xref: /openbmc/linux/kernel/sched/deadline.c (revision a2fb4d78)
1 /*
2  * Deadline Scheduling Class (SCHED_DEADLINE)
3  *
4  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5  *
6  * Tasks that periodically executes their instances for less than their
7  * runtime won't miss any of their deadlines.
8  * Tasks that are not periodic or sporadic or that tries to execute more
9  * than their reserved bandwidth will be slowed down (and may potentially
10  * miss some of their deadlines), and won't affect any other task.
11  *
12  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13  *                    Juri Lelli <juri.lelli@gmail.com>,
14  *                    Michael Trimarchi <michael@amarulasolutions.com>,
15  *                    Fabio Checconi <fchecconi@gmail.com>
16  */
17 #include "sched.h"
18 
19 #include <linux/slab.h>
20 
21 struct dl_bandwidth def_dl_bandwidth;
22 
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24 {
25 	return container_of(dl_se, struct task_struct, dl);
26 }
27 
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29 {
30 	return container_of(dl_rq, struct rq, dl);
31 }
32 
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34 {
35 	struct task_struct *p = dl_task_of(dl_se);
36 	struct rq *rq = task_rq(p);
37 
38 	return &rq->dl;
39 }
40 
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42 {
43 	return !RB_EMPTY_NODE(&dl_se->rb_node);
44 }
45 
46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47 {
48 	struct sched_dl_entity *dl_se = &p->dl;
49 
50 	return dl_rq->rb_leftmost == &dl_se->rb_node;
51 }
52 
53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
54 {
55 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 	dl_b->dl_period = period;
57 	dl_b->dl_runtime = runtime;
58 }
59 
60 extern unsigned long to_ratio(u64 period, u64 runtime);
61 
62 void init_dl_bw(struct dl_bw *dl_b)
63 {
64 	raw_spin_lock_init(&dl_b->lock);
65 	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
66 	if (global_rt_runtime() == RUNTIME_INF)
67 		dl_b->bw = -1;
68 	else
69 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
70 	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
71 	dl_b->total_bw = 0;
72 }
73 
74 void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq)
75 {
76 	dl_rq->rb_root = RB_ROOT;
77 
78 #ifdef CONFIG_SMP
79 	/* zero means no -deadline tasks */
80 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
81 
82 	dl_rq->dl_nr_migratory = 0;
83 	dl_rq->overloaded = 0;
84 	dl_rq->pushable_dl_tasks_root = RB_ROOT;
85 #else
86 	init_dl_bw(&dl_rq->dl_bw);
87 #endif
88 }
89 
90 #ifdef CONFIG_SMP
91 
92 static inline int dl_overloaded(struct rq *rq)
93 {
94 	return atomic_read(&rq->rd->dlo_count);
95 }
96 
97 static inline void dl_set_overload(struct rq *rq)
98 {
99 	if (!rq->online)
100 		return;
101 
102 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
103 	/*
104 	 * Must be visible before the overload count is
105 	 * set (as in sched_rt.c).
106 	 *
107 	 * Matched by the barrier in pull_dl_task().
108 	 */
109 	smp_wmb();
110 	atomic_inc(&rq->rd->dlo_count);
111 }
112 
113 static inline void dl_clear_overload(struct rq *rq)
114 {
115 	if (!rq->online)
116 		return;
117 
118 	atomic_dec(&rq->rd->dlo_count);
119 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
120 }
121 
122 static void update_dl_migration(struct dl_rq *dl_rq)
123 {
124 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
125 		if (!dl_rq->overloaded) {
126 			dl_set_overload(rq_of_dl_rq(dl_rq));
127 			dl_rq->overloaded = 1;
128 		}
129 	} else if (dl_rq->overloaded) {
130 		dl_clear_overload(rq_of_dl_rq(dl_rq));
131 		dl_rq->overloaded = 0;
132 	}
133 }
134 
135 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
136 {
137 	struct task_struct *p = dl_task_of(dl_se);
138 
139 	if (p->nr_cpus_allowed > 1)
140 		dl_rq->dl_nr_migratory++;
141 
142 	update_dl_migration(dl_rq);
143 }
144 
145 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
146 {
147 	struct task_struct *p = dl_task_of(dl_se);
148 
149 	if (p->nr_cpus_allowed > 1)
150 		dl_rq->dl_nr_migratory--;
151 
152 	update_dl_migration(dl_rq);
153 }
154 
155 /*
156  * The list of pushable -deadline task is not a plist, like in
157  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
158  */
159 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
160 {
161 	struct dl_rq *dl_rq = &rq->dl;
162 	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
163 	struct rb_node *parent = NULL;
164 	struct task_struct *entry;
165 	int leftmost = 1;
166 
167 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
168 
169 	while (*link) {
170 		parent = *link;
171 		entry = rb_entry(parent, struct task_struct,
172 				 pushable_dl_tasks);
173 		if (dl_entity_preempt(&p->dl, &entry->dl))
174 			link = &parent->rb_left;
175 		else {
176 			link = &parent->rb_right;
177 			leftmost = 0;
178 		}
179 	}
180 
181 	if (leftmost)
182 		dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
183 
184 	rb_link_node(&p->pushable_dl_tasks, parent, link);
185 	rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
186 }
187 
188 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
189 {
190 	struct dl_rq *dl_rq = &rq->dl;
191 
192 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
193 		return;
194 
195 	if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
196 		struct rb_node *next_node;
197 
198 		next_node = rb_next(&p->pushable_dl_tasks);
199 		dl_rq->pushable_dl_tasks_leftmost = next_node;
200 	}
201 
202 	rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
203 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
204 }
205 
206 static inline int has_pushable_dl_tasks(struct rq *rq)
207 {
208 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
209 }
210 
211 static int push_dl_task(struct rq *rq);
212 
213 #else
214 
215 static inline
216 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
217 {
218 }
219 
220 static inline
221 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
222 {
223 }
224 
225 static inline
226 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
227 {
228 }
229 
230 static inline
231 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
232 {
233 }
234 
235 #endif /* CONFIG_SMP */
236 
237 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
238 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
239 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
240 				  int flags);
241 
242 /*
243  * We are being explicitly informed that a new instance is starting,
244  * and this means that:
245  *  - the absolute deadline of the entity has to be placed at
246  *    current time + relative deadline;
247  *  - the runtime of the entity has to be set to the maximum value.
248  *
249  * The capability of specifying such event is useful whenever a -deadline
250  * entity wants to (try to!) synchronize its behaviour with the scheduler's
251  * one, and to (try to!) reconcile itself with its own scheduling
252  * parameters.
253  */
254 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
255 				       struct sched_dl_entity *pi_se)
256 {
257 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
258 	struct rq *rq = rq_of_dl_rq(dl_rq);
259 
260 	WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
261 
262 	/*
263 	 * We use the regular wall clock time to set deadlines in the
264 	 * future; in fact, we must consider execution overheads (time
265 	 * spent on hardirq context, etc.).
266 	 */
267 	dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
268 	dl_se->runtime = pi_se->dl_runtime;
269 	dl_se->dl_new = 0;
270 }
271 
272 /*
273  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
274  * possibility of a entity lasting more than what it declared, and thus
275  * exhausting its runtime.
276  *
277  * Here we are interested in making runtime overrun possible, but we do
278  * not want a entity which is misbehaving to affect the scheduling of all
279  * other entities.
280  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
281  * is used, in order to confine each entity within its own bandwidth.
282  *
283  * This function deals exactly with that, and ensures that when the runtime
284  * of a entity is replenished, its deadline is also postponed. That ensures
285  * the overrunning entity can't interfere with other entity in the system and
286  * can't make them miss their deadlines. Reasons why this kind of overruns
287  * could happen are, typically, a entity voluntarily trying to overcome its
288  * runtime, or it just underestimated it during sched_setscheduler_ex().
289  */
290 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
291 				struct sched_dl_entity *pi_se)
292 {
293 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
294 	struct rq *rq = rq_of_dl_rq(dl_rq);
295 
296 	BUG_ON(pi_se->dl_runtime <= 0);
297 
298 	/*
299 	 * This could be the case for a !-dl task that is boosted.
300 	 * Just go with full inherited parameters.
301 	 */
302 	if (dl_se->dl_deadline == 0) {
303 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
304 		dl_se->runtime = pi_se->dl_runtime;
305 	}
306 
307 	/*
308 	 * We keep moving the deadline away until we get some
309 	 * available runtime for the entity. This ensures correct
310 	 * handling of situations where the runtime overrun is
311 	 * arbitrary large.
312 	 */
313 	while (dl_se->runtime <= 0) {
314 		dl_se->deadline += pi_se->dl_period;
315 		dl_se->runtime += pi_se->dl_runtime;
316 	}
317 
318 	/*
319 	 * At this point, the deadline really should be "in
320 	 * the future" with respect to rq->clock. If it's
321 	 * not, we are, for some reason, lagging too much!
322 	 * Anyway, after having warn userspace abut that,
323 	 * we still try to keep the things running by
324 	 * resetting the deadline and the budget of the
325 	 * entity.
326 	 */
327 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
328 		static bool lag_once = false;
329 
330 		if (!lag_once) {
331 			lag_once = true;
332 			printk_sched("sched: DL replenish lagged to much\n");
333 		}
334 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
335 		dl_se->runtime = pi_se->dl_runtime;
336 	}
337 }
338 
339 /*
340  * Here we check if --at time t-- an entity (which is probably being
341  * [re]activated or, in general, enqueued) can use its remaining runtime
342  * and its current deadline _without_ exceeding the bandwidth it is
343  * assigned (function returns true if it can't). We are in fact applying
344  * one of the CBS rules: when a task wakes up, if the residual runtime
345  * over residual deadline fits within the allocated bandwidth, then we
346  * can keep the current (absolute) deadline and residual budget without
347  * disrupting the schedulability of the system. Otherwise, we should
348  * refill the runtime and set the deadline a period in the future,
349  * because keeping the current (absolute) deadline of the task would
350  * result in breaking guarantees promised to other tasks (refer to
351  * Documentation/scheduler/sched-deadline.txt for more informations).
352  *
353  * This function returns true if:
354  *
355  *   runtime / (deadline - t) > dl_runtime / dl_period ,
356  *
357  * IOW we can't recycle current parameters.
358  *
359  * Notice that the bandwidth check is done against the period. For
360  * task with deadline equal to period this is the same of using
361  * dl_deadline instead of dl_period in the equation above.
362  */
363 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
364 			       struct sched_dl_entity *pi_se, u64 t)
365 {
366 	u64 left, right;
367 
368 	/*
369 	 * left and right are the two sides of the equation above,
370 	 * after a bit of shuffling to use multiplications instead
371 	 * of divisions.
372 	 *
373 	 * Note that none of the time values involved in the two
374 	 * multiplications are absolute: dl_deadline and dl_runtime
375 	 * are the relative deadline and the maximum runtime of each
376 	 * instance, runtime is the runtime left for the last instance
377 	 * and (deadline - t), since t is rq->clock, is the time left
378 	 * to the (absolute) deadline. Even if overflowing the u64 type
379 	 * is very unlikely to occur in both cases, here we scale down
380 	 * as we want to avoid that risk at all. Scaling down by 10
381 	 * means that we reduce granularity to 1us. We are fine with it,
382 	 * since this is only a true/false check and, anyway, thinking
383 	 * of anything below microseconds resolution is actually fiction
384 	 * (but still we want to give the user that illusion >;).
385 	 */
386 	left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
387 	right = ((dl_se->deadline - t) >> DL_SCALE) *
388 		(pi_se->dl_runtime >> DL_SCALE);
389 
390 	return dl_time_before(right, left);
391 }
392 
393 /*
394  * When a -deadline entity is queued back on the runqueue, its runtime and
395  * deadline might need updating.
396  *
397  * The policy here is that we update the deadline of the entity only if:
398  *  - the current deadline is in the past,
399  *  - using the remaining runtime with the current deadline would make
400  *    the entity exceed its bandwidth.
401  */
402 static void update_dl_entity(struct sched_dl_entity *dl_se,
403 			     struct sched_dl_entity *pi_se)
404 {
405 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
406 	struct rq *rq = rq_of_dl_rq(dl_rq);
407 
408 	/*
409 	 * The arrival of a new instance needs special treatment, i.e.,
410 	 * the actual scheduling parameters have to be "renewed".
411 	 */
412 	if (dl_se->dl_new) {
413 		setup_new_dl_entity(dl_se, pi_se);
414 		return;
415 	}
416 
417 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
418 	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
419 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
420 		dl_se->runtime = pi_se->dl_runtime;
421 	}
422 }
423 
424 /*
425  * If the entity depleted all its runtime, and if we want it to sleep
426  * while waiting for some new execution time to become available, we
427  * set the bandwidth enforcement timer to the replenishment instant
428  * and try to activate it.
429  *
430  * Notice that it is important for the caller to know if the timer
431  * actually started or not (i.e., the replenishment instant is in
432  * the future or in the past).
433  */
434 static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted)
435 {
436 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
437 	struct rq *rq = rq_of_dl_rq(dl_rq);
438 	ktime_t now, act;
439 	ktime_t soft, hard;
440 	unsigned long range;
441 	s64 delta;
442 
443 	if (boosted)
444 		return 0;
445 	/*
446 	 * We want the timer to fire at the deadline, but considering
447 	 * that it is actually coming from rq->clock and not from
448 	 * hrtimer's time base reading.
449 	 */
450 	act = ns_to_ktime(dl_se->deadline);
451 	now = hrtimer_cb_get_time(&dl_se->dl_timer);
452 	delta = ktime_to_ns(now) - rq_clock(rq);
453 	act = ktime_add_ns(act, delta);
454 
455 	/*
456 	 * If the expiry time already passed, e.g., because the value
457 	 * chosen as the deadline is too small, don't even try to
458 	 * start the timer in the past!
459 	 */
460 	if (ktime_us_delta(act, now) < 0)
461 		return 0;
462 
463 	hrtimer_set_expires(&dl_se->dl_timer, act);
464 
465 	soft = hrtimer_get_softexpires(&dl_se->dl_timer);
466 	hard = hrtimer_get_expires(&dl_se->dl_timer);
467 	range = ktime_to_ns(ktime_sub(hard, soft));
468 	__hrtimer_start_range_ns(&dl_se->dl_timer, soft,
469 				 range, HRTIMER_MODE_ABS, 0);
470 
471 	return hrtimer_active(&dl_se->dl_timer);
472 }
473 
474 /*
475  * This is the bandwidth enforcement timer callback. If here, we know
476  * a task is not on its dl_rq, since the fact that the timer was running
477  * means the task is throttled and needs a runtime replenishment.
478  *
479  * However, what we actually do depends on the fact the task is active,
480  * (it is on its rq) or has been removed from there by a call to
481  * dequeue_task_dl(). In the former case we must issue the runtime
482  * replenishment and add the task back to the dl_rq; in the latter, we just
483  * do nothing but clearing dl_throttled, so that runtime and deadline
484  * updating (and the queueing back to dl_rq) will be done by the
485  * next call to enqueue_task_dl().
486  */
487 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
488 {
489 	struct sched_dl_entity *dl_se = container_of(timer,
490 						     struct sched_dl_entity,
491 						     dl_timer);
492 	struct task_struct *p = dl_task_of(dl_se);
493 	struct rq *rq = task_rq(p);
494 	raw_spin_lock(&rq->lock);
495 
496 	/*
497 	 * We need to take care of a possible races here. In fact, the
498 	 * task might have changed its scheduling policy to something
499 	 * different from SCHED_DEADLINE or changed its reservation
500 	 * parameters (through sched_setscheduler()).
501 	 */
502 	if (!dl_task(p) || dl_se->dl_new)
503 		goto unlock;
504 
505 	sched_clock_tick();
506 	update_rq_clock(rq);
507 	dl_se->dl_throttled = 0;
508 	if (p->on_rq) {
509 		enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
510 		if (task_has_dl_policy(rq->curr))
511 			check_preempt_curr_dl(rq, p, 0);
512 		else
513 			resched_task(rq->curr);
514 #ifdef CONFIG_SMP
515 		/*
516 		 * Queueing this task back might have overloaded rq,
517 		 * check if we need to kick someone away.
518 		 */
519 		if (has_pushable_dl_tasks(rq))
520 			push_dl_task(rq);
521 #endif
522 	}
523 unlock:
524 	raw_spin_unlock(&rq->lock);
525 
526 	return HRTIMER_NORESTART;
527 }
528 
529 void init_dl_task_timer(struct sched_dl_entity *dl_se)
530 {
531 	struct hrtimer *timer = &dl_se->dl_timer;
532 
533 	if (hrtimer_active(timer)) {
534 		hrtimer_try_to_cancel(timer);
535 		return;
536 	}
537 
538 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
539 	timer->function = dl_task_timer;
540 }
541 
542 static
543 int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se)
544 {
545 	int dmiss = dl_time_before(dl_se->deadline, rq_clock(rq));
546 	int rorun = dl_se->runtime <= 0;
547 
548 	if (!rorun && !dmiss)
549 		return 0;
550 
551 	/*
552 	 * If we are beyond our current deadline and we are still
553 	 * executing, then we have already used some of the runtime of
554 	 * the next instance. Thus, if we do not account that, we are
555 	 * stealing bandwidth from the system at each deadline miss!
556 	 */
557 	if (dmiss) {
558 		dl_se->runtime = rorun ? dl_se->runtime : 0;
559 		dl_se->runtime -= rq_clock(rq) - dl_se->deadline;
560 	}
561 
562 	return 1;
563 }
564 
565 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
566 
567 /*
568  * Update the current task's runtime statistics (provided it is still
569  * a -deadline task and has not been removed from the dl_rq).
570  */
571 static void update_curr_dl(struct rq *rq)
572 {
573 	struct task_struct *curr = rq->curr;
574 	struct sched_dl_entity *dl_se = &curr->dl;
575 	u64 delta_exec;
576 
577 	if (!dl_task(curr) || !on_dl_rq(dl_se))
578 		return;
579 
580 	/*
581 	 * Consumed budget is computed considering the time as
582 	 * observed by schedulable tasks (excluding time spent
583 	 * in hardirq context, etc.). Deadlines are instead
584 	 * computed using hard walltime. This seems to be the more
585 	 * natural solution, but the full ramifications of this
586 	 * approach need further study.
587 	 */
588 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
589 	if (unlikely((s64)delta_exec < 0))
590 		delta_exec = 0;
591 
592 	schedstat_set(curr->se.statistics.exec_max,
593 		      max(curr->se.statistics.exec_max, delta_exec));
594 
595 	curr->se.sum_exec_runtime += delta_exec;
596 	account_group_exec_runtime(curr, delta_exec);
597 
598 	curr->se.exec_start = rq_clock_task(rq);
599 	cpuacct_charge(curr, delta_exec);
600 
601 	sched_rt_avg_update(rq, delta_exec);
602 
603 	dl_se->runtime -= delta_exec;
604 	if (dl_runtime_exceeded(rq, dl_se)) {
605 		__dequeue_task_dl(rq, curr, 0);
606 		if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted)))
607 			dl_se->dl_throttled = 1;
608 		else
609 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
610 
611 		if (!is_leftmost(curr, &rq->dl))
612 			resched_task(curr);
613 	}
614 
615 	/*
616 	 * Because -- for now -- we share the rt bandwidth, we need to
617 	 * account our runtime there too, otherwise actual rt tasks
618 	 * would be able to exceed the shared quota.
619 	 *
620 	 * Account to the root rt group for now.
621 	 *
622 	 * The solution we're working towards is having the RT groups scheduled
623 	 * using deadline servers -- however there's a few nasties to figure
624 	 * out before that can happen.
625 	 */
626 	if (rt_bandwidth_enabled()) {
627 		struct rt_rq *rt_rq = &rq->rt;
628 
629 		raw_spin_lock(&rt_rq->rt_runtime_lock);
630 		/*
631 		 * We'll let actual RT tasks worry about the overflow here, we
632 		 * have our own CBS to keep us inline; only account when RT
633 		 * bandwidth is relevant.
634 		 */
635 		if (sched_rt_bandwidth_account(rt_rq))
636 			rt_rq->rt_time += delta_exec;
637 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
638 	}
639 }
640 
641 #ifdef CONFIG_SMP
642 
643 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);
644 
645 static inline u64 next_deadline(struct rq *rq)
646 {
647 	struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);
648 
649 	if (next && dl_prio(next->prio))
650 		return next->dl.deadline;
651 	else
652 		return 0;
653 }
654 
655 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
656 {
657 	struct rq *rq = rq_of_dl_rq(dl_rq);
658 
659 	if (dl_rq->earliest_dl.curr == 0 ||
660 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
661 		/*
662 		 * If the dl_rq had no -deadline tasks, or if the new task
663 		 * has shorter deadline than the current one on dl_rq, we
664 		 * know that the previous earliest becomes our next earliest,
665 		 * as the new task becomes the earliest itself.
666 		 */
667 		dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
668 		dl_rq->earliest_dl.curr = deadline;
669 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
670 	} else if (dl_rq->earliest_dl.next == 0 ||
671 		   dl_time_before(deadline, dl_rq->earliest_dl.next)) {
672 		/*
673 		 * On the other hand, if the new -deadline task has a
674 		 * a later deadline than the earliest one on dl_rq, but
675 		 * it is earlier than the next (if any), we must
676 		 * recompute the next-earliest.
677 		 */
678 		dl_rq->earliest_dl.next = next_deadline(rq);
679 	}
680 }
681 
682 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
683 {
684 	struct rq *rq = rq_of_dl_rq(dl_rq);
685 
686 	/*
687 	 * Since we may have removed our earliest (and/or next earliest)
688 	 * task we must recompute them.
689 	 */
690 	if (!dl_rq->dl_nr_running) {
691 		dl_rq->earliest_dl.curr = 0;
692 		dl_rq->earliest_dl.next = 0;
693 		cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
694 	} else {
695 		struct rb_node *leftmost = dl_rq->rb_leftmost;
696 		struct sched_dl_entity *entry;
697 
698 		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
699 		dl_rq->earliest_dl.curr = entry->deadline;
700 		dl_rq->earliest_dl.next = next_deadline(rq);
701 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
702 	}
703 }
704 
705 #else
706 
707 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
708 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
709 
710 #endif /* CONFIG_SMP */
711 
712 static inline
713 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
714 {
715 	int prio = dl_task_of(dl_se)->prio;
716 	u64 deadline = dl_se->deadline;
717 
718 	WARN_ON(!dl_prio(prio));
719 	dl_rq->dl_nr_running++;
720 	inc_nr_running(rq_of_dl_rq(dl_rq));
721 
722 	inc_dl_deadline(dl_rq, deadline);
723 	inc_dl_migration(dl_se, dl_rq);
724 }
725 
726 static inline
727 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
728 {
729 	int prio = dl_task_of(dl_se)->prio;
730 
731 	WARN_ON(!dl_prio(prio));
732 	WARN_ON(!dl_rq->dl_nr_running);
733 	dl_rq->dl_nr_running--;
734 	dec_nr_running(rq_of_dl_rq(dl_rq));
735 
736 	dec_dl_deadline(dl_rq, dl_se->deadline);
737 	dec_dl_migration(dl_se, dl_rq);
738 }
739 
740 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
741 {
742 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
743 	struct rb_node **link = &dl_rq->rb_root.rb_node;
744 	struct rb_node *parent = NULL;
745 	struct sched_dl_entity *entry;
746 	int leftmost = 1;
747 
748 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
749 
750 	while (*link) {
751 		parent = *link;
752 		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
753 		if (dl_time_before(dl_se->deadline, entry->deadline))
754 			link = &parent->rb_left;
755 		else {
756 			link = &parent->rb_right;
757 			leftmost = 0;
758 		}
759 	}
760 
761 	if (leftmost)
762 		dl_rq->rb_leftmost = &dl_se->rb_node;
763 
764 	rb_link_node(&dl_se->rb_node, parent, link);
765 	rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
766 
767 	inc_dl_tasks(dl_se, dl_rq);
768 }
769 
770 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
771 {
772 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
773 
774 	if (RB_EMPTY_NODE(&dl_se->rb_node))
775 		return;
776 
777 	if (dl_rq->rb_leftmost == &dl_se->rb_node) {
778 		struct rb_node *next_node;
779 
780 		next_node = rb_next(&dl_se->rb_node);
781 		dl_rq->rb_leftmost = next_node;
782 	}
783 
784 	rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
785 	RB_CLEAR_NODE(&dl_se->rb_node);
786 
787 	dec_dl_tasks(dl_se, dl_rq);
788 }
789 
790 static void
791 enqueue_dl_entity(struct sched_dl_entity *dl_se,
792 		  struct sched_dl_entity *pi_se, int flags)
793 {
794 	BUG_ON(on_dl_rq(dl_se));
795 
796 	/*
797 	 * If this is a wakeup or a new instance, the scheduling
798 	 * parameters of the task might need updating. Otherwise,
799 	 * we want a replenishment of its runtime.
800 	 */
801 	if (!dl_se->dl_new && flags & ENQUEUE_REPLENISH)
802 		replenish_dl_entity(dl_se, pi_se);
803 	else
804 		update_dl_entity(dl_se, pi_se);
805 
806 	__enqueue_dl_entity(dl_se);
807 }
808 
809 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
810 {
811 	__dequeue_dl_entity(dl_se);
812 }
813 
814 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
815 {
816 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
817 	struct sched_dl_entity *pi_se = &p->dl;
818 
819 	/*
820 	 * Use the scheduling parameters of the top pi-waiter
821 	 * task if we have one and its (relative) deadline is
822 	 * smaller than our one... OTW we keep our runtime and
823 	 * deadline.
824 	 */
825 	if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio))
826 		pi_se = &pi_task->dl;
827 
828 	/*
829 	 * If p is throttled, we do nothing. In fact, if it exhausted
830 	 * its budget it needs a replenishment and, since it now is on
831 	 * its rq, the bandwidth timer callback (which clearly has not
832 	 * run yet) will take care of this.
833 	 */
834 	if (p->dl.dl_throttled)
835 		return;
836 
837 	enqueue_dl_entity(&p->dl, pi_se, flags);
838 
839 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
840 		enqueue_pushable_dl_task(rq, p);
841 }
842 
843 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
844 {
845 	dequeue_dl_entity(&p->dl);
846 	dequeue_pushable_dl_task(rq, p);
847 }
848 
849 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
850 {
851 	update_curr_dl(rq);
852 	__dequeue_task_dl(rq, p, flags);
853 }
854 
855 /*
856  * Yield task semantic for -deadline tasks is:
857  *
858  *   get off from the CPU until our next instance, with
859  *   a new runtime. This is of little use now, since we
860  *   don't have a bandwidth reclaiming mechanism. Anyway,
861  *   bandwidth reclaiming is planned for the future, and
862  *   yield_task_dl will indicate that some spare budget
863  *   is available for other task instances to use it.
864  */
865 static void yield_task_dl(struct rq *rq)
866 {
867 	struct task_struct *p = rq->curr;
868 
869 	/*
870 	 * We make the task go to sleep until its current deadline by
871 	 * forcing its runtime to zero. This way, update_curr_dl() stops
872 	 * it and the bandwidth timer will wake it up and will give it
873 	 * new scheduling parameters (thanks to dl_new=1).
874 	 */
875 	if (p->dl.runtime > 0) {
876 		rq->curr->dl.dl_new = 1;
877 		p->dl.runtime = 0;
878 	}
879 	update_curr_dl(rq);
880 }
881 
882 #ifdef CONFIG_SMP
883 
884 static int find_later_rq(struct task_struct *task);
885 
886 static int
887 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
888 {
889 	struct task_struct *curr;
890 	struct rq *rq;
891 
892 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
893 		goto out;
894 
895 	rq = cpu_rq(cpu);
896 
897 	rcu_read_lock();
898 	curr = ACCESS_ONCE(rq->curr); /* unlocked access */
899 
900 	/*
901 	 * If we are dealing with a -deadline task, we must
902 	 * decide where to wake it up.
903 	 * If it has a later deadline and the current task
904 	 * on this rq can't move (provided the waking task
905 	 * can!) we prefer to send it somewhere else. On the
906 	 * other hand, if it has a shorter deadline, we
907 	 * try to make it stay here, it might be important.
908 	 */
909 	if (unlikely(dl_task(curr)) &&
910 	    (curr->nr_cpus_allowed < 2 ||
911 	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
912 	    (p->nr_cpus_allowed > 1)) {
913 		int target = find_later_rq(p);
914 
915 		if (target != -1)
916 			cpu = target;
917 	}
918 	rcu_read_unlock();
919 
920 out:
921 	return cpu;
922 }
923 
924 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
925 {
926 	/*
927 	 * Current can't be migrated, useless to reschedule,
928 	 * let's hope p can move out.
929 	 */
930 	if (rq->curr->nr_cpus_allowed == 1 ||
931 	    cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
932 		return;
933 
934 	/*
935 	 * p is migratable, so let's not schedule it and
936 	 * see if it is pushed or pulled somewhere else.
937 	 */
938 	if (p->nr_cpus_allowed != 1 &&
939 	    cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
940 		return;
941 
942 	resched_task(rq->curr);
943 }
944 
945 #endif /* CONFIG_SMP */
946 
947 /*
948  * Only called when both the current and waking task are -deadline
949  * tasks.
950  */
951 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
952 				  int flags)
953 {
954 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
955 		resched_task(rq->curr);
956 		return;
957 	}
958 
959 #ifdef CONFIG_SMP
960 	/*
961 	 * In the unlikely case current and p have the same deadline
962 	 * let us try to decide what's the best thing to do...
963 	 */
964 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
965 	    !test_tsk_need_resched(rq->curr))
966 		check_preempt_equal_dl(rq, p);
967 #endif /* CONFIG_SMP */
968 }
969 
970 #ifdef CONFIG_SCHED_HRTICK
971 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
972 {
973 	s64 delta = p->dl.dl_runtime - p->dl.runtime;
974 
975 	if (delta > 10000)
976 		hrtick_start(rq, p->dl.runtime);
977 }
978 #endif
979 
980 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
981 						   struct dl_rq *dl_rq)
982 {
983 	struct rb_node *left = dl_rq->rb_leftmost;
984 
985 	if (!left)
986 		return NULL;
987 
988 	return rb_entry(left, struct sched_dl_entity, rb_node);
989 }
990 
991 struct task_struct *pick_next_task_dl(struct rq *rq)
992 {
993 	struct sched_dl_entity *dl_se;
994 	struct task_struct *p;
995 	struct dl_rq *dl_rq;
996 
997 	dl_rq = &rq->dl;
998 
999 	if (unlikely(!dl_rq->dl_nr_running))
1000 		return NULL;
1001 
1002 	dl_se = pick_next_dl_entity(rq, dl_rq);
1003 	BUG_ON(!dl_se);
1004 
1005 	p = dl_task_of(dl_se);
1006 	p->se.exec_start = rq_clock_task(rq);
1007 
1008 	/* Running task will never be pushed. */
1009        dequeue_pushable_dl_task(rq, p);
1010 
1011 #ifdef CONFIG_SCHED_HRTICK
1012 	if (hrtick_enabled(rq))
1013 		start_hrtick_dl(rq, p);
1014 #endif
1015 
1016 #ifdef CONFIG_SMP
1017 	rq->post_schedule = has_pushable_dl_tasks(rq);
1018 #endif /* CONFIG_SMP */
1019 
1020 	return p;
1021 }
1022 
1023 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1024 {
1025 	update_curr_dl(rq);
1026 
1027 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1028 		enqueue_pushable_dl_task(rq, p);
1029 }
1030 
1031 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1032 {
1033 	update_curr_dl(rq);
1034 
1035 #ifdef CONFIG_SCHED_HRTICK
1036 	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0)
1037 		start_hrtick_dl(rq, p);
1038 #endif
1039 }
1040 
1041 static void task_fork_dl(struct task_struct *p)
1042 {
1043 	/*
1044 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1045 	 * sched_fork()
1046 	 */
1047 }
1048 
1049 static void task_dead_dl(struct task_struct *p)
1050 {
1051 	struct hrtimer *timer = &p->dl.dl_timer;
1052 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1053 
1054 	/*
1055 	 * Since we are TASK_DEAD we won't slip out of the domain!
1056 	 */
1057 	raw_spin_lock_irq(&dl_b->lock);
1058 	dl_b->total_bw -= p->dl.dl_bw;
1059 	raw_spin_unlock_irq(&dl_b->lock);
1060 
1061 	hrtimer_cancel(timer);
1062 }
1063 
1064 static void set_curr_task_dl(struct rq *rq)
1065 {
1066 	struct task_struct *p = rq->curr;
1067 
1068 	p->se.exec_start = rq_clock_task(rq);
1069 
1070 	/* You can't push away the running task */
1071 	dequeue_pushable_dl_task(rq, p);
1072 }
1073 
1074 #ifdef CONFIG_SMP
1075 
1076 /* Only try algorithms three times */
1077 #define DL_MAX_TRIES 3
1078 
1079 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1080 {
1081 	if (!task_running(rq, p) &&
1082 	    (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
1083 	    (p->nr_cpus_allowed > 1))
1084 		return 1;
1085 
1086 	return 0;
1087 }
1088 
1089 /* Returns the second earliest -deadline task, NULL otherwise */
1090 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
1091 {
1092 	struct rb_node *next_node = rq->dl.rb_leftmost;
1093 	struct sched_dl_entity *dl_se;
1094 	struct task_struct *p = NULL;
1095 
1096 next_node:
1097 	next_node = rb_next(next_node);
1098 	if (next_node) {
1099 		dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
1100 		p = dl_task_of(dl_se);
1101 
1102 		if (pick_dl_task(rq, p, cpu))
1103 			return p;
1104 
1105 		goto next_node;
1106 	}
1107 
1108 	return NULL;
1109 }
1110 
1111 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1112 
1113 static int find_later_rq(struct task_struct *task)
1114 {
1115 	struct sched_domain *sd;
1116 	struct cpumask *later_mask = __get_cpu_var(local_cpu_mask_dl);
1117 	int this_cpu = smp_processor_id();
1118 	int best_cpu, cpu = task_cpu(task);
1119 
1120 	/* Make sure the mask is initialized first */
1121 	if (unlikely(!later_mask))
1122 		return -1;
1123 
1124 	if (task->nr_cpus_allowed == 1)
1125 		return -1;
1126 
1127 	best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1128 			task, later_mask);
1129 	if (best_cpu == -1)
1130 		return -1;
1131 
1132 	/*
1133 	 * If we are here, some target has been found,
1134 	 * the most suitable of which is cached in best_cpu.
1135 	 * This is, among the runqueues where the current tasks
1136 	 * have later deadlines than the task's one, the rq
1137 	 * with the latest possible one.
1138 	 *
1139 	 * Now we check how well this matches with task's
1140 	 * affinity and system topology.
1141 	 *
1142 	 * The last cpu where the task run is our first
1143 	 * guess, since it is most likely cache-hot there.
1144 	 */
1145 	if (cpumask_test_cpu(cpu, later_mask))
1146 		return cpu;
1147 	/*
1148 	 * Check if this_cpu is to be skipped (i.e., it is
1149 	 * not in the mask) or not.
1150 	 */
1151 	if (!cpumask_test_cpu(this_cpu, later_mask))
1152 		this_cpu = -1;
1153 
1154 	rcu_read_lock();
1155 	for_each_domain(cpu, sd) {
1156 		if (sd->flags & SD_WAKE_AFFINE) {
1157 
1158 			/*
1159 			 * If possible, preempting this_cpu is
1160 			 * cheaper than migrating.
1161 			 */
1162 			if (this_cpu != -1 &&
1163 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1164 				rcu_read_unlock();
1165 				return this_cpu;
1166 			}
1167 
1168 			/*
1169 			 * Last chance: if best_cpu is valid and is
1170 			 * in the mask, that becomes our choice.
1171 			 */
1172 			if (best_cpu < nr_cpu_ids &&
1173 			    cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1174 				rcu_read_unlock();
1175 				return best_cpu;
1176 			}
1177 		}
1178 	}
1179 	rcu_read_unlock();
1180 
1181 	/*
1182 	 * At this point, all our guesses failed, we just return
1183 	 * 'something', and let the caller sort the things out.
1184 	 */
1185 	if (this_cpu != -1)
1186 		return this_cpu;
1187 
1188 	cpu = cpumask_any(later_mask);
1189 	if (cpu < nr_cpu_ids)
1190 		return cpu;
1191 
1192 	return -1;
1193 }
1194 
1195 /* Locks the rq it finds */
1196 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1197 {
1198 	struct rq *later_rq = NULL;
1199 	int tries;
1200 	int cpu;
1201 
1202 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1203 		cpu = find_later_rq(task);
1204 
1205 		if ((cpu == -1) || (cpu == rq->cpu))
1206 			break;
1207 
1208 		later_rq = cpu_rq(cpu);
1209 
1210 		/* Retry if something changed. */
1211 		if (double_lock_balance(rq, later_rq)) {
1212 			if (unlikely(task_rq(task) != rq ||
1213 				     !cpumask_test_cpu(later_rq->cpu,
1214 				                       &task->cpus_allowed) ||
1215 				     task_running(rq, task) || !task->on_rq)) {
1216 				double_unlock_balance(rq, later_rq);
1217 				later_rq = NULL;
1218 				break;
1219 			}
1220 		}
1221 
1222 		/*
1223 		 * If the rq we found has no -deadline task, or
1224 		 * its earliest one has a later deadline than our
1225 		 * task, the rq is a good one.
1226 		 */
1227 		if (!later_rq->dl.dl_nr_running ||
1228 		    dl_time_before(task->dl.deadline,
1229 				   later_rq->dl.earliest_dl.curr))
1230 			break;
1231 
1232 		/* Otherwise we try again. */
1233 		double_unlock_balance(rq, later_rq);
1234 		later_rq = NULL;
1235 	}
1236 
1237 	return later_rq;
1238 }
1239 
1240 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1241 {
1242 	struct task_struct *p;
1243 
1244 	if (!has_pushable_dl_tasks(rq))
1245 		return NULL;
1246 
1247 	p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1248 		     struct task_struct, pushable_dl_tasks);
1249 
1250 	BUG_ON(rq->cpu != task_cpu(p));
1251 	BUG_ON(task_current(rq, p));
1252 	BUG_ON(p->nr_cpus_allowed <= 1);
1253 
1254 	BUG_ON(!p->on_rq);
1255 	BUG_ON(!dl_task(p));
1256 
1257 	return p;
1258 }
1259 
1260 /*
1261  * See if the non running -deadline tasks on this rq
1262  * can be sent to some other CPU where they can preempt
1263  * and start executing.
1264  */
1265 static int push_dl_task(struct rq *rq)
1266 {
1267 	struct task_struct *next_task;
1268 	struct rq *later_rq;
1269 
1270 	if (!rq->dl.overloaded)
1271 		return 0;
1272 
1273 	next_task = pick_next_pushable_dl_task(rq);
1274 	if (!next_task)
1275 		return 0;
1276 
1277 retry:
1278 	if (unlikely(next_task == rq->curr)) {
1279 		WARN_ON(1);
1280 		return 0;
1281 	}
1282 
1283 	/*
1284 	 * If next_task preempts rq->curr, and rq->curr
1285 	 * can move away, it makes sense to just reschedule
1286 	 * without going further in pushing next_task.
1287 	 */
1288 	if (dl_task(rq->curr) &&
1289 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1290 	    rq->curr->nr_cpus_allowed > 1) {
1291 		resched_task(rq->curr);
1292 		return 0;
1293 	}
1294 
1295 	/* We might release rq lock */
1296 	get_task_struct(next_task);
1297 
1298 	/* Will lock the rq it'll find */
1299 	later_rq = find_lock_later_rq(next_task, rq);
1300 	if (!later_rq) {
1301 		struct task_struct *task;
1302 
1303 		/*
1304 		 * We must check all this again, since
1305 		 * find_lock_later_rq releases rq->lock and it is
1306 		 * then possible that next_task has migrated.
1307 		 */
1308 		task = pick_next_pushable_dl_task(rq);
1309 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1310 			/*
1311 			 * The task is still there. We don't try
1312 			 * again, some other cpu will pull it when ready.
1313 			 */
1314 			dequeue_pushable_dl_task(rq, next_task);
1315 			goto out;
1316 		}
1317 
1318 		if (!task)
1319 			/* No more tasks */
1320 			goto out;
1321 
1322 		put_task_struct(next_task);
1323 		next_task = task;
1324 		goto retry;
1325 	}
1326 
1327 	deactivate_task(rq, next_task, 0);
1328 	set_task_cpu(next_task, later_rq->cpu);
1329 	activate_task(later_rq, next_task, 0);
1330 
1331 	resched_task(later_rq->curr);
1332 
1333 	double_unlock_balance(rq, later_rq);
1334 
1335 out:
1336 	put_task_struct(next_task);
1337 
1338 	return 1;
1339 }
1340 
1341 static void push_dl_tasks(struct rq *rq)
1342 {
1343 	/* Terminates as it moves a -deadline task */
1344 	while (push_dl_task(rq))
1345 		;
1346 }
1347 
1348 static int pull_dl_task(struct rq *this_rq)
1349 {
1350 	int this_cpu = this_rq->cpu, ret = 0, cpu;
1351 	struct task_struct *p;
1352 	struct rq *src_rq;
1353 	u64 dmin = LONG_MAX;
1354 
1355 	if (likely(!dl_overloaded(this_rq)))
1356 		return 0;
1357 
1358 	/*
1359 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
1360 	 * see overloaded we must also see the dlo_mask bit.
1361 	 */
1362 	smp_rmb();
1363 
1364 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1365 		if (this_cpu == cpu)
1366 			continue;
1367 
1368 		src_rq = cpu_rq(cpu);
1369 
1370 		/*
1371 		 * It looks racy, abd it is! However, as in sched_rt.c,
1372 		 * we are fine with this.
1373 		 */
1374 		if (this_rq->dl.dl_nr_running &&
1375 		    dl_time_before(this_rq->dl.earliest_dl.curr,
1376 				   src_rq->dl.earliest_dl.next))
1377 			continue;
1378 
1379 		/* Might drop this_rq->lock */
1380 		double_lock_balance(this_rq, src_rq);
1381 
1382 		/*
1383 		 * If there are no more pullable tasks on the
1384 		 * rq, we're done with it.
1385 		 */
1386 		if (src_rq->dl.dl_nr_running <= 1)
1387 			goto skip;
1388 
1389 		p = pick_next_earliest_dl_task(src_rq, this_cpu);
1390 
1391 		/*
1392 		 * We found a task to be pulled if:
1393 		 *  - it preempts our current (if there's one),
1394 		 *  - it will preempt the last one we pulled (if any).
1395 		 */
1396 		if (p && dl_time_before(p->dl.deadline, dmin) &&
1397 		    (!this_rq->dl.dl_nr_running ||
1398 		     dl_time_before(p->dl.deadline,
1399 				    this_rq->dl.earliest_dl.curr))) {
1400 			WARN_ON(p == src_rq->curr);
1401 			WARN_ON(!p->on_rq);
1402 
1403 			/*
1404 			 * Then we pull iff p has actually an earlier
1405 			 * deadline than the current task of its runqueue.
1406 			 */
1407 			if (dl_time_before(p->dl.deadline,
1408 					   src_rq->curr->dl.deadline))
1409 				goto skip;
1410 
1411 			ret = 1;
1412 
1413 			deactivate_task(src_rq, p, 0);
1414 			set_task_cpu(p, this_cpu);
1415 			activate_task(this_rq, p, 0);
1416 			dmin = p->dl.deadline;
1417 
1418 			/* Is there any other task even earlier? */
1419 		}
1420 skip:
1421 		double_unlock_balance(this_rq, src_rq);
1422 	}
1423 
1424 	return ret;
1425 }
1426 
1427 static void pre_schedule_dl(struct rq *rq, struct task_struct *prev)
1428 {
1429 	/* Try to pull other tasks here */
1430 	if (dl_task(prev))
1431 		pull_dl_task(rq);
1432 }
1433 
1434 static void post_schedule_dl(struct rq *rq)
1435 {
1436 	push_dl_tasks(rq);
1437 }
1438 
1439 /*
1440  * Since the task is not running and a reschedule is not going to happen
1441  * anytime soon on its runqueue, we try pushing it away now.
1442  */
1443 static void task_woken_dl(struct rq *rq, struct task_struct *p)
1444 {
1445 	if (!task_running(rq, p) &&
1446 	    !test_tsk_need_resched(rq->curr) &&
1447 	    has_pushable_dl_tasks(rq) &&
1448 	    p->nr_cpus_allowed > 1 &&
1449 	    dl_task(rq->curr) &&
1450 	    (rq->curr->nr_cpus_allowed < 2 ||
1451 	     dl_entity_preempt(&rq->curr->dl, &p->dl))) {
1452 		push_dl_tasks(rq);
1453 	}
1454 }
1455 
1456 static void set_cpus_allowed_dl(struct task_struct *p,
1457 				const struct cpumask *new_mask)
1458 {
1459 	struct rq *rq;
1460 	int weight;
1461 
1462 	BUG_ON(!dl_task(p));
1463 
1464 	/*
1465 	 * Update only if the task is actually running (i.e.,
1466 	 * it is on the rq AND it is not throttled).
1467 	 */
1468 	if (!on_dl_rq(&p->dl))
1469 		return;
1470 
1471 	weight = cpumask_weight(new_mask);
1472 
1473 	/*
1474 	 * Only update if the process changes its state from whether it
1475 	 * can migrate or not.
1476 	 */
1477 	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1478 		return;
1479 
1480 	rq = task_rq(p);
1481 
1482 	/*
1483 	 * The process used to be able to migrate OR it can now migrate
1484 	 */
1485 	if (weight <= 1) {
1486 		if (!task_current(rq, p))
1487 			dequeue_pushable_dl_task(rq, p);
1488 		BUG_ON(!rq->dl.dl_nr_migratory);
1489 		rq->dl.dl_nr_migratory--;
1490 	} else {
1491 		if (!task_current(rq, p))
1492 			enqueue_pushable_dl_task(rq, p);
1493 		rq->dl.dl_nr_migratory++;
1494 	}
1495 
1496 	update_dl_migration(&rq->dl);
1497 }
1498 
1499 /* Assumes rq->lock is held */
1500 static void rq_online_dl(struct rq *rq)
1501 {
1502 	if (rq->dl.overloaded)
1503 		dl_set_overload(rq);
1504 
1505 	if (rq->dl.dl_nr_running > 0)
1506 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1507 }
1508 
1509 /* Assumes rq->lock is held */
1510 static void rq_offline_dl(struct rq *rq)
1511 {
1512 	if (rq->dl.overloaded)
1513 		dl_clear_overload(rq);
1514 
1515 	cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1516 }
1517 
1518 void init_sched_dl_class(void)
1519 {
1520 	unsigned int i;
1521 
1522 	for_each_possible_cpu(i)
1523 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1524 					GFP_KERNEL, cpu_to_node(i));
1525 }
1526 
1527 #endif /* CONFIG_SMP */
1528 
1529 static void switched_from_dl(struct rq *rq, struct task_struct *p)
1530 {
1531 	if (hrtimer_active(&p->dl.dl_timer) && !dl_policy(p->policy))
1532 		hrtimer_try_to_cancel(&p->dl.dl_timer);
1533 
1534 #ifdef CONFIG_SMP
1535 	/*
1536 	 * Since this might be the only -deadline task on the rq,
1537 	 * this is the right place to try to pull some other one
1538 	 * from an overloaded cpu, if any.
1539 	 */
1540 	if (!rq->dl.dl_nr_running)
1541 		pull_dl_task(rq);
1542 #endif
1543 }
1544 
1545 /*
1546  * When switching to -deadline, we may overload the rq, then
1547  * we try to push someone off, if possible.
1548  */
1549 static void switched_to_dl(struct rq *rq, struct task_struct *p)
1550 {
1551 	int check_resched = 1;
1552 
1553 	/*
1554 	 * If p is throttled, don't consider the possibility
1555 	 * of preempting rq->curr, the check will be done right
1556 	 * after its runtime will get replenished.
1557 	 */
1558 	if (unlikely(p->dl.dl_throttled))
1559 		return;
1560 
1561 	if (p->on_rq || rq->curr != p) {
1562 #ifdef CONFIG_SMP
1563 		if (rq->dl.overloaded && push_dl_task(rq) && rq != task_rq(p))
1564 			/* Only reschedule if pushing failed */
1565 			check_resched = 0;
1566 #endif /* CONFIG_SMP */
1567 		if (check_resched && task_has_dl_policy(rq->curr))
1568 			check_preempt_curr_dl(rq, p, 0);
1569 	}
1570 }
1571 
1572 /*
1573  * If the scheduling parameters of a -deadline task changed,
1574  * a push or pull operation might be needed.
1575  */
1576 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1577 			    int oldprio)
1578 {
1579 	if (p->on_rq || rq->curr == p) {
1580 #ifdef CONFIG_SMP
1581 		/*
1582 		 * This might be too much, but unfortunately
1583 		 * we don't have the old deadline value, and
1584 		 * we can't argue if the task is increasing
1585 		 * or lowering its prio, so...
1586 		 */
1587 		if (!rq->dl.overloaded)
1588 			pull_dl_task(rq);
1589 
1590 		/*
1591 		 * If we now have a earlier deadline task than p,
1592 		 * then reschedule, provided p is still on this
1593 		 * runqueue.
1594 		 */
1595 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) &&
1596 		    rq->curr == p)
1597 			resched_task(p);
1598 #else
1599 		/*
1600 		 * Again, we don't know if p has a earlier
1601 		 * or later deadline, so let's blindly set a
1602 		 * (maybe not needed) rescheduling point.
1603 		 */
1604 		resched_task(p);
1605 #endif /* CONFIG_SMP */
1606 	} else
1607 		switched_to_dl(rq, p);
1608 }
1609 
1610 const struct sched_class dl_sched_class = {
1611 	.next			= &rt_sched_class,
1612 	.enqueue_task		= enqueue_task_dl,
1613 	.dequeue_task		= dequeue_task_dl,
1614 	.yield_task		= yield_task_dl,
1615 
1616 	.check_preempt_curr	= check_preempt_curr_dl,
1617 
1618 	.pick_next_task		= pick_next_task_dl,
1619 	.put_prev_task		= put_prev_task_dl,
1620 
1621 #ifdef CONFIG_SMP
1622 	.select_task_rq		= select_task_rq_dl,
1623 	.set_cpus_allowed       = set_cpus_allowed_dl,
1624 	.rq_online              = rq_online_dl,
1625 	.rq_offline             = rq_offline_dl,
1626 	.pre_schedule		= pre_schedule_dl,
1627 	.post_schedule		= post_schedule_dl,
1628 	.task_woken		= task_woken_dl,
1629 #endif
1630 
1631 	.set_curr_task		= set_curr_task_dl,
1632 	.task_tick		= task_tick_dl,
1633 	.task_fork              = task_fork_dl,
1634 	.task_dead		= task_dead_dl,
1635 
1636 	.prio_changed           = prio_changed_dl,
1637 	.switched_from		= switched_from_dl,
1638 	.switched_to		= switched_to_dl,
1639 };
1640