1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Deadline Scheduling Class (SCHED_DEADLINE) 4 * 5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 6 * 7 * Tasks that periodically executes their instances for less than their 8 * runtime won't miss any of their deadlines. 9 * Tasks that are not periodic or sporadic or that tries to execute more 10 * than their reserved bandwidth will be slowed down (and may potentially 11 * miss some of their deadlines), and won't affect any other task. 12 * 13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 14 * Juri Lelli <juri.lelli@gmail.com>, 15 * Michael Trimarchi <michael@amarulasolutions.com>, 16 * Fabio Checconi <fchecconi@gmail.com> 17 */ 18 #include "sched.h" 19 #include "pelt.h" 20 21 struct dl_bandwidth def_dl_bandwidth; 22 23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 24 { 25 return container_of(dl_se, struct task_struct, dl); 26 } 27 28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 29 { 30 return container_of(dl_rq, struct rq, dl); 31 } 32 33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 34 { 35 struct task_struct *p = dl_task_of(dl_se); 36 struct rq *rq = task_rq(p); 37 38 return &rq->dl; 39 } 40 41 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 42 { 43 return !RB_EMPTY_NODE(&dl_se->rb_node); 44 } 45 46 #ifdef CONFIG_SMP 47 static inline struct dl_bw *dl_bw_of(int i) 48 { 49 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 50 "sched RCU must be held"); 51 return &cpu_rq(i)->rd->dl_bw; 52 } 53 54 static inline int dl_bw_cpus(int i) 55 { 56 struct root_domain *rd = cpu_rq(i)->rd; 57 int cpus = 0; 58 59 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 60 "sched RCU must be held"); 61 for_each_cpu_and(i, rd->span, cpu_active_mask) 62 cpus++; 63 64 return cpus; 65 } 66 #else 67 static inline struct dl_bw *dl_bw_of(int i) 68 { 69 return &cpu_rq(i)->dl.dl_bw; 70 } 71 72 static inline int dl_bw_cpus(int i) 73 { 74 return 1; 75 } 76 #endif 77 78 static inline 79 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 80 { 81 u64 old = dl_rq->running_bw; 82 83 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 84 dl_rq->running_bw += dl_bw; 85 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */ 86 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 87 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 88 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 89 } 90 91 static inline 92 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 93 { 94 u64 old = dl_rq->running_bw; 95 96 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 97 dl_rq->running_bw -= dl_bw; 98 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */ 99 if (dl_rq->running_bw > old) 100 dl_rq->running_bw = 0; 101 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 102 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 103 } 104 105 static inline 106 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 107 { 108 u64 old = dl_rq->this_bw; 109 110 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 111 dl_rq->this_bw += dl_bw; 112 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */ 113 } 114 115 static inline 116 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 117 { 118 u64 old = dl_rq->this_bw; 119 120 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 121 dl_rq->this_bw -= dl_bw; 122 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */ 123 if (dl_rq->this_bw > old) 124 dl_rq->this_bw = 0; 125 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 126 } 127 128 static inline 129 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 130 { 131 if (!dl_entity_is_special(dl_se)) 132 __add_rq_bw(dl_se->dl_bw, dl_rq); 133 } 134 135 static inline 136 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 137 { 138 if (!dl_entity_is_special(dl_se)) 139 __sub_rq_bw(dl_se->dl_bw, dl_rq); 140 } 141 142 static inline 143 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 144 { 145 if (!dl_entity_is_special(dl_se)) 146 __add_running_bw(dl_se->dl_bw, dl_rq); 147 } 148 149 static inline 150 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 151 { 152 if (!dl_entity_is_special(dl_se)) 153 __sub_running_bw(dl_se->dl_bw, dl_rq); 154 } 155 156 void dl_change_utilization(struct task_struct *p, u64 new_bw) 157 { 158 struct rq *rq; 159 160 BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV); 161 162 if (task_on_rq_queued(p)) 163 return; 164 165 rq = task_rq(p); 166 if (p->dl.dl_non_contending) { 167 sub_running_bw(&p->dl, &rq->dl); 168 p->dl.dl_non_contending = 0; 169 /* 170 * If the timer handler is currently running and the 171 * timer cannot be cancelled, inactive_task_timer() 172 * will see that dl_not_contending is not set, and 173 * will not touch the rq's active utilization, 174 * so we are still safe. 175 */ 176 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 177 put_task_struct(p); 178 } 179 __sub_rq_bw(p->dl.dl_bw, &rq->dl); 180 __add_rq_bw(new_bw, &rq->dl); 181 } 182 183 /* 184 * The utilization of a task cannot be immediately removed from 185 * the rq active utilization (running_bw) when the task blocks. 186 * Instead, we have to wait for the so called "0-lag time". 187 * 188 * If a task blocks before the "0-lag time", a timer (the inactive 189 * timer) is armed, and running_bw is decreased when the timer 190 * fires. 191 * 192 * If the task wakes up again before the inactive timer fires, 193 * the timer is cancelled, whereas if the task wakes up after the 194 * inactive timer fired (and running_bw has been decreased) the 195 * task's utilization has to be added to running_bw again. 196 * A flag in the deadline scheduling entity (dl_non_contending) 197 * is used to avoid race conditions between the inactive timer handler 198 * and task wakeups. 199 * 200 * The following diagram shows how running_bw is updated. A task is 201 * "ACTIVE" when its utilization contributes to running_bw; an 202 * "ACTIVE contending" task is in the TASK_RUNNING state, while an 203 * "ACTIVE non contending" task is a blocked task for which the "0-lag time" 204 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag" 205 * time already passed, which does not contribute to running_bw anymore. 206 * +------------------+ 207 * wakeup | ACTIVE | 208 * +------------------>+ contending | 209 * | add_running_bw | | 210 * | +----+------+------+ 211 * | | ^ 212 * | dequeue | | 213 * +--------+-------+ | | 214 * | | t >= 0-lag | | wakeup 215 * | INACTIVE |<---------------+ | 216 * | | sub_running_bw | | 217 * +--------+-------+ | | 218 * ^ | | 219 * | t < 0-lag | | 220 * | | | 221 * | V | 222 * | +----+------+------+ 223 * | sub_running_bw | ACTIVE | 224 * +-------------------+ | 225 * inactive timer | non contending | 226 * fired +------------------+ 227 * 228 * The task_non_contending() function is invoked when a task 229 * blocks, and checks if the 0-lag time already passed or 230 * not (in the first case, it directly updates running_bw; 231 * in the second case, it arms the inactive timer). 232 * 233 * The task_contending() function is invoked when a task wakes 234 * up, and checks if the task is still in the "ACTIVE non contending" 235 * state or not (in the second case, it updates running_bw). 236 */ 237 static void task_non_contending(struct task_struct *p) 238 { 239 struct sched_dl_entity *dl_se = &p->dl; 240 struct hrtimer *timer = &dl_se->inactive_timer; 241 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 242 struct rq *rq = rq_of_dl_rq(dl_rq); 243 s64 zerolag_time; 244 245 /* 246 * If this is a non-deadline task that has been boosted, 247 * do nothing 248 */ 249 if (dl_se->dl_runtime == 0) 250 return; 251 252 if (dl_entity_is_special(dl_se)) 253 return; 254 255 WARN_ON(dl_se->dl_non_contending); 256 257 zerolag_time = dl_se->deadline - 258 div64_long((dl_se->runtime * dl_se->dl_period), 259 dl_se->dl_runtime); 260 261 /* 262 * Using relative times instead of the absolute "0-lag time" 263 * allows to simplify the code 264 */ 265 zerolag_time -= rq_clock(rq); 266 267 /* 268 * If the "0-lag time" already passed, decrease the active 269 * utilization now, instead of starting a timer 270 */ 271 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) { 272 if (dl_task(p)) 273 sub_running_bw(dl_se, dl_rq); 274 if (!dl_task(p) || p->state == TASK_DEAD) { 275 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 276 277 if (p->state == TASK_DEAD) 278 sub_rq_bw(&p->dl, &rq->dl); 279 raw_spin_lock(&dl_b->lock); 280 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 281 __dl_clear_params(p); 282 raw_spin_unlock(&dl_b->lock); 283 } 284 285 return; 286 } 287 288 dl_se->dl_non_contending = 1; 289 get_task_struct(p); 290 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL); 291 } 292 293 static void task_contending(struct sched_dl_entity *dl_se, int flags) 294 { 295 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 296 297 /* 298 * If this is a non-deadline task that has been boosted, 299 * do nothing 300 */ 301 if (dl_se->dl_runtime == 0) 302 return; 303 304 if (flags & ENQUEUE_MIGRATED) 305 add_rq_bw(dl_se, dl_rq); 306 307 if (dl_se->dl_non_contending) { 308 dl_se->dl_non_contending = 0; 309 /* 310 * If the timer handler is currently running and the 311 * timer cannot be cancelled, inactive_task_timer() 312 * will see that dl_not_contending is not set, and 313 * will not touch the rq's active utilization, 314 * so we are still safe. 315 */ 316 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) 317 put_task_struct(dl_task_of(dl_se)); 318 } else { 319 /* 320 * Since "dl_non_contending" is not set, the 321 * task's utilization has already been removed from 322 * active utilization (either when the task blocked, 323 * when the "inactive timer" fired). 324 * So, add it back. 325 */ 326 add_running_bw(dl_se, dl_rq); 327 } 328 } 329 330 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) 331 { 332 struct sched_dl_entity *dl_se = &p->dl; 333 334 return dl_rq->root.rb_leftmost == &dl_se->rb_node; 335 } 336 337 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) 338 { 339 raw_spin_lock_init(&dl_b->dl_runtime_lock); 340 dl_b->dl_period = period; 341 dl_b->dl_runtime = runtime; 342 } 343 344 void init_dl_bw(struct dl_bw *dl_b) 345 { 346 raw_spin_lock_init(&dl_b->lock); 347 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock); 348 if (global_rt_runtime() == RUNTIME_INF) 349 dl_b->bw = -1; 350 else 351 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 352 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock); 353 dl_b->total_bw = 0; 354 } 355 356 void init_dl_rq(struct dl_rq *dl_rq) 357 { 358 dl_rq->root = RB_ROOT_CACHED; 359 360 #ifdef CONFIG_SMP 361 /* zero means no -deadline tasks */ 362 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 363 364 dl_rq->dl_nr_migratory = 0; 365 dl_rq->overloaded = 0; 366 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED; 367 #else 368 init_dl_bw(&dl_rq->dl_bw); 369 #endif 370 371 dl_rq->running_bw = 0; 372 dl_rq->this_bw = 0; 373 init_dl_rq_bw_ratio(dl_rq); 374 } 375 376 #ifdef CONFIG_SMP 377 378 static inline int dl_overloaded(struct rq *rq) 379 { 380 return atomic_read(&rq->rd->dlo_count); 381 } 382 383 static inline void dl_set_overload(struct rq *rq) 384 { 385 if (!rq->online) 386 return; 387 388 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 389 /* 390 * Must be visible before the overload count is 391 * set (as in sched_rt.c). 392 * 393 * Matched by the barrier in pull_dl_task(). 394 */ 395 smp_wmb(); 396 atomic_inc(&rq->rd->dlo_count); 397 } 398 399 static inline void dl_clear_overload(struct rq *rq) 400 { 401 if (!rq->online) 402 return; 403 404 atomic_dec(&rq->rd->dlo_count); 405 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 406 } 407 408 static void update_dl_migration(struct dl_rq *dl_rq) 409 { 410 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { 411 if (!dl_rq->overloaded) { 412 dl_set_overload(rq_of_dl_rq(dl_rq)); 413 dl_rq->overloaded = 1; 414 } 415 } else if (dl_rq->overloaded) { 416 dl_clear_overload(rq_of_dl_rq(dl_rq)); 417 dl_rq->overloaded = 0; 418 } 419 } 420 421 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 422 { 423 struct task_struct *p = dl_task_of(dl_se); 424 425 if (p->nr_cpus_allowed > 1) 426 dl_rq->dl_nr_migratory++; 427 428 update_dl_migration(dl_rq); 429 } 430 431 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 432 { 433 struct task_struct *p = dl_task_of(dl_se); 434 435 if (p->nr_cpus_allowed > 1) 436 dl_rq->dl_nr_migratory--; 437 438 update_dl_migration(dl_rq); 439 } 440 441 /* 442 * The list of pushable -deadline task is not a plist, like in 443 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 444 */ 445 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 446 { 447 struct dl_rq *dl_rq = &rq->dl; 448 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node; 449 struct rb_node *parent = NULL; 450 struct task_struct *entry; 451 bool leftmost = true; 452 453 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 454 455 while (*link) { 456 parent = *link; 457 entry = rb_entry(parent, struct task_struct, 458 pushable_dl_tasks); 459 if (dl_entity_preempt(&p->dl, &entry->dl)) 460 link = &parent->rb_left; 461 else { 462 link = &parent->rb_right; 463 leftmost = false; 464 } 465 } 466 467 if (leftmost) 468 dl_rq->earliest_dl.next = p->dl.deadline; 469 470 rb_link_node(&p->pushable_dl_tasks, parent, link); 471 rb_insert_color_cached(&p->pushable_dl_tasks, 472 &dl_rq->pushable_dl_tasks_root, leftmost); 473 } 474 475 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 476 { 477 struct dl_rq *dl_rq = &rq->dl; 478 479 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 480 return; 481 482 if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) { 483 struct rb_node *next_node; 484 485 next_node = rb_next(&p->pushable_dl_tasks); 486 if (next_node) { 487 dl_rq->earliest_dl.next = rb_entry(next_node, 488 struct task_struct, pushable_dl_tasks)->dl.deadline; 489 } 490 } 491 492 rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 493 RB_CLEAR_NODE(&p->pushable_dl_tasks); 494 } 495 496 static inline int has_pushable_dl_tasks(struct rq *rq) 497 { 498 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root); 499 } 500 501 static int push_dl_task(struct rq *rq); 502 503 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 504 { 505 return dl_task(prev); 506 } 507 508 static DEFINE_PER_CPU(struct callback_head, dl_push_head); 509 static DEFINE_PER_CPU(struct callback_head, dl_pull_head); 510 511 static void push_dl_tasks(struct rq *); 512 static void pull_dl_task(struct rq *); 513 514 static inline void deadline_queue_push_tasks(struct rq *rq) 515 { 516 if (!has_pushable_dl_tasks(rq)) 517 return; 518 519 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); 520 } 521 522 static inline void deadline_queue_pull_task(struct rq *rq) 523 { 524 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); 525 } 526 527 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); 528 529 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) 530 { 531 struct rq *later_rq = NULL; 532 533 later_rq = find_lock_later_rq(p, rq); 534 if (!later_rq) { 535 int cpu; 536 537 /* 538 * If we cannot preempt any rq, fall back to pick any 539 * online CPU: 540 */ 541 cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed); 542 if (cpu >= nr_cpu_ids) { 543 /* 544 * Failed to find any suitable CPU. 545 * The task will never come back! 546 */ 547 BUG_ON(dl_bandwidth_enabled()); 548 549 /* 550 * If admission control is disabled we 551 * try a little harder to let the task 552 * run. 553 */ 554 cpu = cpumask_any(cpu_active_mask); 555 } 556 later_rq = cpu_rq(cpu); 557 double_lock_balance(rq, later_rq); 558 } 559 560 set_task_cpu(p, later_rq->cpu); 561 double_unlock_balance(later_rq, rq); 562 563 return later_rq; 564 } 565 566 #else 567 568 static inline 569 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 570 { 571 } 572 573 static inline 574 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 575 { 576 } 577 578 static inline 579 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 580 { 581 } 582 583 static inline 584 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 585 { 586 } 587 588 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 589 { 590 return false; 591 } 592 593 static inline void pull_dl_task(struct rq *rq) 594 { 595 } 596 597 static inline void deadline_queue_push_tasks(struct rq *rq) 598 { 599 } 600 601 static inline void deadline_queue_pull_task(struct rq *rq) 602 { 603 } 604 #endif /* CONFIG_SMP */ 605 606 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 607 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); 608 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags); 609 610 /* 611 * We are being explicitly informed that a new instance is starting, 612 * and this means that: 613 * - the absolute deadline of the entity has to be placed at 614 * current time + relative deadline; 615 * - the runtime of the entity has to be set to the maximum value. 616 * 617 * The capability of specifying such event is useful whenever a -deadline 618 * entity wants to (try to!) synchronize its behaviour with the scheduler's 619 * one, and to (try to!) reconcile itself with its own scheduling 620 * parameters. 621 */ 622 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) 623 { 624 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 625 struct rq *rq = rq_of_dl_rq(dl_rq); 626 627 WARN_ON(dl_se->dl_boosted); 628 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); 629 630 /* 631 * We are racing with the deadline timer. So, do nothing because 632 * the deadline timer handler will take care of properly recharging 633 * the runtime and postponing the deadline 634 */ 635 if (dl_se->dl_throttled) 636 return; 637 638 /* 639 * We use the regular wall clock time to set deadlines in the 640 * future; in fact, we must consider execution overheads (time 641 * spent on hardirq context, etc.). 642 */ 643 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline; 644 dl_se->runtime = dl_se->dl_runtime; 645 } 646 647 /* 648 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 649 * possibility of a entity lasting more than what it declared, and thus 650 * exhausting its runtime. 651 * 652 * Here we are interested in making runtime overrun possible, but we do 653 * not want a entity which is misbehaving to affect the scheduling of all 654 * other entities. 655 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 656 * is used, in order to confine each entity within its own bandwidth. 657 * 658 * This function deals exactly with that, and ensures that when the runtime 659 * of a entity is replenished, its deadline is also postponed. That ensures 660 * the overrunning entity can't interfere with other entity in the system and 661 * can't make them miss their deadlines. Reasons why this kind of overruns 662 * could happen are, typically, a entity voluntarily trying to overcome its 663 * runtime, or it just underestimated it during sched_setattr(). 664 */ 665 static void replenish_dl_entity(struct sched_dl_entity *dl_se, 666 struct sched_dl_entity *pi_se) 667 { 668 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 669 struct rq *rq = rq_of_dl_rq(dl_rq); 670 671 BUG_ON(pi_se->dl_runtime <= 0); 672 673 /* 674 * This could be the case for a !-dl task that is boosted. 675 * Just go with full inherited parameters. 676 */ 677 if (dl_se->dl_deadline == 0) { 678 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 679 dl_se->runtime = pi_se->dl_runtime; 680 } 681 682 if (dl_se->dl_yielded && dl_se->runtime > 0) 683 dl_se->runtime = 0; 684 685 /* 686 * We keep moving the deadline away until we get some 687 * available runtime for the entity. This ensures correct 688 * handling of situations where the runtime overrun is 689 * arbitrary large. 690 */ 691 while (dl_se->runtime <= 0) { 692 dl_se->deadline += pi_se->dl_period; 693 dl_se->runtime += pi_se->dl_runtime; 694 } 695 696 /* 697 * At this point, the deadline really should be "in 698 * the future" with respect to rq->clock. If it's 699 * not, we are, for some reason, lagging too much! 700 * Anyway, after having warn userspace abut that, 701 * we still try to keep the things running by 702 * resetting the deadline and the budget of the 703 * entity. 704 */ 705 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 706 printk_deferred_once("sched: DL replenish lagged too much\n"); 707 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 708 dl_se->runtime = pi_se->dl_runtime; 709 } 710 711 if (dl_se->dl_yielded) 712 dl_se->dl_yielded = 0; 713 if (dl_se->dl_throttled) 714 dl_se->dl_throttled = 0; 715 } 716 717 /* 718 * Here we check if --at time t-- an entity (which is probably being 719 * [re]activated or, in general, enqueued) can use its remaining runtime 720 * and its current deadline _without_ exceeding the bandwidth it is 721 * assigned (function returns true if it can't). We are in fact applying 722 * one of the CBS rules: when a task wakes up, if the residual runtime 723 * over residual deadline fits within the allocated bandwidth, then we 724 * can keep the current (absolute) deadline and residual budget without 725 * disrupting the schedulability of the system. Otherwise, we should 726 * refill the runtime and set the deadline a period in the future, 727 * because keeping the current (absolute) deadline of the task would 728 * result in breaking guarantees promised to other tasks (refer to 729 * Documentation/scheduler/sched-deadline.txt for more information). 730 * 731 * This function returns true if: 732 * 733 * runtime / (deadline - t) > dl_runtime / dl_deadline , 734 * 735 * IOW we can't recycle current parameters. 736 * 737 * Notice that the bandwidth check is done against the deadline. For 738 * task with deadline equal to period this is the same of using 739 * dl_period instead of dl_deadline in the equation above. 740 */ 741 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, 742 struct sched_dl_entity *pi_se, u64 t) 743 { 744 u64 left, right; 745 746 /* 747 * left and right are the two sides of the equation above, 748 * after a bit of shuffling to use multiplications instead 749 * of divisions. 750 * 751 * Note that none of the time values involved in the two 752 * multiplications are absolute: dl_deadline and dl_runtime 753 * are the relative deadline and the maximum runtime of each 754 * instance, runtime is the runtime left for the last instance 755 * and (deadline - t), since t is rq->clock, is the time left 756 * to the (absolute) deadline. Even if overflowing the u64 type 757 * is very unlikely to occur in both cases, here we scale down 758 * as we want to avoid that risk at all. Scaling down by 10 759 * means that we reduce granularity to 1us. We are fine with it, 760 * since this is only a true/false check and, anyway, thinking 761 * of anything below microseconds resolution is actually fiction 762 * (but still we want to give the user that illusion >;). 763 */ 764 left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 765 right = ((dl_se->deadline - t) >> DL_SCALE) * 766 (pi_se->dl_runtime >> DL_SCALE); 767 768 return dl_time_before(right, left); 769 } 770 771 /* 772 * Revised wakeup rule [1]: For self-suspending tasks, rather then 773 * re-initializing task's runtime and deadline, the revised wakeup 774 * rule adjusts the task's runtime to avoid the task to overrun its 775 * density. 776 * 777 * Reasoning: a task may overrun the density if: 778 * runtime / (deadline - t) > dl_runtime / dl_deadline 779 * 780 * Therefore, runtime can be adjusted to: 781 * runtime = (dl_runtime / dl_deadline) * (deadline - t) 782 * 783 * In such way that runtime will be equal to the maximum density 784 * the task can use without breaking any rule. 785 * 786 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant 787 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24. 788 */ 789 static void 790 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq) 791 { 792 u64 laxity = dl_se->deadline - rq_clock(rq); 793 794 /* 795 * If the task has deadline < period, and the deadline is in the past, 796 * it should already be throttled before this check. 797 * 798 * See update_dl_entity() comments for further details. 799 */ 800 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq))); 801 802 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT; 803 } 804 805 /* 806 * Regarding the deadline, a task with implicit deadline has a relative 807 * deadline == relative period. A task with constrained deadline has a 808 * relative deadline <= relative period. 809 * 810 * We support constrained deadline tasks. However, there are some restrictions 811 * applied only for tasks which do not have an implicit deadline. See 812 * update_dl_entity() to know more about such restrictions. 813 * 814 * The dl_is_implicit() returns true if the task has an implicit deadline. 815 */ 816 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se) 817 { 818 return dl_se->dl_deadline == dl_se->dl_period; 819 } 820 821 /* 822 * When a deadline entity is placed in the runqueue, its runtime and deadline 823 * might need to be updated. This is done by a CBS wake up rule. There are two 824 * different rules: 1) the original CBS; and 2) the Revisited CBS. 825 * 826 * When the task is starting a new period, the Original CBS is used. In this 827 * case, the runtime is replenished and a new absolute deadline is set. 828 * 829 * When a task is queued before the begin of the next period, using the 830 * remaining runtime and deadline could make the entity to overflow, see 831 * dl_entity_overflow() to find more about runtime overflow. When such case 832 * is detected, the runtime and deadline need to be updated. 833 * 834 * If the task has an implicit deadline, i.e., deadline == period, the Original 835 * CBS is applied. the runtime is replenished and a new absolute deadline is 836 * set, as in the previous cases. 837 * 838 * However, the Original CBS does not work properly for tasks with 839 * deadline < period, which are said to have a constrained deadline. By 840 * applying the Original CBS, a constrained deadline task would be able to run 841 * runtime/deadline in a period. With deadline < period, the task would 842 * overrun the runtime/period allowed bandwidth, breaking the admission test. 843 * 844 * In order to prevent this misbehave, the Revisited CBS is used for 845 * constrained deadline tasks when a runtime overflow is detected. In the 846 * Revisited CBS, rather than replenishing & setting a new absolute deadline, 847 * the remaining runtime of the task is reduced to avoid runtime overflow. 848 * Please refer to the comments update_dl_revised_wakeup() function to find 849 * more about the Revised CBS rule. 850 */ 851 static void update_dl_entity(struct sched_dl_entity *dl_se, 852 struct sched_dl_entity *pi_se) 853 { 854 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 855 struct rq *rq = rq_of_dl_rq(dl_rq); 856 857 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 858 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) { 859 860 if (unlikely(!dl_is_implicit(dl_se) && 861 !dl_time_before(dl_se->deadline, rq_clock(rq)) && 862 !dl_se->dl_boosted)){ 863 update_dl_revised_wakeup(dl_se, rq); 864 return; 865 } 866 867 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 868 dl_se->runtime = pi_se->dl_runtime; 869 } 870 } 871 872 static inline u64 dl_next_period(struct sched_dl_entity *dl_se) 873 { 874 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period; 875 } 876 877 /* 878 * If the entity depleted all its runtime, and if we want it to sleep 879 * while waiting for some new execution time to become available, we 880 * set the bandwidth replenishment timer to the replenishment instant 881 * and try to activate it. 882 * 883 * Notice that it is important for the caller to know if the timer 884 * actually started or not (i.e., the replenishment instant is in 885 * the future or in the past). 886 */ 887 static int start_dl_timer(struct task_struct *p) 888 { 889 struct sched_dl_entity *dl_se = &p->dl; 890 struct hrtimer *timer = &dl_se->dl_timer; 891 struct rq *rq = task_rq(p); 892 ktime_t now, act; 893 s64 delta; 894 895 lockdep_assert_held(&rq->lock); 896 897 /* 898 * We want the timer to fire at the deadline, but considering 899 * that it is actually coming from rq->clock and not from 900 * hrtimer's time base reading. 901 */ 902 act = ns_to_ktime(dl_next_period(dl_se)); 903 now = hrtimer_cb_get_time(timer); 904 delta = ktime_to_ns(now) - rq_clock(rq); 905 act = ktime_add_ns(act, delta); 906 907 /* 908 * If the expiry time already passed, e.g., because the value 909 * chosen as the deadline is too small, don't even try to 910 * start the timer in the past! 911 */ 912 if (ktime_us_delta(act, now) < 0) 913 return 0; 914 915 /* 916 * !enqueued will guarantee another callback; even if one is already in 917 * progress. This ensures a balanced {get,put}_task_struct(). 918 * 919 * The race against __run_timer() clearing the enqueued state is 920 * harmless because we're holding task_rq()->lock, therefore the timer 921 * expiring after we've done the check will wait on its task_rq_lock() 922 * and observe our state. 923 */ 924 if (!hrtimer_is_queued(timer)) { 925 get_task_struct(p); 926 hrtimer_start(timer, act, HRTIMER_MODE_ABS); 927 } 928 929 return 1; 930 } 931 932 /* 933 * This is the bandwidth enforcement timer callback. If here, we know 934 * a task is not on its dl_rq, since the fact that the timer was running 935 * means the task is throttled and needs a runtime replenishment. 936 * 937 * However, what we actually do depends on the fact the task is active, 938 * (it is on its rq) or has been removed from there by a call to 939 * dequeue_task_dl(). In the former case we must issue the runtime 940 * replenishment and add the task back to the dl_rq; in the latter, we just 941 * do nothing but clearing dl_throttled, so that runtime and deadline 942 * updating (and the queueing back to dl_rq) will be done by the 943 * next call to enqueue_task_dl(). 944 */ 945 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 946 { 947 struct sched_dl_entity *dl_se = container_of(timer, 948 struct sched_dl_entity, 949 dl_timer); 950 struct task_struct *p = dl_task_of(dl_se); 951 struct rq_flags rf; 952 struct rq *rq; 953 954 rq = task_rq_lock(p, &rf); 955 956 /* 957 * The task might have changed its scheduling policy to something 958 * different than SCHED_DEADLINE (through switched_from_dl()). 959 */ 960 if (!dl_task(p)) 961 goto unlock; 962 963 /* 964 * The task might have been boosted by someone else and might be in the 965 * boosting/deboosting path, its not throttled. 966 */ 967 if (dl_se->dl_boosted) 968 goto unlock; 969 970 /* 971 * Spurious timer due to start_dl_timer() race; or we already received 972 * a replenishment from rt_mutex_setprio(). 973 */ 974 if (!dl_se->dl_throttled) 975 goto unlock; 976 977 sched_clock_tick(); 978 update_rq_clock(rq); 979 980 /* 981 * If the throttle happened during sched-out; like: 982 * 983 * schedule() 984 * deactivate_task() 985 * dequeue_task_dl() 986 * update_curr_dl() 987 * start_dl_timer() 988 * __dequeue_task_dl() 989 * prev->on_rq = 0; 990 * 991 * We can be both throttled and !queued. Replenish the counter 992 * but do not enqueue -- wait for our wakeup to do that. 993 */ 994 if (!task_on_rq_queued(p)) { 995 replenish_dl_entity(dl_se, dl_se); 996 goto unlock; 997 } 998 999 #ifdef CONFIG_SMP 1000 if (unlikely(!rq->online)) { 1001 /* 1002 * If the runqueue is no longer available, migrate the 1003 * task elsewhere. This necessarily changes rq. 1004 */ 1005 lockdep_unpin_lock(&rq->lock, rf.cookie); 1006 rq = dl_task_offline_migration(rq, p); 1007 rf.cookie = lockdep_pin_lock(&rq->lock); 1008 update_rq_clock(rq); 1009 1010 /* 1011 * Now that the task has been migrated to the new RQ and we 1012 * have that locked, proceed as normal and enqueue the task 1013 * there. 1014 */ 1015 } 1016 #endif 1017 1018 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 1019 if (dl_task(rq->curr)) 1020 check_preempt_curr_dl(rq, p, 0); 1021 else 1022 resched_curr(rq); 1023 1024 #ifdef CONFIG_SMP 1025 /* 1026 * Queueing this task back might have overloaded rq, check if we need 1027 * to kick someone away. 1028 */ 1029 if (has_pushable_dl_tasks(rq)) { 1030 /* 1031 * Nothing relies on rq->lock after this, so its safe to drop 1032 * rq->lock. 1033 */ 1034 rq_unpin_lock(rq, &rf); 1035 push_dl_task(rq); 1036 rq_repin_lock(rq, &rf); 1037 } 1038 #endif 1039 1040 unlock: 1041 task_rq_unlock(rq, p, &rf); 1042 1043 /* 1044 * This can free the task_struct, including this hrtimer, do not touch 1045 * anything related to that after this. 1046 */ 1047 put_task_struct(p); 1048 1049 return HRTIMER_NORESTART; 1050 } 1051 1052 void init_dl_task_timer(struct sched_dl_entity *dl_se) 1053 { 1054 struct hrtimer *timer = &dl_se->dl_timer; 1055 1056 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1057 timer->function = dl_task_timer; 1058 } 1059 1060 /* 1061 * During the activation, CBS checks if it can reuse the current task's 1062 * runtime and period. If the deadline of the task is in the past, CBS 1063 * cannot use the runtime, and so it replenishes the task. This rule 1064 * works fine for implicit deadline tasks (deadline == period), and the 1065 * CBS was designed for implicit deadline tasks. However, a task with 1066 * constrained deadline (deadine < period) might be awakened after the 1067 * deadline, but before the next period. In this case, replenishing the 1068 * task would allow it to run for runtime / deadline. As in this case 1069 * deadline < period, CBS enables a task to run for more than the 1070 * runtime / period. In a very loaded system, this can cause a domino 1071 * effect, making other tasks miss their deadlines. 1072 * 1073 * To avoid this problem, in the activation of a constrained deadline 1074 * task after the deadline but before the next period, throttle the 1075 * task and set the replenishing timer to the begin of the next period, 1076 * unless it is boosted. 1077 */ 1078 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) 1079 { 1080 struct task_struct *p = dl_task_of(dl_se); 1081 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se)); 1082 1083 if (dl_time_before(dl_se->deadline, rq_clock(rq)) && 1084 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) { 1085 if (unlikely(dl_se->dl_boosted || !start_dl_timer(p))) 1086 return; 1087 dl_se->dl_throttled = 1; 1088 if (dl_se->runtime > 0) 1089 dl_se->runtime = 0; 1090 } 1091 } 1092 1093 static 1094 int dl_runtime_exceeded(struct sched_dl_entity *dl_se) 1095 { 1096 return (dl_se->runtime <= 0); 1097 } 1098 1099 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 1100 1101 /* 1102 * This function implements the GRUB accounting rule: 1103 * according to the GRUB reclaiming algorithm, the runtime is 1104 * not decreased as "dq = -dt", but as 1105 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt", 1106 * where u is the utilization of the task, Umax is the maximum reclaimable 1107 * utilization, Uinact is the (per-runqueue) inactive utilization, computed 1108 * as the difference between the "total runqueue utilization" and the 1109 * runqueue active utilization, and Uextra is the (per runqueue) extra 1110 * reclaimable utilization. 1111 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations 1112 * multiplied by 2^BW_SHIFT, the result has to be shifted right by 1113 * BW_SHIFT. 1114 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT, 1115 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT. 1116 * Since delta is a 64 bit variable, to have an overflow its value 1117 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds. 1118 * So, overflow is not an issue here. 1119 */ 1120 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se) 1121 { 1122 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */ 1123 u64 u_act; 1124 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT; 1125 1126 /* 1127 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)}, 1128 * we compare u_inact + rq->dl.extra_bw with 1129 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because 1130 * u_inact + rq->dl.extra_bw can be larger than 1131 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative 1132 * leading to wrong results) 1133 */ 1134 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min) 1135 u_act = u_act_min; 1136 else 1137 u_act = BW_UNIT - u_inact - rq->dl.extra_bw; 1138 1139 return (delta * u_act) >> BW_SHIFT; 1140 } 1141 1142 /* 1143 * Update the current task's runtime statistics (provided it is still 1144 * a -deadline task and has not been removed from the dl_rq). 1145 */ 1146 static void update_curr_dl(struct rq *rq) 1147 { 1148 struct task_struct *curr = rq->curr; 1149 struct sched_dl_entity *dl_se = &curr->dl; 1150 u64 delta_exec, scaled_delta_exec; 1151 int cpu = cpu_of(rq); 1152 u64 now; 1153 1154 if (!dl_task(curr) || !on_dl_rq(dl_se)) 1155 return; 1156 1157 /* 1158 * Consumed budget is computed considering the time as 1159 * observed by schedulable tasks (excluding time spent 1160 * in hardirq context, etc.). Deadlines are instead 1161 * computed using hard walltime. This seems to be the more 1162 * natural solution, but the full ramifications of this 1163 * approach need further study. 1164 */ 1165 now = rq_clock_task(rq); 1166 delta_exec = now - curr->se.exec_start; 1167 if (unlikely((s64)delta_exec <= 0)) { 1168 if (unlikely(dl_se->dl_yielded)) 1169 goto throttle; 1170 return; 1171 } 1172 1173 schedstat_set(curr->se.statistics.exec_max, 1174 max(curr->se.statistics.exec_max, delta_exec)); 1175 1176 curr->se.sum_exec_runtime += delta_exec; 1177 account_group_exec_runtime(curr, delta_exec); 1178 1179 curr->se.exec_start = now; 1180 cgroup_account_cputime(curr, delta_exec); 1181 1182 if (dl_entity_is_special(dl_se)) 1183 return; 1184 1185 /* 1186 * For tasks that participate in GRUB, we implement GRUB-PA: the 1187 * spare reclaimed bandwidth is used to clock down frequency. 1188 * 1189 * For the others, we still need to scale reservation parameters 1190 * according to current frequency and CPU maximum capacity. 1191 */ 1192 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) { 1193 scaled_delta_exec = grub_reclaim(delta_exec, 1194 rq, 1195 &curr->dl); 1196 } else { 1197 unsigned long scale_freq = arch_scale_freq_capacity(cpu); 1198 unsigned long scale_cpu = arch_scale_cpu_capacity(NULL, cpu); 1199 1200 scaled_delta_exec = cap_scale(delta_exec, scale_freq); 1201 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu); 1202 } 1203 1204 dl_se->runtime -= scaled_delta_exec; 1205 1206 throttle: 1207 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) { 1208 dl_se->dl_throttled = 1; 1209 1210 /* If requested, inform the user about runtime overruns. */ 1211 if (dl_runtime_exceeded(dl_se) && 1212 (dl_se->flags & SCHED_FLAG_DL_OVERRUN)) 1213 dl_se->dl_overrun = 1; 1214 1215 __dequeue_task_dl(rq, curr, 0); 1216 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr))) 1217 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); 1218 1219 if (!is_leftmost(curr, &rq->dl)) 1220 resched_curr(rq); 1221 } 1222 1223 /* 1224 * Because -- for now -- we share the rt bandwidth, we need to 1225 * account our runtime there too, otherwise actual rt tasks 1226 * would be able to exceed the shared quota. 1227 * 1228 * Account to the root rt group for now. 1229 * 1230 * The solution we're working towards is having the RT groups scheduled 1231 * using deadline servers -- however there's a few nasties to figure 1232 * out before that can happen. 1233 */ 1234 if (rt_bandwidth_enabled()) { 1235 struct rt_rq *rt_rq = &rq->rt; 1236 1237 raw_spin_lock(&rt_rq->rt_runtime_lock); 1238 /* 1239 * We'll let actual RT tasks worry about the overflow here, we 1240 * have our own CBS to keep us inline; only account when RT 1241 * bandwidth is relevant. 1242 */ 1243 if (sched_rt_bandwidth_account(rt_rq)) 1244 rt_rq->rt_time += delta_exec; 1245 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1246 } 1247 } 1248 1249 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer) 1250 { 1251 struct sched_dl_entity *dl_se = container_of(timer, 1252 struct sched_dl_entity, 1253 inactive_timer); 1254 struct task_struct *p = dl_task_of(dl_se); 1255 struct rq_flags rf; 1256 struct rq *rq; 1257 1258 rq = task_rq_lock(p, &rf); 1259 1260 sched_clock_tick(); 1261 update_rq_clock(rq); 1262 1263 if (!dl_task(p) || p->state == TASK_DEAD) { 1264 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1265 1266 if (p->state == TASK_DEAD && dl_se->dl_non_contending) { 1267 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl)); 1268 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl)); 1269 dl_se->dl_non_contending = 0; 1270 } 1271 1272 raw_spin_lock(&dl_b->lock); 1273 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 1274 raw_spin_unlock(&dl_b->lock); 1275 __dl_clear_params(p); 1276 1277 goto unlock; 1278 } 1279 if (dl_se->dl_non_contending == 0) 1280 goto unlock; 1281 1282 sub_running_bw(dl_se, &rq->dl); 1283 dl_se->dl_non_contending = 0; 1284 unlock: 1285 task_rq_unlock(rq, p, &rf); 1286 put_task_struct(p); 1287 1288 return HRTIMER_NORESTART; 1289 } 1290 1291 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se) 1292 { 1293 struct hrtimer *timer = &dl_se->inactive_timer; 1294 1295 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1296 timer->function = inactive_task_timer; 1297 } 1298 1299 #ifdef CONFIG_SMP 1300 1301 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1302 { 1303 struct rq *rq = rq_of_dl_rq(dl_rq); 1304 1305 if (dl_rq->earliest_dl.curr == 0 || 1306 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 1307 dl_rq->earliest_dl.curr = deadline; 1308 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline); 1309 } 1310 } 1311 1312 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1313 { 1314 struct rq *rq = rq_of_dl_rq(dl_rq); 1315 1316 /* 1317 * Since we may have removed our earliest (and/or next earliest) 1318 * task we must recompute them. 1319 */ 1320 if (!dl_rq->dl_nr_running) { 1321 dl_rq->earliest_dl.curr = 0; 1322 dl_rq->earliest_dl.next = 0; 1323 cpudl_clear(&rq->rd->cpudl, rq->cpu); 1324 } else { 1325 struct rb_node *leftmost = dl_rq->root.rb_leftmost; 1326 struct sched_dl_entity *entry; 1327 1328 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node); 1329 dl_rq->earliest_dl.curr = entry->deadline; 1330 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline); 1331 } 1332 } 1333 1334 #else 1335 1336 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1337 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1338 1339 #endif /* CONFIG_SMP */ 1340 1341 static inline 1342 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1343 { 1344 int prio = dl_task_of(dl_se)->prio; 1345 u64 deadline = dl_se->deadline; 1346 1347 WARN_ON(!dl_prio(prio)); 1348 dl_rq->dl_nr_running++; 1349 add_nr_running(rq_of_dl_rq(dl_rq), 1); 1350 1351 inc_dl_deadline(dl_rq, deadline); 1352 inc_dl_migration(dl_se, dl_rq); 1353 } 1354 1355 static inline 1356 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1357 { 1358 int prio = dl_task_of(dl_se)->prio; 1359 1360 WARN_ON(!dl_prio(prio)); 1361 WARN_ON(!dl_rq->dl_nr_running); 1362 dl_rq->dl_nr_running--; 1363 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 1364 1365 dec_dl_deadline(dl_rq, dl_se->deadline); 1366 dec_dl_migration(dl_se, dl_rq); 1367 } 1368 1369 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 1370 { 1371 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1372 struct rb_node **link = &dl_rq->root.rb_root.rb_node; 1373 struct rb_node *parent = NULL; 1374 struct sched_dl_entity *entry; 1375 int leftmost = 1; 1376 1377 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node)); 1378 1379 while (*link) { 1380 parent = *link; 1381 entry = rb_entry(parent, struct sched_dl_entity, rb_node); 1382 if (dl_time_before(dl_se->deadline, entry->deadline)) 1383 link = &parent->rb_left; 1384 else { 1385 link = &parent->rb_right; 1386 leftmost = 0; 1387 } 1388 } 1389 1390 rb_link_node(&dl_se->rb_node, parent, link); 1391 rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost); 1392 1393 inc_dl_tasks(dl_se, dl_rq); 1394 } 1395 1396 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 1397 { 1398 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1399 1400 if (RB_EMPTY_NODE(&dl_se->rb_node)) 1401 return; 1402 1403 rb_erase_cached(&dl_se->rb_node, &dl_rq->root); 1404 RB_CLEAR_NODE(&dl_se->rb_node); 1405 1406 dec_dl_tasks(dl_se, dl_rq); 1407 } 1408 1409 static void 1410 enqueue_dl_entity(struct sched_dl_entity *dl_se, 1411 struct sched_dl_entity *pi_se, int flags) 1412 { 1413 BUG_ON(on_dl_rq(dl_se)); 1414 1415 /* 1416 * If this is a wakeup or a new instance, the scheduling 1417 * parameters of the task might need updating. Otherwise, 1418 * we want a replenishment of its runtime. 1419 */ 1420 if (flags & ENQUEUE_WAKEUP) { 1421 task_contending(dl_se, flags); 1422 update_dl_entity(dl_se, pi_se); 1423 } else if (flags & ENQUEUE_REPLENISH) { 1424 replenish_dl_entity(dl_se, pi_se); 1425 } else if ((flags & ENQUEUE_RESTORE) && 1426 dl_time_before(dl_se->deadline, 1427 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) { 1428 setup_new_dl_entity(dl_se); 1429 } 1430 1431 __enqueue_dl_entity(dl_se); 1432 } 1433 1434 static void dequeue_dl_entity(struct sched_dl_entity *dl_se) 1435 { 1436 __dequeue_dl_entity(dl_se); 1437 } 1438 1439 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1440 { 1441 struct task_struct *pi_task = rt_mutex_get_top_task(p); 1442 struct sched_dl_entity *pi_se = &p->dl; 1443 1444 /* 1445 * Use the scheduling parameters of the top pi-waiter task if: 1446 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND 1447 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is 1448 * smaller than our deadline OR we are a !SCHED_DEADLINE task getting 1449 * boosted due to a SCHED_DEADLINE pi-waiter). 1450 * Otherwise we keep our runtime and deadline. 1451 */ 1452 if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) { 1453 pi_se = &pi_task->dl; 1454 } else if (!dl_prio(p->normal_prio)) { 1455 /* 1456 * Special case in which we have a !SCHED_DEADLINE task 1457 * that is going to be deboosted, but exceeds its 1458 * runtime while doing so. No point in replenishing 1459 * it, as it's going to return back to its original 1460 * scheduling class after this. 1461 */ 1462 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH); 1463 return; 1464 } 1465 1466 /* 1467 * Check if a constrained deadline task was activated 1468 * after the deadline but before the next period. 1469 * If that is the case, the task will be throttled and 1470 * the replenishment timer will be set to the next period. 1471 */ 1472 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl)) 1473 dl_check_constrained_dl(&p->dl); 1474 1475 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) { 1476 add_rq_bw(&p->dl, &rq->dl); 1477 add_running_bw(&p->dl, &rq->dl); 1478 } 1479 1480 /* 1481 * If p is throttled, we do not enqueue it. In fact, if it exhausted 1482 * its budget it needs a replenishment and, since it now is on 1483 * its rq, the bandwidth timer callback (which clearly has not 1484 * run yet) will take care of this. 1485 * However, the active utilization does not depend on the fact 1486 * that the task is on the runqueue or not (but depends on the 1487 * task's state - in GRUB parlance, "inactive" vs "active contending"). 1488 * In other words, even if a task is throttled its utilization must 1489 * be counted in the active utilization; hence, we need to call 1490 * add_running_bw(). 1491 */ 1492 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) { 1493 if (flags & ENQUEUE_WAKEUP) 1494 task_contending(&p->dl, flags); 1495 1496 return; 1497 } 1498 1499 enqueue_dl_entity(&p->dl, pi_se, flags); 1500 1501 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1502 enqueue_pushable_dl_task(rq, p); 1503 } 1504 1505 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1506 { 1507 dequeue_dl_entity(&p->dl); 1508 dequeue_pushable_dl_task(rq, p); 1509 } 1510 1511 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1512 { 1513 update_curr_dl(rq); 1514 __dequeue_task_dl(rq, p, flags); 1515 1516 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) { 1517 sub_running_bw(&p->dl, &rq->dl); 1518 sub_rq_bw(&p->dl, &rq->dl); 1519 } 1520 1521 /* 1522 * This check allows to start the inactive timer (or to immediately 1523 * decrease the active utilization, if needed) in two cases: 1524 * when the task blocks and when it is terminating 1525 * (p->state == TASK_DEAD). We can handle the two cases in the same 1526 * way, because from GRUB's point of view the same thing is happening 1527 * (the task moves from "active contending" to "active non contending" 1528 * or "inactive") 1529 */ 1530 if (flags & DEQUEUE_SLEEP) 1531 task_non_contending(p); 1532 } 1533 1534 /* 1535 * Yield task semantic for -deadline tasks is: 1536 * 1537 * get off from the CPU until our next instance, with 1538 * a new runtime. This is of little use now, since we 1539 * don't have a bandwidth reclaiming mechanism. Anyway, 1540 * bandwidth reclaiming is planned for the future, and 1541 * yield_task_dl will indicate that some spare budget 1542 * is available for other task instances to use it. 1543 */ 1544 static void yield_task_dl(struct rq *rq) 1545 { 1546 /* 1547 * We make the task go to sleep until its current deadline by 1548 * forcing its runtime to zero. This way, update_curr_dl() stops 1549 * it and the bandwidth timer will wake it up and will give it 1550 * new scheduling parameters (thanks to dl_yielded=1). 1551 */ 1552 rq->curr->dl.dl_yielded = 1; 1553 1554 update_rq_clock(rq); 1555 update_curr_dl(rq); 1556 /* 1557 * Tell update_rq_clock() that we've just updated, 1558 * so we don't do microscopic update in schedule() 1559 * and double the fastpath cost. 1560 */ 1561 rq_clock_skip_update(rq); 1562 } 1563 1564 #ifdef CONFIG_SMP 1565 1566 static int find_later_rq(struct task_struct *task); 1567 1568 static int 1569 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags) 1570 { 1571 struct task_struct *curr; 1572 struct rq *rq; 1573 1574 if (sd_flag != SD_BALANCE_WAKE) 1575 goto out; 1576 1577 rq = cpu_rq(cpu); 1578 1579 rcu_read_lock(); 1580 curr = READ_ONCE(rq->curr); /* unlocked access */ 1581 1582 /* 1583 * If we are dealing with a -deadline task, we must 1584 * decide where to wake it up. 1585 * If it has a later deadline and the current task 1586 * on this rq can't move (provided the waking task 1587 * can!) we prefer to send it somewhere else. On the 1588 * other hand, if it has a shorter deadline, we 1589 * try to make it stay here, it might be important. 1590 */ 1591 if (unlikely(dl_task(curr)) && 1592 (curr->nr_cpus_allowed < 2 || 1593 !dl_entity_preempt(&p->dl, &curr->dl)) && 1594 (p->nr_cpus_allowed > 1)) { 1595 int target = find_later_rq(p); 1596 1597 if (target != -1 && 1598 (dl_time_before(p->dl.deadline, 1599 cpu_rq(target)->dl.earliest_dl.curr) || 1600 (cpu_rq(target)->dl.dl_nr_running == 0))) 1601 cpu = target; 1602 } 1603 rcu_read_unlock(); 1604 1605 out: 1606 return cpu; 1607 } 1608 1609 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused) 1610 { 1611 struct rq *rq; 1612 1613 if (p->state != TASK_WAKING) 1614 return; 1615 1616 rq = task_rq(p); 1617 /* 1618 * Since p->state == TASK_WAKING, set_task_cpu() has been called 1619 * from try_to_wake_up(). Hence, p->pi_lock is locked, but 1620 * rq->lock is not... So, lock it 1621 */ 1622 raw_spin_lock(&rq->lock); 1623 if (p->dl.dl_non_contending) { 1624 sub_running_bw(&p->dl, &rq->dl); 1625 p->dl.dl_non_contending = 0; 1626 /* 1627 * If the timer handler is currently running and the 1628 * timer cannot be cancelled, inactive_task_timer() 1629 * will see that dl_not_contending is not set, and 1630 * will not touch the rq's active utilization, 1631 * so we are still safe. 1632 */ 1633 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 1634 put_task_struct(p); 1635 } 1636 sub_rq_bw(&p->dl, &rq->dl); 1637 raw_spin_unlock(&rq->lock); 1638 } 1639 1640 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 1641 { 1642 /* 1643 * Current can't be migrated, useless to reschedule, 1644 * let's hope p can move out. 1645 */ 1646 if (rq->curr->nr_cpus_allowed == 1 || 1647 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL)) 1648 return; 1649 1650 /* 1651 * p is migratable, so let's not schedule it and 1652 * see if it is pushed or pulled somewhere else. 1653 */ 1654 if (p->nr_cpus_allowed != 1 && 1655 cpudl_find(&rq->rd->cpudl, p, NULL)) 1656 return; 1657 1658 resched_curr(rq); 1659 } 1660 1661 #endif /* CONFIG_SMP */ 1662 1663 /* 1664 * Only called when both the current and waking task are -deadline 1665 * tasks. 1666 */ 1667 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 1668 int flags) 1669 { 1670 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { 1671 resched_curr(rq); 1672 return; 1673 } 1674 1675 #ifdef CONFIG_SMP 1676 /* 1677 * In the unlikely case current and p have the same deadline 1678 * let us try to decide what's the best thing to do... 1679 */ 1680 if ((p->dl.deadline == rq->curr->dl.deadline) && 1681 !test_tsk_need_resched(rq->curr)) 1682 check_preempt_equal_dl(rq, p); 1683 #endif /* CONFIG_SMP */ 1684 } 1685 1686 #ifdef CONFIG_SCHED_HRTICK 1687 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1688 { 1689 hrtick_start(rq, p->dl.runtime); 1690 } 1691 #else /* !CONFIG_SCHED_HRTICK */ 1692 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1693 { 1694 } 1695 #endif 1696 1697 static inline void set_next_task(struct rq *rq, struct task_struct *p) 1698 { 1699 p->se.exec_start = rq_clock_task(rq); 1700 1701 /* You can't push away the running task */ 1702 dequeue_pushable_dl_task(rq, p); 1703 } 1704 1705 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq, 1706 struct dl_rq *dl_rq) 1707 { 1708 struct rb_node *left = rb_first_cached(&dl_rq->root); 1709 1710 if (!left) 1711 return NULL; 1712 1713 return rb_entry(left, struct sched_dl_entity, rb_node); 1714 } 1715 1716 static struct task_struct * 1717 pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 1718 { 1719 struct sched_dl_entity *dl_se; 1720 struct task_struct *p; 1721 struct dl_rq *dl_rq; 1722 1723 dl_rq = &rq->dl; 1724 1725 if (need_pull_dl_task(rq, prev)) { 1726 /* 1727 * This is OK, because current is on_cpu, which avoids it being 1728 * picked for load-balance and preemption/IRQs are still 1729 * disabled avoiding further scheduler activity on it and we're 1730 * being very careful to re-start the picking loop. 1731 */ 1732 rq_unpin_lock(rq, rf); 1733 pull_dl_task(rq); 1734 rq_repin_lock(rq, rf); 1735 /* 1736 * pull_dl_task() can drop (and re-acquire) rq->lock; this 1737 * means a stop task can slip in, in which case we need to 1738 * re-start task selection. 1739 */ 1740 if (rq->stop && task_on_rq_queued(rq->stop)) 1741 return RETRY_TASK; 1742 } 1743 1744 /* 1745 * When prev is DL, we may throttle it in put_prev_task(). 1746 * So, we update time before we check for dl_nr_running. 1747 */ 1748 if (prev->sched_class == &dl_sched_class) 1749 update_curr_dl(rq); 1750 1751 if (unlikely(!dl_rq->dl_nr_running)) 1752 return NULL; 1753 1754 put_prev_task(rq, prev); 1755 1756 dl_se = pick_next_dl_entity(rq, dl_rq); 1757 BUG_ON(!dl_se); 1758 1759 p = dl_task_of(dl_se); 1760 1761 set_next_task(rq, p); 1762 1763 if (hrtick_enabled(rq)) 1764 start_hrtick_dl(rq, p); 1765 1766 deadline_queue_push_tasks(rq); 1767 1768 if (rq->curr->sched_class != &dl_sched_class) 1769 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 1770 1771 return p; 1772 } 1773 1774 static void put_prev_task_dl(struct rq *rq, struct task_struct *p) 1775 { 1776 update_curr_dl(rq); 1777 1778 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 1779 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 1780 enqueue_pushable_dl_task(rq, p); 1781 } 1782 1783 /* 1784 * scheduler tick hitting a task of our scheduling class. 1785 * 1786 * NOTE: This function can be called remotely by the tick offload that 1787 * goes along full dynticks. Therefore no local assumption can be made 1788 * and everything must be accessed through the @rq and @curr passed in 1789 * parameters. 1790 */ 1791 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 1792 { 1793 update_curr_dl(rq); 1794 1795 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 1796 /* 1797 * Even when we have runtime, update_curr_dl() might have resulted in us 1798 * not being the leftmost task anymore. In that case NEED_RESCHED will 1799 * be set and schedule() will start a new hrtick for the next task. 1800 */ 1801 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 && 1802 is_leftmost(p, &rq->dl)) 1803 start_hrtick_dl(rq, p); 1804 } 1805 1806 static void task_fork_dl(struct task_struct *p) 1807 { 1808 /* 1809 * SCHED_DEADLINE tasks cannot fork and this is achieved through 1810 * sched_fork() 1811 */ 1812 } 1813 1814 static void set_curr_task_dl(struct rq *rq) 1815 { 1816 set_next_task(rq, rq->curr); 1817 } 1818 1819 #ifdef CONFIG_SMP 1820 1821 /* Only try algorithms three times */ 1822 #define DL_MAX_TRIES 3 1823 1824 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) 1825 { 1826 if (!task_running(rq, p) && 1827 cpumask_test_cpu(cpu, &p->cpus_allowed)) 1828 return 1; 1829 return 0; 1830 } 1831 1832 /* 1833 * Return the earliest pushable rq's task, which is suitable to be executed 1834 * on the CPU, NULL otherwise: 1835 */ 1836 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) 1837 { 1838 struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost; 1839 struct task_struct *p = NULL; 1840 1841 if (!has_pushable_dl_tasks(rq)) 1842 return NULL; 1843 1844 next_node: 1845 if (next_node) { 1846 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks); 1847 1848 if (pick_dl_task(rq, p, cpu)) 1849 return p; 1850 1851 next_node = rb_next(next_node); 1852 goto next_node; 1853 } 1854 1855 return NULL; 1856 } 1857 1858 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 1859 1860 static int find_later_rq(struct task_struct *task) 1861 { 1862 struct sched_domain *sd; 1863 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 1864 int this_cpu = smp_processor_id(); 1865 int cpu = task_cpu(task); 1866 1867 /* Make sure the mask is initialized first */ 1868 if (unlikely(!later_mask)) 1869 return -1; 1870 1871 if (task->nr_cpus_allowed == 1) 1872 return -1; 1873 1874 /* 1875 * We have to consider system topology and task affinity 1876 * first, then we can look for a suitable CPU. 1877 */ 1878 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask)) 1879 return -1; 1880 1881 /* 1882 * If we are here, some targets have been found, including 1883 * the most suitable which is, among the runqueues where the 1884 * current tasks have later deadlines than the task's one, the 1885 * rq with the latest possible one. 1886 * 1887 * Now we check how well this matches with task's 1888 * affinity and system topology. 1889 * 1890 * The last CPU where the task run is our first 1891 * guess, since it is most likely cache-hot there. 1892 */ 1893 if (cpumask_test_cpu(cpu, later_mask)) 1894 return cpu; 1895 /* 1896 * Check if this_cpu is to be skipped (i.e., it is 1897 * not in the mask) or not. 1898 */ 1899 if (!cpumask_test_cpu(this_cpu, later_mask)) 1900 this_cpu = -1; 1901 1902 rcu_read_lock(); 1903 for_each_domain(cpu, sd) { 1904 if (sd->flags & SD_WAKE_AFFINE) { 1905 int best_cpu; 1906 1907 /* 1908 * If possible, preempting this_cpu is 1909 * cheaper than migrating. 1910 */ 1911 if (this_cpu != -1 && 1912 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1913 rcu_read_unlock(); 1914 return this_cpu; 1915 } 1916 1917 best_cpu = cpumask_first_and(later_mask, 1918 sched_domain_span(sd)); 1919 /* 1920 * Last chance: if a CPU being in both later_mask 1921 * and current sd span is valid, that becomes our 1922 * choice. Of course, the latest possible CPU is 1923 * already under consideration through later_mask. 1924 */ 1925 if (best_cpu < nr_cpu_ids) { 1926 rcu_read_unlock(); 1927 return best_cpu; 1928 } 1929 } 1930 } 1931 rcu_read_unlock(); 1932 1933 /* 1934 * At this point, all our guesses failed, we just return 1935 * 'something', and let the caller sort the things out. 1936 */ 1937 if (this_cpu != -1) 1938 return this_cpu; 1939 1940 cpu = cpumask_any(later_mask); 1941 if (cpu < nr_cpu_ids) 1942 return cpu; 1943 1944 return -1; 1945 } 1946 1947 /* Locks the rq it finds */ 1948 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 1949 { 1950 struct rq *later_rq = NULL; 1951 int tries; 1952 int cpu; 1953 1954 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 1955 cpu = find_later_rq(task); 1956 1957 if ((cpu == -1) || (cpu == rq->cpu)) 1958 break; 1959 1960 later_rq = cpu_rq(cpu); 1961 1962 if (later_rq->dl.dl_nr_running && 1963 !dl_time_before(task->dl.deadline, 1964 later_rq->dl.earliest_dl.curr)) { 1965 /* 1966 * Target rq has tasks of equal or earlier deadline, 1967 * retrying does not release any lock and is unlikely 1968 * to yield a different result. 1969 */ 1970 later_rq = NULL; 1971 break; 1972 } 1973 1974 /* Retry if something changed. */ 1975 if (double_lock_balance(rq, later_rq)) { 1976 if (unlikely(task_rq(task) != rq || 1977 !cpumask_test_cpu(later_rq->cpu, &task->cpus_allowed) || 1978 task_running(rq, task) || 1979 !dl_task(task) || 1980 !task_on_rq_queued(task))) { 1981 double_unlock_balance(rq, later_rq); 1982 later_rq = NULL; 1983 break; 1984 } 1985 } 1986 1987 /* 1988 * If the rq we found has no -deadline task, or 1989 * its earliest one has a later deadline than our 1990 * task, the rq is a good one. 1991 */ 1992 if (!later_rq->dl.dl_nr_running || 1993 dl_time_before(task->dl.deadline, 1994 later_rq->dl.earliest_dl.curr)) 1995 break; 1996 1997 /* Otherwise we try again. */ 1998 double_unlock_balance(rq, later_rq); 1999 later_rq = NULL; 2000 } 2001 2002 return later_rq; 2003 } 2004 2005 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 2006 { 2007 struct task_struct *p; 2008 2009 if (!has_pushable_dl_tasks(rq)) 2010 return NULL; 2011 2012 p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost, 2013 struct task_struct, pushable_dl_tasks); 2014 2015 BUG_ON(rq->cpu != task_cpu(p)); 2016 BUG_ON(task_current(rq, p)); 2017 BUG_ON(p->nr_cpus_allowed <= 1); 2018 2019 BUG_ON(!task_on_rq_queued(p)); 2020 BUG_ON(!dl_task(p)); 2021 2022 return p; 2023 } 2024 2025 /* 2026 * See if the non running -deadline tasks on this rq 2027 * can be sent to some other CPU where they can preempt 2028 * and start executing. 2029 */ 2030 static int push_dl_task(struct rq *rq) 2031 { 2032 struct task_struct *next_task; 2033 struct rq *later_rq; 2034 int ret = 0; 2035 2036 if (!rq->dl.overloaded) 2037 return 0; 2038 2039 next_task = pick_next_pushable_dl_task(rq); 2040 if (!next_task) 2041 return 0; 2042 2043 retry: 2044 if (WARN_ON(next_task == rq->curr)) 2045 return 0; 2046 2047 /* 2048 * If next_task preempts rq->curr, and rq->curr 2049 * can move away, it makes sense to just reschedule 2050 * without going further in pushing next_task. 2051 */ 2052 if (dl_task(rq->curr) && 2053 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && 2054 rq->curr->nr_cpus_allowed > 1) { 2055 resched_curr(rq); 2056 return 0; 2057 } 2058 2059 /* We might release rq lock */ 2060 get_task_struct(next_task); 2061 2062 /* Will lock the rq it'll find */ 2063 later_rq = find_lock_later_rq(next_task, rq); 2064 if (!later_rq) { 2065 struct task_struct *task; 2066 2067 /* 2068 * We must check all this again, since 2069 * find_lock_later_rq releases rq->lock and it is 2070 * then possible that next_task has migrated. 2071 */ 2072 task = pick_next_pushable_dl_task(rq); 2073 if (task == next_task) { 2074 /* 2075 * The task is still there. We don't try 2076 * again, some other CPU will pull it when ready. 2077 */ 2078 goto out; 2079 } 2080 2081 if (!task) 2082 /* No more tasks */ 2083 goto out; 2084 2085 put_task_struct(next_task); 2086 next_task = task; 2087 goto retry; 2088 } 2089 2090 deactivate_task(rq, next_task, 0); 2091 sub_running_bw(&next_task->dl, &rq->dl); 2092 sub_rq_bw(&next_task->dl, &rq->dl); 2093 set_task_cpu(next_task, later_rq->cpu); 2094 add_rq_bw(&next_task->dl, &later_rq->dl); 2095 2096 /* 2097 * Update the later_rq clock here, because the clock is used 2098 * by the cpufreq_update_util() inside __add_running_bw(). 2099 */ 2100 update_rq_clock(later_rq); 2101 add_running_bw(&next_task->dl, &later_rq->dl); 2102 activate_task(later_rq, next_task, ENQUEUE_NOCLOCK); 2103 ret = 1; 2104 2105 resched_curr(later_rq); 2106 2107 double_unlock_balance(rq, later_rq); 2108 2109 out: 2110 put_task_struct(next_task); 2111 2112 return ret; 2113 } 2114 2115 static void push_dl_tasks(struct rq *rq) 2116 { 2117 /* push_dl_task() will return true if it moved a -deadline task */ 2118 while (push_dl_task(rq)) 2119 ; 2120 } 2121 2122 static void pull_dl_task(struct rq *this_rq) 2123 { 2124 int this_cpu = this_rq->cpu, cpu; 2125 struct task_struct *p; 2126 bool resched = false; 2127 struct rq *src_rq; 2128 u64 dmin = LONG_MAX; 2129 2130 if (likely(!dl_overloaded(this_rq))) 2131 return; 2132 2133 /* 2134 * Match the barrier from dl_set_overloaded; this guarantees that if we 2135 * see overloaded we must also see the dlo_mask bit. 2136 */ 2137 smp_rmb(); 2138 2139 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 2140 if (this_cpu == cpu) 2141 continue; 2142 2143 src_rq = cpu_rq(cpu); 2144 2145 /* 2146 * It looks racy, abd it is! However, as in sched_rt.c, 2147 * we are fine with this. 2148 */ 2149 if (this_rq->dl.dl_nr_running && 2150 dl_time_before(this_rq->dl.earliest_dl.curr, 2151 src_rq->dl.earliest_dl.next)) 2152 continue; 2153 2154 /* Might drop this_rq->lock */ 2155 double_lock_balance(this_rq, src_rq); 2156 2157 /* 2158 * If there are no more pullable tasks on the 2159 * rq, we're done with it. 2160 */ 2161 if (src_rq->dl.dl_nr_running <= 1) 2162 goto skip; 2163 2164 p = pick_earliest_pushable_dl_task(src_rq, this_cpu); 2165 2166 /* 2167 * We found a task to be pulled if: 2168 * - it preempts our current (if there's one), 2169 * - it will preempt the last one we pulled (if any). 2170 */ 2171 if (p && dl_time_before(p->dl.deadline, dmin) && 2172 (!this_rq->dl.dl_nr_running || 2173 dl_time_before(p->dl.deadline, 2174 this_rq->dl.earliest_dl.curr))) { 2175 WARN_ON(p == src_rq->curr); 2176 WARN_ON(!task_on_rq_queued(p)); 2177 2178 /* 2179 * Then we pull iff p has actually an earlier 2180 * deadline than the current task of its runqueue. 2181 */ 2182 if (dl_time_before(p->dl.deadline, 2183 src_rq->curr->dl.deadline)) 2184 goto skip; 2185 2186 resched = true; 2187 2188 deactivate_task(src_rq, p, 0); 2189 sub_running_bw(&p->dl, &src_rq->dl); 2190 sub_rq_bw(&p->dl, &src_rq->dl); 2191 set_task_cpu(p, this_cpu); 2192 add_rq_bw(&p->dl, &this_rq->dl); 2193 add_running_bw(&p->dl, &this_rq->dl); 2194 activate_task(this_rq, p, 0); 2195 dmin = p->dl.deadline; 2196 2197 /* Is there any other task even earlier? */ 2198 } 2199 skip: 2200 double_unlock_balance(this_rq, src_rq); 2201 } 2202 2203 if (resched) 2204 resched_curr(this_rq); 2205 } 2206 2207 /* 2208 * Since the task is not running and a reschedule is not going to happen 2209 * anytime soon on its runqueue, we try pushing it away now. 2210 */ 2211 static void task_woken_dl(struct rq *rq, struct task_struct *p) 2212 { 2213 if (!task_running(rq, p) && 2214 !test_tsk_need_resched(rq->curr) && 2215 p->nr_cpus_allowed > 1 && 2216 dl_task(rq->curr) && 2217 (rq->curr->nr_cpus_allowed < 2 || 2218 !dl_entity_preempt(&p->dl, &rq->curr->dl))) { 2219 push_dl_tasks(rq); 2220 } 2221 } 2222 2223 static void set_cpus_allowed_dl(struct task_struct *p, 2224 const struct cpumask *new_mask) 2225 { 2226 struct root_domain *src_rd; 2227 struct rq *rq; 2228 2229 BUG_ON(!dl_task(p)); 2230 2231 rq = task_rq(p); 2232 src_rd = rq->rd; 2233 /* 2234 * Migrating a SCHED_DEADLINE task between exclusive 2235 * cpusets (different root_domains) entails a bandwidth 2236 * update. We already made space for us in the destination 2237 * domain (see cpuset_can_attach()). 2238 */ 2239 if (!cpumask_intersects(src_rd->span, new_mask)) { 2240 struct dl_bw *src_dl_b; 2241 2242 src_dl_b = dl_bw_of(cpu_of(rq)); 2243 /* 2244 * We now free resources of the root_domain we are migrating 2245 * off. In the worst case, sched_setattr() may temporary fail 2246 * until we complete the update. 2247 */ 2248 raw_spin_lock(&src_dl_b->lock); 2249 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 2250 raw_spin_unlock(&src_dl_b->lock); 2251 } 2252 2253 set_cpus_allowed_common(p, new_mask); 2254 } 2255 2256 /* Assumes rq->lock is held */ 2257 static void rq_online_dl(struct rq *rq) 2258 { 2259 if (rq->dl.overloaded) 2260 dl_set_overload(rq); 2261 2262 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu); 2263 if (rq->dl.dl_nr_running > 0) 2264 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr); 2265 } 2266 2267 /* Assumes rq->lock is held */ 2268 static void rq_offline_dl(struct rq *rq) 2269 { 2270 if (rq->dl.overloaded) 2271 dl_clear_overload(rq); 2272 2273 cpudl_clear(&rq->rd->cpudl, rq->cpu); 2274 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu); 2275 } 2276 2277 void __init init_sched_dl_class(void) 2278 { 2279 unsigned int i; 2280 2281 for_each_possible_cpu(i) 2282 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 2283 GFP_KERNEL, cpu_to_node(i)); 2284 } 2285 2286 #endif /* CONFIG_SMP */ 2287 2288 static void switched_from_dl(struct rq *rq, struct task_struct *p) 2289 { 2290 /* 2291 * task_non_contending() can start the "inactive timer" (if the 0-lag 2292 * time is in the future). If the task switches back to dl before 2293 * the "inactive timer" fires, it can continue to consume its current 2294 * runtime using its current deadline. If it stays outside of 2295 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer() 2296 * will reset the task parameters. 2297 */ 2298 if (task_on_rq_queued(p) && p->dl.dl_runtime) 2299 task_non_contending(p); 2300 2301 if (!task_on_rq_queued(p)) { 2302 /* 2303 * Inactive timer is armed. However, p is leaving DEADLINE and 2304 * might migrate away from this rq while continuing to run on 2305 * some other class. We need to remove its contribution from 2306 * this rq running_bw now, or sub_rq_bw (below) will complain. 2307 */ 2308 if (p->dl.dl_non_contending) 2309 sub_running_bw(&p->dl, &rq->dl); 2310 sub_rq_bw(&p->dl, &rq->dl); 2311 } 2312 2313 /* 2314 * We cannot use inactive_task_timer() to invoke sub_running_bw() 2315 * at the 0-lag time, because the task could have been migrated 2316 * while SCHED_OTHER in the meanwhile. 2317 */ 2318 if (p->dl.dl_non_contending) 2319 p->dl.dl_non_contending = 0; 2320 2321 /* 2322 * Since this might be the only -deadline task on the rq, 2323 * this is the right place to try to pull some other one 2324 * from an overloaded CPU, if any. 2325 */ 2326 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 2327 return; 2328 2329 deadline_queue_pull_task(rq); 2330 } 2331 2332 /* 2333 * When switching to -deadline, we may overload the rq, then 2334 * we try to push someone off, if possible. 2335 */ 2336 static void switched_to_dl(struct rq *rq, struct task_struct *p) 2337 { 2338 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 2339 put_task_struct(p); 2340 2341 /* If p is not queued we will update its parameters at next wakeup. */ 2342 if (!task_on_rq_queued(p)) { 2343 add_rq_bw(&p->dl, &rq->dl); 2344 2345 return; 2346 } 2347 2348 if (rq->curr != p) { 2349 #ifdef CONFIG_SMP 2350 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) 2351 deadline_queue_push_tasks(rq); 2352 #endif 2353 if (dl_task(rq->curr)) 2354 check_preempt_curr_dl(rq, p, 0); 2355 else 2356 resched_curr(rq); 2357 } 2358 } 2359 2360 /* 2361 * If the scheduling parameters of a -deadline task changed, 2362 * a push or pull operation might be needed. 2363 */ 2364 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 2365 int oldprio) 2366 { 2367 if (task_on_rq_queued(p) || rq->curr == p) { 2368 #ifdef CONFIG_SMP 2369 /* 2370 * This might be too much, but unfortunately 2371 * we don't have the old deadline value, and 2372 * we can't argue if the task is increasing 2373 * or lowering its prio, so... 2374 */ 2375 if (!rq->dl.overloaded) 2376 deadline_queue_pull_task(rq); 2377 2378 /* 2379 * If we now have a earlier deadline task than p, 2380 * then reschedule, provided p is still on this 2381 * runqueue. 2382 */ 2383 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) 2384 resched_curr(rq); 2385 #else 2386 /* 2387 * Again, we don't know if p has a earlier 2388 * or later deadline, so let's blindly set a 2389 * (maybe not needed) rescheduling point. 2390 */ 2391 resched_curr(rq); 2392 #endif /* CONFIG_SMP */ 2393 } 2394 } 2395 2396 const struct sched_class dl_sched_class = { 2397 .next = &rt_sched_class, 2398 .enqueue_task = enqueue_task_dl, 2399 .dequeue_task = dequeue_task_dl, 2400 .yield_task = yield_task_dl, 2401 2402 .check_preempt_curr = check_preempt_curr_dl, 2403 2404 .pick_next_task = pick_next_task_dl, 2405 .put_prev_task = put_prev_task_dl, 2406 2407 #ifdef CONFIG_SMP 2408 .select_task_rq = select_task_rq_dl, 2409 .migrate_task_rq = migrate_task_rq_dl, 2410 .set_cpus_allowed = set_cpus_allowed_dl, 2411 .rq_online = rq_online_dl, 2412 .rq_offline = rq_offline_dl, 2413 .task_woken = task_woken_dl, 2414 #endif 2415 2416 .set_curr_task = set_curr_task_dl, 2417 .task_tick = task_tick_dl, 2418 .task_fork = task_fork_dl, 2419 2420 .prio_changed = prio_changed_dl, 2421 .switched_from = switched_from_dl, 2422 .switched_to = switched_to_dl, 2423 2424 .update_curr = update_curr_dl, 2425 }; 2426 2427 int sched_dl_global_validate(void) 2428 { 2429 u64 runtime = global_rt_runtime(); 2430 u64 period = global_rt_period(); 2431 u64 new_bw = to_ratio(period, runtime); 2432 struct dl_bw *dl_b; 2433 int cpu, ret = 0; 2434 unsigned long flags; 2435 2436 /* 2437 * Here we want to check the bandwidth not being set to some 2438 * value smaller than the currently allocated bandwidth in 2439 * any of the root_domains. 2440 * 2441 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 2442 * cycling on root_domains... Discussion on different/better 2443 * solutions is welcome! 2444 */ 2445 for_each_possible_cpu(cpu) { 2446 rcu_read_lock_sched(); 2447 dl_b = dl_bw_of(cpu); 2448 2449 raw_spin_lock_irqsave(&dl_b->lock, flags); 2450 if (new_bw < dl_b->total_bw) 2451 ret = -EBUSY; 2452 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2453 2454 rcu_read_unlock_sched(); 2455 2456 if (ret) 2457 break; 2458 } 2459 2460 return ret; 2461 } 2462 2463 void init_dl_rq_bw_ratio(struct dl_rq *dl_rq) 2464 { 2465 if (global_rt_runtime() == RUNTIME_INF) { 2466 dl_rq->bw_ratio = 1 << RATIO_SHIFT; 2467 dl_rq->extra_bw = 1 << BW_SHIFT; 2468 } else { 2469 dl_rq->bw_ratio = to_ratio(global_rt_runtime(), 2470 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT); 2471 dl_rq->extra_bw = to_ratio(global_rt_period(), 2472 global_rt_runtime()); 2473 } 2474 } 2475 2476 void sched_dl_do_global(void) 2477 { 2478 u64 new_bw = -1; 2479 struct dl_bw *dl_b; 2480 int cpu; 2481 unsigned long flags; 2482 2483 def_dl_bandwidth.dl_period = global_rt_period(); 2484 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 2485 2486 if (global_rt_runtime() != RUNTIME_INF) 2487 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 2488 2489 /* 2490 * FIXME: As above... 2491 */ 2492 for_each_possible_cpu(cpu) { 2493 rcu_read_lock_sched(); 2494 dl_b = dl_bw_of(cpu); 2495 2496 raw_spin_lock_irqsave(&dl_b->lock, flags); 2497 dl_b->bw = new_bw; 2498 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2499 2500 rcu_read_unlock_sched(); 2501 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl); 2502 } 2503 } 2504 2505 /* 2506 * We must be sure that accepting a new task (or allowing changing the 2507 * parameters of an existing one) is consistent with the bandwidth 2508 * constraints. If yes, this function also accordingly updates the currently 2509 * allocated bandwidth to reflect the new situation. 2510 * 2511 * This function is called while holding p's rq->lock. 2512 */ 2513 int sched_dl_overflow(struct task_struct *p, int policy, 2514 const struct sched_attr *attr) 2515 { 2516 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2517 u64 period = attr->sched_period ?: attr->sched_deadline; 2518 u64 runtime = attr->sched_runtime; 2519 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2520 int cpus, err = -1; 2521 2522 if (attr->sched_flags & SCHED_FLAG_SUGOV) 2523 return 0; 2524 2525 /* !deadline task may carry old deadline bandwidth */ 2526 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 2527 return 0; 2528 2529 /* 2530 * Either if a task, enters, leave, or stays -deadline but changes 2531 * its parameters, we may need to update accordingly the total 2532 * allocated bandwidth of the container. 2533 */ 2534 raw_spin_lock(&dl_b->lock); 2535 cpus = dl_bw_cpus(task_cpu(p)); 2536 if (dl_policy(policy) && !task_has_dl_policy(p) && 2537 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2538 if (hrtimer_active(&p->dl.inactive_timer)) 2539 __dl_sub(dl_b, p->dl.dl_bw, cpus); 2540 __dl_add(dl_b, new_bw, cpus); 2541 err = 0; 2542 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2543 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2544 /* 2545 * XXX this is slightly incorrect: when the task 2546 * utilization decreases, we should delay the total 2547 * utilization change until the task's 0-lag point. 2548 * But this would require to set the task's "inactive 2549 * timer" when the task is not inactive. 2550 */ 2551 __dl_sub(dl_b, p->dl.dl_bw, cpus); 2552 __dl_add(dl_b, new_bw, cpus); 2553 dl_change_utilization(p, new_bw); 2554 err = 0; 2555 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2556 /* 2557 * Do not decrease the total deadline utilization here, 2558 * switched_from_dl() will take care to do it at the correct 2559 * (0-lag) time. 2560 */ 2561 err = 0; 2562 } 2563 raw_spin_unlock(&dl_b->lock); 2564 2565 return err; 2566 } 2567 2568 /* 2569 * This function initializes the sched_dl_entity of a newly becoming 2570 * SCHED_DEADLINE task. 2571 * 2572 * Only the static values are considered here, the actual runtime and the 2573 * absolute deadline will be properly calculated when the task is enqueued 2574 * for the first time with its new policy. 2575 */ 2576 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 2577 { 2578 struct sched_dl_entity *dl_se = &p->dl; 2579 2580 dl_se->dl_runtime = attr->sched_runtime; 2581 dl_se->dl_deadline = attr->sched_deadline; 2582 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 2583 dl_se->flags = attr->sched_flags; 2584 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 2585 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 2586 } 2587 2588 void __getparam_dl(struct task_struct *p, struct sched_attr *attr) 2589 { 2590 struct sched_dl_entity *dl_se = &p->dl; 2591 2592 attr->sched_priority = p->rt_priority; 2593 attr->sched_runtime = dl_se->dl_runtime; 2594 attr->sched_deadline = dl_se->dl_deadline; 2595 attr->sched_period = dl_se->dl_period; 2596 attr->sched_flags = dl_se->flags; 2597 } 2598 2599 /* 2600 * This function validates the new parameters of a -deadline task. 2601 * We ask for the deadline not being zero, and greater or equal 2602 * than the runtime, as well as the period of being zero or 2603 * greater than deadline. Furthermore, we have to be sure that 2604 * user parameters are above the internal resolution of 1us (we 2605 * check sched_runtime only since it is always the smaller one) and 2606 * below 2^63 ns (we have to check both sched_deadline and 2607 * sched_period, as the latter can be zero). 2608 */ 2609 bool __checkparam_dl(const struct sched_attr *attr) 2610 { 2611 /* special dl tasks don't actually use any parameter */ 2612 if (attr->sched_flags & SCHED_FLAG_SUGOV) 2613 return true; 2614 2615 /* deadline != 0 */ 2616 if (attr->sched_deadline == 0) 2617 return false; 2618 2619 /* 2620 * Since we truncate DL_SCALE bits, make sure we're at least 2621 * that big. 2622 */ 2623 if (attr->sched_runtime < (1ULL << DL_SCALE)) 2624 return false; 2625 2626 /* 2627 * Since we use the MSB for wrap-around and sign issues, make 2628 * sure it's not set (mind that period can be equal to zero). 2629 */ 2630 if (attr->sched_deadline & (1ULL << 63) || 2631 attr->sched_period & (1ULL << 63)) 2632 return false; 2633 2634 /* runtime <= deadline <= period (if period != 0) */ 2635 if ((attr->sched_period != 0 && 2636 attr->sched_period < attr->sched_deadline) || 2637 attr->sched_deadline < attr->sched_runtime) 2638 return false; 2639 2640 return true; 2641 } 2642 2643 /* 2644 * This function clears the sched_dl_entity static params. 2645 */ 2646 void __dl_clear_params(struct task_struct *p) 2647 { 2648 struct sched_dl_entity *dl_se = &p->dl; 2649 2650 dl_se->dl_runtime = 0; 2651 dl_se->dl_deadline = 0; 2652 dl_se->dl_period = 0; 2653 dl_se->flags = 0; 2654 dl_se->dl_bw = 0; 2655 dl_se->dl_density = 0; 2656 2657 dl_se->dl_throttled = 0; 2658 dl_se->dl_yielded = 0; 2659 dl_se->dl_non_contending = 0; 2660 dl_se->dl_overrun = 0; 2661 } 2662 2663 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) 2664 { 2665 struct sched_dl_entity *dl_se = &p->dl; 2666 2667 if (dl_se->dl_runtime != attr->sched_runtime || 2668 dl_se->dl_deadline != attr->sched_deadline || 2669 dl_se->dl_period != attr->sched_period || 2670 dl_se->flags != attr->sched_flags) 2671 return true; 2672 2673 return false; 2674 } 2675 2676 #ifdef CONFIG_SMP 2677 int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed) 2678 { 2679 unsigned int dest_cpu; 2680 struct dl_bw *dl_b; 2681 bool overflow; 2682 int cpus, ret; 2683 unsigned long flags; 2684 2685 dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed); 2686 2687 rcu_read_lock_sched(); 2688 dl_b = dl_bw_of(dest_cpu); 2689 raw_spin_lock_irqsave(&dl_b->lock, flags); 2690 cpus = dl_bw_cpus(dest_cpu); 2691 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 2692 if (overflow) { 2693 ret = -EBUSY; 2694 } else { 2695 /* 2696 * We reserve space for this task in the destination 2697 * root_domain, as we can't fail after this point. 2698 * We will free resources in the source root_domain 2699 * later on (see set_cpus_allowed_dl()). 2700 */ 2701 __dl_add(dl_b, p->dl.dl_bw, cpus); 2702 ret = 0; 2703 } 2704 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2705 rcu_read_unlock_sched(); 2706 2707 return ret; 2708 } 2709 2710 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, 2711 const struct cpumask *trial) 2712 { 2713 int ret = 1, trial_cpus; 2714 struct dl_bw *cur_dl_b; 2715 unsigned long flags; 2716 2717 rcu_read_lock_sched(); 2718 cur_dl_b = dl_bw_of(cpumask_any(cur)); 2719 trial_cpus = cpumask_weight(trial); 2720 2721 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 2722 if (cur_dl_b->bw != -1 && 2723 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 2724 ret = 0; 2725 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 2726 rcu_read_unlock_sched(); 2727 2728 return ret; 2729 } 2730 2731 bool dl_cpu_busy(unsigned int cpu) 2732 { 2733 unsigned long flags; 2734 struct dl_bw *dl_b; 2735 bool overflow; 2736 int cpus; 2737 2738 rcu_read_lock_sched(); 2739 dl_b = dl_bw_of(cpu); 2740 raw_spin_lock_irqsave(&dl_b->lock, flags); 2741 cpus = dl_bw_cpus(cpu); 2742 overflow = __dl_overflow(dl_b, cpus, 0, 0); 2743 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2744 rcu_read_unlock_sched(); 2745 2746 return overflow; 2747 } 2748 #endif 2749 2750 #ifdef CONFIG_SCHED_DEBUG 2751 void print_dl_stats(struct seq_file *m, int cpu) 2752 { 2753 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 2754 } 2755 #endif /* CONFIG_SCHED_DEBUG */ 2756