1 /* 2 * Deadline Scheduling Class (SCHED_DEADLINE) 3 * 4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 5 * 6 * Tasks that periodically executes their instances for less than their 7 * runtime won't miss any of their deadlines. 8 * Tasks that are not periodic or sporadic or that tries to execute more 9 * than their reserved bandwidth will be slowed down (and may potentially 10 * miss some of their deadlines), and won't affect any other task. 11 * 12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 13 * Juri Lelli <juri.lelli@gmail.com>, 14 * Michael Trimarchi <michael@amarulasolutions.com>, 15 * Fabio Checconi <fchecconi@gmail.com> 16 */ 17 #include "sched.h" 18 19 #include <linux/slab.h> 20 21 struct dl_bandwidth def_dl_bandwidth; 22 23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 24 { 25 return container_of(dl_se, struct task_struct, dl); 26 } 27 28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 29 { 30 return container_of(dl_rq, struct rq, dl); 31 } 32 33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 34 { 35 struct task_struct *p = dl_task_of(dl_se); 36 struct rq *rq = task_rq(p); 37 38 return &rq->dl; 39 } 40 41 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 42 { 43 return !RB_EMPTY_NODE(&dl_se->rb_node); 44 } 45 46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) 47 { 48 struct sched_dl_entity *dl_se = &p->dl; 49 50 return dl_rq->rb_leftmost == &dl_se->rb_node; 51 } 52 53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) 54 { 55 raw_spin_lock_init(&dl_b->dl_runtime_lock); 56 dl_b->dl_period = period; 57 dl_b->dl_runtime = runtime; 58 } 59 60 extern unsigned long to_ratio(u64 period, u64 runtime); 61 62 void init_dl_bw(struct dl_bw *dl_b) 63 { 64 raw_spin_lock_init(&dl_b->lock); 65 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock); 66 if (global_rt_runtime() == RUNTIME_INF) 67 dl_b->bw = -1; 68 else 69 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 70 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock); 71 dl_b->total_bw = 0; 72 } 73 74 void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq) 75 { 76 dl_rq->rb_root = RB_ROOT; 77 78 #ifdef CONFIG_SMP 79 /* zero means no -deadline tasks */ 80 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 81 82 dl_rq->dl_nr_migratory = 0; 83 dl_rq->overloaded = 0; 84 dl_rq->pushable_dl_tasks_root = RB_ROOT; 85 #else 86 init_dl_bw(&dl_rq->dl_bw); 87 #endif 88 } 89 90 #ifdef CONFIG_SMP 91 92 static inline int dl_overloaded(struct rq *rq) 93 { 94 return atomic_read(&rq->rd->dlo_count); 95 } 96 97 static inline void dl_set_overload(struct rq *rq) 98 { 99 if (!rq->online) 100 return; 101 102 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 103 /* 104 * Must be visible before the overload count is 105 * set (as in sched_rt.c). 106 * 107 * Matched by the barrier in pull_dl_task(). 108 */ 109 smp_wmb(); 110 atomic_inc(&rq->rd->dlo_count); 111 } 112 113 static inline void dl_clear_overload(struct rq *rq) 114 { 115 if (!rq->online) 116 return; 117 118 atomic_dec(&rq->rd->dlo_count); 119 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 120 } 121 122 static void update_dl_migration(struct dl_rq *dl_rq) 123 { 124 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { 125 if (!dl_rq->overloaded) { 126 dl_set_overload(rq_of_dl_rq(dl_rq)); 127 dl_rq->overloaded = 1; 128 } 129 } else if (dl_rq->overloaded) { 130 dl_clear_overload(rq_of_dl_rq(dl_rq)); 131 dl_rq->overloaded = 0; 132 } 133 } 134 135 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 136 { 137 struct task_struct *p = dl_task_of(dl_se); 138 139 if (p->nr_cpus_allowed > 1) 140 dl_rq->dl_nr_migratory++; 141 142 update_dl_migration(dl_rq); 143 } 144 145 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 146 { 147 struct task_struct *p = dl_task_of(dl_se); 148 149 if (p->nr_cpus_allowed > 1) 150 dl_rq->dl_nr_migratory--; 151 152 update_dl_migration(dl_rq); 153 } 154 155 /* 156 * The list of pushable -deadline task is not a plist, like in 157 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 158 */ 159 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 160 { 161 struct dl_rq *dl_rq = &rq->dl; 162 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node; 163 struct rb_node *parent = NULL; 164 struct task_struct *entry; 165 int leftmost = 1; 166 167 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 168 169 while (*link) { 170 parent = *link; 171 entry = rb_entry(parent, struct task_struct, 172 pushable_dl_tasks); 173 if (dl_entity_preempt(&p->dl, &entry->dl)) 174 link = &parent->rb_left; 175 else { 176 link = &parent->rb_right; 177 leftmost = 0; 178 } 179 } 180 181 if (leftmost) 182 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks; 183 184 rb_link_node(&p->pushable_dl_tasks, parent, link); 185 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 186 } 187 188 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 189 { 190 struct dl_rq *dl_rq = &rq->dl; 191 192 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 193 return; 194 195 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) { 196 struct rb_node *next_node; 197 198 next_node = rb_next(&p->pushable_dl_tasks); 199 dl_rq->pushable_dl_tasks_leftmost = next_node; 200 } 201 202 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 203 RB_CLEAR_NODE(&p->pushable_dl_tasks); 204 } 205 206 static inline int has_pushable_dl_tasks(struct rq *rq) 207 { 208 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root); 209 } 210 211 static int push_dl_task(struct rq *rq); 212 213 #else 214 215 static inline 216 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 217 { 218 } 219 220 static inline 221 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 222 { 223 } 224 225 static inline 226 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 227 { 228 } 229 230 static inline 231 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 232 { 233 } 234 235 #endif /* CONFIG_SMP */ 236 237 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 238 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); 239 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 240 int flags); 241 242 /* 243 * We are being explicitly informed that a new instance is starting, 244 * and this means that: 245 * - the absolute deadline of the entity has to be placed at 246 * current time + relative deadline; 247 * - the runtime of the entity has to be set to the maximum value. 248 * 249 * The capability of specifying such event is useful whenever a -deadline 250 * entity wants to (try to!) synchronize its behaviour with the scheduler's 251 * one, and to (try to!) reconcile itself with its own scheduling 252 * parameters. 253 */ 254 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se, 255 struct sched_dl_entity *pi_se) 256 { 257 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 258 struct rq *rq = rq_of_dl_rq(dl_rq); 259 260 WARN_ON(!dl_se->dl_new || dl_se->dl_throttled); 261 262 /* 263 * We use the regular wall clock time to set deadlines in the 264 * future; in fact, we must consider execution overheads (time 265 * spent on hardirq context, etc.). 266 */ 267 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 268 dl_se->runtime = pi_se->dl_runtime; 269 dl_se->dl_new = 0; 270 } 271 272 /* 273 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 274 * possibility of a entity lasting more than what it declared, and thus 275 * exhausting its runtime. 276 * 277 * Here we are interested in making runtime overrun possible, but we do 278 * not want a entity which is misbehaving to affect the scheduling of all 279 * other entities. 280 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 281 * is used, in order to confine each entity within its own bandwidth. 282 * 283 * This function deals exactly with that, and ensures that when the runtime 284 * of a entity is replenished, its deadline is also postponed. That ensures 285 * the overrunning entity can't interfere with other entity in the system and 286 * can't make them miss their deadlines. Reasons why this kind of overruns 287 * could happen are, typically, a entity voluntarily trying to overcome its 288 * runtime, or it just underestimated it during sched_setscheduler_ex(). 289 */ 290 static void replenish_dl_entity(struct sched_dl_entity *dl_se, 291 struct sched_dl_entity *pi_se) 292 { 293 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 294 struct rq *rq = rq_of_dl_rq(dl_rq); 295 296 BUG_ON(pi_se->dl_runtime <= 0); 297 298 /* 299 * This could be the case for a !-dl task that is boosted. 300 * Just go with full inherited parameters. 301 */ 302 if (dl_se->dl_deadline == 0) { 303 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 304 dl_se->runtime = pi_se->dl_runtime; 305 } 306 307 /* 308 * We keep moving the deadline away until we get some 309 * available runtime for the entity. This ensures correct 310 * handling of situations where the runtime overrun is 311 * arbitrary large. 312 */ 313 while (dl_se->runtime <= 0) { 314 dl_se->deadline += pi_se->dl_period; 315 dl_se->runtime += pi_se->dl_runtime; 316 } 317 318 /* 319 * At this point, the deadline really should be "in 320 * the future" with respect to rq->clock. If it's 321 * not, we are, for some reason, lagging too much! 322 * Anyway, after having warn userspace abut that, 323 * we still try to keep the things running by 324 * resetting the deadline and the budget of the 325 * entity. 326 */ 327 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 328 static bool lag_once = false; 329 330 if (!lag_once) { 331 lag_once = true; 332 printk_sched("sched: DL replenish lagged to much\n"); 333 } 334 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 335 dl_se->runtime = pi_se->dl_runtime; 336 } 337 } 338 339 /* 340 * Here we check if --at time t-- an entity (which is probably being 341 * [re]activated or, in general, enqueued) can use its remaining runtime 342 * and its current deadline _without_ exceeding the bandwidth it is 343 * assigned (function returns true if it can't). We are in fact applying 344 * one of the CBS rules: when a task wakes up, if the residual runtime 345 * over residual deadline fits within the allocated bandwidth, then we 346 * can keep the current (absolute) deadline and residual budget without 347 * disrupting the schedulability of the system. Otherwise, we should 348 * refill the runtime and set the deadline a period in the future, 349 * because keeping the current (absolute) deadline of the task would 350 * result in breaking guarantees promised to other tasks (refer to 351 * Documentation/scheduler/sched-deadline.txt for more informations). 352 * 353 * This function returns true if: 354 * 355 * runtime / (deadline - t) > dl_runtime / dl_period , 356 * 357 * IOW we can't recycle current parameters. 358 * 359 * Notice that the bandwidth check is done against the period. For 360 * task with deadline equal to period this is the same of using 361 * dl_deadline instead of dl_period in the equation above. 362 */ 363 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, 364 struct sched_dl_entity *pi_se, u64 t) 365 { 366 u64 left, right; 367 368 /* 369 * left and right are the two sides of the equation above, 370 * after a bit of shuffling to use multiplications instead 371 * of divisions. 372 * 373 * Note that none of the time values involved in the two 374 * multiplications are absolute: dl_deadline and dl_runtime 375 * are the relative deadline and the maximum runtime of each 376 * instance, runtime is the runtime left for the last instance 377 * and (deadline - t), since t is rq->clock, is the time left 378 * to the (absolute) deadline. Even if overflowing the u64 type 379 * is very unlikely to occur in both cases, here we scale down 380 * as we want to avoid that risk at all. Scaling down by 10 381 * means that we reduce granularity to 1us. We are fine with it, 382 * since this is only a true/false check and, anyway, thinking 383 * of anything below microseconds resolution is actually fiction 384 * (but still we want to give the user that illusion >;). 385 */ 386 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 387 right = ((dl_se->deadline - t) >> DL_SCALE) * 388 (pi_se->dl_runtime >> DL_SCALE); 389 390 return dl_time_before(right, left); 391 } 392 393 /* 394 * When a -deadline entity is queued back on the runqueue, its runtime and 395 * deadline might need updating. 396 * 397 * The policy here is that we update the deadline of the entity only if: 398 * - the current deadline is in the past, 399 * - using the remaining runtime with the current deadline would make 400 * the entity exceed its bandwidth. 401 */ 402 static void update_dl_entity(struct sched_dl_entity *dl_se, 403 struct sched_dl_entity *pi_se) 404 { 405 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 406 struct rq *rq = rq_of_dl_rq(dl_rq); 407 408 /* 409 * The arrival of a new instance needs special treatment, i.e., 410 * the actual scheduling parameters have to be "renewed". 411 */ 412 if (dl_se->dl_new) { 413 setup_new_dl_entity(dl_se, pi_se); 414 return; 415 } 416 417 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 418 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) { 419 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 420 dl_se->runtime = pi_se->dl_runtime; 421 } 422 } 423 424 /* 425 * If the entity depleted all its runtime, and if we want it to sleep 426 * while waiting for some new execution time to become available, we 427 * set the bandwidth enforcement timer to the replenishment instant 428 * and try to activate it. 429 * 430 * Notice that it is important for the caller to know if the timer 431 * actually started or not (i.e., the replenishment instant is in 432 * the future or in the past). 433 */ 434 static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted) 435 { 436 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 437 struct rq *rq = rq_of_dl_rq(dl_rq); 438 ktime_t now, act; 439 ktime_t soft, hard; 440 unsigned long range; 441 s64 delta; 442 443 if (boosted) 444 return 0; 445 /* 446 * We want the timer to fire at the deadline, but considering 447 * that it is actually coming from rq->clock and not from 448 * hrtimer's time base reading. 449 */ 450 act = ns_to_ktime(dl_se->deadline); 451 now = hrtimer_cb_get_time(&dl_se->dl_timer); 452 delta = ktime_to_ns(now) - rq_clock(rq); 453 act = ktime_add_ns(act, delta); 454 455 /* 456 * If the expiry time already passed, e.g., because the value 457 * chosen as the deadline is too small, don't even try to 458 * start the timer in the past! 459 */ 460 if (ktime_us_delta(act, now) < 0) 461 return 0; 462 463 hrtimer_set_expires(&dl_se->dl_timer, act); 464 465 soft = hrtimer_get_softexpires(&dl_se->dl_timer); 466 hard = hrtimer_get_expires(&dl_se->dl_timer); 467 range = ktime_to_ns(ktime_sub(hard, soft)); 468 __hrtimer_start_range_ns(&dl_se->dl_timer, soft, 469 range, HRTIMER_MODE_ABS, 0); 470 471 return hrtimer_active(&dl_se->dl_timer); 472 } 473 474 /* 475 * This is the bandwidth enforcement timer callback. If here, we know 476 * a task is not on its dl_rq, since the fact that the timer was running 477 * means the task is throttled and needs a runtime replenishment. 478 * 479 * However, what we actually do depends on the fact the task is active, 480 * (it is on its rq) or has been removed from there by a call to 481 * dequeue_task_dl(). In the former case we must issue the runtime 482 * replenishment and add the task back to the dl_rq; in the latter, we just 483 * do nothing but clearing dl_throttled, so that runtime and deadline 484 * updating (and the queueing back to dl_rq) will be done by the 485 * next call to enqueue_task_dl(). 486 */ 487 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 488 { 489 struct sched_dl_entity *dl_se = container_of(timer, 490 struct sched_dl_entity, 491 dl_timer); 492 struct task_struct *p = dl_task_of(dl_se); 493 struct rq *rq = task_rq(p); 494 raw_spin_lock(&rq->lock); 495 496 /* 497 * We need to take care of a possible races here. In fact, the 498 * task might have changed its scheduling policy to something 499 * different from SCHED_DEADLINE or changed its reservation 500 * parameters (through sched_setscheduler()). 501 */ 502 if (!dl_task(p) || dl_se->dl_new) 503 goto unlock; 504 505 sched_clock_tick(); 506 update_rq_clock(rq); 507 dl_se->dl_throttled = 0; 508 if (p->on_rq) { 509 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 510 if (task_has_dl_policy(rq->curr)) 511 check_preempt_curr_dl(rq, p, 0); 512 else 513 resched_task(rq->curr); 514 #ifdef CONFIG_SMP 515 /* 516 * Queueing this task back might have overloaded rq, 517 * check if we need to kick someone away. 518 */ 519 if (has_pushable_dl_tasks(rq)) 520 push_dl_task(rq); 521 #endif 522 } 523 unlock: 524 raw_spin_unlock(&rq->lock); 525 526 return HRTIMER_NORESTART; 527 } 528 529 void init_dl_task_timer(struct sched_dl_entity *dl_se) 530 { 531 struct hrtimer *timer = &dl_se->dl_timer; 532 533 if (hrtimer_active(timer)) { 534 hrtimer_try_to_cancel(timer); 535 return; 536 } 537 538 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 539 timer->function = dl_task_timer; 540 } 541 542 static 543 int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se) 544 { 545 int dmiss = dl_time_before(dl_se->deadline, rq_clock(rq)); 546 int rorun = dl_se->runtime <= 0; 547 548 if (!rorun && !dmiss) 549 return 0; 550 551 /* 552 * If we are beyond our current deadline and we are still 553 * executing, then we have already used some of the runtime of 554 * the next instance. Thus, if we do not account that, we are 555 * stealing bandwidth from the system at each deadline miss! 556 */ 557 if (dmiss) { 558 dl_se->runtime = rorun ? dl_se->runtime : 0; 559 dl_se->runtime -= rq_clock(rq) - dl_se->deadline; 560 } 561 562 return 1; 563 } 564 565 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 566 567 /* 568 * Update the current task's runtime statistics (provided it is still 569 * a -deadline task and has not been removed from the dl_rq). 570 */ 571 static void update_curr_dl(struct rq *rq) 572 { 573 struct task_struct *curr = rq->curr; 574 struct sched_dl_entity *dl_se = &curr->dl; 575 u64 delta_exec; 576 577 if (!dl_task(curr) || !on_dl_rq(dl_se)) 578 return; 579 580 /* 581 * Consumed budget is computed considering the time as 582 * observed by schedulable tasks (excluding time spent 583 * in hardirq context, etc.). Deadlines are instead 584 * computed using hard walltime. This seems to be the more 585 * natural solution, but the full ramifications of this 586 * approach need further study. 587 */ 588 delta_exec = rq_clock_task(rq) - curr->se.exec_start; 589 if (unlikely((s64)delta_exec < 0)) 590 delta_exec = 0; 591 592 schedstat_set(curr->se.statistics.exec_max, 593 max(curr->se.statistics.exec_max, delta_exec)); 594 595 curr->se.sum_exec_runtime += delta_exec; 596 account_group_exec_runtime(curr, delta_exec); 597 598 curr->se.exec_start = rq_clock_task(rq); 599 cpuacct_charge(curr, delta_exec); 600 601 sched_rt_avg_update(rq, delta_exec); 602 603 dl_se->runtime -= delta_exec; 604 if (dl_runtime_exceeded(rq, dl_se)) { 605 __dequeue_task_dl(rq, curr, 0); 606 if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted))) 607 dl_se->dl_throttled = 1; 608 else 609 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); 610 611 if (!is_leftmost(curr, &rq->dl)) 612 resched_task(curr); 613 } 614 615 /* 616 * Because -- for now -- we share the rt bandwidth, we need to 617 * account our runtime there too, otherwise actual rt tasks 618 * would be able to exceed the shared quota. 619 * 620 * Account to the root rt group for now. 621 * 622 * The solution we're working towards is having the RT groups scheduled 623 * using deadline servers -- however there's a few nasties to figure 624 * out before that can happen. 625 */ 626 if (rt_bandwidth_enabled()) { 627 struct rt_rq *rt_rq = &rq->rt; 628 629 raw_spin_lock(&rt_rq->rt_runtime_lock); 630 /* 631 * We'll let actual RT tasks worry about the overflow here, we 632 * have our own CBS to keep us inline; only account when RT 633 * bandwidth is relevant. 634 */ 635 if (sched_rt_bandwidth_account(rt_rq)) 636 rt_rq->rt_time += delta_exec; 637 raw_spin_unlock(&rt_rq->rt_runtime_lock); 638 } 639 } 640 641 #ifdef CONFIG_SMP 642 643 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu); 644 645 static inline u64 next_deadline(struct rq *rq) 646 { 647 struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu); 648 649 if (next && dl_prio(next->prio)) 650 return next->dl.deadline; 651 else 652 return 0; 653 } 654 655 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 656 { 657 struct rq *rq = rq_of_dl_rq(dl_rq); 658 659 if (dl_rq->earliest_dl.curr == 0 || 660 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 661 /* 662 * If the dl_rq had no -deadline tasks, or if the new task 663 * has shorter deadline than the current one on dl_rq, we 664 * know that the previous earliest becomes our next earliest, 665 * as the new task becomes the earliest itself. 666 */ 667 dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr; 668 dl_rq->earliest_dl.curr = deadline; 669 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1); 670 } else if (dl_rq->earliest_dl.next == 0 || 671 dl_time_before(deadline, dl_rq->earliest_dl.next)) { 672 /* 673 * On the other hand, if the new -deadline task has a 674 * a later deadline than the earliest one on dl_rq, but 675 * it is earlier than the next (if any), we must 676 * recompute the next-earliest. 677 */ 678 dl_rq->earliest_dl.next = next_deadline(rq); 679 } 680 } 681 682 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 683 { 684 struct rq *rq = rq_of_dl_rq(dl_rq); 685 686 /* 687 * Since we may have removed our earliest (and/or next earliest) 688 * task we must recompute them. 689 */ 690 if (!dl_rq->dl_nr_running) { 691 dl_rq->earliest_dl.curr = 0; 692 dl_rq->earliest_dl.next = 0; 693 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); 694 } else { 695 struct rb_node *leftmost = dl_rq->rb_leftmost; 696 struct sched_dl_entity *entry; 697 698 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node); 699 dl_rq->earliest_dl.curr = entry->deadline; 700 dl_rq->earliest_dl.next = next_deadline(rq); 701 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1); 702 } 703 } 704 705 #else 706 707 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 708 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 709 710 #endif /* CONFIG_SMP */ 711 712 static inline 713 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 714 { 715 int prio = dl_task_of(dl_se)->prio; 716 u64 deadline = dl_se->deadline; 717 718 WARN_ON(!dl_prio(prio)); 719 dl_rq->dl_nr_running++; 720 inc_nr_running(rq_of_dl_rq(dl_rq)); 721 722 inc_dl_deadline(dl_rq, deadline); 723 inc_dl_migration(dl_se, dl_rq); 724 } 725 726 static inline 727 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 728 { 729 int prio = dl_task_of(dl_se)->prio; 730 731 WARN_ON(!dl_prio(prio)); 732 WARN_ON(!dl_rq->dl_nr_running); 733 dl_rq->dl_nr_running--; 734 dec_nr_running(rq_of_dl_rq(dl_rq)); 735 736 dec_dl_deadline(dl_rq, dl_se->deadline); 737 dec_dl_migration(dl_se, dl_rq); 738 } 739 740 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 741 { 742 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 743 struct rb_node **link = &dl_rq->rb_root.rb_node; 744 struct rb_node *parent = NULL; 745 struct sched_dl_entity *entry; 746 int leftmost = 1; 747 748 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node)); 749 750 while (*link) { 751 parent = *link; 752 entry = rb_entry(parent, struct sched_dl_entity, rb_node); 753 if (dl_time_before(dl_se->deadline, entry->deadline)) 754 link = &parent->rb_left; 755 else { 756 link = &parent->rb_right; 757 leftmost = 0; 758 } 759 } 760 761 if (leftmost) 762 dl_rq->rb_leftmost = &dl_se->rb_node; 763 764 rb_link_node(&dl_se->rb_node, parent, link); 765 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root); 766 767 inc_dl_tasks(dl_se, dl_rq); 768 } 769 770 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 771 { 772 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 773 774 if (RB_EMPTY_NODE(&dl_se->rb_node)) 775 return; 776 777 if (dl_rq->rb_leftmost == &dl_se->rb_node) { 778 struct rb_node *next_node; 779 780 next_node = rb_next(&dl_se->rb_node); 781 dl_rq->rb_leftmost = next_node; 782 } 783 784 rb_erase(&dl_se->rb_node, &dl_rq->rb_root); 785 RB_CLEAR_NODE(&dl_se->rb_node); 786 787 dec_dl_tasks(dl_se, dl_rq); 788 } 789 790 static void 791 enqueue_dl_entity(struct sched_dl_entity *dl_se, 792 struct sched_dl_entity *pi_se, int flags) 793 { 794 BUG_ON(on_dl_rq(dl_se)); 795 796 /* 797 * If this is a wakeup or a new instance, the scheduling 798 * parameters of the task might need updating. Otherwise, 799 * we want a replenishment of its runtime. 800 */ 801 if (!dl_se->dl_new && flags & ENQUEUE_REPLENISH) 802 replenish_dl_entity(dl_se, pi_se); 803 else 804 update_dl_entity(dl_se, pi_se); 805 806 __enqueue_dl_entity(dl_se); 807 } 808 809 static void dequeue_dl_entity(struct sched_dl_entity *dl_se) 810 { 811 __dequeue_dl_entity(dl_se); 812 } 813 814 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 815 { 816 struct task_struct *pi_task = rt_mutex_get_top_task(p); 817 struct sched_dl_entity *pi_se = &p->dl; 818 819 /* 820 * Use the scheduling parameters of the top pi-waiter 821 * task if we have one and its (relative) deadline is 822 * smaller than our one... OTW we keep our runtime and 823 * deadline. 824 */ 825 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) 826 pi_se = &pi_task->dl; 827 828 /* 829 * If p is throttled, we do nothing. In fact, if it exhausted 830 * its budget it needs a replenishment and, since it now is on 831 * its rq, the bandwidth timer callback (which clearly has not 832 * run yet) will take care of this. 833 */ 834 if (p->dl.dl_throttled) 835 return; 836 837 enqueue_dl_entity(&p->dl, pi_se, flags); 838 839 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 840 enqueue_pushable_dl_task(rq, p); 841 } 842 843 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 844 { 845 dequeue_dl_entity(&p->dl); 846 dequeue_pushable_dl_task(rq, p); 847 } 848 849 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 850 { 851 update_curr_dl(rq); 852 __dequeue_task_dl(rq, p, flags); 853 } 854 855 /* 856 * Yield task semantic for -deadline tasks is: 857 * 858 * get off from the CPU until our next instance, with 859 * a new runtime. This is of little use now, since we 860 * don't have a bandwidth reclaiming mechanism. Anyway, 861 * bandwidth reclaiming is planned for the future, and 862 * yield_task_dl will indicate that some spare budget 863 * is available for other task instances to use it. 864 */ 865 static void yield_task_dl(struct rq *rq) 866 { 867 struct task_struct *p = rq->curr; 868 869 /* 870 * We make the task go to sleep until its current deadline by 871 * forcing its runtime to zero. This way, update_curr_dl() stops 872 * it and the bandwidth timer will wake it up and will give it 873 * new scheduling parameters (thanks to dl_new=1). 874 */ 875 if (p->dl.runtime > 0) { 876 rq->curr->dl.dl_new = 1; 877 p->dl.runtime = 0; 878 } 879 update_curr_dl(rq); 880 } 881 882 #ifdef CONFIG_SMP 883 884 static int find_later_rq(struct task_struct *task); 885 886 static int 887 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags) 888 { 889 struct task_struct *curr; 890 struct rq *rq; 891 892 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 893 goto out; 894 895 rq = cpu_rq(cpu); 896 897 rcu_read_lock(); 898 curr = ACCESS_ONCE(rq->curr); /* unlocked access */ 899 900 /* 901 * If we are dealing with a -deadline task, we must 902 * decide where to wake it up. 903 * If it has a later deadline and the current task 904 * on this rq can't move (provided the waking task 905 * can!) we prefer to send it somewhere else. On the 906 * other hand, if it has a shorter deadline, we 907 * try to make it stay here, it might be important. 908 */ 909 if (unlikely(dl_task(curr)) && 910 (curr->nr_cpus_allowed < 2 || 911 !dl_entity_preempt(&p->dl, &curr->dl)) && 912 (p->nr_cpus_allowed > 1)) { 913 int target = find_later_rq(p); 914 915 if (target != -1) 916 cpu = target; 917 } 918 rcu_read_unlock(); 919 920 out: 921 return cpu; 922 } 923 924 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 925 { 926 /* 927 * Current can't be migrated, useless to reschedule, 928 * let's hope p can move out. 929 */ 930 if (rq->curr->nr_cpus_allowed == 1 || 931 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1) 932 return; 933 934 /* 935 * p is migratable, so let's not schedule it and 936 * see if it is pushed or pulled somewhere else. 937 */ 938 if (p->nr_cpus_allowed != 1 && 939 cpudl_find(&rq->rd->cpudl, p, NULL) != -1) 940 return; 941 942 resched_task(rq->curr); 943 } 944 945 #endif /* CONFIG_SMP */ 946 947 /* 948 * Only called when both the current and waking task are -deadline 949 * tasks. 950 */ 951 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 952 int flags) 953 { 954 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { 955 resched_task(rq->curr); 956 return; 957 } 958 959 #ifdef CONFIG_SMP 960 /* 961 * In the unlikely case current and p have the same deadline 962 * let us try to decide what's the best thing to do... 963 */ 964 if ((p->dl.deadline == rq->curr->dl.deadline) && 965 !test_tsk_need_resched(rq->curr)) 966 check_preempt_equal_dl(rq, p); 967 #endif /* CONFIG_SMP */ 968 } 969 970 #ifdef CONFIG_SCHED_HRTICK 971 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 972 { 973 s64 delta = p->dl.dl_runtime - p->dl.runtime; 974 975 if (delta > 10000) 976 hrtick_start(rq, p->dl.runtime); 977 } 978 #endif 979 980 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq, 981 struct dl_rq *dl_rq) 982 { 983 struct rb_node *left = dl_rq->rb_leftmost; 984 985 if (!left) 986 return NULL; 987 988 return rb_entry(left, struct sched_dl_entity, rb_node); 989 } 990 991 struct task_struct *pick_next_task_dl(struct rq *rq) 992 { 993 struct sched_dl_entity *dl_se; 994 struct task_struct *p; 995 struct dl_rq *dl_rq; 996 997 dl_rq = &rq->dl; 998 999 if (unlikely(!dl_rq->dl_nr_running)) 1000 return NULL; 1001 1002 dl_se = pick_next_dl_entity(rq, dl_rq); 1003 BUG_ON(!dl_se); 1004 1005 p = dl_task_of(dl_se); 1006 p->se.exec_start = rq_clock_task(rq); 1007 1008 /* Running task will never be pushed. */ 1009 dequeue_pushable_dl_task(rq, p); 1010 1011 #ifdef CONFIG_SCHED_HRTICK 1012 if (hrtick_enabled(rq)) 1013 start_hrtick_dl(rq, p); 1014 #endif 1015 1016 #ifdef CONFIG_SMP 1017 rq->post_schedule = has_pushable_dl_tasks(rq); 1018 #endif /* CONFIG_SMP */ 1019 1020 return p; 1021 } 1022 1023 static void put_prev_task_dl(struct rq *rq, struct task_struct *p) 1024 { 1025 update_curr_dl(rq); 1026 1027 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 1028 enqueue_pushable_dl_task(rq, p); 1029 } 1030 1031 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 1032 { 1033 update_curr_dl(rq); 1034 1035 #ifdef CONFIG_SCHED_HRTICK 1036 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0) 1037 start_hrtick_dl(rq, p); 1038 #endif 1039 } 1040 1041 static void task_fork_dl(struct task_struct *p) 1042 { 1043 /* 1044 * SCHED_DEADLINE tasks cannot fork and this is achieved through 1045 * sched_fork() 1046 */ 1047 } 1048 1049 static void task_dead_dl(struct task_struct *p) 1050 { 1051 struct hrtimer *timer = &p->dl.dl_timer; 1052 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1053 1054 /* 1055 * Since we are TASK_DEAD we won't slip out of the domain! 1056 */ 1057 raw_spin_lock_irq(&dl_b->lock); 1058 dl_b->total_bw -= p->dl.dl_bw; 1059 raw_spin_unlock_irq(&dl_b->lock); 1060 1061 hrtimer_cancel(timer); 1062 } 1063 1064 static void set_curr_task_dl(struct rq *rq) 1065 { 1066 struct task_struct *p = rq->curr; 1067 1068 p->se.exec_start = rq_clock_task(rq); 1069 1070 /* You can't push away the running task */ 1071 dequeue_pushable_dl_task(rq, p); 1072 } 1073 1074 #ifdef CONFIG_SMP 1075 1076 /* Only try algorithms three times */ 1077 #define DL_MAX_TRIES 3 1078 1079 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) 1080 { 1081 if (!task_running(rq, p) && 1082 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) && 1083 (p->nr_cpus_allowed > 1)) 1084 return 1; 1085 1086 return 0; 1087 } 1088 1089 /* Returns the second earliest -deadline task, NULL otherwise */ 1090 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu) 1091 { 1092 struct rb_node *next_node = rq->dl.rb_leftmost; 1093 struct sched_dl_entity *dl_se; 1094 struct task_struct *p = NULL; 1095 1096 next_node: 1097 next_node = rb_next(next_node); 1098 if (next_node) { 1099 dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node); 1100 p = dl_task_of(dl_se); 1101 1102 if (pick_dl_task(rq, p, cpu)) 1103 return p; 1104 1105 goto next_node; 1106 } 1107 1108 return NULL; 1109 } 1110 1111 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 1112 1113 static int find_later_rq(struct task_struct *task) 1114 { 1115 struct sched_domain *sd; 1116 struct cpumask *later_mask = __get_cpu_var(local_cpu_mask_dl); 1117 int this_cpu = smp_processor_id(); 1118 int best_cpu, cpu = task_cpu(task); 1119 1120 /* Make sure the mask is initialized first */ 1121 if (unlikely(!later_mask)) 1122 return -1; 1123 1124 if (task->nr_cpus_allowed == 1) 1125 return -1; 1126 1127 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl, 1128 task, later_mask); 1129 if (best_cpu == -1) 1130 return -1; 1131 1132 /* 1133 * If we are here, some target has been found, 1134 * the most suitable of which is cached in best_cpu. 1135 * This is, among the runqueues where the current tasks 1136 * have later deadlines than the task's one, the rq 1137 * with the latest possible one. 1138 * 1139 * Now we check how well this matches with task's 1140 * affinity and system topology. 1141 * 1142 * The last cpu where the task run is our first 1143 * guess, since it is most likely cache-hot there. 1144 */ 1145 if (cpumask_test_cpu(cpu, later_mask)) 1146 return cpu; 1147 /* 1148 * Check if this_cpu is to be skipped (i.e., it is 1149 * not in the mask) or not. 1150 */ 1151 if (!cpumask_test_cpu(this_cpu, later_mask)) 1152 this_cpu = -1; 1153 1154 rcu_read_lock(); 1155 for_each_domain(cpu, sd) { 1156 if (sd->flags & SD_WAKE_AFFINE) { 1157 1158 /* 1159 * If possible, preempting this_cpu is 1160 * cheaper than migrating. 1161 */ 1162 if (this_cpu != -1 && 1163 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1164 rcu_read_unlock(); 1165 return this_cpu; 1166 } 1167 1168 /* 1169 * Last chance: if best_cpu is valid and is 1170 * in the mask, that becomes our choice. 1171 */ 1172 if (best_cpu < nr_cpu_ids && 1173 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) { 1174 rcu_read_unlock(); 1175 return best_cpu; 1176 } 1177 } 1178 } 1179 rcu_read_unlock(); 1180 1181 /* 1182 * At this point, all our guesses failed, we just return 1183 * 'something', and let the caller sort the things out. 1184 */ 1185 if (this_cpu != -1) 1186 return this_cpu; 1187 1188 cpu = cpumask_any(later_mask); 1189 if (cpu < nr_cpu_ids) 1190 return cpu; 1191 1192 return -1; 1193 } 1194 1195 /* Locks the rq it finds */ 1196 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 1197 { 1198 struct rq *later_rq = NULL; 1199 int tries; 1200 int cpu; 1201 1202 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 1203 cpu = find_later_rq(task); 1204 1205 if ((cpu == -1) || (cpu == rq->cpu)) 1206 break; 1207 1208 later_rq = cpu_rq(cpu); 1209 1210 /* Retry if something changed. */ 1211 if (double_lock_balance(rq, later_rq)) { 1212 if (unlikely(task_rq(task) != rq || 1213 !cpumask_test_cpu(later_rq->cpu, 1214 &task->cpus_allowed) || 1215 task_running(rq, task) || !task->on_rq)) { 1216 double_unlock_balance(rq, later_rq); 1217 later_rq = NULL; 1218 break; 1219 } 1220 } 1221 1222 /* 1223 * If the rq we found has no -deadline task, or 1224 * its earliest one has a later deadline than our 1225 * task, the rq is a good one. 1226 */ 1227 if (!later_rq->dl.dl_nr_running || 1228 dl_time_before(task->dl.deadline, 1229 later_rq->dl.earliest_dl.curr)) 1230 break; 1231 1232 /* Otherwise we try again. */ 1233 double_unlock_balance(rq, later_rq); 1234 later_rq = NULL; 1235 } 1236 1237 return later_rq; 1238 } 1239 1240 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 1241 { 1242 struct task_struct *p; 1243 1244 if (!has_pushable_dl_tasks(rq)) 1245 return NULL; 1246 1247 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost, 1248 struct task_struct, pushable_dl_tasks); 1249 1250 BUG_ON(rq->cpu != task_cpu(p)); 1251 BUG_ON(task_current(rq, p)); 1252 BUG_ON(p->nr_cpus_allowed <= 1); 1253 1254 BUG_ON(!p->on_rq); 1255 BUG_ON(!dl_task(p)); 1256 1257 return p; 1258 } 1259 1260 /* 1261 * See if the non running -deadline tasks on this rq 1262 * can be sent to some other CPU where they can preempt 1263 * and start executing. 1264 */ 1265 static int push_dl_task(struct rq *rq) 1266 { 1267 struct task_struct *next_task; 1268 struct rq *later_rq; 1269 1270 if (!rq->dl.overloaded) 1271 return 0; 1272 1273 next_task = pick_next_pushable_dl_task(rq); 1274 if (!next_task) 1275 return 0; 1276 1277 retry: 1278 if (unlikely(next_task == rq->curr)) { 1279 WARN_ON(1); 1280 return 0; 1281 } 1282 1283 /* 1284 * If next_task preempts rq->curr, and rq->curr 1285 * can move away, it makes sense to just reschedule 1286 * without going further in pushing next_task. 1287 */ 1288 if (dl_task(rq->curr) && 1289 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && 1290 rq->curr->nr_cpus_allowed > 1) { 1291 resched_task(rq->curr); 1292 return 0; 1293 } 1294 1295 /* We might release rq lock */ 1296 get_task_struct(next_task); 1297 1298 /* Will lock the rq it'll find */ 1299 later_rq = find_lock_later_rq(next_task, rq); 1300 if (!later_rq) { 1301 struct task_struct *task; 1302 1303 /* 1304 * We must check all this again, since 1305 * find_lock_later_rq releases rq->lock and it is 1306 * then possible that next_task has migrated. 1307 */ 1308 task = pick_next_pushable_dl_task(rq); 1309 if (task_cpu(next_task) == rq->cpu && task == next_task) { 1310 /* 1311 * The task is still there. We don't try 1312 * again, some other cpu will pull it when ready. 1313 */ 1314 dequeue_pushable_dl_task(rq, next_task); 1315 goto out; 1316 } 1317 1318 if (!task) 1319 /* No more tasks */ 1320 goto out; 1321 1322 put_task_struct(next_task); 1323 next_task = task; 1324 goto retry; 1325 } 1326 1327 deactivate_task(rq, next_task, 0); 1328 set_task_cpu(next_task, later_rq->cpu); 1329 activate_task(later_rq, next_task, 0); 1330 1331 resched_task(later_rq->curr); 1332 1333 double_unlock_balance(rq, later_rq); 1334 1335 out: 1336 put_task_struct(next_task); 1337 1338 return 1; 1339 } 1340 1341 static void push_dl_tasks(struct rq *rq) 1342 { 1343 /* Terminates as it moves a -deadline task */ 1344 while (push_dl_task(rq)) 1345 ; 1346 } 1347 1348 static int pull_dl_task(struct rq *this_rq) 1349 { 1350 int this_cpu = this_rq->cpu, ret = 0, cpu; 1351 struct task_struct *p; 1352 struct rq *src_rq; 1353 u64 dmin = LONG_MAX; 1354 1355 if (likely(!dl_overloaded(this_rq))) 1356 return 0; 1357 1358 /* 1359 * Match the barrier from dl_set_overloaded; this guarantees that if we 1360 * see overloaded we must also see the dlo_mask bit. 1361 */ 1362 smp_rmb(); 1363 1364 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 1365 if (this_cpu == cpu) 1366 continue; 1367 1368 src_rq = cpu_rq(cpu); 1369 1370 /* 1371 * It looks racy, abd it is! However, as in sched_rt.c, 1372 * we are fine with this. 1373 */ 1374 if (this_rq->dl.dl_nr_running && 1375 dl_time_before(this_rq->dl.earliest_dl.curr, 1376 src_rq->dl.earliest_dl.next)) 1377 continue; 1378 1379 /* Might drop this_rq->lock */ 1380 double_lock_balance(this_rq, src_rq); 1381 1382 /* 1383 * If there are no more pullable tasks on the 1384 * rq, we're done with it. 1385 */ 1386 if (src_rq->dl.dl_nr_running <= 1) 1387 goto skip; 1388 1389 p = pick_next_earliest_dl_task(src_rq, this_cpu); 1390 1391 /* 1392 * We found a task to be pulled if: 1393 * - it preempts our current (if there's one), 1394 * - it will preempt the last one we pulled (if any). 1395 */ 1396 if (p && dl_time_before(p->dl.deadline, dmin) && 1397 (!this_rq->dl.dl_nr_running || 1398 dl_time_before(p->dl.deadline, 1399 this_rq->dl.earliest_dl.curr))) { 1400 WARN_ON(p == src_rq->curr); 1401 WARN_ON(!p->on_rq); 1402 1403 /* 1404 * Then we pull iff p has actually an earlier 1405 * deadline than the current task of its runqueue. 1406 */ 1407 if (dl_time_before(p->dl.deadline, 1408 src_rq->curr->dl.deadline)) 1409 goto skip; 1410 1411 ret = 1; 1412 1413 deactivate_task(src_rq, p, 0); 1414 set_task_cpu(p, this_cpu); 1415 activate_task(this_rq, p, 0); 1416 dmin = p->dl.deadline; 1417 1418 /* Is there any other task even earlier? */ 1419 } 1420 skip: 1421 double_unlock_balance(this_rq, src_rq); 1422 } 1423 1424 return ret; 1425 } 1426 1427 static void pre_schedule_dl(struct rq *rq, struct task_struct *prev) 1428 { 1429 /* Try to pull other tasks here */ 1430 if (dl_task(prev)) 1431 pull_dl_task(rq); 1432 } 1433 1434 static void post_schedule_dl(struct rq *rq) 1435 { 1436 push_dl_tasks(rq); 1437 } 1438 1439 /* 1440 * Since the task is not running and a reschedule is not going to happen 1441 * anytime soon on its runqueue, we try pushing it away now. 1442 */ 1443 static void task_woken_dl(struct rq *rq, struct task_struct *p) 1444 { 1445 if (!task_running(rq, p) && 1446 !test_tsk_need_resched(rq->curr) && 1447 has_pushable_dl_tasks(rq) && 1448 p->nr_cpus_allowed > 1 && 1449 dl_task(rq->curr) && 1450 (rq->curr->nr_cpus_allowed < 2 || 1451 dl_entity_preempt(&rq->curr->dl, &p->dl))) { 1452 push_dl_tasks(rq); 1453 } 1454 } 1455 1456 static void set_cpus_allowed_dl(struct task_struct *p, 1457 const struct cpumask *new_mask) 1458 { 1459 struct rq *rq; 1460 int weight; 1461 1462 BUG_ON(!dl_task(p)); 1463 1464 /* 1465 * Update only if the task is actually running (i.e., 1466 * it is on the rq AND it is not throttled). 1467 */ 1468 if (!on_dl_rq(&p->dl)) 1469 return; 1470 1471 weight = cpumask_weight(new_mask); 1472 1473 /* 1474 * Only update if the process changes its state from whether it 1475 * can migrate or not. 1476 */ 1477 if ((p->nr_cpus_allowed > 1) == (weight > 1)) 1478 return; 1479 1480 rq = task_rq(p); 1481 1482 /* 1483 * The process used to be able to migrate OR it can now migrate 1484 */ 1485 if (weight <= 1) { 1486 if (!task_current(rq, p)) 1487 dequeue_pushable_dl_task(rq, p); 1488 BUG_ON(!rq->dl.dl_nr_migratory); 1489 rq->dl.dl_nr_migratory--; 1490 } else { 1491 if (!task_current(rq, p)) 1492 enqueue_pushable_dl_task(rq, p); 1493 rq->dl.dl_nr_migratory++; 1494 } 1495 1496 update_dl_migration(&rq->dl); 1497 } 1498 1499 /* Assumes rq->lock is held */ 1500 static void rq_online_dl(struct rq *rq) 1501 { 1502 if (rq->dl.overloaded) 1503 dl_set_overload(rq); 1504 1505 if (rq->dl.dl_nr_running > 0) 1506 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1); 1507 } 1508 1509 /* Assumes rq->lock is held */ 1510 static void rq_offline_dl(struct rq *rq) 1511 { 1512 if (rq->dl.overloaded) 1513 dl_clear_overload(rq); 1514 1515 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); 1516 } 1517 1518 void init_sched_dl_class(void) 1519 { 1520 unsigned int i; 1521 1522 for_each_possible_cpu(i) 1523 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 1524 GFP_KERNEL, cpu_to_node(i)); 1525 } 1526 1527 #endif /* CONFIG_SMP */ 1528 1529 static void switched_from_dl(struct rq *rq, struct task_struct *p) 1530 { 1531 if (hrtimer_active(&p->dl.dl_timer) && !dl_policy(p->policy)) 1532 hrtimer_try_to_cancel(&p->dl.dl_timer); 1533 1534 #ifdef CONFIG_SMP 1535 /* 1536 * Since this might be the only -deadline task on the rq, 1537 * this is the right place to try to pull some other one 1538 * from an overloaded cpu, if any. 1539 */ 1540 if (!rq->dl.dl_nr_running) 1541 pull_dl_task(rq); 1542 #endif 1543 } 1544 1545 /* 1546 * When switching to -deadline, we may overload the rq, then 1547 * we try to push someone off, if possible. 1548 */ 1549 static void switched_to_dl(struct rq *rq, struct task_struct *p) 1550 { 1551 int check_resched = 1; 1552 1553 /* 1554 * If p is throttled, don't consider the possibility 1555 * of preempting rq->curr, the check will be done right 1556 * after its runtime will get replenished. 1557 */ 1558 if (unlikely(p->dl.dl_throttled)) 1559 return; 1560 1561 if (p->on_rq || rq->curr != p) { 1562 #ifdef CONFIG_SMP 1563 if (rq->dl.overloaded && push_dl_task(rq) && rq != task_rq(p)) 1564 /* Only reschedule if pushing failed */ 1565 check_resched = 0; 1566 #endif /* CONFIG_SMP */ 1567 if (check_resched && task_has_dl_policy(rq->curr)) 1568 check_preempt_curr_dl(rq, p, 0); 1569 } 1570 } 1571 1572 /* 1573 * If the scheduling parameters of a -deadline task changed, 1574 * a push or pull operation might be needed. 1575 */ 1576 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 1577 int oldprio) 1578 { 1579 if (p->on_rq || rq->curr == p) { 1580 #ifdef CONFIG_SMP 1581 /* 1582 * This might be too much, but unfortunately 1583 * we don't have the old deadline value, and 1584 * we can't argue if the task is increasing 1585 * or lowering its prio, so... 1586 */ 1587 if (!rq->dl.overloaded) 1588 pull_dl_task(rq); 1589 1590 /* 1591 * If we now have a earlier deadline task than p, 1592 * then reschedule, provided p is still on this 1593 * runqueue. 1594 */ 1595 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) && 1596 rq->curr == p) 1597 resched_task(p); 1598 #else 1599 /* 1600 * Again, we don't know if p has a earlier 1601 * or later deadline, so let's blindly set a 1602 * (maybe not needed) rescheduling point. 1603 */ 1604 resched_task(p); 1605 #endif /* CONFIG_SMP */ 1606 } else 1607 switched_to_dl(rq, p); 1608 } 1609 1610 const struct sched_class dl_sched_class = { 1611 .next = &rt_sched_class, 1612 .enqueue_task = enqueue_task_dl, 1613 .dequeue_task = dequeue_task_dl, 1614 .yield_task = yield_task_dl, 1615 1616 .check_preempt_curr = check_preempt_curr_dl, 1617 1618 .pick_next_task = pick_next_task_dl, 1619 .put_prev_task = put_prev_task_dl, 1620 1621 #ifdef CONFIG_SMP 1622 .select_task_rq = select_task_rq_dl, 1623 .set_cpus_allowed = set_cpus_allowed_dl, 1624 .rq_online = rq_online_dl, 1625 .rq_offline = rq_offline_dl, 1626 .pre_schedule = pre_schedule_dl, 1627 .post_schedule = post_schedule_dl, 1628 .task_woken = task_woken_dl, 1629 #endif 1630 1631 .set_curr_task = set_curr_task_dl, 1632 .task_tick = task_tick_dl, 1633 .task_fork = task_fork_dl, 1634 .task_dead = task_dead_dl, 1635 1636 .prio_changed = prio_changed_dl, 1637 .switched_from = switched_from_dl, 1638 .switched_to = switched_to_dl, 1639 }; 1640