xref: /openbmc/linux/kernel/sched/deadline.c (revision 9cfc5c90)
1 /*
2  * Deadline Scheduling Class (SCHED_DEADLINE)
3  *
4  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5  *
6  * Tasks that periodically executes their instances for less than their
7  * runtime won't miss any of their deadlines.
8  * Tasks that are not periodic or sporadic or that tries to execute more
9  * than their reserved bandwidth will be slowed down (and may potentially
10  * miss some of their deadlines), and won't affect any other task.
11  *
12  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13  *                    Juri Lelli <juri.lelli@gmail.com>,
14  *                    Michael Trimarchi <michael@amarulasolutions.com>,
15  *                    Fabio Checconi <fchecconi@gmail.com>
16  */
17 #include "sched.h"
18 
19 #include <linux/slab.h>
20 
21 struct dl_bandwidth def_dl_bandwidth;
22 
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24 {
25 	return container_of(dl_se, struct task_struct, dl);
26 }
27 
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29 {
30 	return container_of(dl_rq, struct rq, dl);
31 }
32 
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34 {
35 	struct task_struct *p = dl_task_of(dl_se);
36 	struct rq *rq = task_rq(p);
37 
38 	return &rq->dl;
39 }
40 
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42 {
43 	return !RB_EMPTY_NODE(&dl_se->rb_node);
44 }
45 
46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47 {
48 	struct sched_dl_entity *dl_se = &p->dl;
49 
50 	return dl_rq->rb_leftmost == &dl_se->rb_node;
51 }
52 
53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
54 {
55 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 	dl_b->dl_period = period;
57 	dl_b->dl_runtime = runtime;
58 }
59 
60 void init_dl_bw(struct dl_bw *dl_b)
61 {
62 	raw_spin_lock_init(&dl_b->lock);
63 	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
64 	if (global_rt_runtime() == RUNTIME_INF)
65 		dl_b->bw = -1;
66 	else
67 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
68 	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
69 	dl_b->total_bw = 0;
70 }
71 
72 void init_dl_rq(struct dl_rq *dl_rq)
73 {
74 	dl_rq->rb_root = RB_ROOT;
75 
76 #ifdef CONFIG_SMP
77 	/* zero means no -deadline tasks */
78 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
79 
80 	dl_rq->dl_nr_migratory = 0;
81 	dl_rq->overloaded = 0;
82 	dl_rq->pushable_dl_tasks_root = RB_ROOT;
83 #else
84 	init_dl_bw(&dl_rq->dl_bw);
85 #endif
86 }
87 
88 #ifdef CONFIG_SMP
89 
90 static inline int dl_overloaded(struct rq *rq)
91 {
92 	return atomic_read(&rq->rd->dlo_count);
93 }
94 
95 static inline void dl_set_overload(struct rq *rq)
96 {
97 	if (!rq->online)
98 		return;
99 
100 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
101 	/*
102 	 * Must be visible before the overload count is
103 	 * set (as in sched_rt.c).
104 	 *
105 	 * Matched by the barrier in pull_dl_task().
106 	 */
107 	smp_wmb();
108 	atomic_inc(&rq->rd->dlo_count);
109 }
110 
111 static inline void dl_clear_overload(struct rq *rq)
112 {
113 	if (!rq->online)
114 		return;
115 
116 	atomic_dec(&rq->rd->dlo_count);
117 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
118 }
119 
120 static void update_dl_migration(struct dl_rq *dl_rq)
121 {
122 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
123 		if (!dl_rq->overloaded) {
124 			dl_set_overload(rq_of_dl_rq(dl_rq));
125 			dl_rq->overloaded = 1;
126 		}
127 	} else if (dl_rq->overloaded) {
128 		dl_clear_overload(rq_of_dl_rq(dl_rq));
129 		dl_rq->overloaded = 0;
130 	}
131 }
132 
133 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
134 {
135 	struct task_struct *p = dl_task_of(dl_se);
136 
137 	if (p->nr_cpus_allowed > 1)
138 		dl_rq->dl_nr_migratory++;
139 
140 	update_dl_migration(dl_rq);
141 }
142 
143 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
144 {
145 	struct task_struct *p = dl_task_of(dl_se);
146 
147 	if (p->nr_cpus_allowed > 1)
148 		dl_rq->dl_nr_migratory--;
149 
150 	update_dl_migration(dl_rq);
151 }
152 
153 /*
154  * The list of pushable -deadline task is not a plist, like in
155  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
156  */
157 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
158 {
159 	struct dl_rq *dl_rq = &rq->dl;
160 	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
161 	struct rb_node *parent = NULL;
162 	struct task_struct *entry;
163 	int leftmost = 1;
164 
165 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
166 
167 	while (*link) {
168 		parent = *link;
169 		entry = rb_entry(parent, struct task_struct,
170 				 pushable_dl_tasks);
171 		if (dl_entity_preempt(&p->dl, &entry->dl))
172 			link = &parent->rb_left;
173 		else {
174 			link = &parent->rb_right;
175 			leftmost = 0;
176 		}
177 	}
178 
179 	if (leftmost)
180 		dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
181 
182 	rb_link_node(&p->pushable_dl_tasks, parent, link);
183 	rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
184 }
185 
186 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
187 {
188 	struct dl_rq *dl_rq = &rq->dl;
189 
190 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
191 		return;
192 
193 	if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
194 		struct rb_node *next_node;
195 
196 		next_node = rb_next(&p->pushable_dl_tasks);
197 		dl_rq->pushable_dl_tasks_leftmost = next_node;
198 	}
199 
200 	rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
201 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
202 }
203 
204 static inline int has_pushable_dl_tasks(struct rq *rq)
205 {
206 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
207 }
208 
209 static int push_dl_task(struct rq *rq);
210 
211 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
212 {
213 	return dl_task(prev);
214 }
215 
216 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
217 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
218 
219 static void push_dl_tasks(struct rq *);
220 static void pull_dl_task(struct rq *);
221 
222 static inline void queue_push_tasks(struct rq *rq)
223 {
224 	if (!has_pushable_dl_tasks(rq))
225 		return;
226 
227 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
228 }
229 
230 static inline void queue_pull_task(struct rq *rq)
231 {
232 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
233 }
234 
235 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
236 
237 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
238 {
239 	struct rq *later_rq = NULL;
240 	bool fallback = false;
241 
242 	later_rq = find_lock_later_rq(p, rq);
243 
244 	if (!later_rq) {
245 		int cpu;
246 
247 		/*
248 		 * If we cannot preempt any rq, fall back to pick any
249 		 * online cpu.
250 		 */
251 		fallback = true;
252 		cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
253 		if (cpu >= nr_cpu_ids) {
254 			/*
255 			 * Fail to find any suitable cpu.
256 			 * The task will never come back!
257 			 */
258 			BUG_ON(dl_bandwidth_enabled());
259 
260 			/*
261 			 * If admission control is disabled we
262 			 * try a little harder to let the task
263 			 * run.
264 			 */
265 			cpu = cpumask_any(cpu_active_mask);
266 		}
267 		later_rq = cpu_rq(cpu);
268 		double_lock_balance(rq, later_rq);
269 	}
270 
271 	/*
272 	 * By now the task is replenished and enqueued; migrate it.
273 	 */
274 	deactivate_task(rq, p, 0);
275 	set_task_cpu(p, later_rq->cpu);
276 	activate_task(later_rq, p, 0);
277 
278 	if (!fallback)
279 		resched_curr(later_rq);
280 
281 	double_unlock_balance(later_rq, rq);
282 
283 	return later_rq;
284 }
285 
286 #else
287 
288 static inline
289 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
290 {
291 }
292 
293 static inline
294 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
295 {
296 }
297 
298 static inline
299 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
300 {
301 }
302 
303 static inline
304 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
305 {
306 }
307 
308 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
309 {
310 	return false;
311 }
312 
313 static inline void pull_dl_task(struct rq *rq)
314 {
315 }
316 
317 static inline void queue_push_tasks(struct rq *rq)
318 {
319 }
320 
321 static inline void queue_pull_task(struct rq *rq)
322 {
323 }
324 #endif /* CONFIG_SMP */
325 
326 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
327 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
328 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
329 				  int flags);
330 
331 /*
332  * We are being explicitly informed that a new instance is starting,
333  * and this means that:
334  *  - the absolute deadline of the entity has to be placed at
335  *    current time + relative deadline;
336  *  - the runtime of the entity has to be set to the maximum value.
337  *
338  * The capability of specifying such event is useful whenever a -deadline
339  * entity wants to (try to!) synchronize its behaviour with the scheduler's
340  * one, and to (try to!) reconcile itself with its own scheduling
341  * parameters.
342  */
343 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
344 				       struct sched_dl_entity *pi_se)
345 {
346 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
347 	struct rq *rq = rq_of_dl_rq(dl_rq);
348 
349 	WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
350 
351 	/*
352 	 * We use the regular wall clock time to set deadlines in the
353 	 * future; in fact, we must consider execution overheads (time
354 	 * spent on hardirq context, etc.).
355 	 */
356 	dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
357 	dl_se->runtime = pi_se->dl_runtime;
358 	dl_se->dl_new = 0;
359 }
360 
361 /*
362  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
363  * possibility of a entity lasting more than what it declared, and thus
364  * exhausting its runtime.
365  *
366  * Here we are interested in making runtime overrun possible, but we do
367  * not want a entity which is misbehaving to affect the scheduling of all
368  * other entities.
369  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
370  * is used, in order to confine each entity within its own bandwidth.
371  *
372  * This function deals exactly with that, and ensures that when the runtime
373  * of a entity is replenished, its deadline is also postponed. That ensures
374  * the overrunning entity can't interfere with other entity in the system and
375  * can't make them miss their deadlines. Reasons why this kind of overruns
376  * could happen are, typically, a entity voluntarily trying to overcome its
377  * runtime, or it just underestimated it during sched_setattr().
378  */
379 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
380 				struct sched_dl_entity *pi_se)
381 {
382 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
383 	struct rq *rq = rq_of_dl_rq(dl_rq);
384 
385 	BUG_ON(pi_se->dl_runtime <= 0);
386 
387 	/*
388 	 * This could be the case for a !-dl task that is boosted.
389 	 * Just go with full inherited parameters.
390 	 */
391 	if (dl_se->dl_deadline == 0) {
392 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
393 		dl_se->runtime = pi_se->dl_runtime;
394 	}
395 
396 	/*
397 	 * We keep moving the deadline away until we get some
398 	 * available runtime for the entity. This ensures correct
399 	 * handling of situations where the runtime overrun is
400 	 * arbitrary large.
401 	 */
402 	while (dl_se->runtime <= 0) {
403 		dl_se->deadline += pi_se->dl_period;
404 		dl_se->runtime += pi_se->dl_runtime;
405 	}
406 
407 	/*
408 	 * At this point, the deadline really should be "in
409 	 * the future" with respect to rq->clock. If it's
410 	 * not, we are, for some reason, lagging too much!
411 	 * Anyway, after having warn userspace abut that,
412 	 * we still try to keep the things running by
413 	 * resetting the deadline and the budget of the
414 	 * entity.
415 	 */
416 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
417 		printk_deferred_once("sched: DL replenish lagged to much\n");
418 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
419 		dl_se->runtime = pi_se->dl_runtime;
420 	}
421 
422 	if (dl_se->dl_yielded)
423 		dl_se->dl_yielded = 0;
424 	if (dl_se->dl_throttled)
425 		dl_se->dl_throttled = 0;
426 }
427 
428 /*
429  * Here we check if --at time t-- an entity (which is probably being
430  * [re]activated or, in general, enqueued) can use its remaining runtime
431  * and its current deadline _without_ exceeding the bandwidth it is
432  * assigned (function returns true if it can't). We are in fact applying
433  * one of the CBS rules: when a task wakes up, if the residual runtime
434  * over residual deadline fits within the allocated bandwidth, then we
435  * can keep the current (absolute) deadline and residual budget without
436  * disrupting the schedulability of the system. Otherwise, we should
437  * refill the runtime and set the deadline a period in the future,
438  * because keeping the current (absolute) deadline of the task would
439  * result in breaking guarantees promised to other tasks (refer to
440  * Documentation/scheduler/sched-deadline.txt for more informations).
441  *
442  * This function returns true if:
443  *
444  *   runtime / (deadline - t) > dl_runtime / dl_period ,
445  *
446  * IOW we can't recycle current parameters.
447  *
448  * Notice that the bandwidth check is done against the period. For
449  * task with deadline equal to period this is the same of using
450  * dl_deadline instead of dl_period in the equation above.
451  */
452 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
453 			       struct sched_dl_entity *pi_se, u64 t)
454 {
455 	u64 left, right;
456 
457 	/*
458 	 * left and right are the two sides of the equation above,
459 	 * after a bit of shuffling to use multiplications instead
460 	 * of divisions.
461 	 *
462 	 * Note that none of the time values involved in the two
463 	 * multiplications are absolute: dl_deadline and dl_runtime
464 	 * are the relative deadline and the maximum runtime of each
465 	 * instance, runtime is the runtime left for the last instance
466 	 * and (deadline - t), since t is rq->clock, is the time left
467 	 * to the (absolute) deadline. Even if overflowing the u64 type
468 	 * is very unlikely to occur in both cases, here we scale down
469 	 * as we want to avoid that risk at all. Scaling down by 10
470 	 * means that we reduce granularity to 1us. We are fine with it,
471 	 * since this is only a true/false check and, anyway, thinking
472 	 * of anything below microseconds resolution is actually fiction
473 	 * (but still we want to give the user that illusion >;).
474 	 */
475 	left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
476 	right = ((dl_se->deadline - t) >> DL_SCALE) *
477 		(pi_se->dl_runtime >> DL_SCALE);
478 
479 	return dl_time_before(right, left);
480 }
481 
482 /*
483  * When a -deadline entity is queued back on the runqueue, its runtime and
484  * deadline might need updating.
485  *
486  * The policy here is that we update the deadline of the entity only if:
487  *  - the current deadline is in the past,
488  *  - using the remaining runtime with the current deadline would make
489  *    the entity exceed its bandwidth.
490  */
491 static void update_dl_entity(struct sched_dl_entity *dl_se,
492 			     struct sched_dl_entity *pi_se)
493 {
494 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
495 	struct rq *rq = rq_of_dl_rq(dl_rq);
496 
497 	/*
498 	 * The arrival of a new instance needs special treatment, i.e.,
499 	 * the actual scheduling parameters have to be "renewed".
500 	 */
501 	if (dl_se->dl_new) {
502 		setup_new_dl_entity(dl_se, pi_se);
503 		return;
504 	}
505 
506 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
507 	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
508 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
509 		dl_se->runtime = pi_se->dl_runtime;
510 	}
511 }
512 
513 /*
514  * If the entity depleted all its runtime, and if we want it to sleep
515  * while waiting for some new execution time to become available, we
516  * set the bandwidth enforcement timer to the replenishment instant
517  * and try to activate it.
518  *
519  * Notice that it is important for the caller to know if the timer
520  * actually started or not (i.e., the replenishment instant is in
521  * the future or in the past).
522  */
523 static int start_dl_timer(struct task_struct *p)
524 {
525 	struct sched_dl_entity *dl_se = &p->dl;
526 	struct hrtimer *timer = &dl_se->dl_timer;
527 	struct rq *rq = task_rq(p);
528 	ktime_t now, act;
529 	s64 delta;
530 
531 	lockdep_assert_held(&rq->lock);
532 
533 	/*
534 	 * We want the timer to fire at the deadline, but considering
535 	 * that it is actually coming from rq->clock and not from
536 	 * hrtimer's time base reading.
537 	 */
538 	act = ns_to_ktime(dl_se->deadline);
539 	now = hrtimer_cb_get_time(timer);
540 	delta = ktime_to_ns(now) - rq_clock(rq);
541 	act = ktime_add_ns(act, delta);
542 
543 	/*
544 	 * If the expiry time already passed, e.g., because the value
545 	 * chosen as the deadline is too small, don't even try to
546 	 * start the timer in the past!
547 	 */
548 	if (ktime_us_delta(act, now) < 0)
549 		return 0;
550 
551 	/*
552 	 * !enqueued will guarantee another callback; even if one is already in
553 	 * progress. This ensures a balanced {get,put}_task_struct().
554 	 *
555 	 * The race against __run_timer() clearing the enqueued state is
556 	 * harmless because we're holding task_rq()->lock, therefore the timer
557 	 * expiring after we've done the check will wait on its task_rq_lock()
558 	 * and observe our state.
559 	 */
560 	if (!hrtimer_is_queued(timer)) {
561 		get_task_struct(p);
562 		hrtimer_start(timer, act, HRTIMER_MODE_ABS);
563 	}
564 
565 	return 1;
566 }
567 
568 /*
569  * This is the bandwidth enforcement timer callback. If here, we know
570  * a task is not on its dl_rq, since the fact that the timer was running
571  * means the task is throttled and needs a runtime replenishment.
572  *
573  * However, what we actually do depends on the fact the task is active,
574  * (it is on its rq) or has been removed from there by a call to
575  * dequeue_task_dl(). In the former case we must issue the runtime
576  * replenishment and add the task back to the dl_rq; in the latter, we just
577  * do nothing but clearing dl_throttled, so that runtime and deadline
578  * updating (and the queueing back to dl_rq) will be done by the
579  * next call to enqueue_task_dl().
580  */
581 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
582 {
583 	struct sched_dl_entity *dl_se = container_of(timer,
584 						     struct sched_dl_entity,
585 						     dl_timer);
586 	struct task_struct *p = dl_task_of(dl_se);
587 	unsigned long flags;
588 	struct rq *rq;
589 
590 	rq = task_rq_lock(p, &flags);
591 
592 	/*
593 	 * The task might have changed its scheduling policy to something
594 	 * different than SCHED_DEADLINE (through switched_fromd_dl()).
595 	 */
596 	if (!dl_task(p)) {
597 		__dl_clear_params(p);
598 		goto unlock;
599 	}
600 
601 	/*
602 	 * This is possible if switched_from_dl() raced against a running
603 	 * callback that took the above !dl_task() path and we've since then
604 	 * switched back into SCHED_DEADLINE.
605 	 *
606 	 * There's nothing to do except drop our task reference.
607 	 */
608 	if (dl_se->dl_new)
609 		goto unlock;
610 
611 	/*
612 	 * The task might have been boosted by someone else and might be in the
613 	 * boosting/deboosting path, its not throttled.
614 	 */
615 	if (dl_se->dl_boosted)
616 		goto unlock;
617 
618 	/*
619 	 * Spurious timer due to start_dl_timer() race; or we already received
620 	 * a replenishment from rt_mutex_setprio().
621 	 */
622 	if (!dl_se->dl_throttled)
623 		goto unlock;
624 
625 	sched_clock_tick();
626 	update_rq_clock(rq);
627 
628 	/*
629 	 * If the throttle happened during sched-out; like:
630 	 *
631 	 *   schedule()
632 	 *     deactivate_task()
633 	 *       dequeue_task_dl()
634 	 *         update_curr_dl()
635 	 *           start_dl_timer()
636 	 *         __dequeue_task_dl()
637 	 *     prev->on_rq = 0;
638 	 *
639 	 * We can be both throttled and !queued. Replenish the counter
640 	 * but do not enqueue -- wait for our wakeup to do that.
641 	 */
642 	if (!task_on_rq_queued(p)) {
643 		replenish_dl_entity(dl_se, dl_se);
644 		goto unlock;
645 	}
646 
647 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
648 	if (dl_task(rq->curr))
649 		check_preempt_curr_dl(rq, p, 0);
650 	else
651 		resched_curr(rq);
652 
653 #ifdef CONFIG_SMP
654 	/*
655 	 * Perform balancing operations here; after the replenishments.  We
656 	 * cannot drop rq->lock before this, otherwise the assertion in
657 	 * start_dl_timer() about not missing updates is not true.
658 	 *
659 	 * If we find that the rq the task was on is no longer available, we
660 	 * need to select a new rq.
661 	 *
662 	 * XXX figure out if select_task_rq_dl() deals with offline cpus.
663 	 */
664 	if (unlikely(!rq->online))
665 		rq = dl_task_offline_migration(rq, p);
666 
667 	/*
668 	 * Queueing this task back might have overloaded rq, check if we need
669 	 * to kick someone away.
670 	 */
671 	if (has_pushable_dl_tasks(rq)) {
672 		/*
673 		 * Nothing relies on rq->lock after this, so its safe to drop
674 		 * rq->lock.
675 		 */
676 		lockdep_unpin_lock(&rq->lock);
677 		push_dl_task(rq);
678 		lockdep_pin_lock(&rq->lock);
679 	}
680 #endif
681 
682 unlock:
683 	task_rq_unlock(rq, p, &flags);
684 
685 	/*
686 	 * This can free the task_struct, including this hrtimer, do not touch
687 	 * anything related to that after this.
688 	 */
689 	put_task_struct(p);
690 
691 	return HRTIMER_NORESTART;
692 }
693 
694 void init_dl_task_timer(struct sched_dl_entity *dl_se)
695 {
696 	struct hrtimer *timer = &dl_se->dl_timer;
697 
698 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
699 	timer->function = dl_task_timer;
700 }
701 
702 static
703 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
704 {
705 	return (dl_se->runtime <= 0);
706 }
707 
708 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
709 
710 /*
711  * Update the current task's runtime statistics (provided it is still
712  * a -deadline task and has not been removed from the dl_rq).
713  */
714 static void update_curr_dl(struct rq *rq)
715 {
716 	struct task_struct *curr = rq->curr;
717 	struct sched_dl_entity *dl_se = &curr->dl;
718 	u64 delta_exec;
719 
720 	if (!dl_task(curr) || !on_dl_rq(dl_se))
721 		return;
722 
723 	/*
724 	 * Consumed budget is computed considering the time as
725 	 * observed by schedulable tasks (excluding time spent
726 	 * in hardirq context, etc.). Deadlines are instead
727 	 * computed using hard walltime. This seems to be the more
728 	 * natural solution, but the full ramifications of this
729 	 * approach need further study.
730 	 */
731 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
732 	if (unlikely((s64)delta_exec <= 0))
733 		return;
734 
735 	schedstat_set(curr->se.statistics.exec_max,
736 		      max(curr->se.statistics.exec_max, delta_exec));
737 
738 	curr->se.sum_exec_runtime += delta_exec;
739 	account_group_exec_runtime(curr, delta_exec);
740 
741 	curr->se.exec_start = rq_clock_task(rq);
742 	cpuacct_charge(curr, delta_exec);
743 
744 	sched_rt_avg_update(rq, delta_exec);
745 
746 	dl_se->runtime -= dl_se->dl_yielded ? 0 : delta_exec;
747 	if (dl_runtime_exceeded(dl_se)) {
748 		dl_se->dl_throttled = 1;
749 		__dequeue_task_dl(rq, curr, 0);
750 		if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
751 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
752 
753 		if (!is_leftmost(curr, &rq->dl))
754 			resched_curr(rq);
755 	}
756 
757 	/*
758 	 * Because -- for now -- we share the rt bandwidth, we need to
759 	 * account our runtime there too, otherwise actual rt tasks
760 	 * would be able to exceed the shared quota.
761 	 *
762 	 * Account to the root rt group for now.
763 	 *
764 	 * The solution we're working towards is having the RT groups scheduled
765 	 * using deadline servers -- however there's a few nasties to figure
766 	 * out before that can happen.
767 	 */
768 	if (rt_bandwidth_enabled()) {
769 		struct rt_rq *rt_rq = &rq->rt;
770 
771 		raw_spin_lock(&rt_rq->rt_runtime_lock);
772 		/*
773 		 * We'll let actual RT tasks worry about the overflow here, we
774 		 * have our own CBS to keep us inline; only account when RT
775 		 * bandwidth is relevant.
776 		 */
777 		if (sched_rt_bandwidth_account(rt_rq))
778 			rt_rq->rt_time += delta_exec;
779 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
780 	}
781 }
782 
783 #ifdef CONFIG_SMP
784 
785 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);
786 
787 static inline u64 next_deadline(struct rq *rq)
788 {
789 	struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);
790 
791 	if (next && dl_prio(next->prio))
792 		return next->dl.deadline;
793 	else
794 		return 0;
795 }
796 
797 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
798 {
799 	struct rq *rq = rq_of_dl_rq(dl_rq);
800 
801 	if (dl_rq->earliest_dl.curr == 0 ||
802 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
803 		/*
804 		 * If the dl_rq had no -deadline tasks, or if the new task
805 		 * has shorter deadline than the current one on dl_rq, we
806 		 * know that the previous earliest becomes our next earliest,
807 		 * as the new task becomes the earliest itself.
808 		 */
809 		dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
810 		dl_rq->earliest_dl.curr = deadline;
811 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
812 	} else if (dl_rq->earliest_dl.next == 0 ||
813 		   dl_time_before(deadline, dl_rq->earliest_dl.next)) {
814 		/*
815 		 * On the other hand, if the new -deadline task has a
816 		 * a later deadline than the earliest one on dl_rq, but
817 		 * it is earlier than the next (if any), we must
818 		 * recompute the next-earliest.
819 		 */
820 		dl_rq->earliest_dl.next = next_deadline(rq);
821 	}
822 }
823 
824 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
825 {
826 	struct rq *rq = rq_of_dl_rq(dl_rq);
827 
828 	/*
829 	 * Since we may have removed our earliest (and/or next earliest)
830 	 * task we must recompute them.
831 	 */
832 	if (!dl_rq->dl_nr_running) {
833 		dl_rq->earliest_dl.curr = 0;
834 		dl_rq->earliest_dl.next = 0;
835 		cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
836 	} else {
837 		struct rb_node *leftmost = dl_rq->rb_leftmost;
838 		struct sched_dl_entity *entry;
839 
840 		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
841 		dl_rq->earliest_dl.curr = entry->deadline;
842 		dl_rq->earliest_dl.next = next_deadline(rq);
843 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
844 	}
845 }
846 
847 #else
848 
849 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
850 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
851 
852 #endif /* CONFIG_SMP */
853 
854 static inline
855 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
856 {
857 	int prio = dl_task_of(dl_se)->prio;
858 	u64 deadline = dl_se->deadline;
859 
860 	WARN_ON(!dl_prio(prio));
861 	dl_rq->dl_nr_running++;
862 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
863 
864 	inc_dl_deadline(dl_rq, deadline);
865 	inc_dl_migration(dl_se, dl_rq);
866 }
867 
868 static inline
869 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
870 {
871 	int prio = dl_task_of(dl_se)->prio;
872 
873 	WARN_ON(!dl_prio(prio));
874 	WARN_ON(!dl_rq->dl_nr_running);
875 	dl_rq->dl_nr_running--;
876 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
877 
878 	dec_dl_deadline(dl_rq, dl_se->deadline);
879 	dec_dl_migration(dl_se, dl_rq);
880 }
881 
882 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
883 {
884 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
885 	struct rb_node **link = &dl_rq->rb_root.rb_node;
886 	struct rb_node *parent = NULL;
887 	struct sched_dl_entity *entry;
888 	int leftmost = 1;
889 
890 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
891 
892 	while (*link) {
893 		parent = *link;
894 		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
895 		if (dl_time_before(dl_se->deadline, entry->deadline))
896 			link = &parent->rb_left;
897 		else {
898 			link = &parent->rb_right;
899 			leftmost = 0;
900 		}
901 	}
902 
903 	if (leftmost)
904 		dl_rq->rb_leftmost = &dl_se->rb_node;
905 
906 	rb_link_node(&dl_se->rb_node, parent, link);
907 	rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
908 
909 	inc_dl_tasks(dl_se, dl_rq);
910 }
911 
912 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
913 {
914 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
915 
916 	if (RB_EMPTY_NODE(&dl_se->rb_node))
917 		return;
918 
919 	if (dl_rq->rb_leftmost == &dl_se->rb_node) {
920 		struct rb_node *next_node;
921 
922 		next_node = rb_next(&dl_se->rb_node);
923 		dl_rq->rb_leftmost = next_node;
924 	}
925 
926 	rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
927 	RB_CLEAR_NODE(&dl_se->rb_node);
928 
929 	dec_dl_tasks(dl_se, dl_rq);
930 }
931 
932 static void
933 enqueue_dl_entity(struct sched_dl_entity *dl_se,
934 		  struct sched_dl_entity *pi_se, int flags)
935 {
936 	BUG_ON(on_dl_rq(dl_se));
937 
938 	/*
939 	 * If this is a wakeup or a new instance, the scheduling
940 	 * parameters of the task might need updating. Otherwise,
941 	 * we want a replenishment of its runtime.
942 	 */
943 	if (dl_se->dl_new || flags & ENQUEUE_WAKEUP)
944 		update_dl_entity(dl_se, pi_se);
945 	else if (flags & ENQUEUE_REPLENISH)
946 		replenish_dl_entity(dl_se, pi_se);
947 
948 	__enqueue_dl_entity(dl_se);
949 }
950 
951 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
952 {
953 	__dequeue_dl_entity(dl_se);
954 }
955 
956 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
957 {
958 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
959 	struct sched_dl_entity *pi_se = &p->dl;
960 
961 	/*
962 	 * Use the scheduling parameters of the top pi-waiter
963 	 * task if we have one and its (absolute) deadline is
964 	 * smaller than our one... OTW we keep our runtime and
965 	 * deadline.
966 	 */
967 	if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
968 		pi_se = &pi_task->dl;
969 	} else if (!dl_prio(p->normal_prio)) {
970 		/*
971 		 * Special case in which we have a !SCHED_DEADLINE task
972 		 * that is going to be deboosted, but exceedes its
973 		 * runtime while doing so. No point in replenishing
974 		 * it, as it's going to return back to its original
975 		 * scheduling class after this.
976 		 */
977 		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
978 		return;
979 	}
980 
981 	/*
982 	 * If p is throttled, we do nothing. In fact, if it exhausted
983 	 * its budget it needs a replenishment and, since it now is on
984 	 * its rq, the bandwidth timer callback (which clearly has not
985 	 * run yet) will take care of this.
986 	 */
987 	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
988 		return;
989 
990 	enqueue_dl_entity(&p->dl, pi_se, flags);
991 
992 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
993 		enqueue_pushable_dl_task(rq, p);
994 }
995 
996 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
997 {
998 	dequeue_dl_entity(&p->dl);
999 	dequeue_pushable_dl_task(rq, p);
1000 }
1001 
1002 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1003 {
1004 	update_curr_dl(rq);
1005 	__dequeue_task_dl(rq, p, flags);
1006 }
1007 
1008 /*
1009  * Yield task semantic for -deadline tasks is:
1010  *
1011  *   get off from the CPU until our next instance, with
1012  *   a new runtime. This is of little use now, since we
1013  *   don't have a bandwidth reclaiming mechanism. Anyway,
1014  *   bandwidth reclaiming is planned for the future, and
1015  *   yield_task_dl will indicate that some spare budget
1016  *   is available for other task instances to use it.
1017  */
1018 static void yield_task_dl(struct rq *rq)
1019 {
1020 	struct task_struct *p = rq->curr;
1021 
1022 	/*
1023 	 * We make the task go to sleep until its current deadline by
1024 	 * forcing its runtime to zero. This way, update_curr_dl() stops
1025 	 * it and the bandwidth timer will wake it up and will give it
1026 	 * new scheduling parameters (thanks to dl_yielded=1).
1027 	 */
1028 	if (p->dl.runtime > 0) {
1029 		rq->curr->dl.dl_yielded = 1;
1030 		p->dl.runtime = 0;
1031 	}
1032 	update_rq_clock(rq);
1033 	update_curr_dl(rq);
1034 	/*
1035 	 * Tell update_rq_clock() that we've just updated,
1036 	 * so we don't do microscopic update in schedule()
1037 	 * and double the fastpath cost.
1038 	 */
1039 	rq_clock_skip_update(rq, true);
1040 }
1041 
1042 #ifdef CONFIG_SMP
1043 
1044 static int find_later_rq(struct task_struct *task);
1045 
1046 static int
1047 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1048 {
1049 	struct task_struct *curr;
1050 	struct rq *rq;
1051 
1052 	if (sd_flag != SD_BALANCE_WAKE)
1053 		goto out;
1054 
1055 	rq = cpu_rq(cpu);
1056 
1057 	rcu_read_lock();
1058 	curr = READ_ONCE(rq->curr); /* unlocked access */
1059 
1060 	/*
1061 	 * If we are dealing with a -deadline task, we must
1062 	 * decide where to wake it up.
1063 	 * If it has a later deadline and the current task
1064 	 * on this rq can't move (provided the waking task
1065 	 * can!) we prefer to send it somewhere else. On the
1066 	 * other hand, if it has a shorter deadline, we
1067 	 * try to make it stay here, it might be important.
1068 	 */
1069 	if (unlikely(dl_task(curr)) &&
1070 	    (curr->nr_cpus_allowed < 2 ||
1071 	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1072 	    (p->nr_cpus_allowed > 1)) {
1073 		int target = find_later_rq(p);
1074 
1075 		if (target != -1 &&
1076 				(dl_time_before(p->dl.deadline,
1077 					cpu_rq(target)->dl.earliest_dl.curr) ||
1078 				(cpu_rq(target)->dl.dl_nr_running == 0)))
1079 			cpu = target;
1080 	}
1081 	rcu_read_unlock();
1082 
1083 out:
1084 	return cpu;
1085 }
1086 
1087 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1088 {
1089 	/*
1090 	 * Current can't be migrated, useless to reschedule,
1091 	 * let's hope p can move out.
1092 	 */
1093 	if (rq->curr->nr_cpus_allowed == 1 ||
1094 	    cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1095 		return;
1096 
1097 	/*
1098 	 * p is migratable, so let's not schedule it and
1099 	 * see if it is pushed or pulled somewhere else.
1100 	 */
1101 	if (p->nr_cpus_allowed != 1 &&
1102 	    cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1103 		return;
1104 
1105 	resched_curr(rq);
1106 }
1107 
1108 #endif /* CONFIG_SMP */
1109 
1110 /*
1111  * Only called when both the current and waking task are -deadline
1112  * tasks.
1113  */
1114 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1115 				  int flags)
1116 {
1117 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1118 		resched_curr(rq);
1119 		return;
1120 	}
1121 
1122 #ifdef CONFIG_SMP
1123 	/*
1124 	 * In the unlikely case current and p have the same deadline
1125 	 * let us try to decide what's the best thing to do...
1126 	 */
1127 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1128 	    !test_tsk_need_resched(rq->curr))
1129 		check_preempt_equal_dl(rq, p);
1130 #endif /* CONFIG_SMP */
1131 }
1132 
1133 #ifdef CONFIG_SCHED_HRTICK
1134 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1135 {
1136 	hrtick_start(rq, p->dl.runtime);
1137 }
1138 #else /* !CONFIG_SCHED_HRTICK */
1139 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1140 {
1141 }
1142 #endif
1143 
1144 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1145 						   struct dl_rq *dl_rq)
1146 {
1147 	struct rb_node *left = dl_rq->rb_leftmost;
1148 
1149 	if (!left)
1150 		return NULL;
1151 
1152 	return rb_entry(left, struct sched_dl_entity, rb_node);
1153 }
1154 
1155 struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
1156 {
1157 	struct sched_dl_entity *dl_se;
1158 	struct task_struct *p;
1159 	struct dl_rq *dl_rq;
1160 
1161 	dl_rq = &rq->dl;
1162 
1163 	if (need_pull_dl_task(rq, prev)) {
1164 		/*
1165 		 * This is OK, because current is on_cpu, which avoids it being
1166 		 * picked for load-balance and preemption/IRQs are still
1167 		 * disabled avoiding further scheduler activity on it and we're
1168 		 * being very careful to re-start the picking loop.
1169 		 */
1170 		lockdep_unpin_lock(&rq->lock);
1171 		pull_dl_task(rq);
1172 		lockdep_pin_lock(&rq->lock);
1173 		/*
1174 		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1175 		 * means a stop task can slip in, in which case we need to
1176 		 * re-start task selection.
1177 		 */
1178 		if (rq->stop && task_on_rq_queued(rq->stop))
1179 			return RETRY_TASK;
1180 	}
1181 
1182 	/*
1183 	 * When prev is DL, we may throttle it in put_prev_task().
1184 	 * So, we update time before we check for dl_nr_running.
1185 	 */
1186 	if (prev->sched_class == &dl_sched_class)
1187 		update_curr_dl(rq);
1188 
1189 	if (unlikely(!dl_rq->dl_nr_running))
1190 		return NULL;
1191 
1192 	put_prev_task(rq, prev);
1193 
1194 	dl_se = pick_next_dl_entity(rq, dl_rq);
1195 	BUG_ON(!dl_se);
1196 
1197 	p = dl_task_of(dl_se);
1198 	p->se.exec_start = rq_clock_task(rq);
1199 
1200 	/* Running task will never be pushed. */
1201        dequeue_pushable_dl_task(rq, p);
1202 
1203 	if (hrtick_enabled(rq))
1204 		start_hrtick_dl(rq, p);
1205 
1206 	queue_push_tasks(rq);
1207 
1208 	return p;
1209 }
1210 
1211 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1212 {
1213 	update_curr_dl(rq);
1214 
1215 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1216 		enqueue_pushable_dl_task(rq, p);
1217 }
1218 
1219 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1220 {
1221 	update_curr_dl(rq);
1222 
1223 	/*
1224 	 * Even when we have runtime, update_curr_dl() might have resulted in us
1225 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
1226 	 * be set and schedule() will start a new hrtick for the next task.
1227 	 */
1228 	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1229 	    is_leftmost(p, &rq->dl))
1230 		start_hrtick_dl(rq, p);
1231 }
1232 
1233 static void task_fork_dl(struct task_struct *p)
1234 {
1235 	/*
1236 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1237 	 * sched_fork()
1238 	 */
1239 }
1240 
1241 static void task_dead_dl(struct task_struct *p)
1242 {
1243 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1244 
1245 	/*
1246 	 * Since we are TASK_DEAD we won't slip out of the domain!
1247 	 */
1248 	raw_spin_lock_irq(&dl_b->lock);
1249 	/* XXX we should retain the bw until 0-lag */
1250 	dl_b->total_bw -= p->dl.dl_bw;
1251 	raw_spin_unlock_irq(&dl_b->lock);
1252 }
1253 
1254 static void set_curr_task_dl(struct rq *rq)
1255 {
1256 	struct task_struct *p = rq->curr;
1257 
1258 	p->se.exec_start = rq_clock_task(rq);
1259 
1260 	/* You can't push away the running task */
1261 	dequeue_pushable_dl_task(rq, p);
1262 }
1263 
1264 #ifdef CONFIG_SMP
1265 
1266 /* Only try algorithms three times */
1267 #define DL_MAX_TRIES 3
1268 
1269 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1270 {
1271 	if (!task_running(rq, p) &&
1272 	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1273 		return 1;
1274 	return 0;
1275 }
1276 
1277 /* Returns the second earliest -deadline task, NULL otherwise */
1278 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
1279 {
1280 	struct rb_node *next_node = rq->dl.rb_leftmost;
1281 	struct sched_dl_entity *dl_se;
1282 	struct task_struct *p = NULL;
1283 
1284 next_node:
1285 	next_node = rb_next(next_node);
1286 	if (next_node) {
1287 		dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
1288 		p = dl_task_of(dl_se);
1289 
1290 		if (pick_dl_task(rq, p, cpu))
1291 			return p;
1292 
1293 		goto next_node;
1294 	}
1295 
1296 	return NULL;
1297 }
1298 
1299 /*
1300  * Return the earliest pushable rq's task, which is suitable to be executed
1301  * on the CPU, NULL otherwise:
1302  */
1303 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1304 {
1305 	struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
1306 	struct task_struct *p = NULL;
1307 
1308 	if (!has_pushable_dl_tasks(rq))
1309 		return NULL;
1310 
1311 next_node:
1312 	if (next_node) {
1313 		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1314 
1315 		if (pick_dl_task(rq, p, cpu))
1316 			return p;
1317 
1318 		next_node = rb_next(next_node);
1319 		goto next_node;
1320 	}
1321 
1322 	return NULL;
1323 }
1324 
1325 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1326 
1327 static int find_later_rq(struct task_struct *task)
1328 {
1329 	struct sched_domain *sd;
1330 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1331 	int this_cpu = smp_processor_id();
1332 	int best_cpu, cpu = task_cpu(task);
1333 
1334 	/* Make sure the mask is initialized first */
1335 	if (unlikely(!later_mask))
1336 		return -1;
1337 
1338 	if (task->nr_cpus_allowed == 1)
1339 		return -1;
1340 
1341 	/*
1342 	 * We have to consider system topology and task affinity
1343 	 * first, then we can look for a suitable cpu.
1344 	 */
1345 	best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1346 			task, later_mask);
1347 	if (best_cpu == -1)
1348 		return -1;
1349 
1350 	/*
1351 	 * If we are here, some target has been found,
1352 	 * the most suitable of which is cached in best_cpu.
1353 	 * This is, among the runqueues where the current tasks
1354 	 * have later deadlines than the task's one, the rq
1355 	 * with the latest possible one.
1356 	 *
1357 	 * Now we check how well this matches with task's
1358 	 * affinity and system topology.
1359 	 *
1360 	 * The last cpu where the task run is our first
1361 	 * guess, since it is most likely cache-hot there.
1362 	 */
1363 	if (cpumask_test_cpu(cpu, later_mask))
1364 		return cpu;
1365 	/*
1366 	 * Check if this_cpu is to be skipped (i.e., it is
1367 	 * not in the mask) or not.
1368 	 */
1369 	if (!cpumask_test_cpu(this_cpu, later_mask))
1370 		this_cpu = -1;
1371 
1372 	rcu_read_lock();
1373 	for_each_domain(cpu, sd) {
1374 		if (sd->flags & SD_WAKE_AFFINE) {
1375 
1376 			/*
1377 			 * If possible, preempting this_cpu is
1378 			 * cheaper than migrating.
1379 			 */
1380 			if (this_cpu != -1 &&
1381 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1382 				rcu_read_unlock();
1383 				return this_cpu;
1384 			}
1385 
1386 			/*
1387 			 * Last chance: if best_cpu is valid and is
1388 			 * in the mask, that becomes our choice.
1389 			 */
1390 			if (best_cpu < nr_cpu_ids &&
1391 			    cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1392 				rcu_read_unlock();
1393 				return best_cpu;
1394 			}
1395 		}
1396 	}
1397 	rcu_read_unlock();
1398 
1399 	/*
1400 	 * At this point, all our guesses failed, we just return
1401 	 * 'something', and let the caller sort the things out.
1402 	 */
1403 	if (this_cpu != -1)
1404 		return this_cpu;
1405 
1406 	cpu = cpumask_any(later_mask);
1407 	if (cpu < nr_cpu_ids)
1408 		return cpu;
1409 
1410 	return -1;
1411 }
1412 
1413 /* Locks the rq it finds */
1414 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1415 {
1416 	struct rq *later_rq = NULL;
1417 	int tries;
1418 	int cpu;
1419 
1420 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1421 		cpu = find_later_rq(task);
1422 
1423 		if ((cpu == -1) || (cpu == rq->cpu))
1424 			break;
1425 
1426 		later_rq = cpu_rq(cpu);
1427 
1428 		if (later_rq->dl.dl_nr_running &&
1429 		    !dl_time_before(task->dl.deadline,
1430 					later_rq->dl.earliest_dl.curr)) {
1431 			/*
1432 			 * Target rq has tasks of equal or earlier deadline,
1433 			 * retrying does not release any lock and is unlikely
1434 			 * to yield a different result.
1435 			 */
1436 			later_rq = NULL;
1437 			break;
1438 		}
1439 
1440 		/* Retry if something changed. */
1441 		if (double_lock_balance(rq, later_rq)) {
1442 			if (unlikely(task_rq(task) != rq ||
1443 				     !cpumask_test_cpu(later_rq->cpu,
1444 				                       &task->cpus_allowed) ||
1445 				     task_running(rq, task) ||
1446 				     !task_on_rq_queued(task))) {
1447 				double_unlock_balance(rq, later_rq);
1448 				later_rq = NULL;
1449 				break;
1450 			}
1451 		}
1452 
1453 		/*
1454 		 * If the rq we found has no -deadline task, or
1455 		 * its earliest one has a later deadline than our
1456 		 * task, the rq is a good one.
1457 		 */
1458 		if (!later_rq->dl.dl_nr_running ||
1459 		    dl_time_before(task->dl.deadline,
1460 				   later_rq->dl.earliest_dl.curr))
1461 			break;
1462 
1463 		/* Otherwise we try again. */
1464 		double_unlock_balance(rq, later_rq);
1465 		later_rq = NULL;
1466 	}
1467 
1468 	return later_rq;
1469 }
1470 
1471 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1472 {
1473 	struct task_struct *p;
1474 
1475 	if (!has_pushable_dl_tasks(rq))
1476 		return NULL;
1477 
1478 	p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1479 		     struct task_struct, pushable_dl_tasks);
1480 
1481 	BUG_ON(rq->cpu != task_cpu(p));
1482 	BUG_ON(task_current(rq, p));
1483 	BUG_ON(p->nr_cpus_allowed <= 1);
1484 
1485 	BUG_ON(!task_on_rq_queued(p));
1486 	BUG_ON(!dl_task(p));
1487 
1488 	return p;
1489 }
1490 
1491 /*
1492  * See if the non running -deadline tasks on this rq
1493  * can be sent to some other CPU where they can preempt
1494  * and start executing.
1495  */
1496 static int push_dl_task(struct rq *rq)
1497 {
1498 	struct task_struct *next_task;
1499 	struct rq *later_rq;
1500 	int ret = 0;
1501 
1502 	if (!rq->dl.overloaded)
1503 		return 0;
1504 
1505 	next_task = pick_next_pushable_dl_task(rq);
1506 	if (!next_task)
1507 		return 0;
1508 
1509 retry:
1510 	if (unlikely(next_task == rq->curr)) {
1511 		WARN_ON(1);
1512 		return 0;
1513 	}
1514 
1515 	/*
1516 	 * If next_task preempts rq->curr, and rq->curr
1517 	 * can move away, it makes sense to just reschedule
1518 	 * without going further in pushing next_task.
1519 	 */
1520 	if (dl_task(rq->curr) &&
1521 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1522 	    rq->curr->nr_cpus_allowed > 1) {
1523 		resched_curr(rq);
1524 		return 0;
1525 	}
1526 
1527 	/* We might release rq lock */
1528 	get_task_struct(next_task);
1529 
1530 	/* Will lock the rq it'll find */
1531 	later_rq = find_lock_later_rq(next_task, rq);
1532 	if (!later_rq) {
1533 		struct task_struct *task;
1534 
1535 		/*
1536 		 * We must check all this again, since
1537 		 * find_lock_later_rq releases rq->lock and it is
1538 		 * then possible that next_task has migrated.
1539 		 */
1540 		task = pick_next_pushable_dl_task(rq);
1541 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1542 			/*
1543 			 * The task is still there. We don't try
1544 			 * again, some other cpu will pull it when ready.
1545 			 */
1546 			goto out;
1547 		}
1548 
1549 		if (!task)
1550 			/* No more tasks */
1551 			goto out;
1552 
1553 		put_task_struct(next_task);
1554 		next_task = task;
1555 		goto retry;
1556 	}
1557 
1558 	deactivate_task(rq, next_task, 0);
1559 	set_task_cpu(next_task, later_rq->cpu);
1560 	activate_task(later_rq, next_task, 0);
1561 	ret = 1;
1562 
1563 	resched_curr(later_rq);
1564 
1565 	double_unlock_balance(rq, later_rq);
1566 
1567 out:
1568 	put_task_struct(next_task);
1569 
1570 	return ret;
1571 }
1572 
1573 static void push_dl_tasks(struct rq *rq)
1574 {
1575 	/* push_dl_task() will return true if it moved a -deadline task */
1576 	while (push_dl_task(rq))
1577 		;
1578 }
1579 
1580 static void pull_dl_task(struct rq *this_rq)
1581 {
1582 	int this_cpu = this_rq->cpu, cpu;
1583 	struct task_struct *p;
1584 	bool resched = false;
1585 	struct rq *src_rq;
1586 	u64 dmin = LONG_MAX;
1587 
1588 	if (likely(!dl_overloaded(this_rq)))
1589 		return;
1590 
1591 	/*
1592 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
1593 	 * see overloaded we must also see the dlo_mask bit.
1594 	 */
1595 	smp_rmb();
1596 
1597 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1598 		if (this_cpu == cpu)
1599 			continue;
1600 
1601 		src_rq = cpu_rq(cpu);
1602 
1603 		/*
1604 		 * It looks racy, abd it is! However, as in sched_rt.c,
1605 		 * we are fine with this.
1606 		 */
1607 		if (this_rq->dl.dl_nr_running &&
1608 		    dl_time_before(this_rq->dl.earliest_dl.curr,
1609 				   src_rq->dl.earliest_dl.next))
1610 			continue;
1611 
1612 		/* Might drop this_rq->lock */
1613 		double_lock_balance(this_rq, src_rq);
1614 
1615 		/*
1616 		 * If there are no more pullable tasks on the
1617 		 * rq, we're done with it.
1618 		 */
1619 		if (src_rq->dl.dl_nr_running <= 1)
1620 			goto skip;
1621 
1622 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1623 
1624 		/*
1625 		 * We found a task to be pulled if:
1626 		 *  - it preempts our current (if there's one),
1627 		 *  - it will preempt the last one we pulled (if any).
1628 		 */
1629 		if (p && dl_time_before(p->dl.deadline, dmin) &&
1630 		    (!this_rq->dl.dl_nr_running ||
1631 		     dl_time_before(p->dl.deadline,
1632 				    this_rq->dl.earliest_dl.curr))) {
1633 			WARN_ON(p == src_rq->curr);
1634 			WARN_ON(!task_on_rq_queued(p));
1635 
1636 			/*
1637 			 * Then we pull iff p has actually an earlier
1638 			 * deadline than the current task of its runqueue.
1639 			 */
1640 			if (dl_time_before(p->dl.deadline,
1641 					   src_rq->curr->dl.deadline))
1642 				goto skip;
1643 
1644 			resched = true;
1645 
1646 			deactivate_task(src_rq, p, 0);
1647 			set_task_cpu(p, this_cpu);
1648 			activate_task(this_rq, p, 0);
1649 			dmin = p->dl.deadline;
1650 
1651 			/* Is there any other task even earlier? */
1652 		}
1653 skip:
1654 		double_unlock_balance(this_rq, src_rq);
1655 	}
1656 
1657 	if (resched)
1658 		resched_curr(this_rq);
1659 }
1660 
1661 /*
1662  * Since the task is not running and a reschedule is not going to happen
1663  * anytime soon on its runqueue, we try pushing it away now.
1664  */
1665 static void task_woken_dl(struct rq *rq, struct task_struct *p)
1666 {
1667 	if (!task_running(rq, p) &&
1668 	    !test_tsk_need_resched(rq->curr) &&
1669 	    p->nr_cpus_allowed > 1 &&
1670 	    dl_task(rq->curr) &&
1671 	    (rq->curr->nr_cpus_allowed < 2 ||
1672 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1673 		push_dl_tasks(rq);
1674 	}
1675 }
1676 
1677 static void set_cpus_allowed_dl(struct task_struct *p,
1678 				const struct cpumask *new_mask)
1679 {
1680 	struct root_domain *src_rd;
1681 	struct rq *rq;
1682 
1683 	BUG_ON(!dl_task(p));
1684 
1685 	rq = task_rq(p);
1686 	src_rd = rq->rd;
1687 	/*
1688 	 * Migrating a SCHED_DEADLINE task between exclusive
1689 	 * cpusets (different root_domains) entails a bandwidth
1690 	 * update. We already made space for us in the destination
1691 	 * domain (see cpuset_can_attach()).
1692 	 */
1693 	if (!cpumask_intersects(src_rd->span, new_mask)) {
1694 		struct dl_bw *src_dl_b;
1695 
1696 		src_dl_b = dl_bw_of(cpu_of(rq));
1697 		/*
1698 		 * We now free resources of the root_domain we are migrating
1699 		 * off. In the worst case, sched_setattr() may temporary fail
1700 		 * until we complete the update.
1701 		 */
1702 		raw_spin_lock(&src_dl_b->lock);
1703 		__dl_clear(src_dl_b, p->dl.dl_bw);
1704 		raw_spin_unlock(&src_dl_b->lock);
1705 	}
1706 
1707 	set_cpus_allowed_common(p, new_mask);
1708 }
1709 
1710 /* Assumes rq->lock is held */
1711 static void rq_online_dl(struct rq *rq)
1712 {
1713 	if (rq->dl.overloaded)
1714 		dl_set_overload(rq);
1715 
1716 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
1717 	if (rq->dl.dl_nr_running > 0)
1718 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1719 }
1720 
1721 /* Assumes rq->lock is held */
1722 static void rq_offline_dl(struct rq *rq)
1723 {
1724 	if (rq->dl.overloaded)
1725 		dl_clear_overload(rq);
1726 
1727 	cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1728 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1729 }
1730 
1731 void __init init_sched_dl_class(void)
1732 {
1733 	unsigned int i;
1734 
1735 	for_each_possible_cpu(i)
1736 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1737 					GFP_KERNEL, cpu_to_node(i));
1738 }
1739 
1740 #endif /* CONFIG_SMP */
1741 
1742 static void switched_from_dl(struct rq *rq, struct task_struct *p)
1743 {
1744 	/*
1745 	 * Start the deadline timer; if we switch back to dl before this we'll
1746 	 * continue consuming our current CBS slice. If we stay outside of
1747 	 * SCHED_DEADLINE until the deadline passes, the timer will reset the
1748 	 * task.
1749 	 */
1750 	if (!start_dl_timer(p))
1751 		__dl_clear_params(p);
1752 
1753 	/*
1754 	 * Since this might be the only -deadline task on the rq,
1755 	 * this is the right place to try to pull some other one
1756 	 * from an overloaded cpu, if any.
1757 	 */
1758 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1759 		return;
1760 
1761 	queue_pull_task(rq);
1762 }
1763 
1764 /*
1765  * When switching to -deadline, we may overload the rq, then
1766  * we try to push someone off, if possible.
1767  */
1768 static void switched_to_dl(struct rq *rq, struct task_struct *p)
1769 {
1770 	if (task_on_rq_queued(p) && rq->curr != p) {
1771 #ifdef CONFIG_SMP
1772 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
1773 			queue_push_tasks(rq);
1774 #else
1775 		if (dl_task(rq->curr))
1776 			check_preempt_curr_dl(rq, p, 0);
1777 		else
1778 			resched_curr(rq);
1779 #endif
1780 	}
1781 }
1782 
1783 /*
1784  * If the scheduling parameters of a -deadline task changed,
1785  * a push or pull operation might be needed.
1786  */
1787 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1788 			    int oldprio)
1789 {
1790 	if (task_on_rq_queued(p) || rq->curr == p) {
1791 #ifdef CONFIG_SMP
1792 		/*
1793 		 * This might be too much, but unfortunately
1794 		 * we don't have the old deadline value, and
1795 		 * we can't argue if the task is increasing
1796 		 * or lowering its prio, so...
1797 		 */
1798 		if (!rq->dl.overloaded)
1799 			queue_pull_task(rq);
1800 
1801 		/*
1802 		 * If we now have a earlier deadline task than p,
1803 		 * then reschedule, provided p is still on this
1804 		 * runqueue.
1805 		 */
1806 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
1807 			resched_curr(rq);
1808 #else
1809 		/*
1810 		 * Again, we don't know if p has a earlier
1811 		 * or later deadline, so let's blindly set a
1812 		 * (maybe not needed) rescheduling point.
1813 		 */
1814 		resched_curr(rq);
1815 #endif /* CONFIG_SMP */
1816 	} else
1817 		switched_to_dl(rq, p);
1818 }
1819 
1820 const struct sched_class dl_sched_class = {
1821 	.next			= &rt_sched_class,
1822 	.enqueue_task		= enqueue_task_dl,
1823 	.dequeue_task		= dequeue_task_dl,
1824 	.yield_task		= yield_task_dl,
1825 
1826 	.check_preempt_curr	= check_preempt_curr_dl,
1827 
1828 	.pick_next_task		= pick_next_task_dl,
1829 	.put_prev_task		= put_prev_task_dl,
1830 
1831 #ifdef CONFIG_SMP
1832 	.select_task_rq		= select_task_rq_dl,
1833 	.set_cpus_allowed       = set_cpus_allowed_dl,
1834 	.rq_online              = rq_online_dl,
1835 	.rq_offline             = rq_offline_dl,
1836 	.task_woken		= task_woken_dl,
1837 #endif
1838 
1839 	.set_curr_task		= set_curr_task_dl,
1840 	.task_tick		= task_tick_dl,
1841 	.task_fork              = task_fork_dl,
1842 	.task_dead		= task_dead_dl,
1843 
1844 	.prio_changed           = prio_changed_dl,
1845 	.switched_from		= switched_from_dl,
1846 	.switched_to		= switched_to_dl,
1847 
1848 	.update_curr		= update_curr_dl,
1849 };
1850 
1851 #ifdef CONFIG_SCHED_DEBUG
1852 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1853 
1854 void print_dl_stats(struct seq_file *m, int cpu)
1855 {
1856 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1857 }
1858 #endif /* CONFIG_SCHED_DEBUG */
1859