xref: /openbmc/linux/kernel/sched/deadline.c (revision afb46f79)
1 /*
2  * Deadline Scheduling Class (SCHED_DEADLINE)
3  *
4  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5  *
6  * Tasks that periodically executes their instances for less than their
7  * runtime won't miss any of their deadlines.
8  * Tasks that are not periodic or sporadic or that tries to execute more
9  * than their reserved bandwidth will be slowed down (and may potentially
10  * miss some of their deadlines), and won't affect any other task.
11  *
12  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13  *                    Juri Lelli <juri.lelli@gmail.com>,
14  *                    Michael Trimarchi <michael@amarulasolutions.com>,
15  *                    Fabio Checconi <fchecconi@gmail.com>
16  */
17 #include "sched.h"
18 
19 #include <linux/slab.h>
20 
21 struct dl_bandwidth def_dl_bandwidth;
22 
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24 {
25 	return container_of(dl_se, struct task_struct, dl);
26 }
27 
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29 {
30 	return container_of(dl_rq, struct rq, dl);
31 }
32 
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34 {
35 	struct task_struct *p = dl_task_of(dl_se);
36 	struct rq *rq = task_rq(p);
37 
38 	return &rq->dl;
39 }
40 
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42 {
43 	return !RB_EMPTY_NODE(&dl_se->rb_node);
44 }
45 
46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47 {
48 	struct sched_dl_entity *dl_se = &p->dl;
49 
50 	return dl_rq->rb_leftmost == &dl_se->rb_node;
51 }
52 
53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
54 {
55 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 	dl_b->dl_period = period;
57 	dl_b->dl_runtime = runtime;
58 }
59 
60 extern unsigned long to_ratio(u64 period, u64 runtime);
61 
62 void init_dl_bw(struct dl_bw *dl_b)
63 {
64 	raw_spin_lock_init(&dl_b->lock);
65 	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
66 	if (global_rt_runtime() == RUNTIME_INF)
67 		dl_b->bw = -1;
68 	else
69 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
70 	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
71 	dl_b->total_bw = 0;
72 }
73 
74 void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq)
75 {
76 	dl_rq->rb_root = RB_ROOT;
77 
78 #ifdef CONFIG_SMP
79 	/* zero means no -deadline tasks */
80 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
81 
82 	dl_rq->dl_nr_migratory = 0;
83 	dl_rq->overloaded = 0;
84 	dl_rq->pushable_dl_tasks_root = RB_ROOT;
85 #else
86 	init_dl_bw(&dl_rq->dl_bw);
87 #endif
88 }
89 
90 #ifdef CONFIG_SMP
91 
92 static inline int dl_overloaded(struct rq *rq)
93 {
94 	return atomic_read(&rq->rd->dlo_count);
95 }
96 
97 static inline void dl_set_overload(struct rq *rq)
98 {
99 	if (!rq->online)
100 		return;
101 
102 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
103 	/*
104 	 * Must be visible before the overload count is
105 	 * set (as in sched_rt.c).
106 	 *
107 	 * Matched by the barrier in pull_dl_task().
108 	 */
109 	smp_wmb();
110 	atomic_inc(&rq->rd->dlo_count);
111 }
112 
113 static inline void dl_clear_overload(struct rq *rq)
114 {
115 	if (!rq->online)
116 		return;
117 
118 	atomic_dec(&rq->rd->dlo_count);
119 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
120 }
121 
122 static void update_dl_migration(struct dl_rq *dl_rq)
123 {
124 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
125 		if (!dl_rq->overloaded) {
126 			dl_set_overload(rq_of_dl_rq(dl_rq));
127 			dl_rq->overloaded = 1;
128 		}
129 	} else if (dl_rq->overloaded) {
130 		dl_clear_overload(rq_of_dl_rq(dl_rq));
131 		dl_rq->overloaded = 0;
132 	}
133 }
134 
135 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
136 {
137 	struct task_struct *p = dl_task_of(dl_se);
138 
139 	if (p->nr_cpus_allowed > 1)
140 		dl_rq->dl_nr_migratory++;
141 
142 	update_dl_migration(dl_rq);
143 }
144 
145 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
146 {
147 	struct task_struct *p = dl_task_of(dl_se);
148 
149 	if (p->nr_cpus_allowed > 1)
150 		dl_rq->dl_nr_migratory--;
151 
152 	update_dl_migration(dl_rq);
153 }
154 
155 /*
156  * The list of pushable -deadline task is not a plist, like in
157  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
158  */
159 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
160 {
161 	struct dl_rq *dl_rq = &rq->dl;
162 	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
163 	struct rb_node *parent = NULL;
164 	struct task_struct *entry;
165 	int leftmost = 1;
166 
167 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
168 
169 	while (*link) {
170 		parent = *link;
171 		entry = rb_entry(parent, struct task_struct,
172 				 pushable_dl_tasks);
173 		if (dl_entity_preempt(&p->dl, &entry->dl))
174 			link = &parent->rb_left;
175 		else {
176 			link = &parent->rb_right;
177 			leftmost = 0;
178 		}
179 	}
180 
181 	if (leftmost)
182 		dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
183 
184 	rb_link_node(&p->pushable_dl_tasks, parent, link);
185 	rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
186 }
187 
188 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
189 {
190 	struct dl_rq *dl_rq = &rq->dl;
191 
192 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
193 		return;
194 
195 	if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
196 		struct rb_node *next_node;
197 
198 		next_node = rb_next(&p->pushable_dl_tasks);
199 		dl_rq->pushable_dl_tasks_leftmost = next_node;
200 	}
201 
202 	rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
203 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
204 }
205 
206 static inline int has_pushable_dl_tasks(struct rq *rq)
207 {
208 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
209 }
210 
211 static int push_dl_task(struct rq *rq);
212 
213 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
214 {
215 	return dl_task(prev);
216 }
217 
218 static inline void set_post_schedule(struct rq *rq)
219 {
220 	rq->post_schedule = has_pushable_dl_tasks(rq);
221 }
222 
223 #else
224 
225 static inline
226 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
227 {
228 }
229 
230 static inline
231 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
232 {
233 }
234 
235 static inline
236 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
237 {
238 }
239 
240 static inline
241 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
242 {
243 }
244 
245 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
246 {
247 	return false;
248 }
249 
250 static inline int pull_dl_task(struct rq *rq)
251 {
252 	return 0;
253 }
254 
255 static inline void set_post_schedule(struct rq *rq)
256 {
257 }
258 #endif /* CONFIG_SMP */
259 
260 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
261 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
262 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
263 				  int flags);
264 
265 /*
266  * We are being explicitly informed that a new instance is starting,
267  * and this means that:
268  *  - the absolute deadline of the entity has to be placed at
269  *    current time + relative deadline;
270  *  - the runtime of the entity has to be set to the maximum value.
271  *
272  * The capability of specifying such event is useful whenever a -deadline
273  * entity wants to (try to!) synchronize its behaviour with the scheduler's
274  * one, and to (try to!) reconcile itself with its own scheduling
275  * parameters.
276  */
277 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
278 				       struct sched_dl_entity *pi_se)
279 {
280 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
281 	struct rq *rq = rq_of_dl_rq(dl_rq);
282 
283 	WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
284 
285 	/*
286 	 * We use the regular wall clock time to set deadlines in the
287 	 * future; in fact, we must consider execution overheads (time
288 	 * spent on hardirq context, etc.).
289 	 */
290 	dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
291 	dl_se->runtime = pi_se->dl_runtime;
292 	dl_se->dl_new = 0;
293 }
294 
295 /*
296  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
297  * possibility of a entity lasting more than what it declared, and thus
298  * exhausting its runtime.
299  *
300  * Here we are interested in making runtime overrun possible, but we do
301  * not want a entity which is misbehaving to affect the scheduling of all
302  * other entities.
303  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
304  * is used, in order to confine each entity within its own bandwidth.
305  *
306  * This function deals exactly with that, and ensures that when the runtime
307  * of a entity is replenished, its deadline is also postponed. That ensures
308  * the overrunning entity can't interfere with other entity in the system and
309  * can't make them miss their deadlines. Reasons why this kind of overruns
310  * could happen are, typically, a entity voluntarily trying to overcome its
311  * runtime, or it just underestimated it during sched_setscheduler_ex().
312  */
313 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
314 				struct sched_dl_entity *pi_se)
315 {
316 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
317 	struct rq *rq = rq_of_dl_rq(dl_rq);
318 
319 	BUG_ON(pi_se->dl_runtime <= 0);
320 
321 	/*
322 	 * This could be the case for a !-dl task that is boosted.
323 	 * Just go with full inherited parameters.
324 	 */
325 	if (dl_se->dl_deadline == 0) {
326 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
327 		dl_se->runtime = pi_se->dl_runtime;
328 	}
329 
330 	/*
331 	 * We keep moving the deadline away until we get some
332 	 * available runtime for the entity. This ensures correct
333 	 * handling of situations where the runtime overrun is
334 	 * arbitrary large.
335 	 */
336 	while (dl_se->runtime <= 0) {
337 		dl_se->deadline += pi_se->dl_period;
338 		dl_se->runtime += pi_se->dl_runtime;
339 	}
340 
341 	/*
342 	 * At this point, the deadline really should be "in
343 	 * the future" with respect to rq->clock. If it's
344 	 * not, we are, for some reason, lagging too much!
345 	 * Anyway, after having warn userspace abut that,
346 	 * we still try to keep the things running by
347 	 * resetting the deadline and the budget of the
348 	 * entity.
349 	 */
350 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
351 		static bool lag_once = false;
352 
353 		if (!lag_once) {
354 			lag_once = true;
355 			printk_sched("sched: DL replenish lagged to much\n");
356 		}
357 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
358 		dl_se->runtime = pi_se->dl_runtime;
359 	}
360 }
361 
362 /*
363  * Here we check if --at time t-- an entity (which is probably being
364  * [re]activated or, in general, enqueued) can use its remaining runtime
365  * and its current deadline _without_ exceeding the bandwidth it is
366  * assigned (function returns true if it can't). We are in fact applying
367  * one of the CBS rules: when a task wakes up, if the residual runtime
368  * over residual deadline fits within the allocated bandwidth, then we
369  * can keep the current (absolute) deadline and residual budget without
370  * disrupting the schedulability of the system. Otherwise, we should
371  * refill the runtime and set the deadline a period in the future,
372  * because keeping the current (absolute) deadline of the task would
373  * result in breaking guarantees promised to other tasks (refer to
374  * Documentation/scheduler/sched-deadline.txt for more informations).
375  *
376  * This function returns true if:
377  *
378  *   runtime / (deadline - t) > dl_runtime / dl_period ,
379  *
380  * IOW we can't recycle current parameters.
381  *
382  * Notice that the bandwidth check is done against the period. For
383  * task with deadline equal to period this is the same of using
384  * dl_deadline instead of dl_period in the equation above.
385  */
386 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
387 			       struct sched_dl_entity *pi_se, u64 t)
388 {
389 	u64 left, right;
390 
391 	/*
392 	 * left and right are the two sides of the equation above,
393 	 * after a bit of shuffling to use multiplications instead
394 	 * of divisions.
395 	 *
396 	 * Note that none of the time values involved in the two
397 	 * multiplications are absolute: dl_deadline and dl_runtime
398 	 * are the relative deadline and the maximum runtime of each
399 	 * instance, runtime is the runtime left for the last instance
400 	 * and (deadline - t), since t is rq->clock, is the time left
401 	 * to the (absolute) deadline. Even if overflowing the u64 type
402 	 * is very unlikely to occur in both cases, here we scale down
403 	 * as we want to avoid that risk at all. Scaling down by 10
404 	 * means that we reduce granularity to 1us. We are fine with it,
405 	 * since this is only a true/false check and, anyway, thinking
406 	 * of anything below microseconds resolution is actually fiction
407 	 * (but still we want to give the user that illusion >;).
408 	 */
409 	left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
410 	right = ((dl_se->deadline - t) >> DL_SCALE) *
411 		(pi_se->dl_runtime >> DL_SCALE);
412 
413 	return dl_time_before(right, left);
414 }
415 
416 /*
417  * When a -deadline entity is queued back on the runqueue, its runtime and
418  * deadline might need updating.
419  *
420  * The policy here is that we update the deadline of the entity only if:
421  *  - the current deadline is in the past,
422  *  - using the remaining runtime with the current deadline would make
423  *    the entity exceed its bandwidth.
424  */
425 static void update_dl_entity(struct sched_dl_entity *dl_se,
426 			     struct sched_dl_entity *pi_se)
427 {
428 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
429 	struct rq *rq = rq_of_dl_rq(dl_rq);
430 
431 	/*
432 	 * The arrival of a new instance needs special treatment, i.e.,
433 	 * the actual scheduling parameters have to be "renewed".
434 	 */
435 	if (dl_se->dl_new) {
436 		setup_new_dl_entity(dl_se, pi_se);
437 		return;
438 	}
439 
440 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
441 	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
442 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
443 		dl_se->runtime = pi_se->dl_runtime;
444 	}
445 }
446 
447 /*
448  * If the entity depleted all its runtime, and if we want it to sleep
449  * while waiting for some new execution time to become available, we
450  * set the bandwidth enforcement timer to the replenishment instant
451  * and try to activate it.
452  *
453  * Notice that it is important for the caller to know if the timer
454  * actually started or not (i.e., the replenishment instant is in
455  * the future or in the past).
456  */
457 static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted)
458 {
459 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
460 	struct rq *rq = rq_of_dl_rq(dl_rq);
461 	ktime_t now, act;
462 	ktime_t soft, hard;
463 	unsigned long range;
464 	s64 delta;
465 
466 	if (boosted)
467 		return 0;
468 	/*
469 	 * We want the timer to fire at the deadline, but considering
470 	 * that it is actually coming from rq->clock and not from
471 	 * hrtimer's time base reading.
472 	 */
473 	act = ns_to_ktime(dl_se->deadline);
474 	now = hrtimer_cb_get_time(&dl_se->dl_timer);
475 	delta = ktime_to_ns(now) - rq_clock(rq);
476 	act = ktime_add_ns(act, delta);
477 
478 	/*
479 	 * If the expiry time already passed, e.g., because the value
480 	 * chosen as the deadline is too small, don't even try to
481 	 * start the timer in the past!
482 	 */
483 	if (ktime_us_delta(act, now) < 0)
484 		return 0;
485 
486 	hrtimer_set_expires(&dl_se->dl_timer, act);
487 
488 	soft = hrtimer_get_softexpires(&dl_se->dl_timer);
489 	hard = hrtimer_get_expires(&dl_se->dl_timer);
490 	range = ktime_to_ns(ktime_sub(hard, soft));
491 	__hrtimer_start_range_ns(&dl_se->dl_timer, soft,
492 				 range, HRTIMER_MODE_ABS, 0);
493 
494 	return hrtimer_active(&dl_se->dl_timer);
495 }
496 
497 /*
498  * This is the bandwidth enforcement timer callback. If here, we know
499  * a task is not on its dl_rq, since the fact that the timer was running
500  * means the task is throttled and needs a runtime replenishment.
501  *
502  * However, what we actually do depends on the fact the task is active,
503  * (it is on its rq) or has been removed from there by a call to
504  * dequeue_task_dl(). In the former case we must issue the runtime
505  * replenishment and add the task back to the dl_rq; in the latter, we just
506  * do nothing but clearing dl_throttled, so that runtime and deadline
507  * updating (and the queueing back to dl_rq) will be done by the
508  * next call to enqueue_task_dl().
509  */
510 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
511 {
512 	struct sched_dl_entity *dl_se = container_of(timer,
513 						     struct sched_dl_entity,
514 						     dl_timer);
515 	struct task_struct *p = dl_task_of(dl_se);
516 	struct rq *rq = task_rq(p);
517 	raw_spin_lock(&rq->lock);
518 
519 	/*
520 	 * We need to take care of a possible races here. In fact, the
521 	 * task might have changed its scheduling policy to something
522 	 * different from SCHED_DEADLINE or changed its reservation
523 	 * parameters (through sched_setscheduler()).
524 	 */
525 	if (!dl_task(p) || dl_se->dl_new)
526 		goto unlock;
527 
528 	sched_clock_tick();
529 	update_rq_clock(rq);
530 	dl_se->dl_throttled = 0;
531 	if (p->on_rq) {
532 		enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
533 		if (task_has_dl_policy(rq->curr))
534 			check_preempt_curr_dl(rq, p, 0);
535 		else
536 			resched_task(rq->curr);
537 #ifdef CONFIG_SMP
538 		/*
539 		 * Queueing this task back might have overloaded rq,
540 		 * check if we need to kick someone away.
541 		 */
542 		if (has_pushable_dl_tasks(rq))
543 			push_dl_task(rq);
544 #endif
545 	}
546 unlock:
547 	raw_spin_unlock(&rq->lock);
548 
549 	return HRTIMER_NORESTART;
550 }
551 
552 void init_dl_task_timer(struct sched_dl_entity *dl_se)
553 {
554 	struct hrtimer *timer = &dl_se->dl_timer;
555 
556 	if (hrtimer_active(timer)) {
557 		hrtimer_try_to_cancel(timer);
558 		return;
559 	}
560 
561 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
562 	timer->function = dl_task_timer;
563 }
564 
565 static
566 int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se)
567 {
568 	int dmiss = dl_time_before(dl_se->deadline, rq_clock(rq));
569 	int rorun = dl_se->runtime <= 0;
570 
571 	if (!rorun && !dmiss)
572 		return 0;
573 
574 	/*
575 	 * If we are beyond our current deadline and we are still
576 	 * executing, then we have already used some of the runtime of
577 	 * the next instance. Thus, if we do not account that, we are
578 	 * stealing bandwidth from the system at each deadline miss!
579 	 */
580 	if (dmiss) {
581 		dl_se->runtime = rorun ? dl_se->runtime : 0;
582 		dl_se->runtime -= rq_clock(rq) - dl_se->deadline;
583 	}
584 
585 	return 1;
586 }
587 
588 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
589 
590 /*
591  * Update the current task's runtime statistics (provided it is still
592  * a -deadline task and has not been removed from the dl_rq).
593  */
594 static void update_curr_dl(struct rq *rq)
595 {
596 	struct task_struct *curr = rq->curr;
597 	struct sched_dl_entity *dl_se = &curr->dl;
598 	u64 delta_exec;
599 
600 	if (!dl_task(curr) || !on_dl_rq(dl_se))
601 		return;
602 
603 	/*
604 	 * Consumed budget is computed considering the time as
605 	 * observed by schedulable tasks (excluding time spent
606 	 * in hardirq context, etc.). Deadlines are instead
607 	 * computed using hard walltime. This seems to be the more
608 	 * natural solution, but the full ramifications of this
609 	 * approach need further study.
610 	 */
611 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
612 	if (unlikely((s64)delta_exec <= 0))
613 		return;
614 
615 	schedstat_set(curr->se.statistics.exec_max,
616 		      max(curr->se.statistics.exec_max, delta_exec));
617 
618 	curr->se.sum_exec_runtime += delta_exec;
619 	account_group_exec_runtime(curr, delta_exec);
620 
621 	curr->se.exec_start = rq_clock_task(rq);
622 	cpuacct_charge(curr, delta_exec);
623 
624 	sched_rt_avg_update(rq, delta_exec);
625 
626 	dl_se->runtime -= delta_exec;
627 	if (dl_runtime_exceeded(rq, dl_se)) {
628 		__dequeue_task_dl(rq, curr, 0);
629 		if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted)))
630 			dl_se->dl_throttled = 1;
631 		else
632 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
633 
634 		if (!is_leftmost(curr, &rq->dl))
635 			resched_task(curr);
636 	}
637 
638 	/*
639 	 * Because -- for now -- we share the rt bandwidth, we need to
640 	 * account our runtime there too, otherwise actual rt tasks
641 	 * would be able to exceed the shared quota.
642 	 *
643 	 * Account to the root rt group for now.
644 	 *
645 	 * The solution we're working towards is having the RT groups scheduled
646 	 * using deadline servers -- however there's a few nasties to figure
647 	 * out before that can happen.
648 	 */
649 	if (rt_bandwidth_enabled()) {
650 		struct rt_rq *rt_rq = &rq->rt;
651 
652 		raw_spin_lock(&rt_rq->rt_runtime_lock);
653 		/*
654 		 * We'll let actual RT tasks worry about the overflow here, we
655 		 * have our own CBS to keep us inline; only account when RT
656 		 * bandwidth is relevant.
657 		 */
658 		if (sched_rt_bandwidth_account(rt_rq))
659 			rt_rq->rt_time += delta_exec;
660 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
661 	}
662 }
663 
664 #ifdef CONFIG_SMP
665 
666 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);
667 
668 static inline u64 next_deadline(struct rq *rq)
669 {
670 	struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);
671 
672 	if (next && dl_prio(next->prio))
673 		return next->dl.deadline;
674 	else
675 		return 0;
676 }
677 
678 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
679 {
680 	struct rq *rq = rq_of_dl_rq(dl_rq);
681 
682 	if (dl_rq->earliest_dl.curr == 0 ||
683 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
684 		/*
685 		 * If the dl_rq had no -deadline tasks, or if the new task
686 		 * has shorter deadline than the current one on dl_rq, we
687 		 * know that the previous earliest becomes our next earliest,
688 		 * as the new task becomes the earliest itself.
689 		 */
690 		dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
691 		dl_rq->earliest_dl.curr = deadline;
692 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
693 	} else if (dl_rq->earliest_dl.next == 0 ||
694 		   dl_time_before(deadline, dl_rq->earliest_dl.next)) {
695 		/*
696 		 * On the other hand, if the new -deadline task has a
697 		 * a later deadline than the earliest one on dl_rq, but
698 		 * it is earlier than the next (if any), we must
699 		 * recompute the next-earliest.
700 		 */
701 		dl_rq->earliest_dl.next = next_deadline(rq);
702 	}
703 }
704 
705 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
706 {
707 	struct rq *rq = rq_of_dl_rq(dl_rq);
708 
709 	/*
710 	 * Since we may have removed our earliest (and/or next earliest)
711 	 * task we must recompute them.
712 	 */
713 	if (!dl_rq->dl_nr_running) {
714 		dl_rq->earliest_dl.curr = 0;
715 		dl_rq->earliest_dl.next = 0;
716 		cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
717 	} else {
718 		struct rb_node *leftmost = dl_rq->rb_leftmost;
719 		struct sched_dl_entity *entry;
720 
721 		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
722 		dl_rq->earliest_dl.curr = entry->deadline;
723 		dl_rq->earliest_dl.next = next_deadline(rq);
724 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
725 	}
726 }
727 
728 #else
729 
730 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
731 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
732 
733 #endif /* CONFIG_SMP */
734 
735 static inline
736 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
737 {
738 	int prio = dl_task_of(dl_se)->prio;
739 	u64 deadline = dl_se->deadline;
740 
741 	WARN_ON(!dl_prio(prio));
742 	dl_rq->dl_nr_running++;
743 	inc_nr_running(rq_of_dl_rq(dl_rq));
744 
745 	inc_dl_deadline(dl_rq, deadline);
746 	inc_dl_migration(dl_se, dl_rq);
747 }
748 
749 static inline
750 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
751 {
752 	int prio = dl_task_of(dl_se)->prio;
753 
754 	WARN_ON(!dl_prio(prio));
755 	WARN_ON(!dl_rq->dl_nr_running);
756 	dl_rq->dl_nr_running--;
757 	dec_nr_running(rq_of_dl_rq(dl_rq));
758 
759 	dec_dl_deadline(dl_rq, dl_se->deadline);
760 	dec_dl_migration(dl_se, dl_rq);
761 }
762 
763 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
764 {
765 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
766 	struct rb_node **link = &dl_rq->rb_root.rb_node;
767 	struct rb_node *parent = NULL;
768 	struct sched_dl_entity *entry;
769 	int leftmost = 1;
770 
771 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
772 
773 	while (*link) {
774 		parent = *link;
775 		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
776 		if (dl_time_before(dl_se->deadline, entry->deadline))
777 			link = &parent->rb_left;
778 		else {
779 			link = &parent->rb_right;
780 			leftmost = 0;
781 		}
782 	}
783 
784 	if (leftmost)
785 		dl_rq->rb_leftmost = &dl_se->rb_node;
786 
787 	rb_link_node(&dl_se->rb_node, parent, link);
788 	rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
789 
790 	inc_dl_tasks(dl_se, dl_rq);
791 }
792 
793 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
794 {
795 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
796 
797 	if (RB_EMPTY_NODE(&dl_se->rb_node))
798 		return;
799 
800 	if (dl_rq->rb_leftmost == &dl_se->rb_node) {
801 		struct rb_node *next_node;
802 
803 		next_node = rb_next(&dl_se->rb_node);
804 		dl_rq->rb_leftmost = next_node;
805 	}
806 
807 	rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
808 	RB_CLEAR_NODE(&dl_se->rb_node);
809 
810 	dec_dl_tasks(dl_se, dl_rq);
811 }
812 
813 static void
814 enqueue_dl_entity(struct sched_dl_entity *dl_se,
815 		  struct sched_dl_entity *pi_se, int flags)
816 {
817 	BUG_ON(on_dl_rq(dl_se));
818 
819 	/*
820 	 * If this is a wakeup or a new instance, the scheduling
821 	 * parameters of the task might need updating. Otherwise,
822 	 * we want a replenishment of its runtime.
823 	 */
824 	if (!dl_se->dl_new && flags & ENQUEUE_REPLENISH)
825 		replenish_dl_entity(dl_se, pi_se);
826 	else
827 		update_dl_entity(dl_se, pi_se);
828 
829 	__enqueue_dl_entity(dl_se);
830 }
831 
832 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
833 {
834 	__dequeue_dl_entity(dl_se);
835 }
836 
837 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
838 {
839 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
840 	struct sched_dl_entity *pi_se = &p->dl;
841 
842 	/*
843 	 * Use the scheduling parameters of the top pi-waiter
844 	 * task if we have one and its (relative) deadline is
845 	 * smaller than our one... OTW we keep our runtime and
846 	 * deadline.
847 	 */
848 	if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio))
849 		pi_se = &pi_task->dl;
850 
851 	/*
852 	 * If p is throttled, we do nothing. In fact, if it exhausted
853 	 * its budget it needs a replenishment and, since it now is on
854 	 * its rq, the bandwidth timer callback (which clearly has not
855 	 * run yet) will take care of this.
856 	 */
857 	if (p->dl.dl_throttled)
858 		return;
859 
860 	enqueue_dl_entity(&p->dl, pi_se, flags);
861 
862 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
863 		enqueue_pushable_dl_task(rq, p);
864 }
865 
866 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
867 {
868 	dequeue_dl_entity(&p->dl);
869 	dequeue_pushable_dl_task(rq, p);
870 }
871 
872 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
873 {
874 	update_curr_dl(rq);
875 	__dequeue_task_dl(rq, p, flags);
876 }
877 
878 /*
879  * Yield task semantic for -deadline tasks is:
880  *
881  *   get off from the CPU until our next instance, with
882  *   a new runtime. This is of little use now, since we
883  *   don't have a bandwidth reclaiming mechanism. Anyway,
884  *   bandwidth reclaiming is planned for the future, and
885  *   yield_task_dl will indicate that some spare budget
886  *   is available for other task instances to use it.
887  */
888 static void yield_task_dl(struct rq *rq)
889 {
890 	struct task_struct *p = rq->curr;
891 
892 	/*
893 	 * We make the task go to sleep until its current deadline by
894 	 * forcing its runtime to zero. This way, update_curr_dl() stops
895 	 * it and the bandwidth timer will wake it up and will give it
896 	 * new scheduling parameters (thanks to dl_new=1).
897 	 */
898 	if (p->dl.runtime > 0) {
899 		rq->curr->dl.dl_new = 1;
900 		p->dl.runtime = 0;
901 	}
902 	update_curr_dl(rq);
903 }
904 
905 #ifdef CONFIG_SMP
906 
907 static int find_later_rq(struct task_struct *task);
908 
909 static int
910 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
911 {
912 	struct task_struct *curr;
913 	struct rq *rq;
914 
915 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
916 		goto out;
917 
918 	rq = cpu_rq(cpu);
919 
920 	rcu_read_lock();
921 	curr = ACCESS_ONCE(rq->curr); /* unlocked access */
922 
923 	/*
924 	 * If we are dealing with a -deadline task, we must
925 	 * decide where to wake it up.
926 	 * If it has a later deadline and the current task
927 	 * on this rq can't move (provided the waking task
928 	 * can!) we prefer to send it somewhere else. On the
929 	 * other hand, if it has a shorter deadline, we
930 	 * try to make it stay here, it might be important.
931 	 */
932 	if (unlikely(dl_task(curr)) &&
933 	    (curr->nr_cpus_allowed < 2 ||
934 	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
935 	    (p->nr_cpus_allowed > 1)) {
936 		int target = find_later_rq(p);
937 
938 		if (target != -1)
939 			cpu = target;
940 	}
941 	rcu_read_unlock();
942 
943 out:
944 	return cpu;
945 }
946 
947 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
948 {
949 	/*
950 	 * Current can't be migrated, useless to reschedule,
951 	 * let's hope p can move out.
952 	 */
953 	if (rq->curr->nr_cpus_allowed == 1 ||
954 	    cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
955 		return;
956 
957 	/*
958 	 * p is migratable, so let's not schedule it and
959 	 * see if it is pushed or pulled somewhere else.
960 	 */
961 	if (p->nr_cpus_allowed != 1 &&
962 	    cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
963 		return;
964 
965 	resched_task(rq->curr);
966 }
967 
968 static int pull_dl_task(struct rq *this_rq);
969 
970 #endif /* CONFIG_SMP */
971 
972 /*
973  * Only called when both the current and waking task are -deadline
974  * tasks.
975  */
976 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
977 				  int flags)
978 {
979 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
980 		resched_task(rq->curr);
981 		return;
982 	}
983 
984 #ifdef CONFIG_SMP
985 	/*
986 	 * In the unlikely case current and p have the same deadline
987 	 * let us try to decide what's the best thing to do...
988 	 */
989 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
990 	    !test_tsk_need_resched(rq->curr))
991 		check_preempt_equal_dl(rq, p);
992 #endif /* CONFIG_SMP */
993 }
994 
995 #ifdef CONFIG_SCHED_HRTICK
996 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
997 {
998 	s64 delta = p->dl.dl_runtime - p->dl.runtime;
999 
1000 	if (delta > 10000)
1001 		hrtick_start(rq, p->dl.runtime);
1002 }
1003 #endif
1004 
1005 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1006 						   struct dl_rq *dl_rq)
1007 {
1008 	struct rb_node *left = dl_rq->rb_leftmost;
1009 
1010 	if (!left)
1011 		return NULL;
1012 
1013 	return rb_entry(left, struct sched_dl_entity, rb_node);
1014 }
1015 
1016 struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
1017 {
1018 	struct sched_dl_entity *dl_se;
1019 	struct task_struct *p;
1020 	struct dl_rq *dl_rq;
1021 
1022 	dl_rq = &rq->dl;
1023 
1024 	if (need_pull_dl_task(rq, prev)) {
1025 		pull_dl_task(rq);
1026 		/*
1027 		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1028 		 * means a stop task can slip in, in which case we need to
1029 		 * re-start task selection.
1030 		 */
1031 		if (rq->stop && rq->stop->on_rq)
1032 			return RETRY_TASK;
1033 	}
1034 
1035 	/*
1036 	 * When prev is DL, we may throttle it in put_prev_task().
1037 	 * So, we update time before we check for dl_nr_running.
1038 	 */
1039 	if (prev->sched_class == &dl_sched_class)
1040 		update_curr_dl(rq);
1041 
1042 	if (unlikely(!dl_rq->dl_nr_running))
1043 		return NULL;
1044 
1045 	put_prev_task(rq, prev);
1046 
1047 	dl_se = pick_next_dl_entity(rq, dl_rq);
1048 	BUG_ON(!dl_se);
1049 
1050 	p = dl_task_of(dl_se);
1051 	p->se.exec_start = rq_clock_task(rq);
1052 
1053 	/* Running task will never be pushed. */
1054        dequeue_pushable_dl_task(rq, p);
1055 
1056 #ifdef CONFIG_SCHED_HRTICK
1057 	if (hrtick_enabled(rq))
1058 		start_hrtick_dl(rq, p);
1059 #endif
1060 
1061 	set_post_schedule(rq);
1062 
1063 	return p;
1064 }
1065 
1066 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1067 {
1068 	update_curr_dl(rq);
1069 
1070 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1071 		enqueue_pushable_dl_task(rq, p);
1072 }
1073 
1074 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1075 {
1076 	update_curr_dl(rq);
1077 
1078 #ifdef CONFIG_SCHED_HRTICK
1079 	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0)
1080 		start_hrtick_dl(rq, p);
1081 #endif
1082 }
1083 
1084 static void task_fork_dl(struct task_struct *p)
1085 {
1086 	/*
1087 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1088 	 * sched_fork()
1089 	 */
1090 }
1091 
1092 static void task_dead_dl(struct task_struct *p)
1093 {
1094 	struct hrtimer *timer = &p->dl.dl_timer;
1095 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1096 
1097 	/*
1098 	 * Since we are TASK_DEAD we won't slip out of the domain!
1099 	 */
1100 	raw_spin_lock_irq(&dl_b->lock);
1101 	dl_b->total_bw -= p->dl.dl_bw;
1102 	raw_spin_unlock_irq(&dl_b->lock);
1103 
1104 	hrtimer_cancel(timer);
1105 }
1106 
1107 static void set_curr_task_dl(struct rq *rq)
1108 {
1109 	struct task_struct *p = rq->curr;
1110 
1111 	p->se.exec_start = rq_clock_task(rq);
1112 
1113 	/* You can't push away the running task */
1114 	dequeue_pushable_dl_task(rq, p);
1115 }
1116 
1117 #ifdef CONFIG_SMP
1118 
1119 /* Only try algorithms three times */
1120 #define DL_MAX_TRIES 3
1121 
1122 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1123 {
1124 	if (!task_running(rq, p) &&
1125 	    (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
1126 	    (p->nr_cpus_allowed > 1))
1127 		return 1;
1128 
1129 	return 0;
1130 }
1131 
1132 /* Returns the second earliest -deadline task, NULL otherwise */
1133 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
1134 {
1135 	struct rb_node *next_node = rq->dl.rb_leftmost;
1136 	struct sched_dl_entity *dl_se;
1137 	struct task_struct *p = NULL;
1138 
1139 next_node:
1140 	next_node = rb_next(next_node);
1141 	if (next_node) {
1142 		dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
1143 		p = dl_task_of(dl_se);
1144 
1145 		if (pick_dl_task(rq, p, cpu))
1146 			return p;
1147 
1148 		goto next_node;
1149 	}
1150 
1151 	return NULL;
1152 }
1153 
1154 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1155 
1156 static int find_later_rq(struct task_struct *task)
1157 {
1158 	struct sched_domain *sd;
1159 	struct cpumask *later_mask = __get_cpu_var(local_cpu_mask_dl);
1160 	int this_cpu = smp_processor_id();
1161 	int best_cpu, cpu = task_cpu(task);
1162 
1163 	/* Make sure the mask is initialized first */
1164 	if (unlikely(!later_mask))
1165 		return -1;
1166 
1167 	if (task->nr_cpus_allowed == 1)
1168 		return -1;
1169 
1170 	best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1171 			task, later_mask);
1172 	if (best_cpu == -1)
1173 		return -1;
1174 
1175 	/*
1176 	 * If we are here, some target has been found,
1177 	 * the most suitable of which is cached in best_cpu.
1178 	 * This is, among the runqueues where the current tasks
1179 	 * have later deadlines than the task's one, the rq
1180 	 * with the latest possible one.
1181 	 *
1182 	 * Now we check how well this matches with task's
1183 	 * affinity and system topology.
1184 	 *
1185 	 * The last cpu where the task run is our first
1186 	 * guess, since it is most likely cache-hot there.
1187 	 */
1188 	if (cpumask_test_cpu(cpu, later_mask))
1189 		return cpu;
1190 	/*
1191 	 * Check if this_cpu is to be skipped (i.e., it is
1192 	 * not in the mask) or not.
1193 	 */
1194 	if (!cpumask_test_cpu(this_cpu, later_mask))
1195 		this_cpu = -1;
1196 
1197 	rcu_read_lock();
1198 	for_each_domain(cpu, sd) {
1199 		if (sd->flags & SD_WAKE_AFFINE) {
1200 
1201 			/*
1202 			 * If possible, preempting this_cpu is
1203 			 * cheaper than migrating.
1204 			 */
1205 			if (this_cpu != -1 &&
1206 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1207 				rcu_read_unlock();
1208 				return this_cpu;
1209 			}
1210 
1211 			/*
1212 			 * Last chance: if best_cpu is valid and is
1213 			 * in the mask, that becomes our choice.
1214 			 */
1215 			if (best_cpu < nr_cpu_ids &&
1216 			    cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1217 				rcu_read_unlock();
1218 				return best_cpu;
1219 			}
1220 		}
1221 	}
1222 	rcu_read_unlock();
1223 
1224 	/*
1225 	 * At this point, all our guesses failed, we just return
1226 	 * 'something', and let the caller sort the things out.
1227 	 */
1228 	if (this_cpu != -1)
1229 		return this_cpu;
1230 
1231 	cpu = cpumask_any(later_mask);
1232 	if (cpu < nr_cpu_ids)
1233 		return cpu;
1234 
1235 	return -1;
1236 }
1237 
1238 /* Locks the rq it finds */
1239 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1240 {
1241 	struct rq *later_rq = NULL;
1242 	int tries;
1243 	int cpu;
1244 
1245 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1246 		cpu = find_later_rq(task);
1247 
1248 		if ((cpu == -1) || (cpu == rq->cpu))
1249 			break;
1250 
1251 		later_rq = cpu_rq(cpu);
1252 
1253 		/* Retry if something changed. */
1254 		if (double_lock_balance(rq, later_rq)) {
1255 			if (unlikely(task_rq(task) != rq ||
1256 				     !cpumask_test_cpu(later_rq->cpu,
1257 				                       &task->cpus_allowed) ||
1258 				     task_running(rq, task) || !task->on_rq)) {
1259 				double_unlock_balance(rq, later_rq);
1260 				later_rq = NULL;
1261 				break;
1262 			}
1263 		}
1264 
1265 		/*
1266 		 * If the rq we found has no -deadline task, or
1267 		 * its earliest one has a later deadline than our
1268 		 * task, the rq is a good one.
1269 		 */
1270 		if (!later_rq->dl.dl_nr_running ||
1271 		    dl_time_before(task->dl.deadline,
1272 				   later_rq->dl.earliest_dl.curr))
1273 			break;
1274 
1275 		/* Otherwise we try again. */
1276 		double_unlock_balance(rq, later_rq);
1277 		later_rq = NULL;
1278 	}
1279 
1280 	return later_rq;
1281 }
1282 
1283 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1284 {
1285 	struct task_struct *p;
1286 
1287 	if (!has_pushable_dl_tasks(rq))
1288 		return NULL;
1289 
1290 	p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1291 		     struct task_struct, pushable_dl_tasks);
1292 
1293 	BUG_ON(rq->cpu != task_cpu(p));
1294 	BUG_ON(task_current(rq, p));
1295 	BUG_ON(p->nr_cpus_allowed <= 1);
1296 
1297 	BUG_ON(!p->on_rq);
1298 	BUG_ON(!dl_task(p));
1299 
1300 	return p;
1301 }
1302 
1303 /*
1304  * See if the non running -deadline tasks on this rq
1305  * can be sent to some other CPU where they can preempt
1306  * and start executing.
1307  */
1308 static int push_dl_task(struct rq *rq)
1309 {
1310 	struct task_struct *next_task;
1311 	struct rq *later_rq;
1312 
1313 	if (!rq->dl.overloaded)
1314 		return 0;
1315 
1316 	next_task = pick_next_pushable_dl_task(rq);
1317 	if (!next_task)
1318 		return 0;
1319 
1320 retry:
1321 	if (unlikely(next_task == rq->curr)) {
1322 		WARN_ON(1);
1323 		return 0;
1324 	}
1325 
1326 	/*
1327 	 * If next_task preempts rq->curr, and rq->curr
1328 	 * can move away, it makes sense to just reschedule
1329 	 * without going further in pushing next_task.
1330 	 */
1331 	if (dl_task(rq->curr) &&
1332 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1333 	    rq->curr->nr_cpus_allowed > 1) {
1334 		resched_task(rq->curr);
1335 		return 0;
1336 	}
1337 
1338 	/* We might release rq lock */
1339 	get_task_struct(next_task);
1340 
1341 	/* Will lock the rq it'll find */
1342 	later_rq = find_lock_later_rq(next_task, rq);
1343 	if (!later_rq) {
1344 		struct task_struct *task;
1345 
1346 		/*
1347 		 * We must check all this again, since
1348 		 * find_lock_later_rq releases rq->lock and it is
1349 		 * then possible that next_task has migrated.
1350 		 */
1351 		task = pick_next_pushable_dl_task(rq);
1352 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1353 			/*
1354 			 * The task is still there. We don't try
1355 			 * again, some other cpu will pull it when ready.
1356 			 */
1357 			dequeue_pushable_dl_task(rq, next_task);
1358 			goto out;
1359 		}
1360 
1361 		if (!task)
1362 			/* No more tasks */
1363 			goto out;
1364 
1365 		put_task_struct(next_task);
1366 		next_task = task;
1367 		goto retry;
1368 	}
1369 
1370 	deactivate_task(rq, next_task, 0);
1371 	set_task_cpu(next_task, later_rq->cpu);
1372 	activate_task(later_rq, next_task, 0);
1373 
1374 	resched_task(later_rq->curr);
1375 
1376 	double_unlock_balance(rq, later_rq);
1377 
1378 out:
1379 	put_task_struct(next_task);
1380 
1381 	return 1;
1382 }
1383 
1384 static void push_dl_tasks(struct rq *rq)
1385 {
1386 	/* Terminates as it moves a -deadline task */
1387 	while (push_dl_task(rq))
1388 		;
1389 }
1390 
1391 static int pull_dl_task(struct rq *this_rq)
1392 {
1393 	int this_cpu = this_rq->cpu, ret = 0, cpu;
1394 	struct task_struct *p;
1395 	struct rq *src_rq;
1396 	u64 dmin = LONG_MAX;
1397 
1398 	if (likely(!dl_overloaded(this_rq)))
1399 		return 0;
1400 
1401 	/*
1402 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
1403 	 * see overloaded we must also see the dlo_mask bit.
1404 	 */
1405 	smp_rmb();
1406 
1407 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1408 		if (this_cpu == cpu)
1409 			continue;
1410 
1411 		src_rq = cpu_rq(cpu);
1412 
1413 		/*
1414 		 * It looks racy, abd it is! However, as in sched_rt.c,
1415 		 * we are fine with this.
1416 		 */
1417 		if (this_rq->dl.dl_nr_running &&
1418 		    dl_time_before(this_rq->dl.earliest_dl.curr,
1419 				   src_rq->dl.earliest_dl.next))
1420 			continue;
1421 
1422 		/* Might drop this_rq->lock */
1423 		double_lock_balance(this_rq, src_rq);
1424 
1425 		/*
1426 		 * If there are no more pullable tasks on the
1427 		 * rq, we're done with it.
1428 		 */
1429 		if (src_rq->dl.dl_nr_running <= 1)
1430 			goto skip;
1431 
1432 		p = pick_next_earliest_dl_task(src_rq, this_cpu);
1433 
1434 		/*
1435 		 * We found a task to be pulled if:
1436 		 *  - it preempts our current (if there's one),
1437 		 *  - it will preempt the last one we pulled (if any).
1438 		 */
1439 		if (p && dl_time_before(p->dl.deadline, dmin) &&
1440 		    (!this_rq->dl.dl_nr_running ||
1441 		     dl_time_before(p->dl.deadline,
1442 				    this_rq->dl.earliest_dl.curr))) {
1443 			WARN_ON(p == src_rq->curr);
1444 			WARN_ON(!p->on_rq);
1445 
1446 			/*
1447 			 * Then we pull iff p has actually an earlier
1448 			 * deadline than the current task of its runqueue.
1449 			 */
1450 			if (dl_time_before(p->dl.deadline,
1451 					   src_rq->curr->dl.deadline))
1452 				goto skip;
1453 
1454 			ret = 1;
1455 
1456 			deactivate_task(src_rq, p, 0);
1457 			set_task_cpu(p, this_cpu);
1458 			activate_task(this_rq, p, 0);
1459 			dmin = p->dl.deadline;
1460 
1461 			/* Is there any other task even earlier? */
1462 		}
1463 skip:
1464 		double_unlock_balance(this_rq, src_rq);
1465 	}
1466 
1467 	return ret;
1468 }
1469 
1470 static void post_schedule_dl(struct rq *rq)
1471 {
1472 	push_dl_tasks(rq);
1473 }
1474 
1475 /*
1476  * Since the task is not running and a reschedule is not going to happen
1477  * anytime soon on its runqueue, we try pushing it away now.
1478  */
1479 static void task_woken_dl(struct rq *rq, struct task_struct *p)
1480 {
1481 	if (!task_running(rq, p) &&
1482 	    !test_tsk_need_resched(rq->curr) &&
1483 	    has_pushable_dl_tasks(rq) &&
1484 	    p->nr_cpus_allowed > 1 &&
1485 	    dl_task(rq->curr) &&
1486 	    (rq->curr->nr_cpus_allowed < 2 ||
1487 	     dl_entity_preempt(&rq->curr->dl, &p->dl))) {
1488 		push_dl_tasks(rq);
1489 	}
1490 }
1491 
1492 static void set_cpus_allowed_dl(struct task_struct *p,
1493 				const struct cpumask *new_mask)
1494 {
1495 	struct rq *rq;
1496 	int weight;
1497 
1498 	BUG_ON(!dl_task(p));
1499 
1500 	/*
1501 	 * Update only if the task is actually running (i.e.,
1502 	 * it is on the rq AND it is not throttled).
1503 	 */
1504 	if (!on_dl_rq(&p->dl))
1505 		return;
1506 
1507 	weight = cpumask_weight(new_mask);
1508 
1509 	/*
1510 	 * Only update if the process changes its state from whether it
1511 	 * can migrate or not.
1512 	 */
1513 	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1514 		return;
1515 
1516 	rq = task_rq(p);
1517 
1518 	/*
1519 	 * The process used to be able to migrate OR it can now migrate
1520 	 */
1521 	if (weight <= 1) {
1522 		if (!task_current(rq, p))
1523 			dequeue_pushable_dl_task(rq, p);
1524 		BUG_ON(!rq->dl.dl_nr_migratory);
1525 		rq->dl.dl_nr_migratory--;
1526 	} else {
1527 		if (!task_current(rq, p))
1528 			enqueue_pushable_dl_task(rq, p);
1529 		rq->dl.dl_nr_migratory++;
1530 	}
1531 
1532 	update_dl_migration(&rq->dl);
1533 }
1534 
1535 /* Assumes rq->lock is held */
1536 static void rq_online_dl(struct rq *rq)
1537 {
1538 	if (rq->dl.overloaded)
1539 		dl_set_overload(rq);
1540 
1541 	if (rq->dl.dl_nr_running > 0)
1542 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1543 }
1544 
1545 /* Assumes rq->lock is held */
1546 static void rq_offline_dl(struct rq *rq)
1547 {
1548 	if (rq->dl.overloaded)
1549 		dl_clear_overload(rq);
1550 
1551 	cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1552 }
1553 
1554 void init_sched_dl_class(void)
1555 {
1556 	unsigned int i;
1557 
1558 	for_each_possible_cpu(i)
1559 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1560 					GFP_KERNEL, cpu_to_node(i));
1561 }
1562 
1563 #endif /* CONFIG_SMP */
1564 
1565 static void switched_from_dl(struct rq *rq, struct task_struct *p)
1566 {
1567 	if (hrtimer_active(&p->dl.dl_timer) && !dl_policy(p->policy))
1568 		hrtimer_try_to_cancel(&p->dl.dl_timer);
1569 
1570 #ifdef CONFIG_SMP
1571 	/*
1572 	 * Since this might be the only -deadline task on the rq,
1573 	 * this is the right place to try to pull some other one
1574 	 * from an overloaded cpu, if any.
1575 	 */
1576 	if (!rq->dl.dl_nr_running)
1577 		pull_dl_task(rq);
1578 #endif
1579 }
1580 
1581 /*
1582  * When switching to -deadline, we may overload the rq, then
1583  * we try to push someone off, if possible.
1584  */
1585 static void switched_to_dl(struct rq *rq, struct task_struct *p)
1586 {
1587 	int check_resched = 1;
1588 
1589 	/*
1590 	 * If p is throttled, don't consider the possibility
1591 	 * of preempting rq->curr, the check will be done right
1592 	 * after its runtime will get replenished.
1593 	 */
1594 	if (unlikely(p->dl.dl_throttled))
1595 		return;
1596 
1597 	if (p->on_rq && rq->curr != p) {
1598 #ifdef CONFIG_SMP
1599 		if (rq->dl.overloaded && push_dl_task(rq) && rq != task_rq(p))
1600 			/* Only reschedule if pushing failed */
1601 			check_resched = 0;
1602 #endif /* CONFIG_SMP */
1603 		if (check_resched && task_has_dl_policy(rq->curr))
1604 			check_preempt_curr_dl(rq, p, 0);
1605 	}
1606 }
1607 
1608 /*
1609  * If the scheduling parameters of a -deadline task changed,
1610  * a push or pull operation might be needed.
1611  */
1612 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1613 			    int oldprio)
1614 {
1615 	if (p->on_rq || rq->curr == p) {
1616 #ifdef CONFIG_SMP
1617 		/*
1618 		 * This might be too much, but unfortunately
1619 		 * we don't have the old deadline value, and
1620 		 * we can't argue if the task is increasing
1621 		 * or lowering its prio, so...
1622 		 */
1623 		if (!rq->dl.overloaded)
1624 			pull_dl_task(rq);
1625 
1626 		/*
1627 		 * If we now have a earlier deadline task than p,
1628 		 * then reschedule, provided p is still on this
1629 		 * runqueue.
1630 		 */
1631 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) &&
1632 		    rq->curr == p)
1633 			resched_task(p);
1634 #else
1635 		/*
1636 		 * Again, we don't know if p has a earlier
1637 		 * or later deadline, so let's blindly set a
1638 		 * (maybe not needed) rescheduling point.
1639 		 */
1640 		resched_task(p);
1641 #endif /* CONFIG_SMP */
1642 	} else
1643 		switched_to_dl(rq, p);
1644 }
1645 
1646 const struct sched_class dl_sched_class = {
1647 	.next			= &rt_sched_class,
1648 	.enqueue_task		= enqueue_task_dl,
1649 	.dequeue_task		= dequeue_task_dl,
1650 	.yield_task		= yield_task_dl,
1651 
1652 	.check_preempt_curr	= check_preempt_curr_dl,
1653 
1654 	.pick_next_task		= pick_next_task_dl,
1655 	.put_prev_task		= put_prev_task_dl,
1656 
1657 #ifdef CONFIG_SMP
1658 	.select_task_rq		= select_task_rq_dl,
1659 	.set_cpus_allowed       = set_cpus_allowed_dl,
1660 	.rq_online              = rq_online_dl,
1661 	.rq_offline             = rq_offline_dl,
1662 	.post_schedule		= post_schedule_dl,
1663 	.task_woken		= task_woken_dl,
1664 #endif
1665 
1666 	.set_curr_task		= set_curr_task_dl,
1667 	.task_tick		= task_tick_dl,
1668 	.task_fork              = task_fork_dl,
1669 	.task_dead		= task_dead_dl,
1670 
1671 	.prio_changed           = prio_changed_dl,
1672 	.switched_from		= switched_from_dl,
1673 	.switched_to		= switched_to_dl,
1674 };
1675