xref: /openbmc/linux/kernel/sched/deadline.c (revision b0bd9ae3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Deadline Scheduling Class (SCHED_DEADLINE)
4  *
5  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6  *
7  * Tasks that periodically executes their instances for less than their
8  * runtime won't miss any of their deadlines.
9  * Tasks that are not periodic or sporadic or that tries to execute more
10  * than their reserved bandwidth will be slowed down (and may potentially
11  * miss some of their deadlines), and won't affect any other task.
12  *
13  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14  *                    Juri Lelli <juri.lelli@gmail.com>,
15  *                    Michael Trimarchi <michael@amarulasolutions.com>,
16  *                    Fabio Checconi <fchecconi@gmail.com>
17  */
18 #include "sched.h"
19 #include "pelt.h"
20 
21 struct dl_bandwidth def_dl_bandwidth;
22 
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24 {
25 	return container_of(dl_se, struct task_struct, dl);
26 }
27 
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29 {
30 	return container_of(dl_rq, struct rq, dl);
31 }
32 
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34 {
35 	struct task_struct *p = dl_task_of(dl_se);
36 	struct rq *rq = task_rq(p);
37 
38 	return &rq->dl;
39 }
40 
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42 {
43 	return !RB_EMPTY_NODE(&dl_se->rb_node);
44 }
45 
46 #ifdef CONFIG_SMP
47 static inline struct dl_bw *dl_bw_of(int i)
48 {
49 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
50 			 "sched RCU must be held");
51 	return &cpu_rq(i)->rd->dl_bw;
52 }
53 
54 static inline int dl_bw_cpus(int i)
55 {
56 	struct root_domain *rd = cpu_rq(i)->rd;
57 	int cpus = 0;
58 
59 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
60 			 "sched RCU must be held");
61 	for_each_cpu_and(i, rd->span, cpu_active_mask)
62 		cpus++;
63 
64 	return cpus;
65 }
66 #else
67 static inline struct dl_bw *dl_bw_of(int i)
68 {
69 	return &cpu_rq(i)->dl.dl_bw;
70 }
71 
72 static inline int dl_bw_cpus(int i)
73 {
74 	return 1;
75 }
76 #endif
77 
78 static inline
79 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
80 {
81 	u64 old = dl_rq->running_bw;
82 
83 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
84 	dl_rq->running_bw += dl_bw;
85 	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
86 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
87 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
88 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
89 }
90 
91 static inline
92 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
93 {
94 	u64 old = dl_rq->running_bw;
95 
96 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
97 	dl_rq->running_bw -= dl_bw;
98 	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
99 	if (dl_rq->running_bw > old)
100 		dl_rq->running_bw = 0;
101 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
102 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
103 }
104 
105 static inline
106 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
107 {
108 	u64 old = dl_rq->this_bw;
109 
110 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
111 	dl_rq->this_bw += dl_bw;
112 	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
113 }
114 
115 static inline
116 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
117 {
118 	u64 old = dl_rq->this_bw;
119 
120 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
121 	dl_rq->this_bw -= dl_bw;
122 	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
123 	if (dl_rq->this_bw > old)
124 		dl_rq->this_bw = 0;
125 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
126 }
127 
128 static inline
129 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
130 {
131 	if (!dl_entity_is_special(dl_se))
132 		__add_rq_bw(dl_se->dl_bw, dl_rq);
133 }
134 
135 static inline
136 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
137 {
138 	if (!dl_entity_is_special(dl_se))
139 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
140 }
141 
142 static inline
143 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
144 {
145 	if (!dl_entity_is_special(dl_se))
146 		__add_running_bw(dl_se->dl_bw, dl_rq);
147 }
148 
149 static inline
150 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
151 {
152 	if (!dl_entity_is_special(dl_se))
153 		__sub_running_bw(dl_se->dl_bw, dl_rq);
154 }
155 
156 void dl_change_utilization(struct task_struct *p, u64 new_bw)
157 {
158 	struct rq *rq;
159 
160 	BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
161 
162 	if (task_on_rq_queued(p))
163 		return;
164 
165 	rq = task_rq(p);
166 	if (p->dl.dl_non_contending) {
167 		sub_running_bw(&p->dl, &rq->dl);
168 		p->dl.dl_non_contending = 0;
169 		/*
170 		 * If the timer handler is currently running and the
171 		 * timer cannot be cancelled, inactive_task_timer()
172 		 * will see that dl_not_contending is not set, and
173 		 * will not touch the rq's active utilization,
174 		 * so we are still safe.
175 		 */
176 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
177 			put_task_struct(p);
178 	}
179 	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
180 	__add_rq_bw(new_bw, &rq->dl);
181 }
182 
183 /*
184  * The utilization of a task cannot be immediately removed from
185  * the rq active utilization (running_bw) when the task blocks.
186  * Instead, we have to wait for the so called "0-lag time".
187  *
188  * If a task blocks before the "0-lag time", a timer (the inactive
189  * timer) is armed, and running_bw is decreased when the timer
190  * fires.
191  *
192  * If the task wakes up again before the inactive timer fires,
193  * the timer is cancelled, whereas if the task wakes up after the
194  * inactive timer fired (and running_bw has been decreased) the
195  * task's utilization has to be added to running_bw again.
196  * A flag in the deadline scheduling entity (dl_non_contending)
197  * is used to avoid race conditions between the inactive timer handler
198  * and task wakeups.
199  *
200  * The following diagram shows how running_bw is updated. A task is
201  * "ACTIVE" when its utilization contributes to running_bw; an
202  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
203  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
204  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
205  * time already passed, which does not contribute to running_bw anymore.
206  *                              +------------------+
207  *             wakeup           |    ACTIVE        |
208  *          +------------------>+   contending     |
209  *          | add_running_bw    |                  |
210  *          |                   +----+------+------+
211  *          |                        |      ^
212  *          |                dequeue |      |
213  * +--------+-------+                |      |
214  * |                |   t >= 0-lag   |      | wakeup
215  * |    INACTIVE    |<---------------+      |
216  * |                | sub_running_bw |      |
217  * +--------+-------+                |      |
218  *          ^                        |      |
219  *          |              t < 0-lag |      |
220  *          |                        |      |
221  *          |                        V      |
222  *          |                   +----+------+------+
223  *          | sub_running_bw    |    ACTIVE        |
224  *          +-------------------+                  |
225  *            inactive timer    |  non contending  |
226  *            fired             +------------------+
227  *
228  * The task_non_contending() function is invoked when a task
229  * blocks, and checks if the 0-lag time already passed or
230  * not (in the first case, it directly updates running_bw;
231  * in the second case, it arms the inactive timer).
232  *
233  * The task_contending() function is invoked when a task wakes
234  * up, and checks if the task is still in the "ACTIVE non contending"
235  * state or not (in the second case, it updates running_bw).
236  */
237 static void task_non_contending(struct task_struct *p)
238 {
239 	struct sched_dl_entity *dl_se = &p->dl;
240 	struct hrtimer *timer = &dl_se->inactive_timer;
241 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
242 	struct rq *rq = rq_of_dl_rq(dl_rq);
243 	s64 zerolag_time;
244 
245 	/*
246 	 * If this is a non-deadline task that has been boosted,
247 	 * do nothing
248 	 */
249 	if (dl_se->dl_runtime == 0)
250 		return;
251 
252 	if (dl_entity_is_special(dl_se))
253 		return;
254 
255 	WARN_ON(dl_se->dl_non_contending);
256 
257 	zerolag_time = dl_se->deadline -
258 		 div64_long((dl_se->runtime * dl_se->dl_period),
259 			dl_se->dl_runtime);
260 
261 	/*
262 	 * Using relative times instead of the absolute "0-lag time"
263 	 * allows to simplify the code
264 	 */
265 	zerolag_time -= rq_clock(rq);
266 
267 	/*
268 	 * If the "0-lag time" already passed, decrease the active
269 	 * utilization now, instead of starting a timer
270 	 */
271 	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
272 		if (dl_task(p))
273 			sub_running_bw(dl_se, dl_rq);
274 		if (!dl_task(p) || p->state == TASK_DEAD) {
275 			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
276 
277 			if (p->state == TASK_DEAD)
278 				sub_rq_bw(&p->dl, &rq->dl);
279 			raw_spin_lock(&dl_b->lock);
280 			__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
281 			__dl_clear_params(p);
282 			raw_spin_unlock(&dl_b->lock);
283 		}
284 
285 		return;
286 	}
287 
288 	dl_se->dl_non_contending = 1;
289 	get_task_struct(p);
290 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
291 }
292 
293 static void task_contending(struct sched_dl_entity *dl_se, int flags)
294 {
295 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
296 
297 	/*
298 	 * If this is a non-deadline task that has been boosted,
299 	 * do nothing
300 	 */
301 	if (dl_se->dl_runtime == 0)
302 		return;
303 
304 	if (flags & ENQUEUE_MIGRATED)
305 		add_rq_bw(dl_se, dl_rq);
306 
307 	if (dl_se->dl_non_contending) {
308 		dl_se->dl_non_contending = 0;
309 		/*
310 		 * If the timer handler is currently running and the
311 		 * timer cannot be cancelled, inactive_task_timer()
312 		 * will see that dl_not_contending is not set, and
313 		 * will not touch the rq's active utilization,
314 		 * so we are still safe.
315 		 */
316 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
317 			put_task_struct(dl_task_of(dl_se));
318 	} else {
319 		/*
320 		 * Since "dl_non_contending" is not set, the
321 		 * task's utilization has already been removed from
322 		 * active utilization (either when the task blocked,
323 		 * when the "inactive timer" fired).
324 		 * So, add it back.
325 		 */
326 		add_running_bw(dl_se, dl_rq);
327 	}
328 }
329 
330 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
331 {
332 	struct sched_dl_entity *dl_se = &p->dl;
333 
334 	return dl_rq->root.rb_leftmost == &dl_se->rb_node;
335 }
336 
337 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
338 {
339 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
340 	dl_b->dl_period = period;
341 	dl_b->dl_runtime = runtime;
342 }
343 
344 void init_dl_bw(struct dl_bw *dl_b)
345 {
346 	raw_spin_lock_init(&dl_b->lock);
347 	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
348 	if (global_rt_runtime() == RUNTIME_INF)
349 		dl_b->bw = -1;
350 	else
351 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
352 	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
353 	dl_b->total_bw = 0;
354 }
355 
356 void init_dl_rq(struct dl_rq *dl_rq)
357 {
358 	dl_rq->root = RB_ROOT_CACHED;
359 
360 #ifdef CONFIG_SMP
361 	/* zero means no -deadline tasks */
362 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
363 
364 	dl_rq->dl_nr_migratory = 0;
365 	dl_rq->overloaded = 0;
366 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
367 #else
368 	init_dl_bw(&dl_rq->dl_bw);
369 #endif
370 
371 	dl_rq->running_bw = 0;
372 	dl_rq->this_bw = 0;
373 	init_dl_rq_bw_ratio(dl_rq);
374 }
375 
376 #ifdef CONFIG_SMP
377 
378 static inline int dl_overloaded(struct rq *rq)
379 {
380 	return atomic_read(&rq->rd->dlo_count);
381 }
382 
383 static inline void dl_set_overload(struct rq *rq)
384 {
385 	if (!rq->online)
386 		return;
387 
388 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
389 	/*
390 	 * Must be visible before the overload count is
391 	 * set (as in sched_rt.c).
392 	 *
393 	 * Matched by the barrier in pull_dl_task().
394 	 */
395 	smp_wmb();
396 	atomic_inc(&rq->rd->dlo_count);
397 }
398 
399 static inline void dl_clear_overload(struct rq *rq)
400 {
401 	if (!rq->online)
402 		return;
403 
404 	atomic_dec(&rq->rd->dlo_count);
405 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
406 }
407 
408 static void update_dl_migration(struct dl_rq *dl_rq)
409 {
410 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
411 		if (!dl_rq->overloaded) {
412 			dl_set_overload(rq_of_dl_rq(dl_rq));
413 			dl_rq->overloaded = 1;
414 		}
415 	} else if (dl_rq->overloaded) {
416 		dl_clear_overload(rq_of_dl_rq(dl_rq));
417 		dl_rq->overloaded = 0;
418 	}
419 }
420 
421 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
422 {
423 	struct task_struct *p = dl_task_of(dl_se);
424 
425 	if (p->nr_cpus_allowed > 1)
426 		dl_rq->dl_nr_migratory++;
427 
428 	update_dl_migration(dl_rq);
429 }
430 
431 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
432 {
433 	struct task_struct *p = dl_task_of(dl_se);
434 
435 	if (p->nr_cpus_allowed > 1)
436 		dl_rq->dl_nr_migratory--;
437 
438 	update_dl_migration(dl_rq);
439 }
440 
441 /*
442  * The list of pushable -deadline task is not a plist, like in
443  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
444  */
445 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
446 {
447 	struct dl_rq *dl_rq = &rq->dl;
448 	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
449 	struct rb_node *parent = NULL;
450 	struct task_struct *entry;
451 	bool leftmost = true;
452 
453 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
454 
455 	while (*link) {
456 		parent = *link;
457 		entry = rb_entry(parent, struct task_struct,
458 				 pushable_dl_tasks);
459 		if (dl_entity_preempt(&p->dl, &entry->dl))
460 			link = &parent->rb_left;
461 		else {
462 			link = &parent->rb_right;
463 			leftmost = false;
464 		}
465 	}
466 
467 	if (leftmost)
468 		dl_rq->earliest_dl.next = p->dl.deadline;
469 
470 	rb_link_node(&p->pushable_dl_tasks, parent, link);
471 	rb_insert_color_cached(&p->pushable_dl_tasks,
472 			       &dl_rq->pushable_dl_tasks_root, leftmost);
473 }
474 
475 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
476 {
477 	struct dl_rq *dl_rq = &rq->dl;
478 
479 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
480 		return;
481 
482 	if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
483 		struct rb_node *next_node;
484 
485 		next_node = rb_next(&p->pushable_dl_tasks);
486 		if (next_node) {
487 			dl_rq->earliest_dl.next = rb_entry(next_node,
488 				struct task_struct, pushable_dl_tasks)->dl.deadline;
489 		}
490 	}
491 
492 	rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
493 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
494 }
495 
496 static inline int has_pushable_dl_tasks(struct rq *rq)
497 {
498 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
499 }
500 
501 static int push_dl_task(struct rq *rq);
502 
503 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
504 {
505 	return dl_task(prev);
506 }
507 
508 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
509 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
510 
511 static void push_dl_tasks(struct rq *);
512 static void pull_dl_task(struct rq *);
513 
514 static inline void deadline_queue_push_tasks(struct rq *rq)
515 {
516 	if (!has_pushable_dl_tasks(rq))
517 		return;
518 
519 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
520 }
521 
522 static inline void deadline_queue_pull_task(struct rq *rq)
523 {
524 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
525 }
526 
527 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
528 
529 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
530 {
531 	struct rq *later_rq = NULL;
532 	struct dl_bw *dl_b;
533 
534 	later_rq = find_lock_later_rq(p, rq);
535 	if (!later_rq) {
536 		int cpu;
537 
538 		/*
539 		 * If we cannot preempt any rq, fall back to pick any
540 		 * online CPU:
541 		 */
542 		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
543 		if (cpu >= nr_cpu_ids) {
544 			/*
545 			 * Failed to find any suitable CPU.
546 			 * The task will never come back!
547 			 */
548 			BUG_ON(dl_bandwidth_enabled());
549 
550 			/*
551 			 * If admission control is disabled we
552 			 * try a little harder to let the task
553 			 * run.
554 			 */
555 			cpu = cpumask_any(cpu_active_mask);
556 		}
557 		later_rq = cpu_rq(cpu);
558 		double_lock_balance(rq, later_rq);
559 	}
560 
561 	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
562 		/*
563 		 * Inactive timer is armed (or callback is running, but
564 		 * waiting for us to release rq locks). In any case, when it
565 		 * will fire (or continue), it will see running_bw of this
566 		 * task migrated to later_rq (and correctly handle it).
567 		 */
568 		sub_running_bw(&p->dl, &rq->dl);
569 		sub_rq_bw(&p->dl, &rq->dl);
570 
571 		add_rq_bw(&p->dl, &later_rq->dl);
572 		add_running_bw(&p->dl, &later_rq->dl);
573 	} else {
574 		sub_rq_bw(&p->dl, &rq->dl);
575 		add_rq_bw(&p->dl, &later_rq->dl);
576 	}
577 
578 	/*
579 	 * And we finally need to fixup root_domain(s) bandwidth accounting,
580 	 * since p is still hanging out in the old (now moved to default) root
581 	 * domain.
582 	 */
583 	dl_b = &rq->rd->dl_bw;
584 	raw_spin_lock(&dl_b->lock);
585 	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
586 	raw_spin_unlock(&dl_b->lock);
587 
588 	dl_b = &later_rq->rd->dl_bw;
589 	raw_spin_lock(&dl_b->lock);
590 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
591 	raw_spin_unlock(&dl_b->lock);
592 
593 	set_task_cpu(p, later_rq->cpu);
594 	double_unlock_balance(later_rq, rq);
595 
596 	return later_rq;
597 }
598 
599 #else
600 
601 static inline
602 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
603 {
604 }
605 
606 static inline
607 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
608 {
609 }
610 
611 static inline
612 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
613 {
614 }
615 
616 static inline
617 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
618 {
619 }
620 
621 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
622 {
623 	return false;
624 }
625 
626 static inline void pull_dl_task(struct rq *rq)
627 {
628 }
629 
630 static inline void deadline_queue_push_tasks(struct rq *rq)
631 {
632 }
633 
634 static inline void deadline_queue_pull_task(struct rq *rq)
635 {
636 }
637 #endif /* CONFIG_SMP */
638 
639 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
640 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
641 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
642 
643 /*
644  * We are being explicitly informed that a new instance is starting,
645  * and this means that:
646  *  - the absolute deadline of the entity has to be placed at
647  *    current time + relative deadline;
648  *  - the runtime of the entity has to be set to the maximum value.
649  *
650  * The capability of specifying such event is useful whenever a -deadline
651  * entity wants to (try to!) synchronize its behaviour with the scheduler's
652  * one, and to (try to!) reconcile itself with its own scheduling
653  * parameters.
654  */
655 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
656 {
657 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
658 	struct rq *rq = rq_of_dl_rq(dl_rq);
659 
660 	WARN_ON(dl_se->dl_boosted);
661 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
662 
663 	/*
664 	 * We are racing with the deadline timer. So, do nothing because
665 	 * the deadline timer handler will take care of properly recharging
666 	 * the runtime and postponing the deadline
667 	 */
668 	if (dl_se->dl_throttled)
669 		return;
670 
671 	/*
672 	 * We use the regular wall clock time to set deadlines in the
673 	 * future; in fact, we must consider execution overheads (time
674 	 * spent on hardirq context, etc.).
675 	 */
676 	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
677 	dl_se->runtime = dl_se->dl_runtime;
678 }
679 
680 /*
681  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
682  * possibility of a entity lasting more than what it declared, and thus
683  * exhausting its runtime.
684  *
685  * Here we are interested in making runtime overrun possible, but we do
686  * not want a entity which is misbehaving to affect the scheduling of all
687  * other entities.
688  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
689  * is used, in order to confine each entity within its own bandwidth.
690  *
691  * This function deals exactly with that, and ensures that when the runtime
692  * of a entity is replenished, its deadline is also postponed. That ensures
693  * the overrunning entity can't interfere with other entity in the system and
694  * can't make them miss their deadlines. Reasons why this kind of overruns
695  * could happen are, typically, a entity voluntarily trying to overcome its
696  * runtime, or it just underestimated it during sched_setattr().
697  */
698 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
699 				struct sched_dl_entity *pi_se)
700 {
701 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
702 	struct rq *rq = rq_of_dl_rq(dl_rq);
703 
704 	BUG_ON(pi_se->dl_runtime <= 0);
705 
706 	/*
707 	 * This could be the case for a !-dl task that is boosted.
708 	 * Just go with full inherited parameters.
709 	 */
710 	if (dl_se->dl_deadline == 0) {
711 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
712 		dl_se->runtime = pi_se->dl_runtime;
713 	}
714 
715 	if (dl_se->dl_yielded && dl_se->runtime > 0)
716 		dl_se->runtime = 0;
717 
718 	/*
719 	 * We keep moving the deadline away until we get some
720 	 * available runtime for the entity. This ensures correct
721 	 * handling of situations where the runtime overrun is
722 	 * arbitrary large.
723 	 */
724 	while (dl_se->runtime <= 0) {
725 		dl_se->deadline += pi_se->dl_period;
726 		dl_se->runtime += pi_se->dl_runtime;
727 	}
728 
729 	/*
730 	 * At this point, the deadline really should be "in
731 	 * the future" with respect to rq->clock. If it's
732 	 * not, we are, for some reason, lagging too much!
733 	 * Anyway, after having warn userspace abut that,
734 	 * we still try to keep the things running by
735 	 * resetting the deadline and the budget of the
736 	 * entity.
737 	 */
738 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
739 		printk_deferred_once("sched: DL replenish lagged too much\n");
740 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
741 		dl_se->runtime = pi_se->dl_runtime;
742 	}
743 
744 	if (dl_se->dl_yielded)
745 		dl_se->dl_yielded = 0;
746 	if (dl_se->dl_throttled)
747 		dl_se->dl_throttled = 0;
748 }
749 
750 /*
751  * Here we check if --at time t-- an entity (which is probably being
752  * [re]activated or, in general, enqueued) can use its remaining runtime
753  * and its current deadline _without_ exceeding the bandwidth it is
754  * assigned (function returns true if it can't). We are in fact applying
755  * one of the CBS rules: when a task wakes up, if the residual runtime
756  * over residual deadline fits within the allocated bandwidth, then we
757  * can keep the current (absolute) deadline and residual budget without
758  * disrupting the schedulability of the system. Otherwise, we should
759  * refill the runtime and set the deadline a period in the future,
760  * because keeping the current (absolute) deadline of the task would
761  * result in breaking guarantees promised to other tasks (refer to
762  * Documentation/scheduler/sched-deadline.rst for more information).
763  *
764  * This function returns true if:
765  *
766  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
767  *
768  * IOW we can't recycle current parameters.
769  *
770  * Notice that the bandwidth check is done against the deadline. For
771  * task with deadline equal to period this is the same of using
772  * dl_period instead of dl_deadline in the equation above.
773  */
774 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
775 			       struct sched_dl_entity *pi_se, u64 t)
776 {
777 	u64 left, right;
778 
779 	/*
780 	 * left and right are the two sides of the equation above,
781 	 * after a bit of shuffling to use multiplications instead
782 	 * of divisions.
783 	 *
784 	 * Note that none of the time values involved in the two
785 	 * multiplications are absolute: dl_deadline and dl_runtime
786 	 * are the relative deadline and the maximum runtime of each
787 	 * instance, runtime is the runtime left for the last instance
788 	 * and (deadline - t), since t is rq->clock, is the time left
789 	 * to the (absolute) deadline. Even if overflowing the u64 type
790 	 * is very unlikely to occur in both cases, here we scale down
791 	 * as we want to avoid that risk at all. Scaling down by 10
792 	 * means that we reduce granularity to 1us. We are fine with it,
793 	 * since this is only a true/false check and, anyway, thinking
794 	 * of anything below microseconds resolution is actually fiction
795 	 * (but still we want to give the user that illusion >;).
796 	 */
797 	left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
798 	right = ((dl_se->deadline - t) >> DL_SCALE) *
799 		(pi_se->dl_runtime >> DL_SCALE);
800 
801 	return dl_time_before(right, left);
802 }
803 
804 /*
805  * Revised wakeup rule [1]: For self-suspending tasks, rather then
806  * re-initializing task's runtime and deadline, the revised wakeup
807  * rule adjusts the task's runtime to avoid the task to overrun its
808  * density.
809  *
810  * Reasoning: a task may overrun the density if:
811  *    runtime / (deadline - t) > dl_runtime / dl_deadline
812  *
813  * Therefore, runtime can be adjusted to:
814  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
815  *
816  * In such way that runtime will be equal to the maximum density
817  * the task can use without breaking any rule.
818  *
819  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
820  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
821  */
822 static void
823 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
824 {
825 	u64 laxity = dl_se->deadline - rq_clock(rq);
826 
827 	/*
828 	 * If the task has deadline < period, and the deadline is in the past,
829 	 * it should already be throttled before this check.
830 	 *
831 	 * See update_dl_entity() comments for further details.
832 	 */
833 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
834 
835 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
836 }
837 
838 /*
839  * Regarding the deadline, a task with implicit deadline has a relative
840  * deadline == relative period. A task with constrained deadline has a
841  * relative deadline <= relative period.
842  *
843  * We support constrained deadline tasks. However, there are some restrictions
844  * applied only for tasks which do not have an implicit deadline. See
845  * update_dl_entity() to know more about such restrictions.
846  *
847  * The dl_is_implicit() returns true if the task has an implicit deadline.
848  */
849 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
850 {
851 	return dl_se->dl_deadline == dl_se->dl_period;
852 }
853 
854 /*
855  * When a deadline entity is placed in the runqueue, its runtime and deadline
856  * might need to be updated. This is done by a CBS wake up rule. There are two
857  * different rules: 1) the original CBS; and 2) the Revisited CBS.
858  *
859  * When the task is starting a new period, the Original CBS is used. In this
860  * case, the runtime is replenished and a new absolute deadline is set.
861  *
862  * When a task is queued before the begin of the next period, using the
863  * remaining runtime and deadline could make the entity to overflow, see
864  * dl_entity_overflow() to find more about runtime overflow. When such case
865  * is detected, the runtime and deadline need to be updated.
866  *
867  * If the task has an implicit deadline, i.e., deadline == period, the Original
868  * CBS is applied. the runtime is replenished and a new absolute deadline is
869  * set, as in the previous cases.
870  *
871  * However, the Original CBS does not work properly for tasks with
872  * deadline < period, which are said to have a constrained deadline. By
873  * applying the Original CBS, a constrained deadline task would be able to run
874  * runtime/deadline in a period. With deadline < period, the task would
875  * overrun the runtime/period allowed bandwidth, breaking the admission test.
876  *
877  * In order to prevent this misbehave, the Revisited CBS is used for
878  * constrained deadline tasks when a runtime overflow is detected. In the
879  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
880  * the remaining runtime of the task is reduced to avoid runtime overflow.
881  * Please refer to the comments update_dl_revised_wakeup() function to find
882  * more about the Revised CBS rule.
883  */
884 static void update_dl_entity(struct sched_dl_entity *dl_se,
885 			     struct sched_dl_entity *pi_se)
886 {
887 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
888 	struct rq *rq = rq_of_dl_rq(dl_rq);
889 
890 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
891 	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
892 
893 		if (unlikely(!dl_is_implicit(dl_se) &&
894 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
895 			     !dl_se->dl_boosted)){
896 			update_dl_revised_wakeup(dl_se, rq);
897 			return;
898 		}
899 
900 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
901 		dl_se->runtime = pi_se->dl_runtime;
902 	}
903 }
904 
905 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
906 {
907 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
908 }
909 
910 /*
911  * If the entity depleted all its runtime, and if we want it to sleep
912  * while waiting for some new execution time to become available, we
913  * set the bandwidth replenishment timer to the replenishment instant
914  * and try to activate it.
915  *
916  * Notice that it is important for the caller to know if the timer
917  * actually started or not (i.e., the replenishment instant is in
918  * the future or in the past).
919  */
920 static int start_dl_timer(struct task_struct *p)
921 {
922 	struct sched_dl_entity *dl_se = &p->dl;
923 	struct hrtimer *timer = &dl_se->dl_timer;
924 	struct rq *rq = task_rq(p);
925 	ktime_t now, act;
926 	s64 delta;
927 
928 	lockdep_assert_held(&rq->lock);
929 
930 	/*
931 	 * We want the timer to fire at the deadline, but considering
932 	 * that it is actually coming from rq->clock and not from
933 	 * hrtimer's time base reading.
934 	 */
935 	act = ns_to_ktime(dl_next_period(dl_se));
936 	now = hrtimer_cb_get_time(timer);
937 	delta = ktime_to_ns(now) - rq_clock(rq);
938 	act = ktime_add_ns(act, delta);
939 
940 	/*
941 	 * If the expiry time already passed, e.g., because the value
942 	 * chosen as the deadline is too small, don't even try to
943 	 * start the timer in the past!
944 	 */
945 	if (ktime_us_delta(act, now) < 0)
946 		return 0;
947 
948 	/*
949 	 * !enqueued will guarantee another callback; even if one is already in
950 	 * progress. This ensures a balanced {get,put}_task_struct().
951 	 *
952 	 * The race against __run_timer() clearing the enqueued state is
953 	 * harmless because we're holding task_rq()->lock, therefore the timer
954 	 * expiring after we've done the check will wait on its task_rq_lock()
955 	 * and observe our state.
956 	 */
957 	if (!hrtimer_is_queued(timer)) {
958 		get_task_struct(p);
959 		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
960 	}
961 
962 	return 1;
963 }
964 
965 /*
966  * This is the bandwidth enforcement timer callback. If here, we know
967  * a task is not on its dl_rq, since the fact that the timer was running
968  * means the task is throttled and needs a runtime replenishment.
969  *
970  * However, what we actually do depends on the fact the task is active,
971  * (it is on its rq) or has been removed from there by a call to
972  * dequeue_task_dl(). In the former case we must issue the runtime
973  * replenishment and add the task back to the dl_rq; in the latter, we just
974  * do nothing but clearing dl_throttled, so that runtime and deadline
975  * updating (and the queueing back to dl_rq) will be done by the
976  * next call to enqueue_task_dl().
977  */
978 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
979 {
980 	struct sched_dl_entity *dl_se = container_of(timer,
981 						     struct sched_dl_entity,
982 						     dl_timer);
983 	struct task_struct *p = dl_task_of(dl_se);
984 	struct rq_flags rf;
985 	struct rq *rq;
986 
987 	rq = task_rq_lock(p, &rf);
988 
989 	/*
990 	 * The task might have changed its scheduling policy to something
991 	 * different than SCHED_DEADLINE (through switched_from_dl()).
992 	 */
993 	if (!dl_task(p))
994 		goto unlock;
995 
996 	/*
997 	 * The task might have been boosted by someone else and might be in the
998 	 * boosting/deboosting path, its not throttled.
999 	 */
1000 	if (dl_se->dl_boosted)
1001 		goto unlock;
1002 
1003 	/*
1004 	 * Spurious timer due to start_dl_timer() race; or we already received
1005 	 * a replenishment from rt_mutex_setprio().
1006 	 */
1007 	if (!dl_se->dl_throttled)
1008 		goto unlock;
1009 
1010 	sched_clock_tick();
1011 	update_rq_clock(rq);
1012 
1013 	/*
1014 	 * If the throttle happened during sched-out; like:
1015 	 *
1016 	 *   schedule()
1017 	 *     deactivate_task()
1018 	 *       dequeue_task_dl()
1019 	 *         update_curr_dl()
1020 	 *           start_dl_timer()
1021 	 *         __dequeue_task_dl()
1022 	 *     prev->on_rq = 0;
1023 	 *
1024 	 * We can be both throttled and !queued. Replenish the counter
1025 	 * but do not enqueue -- wait for our wakeup to do that.
1026 	 */
1027 	if (!task_on_rq_queued(p)) {
1028 		replenish_dl_entity(dl_se, dl_se);
1029 		goto unlock;
1030 	}
1031 
1032 #ifdef CONFIG_SMP
1033 	if (unlikely(!rq->online)) {
1034 		/*
1035 		 * If the runqueue is no longer available, migrate the
1036 		 * task elsewhere. This necessarily changes rq.
1037 		 */
1038 		lockdep_unpin_lock(&rq->lock, rf.cookie);
1039 		rq = dl_task_offline_migration(rq, p);
1040 		rf.cookie = lockdep_pin_lock(&rq->lock);
1041 		update_rq_clock(rq);
1042 
1043 		/*
1044 		 * Now that the task has been migrated to the new RQ and we
1045 		 * have that locked, proceed as normal and enqueue the task
1046 		 * there.
1047 		 */
1048 	}
1049 #endif
1050 
1051 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1052 	if (dl_task(rq->curr))
1053 		check_preempt_curr_dl(rq, p, 0);
1054 	else
1055 		resched_curr(rq);
1056 
1057 #ifdef CONFIG_SMP
1058 	/*
1059 	 * Queueing this task back might have overloaded rq, check if we need
1060 	 * to kick someone away.
1061 	 */
1062 	if (has_pushable_dl_tasks(rq)) {
1063 		/*
1064 		 * Nothing relies on rq->lock after this, so its safe to drop
1065 		 * rq->lock.
1066 		 */
1067 		rq_unpin_lock(rq, &rf);
1068 		push_dl_task(rq);
1069 		rq_repin_lock(rq, &rf);
1070 	}
1071 #endif
1072 
1073 unlock:
1074 	task_rq_unlock(rq, p, &rf);
1075 
1076 	/*
1077 	 * This can free the task_struct, including this hrtimer, do not touch
1078 	 * anything related to that after this.
1079 	 */
1080 	put_task_struct(p);
1081 
1082 	return HRTIMER_NORESTART;
1083 }
1084 
1085 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1086 {
1087 	struct hrtimer *timer = &dl_se->dl_timer;
1088 
1089 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1090 	timer->function = dl_task_timer;
1091 }
1092 
1093 /*
1094  * During the activation, CBS checks if it can reuse the current task's
1095  * runtime and period. If the deadline of the task is in the past, CBS
1096  * cannot use the runtime, and so it replenishes the task. This rule
1097  * works fine for implicit deadline tasks (deadline == period), and the
1098  * CBS was designed for implicit deadline tasks. However, a task with
1099  * constrained deadline (deadine < period) might be awakened after the
1100  * deadline, but before the next period. In this case, replenishing the
1101  * task would allow it to run for runtime / deadline. As in this case
1102  * deadline < period, CBS enables a task to run for more than the
1103  * runtime / period. In a very loaded system, this can cause a domino
1104  * effect, making other tasks miss their deadlines.
1105  *
1106  * To avoid this problem, in the activation of a constrained deadline
1107  * task after the deadline but before the next period, throttle the
1108  * task and set the replenishing timer to the begin of the next period,
1109  * unless it is boosted.
1110  */
1111 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1112 {
1113 	struct task_struct *p = dl_task_of(dl_se);
1114 	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1115 
1116 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1117 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1118 		if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1119 			return;
1120 		dl_se->dl_throttled = 1;
1121 		if (dl_se->runtime > 0)
1122 			dl_se->runtime = 0;
1123 	}
1124 }
1125 
1126 static
1127 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1128 {
1129 	return (dl_se->runtime <= 0);
1130 }
1131 
1132 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1133 
1134 /*
1135  * This function implements the GRUB accounting rule:
1136  * according to the GRUB reclaiming algorithm, the runtime is
1137  * not decreased as "dq = -dt", but as
1138  * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1139  * where u is the utilization of the task, Umax is the maximum reclaimable
1140  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1141  * as the difference between the "total runqueue utilization" and the
1142  * runqueue active utilization, and Uextra is the (per runqueue) extra
1143  * reclaimable utilization.
1144  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1145  * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1146  * BW_SHIFT.
1147  * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1148  * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1149  * Since delta is a 64 bit variable, to have an overflow its value
1150  * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1151  * So, overflow is not an issue here.
1152  */
1153 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1154 {
1155 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1156 	u64 u_act;
1157 	u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1158 
1159 	/*
1160 	 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1161 	 * we compare u_inact + rq->dl.extra_bw with
1162 	 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1163 	 * u_inact + rq->dl.extra_bw can be larger than
1164 	 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1165 	 * leading to wrong results)
1166 	 */
1167 	if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1168 		u_act = u_act_min;
1169 	else
1170 		u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1171 
1172 	return (delta * u_act) >> BW_SHIFT;
1173 }
1174 
1175 /*
1176  * Update the current task's runtime statistics (provided it is still
1177  * a -deadline task and has not been removed from the dl_rq).
1178  */
1179 static void update_curr_dl(struct rq *rq)
1180 {
1181 	struct task_struct *curr = rq->curr;
1182 	struct sched_dl_entity *dl_se = &curr->dl;
1183 	u64 delta_exec, scaled_delta_exec;
1184 	int cpu = cpu_of(rq);
1185 	u64 now;
1186 
1187 	if (!dl_task(curr) || !on_dl_rq(dl_se))
1188 		return;
1189 
1190 	/*
1191 	 * Consumed budget is computed considering the time as
1192 	 * observed by schedulable tasks (excluding time spent
1193 	 * in hardirq context, etc.). Deadlines are instead
1194 	 * computed using hard walltime. This seems to be the more
1195 	 * natural solution, but the full ramifications of this
1196 	 * approach need further study.
1197 	 */
1198 	now = rq_clock_task(rq);
1199 	delta_exec = now - curr->se.exec_start;
1200 	if (unlikely((s64)delta_exec <= 0)) {
1201 		if (unlikely(dl_se->dl_yielded))
1202 			goto throttle;
1203 		return;
1204 	}
1205 
1206 	schedstat_set(curr->se.statistics.exec_max,
1207 		      max(curr->se.statistics.exec_max, delta_exec));
1208 
1209 	curr->se.sum_exec_runtime += delta_exec;
1210 	account_group_exec_runtime(curr, delta_exec);
1211 
1212 	curr->se.exec_start = now;
1213 	cgroup_account_cputime(curr, delta_exec);
1214 
1215 	if (dl_entity_is_special(dl_se))
1216 		return;
1217 
1218 	/*
1219 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1220 	 * spare reclaimed bandwidth is used to clock down frequency.
1221 	 *
1222 	 * For the others, we still need to scale reservation parameters
1223 	 * according to current frequency and CPU maximum capacity.
1224 	 */
1225 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1226 		scaled_delta_exec = grub_reclaim(delta_exec,
1227 						 rq,
1228 						 &curr->dl);
1229 	} else {
1230 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1231 		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1232 
1233 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1234 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1235 	}
1236 
1237 	dl_se->runtime -= scaled_delta_exec;
1238 
1239 throttle:
1240 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1241 		dl_se->dl_throttled = 1;
1242 
1243 		/* If requested, inform the user about runtime overruns. */
1244 		if (dl_runtime_exceeded(dl_se) &&
1245 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1246 			dl_se->dl_overrun = 1;
1247 
1248 		__dequeue_task_dl(rq, curr, 0);
1249 		if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
1250 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1251 
1252 		if (!is_leftmost(curr, &rq->dl))
1253 			resched_curr(rq);
1254 	}
1255 
1256 	/*
1257 	 * Because -- for now -- we share the rt bandwidth, we need to
1258 	 * account our runtime there too, otherwise actual rt tasks
1259 	 * would be able to exceed the shared quota.
1260 	 *
1261 	 * Account to the root rt group for now.
1262 	 *
1263 	 * The solution we're working towards is having the RT groups scheduled
1264 	 * using deadline servers -- however there's a few nasties to figure
1265 	 * out before that can happen.
1266 	 */
1267 	if (rt_bandwidth_enabled()) {
1268 		struct rt_rq *rt_rq = &rq->rt;
1269 
1270 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1271 		/*
1272 		 * We'll let actual RT tasks worry about the overflow here, we
1273 		 * have our own CBS to keep us inline; only account when RT
1274 		 * bandwidth is relevant.
1275 		 */
1276 		if (sched_rt_bandwidth_account(rt_rq))
1277 			rt_rq->rt_time += delta_exec;
1278 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1279 	}
1280 }
1281 
1282 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1283 {
1284 	struct sched_dl_entity *dl_se = container_of(timer,
1285 						     struct sched_dl_entity,
1286 						     inactive_timer);
1287 	struct task_struct *p = dl_task_of(dl_se);
1288 	struct rq_flags rf;
1289 	struct rq *rq;
1290 
1291 	rq = task_rq_lock(p, &rf);
1292 
1293 	sched_clock_tick();
1294 	update_rq_clock(rq);
1295 
1296 	if (!dl_task(p) || p->state == TASK_DEAD) {
1297 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1298 
1299 		if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1300 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1301 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1302 			dl_se->dl_non_contending = 0;
1303 		}
1304 
1305 		raw_spin_lock(&dl_b->lock);
1306 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1307 		raw_spin_unlock(&dl_b->lock);
1308 		__dl_clear_params(p);
1309 
1310 		goto unlock;
1311 	}
1312 	if (dl_se->dl_non_contending == 0)
1313 		goto unlock;
1314 
1315 	sub_running_bw(dl_se, &rq->dl);
1316 	dl_se->dl_non_contending = 0;
1317 unlock:
1318 	task_rq_unlock(rq, p, &rf);
1319 	put_task_struct(p);
1320 
1321 	return HRTIMER_NORESTART;
1322 }
1323 
1324 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1325 {
1326 	struct hrtimer *timer = &dl_se->inactive_timer;
1327 
1328 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1329 	timer->function = inactive_task_timer;
1330 }
1331 
1332 #ifdef CONFIG_SMP
1333 
1334 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1335 {
1336 	struct rq *rq = rq_of_dl_rq(dl_rq);
1337 
1338 	if (dl_rq->earliest_dl.curr == 0 ||
1339 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1340 		dl_rq->earliest_dl.curr = deadline;
1341 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1342 	}
1343 }
1344 
1345 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1346 {
1347 	struct rq *rq = rq_of_dl_rq(dl_rq);
1348 
1349 	/*
1350 	 * Since we may have removed our earliest (and/or next earliest)
1351 	 * task we must recompute them.
1352 	 */
1353 	if (!dl_rq->dl_nr_running) {
1354 		dl_rq->earliest_dl.curr = 0;
1355 		dl_rq->earliest_dl.next = 0;
1356 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1357 	} else {
1358 		struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1359 		struct sched_dl_entity *entry;
1360 
1361 		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1362 		dl_rq->earliest_dl.curr = entry->deadline;
1363 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1364 	}
1365 }
1366 
1367 #else
1368 
1369 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1370 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1371 
1372 #endif /* CONFIG_SMP */
1373 
1374 static inline
1375 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1376 {
1377 	int prio = dl_task_of(dl_se)->prio;
1378 	u64 deadline = dl_se->deadline;
1379 
1380 	WARN_ON(!dl_prio(prio));
1381 	dl_rq->dl_nr_running++;
1382 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1383 
1384 	inc_dl_deadline(dl_rq, deadline);
1385 	inc_dl_migration(dl_se, dl_rq);
1386 }
1387 
1388 static inline
1389 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1390 {
1391 	int prio = dl_task_of(dl_se)->prio;
1392 
1393 	WARN_ON(!dl_prio(prio));
1394 	WARN_ON(!dl_rq->dl_nr_running);
1395 	dl_rq->dl_nr_running--;
1396 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1397 
1398 	dec_dl_deadline(dl_rq, dl_se->deadline);
1399 	dec_dl_migration(dl_se, dl_rq);
1400 }
1401 
1402 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1403 {
1404 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1405 	struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1406 	struct rb_node *parent = NULL;
1407 	struct sched_dl_entity *entry;
1408 	int leftmost = 1;
1409 
1410 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1411 
1412 	while (*link) {
1413 		parent = *link;
1414 		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1415 		if (dl_time_before(dl_se->deadline, entry->deadline))
1416 			link = &parent->rb_left;
1417 		else {
1418 			link = &parent->rb_right;
1419 			leftmost = 0;
1420 		}
1421 	}
1422 
1423 	rb_link_node(&dl_se->rb_node, parent, link);
1424 	rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
1425 
1426 	inc_dl_tasks(dl_se, dl_rq);
1427 }
1428 
1429 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1430 {
1431 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1432 
1433 	if (RB_EMPTY_NODE(&dl_se->rb_node))
1434 		return;
1435 
1436 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1437 	RB_CLEAR_NODE(&dl_se->rb_node);
1438 
1439 	dec_dl_tasks(dl_se, dl_rq);
1440 }
1441 
1442 static void
1443 enqueue_dl_entity(struct sched_dl_entity *dl_se,
1444 		  struct sched_dl_entity *pi_se, int flags)
1445 {
1446 	BUG_ON(on_dl_rq(dl_se));
1447 
1448 	/*
1449 	 * If this is a wakeup or a new instance, the scheduling
1450 	 * parameters of the task might need updating. Otherwise,
1451 	 * we want a replenishment of its runtime.
1452 	 */
1453 	if (flags & ENQUEUE_WAKEUP) {
1454 		task_contending(dl_se, flags);
1455 		update_dl_entity(dl_se, pi_se);
1456 	} else if (flags & ENQUEUE_REPLENISH) {
1457 		replenish_dl_entity(dl_se, pi_se);
1458 	} else if ((flags & ENQUEUE_RESTORE) &&
1459 		  dl_time_before(dl_se->deadline,
1460 				 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1461 		setup_new_dl_entity(dl_se);
1462 	}
1463 
1464 	__enqueue_dl_entity(dl_se);
1465 }
1466 
1467 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1468 {
1469 	__dequeue_dl_entity(dl_se);
1470 }
1471 
1472 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1473 {
1474 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
1475 	struct sched_dl_entity *pi_se = &p->dl;
1476 
1477 	/*
1478 	 * Use the scheduling parameters of the top pi-waiter task if:
1479 	 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1480 	 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1481 	 *   smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1482 	 *   boosted due to a SCHED_DEADLINE pi-waiter).
1483 	 * Otherwise we keep our runtime and deadline.
1484 	 */
1485 	if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
1486 		pi_se = &pi_task->dl;
1487 	} else if (!dl_prio(p->normal_prio)) {
1488 		/*
1489 		 * Special case in which we have a !SCHED_DEADLINE task
1490 		 * that is going to be deboosted, but exceeds its
1491 		 * runtime while doing so. No point in replenishing
1492 		 * it, as it's going to return back to its original
1493 		 * scheduling class after this.
1494 		 */
1495 		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1496 		return;
1497 	}
1498 
1499 	/*
1500 	 * Check if a constrained deadline task was activated
1501 	 * after the deadline but before the next period.
1502 	 * If that is the case, the task will be throttled and
1503 	 * the replenishment timer will be set to the next period.
1504 	 */
1505 	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1506 		dl_check_constrained_dl(&p->dl);
1507 
1508 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1509 		add_rq_bw(&p->dl, &rq->dl);
1510 		add_running_bw(&p->dl, &rq->dl);
1511 	}
1512 
1513 	/*
1514 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1515 	 * its budget it needs a replenishment and, since it now is on
1516 	 * its rq, the bandwidth timer callback (which clearly has not
1517 	 * run yet) will take care of this.
1518 	 * However, the active utilization does not depend on the fact
1519 	 * that the task is on the runqueue or not (but depends on the
1520 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1521 	 * In other words, even if a task is throttled its utilization must
1522 	 * be counted in the active utilization; hence, we need to call
1523 	 * add_running_bw().
1524 	 */
1525 	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1526 		if (flags & ENQUEUE_WAKEUP)
1527 			task_contending(&p->dl, flags);
1528 
1529 		return;
1530 	}
1531 
1532 	enqueue_dl_entity(&p->dl, pi_se, flags);
1533 
1534 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1535 		enqueue_pushable_dl_task(rq, p);
1536 }
1537 
1538 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1539 {
1540 	dequeue_dl_entity(&p->dl);
1541 	dequeue_pushable_dl_task(rq, p);
1542 }
1543 
1544 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1545 {
1546 	update_curr_dl(rq);
1547 	__dequeue_task_dl(rq, p, flags);
1548 
1549 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1550 		sub_running_bw(&p->dl, &rq->dl);
1551 		sub_rq_bw(&p->dl, &rq->dl);
1552 	}
1553 
1554 	/*
1555 	 * This check allows to start the inactive timer (or to immediately
1556 	 * decrease the active utilization, if needed) in two cases:
1557 	 * when the task blocks and when it is terminating
1558 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1559 	 * way, because from GRUB's point of view the same thing is happening
1560 	 * (the task moves from "active contending" to "active non contending"
1561 	 * or "inactive")
1562 	 */
1563 	if (flags & DEQUEUE_SLEEP)
1564 		task_non_contending(p);
1565 }
1566 
1567 /*
1568  * Yield task semantic for -deadline tasks is:
1569  *
1570  *   get off from the CPU until our next instance, with
1571  *   a new runtime. This is of little use now, since we
1572  *   don't have a bandwidth reclaiming mechanism. Anyway,
1573  *   bandwidth reclaiming is planned for the future, and
1574  *   yield_task_dl will indicate that some spare budget
1575  *   is available for other task instances to use it.
1576  */
1577 static void yield_task_dl(struct rq *rq)
1578 {
1579 	/*
1580 	 * We make the task go to sleep until its current deadline by
1581 	 * forcing its runtime to zero. This way, update_curr_dl() stops
1582 	 * it and the bandwidth timer will wake it up and will give it
1583 	 * new scheduling parameters (thanks to dl_yielded=1).
1584 	 */
1585 	rq->curr->dl.dl_yielded = 1;
1586 
1587 	update_rq_clock(rq);
1588 	update_curr_dl(rq);
1589 	/*
1590 	 * Tell update_rq_clock() that we've just updated,
1591 	 * so we don't do microscopic update in schedule()
1592 	 * and double the fastpath cost.
1593 	 */
1594 	rq_clock_skip_update(rq);
1595 }
1596 
1597 #ifdef CONFIG_SMP
1598 
1599 static int find_later_rq(struct task_struct *task);
1600 
1601 static int
1602 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1603 {
1604 	struct task_struct *curr;
1605 	struct rq *rq;
1606 
1607 	if (sd_flag != SD_BALANCE_WAKE)
1608 		goto out;
1609 
1610 	rq = cpu_rq(cpu);
1611 
1612 	rcu_read_lock();
1613 	curr = READ_ONCE(rq->curr); /* unlocked access */
1614 
1615 	/*
1616 	 * If we are dealing with a -deadline task, we must
1617 	 * decide where to wake it up.
1618 	 * If it has a later deadline and the current task
1619 	 * on this rq can't move (provided the waking task
1620 	 * can!) we prefer to send it somewhere else. On the
1621 	 * other hand, if it has a shorter deadline, we
1622 	 * try to make it stay here, it might be important.
1623 	 */
1624 	if (unlikely(dl_task(curr)) &&
1625 	    (curr->nr_cpus_allowed < 2 ||
1626 	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1627 	    (p->nr_cpus_allowed > 1)) {
1628 		int target = find_later_rq(p);
1629 
1630 		if (target != -1 &&
1631 				(dl_time_before(p->dl.deadline,
1632 					cpu_rq(target)->dl.earliest_dl.curr) ||
1633 				(cpu_rq(target)->dl.dl_nr_running == 0)))
1634 			cpu = target;
1635 	}
1636 	rcu_read_unlock();
1637 
1638 out:
1639 	return cpu;
1640 }
1641 
1642 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1643 {
1644 	struct rq *rq;
1645 
1646 	if (p->state != TASK_WAKING)
1647 		return;
1648 
1649 	rq = task_rq(p);
1650 	/*
1651 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1652 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1653 	 * rq->lock is not... So, lock it
1654 	 */
1655 	raw_spin_lock(&rq->lock);
1656 	if (p->dl.dl_non_contending) {
1657 		sub_running_bw(&p->dl, &rq->dl);
1658 		p->dl.dl_non_contending = 0;
1659 		/*
1660 		 * If the timer handler is currently running and the
1661 		 * timer cannot be cancelled, inactive_task_timer()
1662 		 * will see that dl_not_contending is not set, and
1663 		 * will not touch the rq's active utilization,
1664 		 * so we are still safe.
1665 		 */
1666 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1667 			put_task_struct(p);
1668 	}
1669 	sub_rq_bw(&p->dl, &rq->dl);
1670 	raw_spin_unlock(&rq->lock);
1671 }
1672 
1673 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1674 {
1675 	/*
1676 	 * Current can't be migrated, useless to reschedule,
1677 	 * let's hope p can move out.
1678 	 */
1679 	if (rq->curr->nr_cpus_allowed == 1 ||
1680 	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1681 		return;
1682 
1683 	/*
1684 	 * p is migratable, so let's not schedule it and
1685 	 * see if it is pushed or pulled somewhere else.
1686 	 */
1687 	if (p->nr_cpus_allowed != 1 &&
1688 	    cpudl_find(&rq->rd->cpudl, p, NULL))
1689 		return;
1690 
1691 	resched_curr(rq);
1692 }
1693 
1694 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1695 {
1696 	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1697 		/*
1698 		 * This is OK, because current is on_cpu, which avoids it being
1699 		 * picked for load-balance and preemption/IRQs are still
1700 		 * disabled avoiding further scheduler activity on it and we've
1701 		 * not yet started the picking loop.
1702 		 */
1703 		rq_unpin_lock(rq, rf);
1704 		pull_dl_task(rq);
1705 		rq_repin_lock(rq, rf);
1706 	}
1707 
1708 	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1709 }
1710 #endif /* CONFIG_SMP */
1711 
1712 /*
1713  * Only called when both the current and waking task are -deadline
1714  * tasks.
1715  */
1716 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1717 				  int flags)
1718 {
1719 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1720 		resched_curr(rq);
1721 		return;
1722 	}
1723 
1724 #ifdef CONFIG_SMP
1725 	/*
1726 	 * In the unlikely case current and p have the same deadline
1727 	 * let us try to decide what's the best thing to do...
1728 	 */
1729 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1730 	    !test_tsk_need_resched(rq->curr))
1731 		check_preempt_equal_dl(rq, p);
1732 #endif /* CONFIG_SMP */
1733 }
1734 
1735 #ifdef CONFIG_SCHED_HRTICK
1736 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1737 {
1738 	hrtick_start(rq, p->dl.runtime);
1739 }
1740 #else /* !CONFIG_SCHED_HRTICK */
1741 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1742 {
1743 }
1744 #endif
1745 
1746 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1747 {
1748 	p->se.exec_start = rq_clock_task(rq);
1749 
1750 	/* You can't push away the running task */
1751 	dequeue_pushable_dl_task(rq, p);
1752 
1753 	if (!first)
1754 		return;
1755 
1756 	if (hrtick_enabled(rq))
1757 		start_hrtick_dl(rq, p);
1758 
1759 	if (rq->curr->sched_class != &dl_sched_class)
1760 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1761 
1762 	deadline_queue_push_tasks(rq);
1763 }
1764 
1765 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1766 						   struct dl_rq *dl_rq)
1767 {
1768 	struct rb_node *left = rb_first_cached(&dl_rq->root);
1769 
1770 	if (!left)
1771 		return NULL;
1772 
1773 	return rb_entry(left, struct sched_dl_entity, rb_node);
1774 }
1775 
1776 static struct task_struct *pick_next_task_dl(struct rq *rq)
1777 {
1778 	struct sched_dl_entity *dl_se;
1779 	struct dl_rq *dl_rq = &rq->dl;
1780 	struct task_struct *p;
1781 
1782 	if (!sched_dl_runnable(rq))
1783 		return NULL;
1784 
1785 	dl_se = pick_next_dl_entity(rq, dl_rq);
1786 	BUG_ON(!dl_se);
1787 	p = dl_task_of(dl_se);
1788 	set_next_task_dl(rq, p, true);
1789 	return p;
1790 }
1791 
1792 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1793 {
1794 	update_curr_dl(rq);
1795 
1796 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1797 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1798 		enqueue_pushable_dl_task(rq, p);
1799 }
1800 
1801 /*
1802  * scheduler tick hitting a task of our scheduling class.
1803  *
1804  * NOTE: This function can be called remotely by the tick offload that
1805  * goes along full dynticks. Therefore no local assumption can be made
1806  * and everything must be accessed through the @rq and @curr passed in
1807  * parameters.
1808  */
1809 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1810 {
1811 	update_curr_dl(rq);
1812 
1813 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1814 	/*
1815 	 * Even when we have runtime, update_curr_dl() might have resulted in us
1816 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
1817 	 * be set and schedule() will start a new hrtick for the next task.
1818 	 */
1819 	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1820 	    is_leftmost(p, &rq->dl))
1821 		start_hrtick_dl(rq, p);
1822 }
1823 
1824 static void task_fork_dl(struct task_struct *p)
1825 {
1826 	/*
1827 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1828 	 * sched_fork()
1829 	 */
1830 }
1831 
1832 #ifdef CONFIG_SMP
1833 
1834 /* Only try algorithms three times */
1835 #define DL_MAX_TRIES 3
1836 
1837 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1838 {
1839 	if (!task_running(rq, p) &&
1840 	    cpumask_test_cpu(cpu, p->cpus_ptr))
1841 		return 1;
1842 	return 0;
1843 }
1844 
1845 /*
1846  * Return the earliest pushable rq's task, which is suitable to be executed
1847  * on the CPU, NULL otherwise:
1848  */
1849 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1850 {
1851 	struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1852 	struct task_struct *p = NULL;
1853 
1854 	if (!has_pushable_dl_tasks(rq))
1855 		return NULL;
1856 
1857 next_node:
1858 	if (next_node) {
1859 		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1860 
1861 		if (pick_dl_task(rq, p, cpu))
1862 			return p;
1863 
1864 		next_node = rb_next(next_node);
1865 		goto next_node;
1866 	}
1867 
1868 	return NULL;
1869 }
1870 
1871 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1872 
1873 static int find_later_rq(struct task_struct *task)
1874 {
1875 	struct sched_domain *sd;
1876 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1877 	int this_cpu = smp_processor_id();
1878 	int cpu = task_cpu(task);
1879 
1880 	/* Make sure the mask is initialized first */
1881 	if (unlikely(!later_mask))
1882 		return -1;
1883 
1884 	if (task->nr_cpus_allowed == 1)
1885 		return -1;
1886 
1887 	/*
1888 	 * We have to consider system topology and task affinity
1889 	 * first, then we can look for a suitable CPU.
1890 	 */
1891 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1892 		return -1;
1893 
1894 	/*
1895 	 * If we are here, some targets have been found, including
1896 	 * the most suitable which is, among the runqueues where the
1897 	 * current tasks have later deadlines than the task's one, the
1898 	 * rq with the latest possible one.
1899 	 *
1900 	 * Now we check how well this matches with task's
1901 	 * affinity and system topology.
1902 	 *
1903 	 * The last CPU where the task run is our first
1904 	 * guess, since it is most likely cache-hot there.
1905 	 */
1906 	if (cpumask_test_cpu(cpu, later_mask))
1907 		return cpu;
1908 	/*
1909 	 * Check if this_cpu is to be skipped (i.e., it is
1910 	 * not in the mask) or not.
1911 	 */
1912 	if (!cpumask_test_cpu(this_cpu, later_mask))
1913 		this_cpu = -1;
1914 
1915 	rcu_read_lock();
1916 	for_each_domain(cpu, sd) {
1917 		if (sd->flags & SD_WAKE_AFFINE) {
1918 			int best_cpu;
1919 
1920 			/*
1921 			 * If possible, preempting this_cpu is
1922 			 * cheaper than migrating.
1923 			 */
1924 			if (this_cpu != -1 &&
1925 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1926 				rcu_read_unlock();
1927 				return this_cpu;
1928 			}
1929 
1930 			best_cpu = cpumask_first_and(later_mask,
1931 							sched_domain_span(sd));
1932 			/*
1933 			 * Last chance: if a CPU being in both later_mask
1934 			 * and current sd span is valid, that becomes our
1935 			 * choice. Of course, the latest possible CPU is
1936 			 * already under consideration through later_mask.
1937 			 */
1938 			if (best_cpu < nr_cpu_ids) {
1939 				rcu_read_unlock();
1940 				return best_cpu;
1941 			}
1942 		}
1943 	}
1944 	rcu_read_unlock();
1945 
1946 	/*
1947 	 * At this point, all our guesses failed, we just return
1948 	 * 'something', and let the caller sort the things out.
1949 	 */
1950 	if (this_cpu != -1)
1951 		return this_cpu;
1952 
1953 	cpu = cpumask_any(later_mask);
1954 	if (cpu < nr_cpu_ids)
1955 		return cpu;
1956 
1957 	return -1;
1958 }
1959 
1960 /* Locks the rq it finds */
1961 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1962 {
1963 	struct rq *later_rq = NULL;
1964 	int tries;
1965 	int cpu;
1966 
1967 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1968 		cpu = find_later_rq(task);
1969 
1970 		if ((cpu == -1) || (cpu == rq->cpu))
1971 			break;
1972 
1973 		later_rq = cpu_rq(cpu);
1974 
1975 		if (later_rq->dl.dl_nr_running &&
1976 		    !dl_time_before(task->dl.deadline,
1977 					later_rq->dl.earliest_dl.curr)) {
1978 			/*
1979 			 * Target rq has tasks of equal or earlier deadline,
1980 			 * retrying does not release any lock and is unlikely
1981 			 * to yield a different result.
1982 			 */
1983 			later_rq = NULL;
1984 			break;
1985 		}
1986 
1987 		/* Retry if something changed. */
1988 		if (double_lock_balance(rq, later_rq)) {
1989 			if (unlikely(task_rq(task) != rq ||
1990 				     !cpumask_test_cpu(later_rq->cpu, task->cpus_ptr) ||
1991 				     task_running(rq, task) ||
1992 				     !dl_task(task) ||
1993 				     !task_on_rq_queued(task))) {
1994 				double_unlock_balance(rq, later_rq);
1995 				later_rq = NULL;
1996 				break;
1997 			}
1998 		}
1999 
2000 		/*
2001 		 * If the rq we found has no -deadline task, or
2002 		 * its earliest one has a later deadline than our
2003 		 * task, the rq is a good one.
2004 		 */
2005 		if (!later_rq->dl.dl_nr_running ||
2006 		    dl_time_before(task->dl.deadline,
2007 				   later_rq->dl.earliest_dl.curr))
2008 			break;
2009 
2010 		/* Otherwise we try again. */
2011 		double_unlock_balance(rq, later_rq);
2012 		later_rq = NULL;
2013 	}
2014 
2015 	return later_rq;
2016 }
2017 
2018 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2019 {
2020 	struct task_struct *p;
2021 
2022 	if (!has_pushable_dl_tasks(rq))
2023 		return NULL;
2024 
2025 	p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2026 		     struct task_struct, pushable_dl_tasks);
2027 
2028 	BUG_ON(rq->cpu != task_cpu(p));
2029 	BUG_ON(task_current(rq, p));
2030 	BUG_ON(p->nr_cpus_allowed <= 1);
2031 
2032 	BUG_ON(!task_on_rq_queued(p));
2033 	BUG_ON(!dl_task(p));
2034 
2035 	return p;
2036 }
2037 
2038 /*
2039  * See if the non running -deadline tasks on this rq
2040  * can be sent to some other CPU where they can preempt
2041  * and start executing.
2042  */
2043 static int push_dl_task(struct rq *rq)
2044 {
2045 	struct task_struct *next_task;
2046 	struct rq *later_rq;
2047 	int ret = 0;
2048 
2049 	if (!rq->dl.overloaded)
2050 		return 0;
2051 
2052 	next_task = pick_next_pushable_dl_task(rq);
2053 	if (!next_task)
2054 		return 0;
2055 
2056 retry:
2057 	if (WARN_ON(next_task == rq->curr))
2058 		return 0;
2059 
2060 	/*
2061 	 * If next_task preempts rq->curr, and rq->curr
2062 	 * can move away, it makes sense to just reschedule
2063 	 * without going further in pushing next_task.
2064 	 */
2065 	if (dl_task(rq->curr) &&
2066 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2067 	    rq->curr->nr_cpus_allowed > 1) {
2068 		resched_curr(rq);
2069 		return 0;
2070 	}
2071 
2072 	/* We might release rq lock */
2073 	get_task_struct(next_task);
2074 
2075 	/* Will lock the rq it'll find */
2076 	later_rq = find_lock_later_rq(next_task, rq);
2077 	if (!later_rq) {
2078 		struct task_struct *task;
2079 
2080 		/*
2081 		 * We must check all this again, since
2082 		 * find_lock_later_rq releases rq->lock and it is
2083 		 * then possible that next_task has migrated.
2084 		 */
2085 		task = pick_next_pushable_dl_task(rq);
2086 		if (task == next_task) {
2087 			/*
2088 			 * The task is still there. We don't try
2089 			 * again, some other CPU will pull it when ready.
2090 			 */
2091 			goto out;
2092 		}
2093 
2094 		if (!task)
2095 			/* No more tasks */
2096 			goto out;
2097 
2098 		put_task_struct(next_task);
2099 		next_task = task;
2100 		goto retry;
2101 	}
2102 
2103 	deactivate_task(rq, next_task, 0);
2104 	set_task_cpu(next_task, later_rq->cpu);
2105 
2106 	/*
2107 	 * Update the later_rq clock here, because the clock is used
2108 	 * by the cpufreq_update_util() inside __add_running_bw().
2109 	 */
2110 	update_rq_clock(later_rq);
2111 	activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
2112 	ret = 1;
2113 
2114 	resched_curr(later_rq);
2115 
2116 	double_unlock_balance(rq, later_rq);
2117 
2118 out:
2119 	put_task_struct(next_task);
2120 
2121 	return ret;
2122 }
2123 
2124 static void push_dl_tasks(struct rq *rq)
2125 {
2126 	/* push_dl_task() will return true if it moved a -deadline task */
2127 	while (push_dl_task(rq))
2128 		;
2129 }
2130 
2131 static void pull_dl_task(struct rq *this_rq)
2132 {
2133 	int this_cpu = this_rq->cpu, cpu;
2134 	struct task_struct *p;
2135 	bool resched = false;
2136 	struct rq *src_rq;
2137 	u64 dmin = LONG_MAX;
2138 
2139 	if (likely(!dl_overloaded(this_rq)))
2140 		return;
2141 
2142 	/*
2143 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2144 	 * see overloaded we must also see the dlo_mask bit.
2145 	 */
2146 	smp_rmb();
2147 
2148 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2149 		if (this_cpu == cpu)
2150 			continue;
2151 
2152 		src_rq = cpu_rq(cpu);
2153 
2154 		/*
2155 		 * It looks racy, abd it is! However, as in sched_rt.c,
2156 		 * we are fine with this.
2157 		 */
2158 		if (this_rq->dl.dl_nr_running &&
2159 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2160 				   src_rq->dl.earliest_dl.next))
2161 			continue;
2162 
2163 		/* Might drop this_rq->lock */
2164 		double_lock_balance(this_rq, src_rq);
2165 
2166 		/*
2167 		 * If there are no more pullable tasks on the
2168 		 * rq, we're done with it.
2169 		 */
2170 		if (src_rq->dl.dl_nr_running <= 1)
2171 			goto skip;
2172 
2173 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2174 
2175 		/*
2176 		 * We found a task to be pulled if:
2177 		 *  - it preempts our current (if there's one),
2178 		 *  - it will preempt the last one we pulled (if any).
2179 		 */
2180 		if (p && dl_time_before(p->dl.deadline, dmin) &&
2181 		    (!this_rq->dl.dl_nr_running ||
2182 		     dl_time_before(p->dl.deadline,
2183 				    this_rq->dl.earliest_dl.curr))) {
2184 			WARN_ON(p == src_rq->curr);
2185 			WARN_ON(!task_on_rq_queued(p));
2186 
2187 			/*
2188 			 * Then we pull iff p has actually an earlier
2189 			 * deadline than the current task of its runqueue.
2190 			 */
2191 			if (dl_time_before(p->dl.deadline,
2192 					   src_rq->curr->dl.deadline))
2193 				goto skip;
2194 
2195 			resched = true;
2196 
2197 			deactivate_task(src_rq, p, 0);
2198 			set_task_cpu(p, this_cpu);
2199 			activate_task(this_rq, p, 0);
2200 			dmin = p->dl.deadline;
2201 
2202 			/* Is there any other task even earlier? */
2203 		}
2204 skip:
2205 		double_unlock_balance(this_rq, src_rq);
2206 	}
2207 
2208 	if (resched)
2209 		resched_curr(this_rq);
2210 }
2211 
2212 /*
2213  * Since the task is not running and a reschedule is not going to happen
2214  * anytime soon on its runqueue, we try pushing it away now.
2215  */
2216 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2217 {
2218 	if (!task_running(rq, p) &&
2219 	    !test_tsk_need_resched(rq->curr) &&
2220 	    p->nr_cpus_allowed > 1 &&
2221 	    dl_task(rq->curr) &&
2222 	    (rq->curr->nr_cpus_allowed < 2 ||
2223 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2224 		push_dl_tasks(rq);
2225 	}
2226 }
2227 
2228 static void set_cpus_allowed_dl(struct task_struct *p,
2229 				const struct cpumask *new_mask)
2230 {
2231 	struct root_domain *src_rd;
2232 	struct rq *rq;
2233 
2234 	BUG_ON(!dl_task(p));
2235 
2236 	rq = task_rq(p);
2237 	src_rd = rq->rd;
2238 	/*
2239 	 * Migrating a SCHED_DEADLINE task between exclusive
2240 	 * cpusets (different root_domains) entails a bandwidth
2241 	 * update. We already made space for us in the destination
2242 	 * domain (see cpuset_can_attach()).
2243 	 */
2244 	if (!cpumask_intersects(src_rd->span, new_mask)) {
2245 		struct dl_bw *src_dl_b;
2246 
2247 		src_dl_b = dl_bw_of(cpu_of(rq));
2248 		/*
2249 		 * We now free resources of the root_domain we are migrating
2250 		 * off. In the worst case, sched_setattr() may temporary fail
2251 		 * until we complete the update.
2252 		 */
2253 		raw_spin_lock(&src_dl_b->lock);
2254 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2255 		raw_spin_unlock(&src_dl_b->lock);
2256 	}
2257 
2258 	set_cpus_allowed_common(p, new_mask);
2259 }
2260 
2261 /* Assumes rq->lock is held */
2262 static void rq_online_dl(struct rq *rq)
2263 {
2264 	if (rq->dl.overloaded)
2265 		dl_set_overload(rq);
2266 
2267 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2268 	if (rq->dl.dl_nr_running > 0)
2269 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2270 }
2271 
2272 /* Assumes rq->lock is held */
2273 static void rq_offline_dl(struct rq *rq)
2274 {
2275 	if (rq->dl.overloaded)
2276 		dl_clear_overload(rq);
2277 
2278 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2279 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2280 }
2281 
2282 void __init init_sched_dl_class(void)
2283 {
2284 	unsigned int i;
2285 
2286 	for_each_possible_cpu(i)
2287 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2288 					GFP_KERNEL, cpu_to_node(i));
2289 }
2290 
2291 void dl_add_task_root_domain(struct task_struct *p)
2292 {
2293 	struct rq_flags rf;
2294 	struct rq *rq;
2295 	struct dl_bw *dl_b;
2296 
2297 	rq = task_rq_lock(p, &rf);
2298 	if (!dl_task(p))
2299 		goto unlock;
2300 
2301 	dl_b = &rq->rd->dl_bw;
2302 	raw_spin_lock(&dl_b->lock);
2303 
2304 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2305 
2306 	raw_spin_unlock(&dl_b->lock);
2307 
2308 unlock:
2309 	task_rq_unlock(rq, p, &rf);
2310 }
2311 
2312 void dl_clear_root_domain(struct root_domain *rd)
2313 {
2314 	unsigned long flags;
2315 
2316 	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2317 	rd->dl_bw.total_bw = 0;
2318 	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2319 }
2320 
2321 #endif /* CONFIG_SMP */
2322 
2323 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2324 {
2325 	/*
2326 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2327 	 * time is in the future). If the task switches back to dl before
2328 	 * the "inactive timer" fires, it can continue to consume its current
2329 	 * runtime using its current deadline. If it stays outside of
2330 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2331 	 * will reset the task parameters.
2332 	 */
2333 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2334 		task_non_contending(p);
2335 
2336 	if (!task_on_rq_queued(p)) {
2337 		/*
2338 		 * Inactive timer is armed. However, p is leaving DEADLINE and
2339 		 * might migrate away from this rq while continuing to run on
2340 		 * some other class. We need to remove its contribution from
2341 		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2342 		 */
2343 		if (p->dl.dl_non_contending)
2344 			sub_running_bw(&p->dl, &rq->dl);
2345 		sub_rq_bw(&p->dl, &rq->dl);
2346 	}
2347 
2348 	/*
2349 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2350 	 * at the 0-lag time, because the task could have been migrated
2351 	 * while SCHED_OTHER in the meanwhile.
2352 	 */
2353 	if (p->dl.dl_non_contending)
2354 		p->dl.dl_non_contending = 0;
2355 
2356 	/*
2357 	 * Since this might be the only -deadline task on the rq,
2358 	 * this is the right place to try to pull some other one
2359 	 * from an overloaded CPU, if any.
2360 	 */
2361 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2362 		return;
2363 
2364 	deadline_queue_pull_task(rq);
2365 }
2366 
2367 /*
2368  * When switching to -deadline, we may overload the rq, then
2369  * we try to push someone off, if possible.
2370  */
2371 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2372 {
2373 	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2374 		put_task_struct(p);
2375 
2376 	/* If p is not queued we will update its parameters at next wakeup. */
2377 	if (!task_on_rq_queued(p)) {
2378 		add_rq_bw(&p->dl, &rq->dl);
2379 
2380 		return;
2381 	}
2382 
2383 	if (rq->curr != p) {
2384 #ifdef CONFIG_SMP
2385 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2386 			deadline_queue_push_tasks(rq);
2387 #endif
2388 		if (dl_task(rq->curr))
2389 			check_preempt_curr_dl(rq, p, 0);
2390 		else
2391 			resched_curr(rq);
2392 	}
2393 }
2394 
2395 /*
2396  * If the scheduling parameters of a -deadline task changed,
2397  * a push or pull operation might be needed.
2398  */
2399 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2400 			    int oldprio)
2401 {
2402 	if (task_on_rq_queued(p) || rq->curr == p) {
2403 #ifdef CONFIG_SMP
2404 		/*
2405 		 * This might be too much, but unfortunately
2406 		 * we don't have the old deadline value, and
2407 		 * we can't argue if the task is increasing
2408 		 * or lowering its prio, so...
2409 		 */
2410 		if (!rq->dl.overloaded)
2411 			deadline_queue_pull_task(rq);
2412 
2413 		/*
2414 		 * If we now have a earlier deadline task than p,
2415 		 * then reschedule, provided p is still on this
2416 		 * runqueue.
2417 		 */
2418 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2419 			resched_curr(rq);
2420 #else
2421 		/*
2422 		 * Again, we don't know if p has a earlier
2423 		 * or later deadline, so let's blindly set a
2424 		 * (maybe not needed) rescheduling point.
2425 		 */
2426 		resched_curr(rq);
2427 #endif /* CONFIG_SMP */
2428 	}
2429 }
2430 
2431 const struct sched_class dl_sched_class = {
2432 	.next			= &rt_sched_class,
2433 	.enqueue_task		= enqueue_task_dl,
2434 	.dequeue_task		= dequeue_task_dl,
2435 	.yield_task		= yield_task_dl,
2436 
2437 	.check_preempt_curr	= check_preempt_curr_dl,
2438 
2439 	.pick_next_task		= pick_next_task_dl,
2440 	.put_prev_task		= put_prev_task_dl,
2441 	.set_next_task		= set_next_task_dl,
2442 
2443 #ifdef CONFIG_SMP
2444 	.balance		= balance_dl,
2445 	.select_task_rq		= select_task_rq_dl,
2446 	.migrate_task_rq	= migrate_task_rq_dl,
2447 	.set_cpus_allowed       = set_cpus_allowed_dl,
2448 	.rq_online              = rq_online_dl,
2449 	.rq_offline             = rq_offline_dl,
2450 	.task_woken		= task_woken_dl,
2451 #endif
2452 
2453 	.task_tick		= task_tick_dl,
2454 	.task_fork              = task_fork_dl,
2455 
2456 	.prio_changed           = prio_changed_dl,
2457 	.switched_from		= switched_from_dl,
2458 	.switched_to		= switched_to_dl,
2459 
2460 	.update_curr		= update_curr_dl,
2461 };
2462 
2463 int sched_dl_global_validate(void)
2464 {
2465 	u64 runtime = global_rt_runtime();
2466 	u64 period = global_rt_period();
2467 	u64 new_bw = to_ratio(period, runtime);
2468 	struct dl_bw *dl_b;
2469 	int cpu, ret = 0;
2470 	unsigned long flags;
2471 
2472 	/*
2473 	 * Here we want to check the bandwidth not being set to some
2474 	 * value smaller than the currently allocated bandwidth in
2475 	 * any of the root_domains.
2476 	 *
2477 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2478 	 * cycling on root_domains... Discussion on different/better
2479 	 * solutions is welcome!
2480 	 */
2481 	for_each_possible_cpu(cpu) {
2482 		rcu_read_lock_sched();
2483 		dl_b = dl_bw_of(cpu);
2484 
2485 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2486 		if (new_bw < dl_b->total_bw)
2487 			ret = -EBUSY;
2488 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2489 
2490 		rcu_read_unlock_sched();
2491 
2492 		if (ret)
2493 			break;
2494 	}
2495 
2496 	return ret;
2497 }
2498 
2499 void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2500 {
2501 	if (global_rt_runtime() == RUNTIME_INF) {
2502 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2503 		dl_rq->extra_bw = 1 << BW_SHIFT;
2504 	} else {
2505 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2506 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2507 		dl_rq->extra_bw = to_ratio(global_rt_period(),
2508 						    global_rt_runtime());
2509 	}
2510 }
2511 
2512 void sched_dl_do_global(void)
2513 {
2514 	u64 new_bw = -1;
2515 	struct dl_bw *dl_b;
2516 	int cpu;
2517 	unsigned long flags;
2518 
2519 	def_dl_bandwidth.dl_period = global_rt_period();
2520 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
2521 
2522 	if (global_rt_runtime() != RUNTIME_INF)
2523 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2524 
2525 	/*
2526 	 * FIXME: As above...
2527 	 */
2528 	for_each_possible_cpu(cpu) {
2529 		rcu_read_lock_sched();
2530 		dl_b = dl_bw_of(cpu);
2531 
2532 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2533 		dl_b->bw = new_bw;
2534 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2535 
2536 		rcu_read_unlock_sched();
2537 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2538 	}
2539 }
2540 
2541 /*
2542  * We must be sure that accepting a new task (or allowing changing the
2543  * parameters of an existing one) is consistent with the bandwidth
2544  * constraints. If yes, this function also accordingly updates the currently
2545  * allocated bandwidth to reflect the new situation.
2546  *
2547  * This function is called while holding p's rq->lock.
2548  */
2549 int sched_dl_overflow(struct task_struct *p, int policy,
2550 		      const struct sched_attr *attr)
2551 {
2552 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2553 	u64 period = attr->sched_period ?: attr->sched_deadline;
2554 	u64 runtime = attr->sched_runtime;
2555 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2556 	int cpus, err = -1;
2557 
2558 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2559 		return 0;
2560 
2561 	/* !deadline task may carry old deadline bandwidth */
2562 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2563 		return 0;
2564 
2565 	/*
2566 	 * Either if a task, enters, leave, or stays -deadline but changes
2567 	 * its parameters, we may need to update accordingly the total
2568 	 * allocated bandwidth of the container.
2569 	 */
2570 	raw_spin_lock(&dl_b->lock);
2571 	cpus = dl_bw_cpus(task_cpu(p));
2572 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2573 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2574 		if (hrtimer_active(&p->dl.inactive_timer))
2575 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2576 		__dl_add(dl_b, new_bw, cpus);
2577 		err = 0;
2578 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2579 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2580 		/*
2581 		 * XXX this is slightly incorrect: when the task
2582 		 * utilization decreases, we should delay the total
2583 		 * utilization change until the task's 0-lag point.
2584 		 * But this would require to set the task's "inactive
2585 		 * timer" when the task is not inactive.
2586 		 */
2587 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2588 		__dl_add(dl_b, new_bw, cpus);
2589 		dl_change_utilization(p, new_bw);
2590 		err = 0;
2591 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2592 		/*
2593 		 * Do not decrease the total deadline utilization here,
2594 		 * switched_from_dl() will take care to do it at the correct
2595 		 * (0-lag) time.
2596 		 */
2597 		err = 0;
2598 	}
2599 	raw_spin_unlock(&dl_b->lock);
2600 
2601 	return err;
2602 }
2603 
2604 /*
2605  * This function initializes the sched_dl_entity of a newly becoming
2606  * SCHED_DEADLINE task.
2607  *
2608  * Only the static values are considered here, the actual runtime and the
2609  * absolute deadline will be properly calculated when the task is enqueued
2610  * for the first time with its new policy.
2611  */
2612 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2613 {
2614 	struct sched_dl_entity *dl_se = &p->dl;
2615 
2616 	dl_se->dl_runtime = attr->sched_runtime;
2617 	dl_se->dl_deadline = attr->sched_deadline;
2618 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2619 	dl_se->flags = attr->sched_flags;
2620 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2621 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2622 }
2623 
2624 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2625 {
2626 	struct sched_dl_entity *dl_se = &p->dl;
2627 
2628 	attr->sched_priority = p->rt_priority;
2629 	attr->sched_runtime = dl_se->dl_runtime;
2630 	attr->sched_deadline = dl_se->dl_deadline;
2631 	attr->sched_period = dl_se->dl_period;
2632 	attr->sched_flags = dl_se->flags;
2633 }
2634 
2635 /*
2636  * This function validates the new parameters of a -deadline task.
2637  * We ask for the deadline not being zero, and greater or equal
2638  * than the runtime, as well as the period of being zero or
2639  * greater than deadline. Furthermore, we have to be sure that
2640  * user parameters are above the internal resolution of 1us (we
2641  * check sched_runtime only since it is always the smaller one) and
2642  * below 2^63 ns (we have to check both sched_deadline and
2643  * sched_period, as the latter can be zero).
2644  */
2645 bool __checkparam_dl(const struct sched_attr *attr)
2646 {
2647 	/* special dl tasks don't actually use any parameter */
2648 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2649 		return true;
2650 
2651 	/* deadline != 0 */
2652 	if (attr->sched_deadline == 0)
2653 		return false;
2654 
2655 	/*
2656 	 * Since we truncate DL_SCALE bits, make sure we're at least
2657 	 * that big.
2658 	 */
2659 	if (attr->sched_runtime < (1ULL << DL_SCALE))
2660 		return false;
2661 
2662 	/*
2663 	 * Since we use the MSB for wrap-around and sign issues, make
2664 	 * sure it's not set (mind that period can be equal to zero).
2665 	 */
2666 	if (attr->sched_deadline & (1ULL << 63) ||
2667 	    attr->sched_period & (1ULL << 63))
2668 		return false;
2669 
2670 	/* runtime <= deadline <= period (if period != 0) */
2671 	if ((attr->sched_period != 0 &&
2672 	     attr->sched_period < attr->sched_deadline) ||
2673 	    attr->sched_deadline < attr->sched_runtime)
2674 		return false;
2675 
2676 	return true;
2677 }
2678 
2679 /*
2680  * This function clears the sched_dl_entity static params.
2681  */
2682 void __dl_clear_params(struct task_struct *p)
2683 {
2684 	struct sched_dl_entity *dl_se = &p->dl;
2685 
2686 	dl_se->dl_runtime		= 0;
2687 	dl_se->dl_deadline		= 0;
2688 	dl_se->dl_period		= 0;
2689 	dl_se->flags			= 0;
2690 	dl_se->dl_bw			= 0;
2691 	dl_se->dl_density		= 0;
2692 
2693 	dl_se->dl_throttled		= 0;
2694 	dl_se->dl_yielded		= 0;
2695 	dl_se->dl_non_contending	= 0;
2696 	dl_se->dl_overrun		= 0;
2697 }
2698 
2699 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2700 {
2701 	struct sched_dl_entity *dl_se = &p->dl;
2702 
2703 	if (dl_se->dl_runtime != attr->sched_runtime ||
2704 	    dl_se->dl_deadline != attr->sched_deadline ||
2705 	    dl_se->dl_period != attr->sched_period ||
2706 	    dl_se->flags != attr->sched_flags)
2707 		return true;
2708 
2709 	return false;
2710 }
2711 
2712 #ifdef CONFIG_SMP
2713 int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2714 {
2715 	unsigned int dest_cpu;
2716 	struct dl_bw *dl_b;
2717 	bool overflow;
2718 	int cpus, ret;
2719 	unsigned long flags;
2720 
2721 	dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2722 
2723 	rcu_read_lock_sched();
2724 	dl_b = dl_bw_of(dest_cpu);
2725 	raw_spin_lock_irqsave(&dl_b->lock, flags);
2726 	cpus = dl_bw_cpus(dest_cpu);
2727 	overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
2728 	if (overflow) {
2729 		ret = -EBUSY;
2730 	} else {
2731 		/*
2732 		 * We reserve space for this task in the destination
2733 		 * root_domain, as we can't fail after this point.
2734 		 * We will free resources in the source root_domain
2735 		 * later on (see set_cpus_allowed_dl()).
2736 		 */
2737 		__dl_add(dl_b, p->dl.dl_bw, cpus);
2738 		ret = 0;
2739 	}
2740 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2741 	rcu_read_unlock_sched();
2742 
2743 	return ret;
2744 }
2745 
2746 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2747 				 const struct cpumask *trial)
2748 {
2749 	int ret = 1, trial_cpus;
2750 	struct dl_bw *cur_dl_b;
2751 	unsigned long flags;
2752 
2753 	rcu_read_lock_sched();
2754 	cur_dl_b = dl_bw_of(cpumask_any(cur));
2755 	trial_cpus = cpumask_weight(trial);
2756 
2757 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2758 	if (cur_dl_b->bw != -1 &&
2759 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2760 		ret = 0;
2761 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2762 	rcu_read_unlock_sched();
2763 
2764 	return ret;
2765 }
2766 
2767 bool dl_cpu_busy(unsigned int cpu)
2768 {
2769 	unsigned long flags;
2770 	struct dl_bw *dl_b;
2771 	bool overflow;
2772 	int cpus;
2773 
2774 	rcu_read_lock_sched();
2775 	dl_b = dl_bw_of(cpu);
2776 	raw_spin_lock_irqsave(&dl_b->lock, flags);
2777 	cpus = dl_bw_cpus(cpu);
2778 	overflow = __dl_overflow(dl_b, cpus, 0, 0);
2779 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2780 	rcu_read_unlock_sched();
2781 
2782 	return overflow;
2783 }
2784 #endif
2785 
2786 #ifdef CONFIG_SCHED_DEBUG
2787 void print_dl_stats(struct seq_file *m, int cpu)
2788 {
2789 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2790 }
2791 #endif /* CONFIG_SCHED_DEBUG */
2792