1 /* 2 * Deadline Scheduling Class (SCHED_DEADLINE) 3 * 4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 5 * 6 * Tasks that periodically executes their instances for less than their 7 * runtime won't miss any of their deadlines. 8 * Tasks that are not periodic or sporadic or that tries to execute more 9 * than their reserved bandwidth will be slowed down (and may potentially 10 * miss some of their deadlines), and won't affect any other task. 11 * 12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 13 * Juri Lelli <juri.lelli@gmail.com>, 14 * Michael Trimarchi <michael@amarulasolutions.com>, 15 * Fabio Checconi <fchecconi@gmail.com> 16 */ 17 #include "sched.h" 18 19 #include <linux/slab.h> 20 21 struct dl_bandwidth def_dl_bandwidth; 22 23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 24 { 25 return container_of(dl_se, struct task_struct, dl); 26 } 27 28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 29 { 30 return container_of(dl_rq, struct rq, dl); 31 } 32 33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 34 { 35 struct task_struct *p = dl_task_of(dl_se); 36 struct rq *rq = task_rq(p); 37 38 return &rq->dl; 39 } 40 41 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 42 { 43 return !RB_EMPTY_NODE(&dl_se->rb_node); 44 } 45 46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) 47 { 48 struct sched_dl_entity *dl_se = &p->dl; 49 50 return dl_rq->rb_leftmost == &dl_se->rb_node; 51 } 52 53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) 54 { 55 raw_spin_lock_init(&dl_b->dl_runtime_lock); 56 dl_b->dl_period = period; 57 dl_b->dl_runtime = runtime; 58 } 59 60 extern unsigned long to_ratio(u64 period, u64 runtime); 61 62 void init_dl_bw(struct dl_bw *dl_b) 63 { 64 raw_spin_lock_init(&dl_b->lock); 65 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock); 66 if (global_rt_runtime() == RUNTIME_INF) 67 dl_b->bw = -1; 68 else 69 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 70 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock); 71 dl_b->total_bw = 0; 72 } 73 74 void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq) 75 { 76 dl_rq->rb_root = RB_ROOT; 77 78 #ifdef CONFIG_SMP 79 /* zero means no -deadline tasks */ 80 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 81 82 dl_rq->dl_nr_migratory = 0; 83 dl_rq->overloaded = 0; 84 dl_rq->pushable_dl_tasks_root = RB_ROOT; 85 #else 86 init_dl_bw(&dl_rq->dl_bw); 87 #endif 88 } 89 90 #ifdef CONFIG_SMP 91 92 static inline int dl_overloaded(struct rq *rq) 93 { 94 return atomic_read(&rq->rd->dlo_count); 95 } 96 97 static inline void dl_set_overload(struct rq *rq) 98 { 99 if (!rq->online) 100 return; 101 102 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 103 /* 104 * Must be visible before the overload count is 105 * set (as in sched_rt.c). 106 * 107 * Matched by the barrier in pull_dl_task(). 108 */ 109 smp_wmb(); 110 atomic_inc(&rq->rd->dlo_count); 111 } 112 113 static inline void dl_clear_overload(struct rq *rq) 114 { 115 if (!rq->online) 116 return; 117 118 atomic_dec(&rq->rd->dlo_count); 119 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 120 } 121 122 static void update_dl_migration(struct dl_rq *dl_rq) 123 { 124 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { 125 if (!dl_rq->overloaded) { 126 dl_set_overload(rq_of_dl_rq(dl_rq)); 127 dl_rq->overloaded = 1; 128 } 129 } else if (dl_rq->overloaded) { 130 dl_clear_overload(rq_of_dl_rq(dl_rq)); 131 dl_rq->overloaded = 0; 132 } 133 } 134 135 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 136 { 137 struct task_struct *p = dl_task_of(dl_se); 138 139 if (p->nr_cpus_allowed > 1) 140 dl_rq->dl_nr_migratory++; 141 142 update_dl_migration(dl_rq); 143 } 144 145 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 146 { 147 struct task_struct *p = dl_task_of(dl_se); 148 149 if (p->nr_cpus_allowed > 1) 150 dl_rq->dl_nr_migratory--; 151 152 update_dl_migration(dl_rq); 153 } 154 155 /* 156 * The list of pushable -deadline task is not a plist, like in 157 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 158 */ 159 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 160 { 161 struct dl_rq *dl_rq = &rq->dl; 162 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node; 163 struct rb_node *parent = NULL; 164 struct task_struct *entry; 165 int leftmost = 1; 166 167 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 168 169 while (*link) { 170 parent = *link; 171 entry = rb_entry(parent, struct task_struct, 172 pushable_dl_tasks); 173 if (dl_entity_preempt(&p->dl, &entry->dl)) 174 link = &parent->rb_left; 175 else { 176 link = &parent->rb_right; 177 leftmost = 0; 178 } 179 } 180 181 if (leftmost) 182 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks; 183 184 rb_link_node(&p->pushable_dl_tasks, parent, link); 185 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 186 } 187 188 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 189 { 190 struct dl_rq *dl_rq = &rq->dl; 191 192 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 193 return; 194 195 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) { 196 struct rb_node *next_node; 197 198 next_node = rb_next(&p->pushable_dl_tasks); 199 dl_rq->pushable_dl_tasks_leftmost = next_node; 200 } 201 202 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 203 RB_CLEAR_NODE(&p->pushable_dl_tasks); 204 } 205 206 static inline int has_pushable_dl_tasks(struct rq *rq) 207 { 208 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root); 209 } 210 211 static int push_dl_task(struct rq *rq); 212 213 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 214 { 215 return dl_task(prev); 216 } 217 218 static inline void set_post_schedule(struct rq *rq) 219 { 220 rq->post_schedule = has_pushable_dl_tasks(rq); 221 } 222 223 #else 224 225 static inline 226 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 227 { 228 } 229 230 static inline 231 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 232 { 233 } 234 235 static inline 236 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 237 { 238 } 239 240 static inline 241 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 242 { 243 } 244 245 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 246 { 247 return false; 248 } 249 250 static inline int pull_dl_task(struct rq *rq) 251 { 252 return 0; 253 } 254 255 static inline void set_post_schedule(struct rq *rq) 256 { 257 } 258 #endif /* CONFIG_SMP */ 259 260 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 261 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); 262 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 263 int flags); 264 265 /* 266 * We are being explicitly informed that a new instance is starting, 267 * and this means that: 268 * - the absolute deadline of the entity has to be placed at 269 * current time + relative deadline; 270 * - the runtime of the entity has to be set to the maximum value. 271 * 272 * The capability of specifying such event is useful whenever a -deadline 273 * entity wants to (try to!) synchronize its behaviour with the scheduler's 274 * one, and to (try to!) reconcile itself with its own scheduling 275 * parameters. 276 */ 277 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se, 278 struct sched_dl_entity *pi_se) 279 { 280 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 281 struct rq *rq = rq_of_dl_rq(dl_rq); 282 283 WARN_ON(!dl_se->dl_new || dl_se->dl_throttled); 284 285 /* 286 * We use the regular wall clock time to set deadlines in the 287 * future; in fact, we must consider execution overheads (time 288 * spent on hardirq context, etc.). 289 */ 290 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 291 dl_se->runtime = pi_se->dl_runtime; 292 dl_se->dl_new = 0; 293 } 294 295 /* 296 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 297 * possibility of a entity lasting more than what it declared, and thus 298 * exhausting its runtime. 299 * 300 * Here we are interested in making runtime overrun possible, but we do 301 * not want a entity which is misbehaving to affect the scheduling of all 302 * other entities. 303 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 304 * is used, in order to confine each entity within its own bandwidth. 305 * 306 * This function deals exactly with that, and ensures that when the runtime 307 * of a entity is replenished, its deadline is also postponed. That ensures 308 * the overrunning entity can't interfere with other entity in the system and 309 * can't make them miss their deadlines. Reasons why this kind of overruns 310 * could happen are, typically, a entity voluntarily trying to overcome its 311 * runtime, or it just underestimated it during sched_setscheduler_ex(). 312 */ 313 static void replenish_dl_entity(struct sched_dl_entity *dl_se, 314 struct sched_dl_entity *pi_se) 315 { 316 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 317 struct rq *rq = rq_of_dl_rq(dl_rq); 318 319 BUG_ON(pi_se->dl_runtime <= 0); 320 321 /* 322 * This could be the case for a !-dl task that is boosted. 323 * Just go with full inherited parameters. 324 */ 325 if (dl_se->dl_deadline == 0) { 326 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 327 dl_se->runtime = pi_se->dl_runtime; 328 } 329 330 /* 331 * We keep moving the deadline away until we get some 332 * available runtime for the entity. This ensures correct 333 * handling of situations where the runtime overrun is 334 * arbitrary large. 335 */ 336 while (dl_se->runtime <= 0) { 337 dl_se->deadline += pi_se->dl_period; 338 dl_se->runtime += pi_se->dl_runtime; 339 } 340 341 /* 342 * At this point, the deadline really should be "in 343 * the future" with respect to rq->clock. If it's 344 * not, we are, for some reason, lagging too much! 345 * Anyway, after having warn userspace abut that, 346 * we still try to keep the things running by 347 * resetting the deadline and the budget of the 348 * entity. 349 */ 350 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 351 static bool lag_once = false; 352 353 if (!lag_once) { 354 lag_once = true; 355 printk_sched("sched: DL replenish lagged to much\n"); 356 } 357 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 358 dl_se->runtime = pi_se->dl_runtime; 359 } 360 } 361 362 /* 363 * Here we check if --at time t-- an entity (which is probably being 364 * [re]activated or, in general, enqueued) can use its remaining runtime 365 * and its current deadline _without_ exceeding the bandwidth it is 366 * assigned (function returns true if it can't). We are in fact applying 367 * one of the CBS rules: when a task wakes up, if the residual runtime 368 * over residual deadline fits within the allocated bandwidth, then we 369 * can keep the current (absolute) deadline and residual budget without 370 * disrupting the schedulability of the system. Otherwise, we should 371 * refill the runtime and set the deadline a period in the future, 372 * because keeping the current (absolute) deadline of the task would 373 * result in breaking guarantees promised to other tasks (refer to 374 * Documentation/scheduler/sched-deadline.txt for more informations). 375 * 376 * This function returns true if: 377 * 378 * runtime / (deadline - t) > dl_runtime / dl_period , 379 * 380 * IOW we can't recycle current parameters. 381 * 382 * Notice that the bandwidth check is done against the period. For 383 * task with deadline equal to period this is the same of using 384 * dl_deadline instead of dl_period in the equation above. 385 */ 386 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, 387 struct sched_dl_entity *pi_se, u64 t) 388 { 389 u64 left, right; 390 391 /* 392 * left and right are the two sides of the equation above, 393 * after a bit of shuffling to use multiplications instead 394 * of divisions. 395 * 396 * Note that none of the time values involved in the two 397 * multiplications are absolute: dl_deadline and dl_runtime 398 * are the relative deadline and the maximum runtime of each 399 * instance, runtime is the runtime left for the last instance 400 * and (deadline - t), since t is rq->clock, is the time left 401 * to the (absolute) deadline. Even if overflowing the u64 type 402 * is very unlikely to occur in both cases, here we scale down 403 * as we want to avoid that risk at all. Scaling down by 10 404 * means that we reduce granularity to 1us. We are fine with it, 405 * since this is only a true/false check and, anyway, thinking 406 * of anything below microseconds resolution is actually fiction 407 * (but still we want to give the user that illusion >;). 408 */ 409 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 410 right = ((dl_se->deadline - t) >> DL_SCALE) * 411 (pi_se->dl_runtime >> DL_SCALE); 412 413 return dl_time_before(right, left); 414 } 415 416 /* 417 * When a -deadline entity is queued back on the runqueue, its runtime and 418 * deadline might need updating. 419 * 420 * The policy here is that we update the deadline of the entity only if: 421 * - the current deadline is in the past, 422 * - using the remaining runtime with the current deadline would make 423 * the entity exceed its bandwidth. 424 */ 425 static void update_dl_entity(struct sched_dl_entity *dl_se, 426 struct sched_dl_entity *pi_se) 427 { 428 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 429 struct rq *rq = rq_of_dl_rq(dl_rq); 430 431 /* 432 * The arrival of a new instance needs special treatment, i.e., 433 * the actual scheduling parameters have to be "renewed". 434 */ 435 if (dl_se->dl_new) { 436 setup_new_dl_entity(dl_se, pi_se); 437 return; 438 } 439 440 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 441 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) { 442 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 443 dl_se->runtime = pi_se->dl_runtime; 444 } 445 } 446 447 /* 448 * If the entity depleted all its runtime, and if we want it to sleep 449 * while waiting for some new execution time to become available, we 450 * set the bandwidth enforcement timer to the replenishment instant 451 * and try to activate it. 452 * 453 * Notice that it is important for the caller to know if the timer 454 * actually started or not (i.e., the replenishment instant is in 455 * the future or in the past). 456 */ 457 static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted) 458 { 459 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 460 struct rq *rq = rq_of_dl_rq(dl_rq); 461 ktime_t now, act; 462 ktime_t soft, hard; 463 unsigned long range; 464 s64 delta; 465 466 if (boosted) 467 return 0; 468 /* 469 * We want the timer to fire at the deadline, but considering 470 * that it is actually coming from rq->clock and not from 471 * hrtimer's time base reading. 472 */ 473 act = ns_to_ktime(dl_se->deadline); 474 now = hrtimer_cb_get_time(&dl_se->dl_timer); 475 delta = ktime_to_ns(now) - rq_clock(rq); 476 act = ktime_add_ns(act, delta); 477 478 /* 479 * If the expiry time already passed, e.g., because the value 480 * chosen as the deadline is too small, don't even try to 481 * start the timer in the past! 482 */ 483 if (ktime_us_delta(act, now) < 0) 484 return 0; 485 486 hrtimer_set_expires(&dl_se->dl_timer, act); 487 488 soft = hrtimer_get_softexpires(&dl_se->dl_timer); 489 hard = hrtimer_get_expires(&dl_se->dl_timer); 490 range = ktime_to_ns(ktime_sub(hard, soft)); 491 __hrtimer_start_range_ns(&dl_se->dl_timer, soft, 492 range, HRTIMER_MODE_ABS, 0); 493 494 return hrtimer_active(&dl_se->dl_timer); 495 } 496 497 /* 498 * This is the bandwidth enforcement timer callback. If here, we know 499 * a task is not on its dl_rq, since the fact that the timer was running 500 * means the task is throttled and needs a runtime replenishment. 501 * 502 * However, what we actually do depends on the fact the task is active, 503 * (it is on its rq) or has been removed from there by a call to 504 * dequeue_task_dl(). In the former case we must issue the runtime 505 * replenishment and add the task back to the dl_rq; in the latter, we just 506 * do nothing but clearing dl_throttled, so that runtime and deadline 507 * updating (and the queueing back to dl_rq) will be done by the 508 * next call to enqueue_task_dl(). 509 */ 510 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 511 { 512 struct sched_dl_entity *dl_se = container_of(timer, 513 struct sched_dl_entity, 514 dl_timer); 515 struct task_struct *p = dl_task_of(dl_se); 516 struct rq *rq = task_rq(p); 517 raw_spin_lock(&rq->lock); 518 519 /* 520 * We need to take care of a possible races here. In fact, the 521 * task might have changed its scheduling policy to something 522 * different from SCHED_DEADLINE or changed its reservation 523 * parameters (through sched_setscheduler()). 524 */ 525 if (!dl_task(p) || dl_se->dl_new) 526 goto unlock; 527 528 sched_clock_tick(); 529 update_rq_clock(rq); 530 dl_se->dl_throttled = 0; 531 if (p->on_rq) { 532 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 533 if (task_has_dl_policy(rq->curr)) 534 check_preempt_curr_dl(rq, p, 0); 535 else 536 resched_task(rq->curr); 537 #ifdef CONFIG_SMP 538 /* 539 * Queueing this task back might have overloaded rq, 540 * check if we need to kick someone away. 541 */ 542 if (has_pushable_dl_tasks(rq)) 543 push_dl_task(rq); 544 #endif 545 } 546 unlock: 547 raw_spin_unlock(&rq->lock); 548 549 return HRTIMER_NORESTART; 550 } 551 552 void init_dl_task_timer(struct sched_dl_entity *dl_se) 553 { 554 struct hrtimer *timer = &dl_se->dl_timer; 555 556 if (hrtimer_active(timer)) { 557 hrtimer_try_to_cancel(timer); 558 return; 559 } 560 561 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 562 timer->function = dl_task_timer; 563 } 564 565 static 566 int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se) 567 { 568 int dmiss = dl_time_before(dl_se->deadline, rq_clock(rq)); 569 int rorun = dl_se->runtime <= 0; 570 571 if (!rorun && !dmiss) 572 return 0; 573 574 /* 575 * If we are beyond our current deadline and we are still 576 * executing, then we have already used some of the runtime of 577 * the next instance. Thus, if we do not account that, we are 578 * stealing bandwidth from the system at each deadline miss! 579 */ 580 if (dmiss) { 581 dl_se->runtime = rorun ? dl_se->runtime : 0; 582 dl_se->runtime -= rq_clock(rq) - dl_se->deadline; 583 } 584 585 return 1; 586 } 587 588 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 589 590 /* 591 * Update the current task's runtime statistics (provided it is still 592 * a -deadline task and has not been removed from the dl_rq). 593 */ 594 static void update_curr_dl(struct rq *rq) 595 { 596 struct task_struct *curr = rq->curr; 597 struct sched_dl_entity *dl_se = &curr->dl; 598 u64 delta_exec; 599 600 if (!dl_task(curr) || !on_dl_rq(dl_se)) 601 return; 602 603 /* 604 * Consumed budget is computed considering the time as 605 * observed by schedulable tasks (excluding time spent 606 * in hardirq context, etc.). Deadlines are instead 607 * computed using hard walltime. This seems to be the more 608 * natural solution, but the full ramifications of this 609 * approach need further study. 610 */ 611 delta_exec = rq_clock_task(rq) - curr->se.exec_start; 612 if (unlikely((s64)delta_exec <= 0)) 613 return; 614 615 schedstat_set(curr->se.statistics.exec_max, 616 max(curr->se.statistics.exec_max, delta_exec)); 617 618 curr->se.sum_exec_runtime += delta_exec; 619 account_group_exec_runtime(curr, delta_exec); 620 621 curr->se.exec_start = rq_clock_task(rq); 622 cpuacct_charge(curr, delta_exec); 623 624 sched_rt_avg_update(rq, delta_exec); 625 626 dl_se->runtime -= delta_exec; 627 if (dl_runtime_exceeded(rq, dl_se)) { 628 __dequeue_task_dl(rq, curr, 0); 629 if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted))) 630 dl_se->dl_throttled = 1; 631 else 632 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); 633 634 if (!is_leftmost(curr, &rq->dl)) 635 resched_task(curr); 636 } 637 638 /* 639 * Because -- for now -- we share the rt bandwidth, we need to 640 * account our runtime there too, otherwise actual rt tasks 641 * would be able to exceed the shared quota. 642 * 643 * Account to the root rt group for now. 644 * 645 * The solution we're working towards is having the RT groups scheduled 646 * using deadline servers -- however there's a few nasties to figure 647 * out before that can happen. 648 */ 649 if (rt_bandwidth_enabled()) { 650 struct rt_rq *rt_rq = &rq->rt; 651 652 raw_spin_lock(&rt_rq->rt_runtime_lock); 653 /* 654 * We'll let actual RT tasks worry about the overflow here, we 655 * have our own CBS to keep us inline; only account when RT 656 * bandwidth is relevant. 657 */ 658 if (sched_rt_bandwidth_account(rt_rq)) 659 rt_rq->rt_time += delta_exec; 660 raw_spin_unlock(&rt_rq->rt_runtime_lock); 661 } 662 } 663 664 #ifdef CONFIG_SMP 665 666 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu); 667 668 static inline u64 next_deadline(struct rq *rq) 669 { 670 struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu); 671 672 if (next && dl_prio(next->prio)) 673 return next->dl.deadline; 674 else 675 return 0; 676 } 677 678 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 679 { 680 struct rq *rq = rq_of_dl_rq(dl_rq); 681 682 if (dl_rq->earliest_dl.curr == 0 || 683 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 684 /* 685 * If the dl_rq had no -deadline tasks, or if the new task 686 * has shorter deadline than the current one on dl_rq, we 687 * know that the previous earliest becomes our next earliest, 688 * as the new task becomes the earliest itself. 689 */ 690 dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr; 691 dl_rq->earliest_dl.curr = deadline; 692 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1); 693 } else if (dl_rq->earliest_dl.next == 0 || 694 dl_time_before(deadline, dl_rq->earliest_dl.next)) { 695 /* 696 * On the other hand, if the new -deadline task has a 697 * a later deadline than the earliest one on dl_rq, but 698 * it is earlier than the next (if any), we must 699 * recompute the next-earliest. 700 */ 701 dl_rq->earliest_dl.next = next_deadline(rq); 702 } 703 } 704 705 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 706 { 707 struct rq *rq = rq_of_dl_rq(dl_rq); 708 709 /* 710 * Since we may have removed our earliest (and/or next earliest) 711 * task we must recompute them. 712 */ 713 if (!dl_rq->dl_nr_running) { 714 dl_rq->earliest_dl.curr = 0; 715 dl_rq->earliest_dl.next = 0; 716 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); 717 } else { 718 struct rb_node *leftmost = dl_rq->rb_leftmost; 719 struct sched_dl_entity *entry; 720 721 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node); 722 dl_rq->earliest_dl.curr = entry->deadline; 723 dl_rq->earliest_dl.next = next_deadline(rq); 724 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1); 725 } 726 } 727 728 #else 729 730 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 731 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 732 733 #endif /* CONFIG_SMP */ 734 735 static inline 736 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 737 { 738 int prio = dl_task_of(dl_se)->prio; 739 u64 deadline = dl_se->deadline; 740 741 WARN_ON(!dl_prio(prio)); 742 dl_rq->dl_nr_running++; 743 inc_nr_running(rq_of_dl_rq(dl_rq)); 744 745 inc_dl_deadline(dl_rq, deadline); 746 inc_dl_migration(dl_se, dl_rq); 747 } 748 749 static inline 750 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 751 { 752 int prio = dl_task_of(dl_se)->prio; 753 754 WARN_ON(!dl_prio(prio)); 755 WARN_ON(!dl_rq->dl_nr_running); 756 dl_rq->dl_nr_running--; 757 dec_nr_running(rq_of_dl_rq(dl_rq)); 758 759 dec_dl_deadline(dl_rq, dl_se->deadline); 760 dec_dl_migration(dl_se, dl_rq); 761 } 762 763 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 764 { 765 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 766 struct rb_node **link = &dl_rq->rb_root.rb_node; 767 struct rb_node *parent = NULL; 768 struct sched_dl_entity *entry; 769 int leftmost = 1; 770 771 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node)); 772 773 while (*link) { 774 parent = *link; 775 entry = rb_entry(parent, struct sched_dl_entity, rb_node); 776 if (dl_time_before(dl_se->deadline, entry->deadline)) 777 link = &parent->rb_left; 778 else { 779 link = &parent->rb_right; 780 leftmost = 0; 781 } 782 } 783 784 if (leftmost) 785 dl_rq->rb_leftmost = &dl_se->rb_node; 786 787 rb_link_node(&dl_se->rb_node, parent, link); 788 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root); 789 790 inc_dl_tasks(dl_se, dl_rq); 791 } 792 793 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 794 { 795 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 796 797 if (RB_EMPTY_NODE(&dl_se->rb_node)) 798 return; 799 800 if (dl_rq->rb_leftmost == &dl_se->rb_node) { 801 struct rb_node *next_node; 802 803 next_node = rb_next(&dl_se->rb_node); 804 dl_rq->rb_leftmost = next_node; 805 } 806 807 rb_erase(&dl_se->rb_node, &dl_rq->rb_root); 808 RB_CLEAR_NODE(&dl_se->rb_node); 809 810 dec_dl_tasks(dl_se, dl_rq); 811 } 812 813 static void 814 enqueue_dl_entity(struct sched_dl_entity *dl_se, 815 struct sched_dl_entity *pi_se, int flags) 816 { 817 BUG_ON(on_dl_rq(dl_se)); 818 819 /* 820 * If this is a wakeup or a new instance, the scheduling 821 * parameters of the task might need updating. Otherwise, 822 * we want a replenishment of its runtime. 823 */ 824 if (!dl_se->dl_new && flags & ENQUEUE_REPLENISH) 825 replenish_dl_entity(dl_se, pi_se); 826 else 827 update_dl_entity(dl_se, pi_se); 828 829 __enqueue_dl_entity(dl_se); 830 } 831 832 static void dequeue_dl_entity(struct sched_dl_entity *dl_se) 833 { 834 __dequeue_dl_entity(dl_se); 835 } 836 837 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 838 { 839 struct task_struct *pi_task = rt_mutex_get_top_task(p); 840 struct sched_dl_entity *pi_se = &p->dl; 841 842 /* 843 * Use the scheduling parameters of the top pi-waiter 844 * task if we have one and its (relative) deadline is 845 * smaller than our one... OTW we keep our runtime and 846 * deadline. 847 */ 848 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) 849 pi_se = &pi_task->dl; 850 851 /* 852 * If p is throttled, we do nothing. In fact, if it exhausted 853 * its budget it needs a replenishment and, since it now is on 854 * its rq, the bandwidth timer callback (which clearly has not 855 * run yet) will take care of this. 856 */ 857 if (p->dl.dl_throttled) 858 return; 859 860 enqueue_dl_entity(&p->dl, pi_se, flags); 861 862 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 863 enqueue_pushable_dl_task(rq, p); 864 } 865 866 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 867 { 868 dequeue_dl_entity(&p->dl); 869 dequeue_pushable_dl_task(rq, p); 870 } 871 872 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 873 { 874 update_curr_dl(rq); 875 __dequeue_task_dl(rq, p, flags); 876 } 877 878 /* 879 * Yield task semantic for -deadline tasks is: 880 * 881 * get off from the CPU until our next instance, with 882 * a new runtime. This is of little use now, since we 883 * don't have a bandwidth reclaiming mechanism. Anyway, 884 * bandwidth reclaiming is planned for the future, and 885 * yield_task_dl will indicate that some spare budget 886 * is available for other task instances to use it. 887 */ 888 static void yield_task_dl(struct rq *rq) 889 { 890 struct task_struct *p = rq->curr; 891 892 /* 893 * We make the task go to sleep until its current deadline by 894 * forcing its runtime to zero. This way, update_curr_dl() stops 895 * it and the bandwidth timer will wake it up and will give it 896 * new scheduling parameters (thanks to dl_new=1). 897 */ 898 if (p->dl.runtime > 0) { 899 rq->curr->dl.dl_new = 1; 900 p->dl.runtime = 0; 901 } 902 update_curr_dl(rq); 903 } 904 905 #ifdef CONFIG_SMP 906 907 static int find_later_rq(struct task_struct *task); 908 909 static int 910 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags) 911 { 912 struct task_struct *curr; 913 struct rq *rq; 914 915 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 916 goto out; 917 918 rq = cpu_rq(cpu); 919 920 rcu_read_lock(); 921 curr = ACCESS_ONCE(rq->curr); /* unlocked access */ 922 923 /* 924 * If we are dealing with a -deadline task, we must 925 * decide where to wake it up. 926 * If it has a later deadline and the current task 927 * on this rq can't move (provided the waking task 928 * can!) we prefer to send it somewhere else. On the 929 * other hand, if it has a shorter deadline, we 930 * try to make it stay here, it might be important. 931 */ 932 if (unlikely(dl_task(curr)) && 933 (curr->nr_cpus_allowed < 2 || 934 !dl_entity_preempt(&p->dl, &curr->dl)) && 935 (p->nr_cpus_allowed > 1)) { 936 int target = find_later_rq(p); 937 938 if (target != -1) 939 cpu = target; 940 } 941 rcu_read_unlock(); 942 943 out: 944 return cpu; 945 } 946 947 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 948 { 949 /* 950 * Current can't be migrated, useless to reschedule, 951 * let's hope p can move out. 952 */ 953 if (rq->curr->nr_cpus_allowed == 1 || 954 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1) 955 return; 956 957 /* 958 * p is migratable, so let's not schedule it and 959 * see if it is pushed or pulled somewhere else. 960 */ 961 if (p->nr_cpus_allowed != 1 && 962 cpudl_find(&rq->rd->cpudl, p, NULL) != -1) 963 return; 964 965 resched_task(rq->curr); 966 } 967 968 static int pull_dl_task(struct rq *this_rq); 969 970 #endif /* CONFIG_SMP */ 971 972 /* 973 * Only called when both the current and waking task are -deadline 974 * tasks. 975 */ 976 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 977 int flags) 978 { 979 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { 980 resched_task(rq->curr); 981 return; 982 } 983 984 #ifdef CONFIG_SMP 985 /* 986 * In the unlikely case current and p have the same deadline 987 * let us try to decide what's the best thing to do... 988 */ 989 if ((p->dl.deadline == rq->curr->dl.deadline) && 990 !test_tsk_need_resched(rq->curr)) 991 check_preempt_equal_dl(rq, p); 992 #endif /* CONFIG_SMP */ 993 } 994 995 #ifdef CONFIG_SCHED_HRTICK 996 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 997 { 998 s64 delta = p->dl.dl_runtime - p->dl.runtime; 999 1000 if (delta > 10000) 1001 hrtick_start(rq, p->dl.runtime); 1002 } 1003 #endif 1004 1005 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq, 1006 struct dl_rq *dl_rq) 1007 { 1008 struct rb_node *left = dl_rq->rb_leftmost; 1009 1010 if (!left) 1011 return NULL; 1012 1013 return rb_entry(left, struct sched_dl_entity, rb_node); 1014 } 1015 1016 struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev) 1017 { 1018 struct sched_dl_entity *dl_se; 1019 struct task_struct *p; 1020 struct dl_rq *dl_rq; 1021 1022 dl_rq = &rq->dl; 1023 1024 if (need_pull_dl_task(rq, prev)) { 1025 pull_dl_task(rq); 1026 /* 1027 * pull_rt_task() can drop (and re-acquire) rq->lock; this 1028 * means a stop task can slip in, in which case we need to 1029 * re-start task selection. 1030 */ 1031 if (rq->stop && rq->stop->on_rq) 1032 return RETRY_TASK; 1033 } 1034 1035 /* 1036 * When prev is DL, we may throttle it in put_prev_task(). 1037 * So, we update time before we check for dl_nr_running. 1038 */ 1039 if (prev->sched_class == &dl_sched_class) 1040 update_curr_dl(rq); 1041 1042 if (unlikely(!dl_rq->dl_nr_running)) 1043 return NULL; 1044 1045 put_prev_task(rq, prev); 1046 1047 dl_se = pick_next_dl_entity(rq, dl_rq); 1048 BUG_ON(!dl_se); 1049 1050 p = dl_task_of(dl_se); 1051 p->se.exec_start = rq_clock_task(rq); 1052 1053 /* Running task will never be pushed. */ 1054 dequeue_pushable_dl_task(rq, p); 1055 1056 #ifdef CONFIG_SCHED_HRTICK 1057 if (hrtick_enabled(rq)) 1058 start_hrtick_dl(rq, p); 1059 #endif 1060 1061 set_post_schedule(rq); 1062 1063 return p; 1064 } 1065 1066 static void put_prev_task_dl(struct rq *rq, struct task_struct *p) 1067 { 1068 update_curr_dl(rq); 1069 1070 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 1071 enqueue_pushable_dl_task(rq, p); 1072 } 1073 1074 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 1075 { 1076 update_curr_dl(rq); 1077 1078 #ifdef CONFIG_SCHED_HRTICK 1079 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0) 1080 start_hrtick_dl(rq, p); 1081 #endif 1082 } 1083 1084 static void task_fork_dl(struct task_struct *p) 1085 { 1086 /* 1087 * SCHED_DEADLINE tasks cannot fork and this is achieved through 1088 * sched_fork() 1089 */ 1090 } 1091 1092 static void task_dead_dl(struct task_struct *p) 1093 { 1094 struct hrtimer *timer = &p->dl.dl_timer; 1095 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1096 1097 /* 1098 * Since we are TASK_DEAD we won't slip out of the domain! 1099 */ 1100 raw_spin_lock_irq(&dl_b->lock); 1101 dl_b->total_bw -= p->dl.dl_bw; 1102 raw_spin_unlock_irq(&dl_b->lock); 1103 1104 hrtimer_cancel(timer); 1105 } 1106 1107 static void set_curr_task_dl(struct rq *rq) 1108 { 1109 struct task_struct *p = rq->curr; 1110 1111 p->se.exec_start = rq_clock_task(rq); 1112 1113 /* You can't push away the running task */ 1114 dequeue_pushable_dl_task(rq, p); 1115 } 1116 1117 #ifdef CONFIG_SMP 1118 1119 /* Only try algorithms three times */ 1120 #define DL_MAX_TRIES 3 1121 1122 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) 1123 { 1124 if (!task_running(rq, p) && 1125 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) && 1126 (p->nr_cpus_allowed > 1)) 1127 return 1; 1128 1129 return 0; 1130 } 1131 1132 /* Returns the second earliest -deadline task, NULL otherwise */ 1133 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu) 1134 { 1135 struct rb_node *next_node = rq->dl.rb_leftmost; 1136 struct sched_dl_entity *dl_se; 1137 struct task_struct *p = NULL; 1138 1139 next_node: 1140 next_node = rb_next(next_node); 1141 if (next_node) { 1142 dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node); 1143 p = dl_task_of(dl_se); 1144 1145 if (pick_dl_task(rq, p, cpu)) 1146 return p; 1147 1148 goto next_node; 1149 } 1150 1151 return NULL; 1152 } 1153 1154 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 1155 1156 static int find_later_rq(struct task_struct *task) 1157 { 1158 struct sched_domain *sd; 1159 struct cpumask *later_mask = __get_cpu_var(local_cpu_mask_dl); 1160 int this_cpu = smp_processor_id(); 1161 int best_cpu, cpu = task_cpu(task); 1162 1163 /* Make sure the mask is initialized first */ 1164 if (unlikely(!later_mask)) 1165 return -1; 1166 1167 if (task->nr_cpus_allowed == 1) 1168 return -1; 1169 1170 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl, 1171 task, later_mask); 1172 if (best_cpu == -1) 1173 return -1; 1174 1175 /* 1176 * If we are here, some target has been found, 1177 * the most suitable of which is cached in best_cpu. 1178 * This is, among the runqueues where the current tasks 1179 * have later deadlines than the task's one, the rq 1180 * with the latest possible one. 1181 * 1182 * Now we check how well this matches with task's 1183 * affinity and system topology. 1184 * 1185 * The last cpu where the task run is our first 1186 * guess, since it is most likely cache-hot there. 1187 */ 1188 if (cpumask_test_cpu(cpu, later_mask)) 1189 return cpu; 1190 /* 1191 * Check if this_cpu is to be skipped (i.e., it is 1192 * not in the mask) or not. 1193 */ 1194 if (!cpumask_test_cpu(this_cpu, later_mask)) 1195 this_cpu = -1; 1196 1197 rcu_read_lock(); 1198 for_each_domain(cpu, sd) { 1199 if (sd->flags & SD_WAKE_AFFINE) { 1200 1201 /* 1202 * If possible, preempting this_cpu is 1203 * cheaper than migrating. 1204 */ 1205 if (this_cpu != -1 && 1206 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1207 rcu_read_unlock(); 1208 return this_cpu; 1209 } 1210 1211 /* 1212 * Last chance: if best_cpu is valid and is 1213 * in the mask, that becomes our choice. 1214 */ 1215 if (best_cpu < nr_cpu_ids && 1216 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) { 1217 rcu_read_unlock(); 1218 return best_cpu; 1219 } 1220 } 1221 } 1222 rcu_read_unlock(); 1223 1224 /* 1225 * At this point, all our guesses failed, we just return 1226 * 'something', and let the caller sort the things out. 1227 */ 1228 if (this_cpu != -1) 1229 return this_cpu; 1230 1231 cpu = cpumask_any(later_mask); 1232 if (cpu < nr_cpu_ids) 1233 return cpu; 1234 1235 return -1; 1236 } 1237 1238 /* Locks the rq it finds */ 1239 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 1240 { 1241 struct rq *later_rq = NULL; 1242 int tries; 1243 int cpu; 1244 1245 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 1246 cpu = find_later_rq(task); 1247 1248 if ((cpu == -1) || (cpu == rq->cpu)) 1249 break; 1250 1251 later_rq = cpu_rq(cpu); 1252 1253 /* Retry if something changed. */ 1254 if (double_lock_balance(rq, later_rq)) { 1255 if (unlikely(task_rq(task) != rq || 1256 !cpumask_test_cpu(later_rq->cpu, 1257 &task->cpus_allowed) || 1258 task_running(rq, task) || !task->on_rq)) { 1259 double_unlock_balance(rq, later_rq); 1260 later_rq = NULL; 1261 break; 1262 } 1263 } 1264 1265 /* 1266 * If the rq we found has no -deadline task, or 1267 * its earliest one has a later deadline than our 1268 * task, the rq is a good one. 1269 */ 1270 if (!later_rq->dl.dl_nr_running || 1271 dl_time_before(task->dl.deadline, 1272 later_rq->dl.earliest_dl.curr)) 1273 break; 1274 1275 /* Otherwise we try again. */ 1276 double_unlock_balance(rq, later_rq); 1277 later_rq = NULL; 1278 } 1279 1280 return later_rq; 1281 } 1282 1283 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 1284 { 1285 struct task_struct *p; 1286 1287 if (!has_pushable_dl_tasks(rq)) 1288 return NULL; 1289 1290 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost, 1291 struct task_struct, pushable_dl_tasks); 1292 1293 BUG_ON(rq->cpu != task_cpu(p)); 1294 BUG_ON(task_current(rq, p)); 1295 BUG_ON(p->nr_cpus_allowed <= 1); 1296 1297 BUG_ON(!p->on_rq); 1298 BUG_ON(!dl_task(p)); 1299 1300 return p; 1301 } 1302 1303 /* 1304 * See if the non running -deadline tasks on this rq 1305 * can be sent to some other CPU where they can preempt 1306 * and start executing. 1307 */ 1308 static int push_dl_task(struct rq *rq) 1309 { 1310 struct task_struct *next_task; 1311 struct rq *later_rq; 1312 1313 if (!rq->dl.overloaded) 1314 return 0; 1315 1316 next_task = pick_next_pushable_dl_task(rq); 1317 if (!next_task) 1318 return 0; 1319 1320 retry: 1321 if (unlikely(next_task == rq->curr)) { 1322 WARN_ON(1); 1323 return 0; 1324 } 1325 1326 /* 1327 * If next_task preempts rq->curr, and rq->curr 1328 * can move away, it makes sense to just reschedule 1329 * without going further in pushing next_task. 1330 */ 1331 if (dl_task(rq->curr) && 1332 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && 1333 rq->curr->nr_cpus_allowed > 1) { 1334 resched_task(rq->curr); 1335 return 0; 1336 } 1337 1338 /* We might release rq lock */ 1339 get_task_struct(next_task); 1340 1341 /* Will lock the rq it'll find */ 1342 later_rq = find_lock_later_rq(next_task, rq); 1343 if (!later_rq) { 1344 struct task_struct *task; 1345 1346 /* 1347 * We must check all this again, since 1348 * find_lock_later_rq releases rq->lock and it is 1349 * then possible that next_task has migrated. 1350 */ 1351 task = pick_next_pushable_dl_task(rq); 1352 if (task_cpu(next_task) == rq->cpu && task == next_task) { 1353 /* 1354 * The task is still there. We don't try 1355 * again, some other cpu will pull it when ready. 1356 */ 1357 dequeue_pushable_dl_task(rq, next_task); 1358 goto out; 1359 } 1360 1361 if (!task) 1362 /* No more tasks */ 1363 goto out; 1364 1365 put_task_struct(next_task); 1366 next_task = task; 1367 goto retry; 1368 } 1369 1370 deactivate_task(rq, next_task, 0); 1371 set_task_cpu(next_task, later_rq->cpu); 1372 activate_task(later_rq, next_task, 0); 1373 1374 resched_task(later_rq->curr); 1375 1376 double_unlock_balance(rq, later_rq); 1377 1378 out: 1379 put_task_struct(next_task); 1380 1381 return 1; 1382 } 1383 1384 static void push_dl_tasks(struct rq *rq) 1385 { 1386 /* Terminates as it moves a -deadline task */ 1387 while (push_dl_task(rq)) 1388 ; 1389 } 1390 1391 static int pull_dl_task(struct rq *this_rq) 1392 { 1393 int this_cpu = this_rq->cpu, ret = 0, cpu; 1394 struct task_struct *p; 1395 struct rq *src_rq; 1396 u64 dmin = LONG_MAX; 1397 1398 if (likely(!dl_overloaded(this_rq))) 1399 return 0; 1400 1401 /* 1402 * Match the barrier from dl_set_overloaded; this guarantees that if we 1403 * see overloaded we must also see the dlo_mask bit. 1404 */ 1405 smp_rmb(); 1406 1407 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 1408 if (this_cpu == cpu) 1409 continue; 1410 1411 src_rq = cpu_rq(cpu); 1412 1413 /* 1414 * It looks racy, abd it is! However, as in sched_rt.c, 1415 * we are fine with this. 1416 */ 1417 if (this_rq->dl.dl_nr_running && 1418 dl_time_before(this_rq->dl.earliest_dl.curr, 1419 src_rq->dl.earliest_dl.next)) 1420 continue; 1421 1422 /* Might drop this_rq->lock */ 1423 double_lock_balance(this_rq, src_rq); 1424 1425 /* 1426 * If there are no more pullable tasks on the 1427 * rq, we're done with it. 1428 */ 1429 if (src_rq->dl.dl_nr_running <= 1) 1430 goto skip; 1431 1432 p = pick_next_earliest_dl_task(src_rq, this_cpu); 1433 1434 /* 1435 * We found a task to be pulled if: 1436 * - it preempts our current (if there's one), 1437 * - it will preempt the last one we pulled (if any). 1438 */ 1439 if (p && dl_time_before(p->dl.deadline, dmin) && 1440 (!this_rq->dl.dl_nr_running || 1441 dl_time_before(p->dl.deadline, 1442 this_rq->dl.earliest_dl.curr))) { 1443 WARN_ON(p == src_rq->curr); 1444 WARN_ON(!p->on_rq); 1445 1446 /* 1447 * Then we pull iff p has actually an earlier 1448 * deadline than the current task of its runqueue. 1449 */ 1450 if (dl_time_before(p->dl.deadline, 1451 src_rq->curr->dl.deadline)) 1452 goto skip; 1453 1454 ret = 1; 1455 1456 deactivate_task(src_rq, p, 0); 1457 set_task_cpu(p, this_cpu); 1458 activate_task(this_rq, p, 0); 1459 dmin = p->dl.deadline; 1460 1461 /* Is there any other task even earlier? */ 1462 } 1463 skip: 1464 double_unlock_balance(this_rq, src_rq); 1465 } 1466 1467 return ret; 1468 } 1469 1470 static void post_schedule_dl(struct rq *rq) 1471 { 1472 push_dl_tasks(rq); 1473 } 1474 1475 /* 1476 * Since the task is not running and a reschedule is not going to happen 1477 * anytime soon on its runqueue, we try pushing it away now. 1478 */ 1479 static void task_woken_dl(struct rq *rq, struct task_struct *p) 1480 { 1481 if (!task_running(rq, p) && 1482 !test_tsk_need_resched(rq->curr) && 1483 has_pushable_dl_tasks(rq) && 1484 p->nr_cpus_allowed > 1 && 1485 dl_task(rq->curr) && 1486 (rq->curr->nr_cpus_allowed < 2 || 1487 dl_entity_preempt(&rq->curr->dl, &p->dl))) { 1488 push_dl_tasks(rq); 1489 } 1490 } 1491 1492 static void set_cpus_allowed_dl(struct task_struct *p, 1493 const struct cpumask *new_mask) 1494 { 1495 struct rq *rq; 1496 int weight; 1497 1498 BUG_ON(!dl_task(p)); 1499 1500 /* 1501 * Update only if the task is actually running (i.e., 1502 * it is on the rq AND it is not throttled). 1503 */ 1504 if (!on_dl_rq(&p->dl)) 1505 return; 1506 1507 weight = cpumask_weight(new_mask); 1508 1509 /* 1510 * Only update if the process changes its state from whether it 1511 * can migrate or not. 1512 */ 1513 if ((p->nr_cpus_allowed > 1) == (weight > 1)) 1514 return; 1515 1516 rq = task_rq(p); 1517 1518 /* 1519 * The process used to be able to migrate OR it can now migrate 1520 */ 1521 if (weight <= 1) { 1522 if (!task_current(rq, p)) 1523 dequeue_pushable_dl_task(rq, p); 1524 BUG_ON(!rq->dl.dl_nr_migratory); 1525 rq->dl.dl_nr_migratory--; 1526 } else { 1527 if (!task_current(rq, p)) 1528 enqueue_pushable_dl_task(rq, p); 1529 rq->dl.dl_nr_migratory++; 1530 } 1531 1532 update_dl_migration(&rq->dl); 1533 } 1534 1535 /* Assumes rq->lock is held */ 1536 static void rq_online_dl(struct rq *rq) 1537 { 1538 if (rq->dl.overloaded) 1539 dl_set_overload(rq); 1540 1541 if (rq->dl.dl_nr_running > 0) 1542 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1); 1543 } 1544 1545 /* Assumes rq->lock is held */ 1546 static void rq_offline_dl(struct rq *rq) 1547 { 1548 if (rq->dl.overloaded) 1549 dl_clear_overload(rq); 1550 1551 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); 1552 } 1553 1554 void init_sched_dl_class(void) 1555 { 1556 unsigned int i; 1557 1558 for_each_possible_cpu(i) 1559 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 1560 GFP_KERNEL, cpu_to_node(i)); 1561 } 1562 1563 #endif /* CONFIG_SMP */ 1564 1565 static void switched_from_dl(struct rq *rq, struct task_struct *p) 1566 { 1567 if (hrtimer_active(&p->dl.dl_timer) && !dl_policy(p->policy)) 1568 hrtimer_try_to_cancel(&p->dl.dl_timer); 1569 1570 #ifdef CONFIG_SMP 1571 /* 1572 * Since this might be the only -deadline task on the rq, 1573 * this is the right place to try to pull some other one 1574 * from an overloaded cpu, if any. 1575 */ 1576 if (!rq->dl.dl_nr_running) 1577 pull_dl_task(rq); 1578 #endif 1579 } 1580 1581 /* 1582 * When switching to -deadline, we may overload the rq, then 1583 * we try to push someone off, if possible. 1584 */ 1585 static void switched_to_dl(struct rq *rq, struct task_struct *p) 1586 { 1587 int check_resched = 1; 1588 1589 /* 1590 * If p is throttled, don't consider the possibility 1591 * of preempting rq->curr, the check will be done right 1592 * after its runtime will get replenished. 1593 */ 1594 if (unlikely(p->dl.dl_throttled)) 1595 return; 1596 1597 if (p->on_rq && rq->curr != p) { 1598 #ifdef CONFIG_SMP 1599 if (rq->dl.overloaded && push_dl_task(rq) && rq != task_rq(p)) 1600 /* Only reschedule if pushing failed */ 1601 check_resched = 0; 1602 #endif /* CONFIG_SMP */ 1603 if (check_resched && task_has_dl_policy(rq->curr)) 1604 check_preempt_curr_dl(rq, p, 0); 1605 } 1606 } 1607 1608 /* 1609 * If the scheduling parameters of a -deadline task changed, 1610 * a push or pull operation might be needed. 1611 */ 1612 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 1613 int oldprio) 1614 { 1615 if (p->on_rq || rq->curr == p) { 1616 #ifdef CONFIG_SMP 1617 /* 1618 * This might be too much, but unfortunately 1619 * we don't have the old deadline value, and 1620 * we can't argue if the task is increasing 1621 * or lowering its prio, so... 1622 */ 1623 if (!rq->dl.overloaded) 1624 pull_dl_task(rq); 1625 1626 /* 1627 * If we now have a earlier deadline task than p, 1628 * then reschedule, provided p is still on this 1629 * runqueue. 1630 */ 1631 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) && 1632 rq->curr == p) 1633 resched_task(p); 1634 #else 1635 /* 1636 * Again, we don't know if p has a earlier 1637 * or later deadline, so let's blindly set a 1638 * (maybe not needed) rescheduling point. 1639 */ 1640 resched_task(p); 1641 #endif /* CONFIG_SMP */ 1642 } else 1643 switched_to_dl(rq, p); 1644 } 1645 1646 const struct sched_class dl_sched_class = { 1647 .next = &rt_sched_class, 1648 .enqueue_task = enqueue_task_dl, 1649 .dequeue_task = dequeue_task_dl, 1650 .yield_task = yield_task_dl, 1651 1652 .check_preempt_curr = check_preempt_curr_dl, 1653 1654 .pick_next_task = pick_next_task_dl, 1655 .put_prev_task = put_prev_task_dl, 1656 1657 #ifdef CONFIG_SMP 1658 .select_task_rq = select_task_rq_dl, 1659 .set_cpus_allowed = set_cpus_allowed_dl, 1660 .rq_online = rq_online_dl, 1661 .rq_offline = rq_offline_dl, 1662 .post_schedule = post_schedule_dl, 1663 .task_woken = task_woken_dl, 1664 #endif 1665 1666 .set_curr_task = set_curr_task_dl, 1667 .task_tick = task_tick_dl, 1668 .task_fork = task_fork_dl, 1669 .task_dead = task_dead_dl, 1670 1671 .prio_changed = prio_changed_dl, 1672 .switched_from = switched_from_dl, 1673 .switched_to = switched_to_dl, 1674 }; 1675