1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Deadline Scheduling Class (SCHED_DEADLINE) 4 * 5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 6 * 7 * Tasks that periodically executes their instances for less than their 8 * runtime won't miss any of their deadlines. 9 * Tasks that are not periodic or sporadic or that tries to execute more 10 * than their reserved bandwidth will be slowed down (and may potentially 11 * miss some of their deadlines), and won't affect any other task. 12 * 13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 14 * Juri Lelli <juri.lelli@gmail.com>, 15 * Michael Trimarchi <michael@amarulasolutions.com>, 16 * Fabio Checconi <fchecconi@gmail.com> 17 */ 18 19 #include <linux/cpuset.h> 20 21 /* 22 * Default limits for DL period; on the top end we guard against small util 23 * tasks still getting ridiculously long effective runtimes, on the bottom end we 24 * guard against timer DoS. 25 */ 26 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */ 27 static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */ 28 #ifdef CONFIG_SYSCTL 29 static struct ctl_table sched_dl_sysctls[] = { 30 { 31 .procname = "sched_deadline_period_max_us", 32 .data = &sysctl_sched_dl_period_max, 33 .maxlen = sizeof(unsigned int), 34 .mode = 0644, 35 .proc_handler = proc_douintvec_minmax, 36 .extra1 = (void *)&sysctl_sched_dl_period_min, 37 }, 38 { 39 .procname = "sched_deadline_period_min_us", 40 .data = &sysctl_sched_dl_period_min, 41 .maxlen = sizeof(unsigned int), 42 .mode = 0644, 43 .proc_handler = proc_douintvec_minmax, 44 .extra2 = (void *)&sysctl_sched_dl_period_max, 45 }, 46 {} 47 }; 48 49 static int __init sched_dl_sysctl_init(void) 50 { 51 register_sysctl_init("kernel", sched_dl_sysctls); 52 return 0; 53 } 54 late_initcall(sched_dl_sysctl_init); 55 #endif 56 57 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 58 { 59 return container_of(dl_se, struct task_struct, dl); 60 } 61 62 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 63 { 64 return container_of(dl_rq, struct rq, dl); 65 } 66 67 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 68 { 69 struct task_struct *p = dl_task_of(dl_se); 70 struct rq *rq = task_rq(p); 71 72 return &rq->dl; 73 } 74 75 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 76 { 77 return !RB_EMPTY_NODE(&dl_se->rb_node); 78 } 79 80 #ifdef CONFIG_RT_MUTEXES 81 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 82 { 83 return dl_se->pi_se; 84 } 85 86 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 87 { 88 return pi_of(dl_se) != dl_se; 89 } 90 #else 91 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se) 92 { 93 return dl_se; 94 } 95 96 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se) 97 { 98 return false; 99 } 100 #endif 101 102 #ifdef CONFIG_SMP 103 static inline struct dl_bw *dl_bw_of(int i) 104 { 105 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 106 "sched RCU must be held"); 107 return &cpu_rq(i)->rd->dl_bw; 108 } 109 110 static inline int dl_bw_cpus(int i) 111 { 112 struct root_domain *rd = cpu_rq(i)->rd; 113 int cpus; 114 115 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 116 "sched RCU must be held"); 117 118 if (cpumask_subset(rd->span, cpu_active_mask)) 119 return cpumask_weight(rd->span); 120 121 cpus = 0; 122 123 for_each_cpu_and(i, rd->span, cpu_active_mask) 124 cpus++; 125 126 return cpus; 127 } 128 129 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask) 130 { 131 unsigned long cap = 0; 132 int i; 133 134 for_each_cpu_and(i, mask, cpu_active_mask) 135 cap += capacity_orig_of(i); 136 137 return cap; 138 } 139 140 /* 141 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity 142 * of the CPU the task is running on rather rd's \Sum CPU capacity. 143 */ 144 static inline unsigned long dl_bw_capacity(int i) 145 { 146 if (!sched_asym_cpucap_active() && 147 capacity_orig_of(i) == SCHED_CAPACITY_SCALE) { 148 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT; 149 } else { 150 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 151 "sched RCU must be held"); 152 153 return __dl_bw_capacity(cpu_rq(i)->rd->span); 154 } 155 } 156 157 static inline bool dl_bw_visited(int cpu, u64 gen) 158 { 159 struct root_domain *rd = cpu_rq(cpu)->rd; 160 161 if (rd->visit_gen == gen) 162 return true; 163 164 rd->visit_gen = gen; 165 return false; 166 } 167 168 static inline 169 void __dl_update(struct dl_bw *dl_b, s64 bw) 170 { 171 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); 172 int i; 173 174 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 175 "sched RCU must be held"); 176 for_each_cpu_and(i, rd->span, cpu_active_mask) { 177 struct rq *rq = cpu_rq(i); 178 179 rq->dl.extra_bw += bw; 180 } 181 } 182 #else 183 static inline struct dl_bw *dl_bw_of(int i) 184 { 185 return &cpu_rq(i)->dl.dl_bw; 186 } 187 188 static inline int dl_bw_cpus(int i) 189 { 190 return 1; 191 } 192 193 static inline unsigned long dl_bw_capacity(int i) 194 { 195 return SCHED_CAPACITY_SCALE; 196 } 197 198 static inline bool dl_bw_visited(int cpu, u64 gen) 199 { 200 return false; 201 } 202 203 static inline 204 void __dl_update(struct dl_bw *dl_b, s64 bw) 205 { 206 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw); 207 208 dl->extra_bw += bw; 209 } 210 #endif 211 212 static inline 213 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 214 { 215 dl_b->total_bw -= tsk_bw; 216 __dl_update(dl_b, (s32)tsk_bw / cpus); 217 } 218 219 static inline 220 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 221 { 222 dl_b->total_bw += tsk_bw; 223 __dl_update(dl_b, -((s32)tsk_bw / cpus)); 224 } 225 226 static inline bool 227 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw) 228 { 229 return dl_b->bw != -1 && 230 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw; 231 } 232 233 static inline 234 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 235 { 236 u64 old = dl_rq->running_bw; 237 238 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 239 dl_rq->running_bw += dl_bw; 240 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */ 241 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 242 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 243 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 244 } 245 246 static inline 247 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 248 { 249 u64 old = dl_rq->running_bw; 250 251 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 252 dl_rq->running_bw -= dl_bw; 253 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */ 254 if (dl_rq->running_bw > old) 255 dl_rq->running_bw = 0; 256 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 257 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 258 } 259 260 static inline 261 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 262 { 263 u64 old = dl_rq->this_bw; 264 265 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 266 dl_rq->this_bw += dl_bw; 267 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */ 268 } 269 270 static inline 271 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 272 { 273 u64 old = dl_rq->this_bw; 274 275 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq)); 276 dl_rq->this_bw -= dl_bw; 277 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */ 278 if (dl_rq->this_bw > old) 279 dl_rq->this_bw = 0; 280 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 281 } 282 283 static inline 284 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 285 { 286 if (!dl_entity_is_special(dl_se)) 287 __add_rq_bw(dl_se->dl_bw, dl_rq); 288 } 289 290 static inline 291 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 292 { 293 if (!dl_entity_is_special(dl_se)) 294 __sub_rq_bw(dl_se->dl_bw, dl_rq); 295 } 296 297 static inline 298 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 299 { 300 if (!dl_entity_is_special(dl_se)) 301 __add_running_bw(dl_se->dl_bw, dl_rq); 302 } 303 304 static inline 305 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 306 { 307 if (!dl_entity_is_special(dl_se)) 308 __sub_running_bw(dl_se->dl_bw, dl_rq); 309 } 310 311 static void dl_change_utilization(struct task_struct *p, u64 new_bw) 312 { 313 struct rq *rq; 314 315 WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV); 316 317 if (task_on_rq_queued(p)) 318 return; 319 320 rq = task_rq(p); 321 if (p->dl.dl_non_contending) { 322 sub_running_bw(&p->dl, &rq->dl); 323 p->dl.dl_non_contending = 0; 324 /* 325 * If the timer handler is currently running and the 326 * timer cannot be canceled, inactive_task_timer() 327 * will see that dl_not_contending is not set, and 328 * will not touch the rq's active utilization, 329 * so we are still safe. 330 */ 331 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 332 put_task_struct(p); 333 } 334 __sub_rq_bw(p->dl.dl_bw, &rq->dl); 335 __add_rq_bw(new_bw, &rq->dl); 336 } 337 338 /* 339 * The utilization of a task cannot be immediately removed from 340 * the rq active utilization (running_bw) when the task blocks. 341 * Instead, we have to wait for the so called "0-lag time". 342 * 343 * If a task blocks before the "0-lag time", a timer (the inactive 344 * timer) is armed, and running_bw is decreased when the timer 345 * fires. 346 * 347 * If the task wakes up again before the inactive timer fires, 348 * the timer is canceled, whereas if the task wakes up after the 349 * inactive timer fired (and running_bw has been decreased) the 350 * task's utilization has to be added to running_bw again. 351 * A flag in the deadline scheduling entity (dl_non_contending) 352 * is used to avoid race conditions between the inactive timer handler 353 * and task wakeups. 354 * 355 * The following diagram shows how running_bw is updated. A task is 356 * "ACTIVE" when its utilization contributes to running_bw; an 357 * "ACTIVE contending" task is in the TASK_RUNNING state, while an 358 * "ACTIVE non contending" task is a blocked task for which the "0-lag time" 359 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag" 360 * time already passed, which does not contribute to running_bw anymore. 361 * +------------------+ 362 * wakeup | ACTIVE | 363 * +------------------>+ contending | 364 * | add_running_bw | | 365 * | +----+------+------+ 366 * | | ^ 367 * | dequeue | | 368 * +--------+-------+ | | 369 * | | t >= 0-lag | | wakeup 370 * | INACTIVE |<---------------+ | 371 * | | sub_running_bw | | 372 * +--------+-------+ | | 373 * ^ | | 374 * | t < 0-lag | | 375 * | | | 376 * | V | 377 * | +----+------+------+ 378 * | sub_running_bw | ACTIVE | 379 * +-------------------+ | 380 * inactive timer | non contending | 381 * fired +------------------+ 382 * 383 * The task_non_contending() function is invoked when a task 384 * blocks, and checks if the 0-lag time already passed or 385 * not (in the first case, it directly updates running_bw; 386 * in the second case, it arms the inactive timer). 387 * 388 * The task_contending() function is invoked when a task wakes 389 * up, and checks if the task is still in the "ACTIVE non contending" 390 * state or not (in the second case, it updates running_bw). 391 */ 392 static void task_non_contending(struct task_struct *p) 393 { 394 struct sched_dl_entity *dl_se = &p->dl; 395 struct hrtimer *timer = &dl_se->inactive_timer; 396 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 397 struct rq *rq = rq_of_dl_rq(dl_rq); 398 s64 zerolag_time; 399 400 /* 401 * If this is a non-deadline task that has been boosted, 402 * do nothing 403 */ 404 if (dl_se->dl_runtime == 0) 405 return; 406 407 if (dl_entity_is_special(dl_se)) 408 return; 409 410 WARN_ON(dl_se->dl_non_contending); 411 412 zerolag_time = dl_se->deadline - 413 div64_long((dl_se->runtime * dl_se->dl_period), 414 dl_se->dl_runtime); 415 416 /* 417 * Using relative times instead of the absolute "0-lag time" 418 * allows to simplify the code 419 */ 420 zerolag_time -= rq_clock(rq); 421 422 /* 423 * If the "0-lag time" already passed, decrease the active 424 * utilization now, instead of starting a timer 425 */ 426 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) { 427 if (dl_task(p)) 428 sub_running_bw(dl_se, dl_rq); 429 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) { 430 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 431 432 if (READ_ONCE(p->__state) == TASK_DEAD) 433 sub_rq_bw(&p->dl, &rq->dl); 434 raw_spin_lock(&dl_b->lock); 435 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 436 raw_spin_unlock(&dl_b->lock); 437 __dl_clear_params(p); 438 } 439 440 return; 441 } 442 443 dl_se->dl_non_contending = 1; 444 get_task_struct(p); 445 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD); 446 } 447 448 static void task_contending(struct sched_dl_entity *dl_se, int flags) 449 { 450 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 451 452 /* 453 * If this is a non-deadline task that has been boosted, 454 * do nothing 455 */ 456 if (dl_se->dl_runtime == 0) 457 return; 458 459 if (flags & ENQUEUE_MIGRATED) 460 add_rq_bw(dl_se, dl_rq); 461 462 if (dl_se->dl_non_contending) { 463 dl_se->dl_non_contending = 0; 464 /* 465 * If the timer handler is currently running and the 466 * timer cannot be canceled, inactive_task_timer() 467 * will see that dl_not_contending is not set, and 468 * will not touch the rq's active utilization, 469 * so we are still safe. 470 */ 471 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) 472 put_task_struct(dl_task_of(dl_se)); 473 } else { 474 /* 475 * Since "dl_non_contending" is not set, the 476 * task's utilization has already been removed from 477 * active utilization (either when the task blocked, 478 * when the "inactive timer" fired). 479 * So, add it back. 480 */ 481 add_running_bw(dl_se, dl_rq); 482 } 483 } 484 485 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) 486 { 487 struct sched_dl_entity *dl_se = &p->dl; 488 489 return rb_first_cached(&dl_rq->root) == &dl_se->rb_node; 490 } 491 492 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq); 493 494 void init_dl_bw(struct dl_bw *dl_b) 495 { 496 raw_spin_lock_init(&dl_b->lock); 497 if (global_rt_runtime() == RUNTIME_INF) 498 dl_b->bw = -1; 499 else 500 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 501 dl_b->total_bw = 0; 502 } 503 504 void init_dl_rq(struct dl_rq *dl_rq) 505 { 506 dl_rq->root = RB_ROOT_CACHED; 507 508 #ifdef CONFIG_SMP 509 /* zero means no -deadline tasks */ 510 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 511 512 dl_rq->dl_nr_migratory = 0; 513 dl_rq->overloaded = 0; 514 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED; 515 #else 516 init_dl_bw(&dl_rq->dl_bw); 517 #endif 518 519 dl_rq->running_bw = 0; 520 dl_rq->this_bw = 0; 521 init_dl_rq_bw_ratio(dl_rq); 522 } 523 524 #ifdef CONFIG_SMP 525 526 static inline int dl_overloaded(struct rq *rq) 527 { 528 return atomic_read(&rq->rd->dlo_count); 529 } 530 531 static inline void dl_set_overload(struct rq *rq) 532 { 533 if (!rq->online) 534 return; 535 536 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 537 /* 538 * Must be visible before the overload count is 539 * set (as in sched_rt.c). 540 * 541 * Matched by the barrier in pull_dl_task(). 542 */ 543 smp_wmb(); 544 atomic_inc(&rq->rd->dlo_count); 545 } 546 547 static inline void dl_clear_overload(struct rq *rq) 548 { 549 if (!rq->online) 550 return; 551 552 atomic_dec(&rq->rd->dlo_count); 553 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 554 } 555 556 static void update_dl_migration(struct dl_rq *dl_rq) 557 { 558 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { 559 if (!dl_rq->overloaded) { 560 dl_set_overload(rq_of_dl_rq(dl_rq)); 561 dl_rq->overloaded = 1; 562 } 563 } else if (dl_rq->overloaded) { 564 dl_clear_overload(rq_of_dl_rq(dl_rq)); 565 dl_rq->overloaded = 0; 566 } 567 } 568 569 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 570 { 571 struct task_struct *p = dl_task_of(dl_se); 572 573 if (p->nr_cpus_allowed > 1) 574 dl_rq->dl_nr_migratory++; 575 576 update_dl_migration(dl_rq); 577 } 578 579 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 580 { 581 struct task_struct *p = dl_task_of(dl_se); 582 583 if (p->nr_cpus_allowed > 1) 584 dl_rq->dl_nr_migratory--; 585 586 update_dl_migration(dl_rq); 587 } 588 589 #define __node_2_pdl(node) \ 590 rb_entry((node), struct task_struct, pushable_dl_tasks) 591 592 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b) 593 { 594 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl); 595 } 596 597 /* 598 * The list of pushable -deadline task is not a plist, like in 599 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 600 */ 601 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 602 { 603 struct rb_node *leftmost; 604 605 WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 606 607 leftmost = rb_add_cached(&p->pushable_dl_tasks, 608 &rq->dl.pushable_dl_tasks_root, 609 __pushable_less); 610 if (leftmost) 611 rq->dl.earliest_dl.next = p->dl.deadline; 612 } 613 614 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 615 { 616 struct dl_rq *dl_rq = &rq->dl; 617 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root; 618 struct rb_node *leftmost; 619 620 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 621 return; 622 623 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root); 624 if (leftmost) 625 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline; 626 627 RB_CLEAR_NODE(&p->pushable_dl_tasks); 628 } 629 630 static inline int has_pushable_dl_tasks(struct rq *rq) 631 { 632 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root); 633 } 634 635 static int push_dl_task(struct rq *rq); 636 637 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 638 { 639 return rq->online && dl_task(prev); 640 } 641 642 static DEFINE_PER_CPU(struct balance_callback, dl_push_head); 643 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head); 644 645 static void push_dl_tasks(struct rq *); 646 static void pull_dl_task(struct rq *); 647 648 static inline void deadline_queue_push_tasks(struct rq *rq) 649 { 650 if (!has_pushable_dl_tasks(rq)) 651 return; 652 653 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); 654 } 655 656 static inline void deadline_queue_pull_task(struct rq *rq) 657 { 658 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); 659 } 660 661 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); 662 663 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) 664 { 665 struct rq *later_rq = NULL; 666 struct dl_bw *dl_b; 667 668 later_rq = find_lock_later_rq(p, rq); 669 if (!later_rq) { 670 int cpu; 671 672 /* 673 * If we cannot preempt any rq, fall back to pick any 674 * online CPU: 675 */ 676 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr); 677 if (cpu >= nr_cpu_ids) { 678 /* 679 * Failed to find any suitable CPU. 680 * The task will never come back! 681 */ 682 WARN_ON_ONCE(dl_bandwidth_enabled()); 683 684 /* 685 * If admission control is disabled we 686 * try a little harder to let the task 687 * run. 688 */ 689 cpu = cpumask_any(cpu_active_mask); 690 } 691 later_rq = cpu_rq(cpu); 692 double_lock_balance(rq, later_rq); 693 } 694 695 if (p->dl.dl_non_contending || p->dl.dl_throttled) { 696 /* 697 * Inactive timer is armed (or callback is running, but 698 * waiting for us to release rq locks). In any case, when it 699 * will fire (or continue), it will see running_bw of this 700 * task migrated to later_rq (and correctly handle it). 701 */ 702 sub_running_bw(&p->dl, &rq->dl); 703 sub_rq_bw(&p->dl, &rq->dl); 704 705 add_rq_bw(&p->dl, &later_rq->dl); 706 add_running_bw(&p->dl, &later_rq->dl); 707 } else { 708 sub_rq_bw(&p->dl, &rq->dl); 709 add_rq_bw(&p->dl, &later_rq->dl); 710 } 711 712 /* 713 * And we finally need to fixup root_domain(s) bandwidth accounting, 714 * since p is still hanging out in the old (now moved to default) root 715 * domain. 716 */ 717 dl_b = &rq->rd->dl_bw; 718 raw_spin_lock(&dl_b->lock); 719 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 720 raw_spin_unlock(&dl_b->lock); 721 722 dl_b = &later_rq->rd->dl_bw; 723 raw_spin_lock(&dl_b->lock); 724 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span)); 725 raw_spin_unlock(&dl_b->lock); 726 727 set_task_cpu(p, later_rq->cpu); 728 double_unlock_balance(later_rq, rq); 729 730 return later_rq; 731 } 732 733 #else 734 735 static inline 736 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 737 { 738 } 739 740 static inline 741 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 742 { 743 } 744 745 static inline 746 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 747 { 748 } 749 750 static inline 751 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 752 { 753 } 754 755 static inline void deadline_queue_push_tasks(struct rq *rq) 756 { 757 } 758 759 static inline void deadline_queue_pull_task(struct rq *rq) 760 { 761 } 762 #endif /* CONFIG_SMP */ 763 764 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 765 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); 766 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags); 767 768 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se, 769 struct rq *rq) 770 { 771 /* for non-boosted task, pi_of(dl_se) == dl_se */ 772 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline; 773 dl_se->runtime = pi_of(dl_se)->dl_runtime; 774 } 775 776 /* 777 * We are being explicitly informed that a new instance is starting, 778 * and this means that: 779 * - the absolute deadline of the entity has to be placed at 780 * current time + relative deadline; 781 * - the runtime of the entity has to be set to the maximum value. 782 * 783 * The capability of specifying such event is useful whenever a -deadline 784 * entity wants to (try to!) synchronize its behaviour with the scheduler's 785 * one, and to (try to!) reconcile itself with its own scheduling 786 * parameters. 787 */ 788 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) 789 { 790 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 791 struct rq *rq = rq_of_dl_rq(dl_rq); 792 793 WARN_ON(is_dl_boosted(dl_se)); 794 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); 795 796 /* 797 * We are racing with the deadline timer. So, do nothing because 798 * the deadline timer handler will take care of properly recharging 799 * the runtime and postponing the deadline 800 */ 801 if (dl_se->dl_throttled) 802 return; 803 804 /* 805 * We use the regular wall clock time to set deadlines in the 806 * future; in fact, we must consider execution overheads (time 807 * spent on hardirq context, etc.). 808 */ 809 replenish_dl_new_period(dl_se, rq); 810 } 811 812 /* 813 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 814 * possibility of a entity lasting more than what it declared, and thus 815 * exhausting its runtime. 816 * 817 * Here we are interested in making runtime overrun possible, but we do 818 * not want a entity which is misbehaving to affect the scheduling of all 819 * other entities. 820 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 821 * is used, in order to confine each entity within its own bandwidth. 822 * 823 * This function deals exactly with that, and ensures that when the runtime 824 * of a entity is replenished, its deadline is also postponed. That ensures 825 * the overrunning entity can't interfere with other entity in the system and 826 * can't make them miss their deadlines. Reasons why this kind of overruns 827 * could happen are, typically, a entity voluntarily trying to overcome its 828 * runtime, or it just underestimated it during sched_setattr(). 829 */ 830 static void replenish_dl_entity(struct sched_dl_entity *dl_se) 831 { 832 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 833 struct rq *rq = rq_of_dl_rq(dl_rq); 834 835 WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0); 836 837 /* 838 * This could be the case for a !-dl task that is boosted. 839 * Just go with full inherited parameters. 840 */ 841 if (dl_se->dl_deadline == 0) 842 replenish_dl_new_period(dl_se, rq); 843 844 if (dl_se->dl_yielded && dl_se->runtime > 0) 845 dl_se->runtime = 0; 846 847 /* 848 * We keep moving the deadline away until we get some 849 * available runtime for the entity. This ensures correct 850 * handling of situations where the runtime overrun is 851 * arbitrary large. 852 */ 853 while (dl_se->runtime <= 0) { 854 dl_se->deadline += pi_of(dl_se)->dl_period; 855 dl_se->runtime += pi_of(dl_se)->dl_runtime; 856 } 857 858 /* 859 * At this point, the deadline really should be "in 860 * the future" with respect to rq->clock. If it's 861 * not, we are, for some reason, lagging too much! 862 * Anyway, after having warn userspace abut that, 863 * we still try to keep the things running by 864 * resetting the deadline and the budget of the 865 * entity. 866 */ 867 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 868 printk_deferred_once("sched: DL replenish lagged too much\n"); 869 replenish_dl_new_period(dl_se, rq); 870 } 871 872 if (dl_se->dl_yielded) 873 dl_se->dl_yielded = 0; 874 if (dl_se->dl_throttled) 875 dl_se->dl_throttled = 0; 876 } 877 878 /* 879 * Here we check if --at time t-- an entity (which is probably being 880 * [re]activated or, in general, enqueued) can use its remaining runtime 881 * and its current deadline _without_ exceeding the bandwidth it is 882 * assigned (function returns true if it can't). We are in fact applying 883 * one of the CBS rules: when a task wakes up, if the residual runtime 884 * over residual deadline fits within the allocated bandwidth, then we 885 * can keep the current (absolute) deadline and residual budget without 886 * disrupting the schedulability of the system. Otherwise, we should 887 * refill the runtime and set the deadline a period in the future, 888 * because keeping the current (absolute) deadline of the task would 889 * result in breaking guarantees promised to other tasks (refer to 890 * Documentation/scheduler/sched-deadline.rst for more information). 891 * 892 * This function returns true if: 893 * 894 * runtime / (deadline - t) > dl_runtime / dl_deadline , 895 * 896 * IOW we can't recycle current parameters. 897 * 898 * Notice that the bandwidth check is done against the deadline. For 899 * task with deadline equal to period this is the same of using 900 * dl_period instead of dl_deadline in the equation above. 901 */ 902 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t) 903 { 904 u64 left, right; 905 906 /* 907 * left and right are the two sides of the equation above, 908 * after a bit of shuffling to use multiplications instead 909 * of divisions. 910 * 911 * Note that none of the time values involved in the two 912 * multiplications are absolute: dl_deadline and dl_runtime 913 * are the relative deadline and the maximum runtime of each 914 * instance, runtime is the runtime left for the last instance 915 * and (deadline - t), since t is rq->clock, is the time left 916 * to the (absolute) deadline. Even if overflowing the u64 type 917 * is very unlikely to occur in both cases, here we scale down 918 * as we want to avoid that risk at all. Scaling down by 10 919 * means that we reduce granularity to 1us. We are fine with it, 920 * since this is only a true/false check and, anyway, thinking 921 * of anything below microseconds resolution is actually fiction 922 * (but still we want to give the user that illusion >;). 923 */ 924 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 925 right = ((dl_se->deadline - t) >> DL_SCALE) * 926 (pi_of(dl_se)->dl_runtime >> DL_SCALE); 927 928 return dl_time_before(right, left); 929 } 930 931 /* 932 * Revised wakeup rule [1]: For self-suspending tasks, rather then 933 * re-initializing task's runtime and deadline, the revised wakeup 934 * rule adjusts the task's runtime to avoid the task to overrun its 935 * density. 936 * 937 * Reasoning: a task may overrun the density if: 938 * runtime / (deadline - t) > dl_runtime / dl_deadline 939 * 940 * Therefore, runtime can be adjusted to: 941 * runtime = (dl_runtime / dl_deadline) * (deadline - t) 942 * 943 * In such way that runtime will be equal to the maximum density 944 * the task can use without breaking any rule. 945 * 946 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant 947 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24. 948 */ 949 static void 950 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq) 951 { 952 u64 laxity = dl_se->deadline - rq_clock(rq); 953 954 /* 955 * If the task has deadline < period, and the deadline is in the past, 956 * it should already be throttled before this check. 957 * 958 * See update_dl_entity() comments for further details. 959 */ 960 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq))); 961 962 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT; 963 } 964 965 /* 966 * Regarding the deadline, a task with implicit deadline has a relative 967 * deadline == relative period. A task with constrained deadline has a 968 * relative deadline <= relative period. 969 * 970 * We support constrained deadline tasks. However, there are some restrictions 971 * applied only for tasks which do not have an implicit deadline. See 972 * update_dl_entity() to know more about such restrictions. 973 * 974 * The dl_is_implicit() returns true if the task has an implicit deadline. 975 */ 976 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se) 977 { 978 return dl_se->dl_deadline == dl_se->dl_period; 979 } 980 981 /* 982 * When a deadline entity is placed in the runqueue, its runtime and deadline 983 * might need to be updated. This is done by a CBS wake up rule. There are two 984 * different rules: 1) the original CBS; and 2) the Revisited CBS. 985 * 986 * When the task is starting a new period, the Original CBS is used. In this 987 * case, the runtime is replenished and a new absolute deadline is set. 988 * 989 * When a task is queued before the begin of the next period, using the 990 * remaining runtime and deadline could make the entity to overflow, see 991 * dl_entity_overflow() to find more about runtime overflow. When such case 992 * is detected, the runtime and deadline need to be updated. 993 * 994 * If the task has an implicit deadline, i.e., deadline == period, the Original 995 * CBS is applied. the runtime is replenished and a new absolute deadline is 996 * set, as in the previous cases. 997 * 998 * However, the Original CBS does not work properly for tasks with 999 * deadline < period, which are said to have a constrained deadline. By 1000 * applying the Original CBS, a constrained deadline task would be able to run 1001 * runtime/deadline in a period. With deadline < period, the task would 1002 * overrun the runtime/period allowed bandwidth, breaking the admission test. 1003 * 1004 * In order to prevent this misbehave, the Revisited CBS is used for 1005 * constrained deadline tasks when a runtime overflow is detected. In the 1006 * Revisited CBS, rather than replenishing & setting a new absolute deadline, 1007 * the remaining runtime of the task is reduced to avoid runtime overflow. 1008 * Please refer to the comments update_dl_revised_wakeup() function to find 1009 * more about the Revised CBS rule. 1010 */ 1011 static void update_dl_entity(struct sched_dl_entity *dl_se) 1012 { 1013 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1014 struct rq *rq = rq_of_dl_rq(dl_rq); 1015 1016 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 1017 dl_entity_overflow(dl_se, rq_clock(rq))) { 1018 1019 if (unlikely(!dl_is_implicit(dl_se) && 1020 !dl_time_before(dl_se->deadline, rq_clock(rq)) && 1021 !is_dl_boosted(dl_se))) { 1022 update_dl_revised_wakeup(dl_se, rq); 1023 return; 1024 } 1025 1026 replenish_dl_new_period(dl_se, rq); 1027 } 1028 } 1029 1030 static inline u64 dl_next_period(struct sched_dl_entity *dl_se) 1031 { 1032 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period; 1033 } 1034 1035 /* 1036 * If the entity depleted all its runtime, and if we want it to sleep 1037 * while waiting for some new execution time to become available, we 1038 * set the bandwidth replenishment timer to the replenishment instant 1039 * and try to activate it. 1040 * 1041 * Notice that it is important for the caller to know if the timer 1042 * actually started or not (i.e., the replenishment instant is in 1043 * the future or in the past). 1044 */ 1045 static int start_dl_timer(struct task_struct *p) 1046 { 1047 struct sched_dl_entity *dl_se = &p->dl; 1048 struct hrtimer *timer = &dl_se->dl_timer; 1049 struct rq *rq = task_rq(p); 1050 ktime_t now, act; 1051 s64 delta; 1052 1053 lockdep_assert_rq_held(rq); 1054 1055 /* 1056 * We want the timer to fire at the deadline, but considering 1057 * that it is actually coming from rq->clock and not from 1058 * hrtimer's time base reading. 1059 */ 1060 act = ns_to_ktime(dl_next_period(dl_se)); 1061 now = hrtimer_cb_get_time(timer); 1062 delta = ktime_to_ns(now) - rq_clock(rq); 1063 act = ktime_add_ns(act, delta); 1064 1065 /* 1066 * If the expiry time already passed, e.g., because the value 1067 * chosen as the deadline is too small, don't even try to 1068 * start the timer in the past! 1069 */ 1070 if (ktime_us_delta(act, now) < 0) 1071 return 0; 1072 1073 /* 1074 * !enqueued will guarantee another callback; even if one is already in 1075 * progress. This ensures a balanced {get,put}_task_struct(). 1076 * 1077 * The race against __run_timer() clearing the enqueued state is 1078 * harmless because we're holding task_rq()->lock, therefore the timer 1079 * expiring after we've done the check will wait on its task_rq_lock() 1080 * and observe our state. 1081 */ 1082 if (!hrtimer_is_queued(timer)) { 1083 get_task_struct(p); 1084 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD); 1085 } 1086 1087 return 1; 1088 } 1089 1090 /* 1091 * This is the bandwidth enforcement timer callback. If here, we know 1092 * a task is not on its dl_rq, since the fact that the timer was running 1093 * means the task is throttled and needs a runtime replenishment. 1094 * 1095 * However, what we actually do depends on the fact the task is active, 1096 * (it is on its rq) or has been removed from there by a call to 1097 * dequeue_task_dl(). In the former case we must issue the runtime 1098 * replenishment and add the task back to the dl_rq; in the latter, we just 1099 * do nothing but clearing dl_throttled, so that runtime and deadline 1100 * updating (and the queueing back to dl_rq) will be done by the 1101 * next call to enqueue_task_dl(). 1102 */ 1103 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 1104 { 1105 struct sched_dl_entity *dl_se = container_of(timer, 1106 struct sched_dl_entity, 1107 dl_timer); 1108 struct task_struct *p = dl_task_of(dl_se); 1109 struct rq_flags rf; 1110 struct rq *rq; 1111 1112 rq = task_rq_lock(p, &rf); 1113 1114 /* 1115 * The task might have changed its scheduling policy to something 1116 * different than SCHED_DEADLINE (through switched_from_dl()). 1117 */ 1118 if (!dl_task(p)) 1119 goto unlock; 1120 1121 /* 1122 * The task might have been boosted by someone else and might be in the 1123 * boosting/deboosting path, its not throttled. 1124 */ 1125 if (is_dl_boosted(dl_se)) 1126 goto unlock; 1127 1128 /* 1129 * Spurious timer due to start_dl_timer() race; or we already received 1130 * a replenishment from rt_mutex_setprio(). 1131 */ 1132 if (!dl_se->dl_throttled) 1133 goto unlock; 1134 1135 sched_clock_tick(); 1136 update_rq_clock(rq); 1137 1138 /* 1139 * If the throttle happened during sched-out; like: 1140 * 1141 * schedule() 1142 * deactivate_task() 1143 * dequeue_task_dl() 1144 * update_curr_dl() 1145 * start_dl_timer() 1146 * __dequeue_task_dl() 1147 * prev->on_rq = 0; 1148 * 1149 * We can be both throttled and !queued. Replenish the counter 1150 * but do not enqueue -- wait for our wakeup to do that. 1151 */ 1152 if (!task_on_rq_queued(p)) { 1153 replenish_dl_entity(dl_se); 1154 goto unlock; 1155 } 1156 1157 #ifdef CONFIG_SMP 1158 if (unlikely(!rq->online)) { 1159 /* 1160 * If the runqueue is no longer available, migrate the 1161 * task elsewhere. This necessarily changes rq. 1162 */ 1163 lockdep_unpin_lock(__rq_lockp(rq), rf.cookie); 1164 rq = dl_task_offline_migration(rq, p); 1165 rf.cookie = lockdep_pin_lock(__rq_lockp(rq)); 1166 update_rq_clock(rq); 1167 1168 /* 1169 * Now that the task has been migrated to the new RQ and we 1170 * have that locked, proceed as normal and enqueue the task 1171 * there. 1172 */ 1173 } 1174 #endif 1175 1176 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 1177 if (dl_task(rq->curr)) 1178 check_preempt_curr_dl(rq, p, 0); 1179 else 1180 resched_curr(rq); 1181 1182 #ifdef CONFIG_SMP 1183 /* 1184 * Queueing this task back might have overloaded rq, check if we need 1185 * to kick someone away. 1186 */ 1187 if (has_pushable_dl_tasks(rq)) { 1188 /* 1189 * Nothing relies on rq->lock after this, so its safe to drop 1190 * rq->lock. 1191 */ 1192 rq_unpin_lock(rq, &rf); 1193 push_dl_task(rq); 1194 rq_repin_lock(rq, &rf); 1195 } 1196 #endif 1197 1198 unlock: 1199 task_rq_unlock(rq, p, &rf); 1200 1201 /* 1202 * This can free the task_struct, including this hrtimer, do not touch 1203 * anything related to that after this. 1204 */ 1205 put_task_struct(p); 1206 1207 return HRTIMER_NORESTART; 1208 } 1209 1210 void init_dl_task_timer(struct sched_dl_entity *dl_se) 1211 { 1212 struct hrtimer *timer = &dl_se->dl_timer; 1213 1214 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1215 timer->function = dl_task_timer; 1216 } 1217 1218 /* 1219 * During the activation, CBS checks if it can reuse the current task's 1220 * runtime and period. If the deadline of the task is in the past, CBS 1221 * cannot use the runtime, and so it replenishes the task. This rule 1222 * works fine for implicit deadline tasks (deadline == period), and the 1223 * CBS was designed for implicit deadline tasks. However, a task with 1224 * constrained deadline (deadline < period) might be awakened after the 1225 * deadline, but before the next period. In this case, replenishing the 1226 * task would allow it to run for runtime / deadline. As in this case 1227 * deadline < period, CBS enables a task to run for more than the 1228 * runtime / period. In a very loaded system, this can cause a domino 1229 * effect, making other tasks miss their deadlines. 1230 * 1231 * To avoid this problem, in the activation of a constrained deadline 1232 * task after the deadline but before the next period, throttle the 1233 * task and set the replenishing timer to the begin of the next period, 1234 * unless it is boosted. 1235 */ 1236 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) 1237 { 1238 struct task_struct *p = dl_task_of(dl_se); 1239 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se)); 1240 1241 if (dl_time_before(dl_se->deadline, rq_clock(rq)) && 1242 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) { 1243 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p))) 1244 return; 1245 dl_se->dl_throttled = 1; 1246 if (dl_se->runtime > 0) 1247 dl_se->runtime = 0; 1248 } 1249 } 1250 1251 static 1252 int dl_runtime_exceeded(struct sched_dl_entity *dl_se) 1253 { 1254 return (dl_se->runtime <= 0); 1255 } 1256 1257 /* 1258 * This function implements the GRUB accounting rule. According to the 1259 * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt", 1260 * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt", 1261 * where u is the utilization of the task, Umax is the maximum reclaimable 1262 * utilization, Uinact is the (per-runqueue) inactive utilization, computed 1263 * as the difference between the "total runqueue utilization" and the 1264 * "runqueue active utilization", and Uextra is the (per runqueue) extra 1265 * reclaimable utilization. 1266 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied 1267 * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT. 1268 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw 1269 * is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT. 1270 * Since delta is a 64 bit variable, to have an overflow its value should be 1271 * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is 1272 * not an issue here. 1273 */ 1274 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se) 1275 { 1276 u64 u_act; 1277 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */ 1278 1279 /* 1280 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we 1281 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra 1282 * can be larger than u_max. So, u_max - u_inact - u_extra would be 1283 * negative leading to wrong results. 1284 */ 1285 if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw) 1286 u_act = dl_se->dl_bw; 1287 else 1288 u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw; 1289 1290 u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT; 1291 return (delta * u_act) >> BW_SHIFT; 1292 } 1293 1294 /* 1295 * Update the current task's runtime statistics (provided it is still 1296 * a -deadline task and has not been removed from the dl_rq). 1297 */ 1298 static void update_curr_dl(struct rq *rq) 1299 { 1300 struct task_struct *curr = rq->curr; 1301 struct sched_dl_entity *dl_se = &curr->dl; 1302 u64 delta_exec, scaled_delta_exec; 1303 int cpu = cpu_of(rq); 1304 u64 now; 1305 1306 if (!dl_task(curr) || !on_dl_rq(dl_se)) 1307 return; 1308 1309 /* 1310 * Consumed budget is computed considering the time as 1311 * observed by schedulable tasks (excluding time spent 1312 * in hardirq context, etc.). Deadlines are instead 1313 * computed using hard walltime. This seems to be the more 1314 * natural solution, but the full ramifications of this 1315 * approach need further study. 1316 */ 1317 now = rq_clock_task(rq); 1318 delta_exec = now - curr->se.exec_start; 1319 if (unlikely((s64)delta_exec <= 0)) { 1320 if (unlikely(dl_se->dl_yielded)) 1321 goto throttle; 1322 return; 1323 } 1324 1325 schedstat_set(curr->stats.exec_max, 1326 max(curr->stats.exec_max, delta_exec)); 1327 1328 trace_sched_stat_runtime(curr, delta_exec, 0); 1329 1330 update_current_exec_runtime(curr, now, delta_exec); 1331 1332 if (dl_entity_is_special(dl_se)) 1333 return; 1334 1335 /* 1336 * For tasks that participate in GRUB, we implement GRUB-PA: the 1337 * spare reclaimed bandwidth is used to clock down frequency. 1338 * 1339 * For the others, we still need to scale reservation parameters 1340 * according to current frequency and CPU maximum capacity. 1341 */ 1342 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) { 1343 scaled_delta_exec = grub_reclaim(delta_exec, 1344 rq, 1345 &curr->dl); 1346 } else { 1347 unsigned long scale_freq = arch_scale_freq_capacity(cpu); 1348 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu); 1349 1350 scaled_delta_exec = cap_scale(delta_exec, scale_freq); 1351 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu); 1352 } 1353 1354 dl_se->runtime -= scaled_delta_exec; 1355 1356 throttle: 1357 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) { 1358 dl_se->dl_throttled = 1; 1359 1360 /* If requested, inform the user about runtime overruns. */ 1361 if (dl_runtime_exceeded(dl_se) && 1362 (dl_se->flags & SCHED_FLAG_DL_OVERRUN)) 1363 dl_se->dl_overrun = 1; 1364 1365 __dequeue_task_dl(rq, curr, 0); 1366 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr))) 1367 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); 1368 1369 if (!is_leftmost(curr, &rq->dl)) 1370 resched_curr(rq); 1371 } 1372 1373 /* 1374 * Because -- for now -- we share the rt bandwidth, we need to 1375 * account our runtime there too, otherwise actual rt tasks 1376 * would be able to exceed the shared quota. 1377 * 1378 * Account to the root rt group for now. 1379 * 1380 * The solution we're working towards is having the RT groups scheduled 1381 * using deadline servers -- however there's a few nasties to figure 1382 * out before that can happen. 1383 */ 1384 if (rt_bandwidth_enabled()) { 1385 struct rt_rq *rt_rq = &rq->rt; 1386 1387 raw_spin_lock(&rt_rq->rt_runtime_lock); 1388 /* 1389 * We'll let actual RT tasks worry about the overflow here, we 1390 * have our own CBS to keep us inline; only account when RT 1391 * bandwidth is relevant. 1392 */ 1393 if (sched_rt_bandwidth_account(rt_rq)) 1394 rt_rq->rt_time += delta_exec; 1395 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1396 } 1397 } 1398 1399 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer) 1400 { 1401 struct sched_dl_entity *dl_se = container_of(timer, 1402 struct sched_dl_entity, 1403 inactive_timer); 1404 struct task_struct *p = dl_task_of(dl_se); 1405 struct rq_flags rf; 1406 struct rq *rq; 1407 1408 rq = task_rq_lock(p, &rf); 1409 1410 sched_clock_tick(); 1411 update_rq_clock(rq); 1412 1413 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) { 1414 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1415 1416 if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) { 1417 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl)); 1418 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl)); 1419 dl_se->dl_non_contending = 0; 1420 } 1421 1422 raw_spin_lock(&dl_b->lock); 1423 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 1424 raw_spin_unlock(&dl_b->lock); 1425 __dl_clear_params(p); 1426 1427 goto unlock; 1428 } 1429 if (dl_se->dl_non_contending == 0) 1430 goto unlock; 1431 1432 sub_running_bw(dl_se, &rq->dl); 1433 dl_se->dl_non_contending = 0; 1434 unlock: 1435 task_rq_unlock(rq, p, &rf); 1436 put_task_struct(p); 1437 1438 return HRTIMER_NORESTART; 1439 } 1440 1441 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se) 1442 { 1443 struct hrtimer *timer = &dl_se->inactive_timer; 1444 1445 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1446 timer->function = inactive_task_timer; 1447 } 1448 1449 #define __node_2_dle(node) \ 1450 rb_entry((node), struct sched_dl_entity, rb_node) 1451 1452 #ifdef CONFIG_SMP 1453 1454 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1455 { 1456 struct rq *rq = rq_of_dl_rq(dl_rq); 1457 1458 if (dl_rq->earliest_dl.curr == 0 || 1459 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 1460 if (dl_rq->earliest_dl.curr == 0) 1461 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER); 1462 dl_rq->earliest_dl.curr = deadline; 1463 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline); 1464 } 1465 } 1466 1467 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1468 { 1469 struct rq *rq = rq_of_dl_rq(dl_rq); 1470 1471 /* 1472 * Since we may have removed our earliest (and/or next earliest) 1473 * task we must recompute them. 1474 */ 1475 if (!dl_rq->dl_nr_running) { 1476 dl_rq->earliest_dl.curr = 0; 1477 dl_rq->earliest_dl.next = 0; 1478 cpudl_clear(&rq->rd->cpudl, rq->cpu); 1479 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 1480 } else { 1481 struct rb_node *leftmost = rb_first_cached(&dl_rq->root); 1482 struct sched_dl_entity *entry = __node_2_dle(leftmost); 1483 1484 dl_rq->earliest_dl.curr = entry->deadline; 1485 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline); 1486 } 1487 } 1488 1489 #else 1490 1491 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1492 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1493 1494 #endif /* CONFIG_SMP */ 1495 1496 static inline 1497 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1498 { 1499 int prio = dl_task_of(dl_se)->prio; 1500 u64 deadline = dl_se->deadline; 1501 1502 WARN_ON(!dl_prio(prio)); 1503 dl_rq->dl_nr_running++; 1504 add_nr_running(rq_of_dl_rq(dl_rq), 1); 1505 1506 inc_dl_deadline(dl_rq, deadline); 1507 inc_dl_migration(dl_se, dl_rq); 1508 } 1509 1510 static inline 1511 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1512 { 1513 int prio = dl_task_of(dl_se)->prio; 1514 1515 WARN_ON(!dl_prio(prio)); 1516 WARN_ON(!dl_rq->dl_nr_running); 1517 dl_rq->dl_nr_running--; 1518 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 1519 1520 dec_dl_deadline(dl_rq, dl_se->deadline); 1521 dec_dl_migration(dl_se, dl_rq); 1522 } 1523 1524 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b) 1525 { 1526 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline); 1527 } 1528 1529 static inline struct sched_statistics * 1530 __schedstats_from_dl_se(struct sched_dl_entity *dl_se) 1531 { 1532 return &dl_task_of(dl_se)->stats; 1533 } 1534 1535 static inline void 1536 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1537 { 1538 struct sched_statistics *stats; 1539 1540 if (!schedstat_enabled()) 1541 return; 1542 1543 stats = __schedstats_from_dl_se(dl_se); 1544 __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1545 } 1546 1547 static inline void 1548 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1549 { 1550 struct sched_statistics *stats; 1551 1552 if (!schedstat_enabled()) 1553 return; 1554 1555 stats = __schedstats_from_dl_se(dl_se); 1556 __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1557 } 1558 1559 static inline void 1560 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se) 1561 { 1562 struct sched_statistics *stats; 1563 1564 if (!schedstat_enabled()) 1565 return; 1566 1567 stats = __schedstats_from_dl_se(dl_se); 1568 __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats); 1569 } 1570 1571 static inline void 1572 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 1573 int flags) 1574 { 1575 if (!schedstat_enabled()) 1576 return; 1577 1578 if (flags & ENQUEUE_WAKEUP) 1579 update_stats_enqueue_sleeper_dl(dl_rq, dl_se); 1580 } 1581 1582 static inline void 1583 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, 1584 int flags) 1585 { 1586 struct task_struct *p = dl_task_of(dl_se); 1587 1588 if (!schedstat_enabled()) 1589 return; 1590 1591 if ((flags & DEQUEUE_SLEEP)) { 1592 unsigned int state; 1593 1594 state = READ_ONCE(p->__state); 1595 if (state & TASK_INTERRUPTIBLE) 1596 __schedstat_set(p->stats.sleep_start, 1597 rq_clock(rq_of_dl_rq(dl_rq))); 1598 1599 if (state & TASK_UNINTERRUPTIBLE) 1600 __schedstat_set(p->stats.block_start, 1601 rq_clock(rq_of_dl_rq(dl_rq))); 1602 } 1603 } 1604 1605 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 1606 { 1607 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1608 1609 WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node)); 1610 1611 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less); 1612 1613 inc_dl_tasks(dl_se, dl_rq); 1614 } 1615 1616 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 1617 { 1618 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1619 1620 if (RB_EMPTY_NODE(&dl_se->rb_node)) 1621 return; 1622 1623 rb_erase_cached(&dl_se->rb_node, &dl_rq->root); 1624 1625 RB_CLEAR_NODE(&dl_se->rb_node); 1626 1627 dec_dl_tasks(dl_se, dl_rq); 1628 } 1629 1630 static void 1631 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags) 1632 { 1633 WARN_ON_ONCE(on_dl_rq(dl_se)); 1634 1635 update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags); 1636 1637 /* 1638 * If this is a wakeup or a new instance, the scheduling 1639 * parameters of the task might need updating. Otherwise, 1640 * we want a replenishment of its runtime. 1641 */ 1642 if (flags & ENQUEUE_WAKEUP) { 1643 task_contending(dl_se, flags); 1644 update_dl_entity(dl_se); 1645 } else if (flags & ENQUEUE_REPLENISH) { 1646 replenish_dl_entity(dl_se); 1647 } else if ((flags & ENQUEUE_RESTORE) && 1648 dl_time_before(dl_se->deadline, 1649 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) { 1650 setup_new_dl_entity(dl_se); 1651 } 1652 1653 __enqueue_dl_entity(dl_se); 1654 } 1655 1656 static void dequeue_dl_entity(struct sched_dl_entity *dl_se) 1657 { 1658 __dequeue_dl_entity(dl_se); 1659 } 1660 1661 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1662 { 1663 if (is_dl_boosted(&p->dl)) { 1664 /* 1665 * Because of delays in the detection of the overrun of a 1666 * thread's runtime, it might be the case that a thread 1667 * goes to sleep in a rt mutex with negative runtime. As 1668 * a consequence, the thread will be throttled. 1669 * 1670 * While waiting for the mutex, this thread can also be 1671 * boosted via PI, resulting in a thread that is throttled 1672 * and boosted at the same time. 1673 * 1674 * In this case, the boost overrides the throttle. 1675 */ 1676 if (p->dl.dl_throttled) { 1677 /* 1678 * The replenish timer needs to be canceled. No 1679 * problem if it fires concurrently: boosted threads 1680 * are ignored in dl_task_timer(). 1681 */ 1682 hrtimer_try_to_cancel(&p->dl.dl_timer); 1683 p->dl.dl_throttled = 0; 1684 } 1685 } else if (!dl_prio(p->normal_prio)) { 1686 /* 1687 * Special case in which we have a !SCHED_DEADLINE task that is going 1688 * to be deboosted, but exceeds its runtime while doing so. No point in 1689 * replenishing it, as it's going to return back to its original 1690 * scheduling class after this. If it has been throttled, we need to 1691 * clear the flag, otherwise the task may wake up as throttled after 1692 * being boosted again with no means to replenish the runtime and clear 1693 * the throttle. 1694 */ 1695 p->dl.dl_throttled = 0; 1696 if (!(flags & ENQUEUE_REPLENISH)) 1697 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n", 1698 task_pid_nr(p)); 1699 1700 return; 1701 } 1702 1703 /* 1704 * Check if a constrained deadline task was activated 1705 * after the deadline but before the next period. 1706 * If that is the case, the task will be throttled and 1707 * the replenishment timer will be set to the next period. 1708 */ 1709 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl)) 1710 dl_check_constrained_dl(&p->dl); 1711 1712 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) { 1713 add_rq_bw(&p->dl, &rq->dl); 1714 add_running_bw(&p->dl, &rq->dl); 1715 } 1716 1717 /* 1718 * If p is throttled, we do not enqueue it. In fact, if it exhausted 1719 * its budget it needs a replenishment and, since it now is on 1720 * its rq, the bandwidth timer callback (which clearly has not 1721 * run yet) will take care of this. 1722 * However, the active utilization does not depend on the fact 1723 * that the task is on the runqueue or not (but depends on the 1724 * task's state - in GRUB parlance, "inactive" vs "active contending"). 1725 * In other words, even if a task is throttled its utilization must 1726 * be counted in the active utilization; hence, we need to call 1727 * add_running_bw(). 1728 */ 1729 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) { 1730 if (flags & ENQUEUE_WAKEUP) 1731 task_contending(&p->dl, flags); 1732 1733 return; 1734 } 1735 1736 check_schedstat_required(); 1737 update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl); 1738 1739 enqueue_dl_entity(&p->dl, flags); 1740 1741 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1742 enqueue_pushable_dl_task(rq, p); 1743 } 1744 1745 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1746 { 1747 update_stats_dequeue_dl(&rq->dl, &p->dl, flags); 1748 dequeue_dl_entity(&p->dl); 1749 dequeue_pushable_dl_task(rq, p); 1750 } 1751 1752 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1753 { 1754 update_curr_dl(rq); 1755 __dequeue_task_dl(rq, p, flags); 1756 1757 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) { 1758 sub_running_bw(&p->dl, &rq->dl); 1759 sub_rq_bw(&p->dl, &rq->dl); 1760 } 1761 1762 /* 1763 * This check allows to start the inactive timer (or to immediately 1764 * decrease the active utilization, if needed) in two cases: 1765 * when the task blocks and when it is terminating 1766 * (p->state == TASK_DEAD). We can handle the two cases in the same 1767 * way, because from GRUB's point of view the same thing is happening 1768 * (the task moves from "active contending" to "active non contending" 1769 * or "inactive") 1770 */ 1771 if (flags & DEQUEUE_SLEEP) 1772 task_non_contending(p); 1773 } 1774 1775 /* 1776 * Yield task semantic for -deadline tasks is: 1777 * 1778 * get off from the CPU until our next instance, with 1779 * a new runtime. This is of little use now, since we 1780 * don't have a bandwidth reclaiming mechanism. Anyway, 1781 * bandwidth reclaiming is planned for the future, and 1782 * yield_task_dl will indicate that some spare budget 1783 * is available for other task instances to use it. 1784 */ 1785 static void yield_task_dl(struct rq *rq) 1786 { 1787 /* 1788 * We make the task go to sleep until its current deadline by 1789 * forcing its runtime to zero. This way, update_curr_dl() stops 1790 * it and the bandwidth timer will wake it up and will give it 1791 * new scheduling parameters (thanks to dl_yielded=1). 1792 */ 1793 rq->curr->dl.dl_yielded = 1; 1794 1795 update_rq_clock(rq); 1796 update_curr_dl(rq); 1797 /* 1798 * Tell update_rq_clock() that we've just updated, 1799 * so we don't do microscopic update in schedule() 1800 * and double the fastpath cost. 1801 */ 1802 rq_clock_skip_update(rq); 1803 } 1804 1805 #ifdef CONFIG_SMP 1806 1807 static inline bool dl_task_is_earliest_deadline(struct task_struct *p, 1808 struct rq *rq) 1809 { 1810 return (!rq->dl.dl_nr_running || 1811 dl_time_before(p->dl.deadline, 1812 rq->dl.earliest_dl.curr)); 1813 } 1814 1815 static int find_later_rq(struct task_struct *task); 1816 1817 static int 1818 select_task_rq_dl(struct task_struct *p, int cpu, int flags) 1819 { 1820 struct task_struct *curr; 1821 bool select_rq; 1822 struct rq *rq; 1823 1824 if (!(flags & WF_TTWU)) 1825 goto out; 1826 1827 rq = cpu_rq(cpu); 1828 1829 rcu_read_lock(); 1830 curr = READ_ONCE(rq->curr); /* unlocked access */ 1831 1832 /* 1833 * If we are dealing with a -deadline task, we must 1834 * decide where to wake it up. 1835 * If it has a later deadline and the current task 1836 * on this rq can't move (provided the waking task 1837 * can!) we prefer to send it somewhere else. On the 1838 * other hand, if it has a shorter deadline, we 1839 * try to make it stay here, it might be important. 1840 */ 1841 select_rq = unlikely(dl_task(curr)) && 1842 (curr->nr_cpus_allowed < 2 || 1843 !dl_entity_preempt(&p->dl, &curr->dl)) && 1844 p->nr_cpus_allowed > 1; 1845 1846 /* 1847 * Take the capacity of the CPU into account to 1848 * ensure it fits the requirement of the task. 1849 */ 1850 if (sched_asym_cpucap_active()) 1851 select_rq |= !dl_task_fits_capacity(p, cpu); 1852 1853 if (select_rq) { 1854 int target = find_later_rq(p); 1855 1856 if (target != -1 && 1857 dl_task_is_earliest_deadline(p, cpu_rq(target))) 1858 cpu = target; 1859 } 1860 rcu_read_unlock(); 1861 1862 out: 1863 return cpu; 1864 } 1865 1866 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused) 1867 { 1868 struct rq_flags rf; 1869 struct rq *rq; 1870 1871 if (READ_ONCE(p->__state) != TASK_WAKING) 1872 return; 1873 1874 rq = task_rq(p); 1875 /* 1876 * Since p->state == TASK_WAKING, set_task_cpu() has been called 1877 * from try_to_wake_up(). Hence, p->pi_lock is locked, but 1878 * rq->lock is not... So, lock it 1879 */ 1880 rq_lock(rq, &rf); 1881 if (p->dl.dl_non_contending) { 1882 update_rq_clock(rq); 1883 sub_running_bw(&p->dl, &rq->dl); 1884 p->dl.dl_non_contending = 0; 1885 /* 1886 * If the timer handler is currently running and the 1887 * timer cannot be canceled, inactive_task_timer() 1888 * will see that dl_not_contending is not set, and 1889 * will not touch the rq's active utilization, 1890 * so we are still safe. 1891 */ 1892 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 1893 put_task_struct(p); 1894 } 1895 sub_rq_bw(&p->dl, &rq->dl); 1896 rq_unlock(rq, &rf); 1897 } 1898 1899 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 1900 { 1901 /* 1902 * Current can't be migrated, useless to reschedule, 1903 * let's hope p can move out. 1904 */ 1905 if (rq->curr->nr_cpus_allowed == 1 || 1906 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL)) 1907 return; 1908 1909 /* 1910 * p is migratable, so let's not schedule it and 1911 * see if it is pushed or pulled somewhere else. 1912 */ 1913 if (p->nr_cpus_allowed != 1 && 1914 cpudl_find(&rq->rd->cpudl, p, NULL)) 1915 return; 1916 1917 resched_curr(rq); 1918 } 1919 1920 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1921 { 1922 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) { 1923 /* 1924 * This is OK, because current is on_cpu, which avoids it being 1925 * picked for load-balance and preemption/IRQs are still 1926 * disabled avoiding further scheduler activity on it and we've 1927 * not yet started the picking loop. 1928 */ 1929 rq_unpin_lock(rq, rf); 1930 pull_dl_task(rq); 1931 rq_repin_lock(rq, rf); 1932 } 1933 1934 return sched_stop_runnable(rq) || sched_dl_runnable(rq); 1935 } 1936 #endif /* CONFIG_SMP */ 1937 1938 /* 1939 * Only called when both the current and waking task are -deadline 1940 * tasks. 1941 */ 1942 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 1943 int flags) 1944 { 1945 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { 1946 resched_curr(rq); 1947 return; 1948 } 1949 1950 #ifdef CONFIG_SMP 1951 /* 1952 * In the unlikely case current and p have the same deadline 1953 * let us try to decide what's the best thing to do... 1954 */ 1955 if ((p->dl.deadline == rq->curr->dl.deadline) && 1956 !test_tsk_need_resched(rq->curr)) 1957 check_preempt_equal_dl(rq, p); 1958 #endif /* CONFIG_SMP */ 1959 } 1960 1961 #ifdef CONFIG_SCHED_HRTICK 1962 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1963 { 1964 hrtick_start(rq, p->dl.runtime); 1965 } 1966 #else /* !CONFIG_SCHED_HRTICK */ 1967 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1968 { 1969 } 1970 #endif 1971 1972 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first) 1973 { 1974 struct sched_dl_entity *dl_se = &p->dl; 1975 struct dl_rq *dl_rq = &rq->dl; 1976 1977 p->se.exec_start = rq_clock_task(rq); 1978 if (on_dl_rq(&p->dl)) 1979 update_stats_wait_end_dl(dl_rq, dl_se); 1980 1981 /* You can't push away the running task */ 1982 dequeue_pushable_dl_task(rq, p); 1983 1984 if (!first) 1985 return; 1986 1987 if (hrtick_enabled_dl(rq)) 1988 start_hrtick_dl(rq, p); 1989 1990 if (rq->curr->sched_class != &dl_sched_class) 1991 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 1992 1993 deadline_queue_push_tasks(rq); 1994 } 1995 1996 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq) 1997 { 1998 struct rb_node *left = rb_first_cached(&dl_rq->root); 1999 2000 if (!left) 2001 return NULL; 2002 2003 return __node_2_dle(left); 2004 } 2005 2006 static struct task_struct *pick_task_dl(struct rq *rq) 2007 { 2008 struct sched_dl_entity *dl_se; 2009 struct dl_rq *dl_rq = &rq->dl; 2010 struct task_struct *p; 2011 2012 if (!sched_dl_runnable(rq)) 2013 return NULL; 2014 2015 dl_se = pick_next_dl_entity(dl_rq); 2016 WARN_ON_ONCE(!dl_se); 2017 p = dl_task_of(dl_se); 2018 2019 return p; 2020 } 2021 2022 static struct task_struct *pick_next_task_dl(struct rq *rq) 2023 { 2024 struct task_struct *p; 2025 2026 p = pick_task_dl(rq); 2027 if (p) 2028 set_next_task_dl(rq, p, true); 2029 2030 return p; 2031 } 2032 2033 static void put_prev_task_dl(struct rq *rq, struct task_struct *p) 2034 { 2035 struct sched_dl_entity *dl_se = &p->dl; 2036 struct dl_rq *dl_rq = &rq->dl; 2037 2038 if (on_dl_rq(&p->dl)) 2039 update_stats_wait_start_dl(dl_rq, dl_se); 2040 2041 update_curr_dl(rq); 2042 2043 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2044 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 2045 enqueue_pushable_dl_task(rq, p); 2046 } 2047 2048 /* 2049 * scheduler tick hitting a task of our scheduling class. 2050 * 2051 * NOTE: This function can be called remotely by the tick offload that 2052 * goes along full dynticks. Therefore no local assumption can be made 2053 * and everything must be accessed through the @rq and @curr passed in 2054 * parameters. 2055 */ 2056 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 2057 { 2058 update_curr_dl(rq); 2059 2060 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2061 /* 2062 * Even when we have runtime, update_curr_dl() might have resulted in us 2063 * not being the leftmost task anymore. In that case NEED_RESCHED will 2064 * be set and schedule() will start a new hrtick for the next task. 2065 */ 2066 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 && 2067 is_leftmost(p, &rq->dl)) 2068 start_hrtick_dl(rq, p); 2069 } 2070 2071 static void task_fork_dl(struct task_struct *p) 2072 { 2073 /* 2074 * SCHED_DEADLINE tasks cannot fork and this is achieved through 2075 * sched_fork() 2076 */ 2077 } 2078 2079 #ifdef CONFIG_SMP 2080 2081 /* Only try algorithms three times */ 2082 #define DL_MAX_TRIES 3 2083 2084 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) 2085 { 2086 if (!task_on_cpu(rq, p) && 2087 cpumask_test_cpu(cpu, &p->cpus_mask)) 2088 return 1; 2089 return 0; 2090 } 2091 2092 /* 2093 * Return the earliest pushable rq's task, which is suitable to be executed 2094 * on the CPU, NULL otherwise: 2095 */ 2096 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) 2097 { 2098 struct task_struct *p = NULL; 2099 struct rb_node *next_node; 2100 2101 if (!has_pushable_dl_tasks(rq)) 2102 return NULL; 2103 2104 next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root); 2105 2106 next_node: 2107 if (next_node) { 2108 p = __node_2_pdl(next_node); 2109 2110 if (pick_dl_task(rq, p, cpu)) 2111 return p; 2112 2113 next_node = rb_next(next_node); 2114 goto next_node; 2115 } 2116 2117 return NULL; 2118 } 2119 2120 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 2121 2122 static int find_later_rq(struct task_struct *task) 2123 { 2124 struct sched_domain *sd; 2125 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 2126 int this_cpu = smp_processor_id(); 2127 int cpu = task_cpu(task); 2128 2129 /* Make sure the mask is initialized first */ 2130 if (unlikely(!later_mask)) 2131 return -1; 2132 2133 if (task->nr_cpus_allowed == 1) 2134 return -1; 2135 2136 /* 2137 * We have to consider system topology and task affinity 2138 * first, then we can look for a suitable CPU. 2139 */ 2140 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask)) 2141 return -1; 2142 2143 /* 2144 * If we are here, some targets have been found, including 2145 * the most suitable which is, among the runqueues where the 2146 * current tasks have later deadlines than the task's one, the 2147 * rq with the latest possible one. 2148 * 2149 * Now we check how well this matches with task's 2150 * affinity and system topology. 2151 * 2152 * The last CPU where the task run is our first 2153 * guess, since it is most likely cache-hot there. 2154 */ 2155 if (cpumask_test_cpu(cpu, later_mask)) 2156 return cpu; 2157 /* 2158 * Check if this_cpu is to be skipped (i.e., it is 2159 * not in the mask) or not. 2160 */ 2161 if (!cpumask_test_cpu(this_cpu, later_mask)) 2162 this_cpu = -1; 2163 2164 rcu_read_lock(); 2165 for_each_domain(cpu, sd) { 2166 if (sd->flags & SD_WAKE_AFFINE) { 2167 int best_cpu; 2168 2169 /* 2170 * If possible, preempting this_cpu is 2171 * cheaper than migrating. 2172 */ 2173 if (this_cpu != -1 && 2174 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 2175 rcu_read_unlock(); 2176 return this_cpu; 2177 } 2178 2179 best_cpu = cpumask_any_and_distribute(later_mask, 2180 sched_domain_span(sd)); 2181 /* 2182 * Last chance: if a CPU being in both later_mask 2183 * and current sd span is valid, that becomes our 2184 * choice. Of course, the latest possible CPU is 2185 * already under consideration through later_mask. 2186 */ 2187 if (best_cpu < nr_cpu_ids) { 2188 rcu_read_unlock(); 2189 return best_cpu; 2190 } 2191 } 2192 } 2193 rcu_read_unlock(); 2194 2195 /* 2196 * At this point, all our guesses failed, we just return 2197 * 'something', and let the caller sort the things out. 2198 */ 2199 if (this_cpu != -1) 2200 return this_cpu; 2201 2202 cpu = cpumask_any_distribute(later_mask); 2203 if (cpu < nr_cpu_ids) 2204 return cpu; 2205 2206 return -1; 2207 } 2208 2209 /* Locks the rq it finds */ 2210 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 2211 { 2212 struct rq *later_rq = NULL; 2213 int tries; 2214 int cpu; 2215 2216 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 2217 cpu = find_later_rq(task); 2218 2219 if ((cpu == -1) || (cpu == rq->cpu)) 2220 break; 2221 2222 later_rq = cpu_rq(cpu); 2223 2224 if (!dl_task_is_earliest_deadline(task, later_rq)) { 2225 /* 2226 * Target rq has tasks of equal or earlier deadline, 2227 * retrying does not release any lock and is unlikely 2228 * to yield a different result. 2229 */ 2230 later_rq = NULL; 2231 break; 2232 } 2233 2234 /* Retry if something changed. */ 2235 if (double_lock_balance(rq, later_rq)) { 2236 if (unlikely(task_rq(task) != rq || 2237 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) || 2238 task_on_cpu(rq, task) || 2239 !dl_task(task) || 2240 is_migration_disabled(task) || 2241 !task_on_rq_queued(task))) { 2242 double_unlock_balance(rq, later_rq); 2243 later_rq = NULL; 2244 break; 2245 } 2246 } 2247 2248 /* 2249 * If the rq we found has no -deadline task, or 2250 * its earliest one has a later deadline than our 2251 * task, the rq is a good one. 2252 */ 2253 if (dl_task_is_earliest_deadline(task, later_rq)) 2254 break; 2255 2256 /* Otherwise we try again. */ 2257 double_unlock_balance(rq, later_rq); 2258 later_rq = NULL; 2259 } 2260 2261 return later_rq; 2262 } 2263 2264 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 2265 { 2266 struct task_struct *p; 2267 2268 if (!has_pushable_dl_tasks(rq)) 2269 return NULL; 2270 2271 p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root)); 2272 2273 WARN_ON_ONCE(rq->cpu != task_cpu(p)); 2274 WARN_ON_ONCE(task_current(rq, p)); 2275 WARN_ON_ONCE(p->nr_cpus_allowed <= 1); 2276 2277 WARN_ON_ONCE(!task_on_rq_queued(p)); 2278 WARN_ON_ONCE(!dl_task(p)); 2279 2280 return p; 2281 } 2282 2283 /* 2284 * See if the non running -deadline tasks on this rq 2285 * can be sent to some other CPU where they can preempt 2286 * and start executing. 2287 */ 2288 static int push_dl_task(struct rq *rq) 2289 { 2290 struct task_struct *next_task; 2291 struct rq *later_rq; 2292 int ret = 0; 2293 2294 if (!rq->dl.overloaded) 2295 return 0; 2296 2297 next_task = pick_next_pushable_dl_task(rq); 2298 if (!next_task) 2299 return 0; 2300 2301 retry: 2302 /* 2303 * If next_task preempts rq->curr, and rq->curr 2304 * can move away, it makes sense to just reschedule 2305 * without going further in pushing next_task. 2306 */ 2307 if (dl_task(rq->curr) && 2308 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && 2309 rq->curr->nr_cpus_allowed > 1) { 2310 resched_curr(rq); 2311 return 0; 2312 } 2313 2314 if (is_migration_disabled(next_task)) 2315 return 0; 2316 2317 if (WARN_ON(next_task == rq->curr)) 2318 return 0; 2319 2320 /* We might release rq lock */ 2321 get_task_struct(next_task); 2322 2323 /* Will lock the rq it'll find */ 2324 later_rq = find_lock_later_rq(next_task, rq); 2325 if (!later_rq) { 2326 struct task_struct *task; 2327 2328 /* 2329 * We must check all this again, since 2330 * find_lock_later_rq releases rq->lock and it is 2331 * then possible that next_task has migrated. 2332 */ 2333 task = pick_next_pushable_dl_task(rq); 2334 if (task == next_task) { 2335 /* 2336 * The task is still there. We don't try 2337 * again, some other CPU will pull it when ready. 2338 */ 2339 goto out; 2340 } 2341 2342 if (!task) 2343 /* No more tasks */ 2344 goto out; 2345 2346 put_task_struct(next_task); 2347 next_task = task; 2348 goto retry; 2349 } 2350 2351 deactivate_task(rq, next_task, 0); 2352 set_task_cpu(next_task, later_rq->cpu); 2353 activate_task(later_rq, next_task, 0); 2354 ret = 1; 2355 2356 resched_curr(later_rq); 2357 2358 double_unlock_balance(rq, later_rq); 2359 2360 out: 2361 put_task_struct(next_task); 2362 2363 return ret; 2364 } 2365 2366 static void push_dl_tasks(struct rq *rq) 2367 { 2368 /* push_dl_task() will return true if it moved a -deadline task */ 2369 while (push_dl_task(rq)) 2370 ; 2371 } 2372 2373 static void pull_dl_task(struct rq *this_rq) 2374 { 2375 int this_cpu = this_rq->cpu, cpu; 2376 struct task_struct *p, *push_task; 2377 bool resched = false; 2378 struct rq *src_rq; 2379 u64 dmin = LONG_MAX; 2380 2381 if (likely(!dl_overloaded(this_rq))) 2382 return; 2383 2384 /* 2385 * Match the barrier from dl_set_overloaded; this guarantees that if we 2386 * see overloaded we must also see the dlo_mask bit. 2387 */ 2388 smp_rmb(); 2389 2390 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 2391 if (this_cpu == cpu) 2392 continue; 2393 2394 src_rq = cpu_rq(cpu); 2395 2396 /* 2397 * It looks racy, abd it is! However, as in sched_rt.c, 2398 * we are fine with this. 2399 */ 2400 if (this_rq->dl.dl_nr_running && 2401 dl_time_before(this_rq->dl.earliest_dl.curr, 2402 src_rq->dl.earliest_dl.next)) 2403 continue; 2404 2405 /* Might drop this_rq->lock */ 2406 push_task = NULL; 2407 double_lock_balance(this_rq, src_rq); 2408 2409 /* 2410 * If there are no more pullable tasks on the 2411 * rq, we're done with it. 2412 */ 2413 if (src_rq->dl.dl_nr_running <= 1) 2414 goto skip; 2415 2416 p = pick_earliest_pushable_dl_task(src_rq, this_cpu); 2417 2418 /* 2419 * We found a task to be pulled if: 2420 * - it preempts our current (if there's one), 2421 * - it will preempt the last one we pulled (if any). 2422 */ 2423 if (p && dl_time_before(p->dl.deadline, dmin) && 2424 dl_task_is_earliest_deadline(p, this_rq)) { 2425 WARN_ON(p == src_rq->curr); 2426 WARN_ON(!task_on_rq_queued(p)); 2427 2428 /* 2429 * Then we pull iff p has actually an earlier 2430 * deadline than the current task of its runqueue. 2431 */ 2432 if (dl_time_before(p->dl.deadline, 2433 src_rq->curr->dl.deadline)) 2434 goto skip; 2435 2436 if (is_migration_disabled(p)) { 2437 push_task = get_push_task(src_rq); 2438 } else { 2439 deactivate_task(src_rq, p, 0); 2440 set_task_cpu(p, this_cpu); 2441 activate_task(this_rq, p, 0); 2442 dmin = p->dl.deadline; 2443 resched = true; 2444 } 2445 2446 /* Is there any other task even earlier? */ 2447 } 2448 skip: 2449 double_unlock_balance(this_rq, src_rq); 2450 2451 if (push_task) { 2452 raw_spin_rq_unlock(this_rq); 2453 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, 2454 push_task, &src_rq->push_work); 2455 raw_spin_rq_lock(this_rq); 2456 } 2457 } 2458 2459 if (resched) 2460 resched_curr(this_rq); 2461 } 2462 2463 /* 2464 * Since the task is not running and a reschedule is not going to happen 2465 * anytime soon on its runqueue, we try pushing it away now. 2466 */ 2467 static void task_woken_dl(struct rq *rq, struct task_struct *p) 2468 { 2469 if (!task_on_cpu(rq, p) && 2470 !test_tsk_need_resched(rq->curr) && 2471 p->nr_cpus_allowed > 1 && 2472 dl_task(rq->curr) && 2473 (rq->curr->nr_cpus_allowed < 2 || 2474 !dl_entity_preempt(&p->dl, &rq->curr->dl))) { 2475 push_dl_tasks(rq); 2476 } 2477 } 2478 2479 static void set_cpus_allowed_dl(struct task_struct *p, 2480 struct affinity_context *ctx) 2481 { 2482 struct root_domain *src_rd; 2483 struct rq *rq; 2484 2485 WARN_ON_ONCE(!dl_task(p)); 2486 2487 rq = task_rq(p); 2488 src_rd = rq->rd; 2489 /* 2490 * Migrating a SCHED_DEADLINE task between exclusive 2491 * cpusets (different root_domains) entails a bandwidth 2492 * update. We already made space for us in the destination 2493 * domain (see cpuset_can_attach()). 2494 */ 2495 if (!cpumask_intersects(src_rd->span, ctx->new_mask)) { 2496 struct dl_bw *src_dl_b; 2497 2498 src_dl_b = dl_bw_of(cpu_of(rq)); 2499 /* 2500 * We now free resources of the root_domain we are migrating 2501 * off. In the worst case, sched_setattr() may temporary fail 2502 * until we complete the update. 2503 */ 2504 raw_spin_lock(&src_dl_b->lock); 2505 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 2506 raw_spin_unlock(&src_dl_b->lock); 2507 } 2508 2509 set_cpus_allowed_common(p, ctx); 2510 } 2511 2512 /* Assumes rq->lock is held */ 2513 static void rq_online_dl(struct rq *rq) 2514 { 2515 if (rq->dl.overloaded) 2516 dl_set_overload(rq); 2517 2518 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu); 2519 if (rq->dl.dl_nr_running > 0) 2520 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr); 2521 } 2522 2523 /* Assumes rq->lock is held */ 2524 static void rq_offline_dl(struct rq *rq) 2525 { 2526 if (rq->dl.overloaded) 2527 dl_clear_overload(rq); 2528 2529 cpudl_clear(&rq->rd->cpudl, rq->cpu); 2530 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu); 2531 } 2532 2533 void __init init_sched_dl_class(void) 2534 { 2535 unsigned int i; 2536 2537 for_each_possible_cpu(i) 2538 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 2539 GFP_KERNEL, cpu_to_node(i)); 2540 } 2541 2542 void dl_add_task_root_domain(struct task_struct *p) 2543 { 2544 struct rq_flags rf; 2545 struct rq *rq; 2546 struct dl_bw *dl_b; 2547 2548 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2549 if (!dl_task(p)) { 2550 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 2551 return; 2552 } 2553 2554 rq = __task_rq_lock(p, &rf); 2555 2556 dl_b = &rq->rd->dl_bw; 2557 raw_spin_lock(&dl_b->lock); 2558 2559 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 2560 2561 raw_spin_unlock(&dl_b->lock); 2562 2563 task_rq_unlock(rq, p, &rf); 2564 } 2565 2566 void dl_clear_root_domain(struct root_domain *rd) 2567 { 2568 unsigned long flags; 2569 2570 raw_spin_lock_irqsave(&rd->dl_bw.lock, flags); 2571 rd->dl_bw.total_bw = 0; 2572 raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags); 2573 } 2574 2575 #endif /* CONFIG_SMP */ 2576 2577 static void switched_from_dl(struct rq *rq, struct task_struct *p) 2578 { 2579 /* 2580 * task_non_contending() can start the "inactive timer" (if the 0-lag 2581 * time is in the future). If the task switches back to dl before 2582 * the "inactive timer" fires, it can continue to consume its current 2583 * runtime using its current deadline. If it stays outside of 2584 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer() 2585 * will reset the task parameters. 2586 */ 2587 if (task_on_rq_queued(p) && p->dl.dl_runtime) 2588 task_non_contending(p); 2589 2590 /* 2591 * In case a task is setscheduled out from SCHED_DEADLINE we need to 2592 * keep track of that on its cpuset (for correct bandwidth tracking). 2593 */ 2594 dec_dl_tasks_cs(p); 2595 2596 if (!task_on_rq_queued(p)) { 2597 /* 2598 * Inactive timer is armed. However, p is leaving DEADLINE and 2599 * might migrate away from this rq while continuing to run on 2600 * some other class. We need to remove its contribution from 2601 * this rq running_bw now, or sub_rq_bw (below) will complain. 2602 */ 2603 if (p->dl.dl_non_contending) 2604 sub_running_bw(&p->dl, &rq->dl); 2605 sub_rq_bw(&p->dl, &rq->dl); 2606 } 2607 2608 /* 2609 * We cannot use inactive_task_timer() to invoke sub_running_bw() 2610 * at the 0-lag time, because the task could have been migrated 2611 * while SCHED_OTHER in the meanwhile. 2612 */ 2613 if (p->dl.dl_non_contending) 2614 p->dl.dl_non_contending = 0; 2615 2616 /* 2617 * Since this might be the only -deadline task on the rq, 2618 * this is the right place to try to pull some other one 2619 * from an overloaded CPU, if any. 2620 */ 2621 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 2622 return; 2623 2624 deadline_queue_pull_task(rq); 2625 } 2626 2627 /* 2628 * When switching to -deadline, we may overload the rq, then 2629 * we try to push someone off, if possible. 2630 */ 2631 static void switched_to_dl(struct rq *rq, struct task_struct *p) 2632 { 2633 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 2634 put_task_struct(p); 2635 2636 /* 2637 * In case a task is setscheduled to SCHED_DEADLINE we need to keep 2638 * track of that on its cpuset (for correct bandwidth tracking). 2639 */ 2640 inc_dl_tasks_cs(p); 2641 2642 /* If p is not queued we will update its parameters at next wakeup. */ 2643 if (!task_on_rq_queued(p)) { 2644 add_rq_bw(&p->dl, &rq->dl); 2645 2646 return; 2647 } 2648 2649 if (rq->curr != p) { 2650 #ifdef CONFIG_SMP 2651 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) 2652 deadline_queue_push_tasks(rq); 2653 #endif 2654 if (dl_task(rq->curr)) 2655 check_preempt_curr_dl(rq, p, 0); 2656 else 2657 resched_curr(rq); 2658 } else { 2659 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2660 } 2661 } 2662 2663 /* 2664 * If the scheduling parameters of a -deadline task changed, 2665 * a push or pull operation might be needed. 2666 */ 2667 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 2668 int oldprio) 2669 { 2670 if (!task_on_rq_queued(p)) 2671 return; 2672 2673 #ifdef CONFIG_SMP 2674 /* 2675 * This might be too much, but unfortunately 2676 * we don't have the old deadline value, and 2677 * we can't argue if the task is increasing 2678 * or lowering its prio, so... 2679 */ 2680 if (!rq->dl.overloaded) 2681 deadline_queue_pull_task(rq); 2682 2683 if (task_current(rq, p)) { 2684 /* 2685 * If we now have a earlier deadline task than p, 2686 * then reschedule, provided p is still on this 2687 * runqueue. 2688 */ 2689 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) 2690 resched_curr(rq); 2691 } else { 2692 /* 2693 * Current may not be deadline in case p was throttled but we 2694 * have just replenished it (e.g. rt_mutex_setprio()). 2695 * 2696 * Otherwise, if p was given an earlier deadline, reschedule. 2697 */ 2698 if (!dl_task(rq->curr) || 2699 dl_time_before(p->dl.deadline, rq->curr->dl.deadline)) 2700 resched_curr(rq); 2701 } 2702 #else 2703 /* 2704 * We don't know if p has a earlier or later deadline, so let's blindly 2705 * set a (maybe not needed) rescheduling point. 2706 */ 2707 resched_curr(rq); 2708 #endif 2709 } 2710 2711 #ifdef CONFIG_SCHED_CORE 2712 static int task_is_throttled_dl(struct task_struct *p, int cpu) 2713 { 2714 return p->dl.dl_throttled; 2715 } 2716 #endif 2717 2718 DEFINE_SCHED_CLASS(dl) = { 2719 2720 .enqueue_task = enqueue_task_dl, 2721 .dequeue_task = dequeue_task_dl, 2722 .yield_task = yield_task_dl, 2723 2724 .check_preempt_curr = check_preempt_curr_dl, 2725 2726 .pick_next_task = pick_next_task_dl, 2727 .put_prev_task = put_prev_task_dl, 2728 .set_next_task = set_next_task_dl, 2729 2730 #ifdef CONFIG_SMP 2731 .balance = balance_dl, 2732 .pick_task = pick_task_dl, 2733 .select_task_rq = select_task_rq_dl, 2734 .migrate_task_rq = migrate_task_rq_dl, 2735 .set_cpus_allowed = set_cpus_allowed_dl, 2736 .rq_online = rq_online_dl, 2737 .rq_offline = rq_offline_dl, 2738 .task_woken = task_woken_dl, 2739 .find_lock_rq = find_lock_later_rq, 2740 #endif 2741 2742 .task_tick = task_tick_dl, 2743 .task_fork = task_fork_dl, 2744 2745 .prio_changed = prio_changed_dl, 2746 .switched_from = switched_from_dl, 2747 .switched_to = switched_to_dl, 2748 2749 .update_curr = update_curr_dl, 2750 #ifdef CONFIG_SCHED_CORE 2751 .task_is_throttled = task_is_throttled_dl, 2752 #endif 2753 }; 2754 2755 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */ 2756 static u64 dl_generation; 2757 2758 int sched_dl_global_validate(void) 2759 { 2760 u64 runtime = global_rt_runtime(); 2761 u64 period = global_rt_period(); 2762 u64 new_bw = to_ratio(period, runtime); 2763 u64 gen = ++dl_generation; 2764 struct dl_bw *dl_b; 2765 int cpu, cpus, ret = 0; 2766 unsigned long flags; 2767 2768 /* 2769 * Here we want to check the bandwidth not being set to some 2770 * value smaller than the currently allocated bandwidth in 2771 * any of the root_domains. 2772 */ 2773 for_each_possible_cpu(cpu) { 2774 rcu_read_lock_sched(); 2775 2776 if (dl_bw_visited(cpu, gen)) 2777 goto next; 2778 2779 dl_b = dl_bw_of(cpu); 2780 cpus = dl_bw_cpus(cpu); 2781 2782 raw_spin_lock_irqsave(&dl_b->lock, flags); 2783 if (new_bw * cpus < dl_b->total_bw) 2784 ret = -EBUSY; 2785 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2786 2787 next: 2788 rcu_read_unlock_sched(); 2789 2790 if (ret) 2791 break; 2792 } 2793 2794 return ret; 2795 } 2796 2797 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq) 2798 { 2799 if (global_rt_runtime() == RUNTIME_INF) { 2800 dl_rq->bw_ratio = 1 << RATIO_SHIFT; 2801 dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT; 2802 } else { 2803 dl_rq->bw_ratio = to_ratio(global_rt_runtime(), 2804 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT); 2805 dl_rq->max_bw = dl_rq->extra_bw = 2806 to_ratio(global_rt_period(), global_rt_runtime()); 2807 } 2808 } 2809 2810 void sched_dl_do_global(void) 2811 { 2812 u64 new_bw = -1; 2813 u64 gen = ++dl_generation; 2814 struct dl_bw *dl_b; 2815 int cpu; 2816 unsigned long flags; 2817 2818 if (global_rt_runtime() != RUNTIME_INF) 2819 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 2820 2821 for_each_possible_cpu(cpu) { 2822 rcu_read_lock_sched(); 2823 2824 if (dl_bw_visited(cpu, gen)) { 2825 rcu_read_unlock_sched(); 2826 continue; 2827 } 2828 2829 dl_b = dl_bw_of(cpu); 2830 2831 raw_spin_lock_irqsave(&dl_b->lock, flags); 2832 dl_b->bw = new_bw; 2833 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2834 2835 rcu_read_unlock_sched(); 2836 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl); 2837 } 2838 } 2839 2840 /* 2841 * We must be sure that accepting a new task (or allowing changing the 2842 * parameters of an existing one) is consistent with the bandwidth 2843 * constraints. If yes, this function also accordingly updates the currently 2844 * allocated bandwidth to reflect the new situation. 2845 * 2846 * This function is called while holding p's rq->lock. 2847 */ 2848 int sched_dl_overflow(struct task_struct *p, int policy, 2849 const struct sched_attr *attr) 2850 { 2851 u64 period = attr->sched_period ?: attr->sched_deadline; 2852 u64 runtime = attr->sched_runtime; 2853 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2854 int cpus, err = -1, cpu = task_cpu(p); 2855 struct dl_bw *dl_b = dl_bw_of(cpu); 2856 unsigned long cap; 2857 2858 if (attr->sched_flags & SCHED_FLAG_SUGOV) 2859 return 0; 2860 2861 /* !deadline task may carry old deadline bandwidth */ 2862 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 2863 return 0; 2864 2865 /* 2866 * Either if a task, enters, leave, or stays -deadline but changes 2867 * its parameters, we may need to update accordingly the total 2868 * allocated bandwidth of the container. 2869 */ 2870 raw_spin_lock(&dl_b->lock); 2871 cpus = dl_bw_cpus(cpu); 2872 cap = dl_bw_capacity(cpu); 2873 2874 if (dl_policy(policy) && !task_has_dl_policy(p) && 2875 !__dl_overflow(dl_b, cap, 0, new_bw)) { 2876 if (hrtimer_active(&p->dl.inactive_timer)) 2877 __dl_sub(dl_b, p->dl.dl_bw, cpus); 2878 __dl_add(dl_b, new_bw, cpus); 2879 err = 0; 2880 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2881 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) { 2882 /* 2883 * XXX this is slightly incorrect: when the task 2884 * utilization decreases, we should delay the total 2885 * utilization change until the task's 0-lag point. 2886 * But this would require to set the task's "inactive 2887 * timer" when the task is not inactive. 2888 */ 2889 __dl_sub(dl_b, p->dl.dl_bw, cpus); 2890 __dl_add(dl_b, new_bw, cpus); 2891 dl_change_utilization(p, new_bw); 2892 err = 0; 2893 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2894 /* 2895 * Do not decrease the total deadline utilization here, 2896 * switched_from_dl() will take care to do it at the correct 2897 * (0-lag) time. 2898 */ 2899 err = 0; 2900 } 2901 raw_spin_unlock(&dl_b->lock); 2902 2903 return err; 2904 } 2905 2906 /* 2907 * This function initializes the sched_dl_entity of a newly becoming 2908 * SCHED_DEADLINE task. 2909 * 2910 * Only the static values are considered here, the actual runtime and the 2911 * absolute deadline will be properly calculated when the task is enqueued 2912 * for the first time with its new policy. 2913 */ 2914 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 2915 { 2916 struct sched_dl_entity *dl_se = &p->dl; 2917 2918 dl_se->dl_runtime = attr->sched_runtime; 2919 dl_se->dl_deadline = attr->sched_deadline; 2920 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 2921 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS; 2922 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 2923 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 2924 } 2925 2926 void __getparam_dl(struct task_struct *p, struct sched_attr *attr) 2927 { 2928 struct sched_dl_entity *dl_se = &p->dl; 2929 2930 attr->sched_priority = p->rt_priority; 2931 attr->sched_runtime = dl_se->dl_runtime; 2932 attr->sched_deadline = dl_se->dl_deadline; 2933 attr->sched_period = dl_se->dl_period; 2934 attr->sched_flags &= ~SCHED_DL_FLAGS; 2935 attr->sched_flags |= dl_se->flags; 2936 } 2937 2938 /* 2939 * This function validates the new parameters of a -deadline task. 2940 * We ask for the deadline not being zero, and greater or equal 2941 * than the runtime, as well as the period of being zero or 2942 * greater than deadline. Furthermore, we have to be sure that 2943 * user parameters are above the internal resolution of 1us (we 2944 * check sched_runtime only since it is always the smaller one) and 2945 * below 2^63 ns (we have to check both sched_deadline and 2946 * sched_period, as the latter can be zero). 2947 */ 2948 bool __checkparam_dl(const struct sched_attr *attr) 2949 { 2950 u64 period, max, min; 2951 2952 /* special dl tasks don't actually use any parameter */ 2953 if (attr->sched_flags & SCHED_FLAG_SUGOV) 2954 return true; 2955 2956 /* deadline != 0 */ 2957 if (attr->sched_deadline == 0) 2958 return false; 2959 2960 /* 2961 * Since we truncate DL_SCALE bits, make sure we're at least 2962 * that big. 2963 */ 2964 if (attr->sched_runtime < (1ULL << DL_SCALE)) 2965 return false; 2966 2967 /* 2968 * Since we use the MSB for wrap-around and sign issues, make 2969 * sure it's not set (mind that period can be equal to zero). 2970 */ 2971 if (attr->sched_deadline & (1ULL << 63) || 2972 attr->sched_period & (1ULL << 63)) 2973 return false; 2974 2975 period = attr->sched_period; 2976 if (!period) 2977 period = attr->sched_deadline; 2978 2979 /* runtime <= deadline <= period (if period != 0) */ 2980 if (period < attr->sched_deadline || 2981 attr->sched_deadline < attr->sched_runtime) 2982 return false; 2983 2984 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC; 2985 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC; 2986 2987 if (period < min || period > max) 2988 return false; 2989 2990 return true; 2991 } 2992 2993 /* 2994 * This function clears the sched_dl_entity static params. 2995 */ 2996 void __dl_clear_params(struct task_struct *p) 2997 { 2998 struct sched_dl_entity *dl_se = &p->dl; 2999 3000 dl_se->dl_runtime = 0; 3001 dl_se->dl_deadline = 0; 3002 dl_se->dl_period = 0; 3003 dl_se->flags = 0; 3004 dl_se->dl_bw = 0; 3005 dl_se->dl_density = 0; 3006 3007 dl_se->dl_throttled = 0; 3008 dl_se->dl_yielded = 0; 3009 dl_se->dl_non_contending = 0; 3010 dl_se->dl_overrun = 0; 3011 3012 #ifdef CONFIG_RT_MUTEXES 3013 dl_se->pi_se = dl_se; 3014 #endif 3015 } 3016 3017 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) 3018 { 3019 struct sched_dl_entity *dl_se = &p->dl; 3020 3021 if (dl_se->dl_runtime != attr->sched_runtime || 3022 dl_se->dl_deadline != attr->sched_deadline || 3023 dl_se->dl_period != attr->sched_period || 3024 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS)) 3025 return true; 3026 3027 return false; 3028 } 3029 3030 #ifdef CONFIG_SMP 3031 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, 3032 const struct cpumask *trial) 3033 { 3034 unsigned long flags, cap; 3035 struct dl_bw *cur_dl_b; 3036 int ret = 1; 3037 3038 rcu_read_lock_sched(); 3039 cur_dl_b = dl_bw_of(cpumask_any(cur)); 3040 cap = __dl_bw_capacity(trial); 3041 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 3042 if (__dl_overflow(cur_dl_b, cap, 0, 0)) 3043 ret = 0; 3044 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 3045 rcu_read_unlock_sched(); 3046 3047 return ret; 3048 } 3049 3050 enum dl_bw_request { 3051 dl_bw_req_check_overflow = 0, 3052 dl_bw_req_alloc, 3053 dl_bw_req_free 3054 }; 3055 3056 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw) 3057 { 3058 unsigned long flags; 3059 struct dl_bw *dl_b; 3060 bool overflow = 0; 3061 3062 rcu_read_lock_sched(); 3063 dl_b = dl_bw_of(cpu); 3064 raw_spin_lock_irqsave(&dl_b->lock, flags); 3065 3066 if (req == dl_bw_req_free) { 3067 __dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu)); 3068 } else { 3069 unsigned long cap = dl_bw_capacity(cpu); 3070 3071 overflow = __dl_overflow(dl_b, cap, 0, dl_bw); 3072 3073 if (req == dl_bw_req_alloc && !overflow) { 3074 /* 3075 * We reserve space in the destination 3076 * root_domain, as we can't fail after this point. 3077 * We will free resources in the source root_domain 3078 * later on (see set_cpus_allowed_dl()). 3079 */ 3080 __dl_add(dl_b, dl_bw, dl_bw_cpus(cpu)); 3081 } 3082 } 3083 3084 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 3085 rcu_read_unlock_sched(); 3086 3087 return overflow ? -EBUSY : 0; 3088 } 3089 3090 int dl_bw_check_overflow(int cpu) 3091 { 3092 return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0); 3093 } 3094 3095 int dl_bw_alloc(int cpu, u64 dl_bw) 3096 { 3097 return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw); 3098 } 3099 3100 void dl_bw_free(int cpu, u64 dl_bw) 3101 { 3102 dl_bw_manage(dl_bw_req_free, cpu, dl_bw); 3103 } 3104 #endif 3105 3106 #ifdef CONFIG_SCHED_DEBUG 3107 void print_dl_stats(struct seq_file *m, int cpu) 3108 { 3109 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 3110 } 3111 #endif /* CONFIG_SCHED_DEBUG */ 3112