xref: /openbmc/linux/kernel/sched/deadline.c (revision a01822e94ee53e8ebc9632fe2764048b81921254)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Deadline Scheduling Class (SCHED_DEADLINE)
4  *
5  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6  *
7  * Tasks that periodically executes their instances for less than their
8  * runtime won't miss any of their deadlines.
9  * Tasks that are not periodic or sporadic or that tries to execute more
10  * than their reserved bandwidth will be slowed down (and may potentially
11  * miss some of their deadlines), and won't affect any other task.
12  *
13  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14  *                    Juri Lelli <juri.lelli@gmail.com>,
15  *                    Michael Trimarchi <michael@amarulasolutions.com>,
16  *                    Fabio Checconi <fchecconi@gmail.com>
17  */
18 #include "sched.h"
19 #include "pelt.h"
20 
21 struct dl_bandwidth def_dl_bandwidth;
22 
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24 {
25 	return container_of(dl_se, struct task_struct, dl);
26 }
27 
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29 {
30 	return container_of(dl_rq, struct rq, dl);
31 }
32 
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34 {
35 	struct task_struct *p = dl_task_of(dl_se);
36 	struct rq *rq = task_rq(p);
37 
38 	return &rq->dl;
39 }
40 
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42 {
43 	return !RB_EMPTY_NODE(&dl_se->rb_node);
44 }
45 
46 #ifdef CONFIG_SMP
47 static inline struct dl_bw *dl_bw_of(int i)
48 {
49 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
50 			 "sched RCU must be held");
51 	return &cpu_rq(i)->rd->dl_bw;
52 }
53 
54 static inline int dl_bw_cpus(int i)
55 {
56 	struct root_domain *rd = cpu_rq(i)->rd;
57 	int cpus = 0;
58 
59 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
60 			 "sched RCU must be held");
61 	for_each_cpu_and(i, rd->span, cpu_active_mask)
62 		cpus++;
63 
64 	return cpus;
65 }
66 #else
67 static inline struct dl_bw *dl_bw_of(int i)
68 {
69 	return &cpu_rq(i)->dl.dl_bw;
70 }
71 
72 static inline int dl_bw_cpus(int i)
73 {
74 	return 1;
75 }
76 #endif
77 
78 static inline
79 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
80 {
81 	u64 old = dl_rq->running_bw;
82 
83 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
84 	dl_rq->running_bw += dl_bw;
85 	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
86 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
87 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
88 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
89 }
90 
91 static inline
92 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
93 {
94 	u64 old = dl_rq->running_bw;
95 
96 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
97 	dl_rq->running_bw -= dl_bw;
98 	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
99 	if (dl_rq->running_bw > old)
100 		dl_rq->running_bw = 0;
101 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
102 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
103 }
104 
105 static inline
106 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
107 {
108 	u64 old = dl_rq->this_bw;
109 
110 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
111 	dl_rq->this_bw += dl_bw;
112 	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
113 }
114 
115 static inline
116 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
117 {
118 	u64 old = dl_rq->this_bw;
119 
120 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
121 	dl_rq->this_bw -= dl_bw;
122 	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
123 	if (dl_rq->this_bw > old)
124 		dl_rq->this_bw = 0;
125 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
126 }
127 
128 static inline
129 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
130 {
131 	if (!dl_entity_is_special(dl_se))
132 		__add_rq_bw(dl_se->dl_bw, dl_rq);
133 }
134 
135 static inline
136 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
137 {
138 	if (!dl_entity_is_special(dl_se))
139 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
140 }
141 
142 static inline
143 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
144 {
145 	if (!dl_entity_is_special(dl_se))
146 		__add_running_bw(dl_se->dl_bw, dl_rq);
147 }
148 
149 static inline
150 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
151 {
152 	if (!dl_entity_is_special(dl_se))
153 		__sub_running_bw(dl_se->dl_bw, dl_rq);
154 }
155 
156 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
157 {
158 	struct rq *rq;
159 
160 	BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
161 
162 	if (task_on_rq_queued(p))
163 		return;
164 
165 	rq = task_rq(p);
166 	if (p->dl.dl_non_contending) {
167 		sub_running_bw(&p->dl, &rq->dl);
168 		p->dl.dl_non_contending = 0;
169 		/*
170 		 * If the timer handler is currently running and the
171 		 * timer cannot be cancelled, inactive_task_timer()
172 		 * will see that dl_not_contending is not set, and
173 		 * will not touch the rq's active utilization,
174 		 * so we are still safe.
175 		 */
176 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
177 			put_task_struct(p);
178 	}
179 	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
180 	__add_rq_bw(new_bw, &rq->dl);
181 }
182 
183 /*
184  * The utilization of a task cannot be immediately removed from
185  * the rq active utilization (running_bw) when the task blocks.
186  * Instead, we have to wait for the so called "0-lag time".
187  *
188  * If a task blocks before the "0-lag time", a timer (the inactive
189  * timer) is armed, and running_bw is decreased when the timer
190  * fires.
191  *
192  * If the task wakes up again before the inactive timer fires,
193  * the timer is cancelled, whereas if the task wakes up after the
194  * inactive timer fired (and running_bw has been decreased) the
195  * task's utilization has to be added to running_bw again.
196  * A flag in the deadline scheduling entity (dl_non_contending)
197  * is used to avoid race conditions between the inactive timer handler
198  * and task wakeups.
199  *
200  * The following diagram shows how running_bw is updated. A task is
201  * "ACTIVE" when its utilization contributes to running_bw; an
202  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
203  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
204  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
205  * time already passed, which does not contribute to running_bw anymore.
206  *                              +------------------+
207  *             wakeup           |    ACTIVE        |
208  *          +------------------>+   contending     |
209  *          | add_running_bw    |                  |
210  *          |                   +----+------+------+
211  *          |                        |      ^
212  *          |                dequeue |      |
213  * +--------+-------+                |      |
214  * |                |   t >= 0-lag   |      | wakeup
215  * |    INACTIVE    |<---------------+      |
216  * |                | sub_running_bw |      |
217  * +--------+-------+                |      |
218  *          ^                        |      |
219  *          |              t < 0-lag |      |
220  *          |                        |      |
221  *          |                        V      |
222  *          |                   +----+------+------+
223  *          | sub_running_bw    |    ACTIVE        |
224  *          +-------------------+                  |
225  *            inactive timer    |  non contending  |
226  *            fired             +------------------+
227  *
228  * The task_non_contending() function is invoked when a task
229  * blocks, and checks if the 0-lag time already passed or
230  * not (in the first case, it directly updates running_bw;
231  * in the second case, it arms the inactive timer).
232  *
233  * The task_contending() function is invoked when a task wakes
234  * up, and checks if the task is still in the "ACTIVE non contending"
235  * state or not (in the second case, it updates running_bw).
236  */
237 static void task_non_contending(struct task_struct *p)
238 {
239 	struct sched_dl_entity *dl_se = &p->dl;
240 	struct hrtimer *timer = &dl_se->inactive_timer;
241 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
242 	struct rq *rq = rq_of_dl_rq(dl_rq);
243 	s64 zerolag_time;
244 
245 	/*
246 	 * If this is a non-deadline task that has been boosted,
247 	 * do nothing
248 	 */
249 	if (dl_se->dl_runtime == 0)
250 		return;
251 
252 	if (dl_entity_is_special(dl_se))
253 		return;
254 
255 	WARN_ON(dl_se->dl_non_contending);
256 
257 	zerolag_time = dl_se->deadline -
258 		 div64_long((dl_se->runtime * dl_se->dl_period),
259 			dl_se->dl_runtime);
260 
261 	/*
262 	 * Using relative times instead of the absolute "0-lag time"
263 	 * allows to simplify the code
264 	 */
265 	zerolag_time -= rq_clock(rq);
266 
267 	/*
268 	 * If the "0-lag time" already passed, decrease the active
269 	 * utilization now, instead of starting a timer
270 	 */
271 	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
272 		if (dl_task(p))
273 			sub_running_bw(dl_se, dl_rq);
274 		if (!dl_task(p) || p->state == TASK_DEAD) {
275 			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
276 
277 			if (p->state == TASK_DEAD)
278 				sub_rq_bw(&p->dl, &rq->dl);
279 			raw_spin_lock(&dl_b->lock);
280 			__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
281 			__dl_clear_params(p);
282 			raw_spin_unlock(&dl_b->lock);
283 		}
284 
285 		return;
286 	}
287 
288 	dl_se->dl_non_contending = 1;
289 	get_task_struct(p);
290 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
291 }
292 
293 static void task_contending(struct sched_dl_entity *dl_se, int flags)
294 {
295 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
296 
297 	/*
298 	 * If this is a non-deadline task that has been boosted,
299 	 * do nothing
300 	 */
301 	if (dl_se->dl_runtime == 0)
302 		return;
303 
304 	if (flags & ENQUEUE_MIGRATED)
305 		add_rq_bw(dl_se, dl_rq);
306 
307 	if (dl_se->dl_non_contending) {
308 		dl_se->dl_non_contending = 0;
309 		/*
310 		 * If the timer handler is currently running and the
311 		 * timer cannot be cancelled, inactive_task_timer()
312 		 * will see that dl_not_contending is not set, and
313 		 * will not touch the rq's active utilization,
314 		 * so we are still safe.
315 		 */
316 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
317 			put_task_struct(dl_task_of(dl_se));
318 	} else {
319 		/*
320 		 * Since "dl_non_contending" is not set, the
321 		 * task's utilization has already been removed from
322 		 * active utilization (either when the task blocked,
323 		 * when the "inactive timer" fired).
324 		 * So, add it back.
325 		 */
326 		add_running_bw(dl_se, dl_rq);
327 	}
328 }
329 
330 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
331 {
332 	struct sched_dl_entity *dl_se = &p->dl;
333 
334 	return dl_rq->root.rb_leftmost == &dl_se->rb_node;
335 }
336 
337 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
338 
339 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
340 {
341 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
342 	dl_b->dl_period = period;
343 	dl_b->dl_runtime = runtime;
344 }
345 
346 void init_dl_bw(struct dl_bw *dl_b)
347 {
348 	raw_spin_lock_init(&dl_b->lock);
349 	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
350 	if (global_rt_runtime() == RUNTIME_INF)
351 		dl_b->bw = -1;
352 	else
353 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
354 	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
355 	dl_b->total_bw = 0;
356 }
357 
358 void init_dl_rq(struct dl_rq *dl_rq)
359 {
360 	dl_rq->root = RB_ROOT_CACHED;
361 
362 #ifdef CONFIG_SMP
363 	/* zero means no -deadline tasks */
364 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
365 
366 	dl_rq->dl_nr_migratory = 0;
367 	dl_rq->overloaded = 0;
368 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
369 #else
370 	init_dl_bw(&dl_rq->dl_bw);
371 #endif
372 
373 	dl_rq->running_bw = 0;
374 	dl_rq->this_bw = 0;
375 	init_dl_rq_bw_ratio(dl_rq);
376 }
377 
378 #ifdef CONFIG_SMP
379 
380 static inline int dl_overloaded(struct rq *rq)
381 {
382 	return atomic_read(&rq->rd->dlo_count);
383 }
384 
385 static inline void dl_set_overload(struct rq *rq)
386 {
387 	if (!rq->online)
388 		return;
389 
390 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
391 	/*
392 	 * Must be visible before the overload count is
393 	 * set (as in sched_rt.c).
394 	 *
395 	 * Matched by the barrier in pull_dl_task().
396 	 */
397 	smp_wmb();
398 	atomic_inc(&rq->rd->dlo_count);
399 }
400 
401 static inline void dl_clear_overload(struct rq *rq)
402 {
403 	if (!rq->online)
404 		return;
405 
406 	atomic_dec(&rq->rd->dlo_count);
407 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
408 }
409 
410 static void update_dl_migration(struct dl_rq *dl_rq)
411 {
412 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
413 		if (!dl_rq->overloaded) {
414 			dl_set_overload(rq_of_dl_rq(dl_rq));
415 			dl_rq->overloaded = 1;
416 		}
417 	} else if (dl_rq->overloaded) {
418 		dl_clear_overload(rq_of_dl_rq(dl_rq));
419 		dl_rq->overloaded = 0;
420 	}
421 }
422 
423 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
424 {
425 	struct task_struct *p = dl_task_of(dl_se);
426 
427 	if (p->nr_cpus_allowed > 1)
428 		dl_rq->dl_nr_migratory++;
429 
430 	update_dl_migration(dl_rq);
431 }
432 
433 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
434 {
435 	struct task_struct *p = dl_task_of(dl_se);
436 
437 	if (p->nr_cpus_allowed > 1)
438 		dl_rq->dl_nr_migratory--;
439 
440 	update_dl_migration(dl_rq);
441 }
442 
443 /*
444  * The list of pushable -deadline task is not a plist, like in
445  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
446  */
447 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
448 {
449 	struct dl_rq *dl_rq = &rq->dl;
450 	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
451 	struct rb_node *parent = NULL;
452 	struct task_struct *entry;
453 	bool leftmost = true;
454 
455 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
456 
457 	while (*link) {
458 		parent = *link;
459 		entry = rb_entry(parent, struct task_struct,
460 				 pushable_dl_tasks);
461 		if (dl_entity_preempt(&p->dl, &entry->dl))
462 			link = &parent->rb_left;
463 		else {
464 			link = &parent->rb_right;
465 			leftmost = false;
466 		}
467 	}
468 
469 	if (leftmost)
470 		dl_rq->earliest_dl.next = p->dl.deadline;
471 
472 	rb_link_node(&p->pushable_dl_tasks, parent, link);
473 	rb_insert_color_cached(&p->pushable_dl_tasks,
474 			       &dl_rq->pushable_dl_tasks_root, leftmost);
475 }
476 
477 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
478 {
479 	struct dl_rq *dl_rq = &rq->dl;
480 
481 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
482 		return;
483 
484 	if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
485 		struct rb_node *next_node;
486 
487 		next_node = rb_next(&p->pushable_dl_tasks);
488 		if (next_node) {
489 			dl_rq->earliest_dl.next = rb_entry(next_node,
490 				struct task_struct, pushable_dl_tasks)->dl.deadline;
491 		}
492 	}
493 
494 	rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
495 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
496 }
497 
498 static inline int has_pushable_dl_tasks(struct rq *rq)
499 {
500 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
501 }
502 
503 static int push_dl_task(struct rq *rq);
504 
505 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
506 {
507 	return dl_task(prev);
508 }
509 
510 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
511 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
512 
513 static void push_dl_tasks(struct rq *);
514 static void pull_dl_task(struct rq *);
515 
516 static inline void deadline_queue_push_tasks(struct rq *rq)
517 {
518 	if (!has_pushable_dl_tasks(rq))
519 		return;
520 
521 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
522 }
523 
524 static inline void deadline_queue_pull_task(struct rq *rq)
525 {
526 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
527 }
528 
529 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
530 
531 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
532 {
533 	struct rq *later_rq = NULL;
534 	struct dl_bw *dl_b;
535 
536 	later_rq = find_lock_later_rq(p, rq);
537 	if (!later_rq) {
538 		int cpu;
539 
540 		/*
541 		 * If we cannot preempt any rq, fall back to pick any
542 		 * online CPU:
543 		 */
544 		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
545 		if (cpu >= nr_cpu_ids) {
546 			/*
547 			 * Failed to find any suitable CPU.
548 			 * The task will never come back!
549 			 */
550 			BUG_ON(dl_bandwidth_enabled());
551 
552 			/*
553 			 * If admission control is disabled we
554 			 * try a little harder to let the task
555 			 * run.
556 			 */
557 			cpu = cpumask_any(cpu_active_mask);
558 		}
559 		later_rq = cpu_rq(cpu);
560 		double_lock_balance(rq, later_rq);
561 	}
562 
563 	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
564 		/*
565 		 * Inactive timer is armed (or callback is running, but
566 		 * waiting for us to release rq locks). In any case, when it
567 		 * will fire (or continue), it will see running_bw of this
568 		 * task migrated to later_rq (and correctly handle it).
569 		 */
570 		sub_running_bw(&p->dl, &rq->dl);
571 		sub_rq_bw(&p->dl, &rq->dl);
572 
573 		add_rq_bw(&p->dl, &later_rq->dl);
574 		add_running_bw(&p->dl, &later_rq->dl);
575 	} else {
576 		sub_rq_bw(&p->dl, &rq->dl);
577 		add_rq_bw(&p->dl, &later_rq->dl);
578 	}
579 
580 	/*
581 	 * And we finally need to fixup root_domain(s) bandwidth accounting,
582 	 * since p is still hanging out in the old (now moved to default) root
583 	 * domain.
584 	 */
585 	dl_b = &rq->rd->dl_bw;
586 	raw_spin_lock(&dl_b->lock);
587 	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
588 	raw_spin_unlock(&dl_b->lock);
589 
590 	dl_b = &later_rq->rd->dl_bw;
591 	raw_spin_lock(&dl_b->lock);
592 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
593 	raw_spin_unlock(&dl_b->lock);
594 
595 	set_task_cpu(p, later_rq->cpu);
596 	double_unlock_balance(later_rq, rq);
597 
598 	return later_rq;
599 }
600 
601 #else
602 
603 static inline
604 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
605 {
606 }
607 
608 static inline
609 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
610 {
611 }
612 
613 static inline
614 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
615 {
616 }
617 
618 static inline
619 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
620 {
621 }
622 
623 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
624 {
625 	return false;
626 }
627 
628 static inline void pull_dl_task(struct rq *rq)
629 {
630 }
631 
632 static inline void deadline_queue_push_tasks(struct rq *rq)
633 {
634 }
635 
636 static inline void deadline_queue_pull_task(struct rq *rq)
637 {
638 }
639 #endif /* CONFIG_SMP */
640 
641 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
642 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
643 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
644 
645 /*
646  * We are being explicitly informed that a new instance is starting,
647  * and this means that:
648  *  - the absolute deadline of the entity has to be placed at
649  *    current time + relative deadline;
650  *  - the runtime of the entity has to be set to the maximum value.
651  *
652  * The capability of specifying such event is useful whenever a -deadline
653  * entity wants to (try to!) synchronize its behaviour with the scheduler's
654  * one, and to (try to!) reconcile itself with its own scheduling
655  * parameters.
656  */
657 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
658 {
659 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
660 	struct rq *rq = rq_of_dl_rq(dl_rq);
661 
662 	WARN_ON(dl_se->dl_boosted);
663 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
664 
665 	/*
666 	 * We are racing with the deadline timer. So, do nothing because
667 	 * the deadline timer handler will take care of properly recharging
668 	 * the runtime and postponing the deadline
669 	 */
670 	if (dl_se->dl_throttled)
671 		return;
672 
673 	/*
674 	 * We use the regular wall clock time to set deadlines in the
675 	 * future; in fact, we must consider execution overheads (time
676 	 * spent on hardirq context, etc.).
677 	 */
678 	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
679 	dl_se->runtime = dl_se->dl_runtime;
680 }
681 
682 /*
683  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
684  * possibility of a entity lasting more than what it declared, and thus
685  * exhausting its runtime.
686  *
687  * Here we are interested in making runtime overrun possible, but we do
688  * not want a entity which is misbehaving to affect the scheduling of all
689  * other entities.
690  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
691  * is used, in order to confine each entity within its own bandwidth.
692  *
693  * This function deals exactly with that, and ensures that when the runtime
694  * of a entity is replenished, its deadline is also postponed. That ensures
695  * the overrunning entity can't interfere with other entity in the system and
696  * can't make them miss their deadlines. Reasons why this kind of overruns
697  * could happen are, typically, a entity voluntarily trying to overcome its
698  * runtime, or it just underestimated it during sched_setattr().
699  */
700 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
701 				struct sched_dl_entity *pi_se)
702 {
703 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
704 	struct rq *rq = rq_of_dl_rq(dl_rq);
705 
706 	BUG_ON(pi_se->dl_runtime <= 0);
707 
708 	/*
709 	 * This could be the case for a !-dl task that is boosted.
710 	 * Just go with full inherited parameters.
711 	 */
712 	if (dl_se->dl_deadline == 0) {
713 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
714 		dl_se->runtime = pi_se->dl_runtime;
715 	}
716 
717 	if (dl_se->dl_yielded && dl_se->runtime > 0)
718 		dl_se->runtime = 0;
719 
720 	/*
721 	 * We keep moving the deadline away until we get some
722 	 * available runtime for the entity. This ensures correct
723 	 * handling of situations where the runtime overrun is
724 	 * arbitrary large.
725 	 */
726 	while (dl_se->runtime <= 0) {
727 		dl_se->deadline += pi_se->dl_period;
728 		dl_se->runtime += pi_se->dl_runtime;
729 	}
730 
731 	/*
732 	 * At this point, the deadline really should be "in
733 	 * the future" with respect to rq->clock. If it's
734 	 * not, we are, for some reason, lagging too much!
735 	 * Anyway, after having warn userspace abut that,
736 	 * we still try to keep the things running by
737 	 * resetting the deadline and the budget of the
738 	 * entity.
739 	 */
740 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
741 		printk_deferred_once("sched: DL replenish lagged too much\n");
742 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
743 		dl_se->runtime = pi_se->dl_runtime;
744 	}
745 
746 	if (dl_se->dl_yielded)
747 		dl_se->dl_yielded = 0;
748 	if (dl_se->dl_throttled)
749 		dl_se->dl_throttled = 0;
750 }
751 
752 /*
753  * Here we check if --at time t-- an entity (which is probably being
754  * [re]activated or, in general, enqueued) can use its remaining runtime
755  * and its current deadline _without_ exceeding the bandwidth it is
756  * assigned (function returns true if it can't). We are in fact applying
757  * one of the CBS rules: when a task wakes up, if the residual runtime
758  * over residual deadline fits within the allocated bandwidth, then we
759  * can keep the current (absolute) deadline and residual budget without
760  * disrupting the schedulability of the system. Otherwise, we should
761  * refill the runtime and set the deadline a period in the future,
762  * because keeping the current (absolute) deadline of the task would
763  * result in breaking guarantees promised to other tasks (refer to
764  * Documentation/scheduler/sched-deadline.rst for more information).
765  *
766  * This function returns true if:
767  *
768  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
769  *
770  * IOW we can't recycle current parameters.
771  *
772  * Notice that the bandwidth check is done against the deadline. For
773  * task with deadline equal to period this is the same of using
774  * dl_period instead of dl_deadline in the equation above.
775  */
776 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
777 			       struct sched_dl_entity *pi_se, u64 t)
778 {
779 	u64 left, right;
780 
781 	/*
782 	 * left and right are the two sides of the equation above,
783 	 * after a bit of shuffling to use multiplications instead
784 	 * of divisions.
785 	 *
786 	 * Note that none of the time values involved in the two
787 	 * multiplications are absolute: dl_deadline and dl_runtime
788 	 * are the relative deadline and the maximum runtime of each
789 	 * instance, runtime is the runtime left for the last instance
790 	 * and (deadline - t), since t is rq->clock, is the time left
791 	 * to the (absolute) deadline. Even if overflowing the u64 type
792 	 * is very unlikely to occur in both cases, here we scale down
793 	 * as we want to avoid that risk at all. Scaling down by 10
794 	 * means that we reduce granularity to 1us. We are fine with it,
795 	 * since this is only a true/false check and, anyway, thinking
796 	 * of anything below microseconds resolution is actually fiction
797 	 * (but still we want to give the user that illusion >;).
798 	 */
799 	left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
800 	right = ((dl_se->deadline - t) >> DL_SCALE) *
801 		(pi_se->dl_runtime >> DL_SCALE);
802 
803 	return dl_time_before(right, left);
804 }
805 
806 /*
807  * Revised wakeup rule [1]: For self-suspending tasks, rather then
808  * re-initializing task's runtime and deadline, the revised wakeup
809  * rule adjusts the task's runtime to avoid the task to overrun its
810  * density.
811  *
812  * Reasoning: a task may overrun the density if:
813  *    runtime / (deadline - t) > dl_runtime / dl_deadline
814  *
815  * Therefore, runtime can be adjusted to:
816  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
817  *
818  * In such way that runtime will be equal to the maximum density
819  * the task can use without breaking any rule.
820  *
821  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
822  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
823  */
824 static void
825 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
826 {
827 	u64 laxity = dl_se->deadline - rq_clock(rq);
828 
829 	/*
830 	 * If the task has deadline < period, and the deadline is in the past,
831 	 * it should already be throttled before this check.
832 	 *
833 	 * See update_dl_entity() comments for further details.
834 	 */
835 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
836 
837 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
838 }
839 
840 /*
841  * Regarding the deadline, a task with implicit deadline has a relative
842  * deadline == relative period. A task with constrained deadline has a
843  * relative deadline <= relative period.
844  *
845  * We support constrained deadline tasks. However, there are some restrictions
846  * applied only for tasks which do not have an implicit deadline. See
847  * update_dl_entity() to know more about such restrictions.
848  *
849  * The dl_is_implicit() returns true if the task has an implicit deadline.
850  */
851 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
852 {
853 	return dl_se->dl_deadline == dl_se->dl_period;
854 }
855 
856 /*
857  * When a deadline entity is placed in the runqueue, its runtime and deadline
858  * might need to be updated. This is done by a CBS wake up rule. There are two
859  * different rules: 1) the original CBS; and 2) the Revisited CBS.
860  *
861  * When the task is starting a new period, the Original CBS is used. In this
862  * case, the runtime is replenished and a new absolute deadline is set.
863  *
864  * When a task is queued before the begin of the next period, using the
865  * remaining runtime and deadline could make the entity to overflow, see
866  * dl_entity_overflow() to find more about runtime overflow. When such case
867  * is detected, the runtime and deadline need to be updated.
868  *
869  * If the task has an implicit deadline, i.e., deadline == period, the Original
870  * CBS is applied. the runtime is replenished and a new absolute deadline is
871  * set, as in the previous cases.
872  *
873  * However, the Original CBS does not work properly for tasks with
874  * deadline < period, which are said to have a constrained deadline. By
875  * applying the Original CBS, a constrained deadline task would be able to run
876  * runtime/deadline in a period. With deadline < period, the task would
877  * overrun the runtime/period allowed bandwidth, breaking the admission test.
878  *
879  * In order to prevent this misbehave, the Revisited CBS is used for
880  * constrained deadline tasks when a runtime overflow is detected. In the
881  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
882  * the remaining runtime of the task is reduced to avoid runtime overflow.
883  * Please refer to the comments update_dl_revised_wakeup() function to find
884  * more about the Revised CBS rule.
885  */
886 static void update_dl_entity(struct sched_dl_entity *dl_se,
887 			     struct sched_dl_entity *pi_se)
888 {
889 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
890 	struct rq *rq = rq_of_dl_rq(dl_rq);
891 
892 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
893 	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
894 
895 		if (unlikely(!dl_is_implicit(dl_se) &&
896 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
897 			     !dl_se->dl_boosted)){
898 			update_dl_revised_wakeup(dl_se, rq);
899 			return;
900 		}
901 
902 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
903 		dl_se->runtime = pi_se->dl_runtime;
904 	}
905 }
906 
907 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
908 {
909 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
910 }
911 
912 /*
913  * If the entity depleted all its runtime, and if we want it to sleep
914  * while waiting for some new execution time to become available, we
915  * set the bandwidth replenishment timer to the replenishment instant
916  * and try to activate it.
917  *
918  * Notice that it is important for the caller to know if the timer
919  * actually started or not (i.e., the replenishment instant is in
920  * the future or in the past).
921  */
922 static int start_dl_timer(struct task_struct *p)
923 {
924 	struct sched_dl_entity *dl_se = &p->dl;
925 	struct hrtimer *timer = &dl_se->dl_timer;
926 	struct rq *rq = task_rq(p);
927 	ktime_t now, act;
928 	s64 delta;
929 
930 	lockdep_assert_held(&rq->lock);
931 
932 	/*
933 	 * We want the timer to fire at the deadline, but considering
934 	 * that it is actually coming from rq->clock and not from
935 	 * hrtimer's time base reading.
936 	 */
937 	act = ns_to_ktime(dl_next_period(dl_se));
938 	now = hrtimer_cb_get_time(timer);
939 	delta = ktime_to_ns(now) - rq_clock(rq);
940 	act = ktime_add_ns(act, delta);
941 
942 	/*
943 	 * If the expiry time already passed, e.g., because the value
944 	 * chosen as the deadline is too small, don't even try to
945 	 * start the timer in the past!
946 	 */
947 	if (ktime_us_delta(act, now) < 0)
948 		return 0;
949 
950 	/*
951 	 * !enqueued will guarantee another callback; even if one is already in
952 	 * progress. This ensures a balanced {get,put}_task_struct().
953 	 *
954 	 * The race against __run_timer() clearing the enqueued state is
955 	 * harmless because we're holding task_rq()->lock, therefore the timer
956 	 * expiring after we've done the check will wait on its task_rq_lock()
957 	 * and observe our state.
958 	 */
959 	if (!hrtimer_is_queued(timer)) {
960 		get_task_struct(p);
961 		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
962 	}
963 
964 	return 1;
965 }
966 
967 /*
968  * This is the bandwidth enforcement timer callback. If here, we know
969  * a task is not on its dl_rq, since the fact that the timer was running
970  * means the task is throttled and needs a runtime replenishment.
971  *
972  * However, what we actually do depends on the fact the task is active,
973  * (it is on its rq) or has been removed from there by a call to
974  * dequeue_task_dl(). In the former case we must issue the runtime
975  * replenishment and add the task back to the dl_rq; in the latter, we just
976  * do nothing but clearing dl_throttled, so that runtime and deadline
977  * updating (and the queueing back to dl_rq) will be done by the
978  * next call to enqueue_task_dl().
979  */
980 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
981 {
982 	struct sched_dl_entity *dl_se = container_of(timer,
983 						     struct sched_dl_entity,
984 						     dl_timer);
985 	struct task_struct *p = dl_task_of(dl_se);
986 	struct rq_flags rf;
987 	struct rq *rq;
988 
989 	rq = task_rq_lock(p, &rf);
990 
991 	/*
992 	 * The task might have changed its scheduling policy to something
993 	 * different than SCHED_DEADLINE (through switched_from_dl()).
994 	 */
995 	if (!dl_task(p))
996 		goto unlock;
997 
998 	/*
999 	 * The task might have been boosted by someone else and might be in the
1000 	 * boosting/deboosting path, its not throttled.
1001 	 */
1002 	if (dl_se->dl_boosted)
1003 		goto unlock;
1004 
1005 	/*
1006 	 * Spurious timer due to start_dl_timer() race; or we already received
1007 	 * a replenishment from rt_mutex_setprio().
1008 	 */
1009 	if (!dl_se->dl_throttled)
1010 		goto unlock;
1011 
1012 	sched_clock_tick();
1013 	update_rq_clock(rq);
1014 
1015 	/*
1016 	 * If the throttle happened during sched-out; like:
1017 	 *
1018 	 *   schedule()
1019 	 *     deactivate_task()
1020 	 *       dequeue_task_dl()
1021 	 *         update_curr_dl()
1022 	 *           start_dl_timer()
1023 	 *         __dequeue_task_dl()
1024 	 *     prev->on_rq = 0;
1025 	 *
1026 	 * We can be both throttled and !queued. Replenish the counter
1027 	 * but do not enqueue -- wait for our wakeup to do that.
1028 	 */
1029 	if (!task_on_rq_queued(p)) {
1030 		replenish_dl_entity(dl_se, dl_se);
1031 		goto unlock;
1032 	}
1033 
1034 #ifdef CONFIG_SMP
1035 	if (unlikely(!rq->online)) {
1036 		/*
1037 		 * If the runqueue is no longer available, migrate the
1038 		 * task elsewhere. This necessarily changes rq.
1039 		 */
1040 		lockdep_unpin_lock(&rq->lock, rf.cookie);
1041 		rq = dl_task_offline_migration(rq, p);
1042 		rf.cookie = lockdep_pin_lock(&rq->lock);
1043 		update_rq_clock(rq);
1044 
1045 		/*
1046 		 * Now that the task has been migrated to the new RQ and we
1047 		 * have that locked, proceed as normal and enqueue the task
1048 		 * there.
1049 		 */
1050 	}
1051 #endif
1052 
1053 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1054 	if (dl_task(rq->curr))
1055 		check_preempt_curr_dl(rq, p, 0);
1056 	else
1057 		resched_curr(rq);
1058 
1059 #ifdef CONFIG_SMP
1060 	/*
1061 	 * Queueing this task back might have overloaded rq, check if we need
1062 	 * to kick someone away.
1063 	 */
1064 	if (has_pushable_dl_tasks(rq)) {
1065 		/*
1066 		 * Nothing relies on rq->lock after this, so its safe to drop
1067 		 * rq->lock.
1068 		 */
1069 		rq_unpin_lock(rq, &rf);
1070 		push_dl_task(rq);
1071 		rq_repin_lock(rq, &rf);
1072 	}
1073 #endif
1074 
1075 unlock:
1076 	task_rq_unlock(rq, p, &rf);
1077 
1078 	/*
1079 	 * This can free the task_struct, including this hrtimer, do not touch
1080 	 * anything related to that after this.
1081 	 */
1082 	put_task_struct(p);
1083 
1084 	return HRTIMER_NORESTART;
1085 }
1086 
1087 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1088 {
1089 	struct hrtimer *timer = &dl_se->dl_timer;
1090 
1091 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1092 	timer->function = dl_task_timer;
1093 }
1094 
1095 /*
1096  * During the activation, CBS checks if it can reuse the current task's
1097  * runtime and period. If the deadline of the task is in the past, CBS
1098  * cannot use the runtime, and so it replenishes the task. This rule
1099  * works fine for implicit deadline tasks (deadline == period), and the
1100  * CBS was designed for implicit deadline tasks. However, a task with
1101  * constrained deadline (deadine < period) might be awakened after the
1102  * deadline, but before the next period. In this case, replenishing the
1103  * task would allow it to run for runtime / deadline. As in this case
1104  * deadline < period, CBS enables a task to run for more than the
1105  * runtime / period. In a very loaded system, this can cause a domino
1106  * effect, making other tasks miss their deadlines.
1107  *
1108  * To avoid this problem, in the activation of a constrained deadline
1109  * task after the deadline but before the next period, throttle the
1110  * task and set the replenishing timer to the begin of the next period,
1111  * unless it is boosted.
1112  */
1113 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1114 {
1115 	struct task_struct *p = dl_task_of(dl_se);
1116 	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1117 
1118 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1119 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1120 		if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1121 			return;
1122 		dl_se->dl_throttled = 1;
1123 		if (dl_se->runtime > 0)
1124 			dl_se->runtime = 0;
1125 	}
1126 }
1127 
1128 static
1129 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1130 {
1131 	return (dl_se->runtime <= 0);
1132 }
1133 
1134 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1135 
1136 /*
1137  * This function implements the GRUB accounting rule:
1138  * according to the GRUB reclaiming algorithm, the runtime is
1139  * not decreased as "dq = -dt", but as
1140  * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1141  * where u is the utilization of the task, Umax is the maximum reclaimable
1142  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1143  * as the difference between the "total runqueue utilization" and the
1144  * runqueue active utilization, and Uextra is the (per runqueue) extra
1145  * reclaimable utilization.
1146  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1147  * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1148  * BW_SHIFT.
1149  * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1150  * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1151  * Since delta is a 64 bit variable, to have an overflow its value
1152  * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1153  * So, overflow is not an issue here.
1154  */
1155 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1156 {
1157 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1158 	u64 u_act;
1159 	u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1160 
1161 	/*
1162 	 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1163 	 * we compare u_inact + rq->dl.extra_bw with
1164 	 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1165 	 * u_inact + rq->dl.extra_bw can be larger than
1166 	 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1167 	 * leading to wrong results)
1168 	 */
1169 	if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1170 		u_act = u_act_min;
1171 	else
1172 		u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1173 
1174 	return (delta * u_act) >> BW_SHIFT;
1175 }
1176 
1177 /*
1178  * Update the current task's runtime statistics (provided it is still
1179  * a -deadline task and has not been removed from the dl_rq).
1180  */
1181 static void update_curr_dl(struct rq *rq)
1182 {
1183 	struct task_struct *curr = rq->curr;
1184 	struct sched_dl_entity *dl_se = &curr->dl;
1185 	u64 delta_exec, scaled_delta_exec;
1186 	int cpu = cpu_of(rq);
1187 	u64 now;
1188 
1189 	if (!dl_task(curr) || !on_dl_rq(dl_se))
1190 		return;
1191 
1192 	/*
1193 	 * Consumed budget is computed considering the time as
1194 	 * observed by schedulable tasks (excluding time spent
1195 	 * in hardirq context, etc.). Deadlines are instead
1196 	 * computed using hard walltime. This seems to be the more
1197 	 * natural solution, but the full ramifications of this
1198 	 * approach need further study.
1199 	 */
1200 	now = rq_clock_task(rq);
1201 	delta_exec = now - curr->se.exec_start;
1202 	if (unlikely((s64)delta_exec <= 0)) {
1203 		if (unlikely(dl_se->dl_yielded))
1204 			goto throttle;
1205 		return;
1206 	}
1207 
1208 	schedstat_set(curr->se.statistics.exec_max,
1209 		      max(curr->se.statistics.exec_max, delta_exec));
1210 
1211 	curr->se.sum_exec_runtime += delta_exec;
1212 	account_group_exec_runtime(curr, delta_exec);
1213 
1214 	curr->se.exec_start = now;
1215 	cgroup_account_cputime(curr, delta_exec);
1216 
1217 	if (dl_entity_is_special(dl_se))
1218 		return;
1219 
1220 	/*
1221 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1222 	 * spare reclaimed bandwidth is used to clock down frequency.
1223 	 *
1224 	 * For the others, we still need to scale reservation parameters
1225 	 * according to current frequency and CPU maximum capacity.
1226 	 */
1227 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1228 		scaled_delta_exec = grub_reclaim(delta_exec,
1229 						 rq,
1230 						 &curr->dl);
1231 	} else {
1232 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1233 		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1234 
1235 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1236 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1237 	}
1238 
1239 	dl_se->runtime -= scaled_delta_exec;
1240 
1241 throttle:
1242 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1243 		dl_se->dl_throttled = 1;
1244 
1245 		/* If requested, inform the user about runtime overruns. */
1246 		if (dl_runtime_exceeded(dl_se) &&
1247 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1248 			dl_se->dl_overrun = 1;
1249 
1250 		__dequeue_task_dl(rq, curr, 0);
1251 		if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
1252 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1253 
1254 		if (!is_leftmost(curr, &rq->dl))
1255 			resched_curr(rq);
1256 	}
1257 
1258 	/*
1259 	 * Because -- for now -- we share the rt bandwidth, we need to
1260 	 * account our runtime there too, otherwise actual rt tasks
1261 	 * would be able to exceed the shared quota.
1262 	 *
1263 	 * Account to the root rt group for now.
1264 	 *
1265 	 * The solution we're working towards is having the RT groups scheduled
1266 	 * using deadline servers -- however there's a few nasties to figure
1267 	 * out before that can happen.
1268 	 */
1269 	if (rt_bandwidth_enabled()) {
1270 		struct rt_rq *rt_rq = &rq->rt;
1271 
1272 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1273 		/*
1274 		 * We'll let actual RT tasks worry about the overflow here, we
1275 		 * have our own CBS to keep us inline; only account when RT
1276 		 * bandwidth is relevant.
1277 		 */
1278 		if (sched_rt_bandwidth_account(rt_rq))
1279 			rt_rq->rt_time += delta_exec;
1280 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1281 	}
1282 }
1283 
1284 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1285 {
1286 	struct sched_dl_entity *dl_se = container_of(timer,
1287 						     struct sched_dl_entity,
1288 						     inactive_timer);
1289 	struct task_struct *p = dl_task_of(dl_se);
1290 	struct rq_flags rf;
1291 	struct rq *rq;
1292 
1293 	rq = task_rq_lock(p, &rf);
1294 
1295 	sched_clock_tick();
1296 	update_rq_clock(rq);
1297 
1298 	if (!dl_task(p) || p->state == TASK_DEAD) {
1299 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1300 
1301 		if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1302 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1303 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1304 			dl_se->dl_non_contending = 0;
1305 		}
1306 
1307 		raw_spin_lock(&dl_b->lock);
1308 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1309 		raw_spin_unlock(&dl_b->lock);
1310 		__dl_clear_params(p);
1311 
1312 		goto unlock;
1313 	}
1314 	if (dl_se->dl_non_contending == 0)
1315 		goto unlock;
1316 
1317 	sub_running_bw(dl_se, &rq->dl);
1318 	dl_se->dl_non_contending = 0;
1319 unlock:
1320 	task_rq_unlock(rq, p, &rf);
1321 	put_task_struct(p);
1322 
1323 	return HRTIMER_NORESTART;
1324 }
1325 
1326 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1327 {
1328 	struct hrtimer *timer = &dl_se->inactive_timer;
1329 
1330 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1331 	timer->function = inactive_task_timer;
1332 }
1333 
1334 #ifdef CONFIG_SMP
1335 
1336 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1337 {
1338 	struct rq *rq = rq_of_dl_rq(dl_rq);
1339 
1340 	if (dl_rq->earliest_dl.curr == 0 ||
1341 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1342 		dl_rq->earliest_dl.curr = deadline;
1343 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1344 	}
1345 }
1346 
1347 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1348 {
1349 	struct rq *rq = rq_of_dl_rq(dl_rq);
1350 
1351 	/*
1352 	 * Since we may have removed our earliest (and/or next earliest)
1353 	 * task we must recompute them.
1354 	 */
1355 	if (!dl_rq->dl_nr_running) {
1356 		dl_rq->earliest_dl.curr = 0;
1357 		dl_rq->earliest_dl.next = 0;
1358 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1359 	} else {
1360 		struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1361 		struct sched_dl_entity *entry;
1362 
1363 		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1364 		dl_rq->earliest_dl.curr = entry->deadline;
1365 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1366 	}
1367 }
1368 
1369 #else
1370 
1371 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1372 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1373 
1374 #endif /* CONFIG_SMP */
1375 
1376 static inline
1377 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1378 {
1379 	int prio = dl_task_of(dl_se)->prio;
1380 	u64 deadline = dl_se->deadline;
1381 
1382 	WARN_ON(!dl_prio(prio));
1383 	dl_rq->dl_nr_running++;
1384 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1385 
1386 	inc_dl_deadline(dl_rq, deadline);
1387 	inc_dl_migration(dl_se, dl_rq);
1388 }
1389 
1390 static inline
1391 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1392 {
1393 	int prio = dl_task_of(dl_se)->prio;
1394 
1395 	WARN_ON(!dl_prio(prio));
1396 	WARN_ON(!dl_rq->dl_nr_running);
1397 	dl_rq->dl_nr_running--;
1398 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1399 
1400 	dec_dl_deadline(dl_rq, dl_se->deadline);
1401 	dec_dl_migration(dl_se, dl_rq);
1402 }
1403 
1404 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1405 {
1406 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1407 	struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1408 	struct rb_node *parent = NULL;
1409 	struct sched_dl_entity *entry;
1410 	int leftmost = 1;
1411 
1412 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1413 
1414 	while (*link) {
1415 		parent = *link;
1416 		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1417 		if (dl_time_before(dl_se->deadline, entry->deadline))
1418 			link = &parent->rb_left;
1419 		else {
1420 			link = &parent->rb_right;
1421 			leftmost = 0;
1422 		}
1423 	}
1424 
1425 	rb_link_node(&dl_se->rb_node, parent, link);
1426 	rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
1427 
1428 	inc_dl_tasks(dl_se, dl_rq);
1429 }
1430 
1431 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1432 {
1433 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1434 
1435 	if (RB_EMPTY_NODE(&dl_se->rb_node))
1436 		return;
1437 
1438 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1439 	RB_CLEAR_NODE(&dl_se->rb_node);
1440 
1441 	dec_dl_tasks(dl_se, dl_rq);
1442 }
1443 
1444 static void
1445 enqueue_dl_entity(struct sched_dl_entity *dl_se,
1446 		  struct sched_dl_entity *pi_se, int flags)
1447 {
1448 	BUG_ON(on_dl_rq(dl_se));
1449 
1450 	/*
1451 	 * If this is a wakeup or a new instance, the scheduling
1452 	 * parameters of the task might need updating. Otherwise,
1453 	 * we want a replenishment of its runtime.
1454 	 */
1455 	if (flags & ENQUEUE_WAKEUP) {
1456 		task_contending(dl_se, flags);
1457 		update_dl_entity(dl_se, pi_se);
1458 	} else if (flags & ENQUEUE_REPLENISH) {
1459 		replenish_dl_entity(dl_se, pi_se);
1460 	} else if ((flags & ENQUEUE_RESTORE) &&
1461 		  dl_time_before(dl_se->deadline,
1462 				 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1463 		setup_new_dl_entity(dl_se);
1464 	}
1465 
1466 	__enqueue_dl_entity(dl_se);
1467 }
1468 
1469 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1470 {
1471 	__dequeue_dl_entity(dl_se);
1472 }
1473 
1474 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1475 {
1476 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
1477 	struct sched_dl_entity *pi_se = &p->dl;
1478 
1479 	/*
1480 	 * Use the scheduling parameters of the top pi-waiter task if:
1481 	 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1482 	 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1483 	 *   smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1484 	 *   boosted due to a SCHED_DEADLINE pi-waiter).
1485 	 * Otherwise we keep our runtime and deadline.
1486 	 */
1487 	if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
1488 		pi_se = &pi_task->dl;
1489 	} else if (!dl_prio(p->normal_prio)) {
1490 		/*
1491 		 * Special case in which we have a !SCHED_DEADLINE task
1492 		 * that is going to be deboosted, but exceeds its
1493 		 * runtime while doing so. No point in replenishing
1494 		 * it, as it's going to return back to its original
1495 		 * scheduling class after this.
1496 		 */
1497 		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1498 		return;
1499 	}
1500 
1501 	/*
1502 	 * Check if a constrained deadline task was activated
1503 	 * after the deadline but before the next period.
1504 	 * If that is the case, the task will be throttled and
1505 	 * the replenishment timer will be set to the next period.
1506 	 */
1507 	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1508 		dl_check_constrained_dl(&p->dl);
1509 
1510 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1511 		add_rq_bw(&p->dl, &rq->dl);
1512 		add_running_bw(&p->dl, &rq->dl);
1513 	}
1514 
1515 	/*
1516 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1517 	 * its budget it needs a replenishment and, since it now is on
1518 	 * its rq, the bandwidth timer callback (which clearly has not
1519 	 * run yet) will take care of this.
1520 	 * However, the active utilization does not depend on the fact
1521 	 * that the task is on the runqueue or not (but depends on the
1522 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1523 	 * In other words, even if a task is throttled its utilization must
1524 	 * be counted in the active utilization; hence, we need to call
1525 	 * add_running_bw().
1526 	 */
1527 	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1528 		if (flags & ENQUEUE_WAKEUP)
1529 			task_contending(&p->dl, flags);
1530 
1531 		return;
1532 	}
1533 
1534 	enqueue_dl_entity(&p->dl, pi_se, flags);
1535 
1536 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1537 		enqueue_pushable_dl_task(rq, p);
1538 }
1539 
1540 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1541 {
1542 	dequeue_dl_entity(&p->dl);
1543 	dequeue_pushable_dl_task(rq, p);
1544 }
1545 
1546 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1547 {
1548 	update_curr_dl(rq);
1549 	__dequeue_task_dl(rq, p, flags);
1550 
1551 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1552 		sub_running_bw(&p->dl, &rq->dl);
1553 		sub_rq_bw(&p->dl, &rq->dl);
1554 	}
1555 
1556 	/*
1557 	 * This check allows to start the inactive timer (or to immediately
1558 	 * decrease the active utilization, if needed) in two cases:
1559 	 * when the task blocks and when it is terminating
1560 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1561 	 * way, because from GRUB's point of view the same thing is happening
1562 	 * (the task moves from "active contending" to "active non contending"
1563 	 * or "inactive")
1564 	 */
1565 	if (flags & DEQUEUE_SLEEP)
1566 		task_non_contending(p);
1567 }
1568 
1569 /*
1570  * Yield task semantic for -deadline tasks is:
1571  *
1572  *   get off from the CPU until our next instance, with
1573  *   a new runtime. This is of little use now, since we
1574  *   don't have a bandwidth reclaiming mechanism. Anyway,
1575  *   bandwidth reclaiming is planned for the future, and
1576  *   yield_task_dl will indicate that some spare budget
1577  *   is available for other task instances to use it.
1578  */
1579 static void yield_task_dl(struct rq *rq)
1580 {
1581 	/*
1582 	 * We make the task go to sleep until its current deadline by
1583 	 * forcing its runtime to zero. This way, update_curr_dl() stops
1584 	 * it and the bandwidth timer will wake it up and will give it
1585 	 * new scheduling parameters (thanks to dl_yielded=1).
1586 	 */
1587 	rq->curr->dl.dl_yielded = 1;
1588 
1589 	update_rq_clock(rq);
1590 	update_curr_dl(rq);
1591 	/*
1592 	 * Tell update_rq_clock() that we've just updated,
1593 	 * so we don't do microscopic update in schedule()
1594 	 * and double the fastpath cost.
1595 	 */
1596 	rq_clock_skip_update(rq);
1597 }
1598 
1599 #ifdef CONFIG_SMP
1600 
1601 static int find_later_rq(struct task_struct *task);
1602 
1603 static int
1604 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1605 {
1606 	struct task_struct *curr;
1607 	struct rq *rq;
1608 
1609 	if (sd_flag != SD_BALANCE_WAKE)
1610 		goto out;
1611 
1612 	rq = cpu_rq(cpu);
1613 
1614 	rcu_read_lock();
1615 	curr = READ_ONCE(rq->curr); /* unlocked access */
1616 
1617 	/*
1618 	 * If we are dealing with a -deadline task, we must
1619 	 * decide where to wake it up.
1620 	 * If it has a later deadline and the current task
1621 	 * on this rq can't move (provided the waking task
1622 	 * can!) we prefer to send it somewhere else. On the
1623 	 * other hand, if it has a shorter deadline, we
1624 	 * try to make it stay here, it might be important.
1625 	 */
1626 	if (unlikely(dl_task(curr)) &&
1627 	    (curr->nr_cpus_allowed < 2 ||
1628 	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1629 	    (p->nr_cpus_allowed > 1)) {
1630 		int target = find_later_rq(p);
1631 
1632 		if (target != -1 &&
1633 				(dl_time_before(p->dl.deadline,
1634 					cpu_rq(target)->dl.earliest_dl.curr) ||
1635 				(cpu_rq(target)->dl.dl_nr_running == 0)))
1636 			cpu = target;
1637 	}
1638 	rcu_read_unlock();
1639 
1640 out:
1641 	return cpu;
1642 }
1643 
1644 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1645 {
1646 	struct rq *rq;
1647 
1648 	if (p->state != TASK_WAKING)
1649 		return;
1650 
1651 	rq = task_rq(p);
1652 	/*
1653 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1654 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1655 	 * rq->lock is not... So, lock it
1656 	 */
1657 	raw_spin_lock(&rq->lock);
1658 	if (p->dl.dl_non_contending) {
1659 		sub_running_bw(&p->dl, &rq->dl);
1660 		p->dl.dl_non_contending = 0;
1661 		/*
1662 		 * If the timer handler is currently running and the
1663 		 * timer cannot be cancelled, inactive_task_timer()
1664 		 * will see that dl_not_contending is not set, and
1665 		 * will not touch the rq's active utilization,
1666 		 * so we are still safe.
1667 		 */
1668 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1669 			put_task_struct(p);
1670 	}
1671 	sub_rq_bw(&p->dl, &rq->dl);
1672 	raw_spin_unlock(&rq->lock);
1673 }
1674 
1675 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1676 {
1677 	/*
1678 	 * Current can't be migrated, useless to reschedule,
1679 	 * let's hope p can move out.
1680 	 */
1681 	if (rq->curr->nr_cpus_allowed == 1 ||
1682 	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1683 		return;
1684 
1685 	/*
1686 	 * p is migratable, so let's not schedule it and
1687 	 * see if it is pushed or pulled somewhere else.
1688 	 */
1689 	if (p->nr_cpus_allowed != 1 &&
1690 	    cpudl_find(&rq->rd->cpudl, p, NULL))
1691 		return;
1692 
1693 	resched_curr(rq);
1694 }
1695 
1696 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1697 {
1698 	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1699 		/*
1700 		 * This is OK, because current is on_cpu, which avoids it being
1701 		 * picked for load-balance and preemption/IRQs are still
1702 		 * disabled avoiding further scheduler activity on it and we've
1703 		 * not yet started the picking loop.
1704 		 */
1705 		rq_unpin_lock(rq, rf);
1706 		pull_dl_task(rq);
1707 		rq_repin_lock(rq, rf);
1708 	}
1709 
1710 	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1711 }
1712 #endif /* CONFIG_SMP */
1713 
1714 /*
1715  * Only called when both the current and waking task are -deadline
1716  * tasks.
1717  */
1718 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1719 				  int flags)
1720 {
1721 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1722 		resched_curr(rq);
1723 		return;
1724 	}
1725 
1726 #ifdef CONFIG_SMP
1727 	/*
1728 	 * In the unlikely case current and p have the same deadline
1729 	 * let us try to decide what's the best thing to do...
1730 	 */
1731 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1732 	    !test_tsk_need_resched(rq->curr))
1733 		check_preempt_equal_dl(rq, p);
1734 #endif /* CONFIG_SMP */
1735 }
1736 
1737 #ifdef CONFIG_SCHED_HRTICK
1738 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1739 {
1740 	hrtick_start(rq, p->dl.runtime);
1741 }
1742 #else /* !CONFIG_SCHED_HRTICK */
1743 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1744 {
1745 }
1746 #endif
1747 
1748 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1749 {
1750 	p->se.exec_start = rq_clock_task(rq);
1751 
1752 	/* You can't push away the running task */
1753 	dequeue_pushable_dl_task(rq, p);
1754 
1755 	if (!first)
1756 		return;
1757 
1758 	if (hrtick_enabled(rq))
1759 		start_hrtick_dl(rq, p);
1760 
1761 	if (rq->curr->sched_class != &dl_sched_class)
1762 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1763 
1764 	deadline_queue_push_tasks(rq);
1765 }
1766 
1767 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1768 						   struct dl_rq *dl_rq)
1769 {
1770 	struct rb_node *left = rb_first_cached(&dl_rq->root);
1771 
1772 	if (!left)
1773 		return NULL;
1774 
1775 	return rb_entry(left, struct sched_dl_entity, rb_node);
1776 }
1777 
1778 static struct task_struct *pick_next_task_dl(struct rq *rq)
1779 {
1780 	struct sched_dl_entity *dl_se;
1781 	struct dl_rq *dl_rq = &rq->dl;
1782 	struct task_struct *p;
1783 
1784 	if (!sched_dl_runnable(rq))
1785 		return NULL;
1786 
1787 	dl_se = pick_next_dl_entity(rq, dl_rq);
1788 	BUG_ON(!dl_se);
1789 	p = dl_task_of(dl_se);
1790 	set_next_task_dl(rq, p, true);
1791 	return p;
1792 }
1793 
1794 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1795 {
1796 	update_curr_dl(rq);
1797 
1798 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1799 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1800 		enqueue_pushable_dl_task(rq, p);
1801 }
1802 
1803 /*
1804  * scheduler tick hitting a task of our scheduling class.
1805  *
1806  * NOTE: This function can be called remotely by the tick offload that
1807  * goes along full dynticks. Therefore no local assumption can be made
1808  * and everything must be accessed through the @rq and @curr passed in
1809  * parameters.
1810  */
1811 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1812 {
1813 	update_curr_dl(rq);
1814 
1815 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1816 	/*
1817 	 * Even when we have runtime, update_curr_dl() might have resulted in us
1818 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
1819 	 * be set and schedule() will start a new hrtick for the next task.
1820 	 */
1821 	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1822 	    is_leftmost(p, &rq->dl))
1823 		start_hrtick_dl(rq, p);
1824 }
1825 
1826 static void task_fork_dl(struct task_struct *p)
1827 {
1828 	/*
1829 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1830 	 * sched_fork()
1831 	 */
1832 }
1833 
1834 #ifdef CONFIG_SMP
1835 
1836 /* Only try algorithms three times */
1837 #define DL_MAX_TRIES 3
1838 
1839 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1840 {
1841 	if (!task_running(rq, p) &&
1842 	    cpumask_test_cpu(cpu, p->cpus_ptr))
1843 		return 1;
1844 	return 0;
1845 }
1846 
1847 /*
1848  * Return the earliest pushable rq's task, which is suitable to be executed
1849  * on the CPU, NULL otherwise:
1850  */
1851 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1852 {
1853 	struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1854 	struct task_struct *p = NULL;
1855 
1856 	if (!has_pushable_dl_tasks(rq))
1857 		return NULL;
1858 
1859 next_node:
1860 	if (next_node) {
1861 		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1862 
1863 		if (pick_dl_task(rq, p, cpu))
1864 			return p;
1865 
1866 		next_node = rb_next(next_node);
1867 		goto next_node;
1868 	}
1869 
1870 	return NULL;
1871 }
1872 
1873 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1874 
1875 static int find_later_rq(struct task_struct *task)
1876 {
1877 	struct sched_domain *sd;
1878 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1879 	int this_cpu = smp_processor_id();
1880 	int cpu = task_cpu(task);
1881 
1882 	/* Make sure the mask is initialized first */
1883 	if (unlikely(!later_mask))
1884 		return -1;
1885 
1886 	if (task->nr_cpus_allowed == 1)
1887 		return -1;
1888 
1889 	/*
1890 	 * We have to consider system topology and task affinity
1891 	 * first, then we can look for a suitable CPU.
1892 	 */
1893 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1894 		return -1;
1895 
1896 	/*
1897 	 * If we are here, some targets have been found, including
1898 	 * the most suitable which is, among the runqueues where the
1899 	 * current tasks have later deadlines than the task's one, the
1900 	 * rq with the latest possible one.
1901 	 *
1902 	 * Now we check how well this matches with task's
1903 	 * affinity and system topology.
1904 	 *
1905 	 * The last CPU where the task run is our first
1906 	 * guess, since it is most likely cache-hot there.
1907 	 */
1908 	if (cpumask_test_cpu(cpu, later_mask))
1909 		return cpu;
1910 	/*
1911 	 * Check if this_cpu is to be skipped (i.e., it is
1912 	 * not in the mask) or not.
1913 	 */
1914 	if (!cpumask_test_cpu(this_cpu, later_mask))
1915 		this_cpu = -1;
1916 
1917 	rcu_read_lock();
1918 	for_each_domain(cpu, sd) {
1919 		if (sd->flags & SD_WAKE_AFFINE) {
1920 			int best_cpu;
1921 
1922 			/*
1923 			 * If possible, preempting this_cpu is
1924 			 * cheaper than migrating.
1925 			 */
1926 			if (this_cpu != -1 &&
1927 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1928 				rcu_read_unlock();
1929 				return this_cpu;
1930 			}
1931 
1932 			best_cpu = cpumask_first_and(later_mask,
1933 							sched_domain_span(sd));
1934 			/*
1935 			 * Last chance: if a CPU being in both later_mask
1936 			 * and current sd span is valid, that becomes our
1937 			 * choice. Of course, the latest possible CPU is
1938 			 * already under consideration through later_mask.
1939 			 */
1940 			if (best_cpu < nr_cpu_ids) {
1941 				rcu_read_unlock();
1942 				return best_cpu;
1943 			}
1944 		}
1945 	}
1946 	rcu_read_unlock();
1947 
1948 	/*
1949 	 * At this point, all our guesses failed, we just return
1950 	 * 'something', and let the caller sort the things out.
1951 	 */
1952 	if (this_cpu != -1)
1953 		return this_cpu;
1954 
1955 	cpu = cpumask_any(later_mask);
1956 	if (cpu < nr_cpu_ids)
1957 		return cpu;
1958 
1959 	return -1;
1960 }
1961 
1962 /* Locks the rq it finds */
1963 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1964 {
1965 	struct rq *later_rq = NULL;
1966 	int tries;
1967 	int cpu;
1968 
1969 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1970 		cpu = find_later_rq(task);
1971 
1972 		if ((cpu == -1) || (cpu == rq->cpu))
1973 			break;
1974 
1975 		later_rq = cpu_rq(cpu);
1976 
1977 		if (later_rq->dl.dl_nr_running &&
1978 		    !dl_time_before(task->dl.deadline,
1979 					later_rq->dl.earliest_dl.curr)) {
1980 			/*
1981 			 * Target rq has tasks of equal or earlier deadline,
1982 			 * retrying does not release any lock and is unlikely
1983 			 * to yield a different result.
1984 			 */
1985 			later_rq = NULL;
1986 			break;
1987 		}
1988 
1989 		/* Retry if something changed. */
1990 		if (double_lock_balance(rq, later_rq)) {
1991 			if (unlikely(task_rq(task) != rq ||
1992 				     !cpumask_test_cpu(later_rq->cpu, task->cpus_ptr) ||
1993 				     task_running(rq, task) ||
1994 				     !dl_task(task) ||
1995 				     !task_on_rq_queued(task))) {
1996 				double_unlock_balance(rq, later_rq);
1997 				later_rq = NULL;
1998 				break;
1999 			}
2000 		}
2001 
2002 		/*
2003 		 * If the rq we found has no -deadline task, or
2004 		 * its earliest one has a later deadline than our
2005 		 * task, the rq is a good one.
2006 		 */
2007 		if (!later_rq->dl.dl_nr_running ||
2008 		    dl_time_before(task->dl.deadline,
2009 				   later_rq->dl.earliest_dl.curr))
2010 			break;
2011 
2012 		/* Otherwise we try again. */
2013 		double_unlock_balance(rq, later_rq);
2014 		later_rq = NULL;
2015 	}
2016 
2017 	return later_rq;
2018 }
2019 
2020 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2021 {
2022 	struct task_struct *p;
2023 
2024 	if (!has_pushable_dl_tasks(rq))
2025 		return NULL;
2026 
2027 	p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2028 		     struct task_struct, pushable_dl_tasks);
2029 
2030 	BUG_ON(rq->cpu != task_cpu(p));
2031 	BUG_ON(task_current(rq, p));
2032 	BUG_ON(p->nr_cpus_allowed <= 1);
2033 
2034 	BUG_ON(!task_on_rq_queued(p));
2035 	BUG_ON(!dl_task(p));
2036 
2037 	return p;
2038 }
2039 
2040 /*
2041  * See if the non running -deadline tasks on this rq
2042  * can be sent to some other CPU where they can preempt
2043  * and start executing.
2044  */
2045 static int push_dl_task(struct rq *rq)
2046 {
2047 	struct task_struct *next_task;
2048 	struct rq *later_rq;
2049 	int ret = 0;
2050 
2051 	if (!rq->dl.overloaded)
2052 		return 0;
2053 
2054 	next_task = pick_next_pushable_dl_task(rq);
2055 	if (!next_task)
2056 		return 0;
2057 
2058 retry:
2059 	if (WARN_ON(next_task == rq->curr))
2060 		return 0;
2061 
2062 	/*
2063 	 * If next_task preempts rq->curr, and rq->curr
2064 	 * can move away, it makes sense to just reschedule
2065 	 * without going further in pushing next_task.
2066 	 */
2067 	if (dl_task(rq->curr) &&
2068 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2069 	    rq->curr->nr_cpus_allowed > 1) {
2070 		resched_curr(rq);
2071 		return 0;
2072 	}
2073 
2074 	/* We might release rq lock */
2075 	get_task_struct(next_task);
2076 
2077 	/* Will lock the rq it'll find */
2078 	later_rq = find_lock_later_rq(next_task, rq);
2079 	if (!later_rq) {
2080 		struct task_struct *task;
2081 
2082 		/*
2083 		 * We must check all this again, since
2084 		 * find_lock_later_rq releases rq->lock and it is
2085 		 * then possible that next_task has migrated.
2086 		 */
2087 		task = pick_next_pushable_dl_task(rq);
2088 		if (task == next_task) {
2089 			/*
2090 			 * The task is still there. We don't try
2091 			 * again, some other CPU will pull it when ready.
2092 			 */
2093 			goto out;
2094 		}
2095 
2096 		if (!task)
2097 			/* No more tasks */
2098 			goto out;
2099 
2100 		put_task_struct(next_task);
2101 		next_task = task;
2102 		goto retry;
2103 	}
2104 
2105 	deactivate_task(rq, next_task, 0);
2106 	set_task_cpu(next_task, later_rq->cpu);
2107 
2108 	/*
2109 	 * Update the later_rq clock here, because the clock is used
2110 	 * by the cpufreq_update_util() inside __add_running_bw().
2111 	 */
2112 	update_rq_clock(later_rq);
2113 	activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
2114 	ret = 1;
2115 
2116 	resched_curr(later_rq);
2117 
2118 	double_unlock_balance(rq, later_rq);
2119 
2120 out:
2121 	put_task_struct(next_task);
2122 
2123 	return ret;
2124 }
2125 
2126 static void push_dl_tasks(struct rq *rq)
2127 {
2128 	/* push_dl_task() will return true if it moved a -deadline task */
2129 	while (push_dl_task(rq))
2130 		;
2131 }
2132 
2133 static void pull_dl_task(struct rq *this_rq)
2134 {
2135 	int this_cpu = this_rq->cpu, cpu;
2136 	struct task_struct *p;
2137 	bool resched = false;
2138 	struct rq *src_rq;
2139 	u64 dmin = LONG_MAX;
2140 
2141 	if (likely(!dl_overloaded(this_rq)))
2142 		return;
2143 
2144 	/*
2145 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2146 	 * see overloaded we must also see the dlo_mask bit.
2147 	 */
2148 	smp_rmb();
2149 
2150 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2151 		if (this_cpu == cpu)
2152 			continue;
2153 
2154 		src_rq = cpu_rq(cpu);
2155 
2156 		/*
2157 		 * It looks racy, abd it is! However, as in sched_rt.c,
2158 		 * we are fine with this.
2159 		 */
2160 		if (this_rq->dl.dl_nr_running &&
2161 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2162 				   src_rq->dl.earliest_dl.next))
2163 			continue;
2164 
2165 		/* Might drop this_rq->lock */
2166 		double_lock_balance(this_rq, src_rq);
2167 
2168 		/*
2169 		 * If there are no more pullable tasks on the
2170 		 * rq, we're done with it.
2171 		 */
2172 		if (src_rq->dl.dl_nr_running <= 1)
2173 			goto skip;
2174 
2175 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2176 
2177 		/*
2178 		 * We found a task to be pulled if:
2179 		 *  - it preempts our current (if there's one),
2180 		 *  - it will preempt the last one we pulled (if any).
2181 		 */
2182 		if (p && dl_time_before(p->dl.deadline, dmin) &&
2183 		    (!this_rq->dl.dl_nr_running ||
2184 		     dl_time_before(p->dl.deadline,
2185 				    this_rq->dl.earliest_dl.curr))) {
2186 			WARN_ON(p == src_rq->curr);
2187 			WARN_ON(!task_on_rq_queued(p));
2188 
2189 			/*
2190 			 * Then we pull iff p has actually an earlier
2191 			 * deadline than the current task of its runqueue.
2192 			 */
2193 			if (dl_time_before(p->dl.deadline,
2194 					   src_rq->curr->dl.deadline))
2195 				goto skip;
2196 
2197 			resched = true;
2198 
2199 			deactivate_task(src_rq, p, 0);
2200 			set_task_cpu(p, this_cpu);
2201 			activate_task(this_rq, p, 0);
2202 			dmin = p->dl.deadline;
2203 
2204 			/* Is there any other task even earlier? */
2205 		}
2206 skip:
2207 		double_unlock_balance(this_rq, src_rq);
2208 	}
2209 
2210 	if (resched)
2211 		resched_curr(this_rq);
2212 }
2213 
2214 /*
2215  * Since the task is not running and a reschedule is not going to happen
2216  * anytime soon on its runqueue, we try pushing it away now.
2217  */
2218 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2219 {
2220 	if (!task_running(rq, p) &&
2221 	    !test_tsk_need_resched(rq->curr) &&
2222 	    p->nr_cpus_allowed > 1 &&
2223 	    dl_task(rq->curr) &&
2224 	    (rq->curr->nr_cpus_allowed < 2 ||
2225 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2226 		push_dl_tasks(rq);
2227 	}
2228 }
2229 
2230 static void set_cpus_allowed_dl(struct task_struct *p,
2231 				const struct cpumask *new_mask)
2232 {
2233 	struct root_domain *src_rd;
2234 	struct rq *rq;
2235 
2236 	BUG_ON(!dl_task(p));
2237 
2238 	rq = task_rq(p);
2239 	src_rd = rq->rd;
2240 	/*
2241 	 * Migrating a SCHED_DEADLINE task between exclusive
2242 	 * cpusets (different root_domains) entails a bandwidth
2243 	 * update. We already made space for us in the destination
2244 	 * domain (see cpuset_can_attach()).
2245 	 */
2246 	if (!cpumask_intersects(src_rd->span, new_mask)) {
2247 		struct dl_bw *src_dl_b;
2248 
2249 		src_dl_b = dl_bw_of(cpu_of(rq));
2250 		/*
2251 		 * We now free resources of the root_domain we are migrating
2252 		 * off. In the worst case, sched_setattr() may temporary fail
2253 		 * until we complete the update.
2254 		 */
2255 		raw_spin_lock(&src_dl_b->lock);
2256 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2257 		raw_spin_unlock(&src_dl_b->lock);
2258 	}
2259 
2260 	set_cpus_allowed_common(p, new_mask);
2261 }
2262 
2263 /* Assumes rq->lock is held */
2264 static void rq_online_dl(struct rq *rq)
2265 {
2266 	if (rq->dl.overloaded)
2267 		dl_set_overload(rq);
2268 
2269 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2270 	if (rq->dl.dl_nr_running > 0)
2271 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2272 }
2273 
2274 /* Assumes rq->lock is held */
2275 static void rq_offline_dl(struct rq *rq)
2276 {
2277 	if (rq->dl.overloaded)
2278 		dl_clear_overload(rq);
2279 
2280 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2281 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2282 }
2283 
2284 void __init init_sched_dl_class(void)
2285 {
2286 	unsigned int i;
2287 
2288 	for_each_possible_cpu(i)
2289 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2290 					GFP_KERNEL, cpu_to_node(i));
2291 }
2292 
2293 void dl_add_task_root_domain(struct task_struct *p)
2294 {
2295 	struct rq_flags rf;
2296 	struct rq *rq;
2297 	struct dl_bw *dl_b;
2298 
2299 	rq = task_rq_lock(p, &rf);
2300 	if (!dl_task(p))
2301 		goto unlock;
2302 
2303 	dl_b = &rq->rd->dl_bw;
2304 	raw_spin_lock(&dl_b->lock);
2305 
2306 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2307 
2308 	raw_spin_unlock(&dl_b->lock);
2309 
2310 unlock:
2311 	task_rq_unlock(rq, p, &rf);
2312 }
2313 
2314 void dl_clear_root_domain(struct root_domain *rd)
2315 {
2316 	unsigned long flags;
2317 
2318 	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2319 	rd->dl_bw.total_bw = 0;
2320 	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2321 }
2322 
2323 #endif /* CONFIG_SMP */
2324 
2325 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2326 {
2327 	/*
2328 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2329 	 * time is in the future). If the task switches back to dl before
2330 	 * the "inactive timer" fires, it can continue to consume its current
2331 	 * runtime using its current deadline. If it stays outside of
2332 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2333 	 * will reset the task parameters.
2334 	 */
2335 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2336 		task_non_contending(p);
2337 
2338 	if (!task_on_rq_queued(p)) {
2339 		/*
2340 		 * Inactive timer is armed. However, p is leaving DEADLINE and
2341 		 * might migrate away from this rq while continuing to run on
2342 		 * some other class. We need to remove its contribution from
2343 		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2344 		 */
2345 		if (p->dl.dl_non_contending)
2346 			sub_running_bw(&p->dl, &rq->dl);
2347 		sub_rq_bw(&p->dl, &rq->dl);
2348 	}
2349 
2350 	/*
2351 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2352 	 * at the 0-lag time, because the task could have been migrated
2353 	 * while SCHED_OTHER in the meanwhile.
2354 	 */
2355 	if (p->dl.dl_non_contending)
2356 		p->dl.dl_non_contending = 0;
2357 
2358 	/*
2359 	 * Since this might be the only -deadline task on the rq,
2360 	 * this is the right place to try to pull some other one
2361 	 * from an overloaded CPU, if any.
2362 	 */
2363 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2364 		return;
2365 
2366 	deadline_queue_pull_task(rq);
2367 }
2368 
2369 /*
2370  * When switching to -deadline, we may overload the rq, then
2371  * we try to push someone off, if possible.
2372  */
2373 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2374 {
2375 	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2376 		put_task_struct(p);
2377 
2378 	/* If p is not queued we will update its parameters at next wakeup. */
2379 	if (!task_on_rq_queued(p)) {
2380 		add_rq_bw(&p->dl, &rq->dl);
2381 
2382 		return;
2383 	}
2384 
2385 	if (rq->curr != p) {
2386 #ifdef CONFIG_SMP
2387 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2388 			deadline_queue_push_tasks(rq);
2389 #endif
2390 		if (dl_task(rq->curr))
2391 			check_preempt_curr_dl(rq, p, 0);
2392 		else
2393 			resched_curr(rq);
2394 	}
2395 }
2396 
2397 /*
2398  * If the scheduling parameters of a -deadline task changed,
2399  * a push or pull operation might be needed.
2400  */
2401 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2402 			    int oldprio)
2403 {
2404 	if (task_on_rq_queued(p) || rq->curr == p) {
2405 #ifdef CONFIG_SMP
2406 		/*
2407 		 * This might be too much, but unfortunately
2408 		 * we don't have the old deadline value, and
2409 		 * we can't argue if the task is increasing
2410 		 * or lowering its prio, so...
2411 		 */
2412 		if (!rq->dl.overloaded)
2413 			deadline_queue_pull_task(rq);
2414 
2415 		/*
2416 		 * If we now have a earlier deadline task than p,
2417 		 * then reschedule, provided p is still on this
2418 		 * runqueue.
2419 		 */
2420 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2421 			resched_curr(rq);
2422 #else
2423 		/*
2424 		 * Again, we don't know if p has a earlier
2425 		 * or later deadline, so let's blindly set a
2426 		 * (maybe not needed) rescheduling point.
2427 		 */
2428 		resched_curr(rq);
2429 #endif /* CONFIG_SMP */
2430 	}
2431 }
2432 
2433 const struct sched_class dl_sched_class = {
2434 	.next			= &rt_sched_class,
2435 	.enqueue_task		= enqueue_task_dl,
2436 	.dequeue_task		= dequeue_task_dl,
2437 	.yield_task		= yield_task_dl,
2438 
2439 	.check_preempt_curr	= check_preempt_curr_dl,
2440 
2441 	.pick_next_task		= pick_next_task_dl,
2442 	.put_prev_task		= put_prev_task_dl,
2443 	.set_next_task		= set_next_task_dl,
2444 
2445 #ifdef CONFIG_SMP
2446 	.balance		= balance_dl,
2447 	.select_task_rq		= select_task_rq_dl,
2448 	.migrate_task_rq	= migrate_task_rq_dl,
2449 	.set_cpus_allowed       = set_cpus_allowed_dl,
2450 	.rq_online              = rq_online_dl,
2451 	.rq_offline             = rq_offline_dl,
2452 	.task_woken		= task_woken_dl,
2453 #endif
2454 
2455 	.task_tick		= task_tick_dl,
2456 	.task_fork              = task_fork_dl,
2457 
2458 	.prio_changed           = prio_changed_dl,
2459 	.switched_from		= switched_from_dl,
2460 	.switched_to		= switched_to_dl,
2461 
2462 	.update_curr		= update_curr_dl,
2463 };
2464 
2465 int sched_dl_global_validate(void)
2466 {
2467 	u64 runtime = global_rt_runtime();
2468 	u64 period = global_rt_period();
2469 	u64 new_bw = to_ratio(period, runtime);
2470 	struct dl_bw *dl_b;
2471 	int cpu, ret = 0;
2472 	unsigned long flags;
2473 
2474 	/*
2475 	 * Here we want to check the bandwidth not being set to some
2476 	 * value smaller than the currently allocated bandwidth in
2477 	 * any of the root_domains.
2478 	 *
2479 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2480 	 * cycling on root_domains... Discussion on different/better
2481 	 * solutions is welcome!
2482 	 */
2483 	for_each_possible_cpu(cpu) {
2484 		rcu_read_lock_sched();
2485 		dl_b = dl_bw_of(cpu);
2486 
2487 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2488 		if (new_bw < dl_b->total_bw)
2489 			ret = -EBUSY;
2490 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2491 
2492 		rcu_read_unlock_sched();
2493 
2494 		if (ret)
2495 			break;
2496 	}
2497 
2498 	return ret;
2499 }
2500 
2501 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2502 {
2503 	if (global_rt_runtime() == RUNTIME_INF) {
2504 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2505 		dl_rq->extra_bw = 1 << BW_SHIFT;
2506 	} else {
2507 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2508 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2509 		dl_rq->extra_bw = to_ratio(global_rt_period(),
2510 						    global_rt_runtime());
2511 	}
2512 }
2513 
2514 void sched_dl_do_global(void)
2515 {
2516 	u64 new_bw = -1;
2517 	struct dl_bw *dl_b;
2518 	int cpu;
2519 	unsigned long flags;
2520 
2521 	def_dl_bandwidth.dl_period = global_rt_period();
2522 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
2523 
2524 	if (global_rt_runtime() != RUNTIME_INF)
2525 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2526 
2527 	/*
2528 	 * FIXME: As above...
2529 	 */
2530 	for_each_possible_cpu(cpu) {
2531 		rcu_read_lock_sched();
2532 		dl_b = dl_bw_of(cpu);
2533 
2534 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2535 		dl_b->bw = new_bw;
2536 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2537 
2538 		rcu_read_unlock_sched();
2539 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2540 	}
2541 }
2542 
2543 /*
2544  * We must be sure that accepting a new task (or allowing changing the
2545  * parameters of an existing one) is consistent with the bandwidth
2546  * constraints. If yes, this function also accordingly updates the currently
2547  * allocated bandwidth to reflect the new situation.
2548  *
2549  * This function is called while holding p's rq->lock.
2550  */
2551 int sched_dl_overflow(struct task_struct *p, int policy,
2552 		      const struct sched_attr *attr)
2553 {
2554 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2555 	u64 period = attr->sched_period ?: attr->sched_deadline;
2556 	u64 runtime = attr->sched_runtime;
2557 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2558 	int cpus, err = -1;
2559 
2560 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2561 		return 0;
2562 
2563 	/* !deadline task may carry old deadline bandwidth */
2564 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2565 		return 0;
2566 
2567 	/*
2568 	 * Either if a task, enters, leave, or stays -deadline but changes
2569 	 * its parameters, we may need to update accordingly the total
2570 	 * allocated bandwidth of the container.
2571 	 */
2572 	raw_spin_lock(&dl_b->lock);
2573 	cpus = dl_bw_cpus(task_cpu(p));
2574 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2575 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2576 		if (hrtimer_active(&p->dl.inactive_timer))
2577 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2578 		__dl_add(dl_b, new_bw, cpus);
2579 		err = 0;
2580 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2581 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2582 		/*
2583 		 * XXX this is slightly incorrect: when the task
2584 		 * utilization decreases, we should delay the total
2585 		 * utilization change until the task's 0-lag point.
2586 		 * But this would require to set the task's "inactive
2587 		 * timer" when the task is not inactive.
2588 		 */
2589 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2590 		__dl_add(dl_b, new_bw, cpus);
2591 		dl_change_utilization(p, new_bw);
2592 		err = 0;
2593 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2594 		/*
2595 		 * Do not decrease the total deadline utilization here,
2596 		 * switched_from_dl() will take care to do it at the correct
2597 		 * (0-lag) time.
2598 		 */
2599 		err = 0;
2600 	}
2601 	raw_spin_unlock(&dl_b->lock);
2602 
2603 	return err;
2604 }
2605 
2606 /*
2607  * This function initializes the sched_dl_entity of a newly becoming
2608  * SCHED_DEADLINE task.
2609  *
2610  * Only the static values are considered here, the actual runtime and the
2611  * absolute deadline will be properly calculated when the task is enqueued
2612  * for the first time with its new policy.
2613  */
2614 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2615 {
2616 	struct sched_dl_entity *dl_se = &p->dl;
2617 
2618 	dl_se->dl_runtime = attr->sched_runtime;
2619 	dl_se->dl_deadline = attr->sched_deadline;
2620 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2621 	dl_se->flags = attr->sched_flags;
2622 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2623 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2624 }
2625 
2626 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2627 {
2628 	struct sched_dl_entity *dl_se = &p->dl;
2629 
2630 	attr->sched_priority = p->rt_priority;
2631 	attr->sched_runtime = dl_se->dl_runtime;
2632 	attr->sched_deadline = dl_se->dl_deadline;
2633 	attr->sched_period = dl_se->dl_period;
2634 	attr->sched_flags = dl_se->flags;
2635 }
2636 
2637 /*
2638  * This function validates the new parameters of a -deadline task.
2639  * We ask for the deadline not being zero, and greater or equal
2640  * than the runtime, as well as the period of being zero or
2641  * greater than deadline. Furthermore, we have to be sure that
2642  * user parameters are above the internal resolution of 1us (we
2643  * check sched_runtime only since it is always the smaller one) and
2644  * below 2^63 ns (we have to check both sched_deadline and
2645  * sched_period, as the latter can be zero).
2646  */
2647 bool __checkparam_dl(const struct sched_attr *attr)
2648 {
2649 	/* special dl tasks don't actually use any parameter */
2650 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2651 		return true;
2652 
2653 	/* deadline != 0 */
2654 	if (attr->sched_deadline == 0)
2655 		return false;
2656 
2657 	/*
2658 	 * Since we truncate DL_SCALE bits, make sure we're at least
2659 	 * that big.
2660 	 */
2661 	if (attr->sched_runtime < (1ULL << DL_SCALE))
2662 		return false;
2663 
2664 	/*
2665 	 * Since we use the MSB for wrap-around and sign issues, make
2666 	 * sure it's not set (mind that period can be equal to zero).
2667 	 */
2668 	if (attr->sched_deadline & (1ULL << 63) ||
2669 	    attr->sched_period & (1ULL << 63))
2670 		return false;
2671 
2672 	/* runtime <= deadline <= period (if period != 0) */
2673 	if ((attr->sched_period != 0 &&
2674 	     attr->sched_period < attr->sched_deadline) ||
2675 	    attr->sched_deadline < attr->sched_runtime)
2676 		return false;
2677 
2678 	return true;
2679 }
2680 
2681 /*
2682  * This function clears the sched_dl_entity static params.
2683  */
2684 void __dl_clear_params(struct task_struct *p)
2685 {
2686 	struct sched_dl_entity *dl_se = &p->dl;
2687 
2688 	dl_se->dl_runtime		= 0;
2689 	dl_se->dl_deadline		= 0;
2690 	dl_se->dl_period		= 0;
2691 	dl_se->flags			= 0;
2692 	dl_se->dl_bw			= 0;
2693 	dl_se->dl_density		= 0;
2694 
2695 	dl_se->dl_throttled		= 0;
2696 	dl_se->dl_yielded		= 0;
2697 	dl_se->dl_non_contending	= 0;
2698 	dl_se->dl_overrun		= 0;
2699 }
2700 
2701 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2702 {
2703 	struct sched_dl_entity *dl_se = &p->dl;
2704 
2705 	if (dl_se->dl_runtime != attr->sched_runtime ||
2706 	    dl_se->dl_deadline != attr->sched_deadline ||
2707 	    dl_se->dl_period != attr->sched_period ||
2708 	    dl_se->flags != attr->sched_flags)
2709 		return true;
2710 
2711 	return false;
2712 }
2713 
2714 #ifdef CONFIG_SMP
2715 int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2716 {
2717 	unsigned int dest_cpu;
2718 	struct dl_bw *dl_b;
2719 	bool overflow;
2720 	int cpus, ret;
2721 	unsigned long flags;
2722 
2723 	dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2724 
2725 	rcu_read_lock_sched();
2726 	dl_b = dl_bw_of(dest_cpu);
2727 	raw_spin_lock_irqsave(&dl_b->lock, flags);
2728 	cpus = dl_bw_cpus(dest_cpu);
2729 	overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
2730 	if (overflow) {
2731 		ret = -EBUSY;
2732 	} else {
2733 		/*
2734 		 * We reserve space for this task in the destination
2735 		 * root_domain, as we can't fail after this point.
2736 		 * We will free resources in the source root_domain
2737 		 * later on (see set_cpus_allowed_dl()).
2738 		 */
2739 		__dl_add(dl_b, p->dl.dl_bw, cpus);
2740 		ret = 0;
2741 	}
2742 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2743 	rcu_read_unlock_sched();
2744 
2745 	return ret;
2746 }
2747 
2748 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2749 				 const struct cpumask *trial)
2750 {
2751 	int ret = 1, trial_cpus;
2752 	struct dl_bw *cur_dl_b;
2753 	unsigned long flags;
2754 
2755 	rcu_read_lock_sched();
2756 	cur_dl_b = dl_bw_of(cpumask_any(cur));
2757 	trial_cpus = cpumask_weight(trial);
2758 
2759 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2760 	if (cur_dl_b->bw != -1 &&
2761 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2762 		ret = 0;
2763 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2764 	rcu_read_unlock_sched();
2765 
2766 	return ret;
2767 }
2768 
2769 bool dl_cpu_busy(unsigned int cpu)
2770 {
2771 	unsigned long flags;
2772 	struct dl_bw *dl_b;
2773 	bool overflow;
2774 	int cpus;
2775 
2776 	rcu_read_lock_sched();
2777 	dl_b = dl_bw_of(cpu);
2778 	raw_spin_lock_irqsave(&dl_b->lock, flags);
2779 	cpus = dl_bw_cpus(cpu);
2780 	overflow = __dl_overflow(dl_b, cpus, 0, 0);
2781 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2782 	rcu_read_unlock_sched();
2783 
2784 	return overflow;
2785 }
2786 #endif
2787 
2788 #ifdef CONFIG_SCHED_DEBUG
2789 void print_dl_stats(struct seq_file *m, int cpu)
2790 {
2791 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2792 }
2793 #endif /* CONFIG_SCHED_DEBUG */
2794