xref: /openbmc/linux/kernel/sched/deadline.c (revision d7a3d85e)
1 /*
2  * Deadline Scheduling Class (SCHED_DEADLINE)
3  *
4  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5  *
6  * Tasks that periodically executes their instances for less than their
7  * runtime won't miss any of their deadlines.
8  * Tasks that are not periodic or sporadic or that tries to execute more
9  * than their reserved bandwidth will be slowed down (and may potentially
10  * miss some of their deadlines), and won't affect any other task.
11  *
12  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13  *                    Juri Lelli <juri.lelli@gmail.com>,
14  *                    Michael Trimarchi <michael@amarulasolutions.com>,
15  *                    Fabio Checconi <fchecconi@gmail.com>
16  */
17 #include "sched.h"
18 
19 #include <linux/slab.h>
20 
21 struct dl_bandwidth def_dl_bandwidth;
22 
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24 {
25 	return container_of(dl_se, struct task_struct, dl);
26 }
27 
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29 {
30 	return container_of(dl_rq, struct rq, dl);
31 }
32 
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34 {
35 	struct task_struct *p = dl_task_of(dl_se);
36 	struct rq *rq = task_rq(p);
37 
38 	return &rq->dl;
39 }
40 
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42 {
43 	return !RB_EMPTY_NODE(&dl_se->rb_node);
44 }
45 
46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47 {
48 	struct sched_dl_entity *dl_se = &p->dl;
49 
50 	return dl_rq->rb_leftmost == &dl_se->rb_node;
51 }
52 
53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
54 {
55 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 	dl_b->dl_period = period;
57 	dl_b->dl_runtime = runtime;
58 }
59 
60 void init_dl_bw(struct dl_bw *dl_b)
61 {
62 	raw_spin_lock_init(&dl_b->lock);
63 	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
64 	if (global_rt_runtime() == RUNTIME_INF)
65 		dl_b->bw = -1;
66 	else
67 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
68 	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
69 	dl_b->total_bw = 0;
70 }
71 
72 void init_dl_rq(struct dl_rq *dl_rq)
73 {
74 	dl_rq->rb_root = RB_ROOT;
75 
76 #ifdef CONFIG_SMP
77 	/* zero means no -deadline tasks */
78 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
79 
80 	dl_rq->dl_nr_migratory = 0;
81 	dl_rq->overloaded = 0;
82 	dl_rq->pushable_dl_tasks_root = RB_ROOT;
83 #else
84 	init_dl_bw(&dl_rq->dl_bw);
85 #endif
86 }
87 
88 #ifdef CONFIG_SMP
89 
90 static inline int dl_overloaded(struct rq *rq)
91 {
92 	return atomic_read(&rq->rd->dlo_count);
93 }
94 
95 static inline void dl_set_overload(struct rq *rq)
96 {
97 	if (!rq->online)
98 		return;
99 
100 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
101 	/*
102 	 * Must be visible before the overload count is
103 	 * set (as in sched_rt.c).
104 	 *
105 	 * Matched by the barrier in pull_dl_task().
106 	 */
107 	smp_wmb();
108 	atomic_inc(&rq->rd->dlo_count);
109 }
110 
111 static inline void dl_clear_overload(struct rq *rq)
112 {
113 	if (!rq->online)
114 		return;
115 
116 	atomic_dec(&rq->rd->dlo_count);
117 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
118 }
119 
120 static void update_dl_migration(struct dl_rq *dl_rq)
121 {
122 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
123 		if (!dl_rq->overloaded) {
124 			dl_set_overload(rq_of_dl_rq(dl_rq));
125 			dl_rq->overloaded = 1;
126 		}
127 	} else if (dl_rq->overloaded) {
128 		dl_clear_overload(rq_of_dl_rq(dl_rq));
129 		dl_rq->overloaded = 0;
130 	}
131 }
132 
133 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
134 {
135 	struct task_struct *p = dl_task_of(dl_se);
136 
137 	if (p->nr_cpus_allowed > 1)
138 		dl_rq->dl_nr_migratory++;
139 
140 	update_dl_migration(dl_rq);
141 }
142 
143 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
144 {
145 	struct task_struct *p = dl_task_of(dl_se);
146 
147 	if (p->nr_cpus_allowed > 1)
148 		dl_rq->dl_nr_migratory--;
149 
150 	update_dl_migration(dl_rq);
151 }
152 
153 /*
154  * The list of pushable -deadline task is not a plist, like in
155  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
156  */
157 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
158 {
159 	struct dl_rq *dl_rq = &rq->dl;
160 	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
161 	struct rb_node *parent = NULL;
162 	struct task_struct *entry;
163 	int leftmost = 1;
164 
165 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
166 
167 	while (*link) {
168 		parent = *link;
169 		entry = rb_entry(parent, struct task_struct,
170 				 pushable_dl_tasks);
171 		if (dl_entity_preempt(&p->dl, &entry->dl))
172 			link = &parent->rb_left;
173 		else {
174 			link = &parent->rb_right;
175 			leftmost = 0;
176 		}
177 	}
178 
179 	if (leftmost)
180 		dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
181 
182 	rb_link_node(&p->pushable_dl_tasks, parent, link);
183 	rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
184 }
185 
186 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
187 {
188 	struct dl_rq *dl_rq = &rq->dl;
189 
190 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
191 		return;
192 
193 	if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
194 		struct rb_node *next_node;
195 
196 		next_node = rb_next(&p->pushable_dl_tasks);
197 		dl_rq->pushable_dl_tasks_leftmost = next_node;
198 	}
199 
200 	rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
201 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
202 }
203 
204 static inline int has_pushable_dl_tasks(struct rq *rq)
205 {
206 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
207 }
208 
209 static int push_dl_task(struct rq *rq);
210 
211 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
212 {
213 	return dl_task(prev);
214 }
215 
216 static inline void set_post_schedule(struct rq *rq)
217 {
218 	rq->post_schedule = has_pushable_dl_tasks(rq);
219 }
220 
221 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
222 
223 static void dl_task_offline_migration(struct rq *rq, struct task_struct *p)
224 {
225 	struct rq *later_rq = NULL;
226 	bool fallback = false;
227 
228 	later_rq = find_lock_later_rq(p, rq);
229 
230 	if (!later_rq) {
231 		int cpu;
232 
233 		/*
234 		 * If we cannot preempt any rq, fall back to pick any
235 		 * online cpu.
236 		 */
237 		fallback = true;
238 		cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
239 		if (cpu >= nr_cpu_ids) {
240 			/*
241 			 * Fail to find any suitable cpu.
242 			 * The task will never come back!
243 			 */
244 			BUG_ON(dl_bandwidth_enabled());
245 
246 			/*
247 			 * If admission control is disabled we
248 			 * try a little harder to let the task
249 			 * run.
250 			 */
251 			cpu = cpumask_any(cpu_active_mask);
252 		}
253 		later_rq = cpu_rq(cpu);
254 		double_lock_balance(rq, later_rq);
255 	}
256 
257 	deactivate_task(rq, p, 0);
258 	set_task_cpu(p, later_rq->cpu);
259 	activate_task(later_rq, p, ENQUEUE_REPLENISH);
260 
261 	if (!fallback)
262 		resched_curr(later_rq);
263 
264 	double_unlock_balance(rq, later_rq);
265 }
266 
267 #else
268 
269 static inline
270 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
271 {
272 }
273 
274 static inline
275 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
276 {
277 }
278 
279 static inline
280 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
281 {
282 }
283 
284 static inline
285 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
286 {
287 }
288 
289 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
290 {
291 	return false;
292 }
293 
294 static inline int pull_dl_task(struct rq *rq)
295 {
296 	return 0;
297 }
298 
299 static inline void set_post_schedule(struct rq *rq)
300 {
301 }
302 #endif /* CONFIG_SMP */
303 
304 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
305 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
306 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
307 				  int flags);
308 
309 /*
310  * We are being explicitly informed that a new instance is starting,
311  * and this means that:
312  *  - the absolute deadline of the entity has to be placed at
313  *    current time + relative deadline;
314  *  - the runtime of the entity has to be set to the maximum value.
315  *
316  * The capability of specifying such event is useful whenever a -deadline
317  * entity wants to (try to!) synchronize its behaviour with the scheduler's
318  * one, and to (try to!) reconcile itself with its own scheduling
319  * parameters.
320  */
321 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
322 				       struct sched_dl_entity *pi_se)
323 {
324 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
325 	struct rq *rq = rq_of_dl_rq(dl_rq);
326 
327 	WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
328 
329 	/*
330 	 * We use the regular wall clock time to set deadlines in the
331 	 * future; in fact, we must consider execution overheads (time
332 	 * spent on hardirq context, etc.).
333 	 */
334 	dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
335 	dl_se->runtime = pi_se->dl_runtime;
336 	dl_se->dl_new = 0;
337 }
338 
339 /*
340  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
341  * possibility of a entity lasting more than what it declared, and thus
342  * exhausting its runtime.
343  *
344  * Here we are interested in making runtime overrun possible, but we do
345  * not want a entity which is misbehaving to affect the scheduling of all
346  * other entities.
347  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
348  * is used, in order to confine each entity within its own bandwidth.
349  *
350  * This function deals exactly with that, and ensures that when the runtime
351  * of a entity is replenished, its deadline is also postponed. That ensures
352  * the overrunning entity can't interfere with other entity in the system and
353  * can't make them miss their deadlines. Reasons why this kind of overruns
354  * could happen are, typically, a entity voluntarily trying to overcome its
355  * runtime, or it just underestimated it during sched_setattr().
356  */
357 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
358 				struct sched_dl_entity *pi_se)
359 {
360 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
361 	struct rq *rq = rq_of_dl_rq(dl_rq);
362 
363 	BUG_ON(pi_se->dl_runtime <= 0);
364 
365 	/*
366 	 * This could be the case for a !-dl task that is boosted.
367 	 * Just go with full inherited parameters.
368 	 */
369 	if (dl_se->dl_deadline == 0) {
370 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
371 		dl_se->runtime = pi_se->dl_runtime;
372 	}
373 
374 	/*
375 	 * We keep moving the deadline away until we get some
376 	 * available runtime for the entity. This ensures correct
377 	 * handling of situations where the runtime overrun is
378 	 * arbitrary large.
379 	 */
380 	while (dl_se->runtime <= 0) {
381 		dl_se->deadline += pi_se->dl_period;
382 		dl_se->runtime += pi_se->dl_runtime;
383 	}
384 
385 	/*
386 	 * At this point, the deadline really should be "in
387 	 * the future" with respect to rq->clock. If it's
388 	 * not, we are, for some reason, lagging too much!
389 	 * Anyway, after having warn userspace abut that,
390 	 * we still try to keep the things running by
391 	 * resetting the deadline and the budget of the
392 	 * entity.
393 	 */
394 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
395 		printk_deferred_once("sched: DL replenish lagged to much\n");
396 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
397 		dl_se->runtime = pi_se->dl_runtime;
398 	}
399 
400 	if (dl_se->dl_yielded)
401 		dl_se->dl_yielded = 0;
402 	if (dl_se->dl_throttled)
403 		dl_se->dl_throttled = 0;
404 }
405 
406 /*
407  * Here we check if --at time t-- an entity (which is probably being
408  * [re]activated or, in general, enqueued) can use its remaining runtime
409  * and its current deadline _without_ exceeding the bandwidth it is
410  * assigned (function returns true if it can't). We are in fact applying
411  * one of the CBS rules: when a task wakes up, if the residual runtime
412  * over residual deadline fits within the allocated bandwidth, then we
413  * can keep the current (absolute) deadline and residual budget without
414  * disrupting the schedulability of the system. Otherwise, we should
415  * refill the runtime and set the deadline a period in the future,
416  * because keeping the current (absolute) deadline of the task would
417  * result in breaking guarantees promised to other tasks (refer to
418  * Documentation/scheduler/sched-deadline.txt for more informations).
419  *
420  * This function returns true if:
421  *
422  *   runtime / (deadline - t) > dl_runtime / dl_period ,
423  *
424  * IOW we can't recycle current parameters.
425  *
426  * Notice that the bandwidth check is done against the period. For
427  * task with deadline equal to period this is the same of using
428  * dl_deadline instead of dl_period in the equation above.
429  */
430 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
431 			       struct sched_dl_entity *pi_se, u64 t)
432 {
433 	u64 left, right;
434 
435 	/*
436 	 * left and right are the two sides of the equation above,
437 	 * after a bit of shuffling to use multiplications instead
438 	 * of divisions.
439 	 *
440 	 * Note that none of the time values involved in the two
441 	 * multiplications are absolute: dl_deadline and dl_runtime
442 	 * are the relative deadline and the maximum runtime of each
443 	 * instance, runtime is the runtime left for the last instance
444 	 * and (deadline - t), since t is rq->clock, is the time left
445 	 * to the (absolute) deadline. Even if overflowing the u64 type
446 	 * is very unlikely to occur in both cases, here we scale down
447 	 * as we want to avoid that risk at all. Scaling down by 10
448 	 * means that we reduce granularity to 1us. We are fine with it,
449 	 * since this is only a true/false check and, anyway, thinking
450 	 * of anything below microseconds resolution is actually fiction
451 	 * (but still we want to give the user that illusion >;).
452 	 */
453 	left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
454 	right = ((dl_se->deadline - t) >> DL_SCALE) *
455 		(pi_se->dl_runtime >> DL_SCALE);
456 
457 	return dl_time_before(right, left);
458 }
459 
460 /*
461  * When a -deadline entity is queued back on the runqueue, its runtime and
462  * deadline might need updating.
463  *
464  * The policy here is that we update the deadline of the entity only if:
465  *  - the current deadline is in the past,
466  *  - using the remaining runtime with the current deadline would make
467  *    the entity exceed its bandwidth.
468  */
469 static void update_dl_entity(struct sched_dl_entity *dl_se,
470 			     struct sched_dl_entity *pi_se)
471 {
472 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
473 	struct rq *rq = rq_of_dl_rq(dl_rq);
474 
475 	/*
476 	 * The arrival of a new instance needs special treatment, i.e.,
477 	 * the actual scheduling parameters have to be "renewed".
478 	 */
479 	if (dl_se->dl_new) {
480 		setup_new_dl_entity(dl_se, pi_se);
481 		return;
482 	}
483 
484 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
485 	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
486 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
487 		dl_se->runtime = pi_se->dl_runtime;
488 	}
489 }
490 
491 /*
492  * If the entity depleted all its runtime, and if we want it to sleep
493  * while waiting for some new execution time to become available, we
494  * set the bandwidth enforcement timer to the replenishment instant
495  * and try to activate it.
496  *
497  * Notice that it is important for the caller to know if the timer
498  * actually started or not (i.e., the replenishment instant is in
499  * the future or in the past).
500  */
501 static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted)
502 {
503 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
504 	struct rq *rq = rq_of_dl_rq(dl_rq);
505 	ktime_t now, act;
506 	ktime_t soft, hard;
507 	unsigned long range;
508 	s64 delta;
509 
510 	if (boosted)
511 		return 0;
512 	/*
513 	 * We want the timer to fire at the deadline, but considering
514 	 * that it is actually coming from rq->clock and not from
515 	 * hrtimer's time base reading.
516 	 */
517 	act = ns_to_ktime(dl_se->deadline);
518 	now = hrtimer_cb_get_time(&dl_se->dl_timer);
519 	delta = ktime_to_ns(now) - rq_clock(rq);
520 	act = ktime_add_ns(act, delta);
521 
522 	/*
523 	 * If the expiry time already passed, e.g., because the value
524 	 * chosen as the deadline is too small, don't even try to
525 	 * start the timer in the past!
526 	 */
527 	if (ktime_us_delta(act, now) < 0)
528 		return 0;
529 
530 	hrtimer_set_expires(&dl_se->dl_timer, act);
531 
532 	soft = hrtimer_get_softexpires(&dl_se->dl_timer);
533 	hard = hrtimer_get_expires(&dl_se->dl_timer);
534 	range = ktime_to_ns(ktime_sub(hard, soft));
535 	__hrtimer_start_range_ns(&dl_se->dl_timer, soft,
536 				 range, HRTIMER_MODE_ABS, 0);
537 
538 	return hrtimer_active(&dl_se->dl_timer);
539 }
540 
541 /*
542  * This is the bandwidth enforcement timer callback. If here, we know
543  * a task is not on its dl_rq, since the fact that the timer was running
544  * means the task is throttled and needs a runtime replenishment.
545  *
546  * However, what we actually do depends on the fact the task is active,
547  * (it is on its rq) or has been removed from there by a call to
548  * dequeue_task_dl(). In the former case we must issue the runtime
549  * replenishment and add the task back to the dl_rq; in the latter, we just
550  * do nothing but clearing dl_throttled, so that runtime and deadline
551  * updating (and the queueing back to dl_rq) will be done by the
552  * next call to enqueue_task_dl().
553  */
554 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
555 {
556 	struct sched_dl_entity *dl_se = container_of(timer,
557 						     struct sched_dl_entity,
558 						     dl_timer);
559 	struct task_struct *p = dl_task_of(dl_se);
560 	unsigned long flags;
561 	struct rq *rq;
562 
563 	rq = task_rq_lock(p, &flags);
564 
565 	/*
566 	 * We need to take care of several possible races here:
567 	 *
568 	 *   - the task might have changed its scheduling policy
569 	 *     to something different than SCHED_DEADLINE
570 	 *   - the task might have changed its reservation parameters
571 	 *     (through sched_setattr())
572 	 *   - the task might have been boosted by someone else and
573 	 *     might be in the boosting/deboosting path
574 	 *
575 	 * In all this cases we bail out, as the task is already
576 	 * in the runqueue or is going to be enqueued back anyway.
577 	 */
578 	if (!dl_task(p) || dl_se->dl_new ||
579 	    dl_se->dl_boosted || !dl_se->dl_throttled)
580 		goto unlock;
581 
582 	sched_clock_tick();
583 	update_rq_clock(rq);
584 
585 #ifdef CONFIG_SMP
586 	/*
587 	 * If we find that the rq the task was on is no longer
588 	 * available, we need to select a new rq.
589 	 */
590 	if (unlikely(!rq->online)) {
591 		dl_task_offline_migration(rq, p);
592 		goto unlock;
593 	}
594 #endif
595 
596 	/*
597 	 * If the throttle happened during sched-out; like:
598 	 *
599 	 *   schedule()
600 	 *     deactivate_task()
601 	 *       dequeue_task_dl()
602 	 *         update_curr_dl()
603 	 *           start_dl_timer()
604 	 *         __dequeue_task_dl()
605 	 *     prev->on_rq = 0;
606 	 *
607 	 * We can be both throttled and !queued. Replenish the counter
608 	 * but do not enqueue -- wait for our wakeup to do that.
609 	 */
610 	if (!task_on_rq_queued(p)) {
611 		replenish_dl_entity(dl_se, dl_se);
612 		goto unlock;
613 	}
614 
615 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
616 	if (dl_task(rq->curr))
617 		check_preempt_curr_dl(rq, p, 0);
618 	else
619 		resched_curr(rq);
620 #ifdef CONFIG_SMP
621 	/*
622 	 * Queueing this task back might have overloaded rq,
623 	 * check if we need to kick someone away.
624 	 */
625 	if (has_pushable_dl_tasks(rq))
626 		push_dl_task(rq);
627 #endif
628 unlock:
629 	task_rq_unlock(rq, p, &flags);
630 
631 	return HRTIMER_NORESTART;
632 }
633 
634 void init_dl_task_timer(struct sched_dl_entity *dl_se)
635 {
636 	struct hrtimer *timer = &dl_se->dl_timer;
637 
638 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
639 	timer->function = dl_task_timer;
640 }
641 
642 static
643 int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se)
644 {
645 	return (dl_se->runtime <= 0);
646 }
647 
648 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
649 
650 /*
651  * Update the current task's runtime statistics (provided it is still
652  * a -deadline task and has not been removed from the dl_rq).
653  */
654 static void update_curr_dl(struct rq *rq)
655 {
656 	struct task_struct *curr = rq->curr;
657 	struct sched_dl_entity *dl_se = &curr->dl;
658 	u64 delta_exec;
659 
660 	if (!dl_task(curr) || !on_dl_rq(dl_se))
661 		return;
662 
663 	/*
664 	 * Consumed budget is computed considering the time as
665 	 * observed by schedulable tasks (excluding time spent
666 	 * in hardirq context, etc.). Deadlines are instead
667 	 * computed using hard walltime. This seems to be the more
668 	 * natural solution, but the full ramifications of this
669 	 * approach need further study.
670 	 */
671 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
672 	if (unlikely((s64)delta_exec <= 0))
673 		return;
674 
675 	schedstat_set(curr->se.statistics.exec_max,
676 		      max(curr->se.statistics.exec_max, delta_exec));
677 
678 	curr->se.sum_exec_runtime += delta_exec;
679 	account_group_exec_runtime(curr, delta_exec);
680 
681 	curr->se.exec_start = rq_clock_task(rq);
682 	cpuacct_charge(curr, delta_exec);
683 
684 	sched_rt_avg_update(rq, delta_exec);
685 
686 	dl_se->runtime -= dl_se->dl_yielded ? 0 : delta_exec;
687 	if (dl_runtime_exceeded(rq, dl_se)) {
688 		dl_se->dl_throttled = 1;
689 		__dequeue_task_dl(rq, curr, 0);
690 		if (unlikely(!start_dl_timer(dl_se, curr->dl.dl_boosted)))
691 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
692 
693 		if (!is_leftmost(curr, &rq->dl))
694 			resched_curr(rq);
695 	}
696 
697 	/*
698 	 * Because -- for now -- we share the rt bandwidth, we need to
699 	 * account our runtime there too, otherwise actual rt tasks
700 	 * would be able to exceed the shared quota.
701 	 *
702 	 * Account to the root rt group for now.
703 	 *
704 	 * The solution we're working towards is having the RT groups scheduled
705 	 * using deadline servers -- however there's a few nasties to figure
706 	 * out before that can happen.
707 	 */
708 	if (rt_bandwidth_enabled()) {
709 		struct rt_rq *rt_rq = &rq->rt;
710 
711 		raw_spin_lock(&rt_rq->rt_runtime_lock);
712 		/*
713 		 * We'll let actual RT tasks worry about the overflow here, we
714 		 * have our own CBS to keep us inline; only account when RT
715 		 * bandwidth is relevant.
716 		 */
717 		if (sched_rt_bandwidth_account(rt_rq))
718 			rt_rq->rt_time += delta_exec;
719 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
720 	}
721 }
722 
723 #ifdef CONFIG_SMP
724 
725 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);
726 
727 static inline u64 next_deadline(struct rq *rq)
728 {
729 	struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);
730 
731 	if (next && dl_prio(next->prio))
732 		return next->dl.deadline;
733 	else
734 		return 0;
735 }
736 
737 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
738 {
739 	struct rq *rq = rq_of_dl_rq(dl_rq);
740 
741 	if (dl_rq->earliest_dl.curr == 0 ||
742 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
743 		/*
744 		 * If the dl_rq had no -deadline tasks, or if the new task
745 		 * has shorter deadline than the current one on dl_rq, we
746 		 * know that the previous earliest becomes our next earliest,
747 		 * as the new task becomes the earliest itself.
748 		 */
749 		dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
750 		dl_rq->earliest_dl.curr = deadline;
751 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
752 	} else if (dl_rq->earliest_dl.next == 0 ||
753 		   dl_time_before(deadline, dl_rq->earliest_dl.next)) {
754 		/*
755 		 * On the other hand, if the new -deadline task has a
756 		 * a later deadline than the earliest one on dl_rq, but
757 		 * it is earlier than the next (if any), we must
758 		 * recompute the next-earliest.
759 		 */
760 		dl_rq->earliest_dl.next = next_deadline(rq);
761 	}
762 }
763 
764 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
765 {
766 	struct rq *rq = rq_of_dl_rq(dl_rq);
767 
768 	/*
769 	 * Since we may have removed our earliest (and/or next earliest)
770 	 * task we must recompute them.
771 	 */
772 	if (!dl_rq->dl_nr_running) {
773 		dl_rq->earliest_dl.curr = 0;
774 		dl_rq->earliest_dl.next = 0;
775 		cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
776 	} else {
777 		struct rb_node *leftmost = dl_rq->rb_leftmost;
778 		struct sched_dl_entity *entry;
779 
780 		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
781 		dl_rq->earliest_dl.curr = entry->deadline;
782 		dl_rq->earliest_dl.next = next_deadline(rq);
783 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
784 	}
785 }
786 
787 #else
788 
789 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
790 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
791 
792 #endif /* CONFIG_SMP */
793 
794 static inline
795 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
796 {
797 	int prio = dl_task_of(dl_se)->prio;
798 	u64 deadline = dl_se->deadline;
799 
800 	WARN_ON(!dl_prio(prio));
801 	dl_rq->dl_nr_running++;
802 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
803 
804 	inc_dl_deadline(dl_rq, deadline);
805 	inc_dl_migration(dl_se, dl_rq);
806 }
807 
808 static inline
809 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
810 {
811 	int prio = dl_task_of(dl_se)->prio;
812 
813 	WARN_ON(!dl_prio(prio));
814 	WARN_ON(!dl_rq->dl_nr_running);
815 	dl_rq->dl_nr_running--;
816 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
817 
818 	dec_dl_deadline(dl_rq, dl_se->deadline);
819 	dec_dl_migration(dl_se, dl_rq);
820 }
821 
822 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
823 {
824 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
825 	struct rb_node **link = &dl_rq->rb_root.rb_node;
826 	struct rb_node *parent = NULL;
827 	struct sched_dl_entity *entry;
828 	int leftmost = 1;
829 
830 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
831 
832 	while (*link) {
833 		parent = *link;
834 		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
835 		if (dl_time_before(dl_se->deadline, entry->deadline))
836 			link = &parent->rb_left;
837 		else {
838 			link = &parent->rb_right;
839 			leftmost = 0;
840 		}
841 	}
842 
843 	if (leftmost)
844 		dl_rq->rb_leftmost = &dl_se->rb_node;
845 
846 	rb_link_node(&dl_se->rb_node, parent, link);
847 	rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
848 
849 	inc_dl_tasks(dl_se, dl_rq);
850 }
851 
852 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
853 {
854 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
855 
856 	if (RB_EMPTY_NODE(&dl_se->rb_node))
857 		return;
858 
859 	if (dl_rq->rb_leftmost == &dl_se->rb_node) {
860 		struct rb_node *next_node;
861 
862 		next_node = rb_next(&dl_se->rb_node);
863 		dl_rq->rb_leftmost = next_node;
864 	}
865 
866 	rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
867 	RB_CLEAR_NODE(&dl_se->rb_node);
868 
869 	dec_dl_tasks(dl_se, dl_rq);
870 }
871 
872 static void
873 enqueue_dl_entity(struct sched_dl_entity *dl_se,
874 		  struct sched_dl_entity *pi_se, int flags)
875 {
876 	BUG_ON(on_dl_rq(dl_se));
877 
878 	/*
879 	 * If this is a wakeup or a new instance, the scheduling
880 	 * parameters of the task might need updating. Otherwise,
881 	 * we want a replenishment of its runtime.
882 	 */
883 	if (dl_se->dl_new || flags & ENQUEUE_WAKEUP)
884 		update_dl_entity(dl_se, pi_se);
885 	else if (flags & ENQUEUE_REPLENISH)
886 		replenish_dl_entity(dl_se, pi_se);
887 
888 	__enqueue_dl_entity(dl_se);
889 }
890 
891 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
892 {
893 	__dequeue_dl_entity(dl_se);
894 }
895 
896 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
897 {
898 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
899 	struct sched_dl_entity *pi_se = &p->dl;
900 
901 	/*
902 	 * Use the scheduling parameters of the top pi-waiter
903 	 * task if we have one and its (relative) deadline is
904 	 * smaller than our one... OTW we keep our runtime and
905 	 * deadline.
906 	 */
907 	if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
908 		pi_se = &pi_task->dl;
909 	} else if (!dl_prio(p->normal_prio)) {
910 		/*
911 		 * Special case in which we have a !SCHED_DEADLINE task
912 		 * that is going to be deboosted, but exceedes its
913 		 * runtime while doing so. No point in replenishing
914 		 * it, as it's going to return back to its original
915 		 * scheduling class after this.
916 		 */
917 		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
918 		return;
919 	}
920 
921 	/*
922 	 * If p is throttled, we do nothing. In fact, if it exhausted
923 	 * its budget it needs a replenishment and, since it now is on
924 	 * its rq, the bandwidth timer callback (which clearly has not
925 	 * run yet) will take care of this.
926 	 */
927 	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
928 		return;
929 
930 	enqueue_dl_entity(&p->dl, pi_se, flags);
931 
932 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
933 		enqueue_pushable_dl_task(rq, p);
934 }
935 
936 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
937 {
938 	dequeue_dl_entity(&p->dl);
939 	dequeue_pushable_dl_task(rq, p);
940 }
941 
942 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
943 {
944 	update_curr_dl(rq);
945 	__dequeue_task_dl(rq, p, flags);
946 }
947 
948 /*
949  * Yield task semantic for -deadline tasks is:
950  *
951  *   get off from the CPU until our next instance, with
952  *   a new runtime. This is of little use now, since we
953  *   don't have a bandwidth reclaiming mechanism. Anyway,
954  *   bandwidth reclaiming is planned for the future, and
955  *   yield_task_dl will indicate that some spare budget
956  *   is available for other task instances to use it.
957  */
958 static void yield_task_dl(struct rq *rq)
959 {
960 	struct task_struct *p = rq->curr;
961 
962 	/*
963 	 * We make the task go to sleep until its current deadline by
964 	 * forcing its runtime to zero. This way, update_curr_dl() stops
965 	 * it and the bandwidth timer will wake it up and will give it
966 	 * new scheduling parameters (thanks to dl_yielded=1).
967 	 */
968 	if (p->dl.runtime > 0) {
969 		rq->curr->dl.dl_yielded = 1;
970 		p->dl.runtime = 0;
971 	}
972 	update_rq_clock(rq);
973 	update_curr_dl(rq);
974 	/*
975 	 * Tell update_rq_clock() that we've just updated,
976 	 * so we don't do microscopic update in schedule()
977 	 * and double the fastpath cost.
978 	 */
979 	rq_clock_skip_update(rq, true);
980 }
981 
982 #ifdef CONFIG_SMP
983 
984 static int find_later_rq(struct task_struct *task);
985 
986 static int
987 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
988 {
989 	struct task_struct *curr;
990 	struct rq *rq;
991 
992 	if (sd_flag != SD_BALANCE_WAKE)
993 		goto out;
994 
995 	rq = cpu_rq(cpu);
996 
997 	rcu_read_lock();
998 	curr = ACCESS_ONCE(rq->curr); /* unlocked access */
999 
1000 	/*
1001 	 * If we are dealing with a -deadline task, we must
1002 	 * decide where to wake it up.
1003 	 * If it has a later deadline and the current task
1004 	 * on this rq can't move (provided the waking task
1005 	 * can!) we prefer to send it somewhere else. On the
1006 	 * other hand, if it has a shorter deadline, we
1007 	 * try to make it stay here, it might be important.
1008 	 */
1009 	if (unlikely(dl_task(curr)) &&
1010 	    (curr->nr_cpus_allowed < 2 ||
1011 	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1012 	    (p->nr_cpus_allowed > 1)) {
1013 		int target = find_later_rq(p);
1014 
1015 		if (target != -1)
1016 			cpu = target;
1017 	}
1018 	rcu_read_unlock();
1019 
1020 out:
1021 	return cpu;
1022 }
1023 
1024 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1025 {
1026 	/*
1027 	 * Current can't be migrated, useless to reschedule,
1028 	 * let's hope p can move out.
1029 	 */
1030 	if (rq->curr->nr_cpus_allowed == 1 ||
1031 	    cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1032 		return;
1033 
1034 	/*
1035 	 * p is migratable, so let's not schedule it and
1036 	 * see if it is pushed or pulled somewhere else.
1037 	 */
1038 	if (p->nr_cpus_allowed != 1 &&
1039 	    cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1040 		return;
1041 
1042 	resched_curr(rq);
1043 }
1044 
1045 static int pull_dl_task(struct rq *this_rq);
1046 
1047 #endif /* CONFIG_SMP */
1048 
1049 /*
1050  * Only called when both the current and waking task are -deadline
1051  * tasks.
1052  */
1053 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1054 				  int flags)
1055 {
1056 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1057 		resched_curr(rq);
1058 		return;
1059 	}
1060 
1061 #ifdef CONFIG_SMP
1062 	/*
1063 	 * In the unlikely case current and p have the same deadline
1064 	 * let us try to decide what's the best thing to do...
1065 	 */
1066 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1067 	    !test_tsk_need_resched(rq->curr))
1068 		check_preempt_equal_dl(rq, p);
1069 #endif /* CONFIG_SMP */
1070 }
1071 
1072 #ifdef CONFIG_SCHED_HRTICK
1073 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1074 {
1075 	hrtick_start(rq, p->dl.runtime);
1076 }
1077 #else /* !CONFIG_SCHED_HRTICK */
1078 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1079 {
1080 }
1081 #endif
1082 
1083 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1084 						   struct dl_rq *dl_rq)
1085 {
1086 	struct rb_node *left = dl_rq->rb_leftmost;
1087 
1088 	if (!left)
1089 		return NULL;
1090 
1091 	return rb_entry(left, struct sched_dl_entity, rb_node);
1092 }
1093 
1094 struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
1095 {
1096 	struct sched_dl_entity *dl_se;
1097 	struct task_struct *p;
1098 	struct dl_rq *dl_rq;
1099 
1100 	dl_rq = &rq->dl;
1101 
1102 	if (need_pull_dl_task(rq, prev)) {
1103 		pull_dl_task(rq);
1104 		/*
1105 		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1106 		 * means a stop task can slip in, in which case we need to
1107 		 * re-start task selection.
1108 		 */
1109 		if (rq->stop && task_on_rq_queued(rq->stop))
1110 			return RETRY_TASK;
1111 	}
1112 
1113 	/*
1114 	 * When prev is DL, we may throttle it in put_prev_task().
1115 	 * So, we update time before we check for dl_nr_running.
1116 	 */
1117 	if (prev->sched_class == &dl_sched_class)
1118 		update_curr_dl(rq);
1119 
1120 	if (unlikely(!dl_rq->dl_nr_running))
1121 		return NULL;
1122 
1123 	put_prev_task(rq, prev);
1124 
1125 	dl_se = pick_next_dl_entity(rq, dl_rq);
1126 	BUG_ON(!dl_se);
1127 
1128 	p = dl_task_of(dl_se);
1129 	p->se.exec_start = rq_clock_task(rq);
1130 
1131 	/* Running task will never be pushed. */
1132        dequeue_pushable_dl_task(rq, p);
1133 
1134 	if (hrtick_enabled(rq))
1135 		start_hrtick_dl(rq, p);
1136 
1137 	set_post_schedule(rq);
1138 
1139 	return p;
1140 }
1141 
1142 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1143 {
1144 	update_curr_dl(rq);
1145 
1146 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1147 		enqueue_pushable_dl_task(rq, p);
1148 }
1149 
1150 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1151 {
1152 	update_curr_dl(rq);
1153 
1154 	/*
1155 	 * Even when we have runtime, update_curr_dl() might have resulted in us
1156 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
1157 	 * be set and schedule() will start a new hrtick for the next task.
1158 	 */
1159 	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1160 	    is_leftmost(p, &rq->dl))
1161 		start_hrtick_dl(rq, p);
1162 }
1163 
1164 static void task_fork_dl(struct task_struct *p)
1165 {
1166 	/*
1167 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1168 	 * sched_fork()
1169 	 */
1170 }
1171 
1172 static void task_dead_dl(struct task_struct *p)
1173 {
1174 	struct hrtimer *timer = &p->dl.dl_timer;
1175 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1176 
1177 	/*
1178 	 * Since we are TASK_DEAD we won't slip out of the domain!
1179 	 */
1180 	raw_spin_lock_irq(&dl_b->lock);
1181 	/* XXX we should retain the bw until 0-lag */
1182 	dl_b->total_bw -= p->dl.dl_bw;
1183 	raw_spin_unlock_irq(&dl_b->lock);
1184 
1185 	hrtimer_cancel(timer);
1186 }
1187 
1188 static void set_curr_task_dl(struct rq *rq)
1189 {
1190 	struct task_struct *p = rq->curr;
1191 
1192 	p->se.exec_start = rq_clock_task(rq);
1193 
1194 	/* You can't push away the running task */
1195 	dequeue_pushable_dl_task(rq, p);
1196 }
1197 
1198 #ifdef CONFIG_SMP
1199 
1200 /* Only try algorithms three times */
1201 #define DL_MAX_TRIES 3
1202 
1203 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1204 {
1205 	if (!task_running(rq, p) &&
1206 	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1207 		return 1;
1208 	return 0;
1209 }
1210 
1211 /* Returns the second earliest -deadline task, NULL otherwise */
1212 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
1213 {
1214 	struct rb_node *next_node = rq->dl.rb_leftmost;
1215 	struct sched_dl_entity *dl_se;
1216 	struct task_struct *p = NULL;
1217 
1218 next_node:
1219 	next_node = rb_next(next_node);
1220 	if (next_node) {
1221 		dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
1222 		p = dl_task_of(dl_se);
1223 
1224 		if (pick_dl_task(rq, p, cpu))
1225 			return p;
1226 
1227 		goto next_node;
1228 	}
1229 
1230 	return NULL;
1231 }
1232 
1233 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1234 
1235 static int find_later_rq(struct task_struct *task)
1236 {
1237 	struct sched_domain *sd;
1238 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1239 	int this_cpu = smp_processor_id();
1240 	int best_cpu, cpu = task_cpu(task);
1241 
1242 	/* Make sure the mask is initialized first */
1243 	if (unlikely(!later_mask))
1244 		return -1;
1245 
1246 	if (task->nr_cpus_allowed == 1)
1247 		return -1;
1248 
1249 	/*
1250 	 * We have to consider system topology and task affinity
1251 	 * first, then we can look for a suitable cpu.
1252 	 */
1253 	best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1254 			task, later_mask);
1255 	if (best_cpu == -1)
1256 		return -1;
1257 
1258 	/*
1259 	 * If we are here, some target has been found,
1260 	 * the most suitable of which is cached in best_cpu.
1261 	 * This is, among the runqueues where the current tasks
1262 	 * have later deadlines than the task's one, the rq
1263 	 * with the latest possible one.
1264 	 *
1265 	 * Now we check how well this matches with task's
1266 	 * affinity and system topology.
1267 	 *
1268 	 * The last cpu where the task run is our first
1269 	 * guess, since it is most likely cache-hot there.
1270 	 */
1271 	if (cpumask_test_cpu(cpu, later_mask))
1272 		return cpu;
1273 	/*
1274 	 * Check if this_cpu is to be skipped (i.e., it is
1275 	 * not in the mask) or not.
1276 	 */
1277 	if (!cpumask_test_cpu(this_cpu, later_mask))
1278 		this_cpu = -1;
1279 
1280 	rcu_read_lock();
1281 	for_each_domain(cpu, sd) {
1282 		if (sd->flags & SD_WAKE_AFFINE) {
1283 
1284 			/*
1285 			 * If possible, preempting this_cpu is
1286 			 * cheaper than migrating.
1287 			 */
1288 			if (this_cpu != -1 &&
1289 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1290 				rcu_read_unlock();
1291 				return this_cpu;
1292 			}
1293 
1294 			/*
1295 			 * Last chance: if best_cpu is valid and is
1296 			 * in the mask, that becomes our choice.
1297 			 */
1298 			if (best_cpu < nr_cpu_ids &&
1299 			    cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1300 				rcu_read_unlock();
1301 				return best_cpu;
1302 			}
1303 		}
1304 	}
1305 	rcu_read_unlock();
1306 
1307 	/*
1308 	 * At this point, all our guesses failed, we just return
1309 	 * 'something', and let the caller sort the things out.
1310 	 */
1311 	if (this_cpu != -1)
1312 		return this_cpu;
1313 
1314 	cpu = cpumask_any(later_mask);
1315 	if (cpu < nr_cpu_ids)
1316 		return cpu;
1317 
1318 	return -1;
1319 }
1320 
1321 /* Locks the rq it finds */
1322 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1323 {
1324 	struct rq *later_rq = NULL;
1325 	int tries;
1326 	int cpu;
1327 
1328 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1329 		cpu = find_later_rq(task);
1330 
1331 		if ((cpu == -1) || (cpu == rq->cpu))
1332 			break;
1333 
1334 		later_rq = cpu_rq(cpu);
1335 
1336 		/* Retry if something changed. */
1337 		if (double_lock_balance(rq, later_rq)) {
1338 			if (unlikely(task_rq(task) != rq ||
1339 				     !cpumask_test_cpu(later_rq->cpu,
1340 				                       &task->cpus_allowed) ||
1341 				     task_running(rq, task) ||
1342 				     !task_on_rq_queued(task))) {
1343 				double_unlock_balance(rq, later_rq);
1344 				later_rq = NULL;
1345 				break;
1346 			}
1347 		}
1348 
1349 		/*
1350 		 * If the rq we found has no -deadline task, or
1351 		 * its earliest one has a later deadline than our
1352 		 * task, the rq is a good one.
1353 		 */
1354 		if (!later_rq->dl.dl_nr_running ||
1355 		    dl_time_before(task->dl.deadline,
1356 				   later_rq->dl.earliest_dl.curr))
1357 			break;
1358 
1359 		/* Otherwise we try again. */
1360 		double_unlock_balance(rq, later_rq);
1361 		later_rq = NULL;
1362 	}
1363 
1364 	return later_rq;
1365 }
1366 
1367 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1368 {
1369 	struct task_struct *p;
1370 
1371 	if (!has_pushable_dl_tasks(rq))
1372 		return NULL;
1373 
1374 	p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1375 		     struct task_struct, pushable_dl_tasks);
1376 
1377 	BUG_ON(rq->cpu != task_cpu(p));
1378 	BUG_ON(task_current(rq, p));
1379 	BUG_ON(p->nr_cpus_allowed <= 1);
1380 
1381 	BUG_ON(!task_on_rq_queued(p));
1382 	BUG_ON(!dl_task(p));
1383 
1384 	return p;
1385 }
1386 
1387 /*
1388  * See if the non running -deadline tasks on this rq
1389  * can be sent to some other CPU where they can preempt
1390  * and start executing.
1391  */
1392 static int push_dl_task(struct rq *rq)
1393 {
1394 	struct task_struct *next_task;
1395 	struct rq *later_rq;
1396 	int ret = 0;
1397 
1398 	if (!rq->dl.overloaded)
1399 		return 0;
1400 
1401 	next_task = pick_next_pushable_dl_task(rq);
1402 	if (!next_task)
1403 		return 0;
1404 
1405 retry:
1406 	if (unlikely(next_task == rq->curr)) {
1407 		WARN_ON(1);
1408 		return 0;
1409 	}
1410 
1411 	/*
1412 	 * If next_task preempts rq->curr, and rq->curr
1413 	 * can move away, it makes sense to just reschedule
1414 	 * without going further in pushing next_task.
1415 	 */
1416 	if (dl_task(rq->curr) &&
1417 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1418 	    rq->curr->nr_cpus_allowed > 1) {
1419 		resched_curr(rq);
1420 		return 0;
1421 	}
1422 
1423 	/* We might release rq lock */
1424 	get_task_struct(next_task);
1425 
1426 	/* Will lock the rq it'll find */
1427 	later_rq = find_lock_later_rq(next_task, rq);
1428 	if (!later_rq) {
1429 		struct task_struct *task;
1430 
1431 		/*
1432 		 * We must check all this again, since
1433 		 * find_lock_later_rq releases rq->lock and it is
1434 		 * then possible that next_task has migrated.
1435 		 */
1436 		task = pick_next_pushable_dl_task(rq);
1437 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1438 			/*
1439 			 * The task is still there. We don't try
1440 			 * again, some other cpu will pull it when ready.
1441 			 */
1442 			goto out;
1443 		}
1444 
1445 		if (!task)
1446 			/* No more tasks */
1447 			goto out;
1448 
1449 		put_task_struct(next_task);
1450 		next_task = task;
1451 		goto retry;
1452 	}
1453 
1454 	deactivate_task(rq, next_task, 0);
1455 	set_task_cpu(next_task, later_rq->cpu);
1456 	activate_task(later_rq, next_task, 0);
1457 	ret = 1;
1458 
1459 	resched_curr(later_rq);
1460 
1461 	double_unlock_balance(rq, later_rq);
1462 
1463 out:
1464 	put_task_struct(next_task);
1465 
1466 	return ret;
1467 }
1468 
1469 static void push_dl_tasks(struct rq *rq)
1470 {
1471 	/* Terminates as it moves a -deadline task */
1472 	while (push_dl_task(rq))
1473 		;
1474 }
1475 
1476 static int pull_dl_task(struct rq *this_rq)
1477 {
1478 	int this_cpu = this_rq->cpu, ret = 0, cpu;
1479 	struct task_struct *p;
1480 	struct rq *src_rq;
1481 	u64 dmin = LONG_MAX;
1482 
1483 	if (likely(!dl_overloaded(this_rq)))
1484 		return 0;
1485 
1486 	/*
1487 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
1488 	 * see overloaded we must also see the dlo_mask bit.
1489 	 */
1490 	smp_rmb();
1491 
1492 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1493 		if (this_cpu == cpu)
1494 			continue;
1495 
1496 		src_rq = cpu_rq(cpu);
1497 
1498 		/*
1499 		 * It looks racy, abd it is! However, as in sched_rt.c,
1500 		 * we are fine with this.
1501 		 */
1502 		if (this_rq->dl.dl_nr_running &&
1503 		    dl_time_before(this_rq->dl.earliest_dl.curr,
1504 				   src_rq->dl.earliest_dl.next))
1505 			continue;
1506 
1507 		/* Might drop this_rq->lock */
1508 		double_lock_balance(this_rq, src_rq);
1509 
1510 		/*
1511 		 * If there are no more pullable tasks on the
1512 		 * rq, we're done with it.
1513 		 */
1514 		if (src_rq->dl.dl_nr_running <= 1)
1515 			goto skip;
1516 
1517 		p = pick_next_earliest_dl_task(src_rq, this_cpu);
1518 
1519 		/*
1520 		 * We found a task to be pulled if:
1521 		 *  - it preempts our current (if there's one),
1522 		 *  - it will preempt the last one we pulled (if any).
1523 		 */
1524 		if (p && dl_time_before(p->dl.deadline, dmin) &&
1525 		    (!this_rq->dl.dl_nr_running ||
1526 		     dl_time_before(p->dl.deadline,
1527 				    this_rq->dl.earliest_dl.curr))) {
1528 			WARN_ON(p == src_rq->curr);
1529 			WARN_ON(!task_on_rq_queued(p));
1530 
1531 			/*
1532 			 * Then we pull iff p has actually an earlier
1533 			 * deadline than the current task of its runqueue.
1534 			 */
1535 			if (dl_time_before(p->dl.deadline,
1536 					   src_rq->curr->dl.deadline))
1537 				goto skip;
1538 
1539 			ret = 1;
1540 
1541 			deactivate_task(src_rq, p, 0);
1542 			set_task_cpu(p, this_cpu);
1543 			activate_task(this_rq, p, 0);
1544 			dmin = p->dl.deadline;
1545 
1546 			/* Is there any other task even earlier? */
1547 		}
1548 skip:
1549 		double_unlock_balance(this_rq, src_rq);
1550 	}
1551 
1552 	return ret;
1553 }
1554 
1555 static void post_schedule_dl(struct rq *rq)
1556 {
1557 	push_dl_tasks(rq);
1558 }
1559 
1560 /*
1561  * Since the task is not running and a reschedule is not going to happen
1562  * anytime soon on its runqueue, we try pushing it away now.
1563  */
1564 static void task_woken_dl(struct rq *rq, struct task_struct *p)
1565 {
1566 	if (!task_running(rq, p) &&
1567 	    !test_tsk_need_resched(rq->curr) &&
1568 	    has_pushable_dl_tasks(rq) &&
1569 	    p->nr_cpus_allowed > 1 &&
1570 	    dl_task(rq->curr) &&
1571 	    (rq->curr->nr_cpus_allowed < 2 ||
1572 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1573 		push_dl_tasks(rq);
1574 	}
1575 }
1576 
1577 static void set_cpus_allowed_dl(struct task_struct *p,
1578 				const struct cpumask *new_mask)
1579 {
1580 	struct rq *rq;
1581 	struct root_domain *src_rd;
1582 	int weight;
1583 
1584 	BUG_ON(!dl_task(p));
1585 
1586 	rq = task_rq(p);
1587 	src_rd = rq->rd;
1588 	/*
1589 	 * Migrating a SCHED_DEADLINE task between exclusive
1590 	 * cpusets (different root_domains) entails a bandwidth
1591 	 * update. We already made space for us in the destination
1592 	 * domain (see cpuset_can_attach()).
1593 	 */
1594 	if (!cpumask_intersects(src_rd->span, new_mask)) {
1595 		struct dl_bw *src_dl_b;
1596 
1597 		src_dl_b = dl_bw_of(cpu_of(rq));
1598 		/*
1599 		 * We now free resources of the root_domain we are migrating
1600 		 * off. In the worst case, sched_setattr() may temporary fail
1601 		 * until we complete the update.
1602 		 */
1603 		raw_spin_lock(&src_dl_b->lock);
1604 		__dl_clear(src_dl_b, p->dl.dl_bw);
1605 		raw_spin_unlock(&src_dl_b->lock);
1606 	}
1607 
1608 	/*
1609 	 * Update only if the task is actually running (i.e.,
1610 	 * it is on the rq AND it is not throttled).
1611 	 */
1612 	if (!on_dl_rq(&p->dl))
1613 		return;
1614 
1615 	weight = cpumask_weight(new_mask);
1616 
1617 	/*
1618 	 * Only update if the process changes its state from whether it
1619 	 * can migrate or not.
1620 	 */
1621 	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1622 		return;
1623 
1624 	/*
1625 	 * The process used to be able to migrate OR it can now migrate
1626 	 */
1627 	if (weight <= 1) {
1628 		if (!task_current(rq, p))
1629 			dequeue_pushable_dl_task(rq, p);
1630 		BUG_ON(!rq->dl.dl_nr_migratory);
1631 		rq->dl.dl_nr_migratory--;
1632 	} else {
1633 		if (!task_current(rq, p))
1634 			enqueue_pushable_dl_task(rq, p);
1635 		rq->dl.dl_nr_migratory++;
1636 	}
1637 
1638 	update_dl_migration(&rq->dl);
1639 }
1640 
1641 /* Assumes rq->lock is held */
1642 static void rq_online_dl(struct rq *rq)
1643 {
1644 	if (rq->dl.overloaded)
1645 		dl_set_overload(rq);
1646 
1647 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
1648 	if (rq->dl.dl_nr_running > 0)
1649 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1650 }
1651 
1652 /* Assumes rq->lock is held */
1653 static void rq_offline_dl(struct rq *rq)
1654 {
1655 	if (rq->dl.overloaded)
1656 		dl_clear_overload(rq);
1657 
1658 	cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1659 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1660 }
1661 
1662 void init_sched_dl_class(void)
1663 {
1664 	unsigned int i;
1665 
1666 	for_each_possible_cpu(i)
1667 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1668 					GFP_KERNEL, cpu_to_node(i));
1669 }
1670 
1671 #endif /* CONFIG_SMP */
1672 
1673 /*
1674  *  Ensure p's dl_timer is cancelled. May drop rq->lock for a while.
1675  */
1676 static void cancel_dl_timer(struct rq *rq, struct task_struct *p)
1677 {
1678 	struct hrtimer *dl_timer = &p->dl.dl_timer;
1679 
1680 	/* Nobody will change task's class if pi_lock is held */
1681 	lockdep_assert_held(&p->pi_lock);
1682 
1683 	if (hrtimer_active(dl_timer)) {
1684 		int ret = hrtimer_try_to_cancel(dl_timer);
1685 
1686 		if (unlikely(ret == -1)) {
1687 			/*
1688 			 * Note, p may migrate OR new deadline tasks
1689 			 * may appear in rq when we are unlocking it.
1690 			 * A caller of us must be fine with that.
1691 			 */
1692 			raw_spin_unlock(&rq->lock);
1693 			hrtimer_cancel(dl_timer);
1694 			raw_spin_lock(&rq->lock);
1695 		}
1696 	}
1697 }
1698 
1699 static void switched_from_dl(struct rq *rq, struct task_struct *p)
1700 {
1701 	/* XXX we should retain the bw until 0-lag */
1702 	cancel_dl_timer(rq, p);
1703 	__dl_clear_params(p);
1704 
1705 	/*
1706 	 * Since this might be the only -deadline task on the rq,
1707 	 * this is the right place to try to pull some other one
1708 	 * from an overloaded cpu, if any.
1709 	 */
1710 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1711 		return;
1712 
1713 	if (pull_dl_task(rq))
1714 		resched_curr(rq);
1715 }
1716 
1717 /*
1718  * When switching to -deadline, we may overload the rq, then
1719  * we try to push someone off, if possible.
1720  */
1721 static void switched_to_dl(struct rq *rq, struct task_struct *p)
1722 {
1723 	int check_resched = 1;
1724 
1725 	if (task_on_rq_queued(p) && rq->curr != p) {
1726 #ifdef CONFIG_SMP
1727 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded &&
1728 			push_dl_task(rq) && rq != task_rq(p))
1729 			/* Only reschedule if pushing failed */
1730 			check_resched = 0;
1731 #endif /* CONFIG_SMP */
1732 		if (check_resched) {
1733 			if (dl_task(rq->curr))
1734 				check_preempt_curr_dl(rq, p, 0);
1735 			else
1736 				resched_curr(rq);
1737 		}
1738 	}
1739 }
1740 
1741 /*
1742  * If the scheduling parameters of a -deadline task changed,
1743  * a push or pull operation might be needed.
1744  */
1745 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1746 			    int oldprio)
1747 {
1748 	if (task_on_rq_queued(p) || rq->curr == p) {
1749 #ifdef CONFIG_SMP
1750 		/*
1751 		 * This might be too much, but unfortunately
1752 		 * we don't have the old deadline value, and
1753 		 * we can't argue if the task is increasing
1754 		 * or lowering its prio, so...
1755 		 */
1756 		if (!rq->dl.overloaded)
1757 			pull_dl_task(rq);
1758 
1759 		/*
1760 		 * If we now have a earlier deadline task than p,
1761 		 * then reschedule, provided p is still on this
1762 		 * runqueue.
1763 		 */
1764 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) &&
1765 		    rq->curr == p)
1766 			resched_curr(rq);
1767 #else
1768 		/*
1769 		 * Again, we don't know if p has a earlier
1770 		 * or later deadline, so let's blindly set a
1771 		 * (maybe not needed) rescheduling point.
1772 		 */
1773 		resched_curr(rq);
1774 #endif /* CONFIG_SMP */
1775 	} else
1776 		switched_to_dl(rq, p);
1777 }
1778 
1779 const struct sched_class dl_sched_class = {
1780 	.next			= &rt_sched_class,
1781 	.enqueue_task		= enqueue_task_dl,
1782 	.dequeue_task		= dequeue_task_dl,
1783 	.yield_task		= yield_task_dl,
1784 
1785 	.check_preempt_curr	= check_preempt_curr_dl,
1786 
1787 	.pick_next_task		= pick_next_task_dl,
1788 	.put_prev_task		= put_prev_task_dl,
1789 
1790 #ifdef CONFIG_SMP
1791 	.select_task_rq		= select_task_rq_dl,
1792 	.set_cpus_allowed       = set_cpus_allowed_dl,
1793 	.rq_online              = rq_online_dl,
1794 	.rq_offline             = rq_offline_dl,
1795 	.post_schedule		= post_schedule_dl,
1796 	.task_woken		= task_woken_dl,
1797 #endif
1798 
1799 	.set_curr_task		= set_curr_task_dl,
1800 	.task_tick		= task_tick_dl,
1801 	.task_fork              = task_fork_dl,
1802 	.task_dead		= task_dead_dl,
1803 
1804 	.prio_changed           = prio_changed_dl,
1805 	.switched_from		= switched_from_dl,
1806 	.switched_to		= switched_to_dl,
1807 
1808 	.update_curr		= update_curr_dl,
1809 };
1810 
1811 #ifdef CONFIG_SCHED_DEBUG
1812 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1813 
1814 void print_dl_stats(struct seq_file *m, int cpu)
1815 {
1816 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1817 }
1818 #endif /* CONFIG_SCHED_DEBUG */
1819