xref: /openbmc/linux/kernel/sched/deadline.c (revision c4a7b9b5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Deadline Scheduling Class (SCHED_DEADLINE)
4  *
5  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6  *
7  * Tasks that periodically executes their instances for less than their
8  * runtime won't miss any of their deadlines.
9  * Tasks that are not periodic or sporadic or that tries to execute more
10  * than their reserved bandwidth will be slowed down (and may potentially
11  * miss some of their deadlines), and won't affect any other task.
12  *
13  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14  *                    Juri Lelli <juri.lelli@gmail.com>,
15  *                    Michael Trimarchi <michael@amarulasolutions.com>,
16  *                    Fabio Checconi <fchecconi@gmail.com>
17  */
18 
19 /*
20  * Default limits for DL period; on the top end we guard against small util
21  * tasks still getting ridiculously long effective runtimes, on the bottom end we
22  * guard against timer DoS.
23  */
24 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
25 static unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
26 #ifdef CONFIG_SYSCTL
27 static struct ctl_table sched_dl_sysctls[] = {
28 	{
29 		.procname       = "sched_deadline_period_max_us",
30 		.data           = &sysctl_sched_dl_period_max,
31 		.maxlen         = sizeof(unsigned int),
32 		.mode           = 0644,
33 		.proc_handler   = proc_douintvec_minmax,
34 		.extra1         = (void *)&sysctl_sched_dl_period_min,
35 	},
36 	{
37 		.procname       = "sched_deadline_period_min_us",
38 		.data           = &sysctl_sched_dl_period_min,
39 		.maxlen         = sizeof(unsigned int),
40 		.mode           = 0644,
41 		.proc_handler   = proc_douintvec_minmax,
42 		.extra2         = (void *)&sysctl_sched_dl_period_max,
43 	},
44 	{}
45 };
46 
47 static int __init sched_dl_sysctl_init(void)
48 {
49 	register_sysctl_init("kernel", sched_dl_sysctls);
50 	return 0;
51 }
52 late_initcall(sched_dl_sysctl_init);
53 #endif
54 
55 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
56 {
57 	return container_of(dl_se, struct task_struct, dl);
58 }
59 
60 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
61 {
62 	return container_of(dl_rq, struct rq, dl);
63 }
64 
65 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
66 {
67 	struct task_struct *p = dl_task_of(dl_se);
68 	struct rq *rq = task_rq(p);
69 
70 	return &rq->dl;
71 }
72 
73 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
74 {
75 	return !RB_EMPTY_NODE(&dl_se->rb_node);
76 }
77 
78 #ifdef CONFIG_RT_MUTEXES
79 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
80 {
81 	return dl_se->pi_se;
82 }
83 
84 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
85 {
86 	return pi_of(dl_se) != dl_se;
87 }
88 #else
89 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
90 {
91 	return dl_se;
92 }
93 
94 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
95 {
96 	return false;
97 }
98 #endif
99 
100 #ifdef CONFIG_SMP
101 static inline struct dl_bw *dl_bw_of(int i)
102 {
103 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
104 			 "sched RCU must be held");
105 	return &cpu_rq(i)->rd->dl_bw;
106 }
107 
108 static inline int dl_bw_cpus(int i)
109 {
110 	struct root_domain *rd = cpu_rq(i)->rd;
111 	int cpus;
112 
113 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
114 			 "sched RCU must be held");
115 
116 	if (cpumask_subset(rd->span, cpu_active_mask))
117 		return cpumask_weight(rd->span);
118 
119 	cpus = 0;
120 
121 	for_each_cpu_and(i, rd->span, cpu_active_mask)
122 		cpus++;
123 
124 	return cpus;
125 }
126 
127 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
128 {
129 	unsigned long cap = 0;
130 	int i;
131 
132 	for_each_cpu_and(i, mask, cpu_active_mask)
133 		cap += capacity_orig_of(i);
134 
135 	return cap;
136 }
137 
138 /*
139  * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
140  * of the CPU the task is running on rather rd's \Sum CPU capacity.
141  */
142 static inline unsigned long dl_bw_capacity(int i)
143 {
144 	if (!sched_asym_cpucap_active() &&
145 	    capacity_orig_of(i) == SCHED_CAPACITY_SCALE) {
146 		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
147 	} else {
148 		RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
149 				 "sched RCU must be held");
150 
151 		return __dl_bw_capacity(cpu_rq(i)->rd->span);
152 	}
153 }
154 
155 static inline bool dl_bw_visited(int cpu, u64 gen)
156 {
157 	struct root_domain *rd = cpu_rq(cpu)->rd;
158 
159 	if (rd->visit_gen == gen)
160 		return true;
161 
162 	rd->visit_gen = gen;
163 	return false;
164 }
165 
166 static inline
167 void __dl_update(struct dl_bw *dl_b, s64 bw)
168 {
169 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
170 	int i;
171 
172 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
173 			 "sched RCU must be held");
174 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
175 		struct rq *rq = cpu_rq(i);
176 
177 		rq->dl.extra_bw += bw;
178 	}
179 }
180 #else
181 static inline struct dl_bw *dl_bw_of(int i)
182 {
183 	return &cpu_rq(i)->dl.dl_bw;
184 }
185 
186 static inline int dl_bw_cpus(int i)
187 {
188 	return 1;
189 }
190 
191 static inline unsigned long dl_bw_capacity(int i)
192 {
193 	return SCHED_CAPACITY_SCALE;
194 }
195 
196 static inline bool dl_bw_visited(int cpu, u64 gen)
197 {
198 	return false;
199 }
200 
201 static inline
202 void __dl_update(struct dl_bw *dl_b, s64 bw)
203 {
204 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
205 
206 	dl->extra_bw += bw;
207 }
208 #endif
209 
210 static inline
211 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
212 {
213 	dl_b->total_bw -= tsk_bw;
214 	__dl_update(dl_b, (s32)tsk_bw / cpus);
215 }
216 
217 static inline
218 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
219 {
220 	dl_b->total_bw += tsk_bw;
221 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
222 }
223 
224 static inline bool
225 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
226 {
227 	return dl_b->bw != -1 &&
228 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
229 }
230 
231 static inline
232 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
233 {
234 	u64 old = dl_rq->running_bw;
235 
236 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
237 	dl_rq->running_bw += dl_bw;
238 	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
239 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
240 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
241 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
242 }
243 
244 static inline
245 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
246 {
247 	u64 old = dl_rq->running_bw;
248 
249 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
250 	dl_rq->running_bw -= dl_bw;
251 	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
252 	if (dl_rq->running_bw > old)
253 		dl_rq->running_bw = 0;
254 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
255 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
256 }
257 
258 static inline
259 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
260 {
261 	u64 old = dl_rq->this_bw;
262 
263 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
264 	dl_rq->this_bw += dl_bw;
265 	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
266 }
267 
268 static inline
269 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
270 {
271 	u64 old = dl_rq->this_bw;
272 
273 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
274 	dl_rq->this_bw -= dl_bw;
275 	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
276 	if (dl_rq->this_bw > old)
277 		dl_rq->this_bw = 0;
278 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
279 }
280 
281 static inline
282 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
283 {
284 	if (!dl_entity_is_special(dl_se))
285 		__add_rq_bw(dl_se->dl_bw, dl_rq);
286 }
287 
288 static inline
289 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
290 {
291 	if (!dl_entity_is_special(dl_se))
292 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
293 }
294 
295 static inline
296 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
297 {
298 	if (!dl_entity_is_special(dl_se))
299 		__add_running_bw(dl_se->dl_bw, dl_rq);
300 }
301 
302 static inline
303 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
304 {
305 	if (!dl_entity_is_special(dl_se))
306 		__sub_running_bw(dl_se->dl_bw, dl_rq);
307 }
308 
309 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
310 {
311 	struct rq *rq;
312 
313 	WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
314 
315 	if (task_on_rq_queued(p))
316 		return;
317 
318 	rq = task_rq(p);
319 	if (p->dl.dl_non_contending) {
320 		sub_running_bw(&p->dl, &rq->dl);
321 		p->dl.dl_non_contending = 0;
322 		/*
323 		 * If the timer handler is currently running and the
324 		 * timer cannot be canceled, inactive_task_timer()
325 		 * will see that dl_not_contending is not set, and
326 		 * will not touch the rq's active utilization,
327 		 * so we are still safe.
328 		 */
329 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
330 			put_task_struct(p);
331 	}
332 	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
333 	__add_rq_bw(new_bw, &rq->dl);
334 }
335 
336 /*
337  * The utilization of a task cannot be immediately removed from
338  * the rq active utilization (running_bw) when the task blocks.
339  * Instead, we have to wait for the so called "0-lag time".
340  *
341  * If a task blocks before the "0-lag time", a timer (the inactive
342  * timer) is armed, and running_bw is decreased when the timer
343  * fires.
344  *
345  * If the task wakes up again before the inactive timer fires,
346  * the timer is canceled, whereas if the task wakes up after the
347  * inactive timer fired (and running_bw has been decreased) the
348  * task's utilization has to be added to running_bw again.
349  * A flag in the deadline scheduling entity (dl_non_contending)
350  * is used to avoid race conditions between the inactive timer handler
351  * and task wakeups.
352  *
353  * The following diagram shows how running_bw is updated. A task is
354  * "ACTIVE" when its utilization contributes to running_bw; an
355  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
356  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
357  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
358  * time already passed, which does not contribute to running_bw anymore.
359  *                              +------------------+
360  *             wakeup           |    ACTIVE        |
361  *          +------------------>+   contending     |
362  *          | add_running_bw    |                  |
363  *          |                   +----+------+------+
364  *          |                        |      ^
365  *          |                dequeue |      |
366  * +--------+-------+                |      |
367  * |                |   t >= 0-lag   |      | wakeup
368  * |    INACTIVE    |<---------------+      |
369  * |                | sub_running_bw |      |
370  * +--------+-------+                |      |
371  *          ^                        |      |
372  *          |              t < 0-lag |      |
373  *          |                        |      |
374  *          |                        V      |
375  *          |                   +----+------+------+
376  *          | sub_running_bw    |    ACTIVE        |
377  *          +-------------------+                  |
378  *            inactive timer    |  non contending  |
379  *            fired             +------------------+
380  *
381  * The task_non_contending() function is invoked when a task
382  * blocks, and checks if the 0-lag time already passed or
383  * not (in the first case, it directly updates running_bw;
384  * in the second case, it arms the inactive timer).
385  *
386  * The task_contending() function is invoked when a task wakes
387  * up, and checks if the task is still in the "ACTIVE non contending"
388  * state or not (in the second case, it updates running_bw).
389  */
390 static void task_non_contending(struct task_struct *p)
391 {
392 	struct sched_dl_entity *dl_se = &p->dl;
393 	struct hrtimer *timer = &dl_se->inactive_timer;
394 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
395 	struct rq *rq = rq_of_dl_rq(dl_rq);
396 	s64 zerolag_time;
397 
398 	/*
399 	 * If this is a non-deadline task that has been boosted,
400 	 * do nothing
401 	 */
402 	if (dl_se->dl_runtime == 0)
403 		return;
404 
405 	if (dl_entity_is_special(dl_se))
406 		return;
407 
408 	WARN_ON(dl_se->dl_non_contending);
409 
410 	zerolag_time = dl_se->deadline -
411 		 div64_long((dl_se->runtime * dl_se->dl_period),
412 			dl_se->dl_runtime);
413 
414 	/*
415 	 * Using relative times instead of the absolute "0-lag time"
416 	 * allows to simplify the code
417 	 */
418 	zerolag_time -= rq_clock(rq);
419 
420 	/*
421 	 * If the "0-lag time" already passed, decrease the active
422 	 * utilization now, instead of starting a timer
423 	 */
424 	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
425 		if (dl_task(p))
426 			sub_running_bw(dl_se, dl_rq);
427 		if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
428 			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
429 
430 			if (READ_ONCE(p->__state) == TASK_DEAD)
431 				sub_rq_bw(&p->dl, &rq->dl);
432 			raw_spin_lock(&dl_b->lock);
433 			__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
434 			raw_spin_unlock(&dl_b->lock);
435 			__dl_clear_params(p);
436 		}
437 
438 		return;
439 	}
440 
441 	dl_se->dl_non_contending = 1;
442 	get_task_struct(p);
443 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
444 }
445 
446 static void task_contending(struct sched_dl_entity *dl_se, int flags)
447 {
448 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
449 
450 	/*
451 	 * If this is a non-deadline task that has been boosted,
452 	 * do nothing
453 	 */
454 	if (dl_se->dl_runtime == 0)
455 		return;
456 
457 	if (flags & ENQUEUE_MIGRATED)
458 		add_rq_bw(dl_se, dl_rq);
459 
460 	if (dl_se->dl_non_contending) {
461 		dl_se->dl_non_contending = 0;
462 		/*
463 		 * If the timer handler is currently running and the
464 		 * timer cannot be canceled, inactive_task_timer()
465 		 * will see that dl_not_contending is not set, and
466 		 * will not touch the rq's active utilization,
467 		 * so we are still safe.
468 		 */
469 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
470 			put_task_struct(dl_task_of(dl_se));
471 	} else {
472 		/*
473 		 * Since "dl_non_contending" is not set, the
474 		 * task's utilization has already been removed from
475 		 * active utilization (either when the task blocked,
476 		 * when the "inactive timer" fired).
477 		 * So, add it back.
478 		 */
479 		add_running_bw(dl_se, dl_rq);
480 	}
481 }
482 
483 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
484 {
485 	struct sched_dl_entity *dl_se = &p->dl;
486 
487 	return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
488 }
489 
490 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
491 
492 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
493 {
494 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
495 	dl_b->dl_period = period;
496 	dl_b->dl_runtime = runtime;
497 }
498 
499 void init_dl_bw(struct dl_bw *dl_b)
500 {
501 	raw_spin_lock_init(&dl_b->lock);
502 	if (global_rt_runtime() == RUNTIME_INF)
503 		dl_b->bw = -1;
504 	else
505 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
506 	dl_b->total_bw = 0;
507 }
508 
509 void init_dl_rq(struct dl_rq *dl_rq)
510 {
511 	dl_rq->root = RB_ROOT_CACHED;
512 
513 #ifdef CONFIG_SMP
514 	/* zero means no -deadline tasks */
515 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
516 
517 	dl_rq->dl_nr_migratory = 0;
518 	dl_rq->overloaded = 0;
519 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
520 #else
521 	init_dl_bw(&dl_rq->dl_bw);
522 #endif
523 
524 	dl_rq->running_bw = 0;
525 	dl_rq->this_bw = 0;
526 	init_dl_rq_bw_ratio(dl_rq);
527 }
528 
529 #ifdef CONFIG_SMP
530 
531 static inline int dl_overloaded(struct rq *rq)
532 {
533 	return atomic_read(&rq->rd->dlo_count);
534 }
535 
536 static inline void dl_set_overload(struct rq *rq)
537 {
538 	if (!rq->online)
539 		return;
540 
541 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
542 	/*
543 	 * Must be visible before the overload count is
544 	 * set (as in sched_rt.c).
545 	 *
546 	 * Matched by the barrier in pull_dl_task().
547 	 */
548 	smp_wmb();
549 	atomic_inc(&rq->rd->dlo_count);
550 }
551 
552 static inline void dl_clear_overload(struct rq *rq)
553 {
554 	if (!rq->online)
555 		return;
556 
557 	atomic_dec(&rq->rd->dlo_count);
558 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
559 }
560 
561 static void update_dl_migration(struct dl_rq *dl_rq)
562 {
563 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
564 		if (!dl_rq->overloaded) {
565 			dl_set_overload(rq_of_dl_rq(dl_rq));
566 			dl_rq->overloaded = 1;
567 		}
568 	} else if (dl_rq->overloaded) {
569 		dl_clear_overload(rq_of_dl_rq(dl_rq));
570 		dl_rq->overloaded = 0;
571 	}
572 }
573 
574 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
575 {
576 	struct task_struct *p = dl_task_of(dl_se);
577 
578 	if (p->nr_cpus_allowed > 1)
579 		dl_rq->dl_nr_migratory++;
580 
581 	update_dl_migration(dl_rq);
582 }
583 
584 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
585 {
586 	struct task_struct *p = dl_task_of(dl_se);
587 
588 	if (p->nr_cpus_allowed > 1)
589 		dl_rq->dl_nr_migratory--;
590 
591 	update_dl_migration(dl_rq);
592 }
593 
594 #define __node_2_pdl(node) \
595 	rb_entry((node), struct task_struct, pushable_dl_tasks)
596 
597 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
598 {
599 	return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
600 }
601 
602 /*
603  * The list of pushable -deadline task is not a plist, like in
604  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
605  */
606 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
607 {
608 	struct rb_node *leftmost;
609 
610 	WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
611 
612 	leftmost = rb_add_cached(&p->pushable_dl_tasks,
613 				 &rq->dl.pushable_dl_tasks_root,
614 				 __pushable_less);
615 	if (leftmost)
616 		rq->dl.earliest_dl.next = p->dl.deadline;
617 }
618 
619 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
620 {
621 	struct dl_rq *dl_rq = &rq->dl;
622 	struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
623 	struct rb_node *leftmost;
624 
625 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
626 		return;
627 
628 	leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
629 	if (leftmost)
630 		dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
631 
632 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
633 }
634 
635 static inline int has_pushable_dl_tasks(struct rq *rq)
636 {
637 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
638 }
639 
640 static int push_dl_task(struct rq *rq);
641 
642 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
643 {
644 	return rq->online && dl_task(prev);
645 }
646 
647 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
648 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
649 
650 static void push_dl_tasks(struct rq *);
651 static void pull_dl_task(struct rq *);
652 
653 static inline void deadline_queue_push_tasks(struct rq *rq)
654 {
655 	if (!has_pushable_dl_tasks(rq))
656 		return;
657 
658 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
659 }
660 
661 static inline void deadline_queue_pull_task(struct rq *rq)
662 {
663 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
664 }
665 
666 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
667 
668 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
669 {
670 	struct rq *later_rq = NULL;
671 	struct dl_bw *dl_b;
672 
673 	later_rq = find_lock_later_rq(p, rq);
674 	if (!later_rq) {
675 		int cpu;
676 
677 		/*
678 		 * If we cannot preempt any rq, fall back to pick any
679 		 * online CPU:
680 		 */
681 		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
682 		if (cpu >= nr_cpu_ids) {
683 			/*
684 			 * Failed to find any suitable CPU.
685 			 * The task will never come back!
686 			 */
687 			WARN_ON_ONCE(dl_bandwidth_enabled());
688 
689 			/*
690 			 * If admission control is disabled we
691 			 * try a little harder to let the task
692 			 * run.
693 			 */
694 			cpu = cpumask_any(cpu_active_mask);
695 		}
696 		later_rq = cpu_rq(cpu);
697 		double_lock_balance(rq, later_rq);
698 	}
699 
700 	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
701 		/*
702 		 * Inactive timer is armed (or callback is running, but
703 		 * waiting for us to release rq locks). In any case, when it
704 		 * will fire (or continue), it will see running_bw of this
705 		 * task migrated to later_rq (and correctly handle it).
706 		 */
707 		sub_running_bw(&p->dl, &rq->dl);
708 		sub_rq_bw(&p->dl, &rq->dl);
709 
710 		add_rq_bw(&p->dl, &later_rq->dl);
711 		add_running_bw(&p->dl, &later_rq->dl);
712 	} else {
713 		sub_rq_bw(&p->dl, &rq->dl);
714 		add_rq_bw(&p->dl, &later_rq->dl);
715 	}
716 
717 	/*
718 	 * And we finally need to fixup root_domain(s) bandwidth accounting,
719 	 * since p is still hanging out in the old (now moved to default) root
720 	 * domain.
721 	 */
722 	dl_b = &rq->rd->dl_bw;
723 	raw_spin_lock(&dl_b->lock);
724 	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
725 	raw_spin_unlock(&dl_b->lock);
726 
727 	dl_b = &later_rq->rd->dl_bw;
728 	raw_spin_lock(&dl_b->lock);
729 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
730 	raw_spin_unlock(&dl_b->lock);
731 
732 	set_task_cpu(p, later_rq->cpu);
733 	double_unlock_balance(later_rq, rq);
734 
735 	return later_rq;
736 }
737 
738 #else
739 
740 static inline
741 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
742 {
743 }
744 
745 static inline
746 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
747 {
748 }
749 
750 static inline
751 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
752 {
753 }
754 
755 static inline
756 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
757 {
758 }
759 
760 static inline void deadline_queue_push_tasks(struct rq *rq)
761 {
762 }
763 
764 static inline void deadline_queue_pull_task(struct rq *rq)
765 {
766 }
767 #endif /* CONFIG_SMP */
768 
769 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
770 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
771 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
772 
773 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
774 					    struct rq *rq)
775 {
776 	/* for non-boosted task, pi_of(dl_se) == dl_se */
777 	dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
778 	dl_se->runtime = pi_of(dl_se)->dl_runtime;
779 }
780 
781 /*
782  * We are being explicitly informed that a new instance is starting,
783  * and this means that:
784  *  - the absolute deadline of the entity has to be placed at
785  *    current time + relative deadline;
786  *  - the runtime of the entity has to be set to the maximum value.
787  *
788  * The capability of specifying such event is useful whenever a -deadline
789  * entity wants to (try to!) synchronize its behaviour with the scheduler's
790  * one, and to (try to!) reconcile itself with its own scheduling
791  * parameters.
792  */
793 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
794 {
795 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
796 	struct rq *rq = rq_of_dl_rq(dl_rq);
797 
798 	WARN_ON(is_dl_boosted(dl_se));
799 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
800 
801 	/*
802 	 * We are racing with the deadline timer. So, do nothing because
803 	 * the deadline timer handler will take care of properly recharging
804 	 * the runtime and postponing the deadline
805 	 */
806 	if (dl_se->dl_throttled)
807 		return;
808 
809 	/*
810 	 * We use the regular wall clock time to set deadlines in the
811 	 * future; in fact, we must consider execution overheads (time
812 	 * spent on hardirq context, etc.).
813 	 */
814 	replenish_dl_new_period(dl_se, rq);
815 }
816 
817 /*
818  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
819  * possibility of a entity lasting more than what it declared, and thus
820  * exhausting its runtime.
821  *
822  * Here we are interested in making runtime overrun possible, but we do
823  * not want a entity which is misbehaving to affect the scheduling of all
824  * other entities.
825  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
826  * is used, in order to confine each entity within its own bandwidth.
827  *
828  * This function deals exactly with that, and ensures that when the runtime
829  * of a entity is replenished, its deadline is also postponed. That ensures
830  * the overrunning entity can't interfere with other entity in the system and
831  * can't make them miss their deadlines. Reasons why this kind of overruns
832  * could happen are, typically, a entity voluntarily trying to overcome its
833  * runtime, or it just underestimated it during sched_setattr().
834  */
835 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
836 {
837 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
838 	struct rq *rq = rq_of_dl_rq(dl_rq);
839 
840 	WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
841 
842 	/*
843 	 * This could be the case for a !-dl task that is boosted.
844 	 * Just go with full inherited parameters.
845 	 */
846 	if (dl_se->dl_deadline == 0)
847 		replenish_dl_new_period(dl_se, rq);
848 
849 	if (dl_se->dl_yielded && dl_se->runtime > 0)
850 		dl_se->runtime = 0;
851 
852 	/*
853 	 * We keep moving the deadline away until we get some
854 	 * available runtime for the entity. This ensures correct
855 	 * handling of situations where the runtime overrun is
856 	 * arbitrary large.
857 	 */
858 	while (dl_se->runtime <= 0) {
859 		dl_se->deadline += pi_of(dl_se)->dl_period;
860 		dl_se->runtime += pi_of(dl_se)->dl_runtime;
861 	}
862 
863 	/*
864 	 * At this point, the deadline really should be "in
865 	 * the future" with respect to rq->clock. If it's
866 	 * not, we are, for some reason, lagging too much!
867 	 * Anyway, after having warn userspace abut that,
868 	 * we still try to keep the things running by
869 	 * resetting the deadline and the budget of the
870 	 * entity.
871 	 */
872 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
873 		printk_deferred_once("sched: DL replenish lagged too much\n");
874 		replenish_dl_new_period(dl_se, rq);
875 	}
876 
877 	if (dl_se->dl_yielded)
878 		dl_se->dl_yielded = 0;
879 	if (dl_se->dl_throttled)
880 		dl_se->dl_throttled = 0;
881 }
882 
883 /*
884  * Here we check if --at time t-- an entity (which is probably being
885  * [re]activated or, in general, enqueued) can use its remaining runtime
886  * and its current deadline _without_ exceeding the bandwidth it is
887  * assigned (function returns true if it can't). We are in fact applying
888  * one of the CBS rules: when a task wakes up, if the residual runtime
889  * over residual deadline fits within the allocated bandwidth, then we
890  * can keep the current (absolute) deadline and residual budget without
891  * disrupting the schedulability of the system. Otherwise, we should
892  * refill the runtime and set the deadline a period in the future,
893  * because keeping the current (absolute) deadline of the task would
894  * result in breaking guarantees promised to other tasks (refer to
895  * Documentation/scheduler/sched-deadline.rst for more information).
896  *
897  * This function returns true if:
898  *
899  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
900  *
901  * IOW we can't recycle current parameters.
902  *
903  * Notice that the bandwidth check is done against the deadline. For
904  * task with deadline equal to period this is the same of using
905  * dl_period instead of dl_deadline in the equation above.
906  */
907 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
908 {
909 	u64 left, right;
910 
911 	/*
912 	 * left and right are the two sides of the equation above,
913 	 * after a bit of shuffling to use multiplications instead
914 	 * of divisions.
915 	 *
916 	 * Note that none of the time values involved in the two
917 	 * multiplications are absolute: dl_deadline and dl_runtime
918 	 * are the relative deadline and the maximum runtime of each
919 	 * instance, runtime is the runtime left for the last instance
920 	 * and (deadline - t), since t is rq->clock, is the time left
921 	 * to the (absolute) deadline. Even if overflowing the u64 type
922 	 * is very unlikely to occur in both cases, here we scale down
923 	 * as we want to avoid that risk at all. Scaling down by 10
924 	 * means that we reduce granularity to 1us. We are fine with it,
925 	 * since this is only a true/false check and, anyway, thinking
926 	 * of anything below microseconds resolution is actually fiction
927 	 * (but still we want to give the user that illusion >;).
928 	 */
929 	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
930 	right = ((dl_se->deadline - t) >> DL_SCALE) *
931 		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
932 
933 	return dl_time_before(right, left);
934 }
935 
936 /*
937  * Revised wakeup rule [1]: For self-suspending tasks, rather then
938  * re-initializing task's runtime and deadline, the revised wakeup
939  * rule adjusts the task's runtime to avoid the task to overrun its
940  * density.
941  *
942  * Reasoning: a task may overrun the density if:
943  *    runtime / (deadline - t) > dl_runtime / dl_deadline
944  *
945  * Therefore, runtime can be adjusted to:
946  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
947  *
948  * In such way that runtime will be equal to the maximum density
949  * the task can use without breaking any rule.
950  *
951  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
952  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
953  */
954 static void
955 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
956 {
957 	u64 laxity = dl_se->deadline - rq_clock(rq);
958 
959 	/*
960 	 * If the task has deadline < period, and the deadline is in the past,
961 	 * it should already be throttled before this check.
962 	 *
963 	 * See update_dl_entity() comments for further details.
964 	 */
965 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
966 
967 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
968 }
969 
970 /*
971  * Regarding the deadline, a task with implicit deadline has a relative
972  * deadline == relative period. A task with constrained deadline has a
973  * relative deadline <= relative period.
974  *
975  * We support constrained deadline tasks. However, there are some restrictions
976  * applied only for tasks which do not have an implicit deadline. See
977  * update_dl_entity() to know more about such restrictions.
978  *
979  * The dl_is_implicit() returns true if the task has an implicit deadline.
980  */
981 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
982 {
983 	return dl_se->dl_deadline == dl_se->dl_period;
984 }
985 
986 /*
987  * When a deadline entity is placed in the runqueue, its runtime and deadline
988  * might need to be updated. This is done by a CBS wake up rule. There are two
989  * different rules: 1) the original CBS; and 2) the Revisited CBS.
990  *
991  * When the task is starting a new period, the Original CBS is used. In this
992  * case, the runtime is replenished and a new absolute deadline is set.
993  *
994  * When a task is queued before the begin of the next period, using the
995  * remaining runtime and deadline could make the entity to overflow, see
996  * dl_entity_overflow() to find more about runtime overflow. When such case
997  * is detected, the runtime and deadline need to be updated.
998  *
999  * If the task has an implicit deadline, i.e., deadline == period, the Original
1000  * CBS is applied. the runtime is replenished and a new absolute deadline is
1001  * set, as in the previous cases.
1002  *
1003  * However, the Original CBS does not work properly for tasks with
1004  * deadline < period, which are said to have a constrained deadline. By
1005  * applying the Original CBS, a constrained deadline task would be able to run
1006  * runtime/deadline in a period. With deadline < period, the task would
1007  * overrun the runtime/period allowed bandwidth, breaking the admission test.
1008  *
1009  * In order to prevent this misbehave, the Revisited CBS is used for
1010  * constrained deadline tasks when a runtime overflow is detected. In the
1011  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1012  * the remaining runtime of the task is reduced to avoid runtime overflow.
1013  * Please refer to the comments update_dl_revised_wakeup() function to find
1014  * more about the Revised CBS rule.
1015  */
1016 static void update_dl_entity(struct sched_dl_entity *dl_se)
1017 {
1018 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1019 	struct rq *rq = rq_of_dl_rq(dl_rq);
1020 
1021 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1022 	    dl_entity_overflow(dl_se, rq_clock(rq))) {
1023 
1024 		if (unlikely(!dl_is_implicit(dl_se) &&
1025 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1026 			     !is_dl_boosted(dl_se))) {
1027 			update_dl_revised_wakeup(dl_se, rq);
1028 			return;
1029 		}
1030 
1031 		replenish_dl_new_period(dl_se, rq);
1032 	}
1033 }
1034 
1035 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1036 {
1037 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1038 }
1039 
1040 /*
1041  * If the entity depleted all its runtime, and if we want it to sleep
1042  * while waiting for some new execution time to become available, we
1043  * set the bandwidth replenishment timer to the replenishment instant
1044  * and try to activate it.
1045  *
1046  * Notice that it is important for the caller to know if the timer
1047  * actually started or not (i.e., the replenishment instant is in
1048  * the future or in the past).
1049  */
1050 static int start_dl_timer(struct task_struct *p)
1051 {
1052 	struct sched_dl_entity *dl_se = &p->dl;
1053 	struct hrtimer *timer = &dl_se->dl_timer;
1054 	struct rq *rq = task_rq(p);
1055 	ktime_t now, act;
1056 	s64 delta;
1057 
1058 	lockdep_assert_rq_held(rq);
1059 
1060 	/*
1061 	 * We want the timer to fire at the deadline, but considering
1062 	 * that it is actually coming from rq->clock and not from
1063 	 * hrtimer's time base reading.
1064 	 */
1065 	act = ns_to_ktime(dl_next_period(dl_se));
1066 	now = hrtimer_cb_get_time(timer);
1067 	delta = ktime_to_ns(now) - rq_clock(rq);
1068 	act = ktime_add_ns(act, delta);
1069 
1070 	/*
1071 	 * If the expiry time already passed, e.g., because the value
1072 	 * chosen as the deadline is too small, don't even try to
1073 	 * start the timer in the past!
1074 	 */
1075 	if (ktime_us_delta(act, now) < 0)
1076 		return 0;
1077 
1078 	/*
1079 	 * !enqueued will guarantee another callback; even if one is already in
1080 	 * progress. This ensures a balanced {get,put}_task_struct().
1081 	 *
1082 	 * The race against __run_timer() clearing the enqueued state is
1083 	 * harmless because we're holding task_rq()->lock, therefore the timer
1084 	 * expiring after we've done the check will wait on its task_rq_lock()
1085 	 * and observe our state.
1086 	 */
1087 	if (!hrtimer_is_queued(timer)) {
1088 		get_task_struct(p);
1089 		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1090 	}
1091 
1092 	return 1;
1093 }
1094 
1095 /*
1096  * This is the bandwidth enforcement timer callback. If here, we know
1097  * a task is not on its dl_rq, since the fact that the timer was running
1098  * means the task is throttled and needs a runtime replenishment.
1099  *
1100  * However, what we actually do depends on the fact the task is active,
1101  * (it is on its rq) or has been removed from there by a call to
1102  * dequeue_task_dl(). In the former case we must issue the runtime
1103  * replenishment and add the task back to the dl_rq; in the latter, we just
1104  * do nothing but clearing dl_throttled, so that runtime and deadline
1105  * updating (and the queueing back to dl_rq) will be done by the
1106  * next call to enqueue_task_dl().
1107  */
1108 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1109 {
1110 	struct sched_dl_entity *dl_se = container_of(timer,
1111 						     struct sched_dl_entity,
1112 						     dl_timer);
1113 	struct task_struct *p = dl_task_of(dl_se);
1114 	struct rq_flags rf;
1115 	struct rq *rq;
1116 
1117 	rq = task_rq_lock(p, &rf);
1118 
1119 	/*
1120 	 * The task might have changed its scheduling policy to something
1121 	 * different than SCHED_DEADLINE (through switched_from_dl()).
1122 	 */
1123 	if (!dl_task(p))
1124 		goto unlock;
1125 
1126 	/*
1127 	 * The task might have been boosted by someone else and might be in the
1128 	 * boosting/deboosting path, its not throttled.
1129 	 */
1130 	if (is_dl_boosted(dl_se))
1131 		goto unlock;
1132 
1133 	/*
1134 	 * Spurious timer due to start_dl_timer() race; or we already received
1135 	 * a replenishment from rt_mutex_setprio().
1136 	 */
1137 	if (!dl_se->dl_throttled)
1138 		goto unlock;
1139 
1140 	sched_clock_tick();
1141 	update_rq_clock(rq);
1142 
1143 	/*
1144 	 * If the throttle happened during sched-out; like:
1145 	 *
1146 	 *   schedule()
1147 	 *     deactivate_task()
1148 	 *       dequeue_task_dl()
1149 	 *         update_curr_dl()
1150 	 *           start_dl_timer()
1151 	 *         __dequeue_task_dl()
1152 	 *     prev->on_rq = 0;
1153 	 *
1154 	 * We can be both throttled and !queued. Replenish the counter
1155 	 * but do not enqueue -- wait for our wakeup to do that.
1156 	 */
1157 	if (!task_on_rq_queued(p)) {
1158 		replenish_dl_entity(dl_se);
1159 		goto unlock;
1160 	}
1161 
1162 #ifdef CONFIG_SMP
1163 	if (unlikely(!rq->online)) {
1164 		/*
1165 		 * If the runqueue is no longer available, migrate the
1166 		 * task elsewhere. This necessarily changes rq.
1167 		 */
1168 		lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1169 		rq = dl_task_offline_migration(rq, p);
1170 		rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1171 		update_rq_clock(rq);
1172 
1173 		/*
1174 		 * Now that the task has been migrated to the new RQ and we
1175 		 * have that locked, proceed as normal and enqueue the task
1176 		 * there.
1177 		 */
1178 	}
1179 #endif
1180 
1181 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1182 	if (dl_task(rq->curr))
1183 		check_preempt_curr_dl(rq, p, 0);
1184 	else
1185 		resched_curr(rq);
1186 
1187 #ifdef CONFIG_SMP
1188 	/*
1189 	 * Queueing this task back might have overloaded rq, check if we need
1190 	 * to kick someone away.
1191 	 */
1192 	if (has_pushable_dl_tasks(rq)) {
1193 		/*
1194 		 * Nothing relies on rq->lock after this, so its safe to drop
1195 		 * rq->lock.
1196 		 */
1197 		rq_unpin_lock(rq, &rf);
1198 		push_dl_task(rq);
1199 		rq_repin_lock(rq, &rf);
1200 	}
1201 #endif
1202 
1203 unlock:
1204 	task_rq_unlock(rq, p, &rf);
1205 
1206 	/*
1207 	 * This can free the task_struct, including this hrtimer, do not touch
1208 	 * anything related to that after this.
1209 	 */
1210 	put_task_struct(p);
1211 
1212 	return HRTIMER_NORESTART;
1213 }
1214 
1215 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1216 {
1217 	struct hrtimer *timer = &dl_se->dl_timer;
1218 
1219 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1220 	timer->function = dl_task_timer;
1221 }
1222 
1223 /*
1224  * During the activation, CBS checks if it can reuse the current task's
1225  * runtime and period. If the deadline of the task is in the past, CBS
1226  * cannot use the runtime, and so it replenishes the task. This rule
1227  * works fine for implicit deadline tasks (deadline == period), and the
1228  * CBS was designed for implicit deadline tasks. However, a task with
1229  * constrained deadline (deadline < period) might be awakened after the
1230  * deadline, but before the next period. In this case, replenishing the
1231  * task would allow it to run for runtime / deadline. As in this case
1232  * deadline < period, CBS enables a task to run for more than the
1233  * runtime / period. In a very loaded system, this can cause a domino
1234  * effect, making other tasks miss their deadlines.
1235  *
1236  * To avoid this problem, in the activation of a constrained deadline
1237  * task after the deadline but before the next period, throttle the
1238  * task and set the replenishing timer to the begin of the next period,
1239  * unless it is boosted.
1240  */
1241 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1242 {
1243 	struct task_struct *p = dl_task_of(dl_se);
1244 	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1245 
1246 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1247 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1248 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p)))
1249 			return;
1250 		dl_se->dl_throttled = 1;
1251 		if (dl_se->runtime > 0)
1252 			dl_se->runtime = 0;
1253 	}
1254 }
1255 
1256 static
1257 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1258 {
1259 	return (dl_se->runtime <= 0);
1260 }
1261 
1262 /*
1263  * This function implements the GRUB accounting rule:
1264  * according to the GRUB reclaiming algorithm, the runtime is
1265  * not decreased as "dq = -dt", but as
1266  * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1267  * where u is the utilization of the task, Umax is the maximum reclaimable
1268  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1269  * as the difference between the "total runqueue utilization" and the
1270  * runqueue active utilization, and Uextra is the (per runqueue) extra
1271  * reclaimable utilization.
1272  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1273  * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1274  * BW_SHIFT.
1275  * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT,
1276  * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1277  * Since delta is a 64 bit variable, to have an overflow its value
1278  * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1279  * So, overflow is not an issue here.
1280  */
1281 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1282 {
1283 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1284 	u64 u_act;
1285 	u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1286 
1287 	/*
1288 	 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1289 	 * we compare u_inact + rq->dl.extra_bw with
1290 	 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1291 	 * u_inact + rq->dl.extra_bw can be larger than
1292 	 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1293 	 * leading to wrong results)
1294 	 */
1295 	if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1296 		u_act = u_act_min;
1297 	else
1298 		u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1299 
1300 	return (delta * u_act) >> BW_SHIFT;
1301 }
1302 
1303 /*
1304  * Update the current task's runtime statistics (provided it is still
1305  * a -deadline task and has not been removed from the dl_rq).
1306  */
1307 static void update_curr_dl(struct rq *rq)
1308 {
1309 	struct task_struct *curr = rq->curr;
1310 	struct sched_dl_entity *dl_se = &curr->dl;
1311 	u64 delta_exec, scaled_delta_exec;
1312 	int cpu = cpu_of(rq);
1313 	u64 now;
1314 
1315 	if (!dl_task(curr) || !on_dl_rq(dl_se))
1316 		return;
1317 
1318 	/*
1319 	 * Consumed budget is computed considering the time as
1320 	 * observed by schedulable tasks (excluding time spent
1321 	 * in hardirq context, etc.). Deadlines are instead
1322 	 * computed using hard walltime. This seems to be the more
1323 	 * natural solution, but the full ramifications of this
1324 	 * approach need further study.
1325 	 */
1326 	now = rq_clock_task(rq);
1327 	delta_exec = now - curr->se.exec_start;
1328 	if (unlikely((s64)delta_exec <= 0)) {
1329 		if (unlikely(dl_se->dl_yielded))
1330 			goto throttle;
1331 		return;
1332 	}
1333 
1334 	schedstat_set(curr->stats.exec_max,
1335 		      max(curr->stats.exec_max, delta_exec));
1336 
1337 	trace_sched_stat_runtime(curr, delta_exec, 0);
1338 
1339 	update_current_exec_runtime(curr, now, delta_exec);
1340 
1341 	if (dl_entity_is_special(dl_se))
1342 		return;
1343 
1344 	/*
1345 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1346 	 * spare reclaimed bandwidth is used to clock down frequency.
1347 	 *
1348 	 * For the others, we still need to scale reservation parameters
1349 	 * according to current frequency and CPU maximum capacity.
1350 	 */
1351 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1352 		scaled_delta_exec = grub_reclaim(delta_exec,
1353 						 rq,
1354 						 &curr->dl);
1355 	} else {
1356 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1357 		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1358 
1359 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1360 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1361 	}
1362 
1363 	dl_se->runtime -= scaled_delta_exec;
1364 
1365 throttle:
1366 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1367 		dl_se->dl_throttled = 1;
1368 
1369 		/* If requested, inform the user about runtime overruns. */
1370 		if (dl_runtime_exceeded(dl_se) &&
1371 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1372 			dl_se->dl_overrun = 1;
1373 
1374 		__dequeue_task_dl(rq, curr, 0);
1375 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr)))
1376 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1377 
1378 		if (!is_leftmost(curr, &rq->dl))
1379 			resched_curr(rq);
1380 	}
1381 
1382 	/*
1383 	 * Because -- for now -- we share the rt bandwidth, we need to
1384 	 * account our runtime there too, otherwise actual rt tasks
1385 	 * would be able to exceed the shared quota.
1386 	 *
1387 	 * Account to the root rt group for now.
1388 	 *
1389 	 * The solution we're working towards is having the RT groups scheduled
1390 	 * using deadline servers -- however there's a few nasties to figure
1391 	 * out before that can happen.
1392 	 */
1393 	if (rt_bandwidth_enabled()) {
1394 		struct rt_rq *rt_rq = &rq->rt;
1395 
1396 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1397 		/*
1398 		 * We'll let actual RT tasks worry about the overflow here, we
1399 		 * have our own CBS to keep us inline; only account when RT
1400 		 * bandwidth is relevant.
1401 		 */
1402 		if (sched_rt_bandwidth_account(rt_rq))
1403 			rt_rq->rt_time += delta_exec;
1404 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1405 	}
1406 }
1407 
1408 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1409 {
1410 	struct sched_dl_entity *dl_se = container_of(timer,
1411 						     struct sched_dl_entity,
1412 						     inactive_timer);
1413 	struct task_struct *p = dl_task_of(dl_se);
1414 	struct rq_flags rf;
1415 	struct rq *rq;
1416 
1417 	rq = task_rq_lock(p, &rf);
1418 
1419 	sched_clock_tick();
1420 	update_rq_clock(rq);
1421 
1422 	if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1423 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1424 
1425 		if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1426 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1427 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1428 			dl_se->dl_non_contending = 0;
1429 		}
1430 
1431 		raw_spin_lock(&dl_b->lock);
1432 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1433 		raw_spin_unlock(&dl_b->lock);
1434 		__dl_clear_params(p);
1435 
1436 		goto unlock;
1437 	}
1438 	if (dl_se->dl_non_contending == 0)
1439 		goto unlock;
1440 
1441 	sub_running_bw(dl_se, &rq->dl);
1442 	dl_se->dl_non_contending = 0;
1443 unlock:
1444 	task_rq_unlock(rq, p, &rf);
1445 	put_task_struct(p);
1446 
1447 	return HRTIMER_NORESTART;
1448 }
1449 
1450 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1451 {
1452 	struct hrtimer *timer = &dl_se->inactive_timer;
1453 
1454 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1455 	timer->function = inactive_task_timer;
1456 }
1457 
1458 #define __node_2_dle(node) \
1459 	rb_entry((node), struct sched_dl_entity, rb_node)
1460 
1461 #ifdef CONFIG_SMP
1462 
1463 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1464 {
1465 	struct rq *rq = rq_of_dl_rq(dl_rq);
1466 
1467 	if (dl_rq->earliest_dl.curr == 0 ||
1468 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1469 		if (dl_rq->earliest_dl.curr == 0)
1470 			cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1471 		dl_rq->earliest_dl.curr = deadline;
1472 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1473 	}
1474 }
1475 
1476 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1477 {
1478 	struct rq *rq = rq_of_dl_rq(dl_rq);
1479 
1480 	/*
1481 	 * Since we may have removed our earliest (and/or next earliest)
1482 	 * task we must recompute them.
1483 	 */
1484 	if (!dl_rq->dl_nr_running) {
1485 		dl_rq->earliest_dl.curr = 0;
1486 		dl_rq->earliest_dl.next = 0;
1487 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1488 		cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1489 	} else {
1490 		struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1491 		struct sched_dl_entity *entry = __node_2_dle(leftmost);
1492 
1493 		dl_rq->earliest_dl.curr = entry->deadline;
1494 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1495 	}
1496 }
1497 
1498 #else
1499 
1500 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1501 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1502 
1503 #endif /* CONFIG_SMP */
1504 
1505 static inline
1506 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1507 {
1508 	int prio = dl_task_of(dl_se)->prio;
1509 	u64 deadline = dl_se->deadline;
1510 
1511 	WARN_ON(!dl_prio(prio));
1512 	dl_rq->dl_nr_running++;
1513 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1514 
1515 	inc_dl_deadline(dl_rq, deadline);
1516 	inc_dl_migration(dl_se, dl_rq);
1517 }
1518 
1519 static inline
1520 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1521 {
1522 	int prio = dl_task_of(dl_se)->prio;
1523 
1524 	WARN_ON(!dl_prio(prio));
1525 	WARN_ON(!dl_rq->dl_nr_running);
1526 	dl_rq->dl_nr_running--;
1527 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1528 
1529 	dec_dl_deadline(dl_rq, dl_se->deadline);
1530 	dec_dl_migration(dl_se, dl_rq);
1531 }
1532 
1533 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1534 {
1535 	return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1536 }
1537 
1538 static inline struct sched_statistics *
1539 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1540 {
1541 	return &dl_task_of(dl_se)->stats;
1542 }
1543 
1544 static inline void
1545 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1546 {
1547 	struct sched_statistics *stats;
1548 
1549 	if (!schedstat_enabled())
1550 		return;
1551 
1552 	stats = __schedstats_from_dl_se(dl_se);
1553 	__update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1554 }
1555 
1556 static inline void
1557 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1558 {
1559 	struct sched_statistics *stats;
1560 
1561 	if (!schedstat_enabled())
1562 		return;
1563 
1564 	stats = __schedstats_from_dl_se(dl_se);
1565 	__update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1566 }
1567 
1568 static inline void
1569 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1570 {
1571 	struct sched_statistics *stats;
1572 
1573 	if (!schedstat_enabled())
1574 		return;
1575 
1576 	stats = __schedstats_from_dl_se(dl_se);
1577 	__update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1578 }
1579 
1580 static inline void
1581 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1582 			int flags)
1583 {
1584 	if (!schedstat_enabled())
1585 		return;
1586 
1587 	if (flags & ENQUEUE_WAKEUP)
1588 		update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1589 }
1590 
1591 static inline void
1592 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1593 			int flags)
1594 {
1595 	struct task_struct *p = dl_task_of(dl_se);
1596 
1597 	if (!schedstat_enabled())
1598 		return;
1599 
1600 	if ((flags & DEQUEUE_SLEEP)) {
1601 		unsigned int state;
1602 
1603 		state = READ_ONCE(p->__state);
1604 		if (state & TASK_INTERRUPTIBLE)
1605 			__schedstat_set(p->stats.sleep_start,
1606 					rq_clock(rq_of_dl_rq(dl_rq)));
1607 
1608 		if (state & TASK_UNINTERRUPTIBLE)
1609 			__schedstat_set(p->stats.block_start,
1610 					rq_clock(rq_of_dl_rq(dl_rq)));
1611 	}
1612 }
1613 
1614 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1615 {
1616 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1617 
1618 	WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
1619 
1620 	rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1621 
1622 	inc_dl_tasks(dl_se, dl_rq);
1623 }
1624 
1625 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1626 {
1627 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1628 
1629 	if (RB_EMPTY_NODE(&dl_se->rb_node))
1630 		return;
1631 
1632 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1633 
1634 	RB_CLEAR_NODE(&dl_se->rb_node);
1635 
1636 	dec_dl_tasks(dl_se, dl_rq);
1637 }
1638 
1639 static void
1640 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1641 {
1642 	WARN_ON_ONCE(on_dl_rq(dl_se));
1643 
1644 	update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1645 
1646 	/*
1647 	 * If this is a wakeup or a new instance, the scheduling
1648 	 * parameters of the task might need updating. Otherwise,
1649 	 * we want a replenishment of its runtime.
1650 	 */
1651 	if (flags & ENQUEUE_WAKEUP) {
1652 		task_contending(dl_se, flags);
1653 		update_dl_entity(dl_se);
1654 	} else if (flags & ENQUEUE_REPLENISH) {
1655 		replenish_dl_entity(dl_se);
1656 	} else if ((flags & ENQUEUE_RESTORE) &&
1657 		  dl_time_before(dl_se->deadline,
1658 				 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1659 		setup_new_dl_entity(dl_se);
1660 	}
1661 
1662 	__enqueue_dl_entity(dl_se);
1663 }
1664 
1665 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1666 {
1667 	__dequeue_dl_entity(dl_se);
1668 }
1669 
1670 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1671 {
1672 	if (is_dl_boosted(&p->dl)) {
1673 		/*
1674 		 * Because of delays in the detection of the overrun of a
1675 		 * thread's runtime, it might be the case that a thread
1676 		 * goes to sleep in a rt mutex with negative runtime. As
1677 		 * a consequence, the thread will be throttled.
1678 		 *
1679 		 * While waiting for the mutex, this thread can also be
1680 		 * boosted via PI, resulting in a thread that is throttled
1681 		 * and boosted at the same time.
1682 		 *
1683 		 * In this case, the boost overrides the throttle.
1684 		 */
1685 		if (p->dl.dl_throttled) {
1686 			/*
1687 			 * The replenish timer needs to be canceled. No
1688 			 * problem if it fires concurrently: boosted threads
1689 			 * are ignored in dl_task_timer().
1690 			 */
1691 			hrtimer_try_to_cancel(&p->dl.dl_timer);
1692 			p->dl.dl_throttled = 0;
1693 		}
1694 	} else if (!dl_prio(p->normal_prio)) {
1695 		/*
1696 		 * Special case in which we have a !SCHED_DEADLINE task that is going
1697 		 * to be deboosted, but exceeds its runtime while doing so. No point in
1698 		 * replenishing it, as it's going to return back to its original
1699 		 * scheduling class after this. If it has been throttled, we need to
1700 		 * clear the flag, otherwise the task may wake up as throttled after
1701 		 * being boosted again with no means to replenish the runtime and clear
1702 		 * the throttle.
1703 		 */
1704 		p->dl.dl_throttled = 0;
1705 		if (!(flags & ENQUEUE_REPLENISH))
1706 			printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
1707 					     task_pid_nr(p));
1708 
1709 		return;
1710 	}
1711 
1712 	/*
1713 	 * Check if a constrained deadline task was activated
1714 	 * after the deadline but before the next period.
1715 	 * If that is the case, the task will be throttled and
1716 	 * the replenishment timer will be set to the next period.
1717 	 */
1718 	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1719 		dl_check_constrained_dl(&p->dl);
1720 
1721 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1722 		add_rq_bw(&p->dl, &rq->dl);
1723 		add_running_bw(&p->dl, &rq->dl);
1724 	}
1725 
1726 	/*
1727 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1728 	 * its budget it needs a replenishment and, since it now is on
1729 	 * its rq, the bandwidth timer callback (which clearly has not
1730 	 * run yet) will take care of this.
1731 	 * However, the active utilization does not depend on the fact
1732 	 * that the task is on the runqueue or not (but depends on the
1733 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1734 	 * In other words, even if a task is throttled its utilization must
1735 	 * be counted in the active utilization; hence, we need to call
1736 	 * add_running_bw().
1737 	 */
1738 	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1739 		if (flags & ENQUEUE_WAKEUP)
1740 			task_contending(&p->dl, flags);
1741 
1742 		return;
1743 	}
1744 
1745 	check_schedstat_required();
1746 	update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
1747 
1748 	enqueue_dl_entity(&p->dl, flags);
1749 
1750 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1751 		enqueue_pushable_dl_task(rq, p);
1752 }
1753 
1754 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1755 {
1756 	update_stats_dequeue_dl(&rq->dl, &p->dl, flags);
1757 	dequeue_dl_entity(&p->dl);
1758 	dequeue_pushable_dl_task(rq, p);
1759 }
1760 
1761 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1762 {
1763 	update_curr_dl(rq);
1764 	__dequeue_task_dl(rq, p, flags);
1765 
1766 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1767 		sub_running_bw(&p->dl, &rq->dl);
1768 		sub_rq_bw(&p->dl, &rq->dl);
1769 	}
1770 
1771 	/*
1772 	 * This check allows to start the inactive timer (or to immediately
1773 	 * decrease the active utilization, if needed) in two cases:
1774 	 * when the task blocks and when it is terminating
1775 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1776 	 * way, because from GRUB's point of view the same thing is happening
1777 	 * (the task moves from "active contending" to "active non contending"
1778 	 * or "inactive")
1779 	 */
1780 	if (flags & DEQUEUE_SLEEP)
1781 		task_non_contending(p);
1782 }
1783 
1784 /*
1785  * Yield task semantic for -deadline tasks is:
1786  *
1787  *   get off from the CPU until our next instance, with
1788  *   a new runtime. This is of little use now, since we
1789  *   don't have a bandwidth reclaiming mechanism. Anyway,
1790  *   bandwidth reclaiming is planned for the future, and
1791  *   yield_task_dl will indicate that some spare budget
1792  *   is available for other task instances to use it.
1793  */
1794 static void yield_task_dl(struct rq *rq)
1795 {
1796 	/*
1797 	 * We make the task go to sleep until its current deadline by
1798 	 * forcing its runtime to zero. This way, update_curr_dl() stops
1799 	 * it and the bandwidth timer will wake it up and will give it
1800 	 * new scheduling parameters (thanks to dl_yielded=1).
1801 	 */
1802 	rq->curr->dl.dl_yielded = 1;
1803 
1804 	update_rq_clock(rq);
1805 	update_curr_dl(rq);
1806 	/*
1807 	 * Tell update_rq_clock() that we've just updated,
1808 	 * so we don't do microscopic update in schedule()
1809 	 * and double the fastpath cost.
1810 	 */
1811 	rq_clock_skip_update(rq);
1812 }
1813 
1814 #ifdef CONFIG_SMP
1815 
1816 static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
1817 						 struct rq *rq)
1818 {
1819 	return (!rq->dl.dl_nr_running ||
1820 		dl_time_before(p->dl.deadline,
1821 			       rq->dl.earliest_dl.curr));
1822 }
1823 
1824 static int find_later_rq(struct task_struct *task);
1825 
1826 static int
1827 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
1828 {
1829 	struct task_struct *curr;
1830 	bool select_rq;
1831 	struct rq *rq;
1832 
1833 	if (!(flags & WF_TTWU))
1834 		goto out;
1835 
1836 	rq = cpu_rq(cpu);
1837 
1838 	rcu_read_lock();
1839 	curr = READ_ONCE(rq->curr); /* unlocked access */
1840 
1841 	/*
1842 	 * If we are dealing with a -deadline task, we must
1843 	 * decide where to wake it up.
1844 	 * If it has a later deadline and the current task
1845 	 * on this rq can't move (provided the waking task
1846 	 * can!) we prefer to send it somewhere else. On the
1847 	 * other hand, if it has a shorter deadline, we
1848 	 * try to make it stay here, it might be important.
1849 	 */
1850 	select_rq = unlikely(dl_task(curr)) &&
1851 		    (curr->nr_cpus_allowed < 2 ||
1852 		     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1853 		    p->nr_cpus_allowed > 1;
1854 
1855 	/*
1856 	 * Take the capacity of the CPU into account to
1857 	 * ensure it fits the requirement of the task.
1858 	 */
1859 	if (sched_asym_cpucap_active())
1860 		select_rq |= !dl_task_fits_capacity(p, cpu);
1861 
1862 	if (select_rq) {
1863 		int target = find_later_rq(p);
1864 
1865 		if (target != -1 &&
1866 		    dl_task_is_earliest_deadline(p, cpu_rq(target)))
1867 			cpu = target;
1868 	}
1869 	rcu_read_unlock();
1870 
1871 out:
1872 	return cpu;
1873 }
1874 
1875 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1876 {
1877 	struct rq_flags rf;
1878 	struct rq *rq;
1879 
1880 	if (READ_ONCE(p->__state) != TASK_WAKING)
1881 		return;
1882 
1883 	rq = task_rq(p);
1884 	/*
1885 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1886 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1887 	 * rq->lock is not... So, lock it
1888 	 */
1889 	rq_lock(rq, &rf);
1890 	if (p->dl.dl_non_contending) {
1891 		update_rq_clock(rq);
1892 		sub_running_bw(&p->dl, &rq->dl);
1893 		p->dl.dl_non_contending = 0;
1894 		/*
1895 		 * If the timer handler is currently running and the
1896 		 * timer cannot be canceled, inactive_task_timer()
1897 		 * will see that dl_not_contending is not set, and
1898 		 * will not touch the rq's active utilization,
1899 		 * so we are still safe.
1900 		 */
1901 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1902 			put_task_struct(p);
1903 	}
1904 	sub_rq_bw(&p->dl, &rq->dl);
1905 	rq_unlock(rq, &rf);
1906 }
1907 
1908 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1909 {
1910 	/*
1911 	 * Current can't be migrated, useless to reschedule,
1912 	 * let's hope p can move out.
1913 	 */
1914 	if (rq->curr->nr_cpus_allowed == 1 ||
1915 	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1916 		return;
1917 
1918 	/*
1919 	 * p is migratable, so let's not schedule it and
1920 	 * see if it is pushed or pulled somewhere else.
1921 	 */
1922 	if (p->nr_cpus_allowed != 1 &&
1923 	    cpudl_find(&rq->rd->cpudl, p, NULL))
1924 		return;
1925 
1926 	resched_curr(rq);
1927 }
1928 
1929 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1930 {
1931 	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1932 		/*
1933 		 * This is OK, because current is on_cpu, which avoids it being
1934 		 * picked for load-balance and preemption/IRQs are still
1935 		 * disabled avoiding further scheduler activity on it and we've
1936 		 * not yet started the picking loop.
1937 		 */
1938 		rq_unpin_lock(rq, rf);
1939 		pull_dl_task(rq);
1940 		rq_repin_lock(rq, rf);
1941 	}
1942 
1943 	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1944 }
1945 #endif /* CONFIG_SMP */
1946 
1947 /*
1948  * Only called when both the current and waking task are -deadline
1949  * tasks.
1950  */
1951 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1952 				  int flags)
1953 {
1954 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1955 		resched_curr(rq);
1956 		return;
1957 	}
1958 
1959 #ifdef CONFIG_SMP
1960 	/*
1961 	 * In the unlikely case current and p have the same deadline
1962 	 * let us try to decide what's the best thing to do...
1963 	 */
1964 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1965 	    !test_tsk_need_resched(rq->curr))
1966 		check_preempt_equal_dl(rq, p);
1967 #endif /* CONFIG_SMP */
1968 }
1969 
1970 #ifdef CONFIG_SCHED_HRTICK
1971 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1972 {
1973 	hrtick_start(rq, p->dl.runtime);
1974 }
1975 #else /* !CONFIG_SCHED_HRTICK */
1976 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1977 {
1978 }
1979 #endif
1980 
1981 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1982 {
1983 	struct sched_dl_entity *dl_se = &p->dl;
1984 	struct dl_rq *dl_rq = &rq->dl;
1985 
1986 	p->se.exec_start = rq_clock_task(rq);
1987 	if (on_dl_rq(&p->dl))
1988 		update_stats_wait_end_dl(dl_rq, dl_se);
1989 
1990 	/* You can't push away the running task */
1991 	dequeue_pushable_dl_task(rq, p);
1992 
1993 	if (!first)
1994 		return;
1995 
1996 	if (hrtick_enabled_dl(rq))
1997 		start_hrtick_dl(rq, p);
1998 
1999 	if (rq->curr->sched_class != &dl_sched_class)
2000 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2001 
2002 	deadline_queue_push_tasks(rq);
2003 }
2004 
2005 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
2006 {
2007 	struct rb_node *left = rb_first_cached(&dl_rq->root);
2008 
2009 	if (!left)
2010 		return NULL;
2011 
2012 	return __node_2_dle(left);
2013 }
2014 
2015 static struct task_struct *pick_task_dl(struct rq *rq)
2016 {
2017 	struct sched_dl_entity *dl_se;
2018 	struct dl_rq *dl_rq = &rq->dl;
2019 	struct task_struct *p;
2020 
2021 	if (!sched_dl_runnable(rq))
2022 		return NULL;
2023 
2024 	dl_se = pick_next_dl_entity(dl_rq);
2025 	WARN_ON_ONCE(!dl_se);
2026 	p = dl_task_of(dl_se);
2027 
2028 	return p;
2029 }
2030 
2031 static struct task_struct *pick_next_task_dl(struct rq *rq)
2032 {
2033 	struct task_struct *p;
2034 
2035 	p = pick_task_dl(rq);
2036 	if (p)
2037 		set_next_task_dl(rq, p, true);
2038 
2039 	return p;
2040 }
2041 
2042 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
2043 {
2044 	struct sched_dl_entity *dl_se = &p->dl;
2045 	struct dl_rq *dl_rq = &rq->dl;
2046 
2047 	if (on_dl_rq(&p->dl))
2048 		update_stats_wait_start_dl(dl_rq, dl_se);
2049 
2050 	update_curr_dl(rq);
2051 
2052 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2053 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2054 		enqueue_pushable_dl_task(rq, p);
2055 }
2056 
2057 /*
2058  * scheduler tick hitting a task of our scheduling class.
2059  *
2060  * NOTE: This function can be called remotely by the tick offload that
2061  * goes along full dynticks. Therefore no local assumption can be made
2062  * and everything must be accessed through the @rq and @curr passed in
2063  * parameters.
2064  */
2065 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2066 {
2067 	update_curr_dl(rq);
2068 
2069 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2070 	/*
2071 	 * Even when we have runtime, update_curr_dl() might have resulted in us
2072 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
2073 	 * be set and schedule() will start a new hrtick for the next task.
2074 	 */
2075 	if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2076 	    is_leftmost(p, &rq->dl))
2077 		start_hrtick_dl(rq, p);
2078 }
2079 
2080 static void task_fork_dl(struct task_struct *p)
2081 {
2082 	/*
2083 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2084 	 * sched_fork()
2085 	 */
2086 }
2087 
2088 #ifdef CONFIG_SMP
2089 
2090 /* Only try algorithms three times */
2091 #define DL_MAX_TRIES 3
2092 
2093 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
2094 {
2095 	if (!task_on_cpu(rq, p) &&
2096 	    cpumask_test_cpu(cpu, &p->cpus_mask))
2097 		return 1;
2098 	return 0;
2099 }
2100 
2101 /*
2102  * Return the earliest pushable rq's task, which is suitable to be executed
2103  * on the CPU, NULL otherwise:
2104  */
2105 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2106 {
2107 	struct task_struct *p = NULL;
2108 	struct rb_node *next_node;
2109 
2110 	if (!has_pushable_dl_tasks(rq))
2111 		return NULL;
2112 
2113 	next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2114 
2115 next_node:
2116 	if (next_node) {
2117 		p = __node_2_pdl(next_node);
2118 
2119 		if (pick_dl_task(rq, p, cpu))
2120 			return p;
2121 
2122 		next_node = rb_next(next_node);
2123 		goto next_node;
2124 	}
2125 
2126 	return NULL;
2127 }
2128 
2129 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2130 
2131 static int find_later_rq(struct task_struct *task)
2132 {
2133 	struct sched_domain *sd;
2134 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2135 	int this_cpu = smp_processor_id();
2136 	int cpu = task_cpu(task);
2137 
2138 	/* Make sure the mask is initialized first */
2139 	if (unlikely(!later_mask))
2140 		return -1;
2141 
2142 	if (task->nr_cpus_allowed == 1)
2143 		return -1;
2144 
2145 	/*
2146 	 * We have to consider system topology and task affinity
2147 	 * first, then we can look for a suitable CPU.
2148 	 */
2149 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2150 		return -1;
2151 
2152 	/*
2153 	 * If we are here, some targets have been found, including
2154 	 * the most suitable which is, among the runqueues where the
2155 	 * current tasks have later deadlines than the task's one, the
2156 	 * rq with the latest possible one.
2157 	 *
2158 	 * Now we check how well this matches with task's
2159 	 * affinity and system topology.
2160 	 *
2161 	 * The last CPU where the task run is our first
2162 	 * guess, since it is most likely cache-hot there.
2163 	 */
2164 	if (cpumask_test_cpu(cpu, later_mask))
2165 		return cpu;
2166 	/*
2167 	 * Check if this_cpu is to be skipped (i.e., it is
2168 	 * not in the mask) or not.
2169 	 */
2170 	if (!cpumask_test_cpu(this_cpu, later_mask))
2171 		this_cpu = -1;
2172 
2173 	rcu_read_lock();
2174 	for_each_domain(cpu, sd) {
2175 		if (sd->flags & SD_WAKE_AFFINE) {
2176 			int best_cpu;
2177 
2178 			/*
2179 			 * If possible, preempting this_cpu is
2180 			 * cheaper than migrating.
2181 			 */
2182 			if (this_cpu != -1 &&
2183 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2184 				rcu_read_unlock();
2185 				return this_cpu;
2186 			}
2187 
2188 			best_cpu = cpumask_any_and_distribute(later_mask,
2189 							      sched_domain_span(sd));
2190 			/*
2191 			 * Last chance: if a CPU being in both later_mask
2192 			 * and current sd span is valid, that becomes our
2193 			 * choice. Of course, the latest possible CPU is
2194 			 * already under consideration through later_mask.
2195 			 */
2196 			if (best_cpu < nr_cpu_ids) {
2197 				rcu_read_unlock();
2198 				return best_cpu;
2199 			}
2200 		}
2201 	}
2202 	rcu_read_unlock();
2203 
2204 	/*
2205 	 * At this point, all our guesses failed, we just return
2206 	 * 'something', and let the caller sort the things out.
2207 	 */
2208 	if (this_cpu != -1)
2209 		return this_cpu;
2210 
2211 	cpu = cpumask_any_distribute(later_mask);
2212 	if (cpu < nr_cpu_ids)
2213 		return cpu;
2214 
2215 	return -1;
2216 }
2217 
2218 /* Locks the rq it finds */
2219 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2220 {
2221 	struct rq *later_rq = NULL;
2222 	int tries;
2223 	int cpu;
2224 
2225 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2226 		cpu = find_later_rq(task);
2227 
2228 		if ((cpu == -1) || (cpu == rq->cpu))
2229 			break;
2230 
2231 		later_rq = cpu_rq(cpu);
2232 
2233 		if (!dl_task_is_earliest_deadline(task, later_rq)) {
2234 			/*
2235 			 * Target rq has tasks of equal or earlier deadline,
2236 			 * retrying does not release any lock and is unlikely
2237 			 * to yield a different result.
2238 			 */
2239 			later_rq = NULL;
2240 			break;
2241 		}
2242 
2243 		/* Retry if something changed. */
2244 		if (double_lock_balance(rq, later_rq)) {
2245 			if (unlikely(task_rq(task) != rq ||
2246 				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2247 				     task_on_cpu(rq, task) ||
2248 				     !dl_task(task) ||
2249 				     !task_on_rq_queued(task))) {
2250 				double_unlock_balance(rq, later_rq);
2251 				later_rq = NULL;
2252 				break;
2253 			}
2254 		}
2255 
2256 		/*
2257 		 * If the rq we found has no -deadline task, or
2258 		 * its earliest one has a later deadline than our
2259 		 * task, the rq is a good one.
2260 		 */
2261 		if (dl_task_is_earliest_deadline(task, later_rq))
2262 			break;
2263 
2264 		/* Otherwise we try again. */
2265 		double_unlock_balance(rq, later_rq);
2266 		later_rq = NULL;
2267 	}
2268 
2269 	return later_rq;
2270 }
2271 
2272 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2273 {
2274 	struct task_struct *p;
2275 
2276 	if (!has_pushable_dl_tasks(rq))
2277 		return NULL;
2278 
2279 	p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2280 
2281 	WARN_ON_ONCE(rq->cpu != task_cpu(p));
2282 	WARN_ON_ONCE(task_current(rq, p));
2283 	WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2284 
2285 	WARN_ON_ONCE(!task_on_rq_queued(p));
2286 	WARN_ON_ONCE(!dl_task(p));
2287 
2288 	return p;
2289 }
2290 
2291 /*
2292  * See if the non running -deadline tasks on this rq
2293  * can be sent to some other CPU where they can preempt
2294  * and start executing.
2295  */
2296 static int push_dl_task(struct rq *rq)
2297 {
2298 	struct task_struct *next_task;
2299 	struct rq *later_rq;
2300 	int ret = 0;
2301 
2302 	if (!rq->dl.overloaded)
2303 		return 0;
2304 
2305 	next_task = pick_next_pushable_dl_task(rq);
2306 	if (!next_task)
2307 		return 0;
2308 
2309 retry:
2310 	/*
2311 	 * If next_task preempts rq->curr, and rq->curr
2312 	 * can move away, it makes sense to just reschedule
2313 	 * without going further in pushing next_task.
2314 	 */
2315 	if (dl_task(rq->curr) &&
2316 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2317 	    rq->curr->nr_cpus_allowed > 1) {
2318 		resched_curr(rq);
2319 		return 0;
2320 	}
2321 
2322 	if (is_migration_disabled(next_task))
2323 		return 0;
2324 
2325 	if (WARN_ON(next_task == rq->curr))
2326 		return 0;
2327 
2328 	/* We might release rq lock */
2329 	get_task_struct(next_task);
2330 
2331 	/* Will lock the rq it'll find */
2332 	later_rq = find_lock_later_rq(next_task, rq);
2333 	if (!later_rq) {
2334 		struct task_struct *task;
2335 
2336 		/*
2337 		 * We must check all this again, since
2338 		 * find_lock_later_rq releases rq->lock and it is
2339 		 * then possible that next_task has migrated.
2340 		 */
2341 		task = pick_next_pushable_dl_task(rq);
2342 		if (task == next_task) {
2343 			/*
2344 			 * The task is still there. We don't try
2345 			 * again, some other CPU will pull it when ready.
2346 			 */
2347 			goto out;
2348 		}
2349 
2350 		if (!task)
2351 			/* No more tasks */
2352 			goto out;
2353 
2354 		put_task_struct(next_task);
2355 		next_task = task;
2356 		goto retry;
2357 	}
2358 
2359 	deactivate_task(rq, next_task, 0);
2360 	set_task_cpu(next_task, later_rq->cpu);
2361 	activate_task(later_rq, next_task, 0);
2362 	ret = 1;
2363 
2364 	resched_curr(later_rq);
2365 
2366 	double_unlock_balance(rq, later_rq);
2367 
2368 out:
2369 	put_task_struct(next_task);
2370 
2371 	return ret;
2372 }
2373 
2374 static void push_dl_tasks(struct rq *rq)
2375 {
2376 	/* push_dl_task() will return true if it moved a -deadline task */
2377 	while (push_dl_task(rq))
2378 		;
2379 }
2380 
2381 static void pull_dl_task(struct rq *this_rq)
2382 {
2383 	int this_cpu = this_rq->cpu, cpu;
2384 	struct task_struct *p, *push_task;
2385 	bool resched = false;
2386 	struct rq *src_rq;
2387 	u64 dmin = LONG_MAX;
2388 
2389 	if (likely(!dl_overloaded(this_rq)))
2390 		return;
2391 
2392 	/*
2393 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2394 	 * see overloaded we must also see the dlo_mask bit.
2395 	 */
2396 	smp_rmb();
2397 
2398 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2399 		if (this_cpu == cpu)
2400 			continue;
2401 
2402 		src_rq = cpu_rq(cpu);
2403 
2404 		/*
2405 		 * It looks racy, abd it is! However, as in sched_rt.c,
2406 		 * we are fine with this.
2407 		 */
2408 		if (this_rq->dl.dl_nr_running &&
2409 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2410 				   src_rq->dl.earliest_dl.next))
2411 			continue;
2412 
2413 		/* Might drop this_rq->lock */
2414 		push_task = NULL;
2415 		double_lock_balance(this_rq, src_rq);
2416 
2417 		/*
2418 		 * If there are no more pullable tasks on the
2419 		 * rq, we're done with it.
2420 		 */
2421 		if (src_rq->dl.dl_nr_running <= 1)
2422 			goto skip;
2423 
2424 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2425 
2426 		/*
2427 		 * We found a task to be pulled if:
2428 		 *  - it preempts our current (if there's one),
2429 		 *  - it will preempt the last one we pulled (if any).
2430 		 */
2431 		if (p && dl_time_before(p->dl.deadline, dmin) &&
2432 		    dl_task_is_earliest_deadline(p, this_rq)) {
2433 			WARN_ON(p == src_rq->curr);
2434 			WARN_ON(!task_on_rq_queued(p));
2435 
2436 			/*
2437 			 * Then we pull iff p has actually an earlier
2438 			 * deadline than the current task of its runqueue.
2439 			 */
2440 			if (dl_time_before(p->dl.deadline,
2441 					   src_rq->curr->dl.deadline))
2442 				goto skip;
2443 
2444 			if (is_migration_disabled(p)) {
2445 				push_task = get_push_task(src_rq);
2446 			} else {
2447 				deactivate_task(src_rq, p, 0);
2448 				set_task_cpu(p, this_cpu);
2449 				activate_task(this_rq, p, 0);
2450 				dmin = p->dl.deadline;
2451 				resched = true;
2452 			}
2453 
2454 			/* Is there any other task even earlier? */
2455 		}
2456 skip:
2457 		double_unlock_balance(this_rq, src_rq);
2458 
2459 		if (push_task) {
2460 			raw_spin_rq_unlock(this_rq);
2461 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2462 					    push_task, &src_rq->push_work);
2463 			raw_spin_rq_lock(this_rq);
2464 		}
2465 	}
2466 
2467 	if (resched)
2468 		resched_curr(this_rq);
2469 }
2470 
2471 /*
2472  * Since the task is not running and a reschedule is not going to happen
2473  * anytime soon on its runqueue, we try pushing it away now.
2474  */
2475 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2476 {
2477 	if (!task_on_cpu(rq, p) &&
2478 	    !test_tsk_need_resched(rq->curr) &&
2479 	    p->nr_cpus_allowed > 1 &&
2480 	    dl_task(rq->curr) &&
2481 	    (rq->curr->nr_cpus_allowed < 2 ||
2482 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2483 		push_dl_tasks(rq);
2484 	}
2485 }
2486 
2487 static void set_cpus_allowed_dl(struct task_struct *p,
2488 				const struct cpumask *new_mask,
2489 				u32 flags)
2490 {
2491 	struct root_domain *src_rd;
2492 	struct rq *rq;
2493 
2494 	WARN_ON_ONCE(!dl_task(p));
2495 
2496 	rq = task_rq(p);
2497 	src_rd = rq->rd;
2498 	/*
2499 	 * Migrating a SCHED_DEADLINE task between exclusive
2500 	 * cpusets (different root_domains) entails a bandwidth
2501 	 * update. We already made space for us in the destination
2502 	 * domain (see cpuset_can_attach()).
2503 	 */
2504 	if (!cpumask_intersects(src_rd->span, new_mask)) {
2505 		struct dl_bw *src_dl_b;
2506 
2507 		src_dl_b = dl_bw_of(cpu_of(rq));
2508 		/*
2509 		 * We now free resources of the root_domain we are migrating
2510 		 * off. In the worst case, sched_setattr() may temporary fail
2511 		 * until we complete the update.
2512 		 */
2513 		raw_spin_lock(&src_dl_b->lock);
2514 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2515 		raw_spin_unlock(&src_dl_b->lock);
2516 	}
2517 
2518 	set_cpus_allowed_common(p, new_mask, flags);
2519 }
2520 
2521 /* Assumes rq->lock is held */
2522 static void rq_online_dl(struct rq *rq)
2523 {
2524 	if (rq->dl.overloaded)
2525 		dl_set_overload(rq);
2526 
2527 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2528 	if (rq->dl.dl_nr_running > 0)
2529 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2530 }
2531 
2532 /* Assumes rq->lock is held */
2533 static void rq_offline_dl(struct rq *rq)
2534 {
2535 	if (rq->dl.overloaded)
2536 		dl_clear_overload(rq);
2537 
2538 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2539 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2540 }
2541 
2542 void __init init_sched_dl_class(void)
2543 {
2544 	unsigned int i;
2545 
2546 	for_each_possible_cpu(i)
2547 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2548 					GFP_KERNEL, cpu_to_node(i));
2549 }
2550 
2551 void dl_add_task_root_domain(struct task_struct *p)
2552 {
2553 	struct rq_flags rf;
2554 	struct rq *rq;
2555 	struct dl_bw *dl_b;
2556 
2557 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2558 	if (!dl_task(p)) {
2559 		raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2560 		return;
2561 	}
2562 
2563 	rq = __task_rq_lock(p, &rf);
2564 
2565 	dl_b = &rq->rd->dl_bw;
2566 	raw_spin_lock(&dl_b->lock);
2567 
2568 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2569 
2570 	raw_spin_unlock(&dl_b->lock);
2571 
2572 	task_rq_unlock(rq, p, &rf);
2573 }
2574 
2575 void dl_clear_root_domain(struct root_domain *rd)
2576 {
2577 	unsigned long flags;
2578 
2579 	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2580 	rd->dl_bw.total_bw = 0;
2581 	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2582 }
2583 
2584 #endif /* CONFIG_SMP */
2585 
2586 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2587 {
2588 	/*
2589 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2590 	 * time is in the future). If the task switches back to dl before
2591 	 * the "inactive timer" fires, it can continue to consume its current
2592 	 * runtime using its current deadline. If it stays outside of
2593 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2594 	 * will reset the task parameters.
2595 	 */
2596 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2597 		task_non_contending(p);
2598 
2599 	if (!task_on_rq_queued(p)) {
2600 		/*
2601 		 * Inactive timer is armed. However, p is leaving DEADLINE and
2602 		 * might migrate away from this rq while continuing to run on
2603 		 * some other class. We need to remove its contribution from
2604 		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2605 		 */
2606 		if (p->dl.dl_non_contending)
2607 			sub_running_bw(&p->dl, &rq->dl);
2608 		sub_rq_bw(&p->dl, &rq->dl);
2609 	}
2610 
2611 	/*
2612 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2613 	 * at the 0-lag time, because the task could have been migrated
2614 	 * while SCHED_OTHER in the meanwhile.
2615 	 */
2616 	if (p->dl.dl_non_contending)
2617 		p->dl.dl_non_contending = 0;
2618 
2619 	/*
2620 	 * Since this might be the only -deadline task on the rq,
2621 	 * this is the right place to try to pull some other one
2622 	 * from an overloaded CPU, if any.
2623 	 */
2624 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2625 		return;
2626 
2627 	deadline_queue_pull_task(rq);
2628 }
2629 
2630 /*
2631  * When switching to -deadline, we may overload the rq, then
2632  * we try to push someone off, if possible.
2633  */
2634 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2635 {
2636 	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2637 		put_task_struct(p);
2638 
2639 	/* If p is not queued we will update its parameters at next wakeup. */
2640 	if (!task_on_rq_queued(p)) {
2641 		add_rq_bw(&p->dl, &rq->dl);
2642 
2643 		return;
2644 	}
2645 
2646 	if (rq->curr != p) {
2647 #ifdef CONFIG_SMP
2648 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2649 			deadline_queue_push_tasks(rq);
2650 #endif
2651 		if (dl_task(rq->curr))
2652 			check_preempt_curr_dl(rq, p, 0);
2653 		else
2654 			resched_curr(rq);
2655 	} else {
2656 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2657 	}
2658 }
2659 
2660 /*
2661  * If the scheduling parameters of a -deadline task changed,
2662  * a push or pull operation might be needed.
2663  */
2664 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2665 			    int oldprio)
2666 {
2667 	if (task_on_rq_queued(p) || task_current(rq, p)) {
2668 #ifdef CONFIG_SMP
2669 		/*
2670 		 * This might be too much, but unfortunately
2671 		 * we don't have the old deadline value, and
2672 		 * we can't argue if the task is increasing
2673 		 * or lowering its prio, so...
2674 		 */
2675 		if (!rq->dl.overloaded)
2676 			deadline_queue_pull_task(rq);
2677 
2678 		/*
2679 		 * If we now have a earlier deadline task than p,
2680 		 * then reschedule, provided p is still on this
2681 		 * runqueue.
2682 		 */
2683 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2684 			resched_curr(rq);
2685 #else
2686 		/*
2687 		 * Again, we don't know if p has a earlier
2688 		 * or later deadline, so let's blindly set a
2689 		 * (maybe not needed) rescheduling point.
2690 		 */
2691 		resched_curr(rq);
2692 #endif /* CONFIG_SMP */
2693 	}
2694 }
2695 
2696 DEFINE_SCHED_CLASS(dl) = {
2697 
2698 	.enqueue_task		= enqueue_task_dl,
2699 	.dequeue_task		= dequeue_task_dl,
2700 	.yield_task		= yield_task_dl,
2701 
2702 	.check_preempt_curr	= check_preempt_curr_dl,
2703 
2704 	.pick_next_task		= pick_next_task_dl,
2705 	.put_prev_task		= put_prev_task_dl,
2706 	.set_next_task		= set_next_task_dl,
2707 
2708 #ifdef CONFIG_SMP
2709 	.balance		= balance_dl,
2710 	.pick_task		= pick_task_dl,
2711 	.select_task_rq		= select_task_rq_dl,
2712 	.migrate_task_rq	= migrate_task_rq_dl,
2713 	.set_cpus_allowed       = set_cpus_allowed_dl,
2714 	.rq_online              = rq_online_dl,
2715 	.rq_offline             = rq_offline_dl,
2716 	.task_woken		= task_woken_dl,
2717 	.find_lock_rq		= find_lock_later_rq,
2718 #endif
2719 
2720 	.task_tick		= task_tick_dl,
2721 	.task_fork              = task_fork_dl,
2722 
2723 	.prio_changed           = prio_changed_dl,
2724 	.switched_from		= switched_from_dl,
2725 	.switched_to		= switched_to_dl,
2726 
2727 	.update_curr		= update_curr_dl,
2728 };
2729 
2730 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
2731 static u64 dl_generation;
2732 
2733 int sched_dl_global_validate(void)
2734 {
2735 	u64 runtime = global_rt_runtime();
2736 	u64 period = global_rt_period();
2737 	u64 new_bw = to_ratio(period, runtime);
2738 	u64 gen = ++dl_generation;
2739 	struct dl_bw *dl_b;
2740 	int cpu, cpus, ret = 0;
2741 	unsigned long flags;
2742 
2743 	/*
2744 	 * Here we want to check the bandwidth not being set to some
2745 	 * value smaller than the currently allocated bandwidth in
2746 	 * any of the root_domains.
2747 	 */
2748 	for_each_possible_cpu(cpu) {
2749 		rcu_read_lock_sched();
2750 
2751 		if (dl_bw_visited(cpu, gen))
2752 			goto next;
2753 
2754 		dl_b = dl_bw_of(cpu);
2755 		cpus = dl_bw_cpus(cpu);
2756 
2757 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2758 		if (new_bw * cpus < dl_b->total_bw)
2759 			ret = -EBUSY;
2760 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2761 
2762 next:
2763 		rcu_read_unlock_sched();
2764 
2765 		if (ret)
2766 			break;
2767 	}
2768 
2769 	return ret;
2770 }
2771 
2772 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2773 {
2774 	if (global_rt_runtime() == RUNTIME_INF) {
2775 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2776 		dl_rq->extra_bw = 1 << BW_SHIFT;
2777 	} else {
2778 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2779 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2780 		dl_rq->extra_bw = to_ratio(global_rt_period(),
2781 						    global_rt_runtime());
2782 	}
2783 }
2784 
2785 void sched_dl_do_global(void)
2786 {
2787 	u64 new_bw = -1;
2788 	u64 gen = ++dl_generation;
2789 	struct dl_bw *dl_b;
2790 	int cpu;
2791 	unsigned long flags;
2792 
2793 	if (global_rt_runtime() != RUNTIME_INF)
2794 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2795 
2796 	for_each_possible_cpu(cpu) {
2797 		rcu_read_lock_sched();
2798 
2799 		if (dl_bw_visited(cpu, gen)) {
2800 			rcu_read_unlock_sched();
2801 			continue;
2802 		}
2803 
2804 		dl_b = dl_bw_of(cpu);
2805 
2806 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2807 		dl_b->bw = new_bw;
2808 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2809 
2810 		rcu_read_unlock_sched();
2811 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2812 	}
2813 }
2814 
2815 /*
2816  * We must be sure that accepting a new task (or allowing changing the
2817  * parameters of an existing one) is consistent with the bandwidth
2818  * constraints. If yes, this function also accordingly updates the currently
2819  * allocated bandwidth to reflect the new situation.
2820  *
2821  * This function is called while holding p's rq->lock.
2822  */
2823 int sched_dl_overflow(struct task_struct *p, int policy,
2824 		      const struct sched_attr *attr)
2825 {
2826 	u64 period = attr->sched_period ?: attr->sched_deadline;
2827 	u64 runtime = attr->sched_runtime;
2828 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2829 	int cpus, err = -1, cpu = task_cpu(p);
2830 	struct dl_bw *dl_b = dl_bw_of(cpu);
2831 	unsigned long cap;
2832 
2833 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2834 		return 0;
2835 
2836 	/* !deadline task may carry old deadline bandwidth */
2837 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2838 		return 0;
2839 
2840 	/*
2841 	 * Either if a task, enters, leave, or stays -deadline but changes
2842 	 * its parameters, we may need to update accordingly the total
2843 	 * allocated bandwidth of the container.
2844 	 */
2845 	raw_spin_lock(&dl_b->lock);
2846 	cpus = dl_bw_cpus(cpu);
2847 	cap = dl_bw_capacity(cpu);
2848 
2849 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2850 	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
2851 		if (hrtimer_active(&p->dl.inactive_timer))
2852 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2853 		__dl_add(dl_b, new_bw, cpus);
2854 		err = 0;
2855 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2856 		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2857 		/*
2858 		 * XXX this is slightly incorrect: when the task
2859 		 * utilization decreases, we should delay the total
2860 		 * utilization change until the task's 0-lag point.
2861 		 * But this would require to set the task's "inactive
2862 		 * timer" when the task is not inactive.
2863 		 */
2864 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2865 		__dl_add(dl_b, new_bw, cpus);
2866 		dl_change_utilization(p, new_bw);
2867 		err = 0;
2868 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2869 		/*
2870 		 * Do not decrease the total deadline utilization here,
2871 		 * switched_from_dl() will take care to do it at the correct
2872 		 * (0-lag) time.
2873 		 */
2874 		err = 0;
2875 	}
2876 	raw_spin_unlock(&dl_b->lock);
2877 
2878 	return err;
2879 }
2880 
2881 /*
2882  * This function initializes the sched_dl_entity of a newly becoming
2883  * SCHED_DEADLINE task.
2884  *
2885  * Only the static values are considered here, the actual runtime and the
2886  * absolute deadline will be properly calculated when the task is enqueued
2887  * for the first time with its new policy.
2888  */
2889 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2890 {
2891 	struct sched_dl_entity *dl_se = &p->dl;
2892 
2893 	dl_se->dl_runtime = attr->sched_runtime;
2894 	dl_se->dl_deadline = attr->sched_deadline;
2895 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2896 	dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
2897 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2898 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2899 }
2900 
2901 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2902 {
2903 	struct sched_dl_entity *dl_se = &p->dl;
2904 
2905 	attr->sched_priority = p->rt_priority;
2906 	attr->sched_runtime = dl_se->dl_runtime;
2907 	attr->sched_deadline = dl_se->dl_deadline;
2908 	attr->sched_period = dl_se->dl_period;
2909 	attr->sched_flags &= ~SCHED_DL_FLAGS;
2910 	attr->sched_flags |= dl_se->flags;
2911 }
2912 
2913 /*
2914  * This function validates the new parameters of a -deadline task.
2915  * We ask for the deadline not being zero, and greater or equal
2916  * than the runtime, as well as the period of being zero or
2917  * greater than deadline. Furthermore, we have to be sure that
2918  * user parameters are above the internal resolution of 1us (we
2919  * check sched_runtime only since it is always the smaller one) and
2920  * below 2^63 ns (we have to check both sched_deadline and
2921  * sched_period, as the latter can be zero).
2922  */
2923 bool __checkparam_dl(const struct sched_attr *attr)
2924 {
2925 	u64 period, max, min;
2926 
2927 	/* special dl tasks don't actually use any parameter */
2928 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2929 		return true;
2930 
2931 	/* deadline != 0 */
2932 	if (attr->sched_deadline == 0)
2933 		return false;
2934 
2935 	/*
2936 	 * Since we truncate DL_SCALE bits, make sure we're at least
2937 	 * that big.
2938 	 */
2939 	if (attr->sched_runtime < (1ULL << DL_SCALE))
2940 		return false;
2941 
2942 	/*
2943 	 * Since we use the MSB for wrap-around and sign issues, make
2944 	 * sure it's not set (mind that period can be equal to zero).
2945 	 */
2946 	if (attr->sched_deadline & (1ULL << 63) ||
2947 	    attr->sched_period & (1ULL << 63))
2948 		return false;
2949 
2950 	period = attr->sched_period;
2951 	if (!period)
2952 		period = attr->sched_deadline;
2953 
2954 	/* runtime <= deadline <= period (if period != 0) */
2955 	if (period < attr->sched_deadline ||
2956 	    attr->sched_deadline < attr->sched_runtime)
2957 		return false;
2958 
2959 	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
2960 	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
2961 
2962 	if (period < min || period > max)
2963 		return false;
2964 
2965 	return true;
2966 }
2967 
2968 /*
2969  * This function clears the sched_dl_entity static params.
2970  */
2971 void __dl_clear_params(struct task_struct *p)
2972 {
2973 	struct sched_dl_entity *dl_se = &p->dl;
2974 
2975 	dl_se->dl_runtime		= 0;
2976 	dl_se->dl_deadline		= 0;
2977 	dl_se->dl_period		= 0;
2978 	dl_se->flags			= 0;
2979 	dl_se->dl_bw			= 0;
2980 	dl_se->dl_density		= 0;
2981 
2982 	dl_se->dl_throttled		= 0;
2983 	dl_se->dl_yielded		= 0;
2984 	dl_se->dl_non_contending	= 0;
2985 	dl_se->dl_overrun		= 0;
2986 
2987 #ifdef CONFIG_RT_MUTEXES
2988 	dl_se->pi_se			= dl_se;
2989 #endif
2990 }
2991 
2992 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2993 {
2994 	struct sched_dl_entity *dl_se = &p->dl;
2995 
2996 	if (dl_se->dl_runtime != attr->sched_runtime ||
2997 	    dl_se->dl_deadline != attr->sched_deadline ||
2998 	    dl_se->dl_period != attr->sched_period ||
2999 	    dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3000 		return true;
3001 
3002 	return false;
3003 }
3004 
3005 #ifdef CONFIG_SMP
3006 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3007 				 const struct cpumask *trial)
3008 {
3009 	unsigned long flags, cap;
3010 	struct dl_bw *cur_dl_b;
3011 	int ret = 1;
3012 
3013 	rcu_read_lock_sched();
3014 	cur_dl_b = dl_bw_of(cpumask_any(cur));
3015 	cap = __dl_bw_capacity(trial);
3016 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3017 	if (__dl_overflow(cur_dl_b, cap, 0, 0))
3018 		ret = 0;
3019 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3020 	rcu_read_unlock_sched();
3021 
3022 	return ret;
3023 }
3024 
3025 int dl_cpu_busy(int cpu, struct task_struct *p)
3026 {
3027 	unsigned long flags, cap;
3028 	struct dl_bw *dl_b;
3029 	bool overflow;
3030 
3031 	rcu_read_lock_sched();
3032 	dl_b = dl_bw_of(cpu);
3033 	raw_spin_lock_irqsave(&dl_b->lock, flags);
3034 	cap = dl_bw_capacity(cpu);
3035 	overflow = __dl_overflow(dl_b, cap, 0, p ? p->dl.dl_bw : 0);
3036 
3037 	if (!overflow && p) {
3038 		/*
3039 		 * We reserve space for this task in the destination
3040 		 * root_domain, as we can't fail after this point.
3041 		 * We will free resources in the source root_domain
3042 		 * later on (see set_cpus_allowed_dl()).
3043 		 */
3044 		__dl_add(dl_b, p->dl.dl_bw, dl_bw_cpus(cpu));
3045 	}
3046 
3047 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3048 	rcu_read_unlock_sched();
3049 
3050 	return overflow ? -EBUSY : 0;
3051 }
3052 #endif
3053 
3054 #ifdef CONFIG_SCHED_DEBUG
3055 void print_dl_stats(struct seq_file *m, int cpu)
3056 {
3057 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3058 }
3059 #endif /* CONFIG_SCHED_DEBUG */
3060