility of a entity lasting more than what it declared, and thus 651 * exhausting its runtime. 652 * 653 * Here we are interested in making runtime overrun possible, but we do 654 * not want a entity which is misbehaving to affect the scheduling of all 655 * other entities. 656 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 657 * is used, in order to confine each entity within its own bandwidth. 658 * 659 * This function deals exactly with that, and ensures that when the runtime 660 * of a entity is replenished, its deadline is also postponed. That ensures 661 * the overrunning entity can't interfere with other entity in the system and 662 * can't make them miss their deadlines. Reasons why this kind of overruns 663 * could happen are, typically, a entity voluntarily trying to overcome its 664 * runtime, or it just underestimated it during sched_setattr(). 665 */ 666 static void replenish_dl_entity(struct sched_dl_entity *dl_se, 667 struct sched_dl_entity *pi_se) 668 { 669 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 670 struct rq *rq = rq_of_dl_rq(dl_rq); 671 672 BUG_ON(pi_se->dl_runtime <= 0); 673 674 /* 675 * This could be the case for a !-dl task that is boosted. 676 * Just go with full inherited parameters. 677 */ 678 if (dl_se->dl_deadline == 0) { 679 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 680 dl_se->runtime = pi_se->dl_runtime; 681 } 682 683 if (dl_se->dl_yielded && dl_se->runtime > 0) 684 dl_se->runtime = 0; 685 686 /* 687 * We keep moving the deadline away until we get some 688 * available runtime for the entity. This ensures correct 689 * handling of situations where the runtime overrun is 690 * arbitrary large. 691 */ 692 while (dl_se->runtime <= 0) { 693 dl_se->deadline += pi_se->dl_period; 694 dl_se->runtime += pi_se->dl_runtime; 695 } 696 697 /* 698 * At this point, the deadline really should be "in 699 * the future" with respect to rq->clock. If it's 700 * not, we are, for some reason, lagging too much! 701 * Anyway, after having warn userspace abut that, 702 * we still try to keep the things running by 703 * resetting the deadline and the budget of the 704 * entity. 705 */ 706 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 707 printk_deferred_once("sched: DL replenish lagged too much\n"); 708 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 709 dl_se->runtime = pi_se->dl_runtime; 710 } 711 712 if (dl_se->dl_yielded) 713 dl_se->dl_yielded = 0; 714 if (dl_se->dl_throttled) 715 dl_se->dl_throttled = 0; 716 } 717 718 /* 719 * Here we check if --at time t-- an entity (which is probably being 720 * [re]activated or, in general, enqueued) can use its remaining runtime 721 * and its current deadline _without_ exceeding the bandwidth it is 722 * assigned (function returns true if it can't). We are in fact applying 723 * one of the CBS rules: when a task wakes up, if the residual runtime 724 * over residual deadline fits within the allocated bandwidth, then we 725 * can keep the current (absolute) deadline and residual budget without 726 * disrupting the schedulability of the system. Otherwise, we should 727 * refill the runtime and set the deadline a period in the future, 728 * because keeping the current (absolute) deadline of the task would 729 * result in breaking guarantees promised to other tasks (refer to 730 * Documentation/scheduler/sched-deadline.txt for more information). 731 * 732 * This function returns true if: 733 * 734 * runtime / (deadline - t) > dl_runtime / dl_deadline , 735 * 736 * IOW we can't recycle current parameters. 737 * 738 * Notice that the bandwidth check is done against the deadline. For 739 * task with deadline equal to period this is the same of using 740 * dl_period instead of dl_deadline in the equation above. 741 */ 742 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, 743 struct sched_dl_entity *pi_se, u64 t) 744 { 745 u64 left, right; 746 747 /* 748 * left and right are the two sides of the equation above, 749 * after a bit of shuffling to use multiplications instead 750 * of divisions. 751 * 752 * Note that none of the time values involved in the two 753 * multiplications are absolute: dl_deadline and dl_runtime 754 * are the relative deadline and the maximum runtime of each 755 * instance, runtime is the runtime left for the last instance 756 * and (deadline - t), since t is rq->clock, is the time left 757 * to the (absolute) deadline. Even if overflowing the u64 type 758 * is very unlikely to occur in both cases, here we scale down 759 * as we want to avoid that risk at all. Scaling down by 10 760 * means that we reduce granularity to 1us. We are fine with it, 761 * since this is only a true/false check and, anyway, thinking 762 * of anything below microseconds resolution is actually fiction 763 * (but still we want to give the user that illusion >;). 764 */ 765 left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 766 right = ((dl_se->deadline - t) >> DL_SCALE) * 767 (pi_se->dl_runtime >> DL_SCALE); 768 769 return dl_time_before(right, left); 770 } 771 772 /* 773 * Revised wakeup rule [1]: For self-suspending tasks, rather then 774 * re-initializing task's runtime and deadline, the revised wakeup 775 * rule adjusts the task's runtime to avoid the task to overrun its 776 * density. 777 * 778 * Reasoning: a task may overrun the density if: 779 * runtime / (deadline - t) > dl_runtime / dl_deadline 780 * 781 * Therefore, runtime can be adjusted to: 782 * runtime = (dl_runtime / dl_deadline) * (deadline - t) 783 * 784 * In such way that runtime will be equal to the maximum density 785 * the task can use without breaking any rule. 786 * 787 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant 788 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24. 789 */ 790 static void 791 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq) 792 { 793 u64 laxity = dl_se->deadline - rq_clock(rq); 794 795 /* 796 * If the task has deadline < period, and the deadline is in the past, 797 * it should already be throttled before this check. 798 * 799 * See update_dl_entity() comments for further details. 800 */ 801 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq))); 802 803 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT; 804 } 805 806 /* 807 * Regarding the deadline, a task with implicit deadline has a relative 808 * deadline == relative period. A task with constrained deadline has a 809 * relative deadline <= relative period. 810 * 811 * We support constrained deadline tasks. However, there are some restrictions 812 * applied only for tasks which do not have an implicit deadline. See 813 * update_dl_entity() to know more about such restrictions. 814 * 815 * The dl_is_implicit() returns true if the task has an implicit deadline. 816 */ 817 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se) 818 { 819 return dl_se->dl_deadline == dl_se->dl_period; 820 } 821 822 /* 823 * When a deadline entity is placed in the runqueue, its runtime and deadline 824 * might need to be updated. This is done by a CBS wake up rule. There are two 825 * different rules: 1) the original CBS; and 2) the Revisited CBS. 826 * 827 * When the task is starting a new period, the Original CBS is used. In this 828 * case, the runtime is replenished and a new absolute deadline is set. 829 * 830 * When a task is queued before the begin of the next period, using the 831 * remaining runtime and deadline could make the entity to overflow, see 832 * dl_entity_overflow() to find more about runtime overflow. When such case 833 * is detected, the runtime and deadline need to be updated. 834 * 835 * If the task has an implicit deadline, i.e., deadline == period, the Original 836 * CBS is applied. the runtime is replenished and a new absolute deadline is 837 * set, as in the previous cases. 838 * 839 * However, the Original CBS does not work properly for tasks with 840 * deadline < period, which are said to have a constrained deadline. By 841 * applying the Original CBS, a constrained deadline task would be able to run 842 * runtime/deadline in a period. With deadline < period, the task would 843 * overrun the runtime/period allowed bandwidth, breaking the admission test. 844 * 845 * In order to prevent this misbehave, the Revisited CBS is used for 846 * constrained deadline tasks when a runtime overflow is detected. In the 847 * Revisited CBS, rather than replenishing & setting a new absolute deadline, 848 * the remaining runtime of the task is reduced to avoid runtime overflow. 849 * Please refer to the comments update_dl_revised_wakeup() function to find 850 * more about the Revised CBS rule. 851 */ 852 static void update_dl_entity(struct sched_dl_entity *dl_se, 853 struct sched_dl_entity *pi_se) 854 { 855 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 856 struct rq *rq = rq_of_dl_rq(dl_rq); 857 858 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 859 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) { 860 861 if (unlikely(!dl_is_implicit(dl_se) && 862 !dl_time_before(dl_se->deadline, rq_clock(rq)) && 863 !dl_se->dl_boosted)){ 864 update_dl_revised_wakeup(dl_se, rq); 865 return; 866 } 867 868 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 869 dl_se->runtime = pi_se->dl_runtime; 870 } 871 } 872 873 static inline u64 dl_next_period(struct sched_dl_entity *dl_se) 874 { 875 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period; 876 } 877 878 /* 879 * If the entity depleted all its runtime, and if we want it to sleep 880 * while waiting for some new execution time to become available, we 881 * set the bandwidth replenishment timer to the replenishment instant 882 * and try to activate it. 883 * 884 * Notice that it is important for the caller to know if the timer 885 * actually started or not (i.e., the replenishment instant is in 886 * the future or in the past). 887 */ 888 static int start_dl_timer(struct task_struct *p) 889 { 890 struct sched_dl_entity *dl_se = &p->dl; 891 struct hrtimer *timer = &dl_se->dl_timer; 892 struct rq *rq = task_rq(p); 893 ktime_t now, act; 894 s64 delta; 895 896 lockdep_assert_held(&rq->lock); 897 898 /* 899 * We want the timer to fire at the deadline, but considering 900 * that it is actually coming from rq->clock and not from 901 * hrtimer's time base reading. 902 */ 903 act = ns_to_ktime(dl_next_period(dl_se)); 904 now = hrtimer_cb_get_time(timer); 905 delta = ktime_to_ns(now) - rq_clock(rq); 906 act = ktime_add_ns(act, delta); 907 908 /* 909 * If the expiry time already passed, e.g., because the value 910 * chosen as the deadline is too small, don't even try to 911 * start the timer in the past! 912 */ 913 if (ktime_us_delta(act, now) < 0) 914 return 0; 915 916 /* 917 * !enqueued will guarantee another callback; even if one is already in 918 * progress. This ensures a balanced {get,put}_task_struct(). 919 * 920 * The race against __run_timer() clearing the enqueued state is 921 * harmless because we're holding task_rq()->lock, therefore the timer 922 * expiring after we've done the check will wait on its task_rq_lock() 923 * and observe our state. 924 */ 925 if (!hrtimer_is_queued(timer)) { 926 get_task_struct(p); 927 hrtimer_start(timer, act, HRTIMER_MODE_ABS); 928 } 929 930 return 1; 931 } 932 933 /* 934 * This is the bandwidth enforcement timer callback. If here, we know 935 * a task is not on its dl_rq, since the fact that the timer was running 936 * means the task is throttled and needs a runtime replenishment. 937 * 938 * However, what we actually do depends on the fact the task is active, 939 * (it is on its rq) or has been removed from there by a call to 940 * dequeue_task_dl(). In the former case we must issue the runtime 941 * replenishment and add the task back to the dl_rq; in the latter, we just 942 * do nothing but clearing dl_throttled, so that runtime and deadline 943 * updating (and the queueing back to dl_rq) will be done by the 944 * next call to enqueue_task_dl(). 945 */ 946 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 947 { 948 struct sched_dl_entity *dl_se = container_of(timer, 949 struct sched_dl_entity, 950 dl_timer); 951 struct task_struct *p = dl_task_of(dl_se); 952 struct rq_flags rf; 953 struct rq *rq; 954 955 rq = task_rq_lock(p, &rf); 956 957 /* 958 * The task might have changed its scheduling policy to something 959 * different than SCHED_DEADLINE (through switched_from_dl()). 960 */ 961 if (!dl_task(p)) 962 goto unlock; 963 964 /* 965 * The task might have been boosted by someone else and might be in the 966 * boosting/deboosting path, its not throttled. 967 */ 968 if (dl_se->dl_boosted) 969 goto unlock; 970 971 /* 972 * Spurious timer due to start_dl_timer() race; or we already received 973 * a replenishment from rt_mutex_setprio(). 974 */ 975 if (!dl_se->dl_throttled) 976 goto unlock; 977 978 sched_clock_tick(); 979 update_rq_clock(rq); 980 981 /* 982 * If the throttle happened during sched-out; like: 983 * 984 * schedule() 985 * deactivate_task() 986 * dequeue_task_dl() 987 * update_curr_dl() 988 * start_dl_timer() 989 * __dequeue_task_dl() 990 * prev->on_rq = 0; 991 * 992 * We can be both throttled and !queued. Replenish the counter 993 * but do not enqueue -- wait for our wakeup to do that. 994 */ 995 if (!task_on_rq_queued(p)) { 996 replenish_dl_entity(dl_se, dl_se); 997 goto unlock; 998 } 999 1000 #ifdef CONFIG_SMP 1001 if (unlikely(!rq->online)) { 1002 /* 1003 * If the runqueue is no longer available, migrate the 1004 * task elsewhere. This necessarily changes rq. 1005 */ 1006 lockdep_unpin_lock(&rq->lock, rf.cookie); 1007 rq = dl_task_offline_migration(rq, p); 1008 rf.cookie = lockdep_pin_lock(&rq->lock); 1009 update_rq_clock(rq); 1010 1011 /* 1012 * Now that the task has been migrated to the new RQ and we 1013 * have that locked, proceed as normal and enqueue the task 1014 * there. 1015 */ 1016 } 1017 #endif 1018 1019 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 1020 if (dl_task(rq->curr)) 1021 check_preempt_curr_dl(rq, p, 0); 1022 else 1023 resched_curr(rq); 1024 1025 #ifdef CONFIG_SMP 1026 /* 1027 * Queueing this task back might have overloaded rq, check if we need 1028 * to kick someone away. 1029 */ 1030 if (has_pushable_dl_tasks(rq)) { 1031 /* 1032 * Nothing relies on rq->lock after this, so its safe to drop 1033 * rq->lock. 1034 */ 1035 rq_unpin_lock(rq, &rf); 1036 push_dl_task(rq); 1037 rq_repin_lock(rq, &rf); 1038 } 1039 #endif 1040 1041 unlock: 1042 task_rq_unlock(rq, p, &rf); 1043 1044 /* 1045 * This can free the task_struct, including this hrtimer, do not touch 1046 * anything related to that after this. 1047 */ 1048 put_task_struct(p); 1049 1050 return HRTIMER_NORESTART; 1051 } 1052 1053 void init_dl_task_timer(struct sched_dl_entity *dl_se) 1054 { 1055 struct hrtimer *timer = &dl_se->dl_timer; 1056 1057 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1058 timer->function = dl_task_timer; 1059 } 1060 1061 /* 1062 * During the activation, CBS checks if it can reuse the current task's 1063 * runtime and period. If the deadline of the task is in the past, CBS 1064 * cannot use the runtime, and so it replenishes the task. This rule 1065 * works fine for implicit deadline tasks (deadline == period), and the 1066 * CBS was designed for implicit deadline tasks. However, a task with 1067 * constrained deadline (deadine < period) might be awakened after the 1068 * deadline, but before the next period. In this case, replenishing the 1069 * task would allow it to run for runtime / deadline. As in this case 1070 * deadline < period, CBS enables a task to run for more than the 1071 * runtime / period. In a very loaded system, this can cause a domino 1072 * effect, making other tasks miss their deadlines. 1073 * 1074 * To avoid this problem, in the activation of a constrained deadline 1075 * task after the deadline but before the next period, throttle the 1076 * task and set the replenishing timer to the begin of the next period, 1077 * unless it is boosted. 1078 */ 1079 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) 1080 { 1081 struct task_struct *p = dl_task_of(dl_se); 1082 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se)); 1083 1084 if (dl_time_before(dl_se->deadline, rq_clock(rq)) && 1085 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) { 1086 if (unlikely(dl_se->dl_boosted || !start_dl_timer(p))) 1087 return; 1088 dl_se->dl_throttled = 1; 1089 if (dl_se->runtime > 0) 1090 dl_se->runtime = 0; 1091 } 1092 } 1093 1094 static 1095 int dl_runtime_exceeded(struct sched_dl_entity *dl_se) 1096 { 1097 return (dl_se->runtime <= 0); 1098 } 1099 1100 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 1101 1102 /* 1103 * This function implements the GRUB accounting rule: 1104 * according to the GRUB reclaiming algorithm, the runtime is 1105 * not decreased as "dq = -dt", but as 1106 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt", 1107 * where u is the utilization of the task, Umax is the maximum reclaimable 1108 * utilization, Uinact is the (per-runqueue) inactive utilization, computed 1109 * as the difference between the "total runqueue utilization" and the 1110 * runqueue active utilization, and Uextra is the (per runqueue) extra 1111 * reclaimable utilization. 1112 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations 1113 * multiplied by 2^BW_SHIFT, the result has to be shifted right by 1114 * BW_SHIFT. 1115 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT, 1116 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT. 1117 * Since delta is a 64 bit variable, to have an overflow its value 1118 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds. 1119 * So, overflow is not an issue here. 1120 */ 1121 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se) 1122 { 1123 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */ 1124 u64 u_act; 1125 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT; 1126 1127 /* 1128 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)}, 1129 * we compare u_inact + rq->dl.extra_bw with 1130 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because 1131 * u_inact + rq->dl.extra_bw can be larger than 1132 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative 1133 * leading to wrong results) 1134 */ 1135 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min) 1136 u_act = u_act_min; 1137 else 1138 u_act = BW_UNIT - u_inact - rq->dl.extra_bw; 1139 1140 return (delta * u_act) >> BW_SHIFT; 1141 } 1142 1143 /* 1144 * Update the current task's runtime statistics (provided it is still 1145 * a -deadline task and has not been removed from the dl_rq). 1146 */ 1147 static void update_curr_dl(struct rq *rq) 1148 { 1149 struct task_struct *curr = rq->curr; 1150 struct sched_dl_entity *dl_se = &curr->dl; 1151 u64 delta_exec, scaled_delta_exec; 1152 int cpu = cpu_of(rq); 1153 u64 now; 1154 1155 if (!dl_task(curr) || !on_dl_rq(dl_se)) 1156 return; 1157 1158 /* 1159 * Consumed budget is computed considering the time as 1160 * observed by schedulable tasks (excluding time spent 1161 * in hardirq context, etc.). Deadlines are instead 1162 * computed using hard walltime. This seems to be the more 1163 * natural solution, but the full ramifications of this 1164 * approach need further study. 1165 */ 1166 now = rq_clock_task(rq); 1167 delta_exec = now - curr->se.exec_start; 1168 if (unlikely((s64)delta_exec <= 0)) { 1169 if (unlikely(dl_se->dl_yielded)) 1170 goto throttle; 1171 return; 1172 } 1173 1174 schedstat_set(curr->se.statistics.exec_max, 1175 max(curr->se.statistics.exec_max, delta_exec)); 1176 1177 curr->se.sum_exec_runtime += delta_exec; 1178 account_group_exec_runtime(curr, delta_exec); 1179 1180 curr->se.exec_start = now; 1181 cgroup_account_cputime(curr, delta_exec); 1182 1183 if (dl_entity_is_special(dl_se)) 1184 return; 1185 1186 /* 1187 * For tasks that participate in GRUB, we implement GRUB-PA: the 1188 * spare reclaimed bandwidth is used to clock down frequency. 1189 * 1190 * For the others, we still need to scale reservation parameters 1191 * according to current frequency and CPU maximum capacity. 1192 */ 1193 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) { 1194 scaled_delta_exec = grub_reclaim(delta_exec, 1195 rq, 1196 &curr->dl); 1197 } else { 1198 unsigned long scale_freq = arch_scale_freq_capacity(cpu); 1199 unsigned long scale_cpu = arch_scale_cpu_capacity(NULL, cpu); 1200 1201 scaled_delta_exec = cap_scale(delta_exec, scale_freq); 1202 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu); 1203 } 1204 1205 dl_se->runtime -= scaled_delta_exec; 1206 1207 throttle: 1208 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) { 1209 dl_se->dl_throttled = 1; 1210 1211 /* If requested, inform the user about runtime overruns. */ 1212 if (dl_runtime_exceeded(dl_se) && 1213 (dl_se->flags & SCHED_FLAG_DL_OVERRUN)) 1214 dl_se->dl_overrun = 1; 1215 1216 __dequeue_task_dl(rq, curr, 0); 1217 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr))) 1218 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); 1219 1220 if (!is_leftmost(curr, &rq->dl)) 1221 resched_curr(rq); 1222 } 1223 1224 /* 1225 * Because -- for now -- we share the rt bandwidth, we need to 1226 * account our runtime there too, otherwise actual rt tasks 1227 * would be able to exceed the shared quota. 1228 * 1229 * Account to the root rt group for now. 1230 * 1231 * The solution we're working towards is having the RT groups scheduled 1232 * using deadline servers -- however there's a few nasties to figure 1233 * out before that can happen. 1234 */ 1235 if (rt_bandwidth_enabled()) { 1236 struct rt_rq *rt_rq = &rq->rt; 1237 1238 raw_spin_lock(&rt_rq->rt_runtime_lock); 1239 /* 1240 * We'll let actual RT tasks worry about the overflow here, we 1241 * have our own CBS to keep us inline; only account when RT 1242 * bandwidth is relevant. 1243 */ 1244 if (sched_rt_bandwidth_account(rt_rq)) 1245 rt_rq->rt_time += delta_exec; 1246 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1247 } 1248 } 1249 1250 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer) 1251 { 1252 struct sched_dl_entity *dl_se = container_of(timer, 1253 struct sched_dl_entity, 1254 inactive_timer); 1255 struct task_struct *p = dl_task_of(dl_se); 1256 struct rq_flags rf; 1257 struct rq *rq; 1258 1259 rq = task_rq_lock(p, &rf); 1260 1261 sched_clock_tick(); 1262 update_rq_clock(rq); 1263 1264 if (!dl_task(p) || p->state == TASK_DEAD) { 1265 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1266 1267 if (p->state == TASK_DEAD && dl_se->dl_non_contending) { 1268 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl)); 1269 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl)); 1270 dl_se->dl_non_contending = 0; 1271 } 1272 1273 raw_spin_lock(&dl_b->lock); 1274 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 1275 raw_spin_unlock(&dl_b->lock); 1276 __dl_clear_params(p); 1277 1278 goto unlock; 1279 } 1280 if (dl_se->dl_non_contending == 0) 1281 goto unlock; 1282 1283 sub_running_bw(dl_se, &rq->dl); 1284 dl_se->dl_non_contending = 0; 1285 unlock: 1286 task_rq_unlock(rq, p, &rf); 1287 put_task_struct(p); 1288 1289 return HRTIMER_NORESTART; 1290 } 1291 1292 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se) 1293 { 1294 struct hrtimer *timer = &dl_se->inactive_timer; 1295 1296 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1297 timer->function = inactive_task_timer; 1298 } 1299 1300 #ifdef CONFIG_SMP 1301 1302 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1303 { 1304 struct rq *rq = rq_of_dl_rq(dl_rq); 1305 1306 if (dl_rq->earliest_dl.curr == 0 || 1307 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 1308 dl_rq->earliest_dl.curr = deadline; 1309 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline); 1310 } 1311 } 1312 1313 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1314 { 1315 struct rq *rq = rq_of_dl_rq(dl_rq); 1316 1317 /* 1318 * Since we may have removed our earliest (and/or next earliest) 1319 * task we must recompute them. 1320 */ 1321 if (!dl_rq->dl_nr_running) { 1322 dl_rq->earliest_dl.curr = 0; 1323 dl_rq->earliest_dl.next = 0; 1324 cpudl_clear(&rq->rd->cpudl, rq->cpu); 1325 } else { 1326 struct rb_node *leftmost = dl_rq->root.rb_leftmost; 1327 struct sched_dl_entity *entry; 1328 1329 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node); 1330 dl_rq->earliest_dl.curr = entry->deadline; 1331 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline); 1332 } 1333 } 1334 1335 #else 1336 1337 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1338 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1339 1340 #endif /* CONFIG_SMP */ 1341 1342 static inline 1343 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1344 { 1345 int prio = dl_task_of(dl_se)->prio; 1346 u64 deadline = dl_se->deadline; 1347 1348 WARN_ON(!dl_prio(prio)); 1349 dl_rq->dl_nr_running++; 1350 add_nr_running(rq_of_dl_rq(dl_rq), 1); 1351 1352 inc_dl_deadline(dl_rq, deadline); 1353 inc_dl_migration(dl_se, dl_rq); 1354 } 1355 1356 static inline 1357 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1358 { 1359 int prio = dl_task_of(dl_se)->prio; 1360 1361 WARN_ON(!dl_prio(prio)); 1362 WARN_ON(!dl_rq->dl_nr_running); 1363 dl_rq->dl_nr_running--; 1364 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 1365 1366 dec_dl_deadline(dl_rq, dl_se->deadline); 1367 dec_dl_migration(dl_se, dl_rq); 1368 } 1369 1370 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 1371 { 1372 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1373 struct rb_node **link = &dl_rq->root.rb_root.rb_node; 1374 struct rb_node *parent = NULL; 1375 struct sched_dl_entity *entry; 1376 int leftmost = 1; 1377 1378 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node)); 1379 1380 while (*link) { 1381 parent = *link; 1382 entry = rb_entry(parent, struct sched_dl_entity, rb_node); 1383 if (dl_time_before(dl_se->deadline, entry->deadline)) 1384 link = &parent->rb_left; 1385 else { 1386 link = &parent->rb_right; 1387 leftmost = 0; 1388 } 1389 } 1390 1391 rb_link_node(&dl_se->rb_node, parent, link); 1392 rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost); 1393 1394 inc_dl_tasks(dl_se, dl_rq); 1395 } 1396 1397 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 1398 { 1399 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1400 1401 if (RB_EMPTY_NODE(&dl_se->rb_node)) 1402 return; 1403 1404 rb_erase_cached(&dl_se->rb_node, &dl_rq->root); 1405 RB_CLEAR_NODE(&dl_se->rb_node); 1406 1407 dec_dl_tasks(dl_se, dl_rq); 1408 } 1409 1410 static void 1411 enqueue_dl_entity(struct sched_dl_entity *dl_se, 1412 struct sched_dl_entity *pi_se, int flags) 1413 { 1414 BUG_ON(on_dl_rq(dl_se)); 1415 1416 /* 1417 * If this is a wakeup or a new instance, the scheduling 1418 * parameters of the task might need updating. Otherwise, 1419 * we want a replenishment of its runtime. 1420 */ 1421 if (flags & ENQUEUE_WAKEUP) { 1422 task_contending(dl_se, flags); 1423 update_dl_entity(dl_se, pi_se); 1424 } else if (flags & ENQUEUE_REPLENISH) { 1425 replenish_dl_entity(dl_se, pi_se); 1426 } else if ((flags & ENQUEUE_RESTORE) && 1427 dl_time_before(dl_se->deadline, 1428 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) { 1429 setup_new_dl_entity(dl_se); 1430 } 1431 1432 __enqueue_dl_entity(dl_se); 1433 } 1434 1435 static void dequeue_dl_entity(struct sched_dl_entity *dl_se) 1436 { 1437 __dequeue_dl_entity(dl_se); 1438 } 1439 1440 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1441 { 1442 struct task_struct *pi_task = rt_mutex_get_top_task(p); 1443 struct sched_dl_entity *pi_se = &p->dl; 1444 1445 /* 1446 * Use the scheduling parameters of the top pi-waiter task if: 1447 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND 1448 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is 1449 * smaller than our deadline OR we are a !SCHED_DEADLINE task getting 1450 * boosted due to a SCHED_DEADLINE pi-waiter). 1451 * Otherwise we keep our runtime and deadline. 1452 */ 1453 if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) { 1454 pi_se = &pi_task->dl; 1455 } else if (!dl_prio(p->normal_prio)) { 1456 /* 1457 * Special case in which we have a !SCHED_DEADLINE task 1458 * that is going to be deboosted, but exceeds its 1459 * runtime while doing so. No point in replenishing 1460 * it, as it's going to return back to its original 1461 * scheduling class after this. 1462 */ 1463 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH); 1464 return; 1465 } 1466 1467 /* 1468 * Check if a constrained deadline task was activated 1469 * after the deadline but before the next period. 1470 * If that is the case, the task will be throttled and 1471 * the replenishment timer will be set to the next period. 1472 */ 1473 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl)) 1474 dl_check_constrained_dl(&p->dl); 1475 1476 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) { 1477 add_rq_bw(&p->dl, &rq->dl); 1478 add_running_bw(&p->dl, &rq->dl); 1479 } 1480 1481 /* 1482 * If p is throttled, we do not enqueue it. In fact, if it exhausted 1483 * its budget it needs a replenishment and, since it now is on 1484 * its rq, the bandwidth timer callback (which clearly has not 1485 * run yet) will take care of this. 1486 * However, the active utilization does not depend on the fact 1487 * that the task is on the runqueue or not (but depends on the 1488 * task's state - in GRUB parlance, "inactive" vs "active contending"). 1489 * In other words, even if a task is throttled its utilization must 1490 * be counted in the active utilization; hence, we need to call 1491 * add_running_bw(). 1492 */ 1493 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) { 1494 if (flags & ENQUEUE_WAKEUP) 1495 task_contending(&p->dl, flags); 1496 1497 return; 1498 } 1499 1500 enqueue_dl_entity(&p->dl, pi_se, flags); 1501 1502 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1503 enqueue_pushable_dl_task(rq, p); 1504 } 1505 1506 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1507 { 1508 dequeue_dl_entity(&p->dl); 1509 dequeue_pushable_dl_task(rq, p); 1510 } 1511 1512 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1513 { 1514 update_curr_dl(rq); 1515 __dequeue_task_dl(rq, p, flags); 1516 1517 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) { 1518 sub_running_bw(&p->dl, &rq->dl); 1519 sub_rq_bw(&p->dl, &rq->dl); 1520 } 1521 1522 /* 1523 * This check allows to start the inactive timer (or to immediately 1524 * decrease the active utilization, if needed) in two cases: 1525 * when the task blocks and when it is terminating 1526 * (p->state == TASK_DEAD). We can handle the two cases in the same 1527 * way, because from GRUB's point of view the same thing is happening 1528 * (the task moves from "active contending" to "active non contending" 1529 * or "inactive") 1530 */ 1531 if (flags & DEQUEUE_SLEEP) 1532 task_non_contending(p); 1533 } 1534 1535 /* 1536 * Yield task semantic for -deadline tasks is: 1537 * 1538 * get off from the CPU until our next instance, with 1539 * a new runtime. This is of little use now, since we 1540 * don't have a bandwidth reclaiming mechanism. Anyway, 1541 * bandwidth reclaiming is planned for the future, and 1542 * yield_task_dl will indicate that some spare budget 1543 * is available for other task instances to use it. 1544 */ 1545 static void yield_task_dl(struct rq *rq) 1546 { 1547 /* 1548 * We make the task go to sleep until its current deadline by 1549 * forcing its runtime to zero. This way, update_curr_dl() stops 1550 * it and the bandwidth timer will wake it up and will give it 1551 * new scheduling parameters (thanks to dl_yielded=1). 1552 */ 1553 rq->curr->dl.dl_yielded = 1; 1554 1555 update_rq_clock(rq); 1556 update_curr_dl(rq); 1557 /* 1558 * Tell update_rq_clock() that we've just updated, 1559 * so we don't do microscopic update in schedule() 1560 * and double the fastpath cost. 1561 */ 1562 rq_clock_skip_update(rq); 1563 } 1564 1565 #ifdef CONFIG_SMP 1566 1567 static int find_later_rq(struct task_struct *task); 1568 1569 static int 1570 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags) 1571 { 1572 struct task_struct *curr; 1573 struct rq *rq; 1574 1575 if (sd_flag != SD_BALANCE_WAKE) 1576 goto out; 1577 1578 rq = cpu_rq(cpu); 1579 1580 rcu_read_lock(); 1581 curr = READ_ONCE(rq->curr); /* unlocked access */ 1582 1583 /* 1584 * If we are dealing with a -deadline task, we must 1585 * decide where to wake it up. 1586 * If it has a later deadline and the current task 1587 * on this rq can't move (provided the waking task 1588 * can!) we prefer to send it somewhere else. On the 1589 * other hand, if it has a shorter deadline, we 1590 * try to make it stay here, it might be important. 1591 */ 1592 if (unlikely(dl_task(curr)) && 1593 (curr->nr_cpus_allowed < 2 || 1594 !dl_entity_preempt(&p->dl, &curr->dl)) && 1595 (p->nr_cpus_allowed > 1)) { 1596 int target = find_later_rq(p); 1597 1598 if (target != -1 && 1599 (dl_time_before(p->dl.deadline, 1600 cpu_rq(target)->dl.earliest_dl.curr) || 1601 (cpu_rq(target)->dl.dl_nr_running == 0))) 1602 cpu = target; 1603 } 1604 rcu_read_unlock(); 1605 1606 out: 1607 return cpu; 1608 } 1609 1610 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused) 1611 { 1612 struct rq *rq; 1613 1614 if (p->state != TASK_WAKING) 1615 return; 1616 1617 rq = task_rq(p); 1618 /* 1619 * Since p->state == TASK_WAKING, set_task_cpu() has been called 1620 * from try_to_wake_up(). Hence, p->pi_lock is locked, but 1621 * rq->lock is not... So, lock it 1622 */ 1623 raw_spin_lock(&rq->lock); 1624 if (p->dl.dl_non_contending) { 1625 sub_running_bw(&p->dl, &rq->dl); 1626 p->dl.dl_non_contending = 0; 1627 /* 1628 * If the timer handler is currently running and the 1629 * timer cannot be cancelled, inactive_task_timer() 1630 * will see that dl_not_contending is not set, and 1631 * will not touch the rq's active utilization, 1632 * so we are still safe. 1633 */ 1634 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 1635 put_task_struct(p); 1636 } 1637 sub_rq_bw(&p->dl, &rq->dl); 1638 raw_spin_unlock(&rq->lock); 1639 } 1640 1641 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 1642 { 1643 /* 1644 * Current can't be migrated, useless to reschedule, 1645 * let's hope p can move out. 1646 */ 1647 if (rq->curr->nr_cpus_allowed == 1 || 1648 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL)) 1649 return; 1650 1651 /* 1652 * p is migratable, so let's not schedule it and 1653 * see if it is pushed or pulled somewhere else. 1654 */ 1655 if (p->nr_cpus_allowed != 1 && 1656 cpudl_find(&rq->rd->cpudl, p, NULL)) 1657 return; 1658 1659 resched_curr(rq); 1660 } 1661 1662 #endif /* CONFIG_SMP */ 1663 1664 /* 1665 * Only called when both the current and waking task are -deadline 1666 * tasks. 1667 */ 1668 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 1669 int flags) 1670 { 1671 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { 1672 resched_curr(rq); 1673 return; 1674 } 1675 1676 #ifdef CONFIG_SMP 1677 /* 1678 * In the unlikely case current and p have the same deadline 1679 * let us try to decide what's the best thing to do... 1680 */ 1681 if ((p->dl.deadline == rq->curr->dl.deadline) && 1682 !test_tsk_need_resched(rq->curr)) 1683 check_preempt_equal_dl(rq, p); 1684 #endif /* CONFIG_SMP */ 1685 } 1686 1687 #ifdef CONFIG_SCHED_HRTICK 1688 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1689 { 1690 hrtick_start(rq, p->dl.runtime); 1691 } 1692 #else /* !CONFIG_SCHED_HRTICK */ 1693 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1694 { 1695 } 1696 #endif 1697 1698 static inline void set_next_task(struct rq *rq, struct task_struct *p) 1699 { 1700 p->se.exec_start = rq_clock_task(rq); 1701 1702 /* You can't push away the running task */ 1703 dequeue_pushable_dl_task(rq, p); 1704 } 1705 1706 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq, 1707 struct dl_rq *dl_rq) 1708 { 1709 struct rb_node *left = rb_first_cached(&dl_rq->root); 1710 1711 if (!left) 1712 return NULL; 1713 1714 return rb_entry(left, struct sched_dl_entity, rb_node); 1715 } 1716 1717 static struct task_struct * 1718 pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 1719 { 1720 struct sched_dl_entity *dl_se; 1721 struct task_struct *p; 1722 struct dl_rq *dl_rq; 1723 1724 dl_rq = &rq->dl; 1725 1726 if (need_pull_dl_task(rq, prev)) { 1727 /* 1728 * This is OK, because current is on_cpu, which avoids it being 1729 * picked for load-balance and preemption/IRQs are still 1730 * disabled avoiding further scheduler activity on it and we're 1731 * being very careful to re-start the picking loop. 1732 */ 1733 rq_unpin_lock(rq, rf); 1734 pull_dl_task(rq); 1735 rq_repin_lock(rq, rf); 1736 /* 1737 * pull_dl_task() can drop (and re-acquire) rq->lock; this 1738 * means a stop task can slip in, in which case we need to 1739 * re-start task selection. 1740 */ 1741 if (rq->stop && task_on_rq_queued(rq->stop)) 1742 return RETRY_TASK; 1743 } 1744 1745 /* 1746 * When prev is DL, we may throttle it in put_prev_task(). 1747 * So, we update time before we check for dl_nr_running. 1748 */ 1749 if (prev->sched_class == &dl_sched_class) 1750 update_curr_dl(rq); 1751 1752 if (unlikely(!dl_rq->dl_nr_running)) 1753 return NULL; 1754 1755 put_prev_task(rq, prev); 1756 1757 dl_se = pick_next_dl_entity(rq, dl_rq); 1758 BUG_ON(!dl_se); 1759 1760 p = dl_task_of(dl_se); 1761 1762 set_next_task(rq, p); 1763 1764 if (hrtick_enabled(rq)) 1765 start_hrtick_dl(rq, p); 1766 1767 deadline_queue_push_tasks(rq); 1768 1769 if (rq->curr->sched_class != &dl_sched_class) 1770 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 1771 1772 return p; 1773 } 1774 1775 static void put_prev_task_dl(struct rq *rq, struct task_struct *p) 1776 { 1777 update_curr_dl(rq); 1778 1779 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 1780 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 1781 enqueue_pushable_dl_task(rq, p); 1782 } 1783 1784 /* 1785 * scheduler tick hitting a task of our scheduling class. 1786 * 1787 * NOTE: This function can be called remotely by the tick offload that 1788 * goes along full dynticks. Therefore no local assumption can be made 1789 * and everything must be accessed through the @rq and @curr passed in 1790 * parameters. 1791 */ 1792 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 1793 { 1794 update_curr_dl(rq); 1795 1796 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 1797 /* 1798 * Even when we have runtime, update_curr_dl() might have resulted in us 1799 * not being the leftmost task anymore. In that case NEED_RESCHED will 1800 * be set and schedule() will start a new hrtick for the next task. 1801 */ 1802 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 && 1803 is_leftmost(p, &rq->dl)) 1804 start_hrtick_dl(rq, p); 1805 } 1806 1807 static void task_fork_dl(struct task_struct *p) 1808 { 1809 /* 1810 * SCHED_DEADLINE tasks cannot fork and this is achieved through 1811 * sched_fork() 1812 */ 1813 } 1814 1815 static void set_curr_task_dl(struct rq *rq) 1816 { 1817 set_next_task(rq, rq->curr); 1818 } 1819 1820 #ifdef CONFIG_SMP 1821 1822 /* Only try algorithms three times */ 1823 #define DL_MAX_TRIES 3 1824 1825 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) 1826 { 1827 if (!task_running(rq, p) && 1828 cpumask_test_cpu(cpu, &p->cpus_allowed)) 1829 return 1; 1830 return 0; 1831 } 1832 1833 /* 1834 * Return the earliest pushable rq's task, which is suitable to be executed 1835 * on the CPU, NULL otherwise: 1836 */ 1837 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) 1838 { 1839 struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost; 1840 struct task_struct *p = NULL; 1841 1842 if (!has_pushable_dl_tasks(rq)) 1843 return NULL; 1844 1845 next_node: 1846 if (next_node) { 1847 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks); 1848 1849 if (pick_dl_task(rq, p, cpu)) 1850 return p; 1851 1852 next_node = rb_next(next_node); 1853 goto next_node; 1854 } 1855 1856 return NULL; 1857 } 1858 1859 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 1860 1861 static int find_later_rq(struct task_struct *task) 1862 { 1863 struct sched_domain *sd; 1864 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 1865 int this_cpu = smp_processor_id(); 1866 int cpu = task_cpu(task); 1867 1868 /* Make sure the mask is initialized first */ 1869 if (unlikely(!later_mask)) 1870 return -1; 1871 1872 if (task->nr_cpus_allowed == 1) 1873 return -1; 1874 1875 /* 1876 * We have to consider system topology and task affinity 1877 * first, then we can look for a suitable CPU. 1878 */ 1879 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask)) 1880 return -1; 1881 1882 /* 1883 * If we are here, some targets have been found, including 1884 * the most suitable which is, among the runqueues where the 1885 * current tasks have later deadlines than the task's one, the 1886 * rq with the latest possible one. 1887 * 1888 * Now we check how well this matches with task's 1889 * affinity and system topology. 1890 * 1891 * The last CPU where the task run is our first 1892 * guess, since it is most likely cache-hot there. 1893 */ 1894 if (cpumask_test_cpu(cpu, later_mask)) 1895 return cpu; 1896 /* 1897 * Check if this_cpu is to be skipped (i.e., it is 1898 * not in the mask) or not. 1899 */ 1900 if (!cpumask_test_cpu(this_cpu, later_mask)) 1901 this_cpu = -1; 1902 1903 rcu_read_lock(); 1904 for_each_domain(cpu, sd) { 1905 if (sd->flags & SD_WAKE_AFFINE) { 1906 int best_cpu; 1907 1908 /* 1909 * If possible, preempting this_cpu is 1910 * cheaper than migrating. 1911 */ 1912 if (this_cpu != -1 && 1913 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1914 rcu_read_unlock(); 1915 return this_cpu; 1916 } 1917 1918 best_cpu = cpumask_first_and(later_mask, 1919 sched_domain_span(sd)); 1920 /* 1921 * Last chance: if a CPU being in both later_mask 1922 * and current sd span is valid, that becomes our 1923 * choice. Of course, the latest possible CPU is 1924 * already under consideration through later_mask. 1925 */ 1926 if (best_cpu < nr_cpu_ids) { 1927 rcu_read_unlock(); 1928 return best_cpu; 1929 } 1930 } 1931 } 1932 rcu_read_unlock(); 1933 1934 /* 1935 * At this point, all our guesses failed, we just return 1936 * 'something', and let the caller sort the things out. 1937 */ 1938 if (this_cpu != -1) 1939 return this_cpu; 1940 1941 cpu = cpumask_any(later_mask); 1942 if (cpu < nr_cpu_ids) 1943 return cpu; 1944 1945 return -1; 1946 } 1947 1948 /* Locks the rq it finds */ 1949 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 1950 { 1951 struct rq *later_rq = NULL; 1952 int tries; 1953 int cpu; 1954 1955 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 1956 cpu = find_later_rq(task); 1957 1958 if ((cpu == -1) || (cpu == rq->cpu)) 1959 break; 1960 1961 later_rq = cpu_rq(cpu); 1962 1963 if (later_rq->dl.dl_nr_running && 1964 !dl_time_before(task->dl.deadline, 1965 later_rq->dl.earliest_dl.curr)) { 1966 /* 1967 * Target rq has tasks of equal or earlier deadline, 1968 * retrying does not release any lock and is unlikely 1969 * to yield a different result. 1970 */ 1971 later_rq = NULL; 1972 break; 1973 } 1974 1975 /* Retry if something changed. */ 1976 if (double_lock_balance(rq, later_rq)) { 1977 if (unlikely(task_rq(task) != rq || 1978 !cpumask_test_cpu(later_rq->cpu, &task->cpus_allowed) || 1979 task_running(rq, task) || 1980 !dl_task(task) || 1981 !task_on_rq_queued(task))) { 1982 double_unlock_balance(rq, later_rq); 1983 later_rq = NULL; 1984 break; 1985 } 1986 } 1987 1988 /* 1989 * If the rq we found has no -deadline task, or 1990 * its earliest one has a later deadline than our 1991 * task, the rq is a good one. 1992 */ 1993 if (!later_rq->dl.dl_nr_running || 1994 dl_time_before(task->dl.deadline, 1995 later_rq->dl.earliest_dl.curr)) 1996 break; 1997 1998 /* Otherwise we try again. */ 1999 double_unlock_balance(rq, later_rq); 2000 later_rq = NULL; 2001 } 2002 2003 return later_rq; 2004 } 2005 2006 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 2007 { 2008 struct task_struct *p; 2009 2010 if (!has_pushable_dl_tasks(rq)) 2011 return NULL; 2012 2013 p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost, 2014 struct task_struct, pushable_dl_tasks); 2015 2016 BUG_ON(rq->cpu != task_cpu(p)); 2017 BUG_ON(task_current(rq, p)); 2018 BUG_ON(p->nr_cpus_allowed <= 1); 2019 2020 BUG_ON(!task_on_rq_queued(p)); 2021 BUG_ON(!dl_task(p)); 2022 2023 return p; 2024 } 2025 2026 /* 2027 * See if the non running -deadline tasks on this rq 2028 * can be sent to some other CPU where they can preempt 2029 * and start executing. 2030 */ 2031 static int push_dl_task(struct rq *rq) 2032 { 2033 struct task_struct *next_task; 2034 struct rq *later_rq; 2035 int ret = 0; 2036 2037 if (!rq->dl.overloaded) 2038 return 0; 2039 2040 next_task = pick_next_pushable_dl_task(rq); 2041 if (!next_task) 2042 return 0; 2043 2044 retry: 2045 if (WARN_ON(next_task == rq->curr)) 2046 return 0; 2047 2048 /* 2049 * If next_task preempts rq->curr, and rq->curr 2050 * can move away, it makes sense to just reschedule 2051 * without going further in pushing next_task. 2052 */ 2053 if (dl_task(rq->curr) && 2054 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && 2055 rq->curr->nr_cpus_allowed > 1) { 2056 resched_curr(rq); 2057 return 0; 2058 } 2059 2060 /* We might release rq lock */ 2061 get_task_struct(next_task); 2062 2063 /* Will lock the rq it'll find */ 2064 later_rq = find_lock_later_rq(next_task, rq); 2065 if (!later_rq) { 2066 struct task_struct *task; 2067 2068 /* 2069 * We must check all this again, since 2070 * find_lock_later_rq releases rq->lock and it is 2071 * then possible that next_task has migrated. 2072 */ 2073 task = pick_next_pushable_dl_task(rq); 2074 if (task == next_task) { 2075 /* 2076 * The task is still there. We don't try 2077 * again, some other CPU will pull it when ready. 2078 */ 2079 goto out; 2080 } 2081 2082 if (!task) 2083 /* No more tasks */ 2084 goto out; 2085 2086 put_task_struct(next_task); 2087 next_task = task; 2088 goto retry; 2089 } 2090 2091 deactivate_task(rq, next_task, 0); 2092 sub_running_bw(&next_task->dl, &rq->dl); 2093 sub_rq_bw(&next_task->dl, &rq->dl); 2094 set_task_cpu(next_task, later_rq->cpu); 2095 add_rq_bw(&next_task->dl, &later_rq->dl); 2096 2097 /* 2098 * Update the later_rq clock here, because the clock is used 2099 * by the cpufreq_update_util() inside __add_running_bw(). 2100 */ 2101 update_rq_clock(later_rq); 2102 add_running_bw(&next_task->dl, &later_rq->dl); 2103 activate_task(later_rq, next_task, ENQUEUE_NOCLOCK); 2104 ret = 1; 2105 2106 resched_curr(later_rq); 2107 2108 double_unlock_balance(rq, later_rq); 2109 2110 out: 2111 put_task_struct(next_task); 2112 2113 return ret; 2114 } 2115 2116 static void push_dl_tasks(struct rq *rq) 2117 { 2118 /* push_dl_task() will return true if it moved a -deadline task */ 2119 while (push_dl_task(rq)) 2120 ; 2121 } 2122 2123 static void pull_dl_task(struct rq *this_rq) 2124 { 2125 int this_cpu = this_rq->cpu, cpu; 2126 struct task_struct *p; 2127 bool resched = false; 2128 struct rq *src_rq; 2129 u64 dmin = LONG_MAX; 2130 2131 if (likely(!dl_overloaded(this_rq))) 2132 return; 2133 2134 /* 2135 * Match the barrier from dl_set_overloaded; this guarantees that if we 2136 * see overloaded we must also see the dlo_mask bit. 2137 */ 2138 smp_rmb(); 2139 2140 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 2141 if (this_cpu == cpu) 2142 continue; 2143 2144 src_rq = cpu_rq(cpu); 2145 2146 /* 2147 * It looks racy, abd it is! However, as in sched_rt.c, 2148 * we are fine with this. 2149 */ 2150 if (this_rq->dl.dl_nr_running && 2151 dl_time_before(this_rq->dl.earliest_dl.curr, 2152 src_rq->dl.earliest_dl.next)) 2153 continue; 2154 2155 /* Might drop this_rq->lock */ 2156 double_lock_balance(this_rq, src_rq); 2157 2158 /* 2159 * If there are no more pullable tasks on the 2160 * rq, we're done with it. 2161 */ 2162 if (src_rq->dl.dl_nr_running <= 1) 2163 goto skip; 2164 2165 p = pick_earliest_pushable_dl_task(src_rq, this_cpu); 2166 2167 /* 2168 * We found a task to be pulled if: 2169 * - it preempts our current (if there's one), 2170 * - it will preempt the last one we pulled (if any). 2171 */ 2172 if (p && dl_time_before(p->dl.deadline, dmin) && 2173 (!this_rq->dl.dl_nr_running || 2174 dl_time_before(p->dl.deadline, 2175 this_rq->dl.earliest_dl.curr))) { 2176 WARN_ON(p == src_rq->curr); 2177 WARN_ON(!task_on_rq_queued(p)); 2178 2179 /* 2180 * Then we pull iff p has actually an earlier 2181 * deadline than the current task of its runqueue. 2182 */ 2183 if (dl_time_before(p->dl.deadline, 2184 src_rq->curr->dl.deadline)) 2185 goto skip; 2186 2187 resched = true; 2188 2189 deactivate_task(src_rq, p, 0); 2190 sub_running_bw(&p->dl, &src_rq->dl); 2191 sub_rq_bw(&p->dl, &src_rq->dl); 2192 set_task_cpu(p, this_cpu); 2193 add_rq_bw(&p->dl, &this_rq->dl); 2194 add_running_bw(&p->dl, &this_rq->dl); 2195 activate_task(this_rq, p, 0); 2196 dmin = p->dl.deadline; 2197 2198 /* Is there any other task even earlier? */ 2199 } 2200 skip: 2201 double_unlock_balance(this_rq, src_rq); 2202 } 2203 2204 if (resched) 2205 resched_curr(this_rq); 2206 } 2207 2208 /* 2209 * Since the task is not running and a reschedule is not going to happen 2210 * anytime soon on its runqueue, we try pushing it away now. 2211 */ 2212 static void task_woken_dl(struct rq *rq, struct task_struct *p) 2213 { 2214 if (!task_running(rq, p) && 2215 !test_tsk_need_resched(rq->curr) && 2216 p->nr_cpus_allowed > 1 && 2217 dl_task(rq->curr) && 2218 (rq->curr->nr_cpus_allowed < 2 || 2219 !dl_entity_preempt(&p->dl, &rq->curr->dl))) { 2220 push_dl_tasks(rq); 2221 } 2222 } 2223 2224 static void set_cpus_allowed_dl(struct task_struct *p, 2225 const struct cpumask *new_mask) 2226 { 2227 struct root_domain *src_rd; 2228 struct rq *rq; 2229 2230 BUG_ON(!dl_task(p)); 2231 2232 rq = task_rq(p); 2233 src_rd = rq->rd; 2234 /* 2235 * Migrating a SCHED_DEADLINE task between exclusive 2236 * cpusets (different root_domains) entails a bandwidth 2237 * update. We already made space for us in the destination 2238 * domain (see cpuset_can_attach()). 2239 */ 2240 if (!cpumask_intersects(src_rd->span, new_mask)) { 2241 struct dl_bw *src_dl_b; 2242 2243 src_dl_b = dl_bw_of(cpu_of(rq)); 2244 /* 2245 * We now free resources of the root_domain we are migrating 2246 * off. In the worst case, sched_setattr() may temporary fail 2247 * until we complete the update. 2248 */ 2249 raw_spin_lock(&src_dl_b->lock); 2250 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 2251 raw_spin_unlock(&src_dl_b->lock); 2252 } 2253 2254 set_cpus_allowed_common(p, new_mask); 2255 } 2256 2257 /* Assumes rq->lock is held */ 2258 static void rq_online_dl(struct rq *rq) 2259 { 2260 if (rq->dl.overloaded) 2261 dl_set_overload(rq); 2262 2263 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu); 2264 if (rq->dl.dl_nr_running > 0) 2265 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr); 2266 } 2267 2268 /* Assumes rq->lock is held */ 2269 static void rq_offline_dl(struct rq *rq) 2270 { 2271 if (rq->dl.overloaded) 2272 dl_clear_overload(rq); 2273 2274 cpudl_clear(&rq->rd->cpudl, rq->cpu); 2275 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu); 2276 } 2277 2278 void __init init_sched_dl_class(void) 2279 { 2280 unsigned int i; 2281 2282 for_each_possible_cpu(i) 2283 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 2284 GFP_KERNEL, cpu_to_node(i)); 2285 } 2286 2287 #endif /* CONFIG_SMP */ 2288 2289 static void switched_from_dl(struct rq *rq, struct task_struct *p) 2290 { 2291 /* 2292 * task_non_contending() can start the "inactive timer" (if the 0-lag 2293 * time is in the future). If the task switches back to dl before 2294 * the "inactive timer" fires, it can continue to consume its current 2295 * runtime using its current deadline. If it stays outside of 2296 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer() 2297 * will reset the task parameters. 2298 */ 2299 if (task_on_rq_queued(p) && p->dl.dl_runtime) 2300 task_non_contending(p); 2301 2302 if (!task_on_rq_queued(p)) { 2303 /* 2304 * Inactive timer is armed. However, p is leaving DEADLINE and 2305 * might migrate away from this rq while continuing to run on 2306 * some other class. We need to remove its contribution from 2307 * this rq running_bw now, or sub_rq_bw (below) will complain. 2308 */ 2309 if (p->dl.dl_non_contending) 2310 sub_running_bw(&p->dl, &rq->dl); 2311 sub_rq_bw(&p->dl, &rq->dl); 2312 } 2313 2314 /* 2315 * We cannot use inactive_task_timer() to invoke sub_running_bw() 2316 * at the 0-lag time, because the task could have been migrated 2317 * while SCHED_OTHER in the meanwhile. 2318 */ 2319 if (p->dl.dl_non_contending) 2320 p->dl.dl_non_contending = 0; 2321 2322 /* 2323 * Since this might be the only -deadline task on the rq, 2324 * this is the right place to try to pull some other one 2325 * from an overloaded CPU, if any. 2326 */ 2327 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 2328 return; 2329 2330 deadline_queue_pull_task(rq); 2331 } 2332 2333 /* 2334 * When switching to -deadline, we may overload the rq, then 2335 * we try to push someone off, if possible. 2336 */ 2337 static void switched_to_dl(struct rq *rq, struct task_struct *p) 2338 { 2339 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 2340 put_task_struct(p); 2341 2342 /* If p is not queued we will update its parameters at next wakeup. */ 2343 if (!task_on_rq_queued(p)) { 2344 add_rq_bw(&p->dl, &rq->dl); 2345 2346 return; 2347 } 2348 2349 if (rq->curr != p) { 2350 #ifdef CONFIG_SMP 2351 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) 2352 deadline_queue_push_tasks(rq); 2353 #endif 2354 if (dl_task(rq->curr)) 2355 check_preempt_curr_dl(rq, p, 0); 2356 else 2357 resched_curr(rq); 2358 } 2359 } 2360 2361 /* 2362 * If the scheduling parameters of a -deadline task changed, 2363 * a push or pull operation might be needed. 2364 */ 2365 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 2366 int oldprio) 2367 { 2368 if (task_on_rq_queued(p) || rq->curr == p) { 2369 #ifdef CONFIG_SMP 2370 /* 2371 * This might be too much, but unfortunately 2372 * we don't have the old deadline value, and 2373 * we can't argue if the task is increasing 2374 * or lowering its prio, so... 2375 */ 2376 if (!rq->dl.overloaded) 2377 deadline_queue_pull_task(rq); 2378 2379 /* 2380 * If we now have a earlier deadline task than p, 2381 * then reschedule, provided p is still on this 2382 * runqueue. 2383 */ 2384 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) 2385 resched_curr(rq); 2386 #else 2387 /* 2388 * Again, we don't know if p has a earlier 2389 * or later deadline, so let's blindly set a 2390 * (maybe not needed) rescheduling point. 2391 */ 2392 resched_curr(rq); 2393 #endif /* CONFIG_SMP */ 2394 } 2395 } 2396 2397 const struct sched_class dl_sched_class = { 2398 .next = &rt_sched_class, 2399 .enqueue_task = enqueue_task_dl, 2400 .dequeue_task = dequeue_task_dl, 2401 .yield_task = yield_task_dl, 2402 2403 .check_preempt_curr = check_preempt_curr_dl, 2404 2405 .pick_next_task = pick_next_task_dl, 2406 .put_prev_task = put_prev_task_dl, 2407 2408 #ifdef CONFIG_SMP 2409 .select_task_rq = select_task_rq_dl, 2410 .migrate_task_rq = migrate_task_rq_dl, 2411 .set_cpus_allowed = set_cpus_allowed_dl, 2412 .rq_online = rq_online_dl, 2413 .rq_offline = rq_offline_dl, 2414 .task_woken = task_woken_dl, 2415 #endif 2416 2417 .set_curr_task = set_curr_task_dl, 2418 .task_tick = task_tick_dl, 2419 .task_fork = task_fork_dl, 2420 2421 .prio_changed = prio_changed_dl, 2422 .switched_from = switched_from_dl, 2423 .switched_to = switched_to_dl, 2424 2425 .update_curr = update_curr_dl, 2426 }; 2427 2428 int sched_dl_global_validate(void) 2429 { 2430 u64 runtime = global_rt_runtime(); 2431 u64 period = global_rt_period(); 2432 u64 new_bw = to_ratio(period, runtime); 2433 struct dl_bw *dl_b; 2434 int cpu, ret = 0; 2435 unsigned long flags; 2436 2437 /* 2438 * Here we want to check the bandwidth not being set to some 2439 * value smaller than the currently allocated bandwidth in 2440 * any of the root_domains. 2441 * 2442 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 2443 * cycling on root_domains... Discussion on different/better 2444 * solutions is welcome! 2445 */ 2446 for_each_possible_cpu(cpu) { 2447 rcu_read_lock_sched(); 2448 dl_b = dl_bw_of(cpu); 2449 2450 raw_spin_lock_irqsave(&dl_b->lock, flags); 2451 if (new_bw < dl_b->total_bw) 2452 ret = -EBUSY; 2453 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2454 2455 rcu_read_unlock_sched(); 2456 2457 if (ret) 2458 break; 2459 } 2460 2461 return ret; 2462 } 2463 2464 void init_dl_rq_bw_ratio(struct dl_rq *dl_rq) 2465 { 2466 if (global_rt_runtime() == RUNTIME_INF) { 2467 dl_rq->bw_ratio = 1 << RATIO_SHIFT; 2468 dl_rq->extra_bw = 1 << BW_SHIFT; 2469 } else { 2470 dl_rq->bw_ratio = to_ratio(global_rt_runtime(), 2471 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT); 2472 dl_rq->extra_bw = to_ratio(global_rt_period(), 2473 global_rt_runtime()); 2474 } 2475 } 2476 2477 void sched_dl_do_global(void) 2478 { 2479 u64 new_bw = -1; 2480 struct dl_bw *dl_b; 2481 int cpu; 2482 unsigned long flags; 2483 2484 def_dl_bandwidth.dl_period = global_rt_period(); 2485 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 2486 2487 if (global_rt_runtime() != RUNTIME_INF) 2488 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 2489 2490 /* 2491 * FIXME: As above... 2492 */ 2493 for_each_possible_cpu(cpu) { 2494 rcu_read_lock_sched(); 2495 dl_b = dl_bw_of(cpu); 2496 2497 raw_spin_lock_irqsave(&dl_b->lock, flags); 2498 dl_b->bw = new_bw; 2499 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2500 2501 rcu_read_unlock_sched(); 2502 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl); 2503 } 2504 } 2505 2506 /* 2507 * We must be sure that accepting a new task (or allowing changing the 2508 * parameters of an existing one) is consistent with the bandwidth 2509 * constraints. If yes, this function also accordingly updates the currently 2510 * allocated bandwidth to reflect the new situation. 2511 * 2512 * This function is called while holding p's rq->lock. 2513 */ 2514 int sched_dl_overflow(struct task_struct *p, int policy, 2515 const struct sched_attr *attr) 2516 { 2517 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2518 u64 period = attr->sched_period ?: attr->sched_deadline; 2519 u64 runtime = attr->sched_runtime; 2520 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2521 int cpus, err = -1; 2522 2523 if (attr->sched_flags & SCHED_FLAG_SUGOV) 2524 return 0; 2525 2526 /* !deadline task may carry old deadline bandwidth */ 2527 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 2528 return 0; 2529 2530 /* 2531 * Either if a task, enters, leave, or stays -deadline but changes 2532 * its parameters, we may need to update accordingly the total 2533 * allocated bandwidth of the container. 2534 */ 2535 raw_spin_lock(&dl_b->lock); 2536 cpus = dl_bw_cpus(task_cpu(p)); 2537 if (dl_policy(policy) && !task_has_dl_policy(p) && 2538 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2539 if (hrtimer_active(&p->dl.inactive_timer)) 2540 __dl_sub(dl_b, p->dl.dl_bw, cpus); 2541 __dl_add(dl_b, new_bw, cpus); 2542 err = 0; 2543 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2544 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2545 /* 2546 * XXX this is slightly incorrect: when the task 2547 * utilization decreases, we should delay the total 2548 * utilization change until the task's 0-lag point. 2549 * But this would require to set the task's "inactive 2550 * timer" when the task is not inactive. 2551 */ 2552 __dl_sub(dl_b, p->dl.dl_bw, cpus); 2553 __dl_add(dl_b, new_bw, cpus); 2554 dl_change_utilization(p, new_bw); 2555 err = 0; 2556 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2557 /* 2558 * Do not decrease the total deadline utilization here, 2559 * switched_from_dl() will take care to do it at the correct 2560 * (0-lag) time. 2561 */ 2562 err = 0; 2563 } 2564 raw_spin_unlock(&dl_b->lock); 2565 2566 return err; 2567 } 2568 2569 /* 2570 * This function initializes the sched_dl_entity of a newly becoming 2571 * SCHED_DEADLINE task. 2572 * 2573 * Only the static values are considered here, the actual runtime and the 2574 * absolute deadline will be properly calculated when the task is enqueued 2575 * for the first time with its new policy. 2576 */ 2577 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 2578 { 2579 struct sched_dl_entity *dl_se = &p->dl; 2580 2581 dl_se->dl_runtime = attr->sched_runtime; 2582 dl_se->dl_deadline = attr->sched_deadline; 2583 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 2584 dl_se->flags = attr->sched_flags; 2585 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 2586 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 2587 } 2588 2589 void __getparam_dl(struct task_struct *p, struct sched_attr *attr) 2590 { 2591 struct sched_dl_entity *dl_se = &p->dl; 2592 2593 attr->sched_priority = p->rt_priority; 2594 attr->sched_runtime = dl_se->dl_runtime; 2595 attr->sched_deadline = dl_se->dl_deadline; 2596 attr->sched_period = dl_se->dl_period; 2597 attr->sched_flags = dl_se->flags; 2598 } 2599 2600 /* 2601 * This function validates the new parameters of a -deadline task. 2602 * We ask for the deadline not being zero, and greater or equal 2603 * than the runtime, as well as the period of being zero or 2604 * greater than deadline. Furthermore, we have to be sure that 2605 * user parameters are above the internal resolution of 1us (we 2606 * check sched_runtime only since it is always the smaller one) and 2607 * below 2^63 ns (we have to check both sched_deadline and 2608 * sched_period, as the latter can be zero). 2609 */ 2610 bool __checkparam_dl(const struct sched_attr *attr) 2611 { 2612 /* special dl tasks don't actually use any parameter */ 2613 if (attr->sched_flags & SCHED_FLAG_SUGOV) 2614 return true; 2615 2616 /* deadline != 0 */ 2617 if (attr->sched_deadline == 0) 2618 return false; 2619 2620 /* 2621 * Since we truncate DL_SCALE bits, make sure we're at least 2622 * that big. 2623 */ 2624 if (attr->sched_runtime < (1ULL << DL_SCALE)) 2625 return false; 2626 2627 /* 2628 * Since we use the MSB for wrap-around and sign issues, make 2629 * sure it's not set (mind that period can be equal to zero). 2630 */ 2631 if (attr->sched_deadline & (1ULL << 63) || 2632 attr->sched_period & (1ULL << 63)) 2633 return false; 2634 2635 /* runtime <= deadline <= period (if period != 0) */ 2636 if ((attr->sched_period != 0 && 2637 attr->sched_period < attr->sched_deadline) || 2638 attr->sched_deadline < attr->sched_runtime) 2639 return false; 2640 2641 return true; 2642 } 2643 2644 /* 2645 * This function clears the sched_dl_entity static params. 2646 */ 2647 void __dl_clear_params(struct task_struct *p) 2648 { 2649 struct sched_dl_entity *dl_se = &p->dl; 2650 2651 dl_se->dl_runtime = 0; 2652 dl_se->dl_deadline = 0; 2653 dl_se->dl_period = 0; 2654 dl_se->flags = 0; 2655 dl_se->dl_bw = 0; 2656 dl_se->dl_density = 0; 2657 2658 dl_se->dl_throttled = 0; 2659 dl_se->dl_yielded = 0; 2660 dl_se->dl_non_contending = 0; 2661 dl_se->dl_overrun = 0; 2662 } 2663 2664 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) 2665 { 2666 struct sched_dl_entity *dl_se = &p->dl; 2667 2668 if (dl_se->dl_runtime != attr->sched_runtime || 2669 dl_se->dl_deadline != attr->sched_deadline || 2670 dl_se->dl_period != attr->sched_period || 2671 dl_se->flags != attr->sched_flags) 2672 return true; 2673 2674 return false; 2675 } 2676 2677 #ifdef CONFIG_SMP 2678 int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed) 2679 { 2680 unsigned int dest_cpu; 2681 struct dl_bw *dl_b; 2682 bool overflow; 2683 int cpus, ret; 2684 unsigned long flags; 2685 2686 dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed); 2687 2688 rcu_read_lock_sched(); 2689 dl_b = dl_bw_of(dest_cpu); 2690 raw_spin_lock_irqsave(&dl_b->lock, flags); 2691 cpus = dl_bw_cpus(dest_cpu); 2692 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 2693 if (overflow) { 2694 ret = -EBUSY; 2695 } else { 2696 /* 2697 * We reserve space for this task in the destination 2698 * root_domain, as we can't fail after this point. 2699 * We will free resources in the source root_domain 2700 * later on (see set_cpus_allowed_dl()). 2701 */ 2702 __dl_add(dl_b, p->dl.dl_bw, cpus); 2703 ret = 0; 2704 } 2705 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2706 rcu_read_unlock_sched(); 2707 2708 return ret; 2709 } 2710 2711 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, 2712 const struct cpumask *trial) 2713 { 2714 int ret = 1, trial_cpus; 2715 struct dl_bw *cur_dl_b; 2716 unsigned long flags; 2717 2718 rcu_read_lock_sched(); 2719 cur_dl_b = dl_bw_of(cpumask_any(cur)); 2720 trial_cpus = cpumask_weight(trial); 2721 2722 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 2723 if (cur_dl_b->bw != -1 && 2724 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 2725 ret = 0; 2726 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 2727 rcu_read_unlock_sched(); 2728 2729 return ret; 2730 } 2731 2732 bool dl_cpu_busy(unsigned int cpu) 2733 { 2734 unsigned long flags; 2735 struct dl_bw *dl_b; 2736 bool overflow; 2737 int cpus; 2738 2739 rcu_read_lock_sched(); 2740 dl_b = dl_bw_of(cpu); 2741 raw_spin_lock_irqsave(&dl_b->lock, flags); 2742 cpus = dl_bw_cpus(cpu); 2743 overflow = __dl_overflow(dl_b, cpus, 0, 0); 2744 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2745 rcu_read_unlock_sched(); 2746 2747 return overflow; 2748 } 2749 #endif 2750 2751 #ifdef CONFIG_SCHED_DEBUG 2752 void print_dl_stats(struct seq_file *m, int cpu) 2753 { 2754 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 2755 } 2756 #endif /* CONFIG_SCHED_DEBUG */ 2757