1 /* 2 * Deadline Scheduling Class (SCHED_DEADLINE) 3 * 4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 5 * 6 * Tasks that periodically executes their instances for less than their 7 * runtime won't miss any of their deadlines. 8 * Tasks that are not periodic or sporadic or that tries to execute more 9 * than their reserved bandwidth will be slowed down (and may potentially 10 * miss some of their deadlines), and won't affect any other task. 11 * 12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 13 * Juri Lelli <juri.lelli@gmail.com>, 14 * Michael Trimarchi <michael@amarulasolutions.com>, 15 * Fabio Checconi <fchecconi@gmail.com> 16 */ 17 #include "sched.h" 18 19 #include <linux/slab.h> 20 21 struct dl_bandwidth def_dl_bandwidth; 22 23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 24 { 25 return container_of(dl_se, struct task_struct, dl); 26 } 27 28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 29 { 30 return container_of(dl_rq, struct rq, dl); 31 } 32 33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 34 { 35 struct task_struct *p = dl_task_of(dl_se); 36 struct rq *rq = task_rq(p); 37 38 return &rq->dl; 39 } 40 41 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 42 { 43 return !RB_EMPTY_NODE(&dl_se->rb_node); 44 } 45 46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) 47 { 48 struct sched_dl_entity *dl_se = &p->dl; 49 50 return dl_rq->rb_leftmost == &dl_se->rb_node; 51 } 52 53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) 54 { 55 raw_spin_lock_init(&dl_b->dl_runtime_lock); 56 dl_b->dl_period = period; 57 dl_b->dl_runtime = runtime; 58 } 59 60 void init_dl_bw(struct dl_bw *dl_b) 61 { 62 raw_spin_lock_init(&dl_b->lock); 63 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock); 64 if (global_rt_runtime() == RUNTIME_INF) 65 dl_b->bw = -1; 66 else 67 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 68 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock); 69 dl_b->total_bw = 0; 70 } 71 72 void init_dl_rq(struct dl_rq *dl_rq) 73 { 74 dl_rq->rb_root = RB_ROOT; 75 76 #ifdef CONFIG_SMP 77 /* zero means no -deadline tasks */ 78 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 79 80 dl_rq->dl_nr_migratory = 0; 81 dl_rq->overloaded = 0; 82 dl_rq->pushable_dl_tasks_root = RB_ROOT; 83 #else 84 init_dl_bw(&dl_rq->dl_bw); 85 #endif 86 } 87 88 #ifdef CONFIG_SMP 89 90 static inline int dl_overloaded(struct rq *rq) 91 { 92 return atomic_read(&rq->rd->dlo_count); 93 } 94 95 static inline void dl_set_overload(struct rq *rq) 96 { 97 if (!rq->online) 98 return; 99 100 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 101 /* 102 * Must be visible before the overload count is 103 * set (as in sched_rt.c). 104 * 105 * Matched by the barrier in pull_dl_task(). 106 */ 107 smp_wmb(); 108 atomic_inc(&rq->rd->dlo_count); 109 } 110 111 static inline void dl_clear_overload(struct rq *rq) 112 { 113 if (!rq->online) 114 return; 115 116 atomic_dec(&rq->rd->dlo_count); 117 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 118 } 119 120 static void update_dl_migration(struct dl_rq *dl_rq) 121 { 122 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { 123 if (!dl_rq->overloaded) { 124 dl_set_overload(rq_of_dl_rq(dl_rq)); 125 dl_rq->overloaded = 1; 126 } 127 } else if (dl_rq->overloaded) { 128 dl_clear_overload(rq_of_dl_rq(dl_rq)); 129 dl_rq->overloaded = 0; 130 } 131 } 132 133 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 134 { 135 struct task_struct *p = dl_task_of(dl_se); 136 137 if (p->nr_cpus_allowed > 1) 138 dl_rq->dl_nr_migratory++; 139 140 update_dl_migration(dl_rq); 141 } 142 143 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 144 { 145 struct task_struct *p = dl_task_of(dl_se); 146 147 if (p->nr_cpus_allowed > 1) 148 dl_rq->dl_nr_migratory--; 149 150 update_dl_migration(dl_rq); 151 } 152 153 /* 154 * The list of pushable -deadline task is not a plist, like in 155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 156 */ 157 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 158 { 159 struct dl_rq *dl_rq = &rq->dl; 160 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node; 161 struct rb_node *parent = NULL; 162 struct task_struct *entry; 163 int leftmost = 1; 164 165 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 166 167 while (*link) { 168 parent = *link; 169 entry = rb_entry(parent, struct task_struct, 170 pushable_dl_tasks); 171 if (dl_entity_preempt(&p->dl, &entry->dl)) 172 link = &parent->rb_left; 173 else { 174 link = &parent->rb_right; 175 leftmost = 0; 176 } 177 } 178 179 if (leftmost) 180 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks; 181 182 rb_link_node(&p->pushable_dl_tasks, parent, link); 183 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 184 } 185 186 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 187 { 188 struct dl_rq *dl_rq = &rq->dl; 189 190 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 191 return; 192 193 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) { 194 struct rb_node *next_node; 195 196 next_node = rb_next(&p->pushable_dl_tasks); 197 dl_rq->pushable_dl_tasks_leftmost = next_node; 198 } 199 200 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 201 RB_CLEAR_NODE(&p->pushable_dl_tasks); 202 } 203 204 static inline int has_pushable_dl_tasks(struct rq *rq) 205 { 206 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root); 207 } 208 209 static int push_dl_task(struct rq *rq); 210 211 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 212 { 213 return dl_task(prev); 214 } 215 216 static DEFINE_PER_CPU(struct callback_head, dl_push_head); 217 static DEFINE_PER_CPU(struct callback_head, dl_pull_head); 218 219 static void push_dl_tasks(struct rq *); 220 static void pull_dl_task(struct rq *); 221 222 static inline void queue_push_tasks(struct rq *rq) 223 { 224 if (!has_pushable_dl_tasks(rq)) 225 return; 226 227 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); 228 } 229 230 static inline void queue_pull_task(struct rq *rq) 231 { 232 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); 233 } 234 235 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); 236 237 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) 238 { 239 struct rq *later_rq = NULL; 240 bool fallback = false; 241 242 later_rq = find_lock_later_rq(p, rq); 243 244 if (!later_rq) { 245 int cpu; 246 247 /* 248 * If we cannot preempt any rq, fall back to pick any 249 * online cpu. 250 */ 251 fallback = true; 252 cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p)); 253 if (cpu >= nr_cpu_ids) { 254 /* 255 * Fail to find any suitable cpu. 256 * The task will never come back! 257 */ 258 BUG_ON(dl_bandwidth_enabled()); 259 260 /* 261 * If admission control is disabled we 262 * try a little harder to let the task 263 * run. 264 */ 265 cpu = cpumask_any(cpu_active_mask); 266 } 267 later_rq = cpu_rq(cpu); 268 double_lock_balance(rq, later_rq); 269 } 270 271 /* 272 * By now the task is replenished and enqueued; migrate it. 273 */ 274 deactivate_task(rq, p, 0); 275 set_task_cpu(p, later_rq->cpu); 276 activate_task(later_rq, p, 0); 277 278 if (!fallback) 279 resched_curr(later_rq); 280 281 double_unlock_balance(later_rq, rq); 282 283 return later_rq; 284 } 285 286 #else 287 288 static inline 289 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 290 { 291 } 292 293 static inline 294 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 295 { 296 } 297 298 static inline 299 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 300 { 301 } 302 303 static inline 304 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 305 { 306 } 307 308 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 309 { 310 return false; 311 } 312 313 static inline void pull_dl_task(struct rq *rq) 314 { 315 } 316 317 static inline void queue_push_tasks(struct rq *rq) 318 { 319 } 320 321 static inline void queue_pull_task(struct rq *rq) 322 { 323 } 324 #endif /* CONFIG_SMP */ 325 326 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 327 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); 328 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 329 int flags); 330 331 /* 332 * We are being explicitly informed that a new instance is starting, 333 * and this means that: 334 * - the absolute deadline of the entity has to be placed at 335 * current time + relative deadline; 336 * - the runtime of the entity has to be set to the maximum value. 337 * 338 * The capability of specifying such event is useful whenever a -deadline 339 * entity wants to (try to!) synchronize its behaviour with the scheduler's 340 * one, and to (try to!) reconcile itself with its own scheduling 341 * parameters. 342 */ 343 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se, 344 struct sched_dl_entity *pi_se) 345 { 346 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 347 struct rq *rq = rq_of_dl_rq(dl_rq); 348 349 WARN_ON(!dl_se->dl_new || dl_se->dl_throttled); 350 351 /* 352 * We use the regular wall clock time to set deadlines in the 353 * future; in fact, we must consider execution overheads (time 354 * spent on hardirq context, etc.). 355 */ 356 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 357 dl_se->runtime = pi_se->dl_runtime; 358 dl_se->dl_new = 0; 359 } 360 361 /* 362 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 363 * possibility of a entity lasting more than what it declared, and thus 364 * exhausting its runtime. 365 * 366 * Here we are interested in making runtime overrun possible, but we do 367 * not want a entity which is misbehaving to affect the scheduling of all 368 * other entities. 369 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 370 * is used, in order to confine each entity within its own bandwidth. 371 * 372 * This function deals exactly with that, and ensures that when the runtime 373 * of a entity is replenished, its deadline is also postponed. That ensures 374 * the overrunning entity can't interfere with other entity in the system and 375 * can't make them miss their deadlines. Reasons why this kind of overruns 376 * could happen are, typically, a entity voluntarily trying to overcome its 377 * runtime, or it just underestimated it during sched_setattr(). 378 */ 379 static void replenish_dl_entity(struct sched_dl_entity *dl_se, 380 struct sched_dl_entity *pi_se) 381 { 382 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 383 struct rq *rq = rq_of_dl_rq(dl_rq); 384 385 BUG_ON(pi_se->dl_runtime <= 0); 386 387 /* 388 * This could be the case for a !-dl task that is boosted. 389 * Just go with full inherited parameters. 390 */ 391 if (dl_se->dl_deadline == 0) { 392 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 393 dl_se->runtime = pi_se->dl_runtime; 394 } 395 396 /* 397 * We keep moving the deadline away until we get some 398 * available runtime for the entity. This ensures correct 399 * handling of situations where the runtime overrun is 400 * arbitrary large. 401 */ 402 while (dl_se->runtime <= 0) { 403 dl_se->deadline += pi_se->dl_period; 404 dl_se->runtime += pi_se->dl_runtime; 405 } 406 407 /* 408 * At this point, the deadline really should be "in 409 * the future" with respect to rq->clock. If it's 410 * not, we are, for some reason, lagging too much! 411 * Anyway, after having warn userspace abut that, 412 * we still try to keep the things running by 413 * resetting the deadline and the budget of the 414 * entity. 415 */ 416 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 417 printk_deferred_once("sched: DL replenish lagged to much\n"); 418 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 419 dl_se->runtime = pi_se->dl_runtime; 420 } 421 422 if (dl_se->dl_yielded) 423 dl_se->dl_yielded = 0; 424 if (dl_se->dl_throttled) 425 dl_se->dl_throttled = 0; 426 } 427 428 /* 429 * Here we check if --at time t-- an entity (which is probably being 430 * [re]activated or, in general, enqueued) can use its remaining runtime 431 * and its current deadline _without_ exceeding the bandwidth it is 432 * assigned (function returns true if it can't). We are in fact applying 433 * one of the CBS rules: when a task wakes up, if the residual runtime 434 * over residual deadline fits within the allocated bandwidth, then we 435 * can keep the current (absolute) deadline and residual budget without 436 * disrupting the schedulability of the system. Otherwise, we should 437 * refill the runtime and set the deadline a period in the future, 438 * because keeping the current (absolute) deadline of the task would 439 * result in breaking guarantees promised to other tasks (refer to 440 * Documentation/scheduler/sched-deadline.txt for more informations). 441 * 442 * This function returns true if: 443 * 444 * runtime / (deadline - t) > dl_runtime / dl_period , 445 * 446 * IOW we can't recycle current parameters. 447 * 448 * Notice that the bandwidth check is done against the period. For 449 * task with deadline equal to period this is the same of using 450 * dl_deadline instead of dl_period in the equation above. 451 */ 452 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, 453 struct sched_dl_entity *pi_se, u64 t) 454 { 455 u64 left, right; 456 457 /* 458 * left and right are the two sides of the equation above, 459 * after a bit of shuffling to use multiplications instead 460 * of divisions. 461 * 462 * Note that none of the time values involved in the two 463 * multiplications are absolute: dl_deadline and dl_runtime 464 * are the relative deadline and the maximum runtime of each 465 * instance, runtime is the runtime left for the last instance 466 * and (deadline - t), since t is rq->clock, is the time left 467 * to the (absolute) deadline. Even if overflowing the u64 type 468 * is very unlikely to occur in both cases, here we scale down 469 * as we want to avoid that risk at all. Scaling down by 10 470 * means that we reduce granularity to 1us. We are fine with it, 471 * since this is only a true/false check and, anyway, thinking 472 * of anything below microseconds resolution is actually fiction 473 * (but still we want to give the user that illusion >;). 474 */ 475 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 476 right = ((dl_se->deadline - t) >> DL_SCALE) * 477 (pi_se->dl_runtime >> DL_SCALE); 478 479 return dl_time_before(right, left); 480 } 481 482 /* 483 * When a -deadline entity is queued back on the runqueue, its runtime and 484 * deadline might need updating. 485 * 486 * The policy here is that we update the deadline of the entity only if: 487 * - the current deadline is in the past, 488 * - using the remaining runtime with the current deadline would make 489 * the entity exceed its bandwidth. 490 */ 491 static void update_dl_entity(struct sched_dl_entity *dl_se, 492 struct sched_dl_entity *pi_se) 493 { 494 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 495 struct rq *rq = rq_of_dl_rq(dl_rq); 496 497 /* 498 * The arrival of a new instance needs special treatment, i.e., 499 * the actual scheduling parameters have to be "renewed". 500 */ 501 if (dl_se->dl_new) { 502 setup_new_dl_entity(dl_se, pi_se); 503 return; 504 } 505 506 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 507 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) { 508 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 509 dl_se->runtime = pi_se->dl_runtime; 510 } 511 } 512 513 /* 514 * If the entity depleted all its runtime, and if we want it to sleep 515 * while waiting for some new execution time to become available, we 516 * set the bandwidth enforcement timer to the replenishment instant 517 * and try to activate it. 518 * 519 * Notice that it is important for the caller to know if the timer 520 * actually started or not (i.e., the replenishment instant is in 521 * the future or in the past). 522 */ 523 static int start_dl_timer(struct task_struct *p) 524 { 525 struct sched_dl_entity *dl_se = &p->dl; 526 struct hrtimer *timer = &dl_se->dl_timer; 527 struct rq *rq = task_rq(p); 528 ktime_t now, act; 529 s64 delta; 530 531 lockdep_assert_held(&rq->lock); 532 533 /* 534 * We want the timer to fire at the deadline, but considering 535 * that it is actually coming from rq->clock and not from 536 * hrtimer's time base reading. 537 */ 538 act = ns_to_ktime(dl_se->deadline); 539 now = hrtimer_cb_get_time(timer); 540 delta = ktime_to_ns(now) - rq_clock(rq); 541 act = ktime_add_ns(act, delta); 542 543 /* 544 * If the expiry time already passed, e.g., because the value 545 * chosen as the deadline is too small, don't even try to 546 * start the timer in the past! 547 */ 548 if (ktime_us_delta(act, now) < 0) 549 return 0; 550 551 /* 552 * !enqueued will guarantee another callback; even if one is already in 553 * progress. This ensures a balanced {get,put}_task_struct(). 554 * 555 * The race against __run_timer() clearing the enqueued state is 556 * harmless because we're holding task_rq()->lock, therefore the timer 557 * expiring after we've done the check will wait on its task_rq_lock() 558 * and observe our state. 559 */ 560 if (!hrtimer_is_queued(timer)) { 561 get_task_struct(p); 562 hrtimer_start(timer, act, HRTIMER_MODE_ABS); 563 } 564 565 return 1; 566 } 567 568 /* 569 * This is the bandwidth enforcement timer callback. If here, we know 570 * a task is not on its dl_rq, since the fact that the timer was running 571 * means the task is throttled and needs a runtime replenishment. 572 * 573 * However, what we actually do depends on the fact the task is active, 574 * (it is on its rq) or has been removed from there by a call to 575 * dequeue_task_dl(). In the former case we must issue the runtime 576 * replenishment and add the task back to the dl_rq; in the latter, we just 577 * do nothing but clearing dl_throttled, so that runtime and deadline 578 * updating (and the queueing back to dl_rq) will be done by the 579 * next call to enqueue_task_dl(). 580 */ 581 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 582 { 583 struct sched_dl_entity *dl_se = container_of(timer, 584 struct sched_dl_entity, 585 dl_timer); 586 struct task_struct *p = dl_task_of(dl_se); 587 unsigned long flags; 588 struct rq *rq; 589 590 rq = task_rq_lock(p, &flags); 591 592 /* 593 * The task might have changed its scheduling policy to something 594 * different than SCHED_DEADLINE (through switched_fromd_dl()). 595 */ 596 if (!dl_task(p)) { 597 __dl_clear_params(p); 598 goto unlock; 599 } 600 601 /* 602 * This is possible if switched_from_dl() raced against a running 603 * callback that took the above !dl_task() path and we've since then 604 * switched back into SCHED_DEADLINE. 605 * 606 * There's nothing to do except drop our task reference. 607 */ 608 if (dl_se->dl_new) 609 goto unlock; 610 611 /* 612 * The task might have been boosted by someone else and might be in the 613 * boosting/deboosting path, its not throttled. 614 */ 615 if (dl_se->dl_boosted) 616 goto unlock; 617 618 /* 619 * Spurious timer due to start_dl_timer() race; or we already received 620 * a replenishment from rt_mutex_setprio(). 621 */ 622 if (!dl_se->dl_throttled) 623 goto unlock; 624 625 sched_clock_tick(); 626 update_rq_clock(rq); 627 628 /* 629 * If the throttle happened during sched-out; like: 630 * 631 * schedule() 632 * deactivate_task() 633 * dequeue_task_dl() 634 * update_curr_dl() 635 * start_dl_timer() 636 * __dequeue_task_dl() 637 * prev->on_rq = 0; 638 * 639 * We can be both throttled and !queued. Replenish the counter 640 * but do not enqueue -- wait for our wakeup to do that. 641 */ 642 if (!task_on_rq_queued(p)) { 643 replenish_dl_entity(dl_se, dl_se); 644 goto unlock; 645 } 646 647 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 648 if (dl_task(rq->curr)) 649 check_preempt_curr_dl(rq, p, 0); 650 else 651 resched_curr(rq); 652 653 #ifdef CONFIG_SMP 654 /* 655 * Perform balancing operations here; after the replenishments. We 656 * cannot drop rq->lock before this, otherwise the assertion in 657 * start_dl_timer() about not missing updates is not true. 658 * 659 * If we find that the rq the task was on is no longer available, we 660 * need to select a new rq. 661 * 662 * XXX figure out if select_task_rq_dl() deals with offline cpus. 663 */ 664 if (unlikely(!rq->online)) 665 rq = dl_task_offline_migration(rq, p); 666 667 /* 668 * Queueing this task back might have overloaded rq, check if we need 669 * to kick someone away. 670 */ 671 if (has_pushable_dl_tasks(rq)) { 672 /* 673 * Nothing relies on rq->lock after this, so its safe to drop 674 * rq->lock. 675 */ 676 lockdep_unpin_lock(&rq->lock); 677 push_dl_task(rq); 678 lockdep_pin_lock(&rq->lock); 679 } 680 #endif 681 682 unlock: 683 task_rq_unlock(rq, p, &flags); 684 685 /* 686 * This can free the task_struct, including this hrtimer, do not touch 687 * anything related to that after this. 688 */ 689 put_task_struct(p); 690 691 return HRTIMER_NORESTART; 692 } 693 694 void init_dl_task_timer(struct sched_dl_entity *dl_se) 695 { 696 struct hrtimer *timer = &dl_se->dl_timer; 697 698 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 699 timer->function = dl_task_timer; 700 } 701 702 static 703 int dl_runtime_exceeded(struct sched_dl_entity *dl_se) 704 { 705 return (dl_se->runtime <= 0); 706 } 707 708 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 709 710 /* 711 * Update the current task's runtime statistics (provided it is still 712 * a -deadline task and has not been removed from the dl_rq). 713 */ 714 static void update_curr_dl(struct rq *rq) 715 { 716 struct task_struct *curr = rq->curr; 717 struct sched_dl_entity *dl_se = &curr->dl; 718 u64 delta_exec; 719 720 if (!dl_task(curr) || !on_dl_rq(dl_se)) 721 return; 722 723 /* 724 * Consumed budget is computed considering the time as 725 * observed by schedulable tasks (excluding time spent 726 * in hardirq context, etc.). Deadlines are instead 727 * computed using hard walltime. This seems to be the more 728 * natural solution, but the full ramifications of this 729 * approach need further study. 730 */ 731 delta_exec = rq_clock_task(rq) - curr->se.exec_start; 732 if (unlikely((s64)delta_exec <= 0)) 733 return; 734 735 schedstat_set(curr->se.statistics.exec_max, 736 max(curr->se.statistics.exec_max, delta_exec)); 737 738 curr->se.sum_exec_runtime += delta_exec; 739 account_group_exec_runtime(curr, delta_exec); 740 741 curr->se.exec_start = rq_clock_task(rq); 742 cpuacct_charge(curr, delta_exec); 743 744 sched_rt_avg_update(rq, delta_exec); 745 746 dl_se->runtime -= dl_se->dl_yielded ? 0 : delta_exec; 747 if (dl_runtime_exceeded(dl_se)) { 748 dl_se->dl_throttled = 1; 749 __dequeue_task_dl(rq, curr, 0); 750 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr))) 751 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); 752 753 if (!is_leftmost(curr, &rq->dl)) 754 resched_curr(rq); 755 } 756 757 /* 758 * Because -- for now -- we share the rt bandwidth, we need to 759 * account our runtime there too, otherwise actual rt tasks 760 * would be able to exceed the shared quota. 761 * 762 * Account to the root rt group for now. 763 * 764 * The solution we're working towards is having the RT groups scheduled 765 * using deadline servers -- however there's a few nasties to figure 766 * out before that can happen. 767 */ 768 if (rt_bandwidth_enabled()) { 769 struct rt_rq *rt_rq = &rq->rt; 770 771 raw_spin_lock(&rt_rq->rt_runtime_lock); 772 /* 773 * We'll let actual RT tasks worry about the overflow here, we 774 * have our own CBS to keep us inline; only account when RT 775 * bandwidth is relevant. 776 */ 777 if (sched_rt_bandwidth_account(rt_rq)) 778 rt_rq->rt_time += delta_exec; 779 raw_spin_unlock(&rt_rq->rt_runtime_lock); 780 } 781 } 782 783 #ifdef CONFIG_SMP 784 785 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu); 786 787 static inline u64 next_deadline(struct rq *rq) 788 { 789 struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu); 790 791 if (next && dl_prio(next->prio)) 792 return next->dl.deadline; 793 else 794 return 0; 795 } 796 797 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 798 { 799 struct rq *rq = rq_of_dl_rq(dl_rq); 800 801 if (dl_rq->earliest_dl.curr == 0 || 802 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 803 /* 804 * If the dl_rq had no -deadline tasks, or if the new task 805 * has shorter deadline than the current one on dl_rq, we 806 * know that the previous earliest becomes our next earliest, 807 * as the new task becomes the earliest itself. 808 */ 809 dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr; 810 dl_rq->earliest_dl.curr = deadline; 811 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1); 812 } else if (dl_rq->earliest_dl.next == 0 || 813 dl_time_before(deadline, dl_rq->earliest_dl.next)) { 814 /* 815 * On the other hand, if the new -deadline task has a 816 * a later deadline than the earliest one on dl_rq, but 817 * it is earlier than the next (if any), we must 818 * recompute the next-earliest. 819 */ 820 dl_rq->earliest_dl.next = next_deadline(rq); 821 } 822 } 823 824 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 825 { 826 struct rq *rq = rq_of_dl_rq(dl_rq); 827 828 /* 829 * Since we may have removed our earliest (and/or next earliest) 830 * task we must recompute them. 831 */ 832 if (!dl_rq->dl_nr_running) { 833 dl_rq->earliest_dl.curr = 0; 834 dl_rq->earliest_dl.next = 0; 835 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); 836 } else { 837 struct rb_node *leftmost = dl_rq->rb_leftmost; 838 struct sched_dl_entity *entry; 839 840 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node); 841 dl_rq->earliest_dl.curr = entry->deadline; 842 dl_rq->earliest_dl.next = next_deadline(rq); 843 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1); 844 } 845 } 846 847 #else 848 849 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 850 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 851 852 #endif /* CONFIG_SMP */ 853 854 static inline 855 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 856 { 857 int prio = dl_task_of(dl_se)->prio; 858 u64 deadline = dl_se->deadline; 859 860 WARN_ON(!dl_prio(prio)); 861 dl_rq->dl_nr_running++; 862 add_nr_running(rq_of_dl_rq(dl_rq), 1); 863 864 inc_dl_deadline(dl_rq, deadline); 865 inc_dl_migration(dl_se, dl_rq); 866 } 867 868 static inline 869 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 870 { 871 int prio = dl_task_of(dl_se)->prio; 872 873 WARN_ON(!dl_prio(prio)); 874 WARN_ON(!dl_rq->dl_nr_running); 875 dl_rq->dl_nr_running--; 876 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 877 878 dec_dl_deadline(dl_rq, dl_se->deadline); 879 dec_dl_migration(dl_se, dl_rq); 880 } 881 882 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 883 { 884 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 885 struct rb_node **link = &dl_rq->rb_root.rb_node; 886 struct rb_node *parent = NULL; 887 struct sched_dl_entity *entry; 888 int leftmost = 1; 889 890 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node)); 891 892 while (*link) { 893 parent = *link; 894 entry = rb_entry(parent, struct sched_dl_entity, rb_node); 895 if (dl_time_before(dl_se->deadline, entry->deadline)) 896 link = &parent->rb_left; 897 else { 898 link = &parent->rb_right; 899 leftmost = 0; 900 } 901 } 902 903 if (leftmost) 904 dl_rq->rb_leftmost = &dl_se->rb_node; 905 906 rb_link_node(&dl_se->rb_node, parent, link); 907 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root); 908 909 inc_dl_tasks(dl_se, dl_rq); 910 } 911 912 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 913 { 914 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 915 916 if (RB_EMPTY_NODE(&dl_se->rb_node)) 917 return; 918 919 if (dl_rq->rb_leftmost == &dl_se->rb_node) { 920 struct rb_node *next_node; 921 922 next_node = rb_next(&dl_se->rb_node); 923 dl_rq->rb_leftmost = next_node; 924 } 925 926 rb_erase(&dl_se->rb_node, &dl_rq->rb_root); 927 RB_CLEAR_NODE(&dl_se->rb_node); 928 929 dec_dl_tasks(dl_se, dl_rq); 930 } 931 932 static void 933 enqueue_dl_entity(struct sched_dl_entity *dl_se, 934 struct sched_dl_entity *pi_se, int flags) 935 { 936 BUG_ON(on_dl_rq(dl_se)); 937 938 /* 939 * If this is a wakeup or a new instance, the scheduling 940 * parameters of the task might need updating. Otherwise, 941 * we want a replenishment of its runtime. 942 */ 943 if (dl_se->dl_new || flags & ENQUEUE_WAKEUP) 944 update_dl_entity(dl_se, pi_se); 945 else if (flags & ENQUEUE_REPLENISH) 946 replenish_dl_entity(dl_se, pi_se); 947 948 __enqueue_dl_entity(dl_se); 949 } 950 951 static void dequeue_dl_entity(struct sched_dl_entity *dl_se) 952 { 953 __dequeue_dl_entity(dl_se); 954 } 955 956 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 957 { 958 struct task_struct *pi_task = rt_mutex_get_top_task(p); 959 struct sched_dl_entity *pi_se = &p->dl; 960 961 /* 962 * Use the scheduling parameters of the top pi-waiter 963 * task if we have one and its (absolute) deadline is 964 * smaller than our one... OTW we keep our runtime and 965 * deadline. 966 */ 967 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) { 968 pi_se = &pi_task->dl; 969 } else if (!dl_prio(p->normal_prio)) { 970 /* 971 * Special case in which we have a !SCHED_DEADLINE task 972 * that is going to be deboosted, but exceedes its 973 * runtime while doing so. No point in replenishing 974 * it, as it's going to return back to its original 975 * scheduling class after this. 976 */ 977 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH); 978 return; 979 } 980 981 /* 982 * If p is throttled, we do nothing. In fact, if it exhausted 983 * its budget it needs a replenishment and, since it now is on 984 * its rq, the bandwidth timer callback (which clearly has not 985 * run yet) will take care of this. 986 */ 987 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) 988 return; 989 990 enqueue_dl_entity(&p->dl, pi_se, flags); 991 992 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 993 enqueue_pushable_dl_task(rq, p); 994 } 995 996 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 997 { 998 dequeue_dl_entity(&p->dl); 999 dequeue_pushable_dl_task(rq, p); 1000 } 1001 1002 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1003 { 1004 update_curr_dl(rq); 1005 __dequeue_task_dl(rq, p, flags); 1006 } 1007 1008 /* 1009 * Yield task semantic for -deadline tasks is: 1010 * 1011 * get off from the CPU until our next instance, with 1012 * a new runtime. This is of little use now, since we 1013 * don't have a bandwidth reclaiming mechanism. Anyway, 1014 * bandwidth reclaiming is planned for the future, and 1015 * yield_task_dl will indicate that some spare budget 1016 * is available for other task instances to use it. 1017 */ 1018 static void yield_task_dl(struct rq *rq) 1019 { 1020 struct task_struct *p = rq->curr; 1021 1022 /* 1023 * We make the task go to sleep until its current deadline by 1024 * forcing its runtime to zero. This way, update_curr_dl() stops 1025 * it and the bandwidth timer will wake it up and will give it 1026 * new scheduling parameters (thanks to dl_yielded=1). 1027 */ 1028 if (p->dl.runtime > 0) { 1029 rq->curr->dl.dl_yielded = 1; 1030 p->dl.runtime = 0; 1031 } 1032 update_rq_clock(rq); 1033 update_curr_dl(rq); 1034 /* 1035 * Tell update_rq_clock() that we've just updated, 1036 * so we don't do microscopic update in schedule() 1037 * and double the fastpath cost. 1038 */ 1039 rq_clock_skip_update(rq, true); 1040 } 1041 1042 #ifdef CONFIG_SMP 1043 1044 static int find_later_rq(struct task_struct *task); 1045 1046 static int 1047 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags) 1048 { 1049 struct task_struct *curr; 1050 struct rq *rq; 1051 1052 if (sd_flag != SD_BALANCE_WAKE) 1053 goto out; 1054 1055 rq = cpu_rq(cpu); 1056 1057 rcu_read_lock(); 1058 curr = READ_ONCE(rq->curr); /* unlocked access */ 1059 1060 /* 1061 * If we are dealing with a -deadline task, we must 1062 * decide where to wake it up. 1063 * If it has a later deadline and the current task 1064 * on this rq can't move (provided the waking task 1065 * can!) we prefer to send it somewhere else. On the 1066 * other hand, if it has a shorter deadline, we 1067 * try to make it stay here, it might be important. 1068 */ 1069 if (unlikely(dl_task(curr)) && 1070 (curr->nr_cpus_allowed < 2 || 1071 !dl_entity_preempt(&p->dl, &curr->dl)) && 1072 (p->nr_cpus_allowed > 1)) { 1073 int target = find_later_rq(p); 1074 1075 if (target != -1 && 1076 (dl_time_before(p->dl.deadline, 1077 cpu_rq(target)->dl.earliest_dl.curr) || 1078 (cpu_rq(target)->dl.dl_nr_running == 0))) 1079 cpu = target; 1080 } 1081 rcu_read_unlock(); 1082 1083 out: 1084 return cpu; 1085 } 1086 1087 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 1088 { 1089 /* 1090 * Current can't be migrated, useless to reschedule, 1091 * let's hope p can move out. 1092 */ 1093 if (rq->curr->nr_cpus_allowed == 1 || 1094 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1) 1095 return; 1096 1097 /* 1098 * p is migratable, so let's not schedule it and 1099 * see if it is pushed or pulled somewhere else. 1100 */ 1101 if (p->nr_cpus_allowed != 1 && 1102 cpudl_find(&rq->rd->cpudl, p, NULL) != -1) 1103 return; 1104 1105 resched_curr(rq); 1106 } 1107 1108 #endif /* CONFIG_SMP */ 1109 1110 /* 1111 * Only called when both the current and waking task are -deadline 1112 * tasks. 1113 */ 1114 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 1115 int flags) 1116 { 1117 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { 1118 resched_curr(rq); 1119 return; 1120 } 1121 1122 #ifdef CONFIG_SMP 1123 /* 1124 * In the unlikely case current and p have the same deadline 1125 * let us try to decide what's the best thing to do... 1126 */ 1127 if ((p->dl.deadline == rq->curr->dl.deadline) && 1128 !test_tsk_need_resched(rq->curr)) 1129 check_preempt_equal_dl(rq, p); 1130 #endif /* CONFIG_SMP */ 1131 } 1132 1133 #ifdef CONFIG_SCHED_HRTICK 1134 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1135 { 1136 hrtick_start(rq, p->dl.runtime); 1137 } 1138 #else /* !CONFIG_SCHED_HRTICK */ 1139 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1140 { 1141 } 1142 #endif 1143 1144 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq, 1145 struct dl_rq *dl_rq) 1146 { 1147 struct rb_node *left = dl_rq->rb_leftmost; 1148 1149 if (!left) 1150 return NULL; 1151 1152 return rb_entry(left, struct sched_dl_entity, rb_node); 1153 } 1154 1155 struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev) 1156 { 1157 struct sched_dl_entity *dl_se; 1158 struct task_struct *p; 1159 struct dl_rq *dl_rq; 1160 1161 dl_rq = &rq->dl; 1162 1163 if (need_pull_dl_task(rq, prev)) { 1164 /* 1165 * This is OK, because current is on_cpu, which avoids it being 1166 * picked for load-balance and preemption/IRQs are still 1167 * disabled avoiding further scheduler activity on it and we're 1168 * being very careful to re-start the picking loop. 1169 */ 1170 lockdep_unpin_lock(&rq->lock); 1171 pull_dl_task(rq); 1172 lockdep_pin_lock(&rq->lock); 1173 /* 1174 * pull_rt_task() can drop (and re-acquire) rq->lock; this 1175 * means a stop task can slip in, in which case we need to 1176 * re-start task selection. 1177 */ 1178 if (rq->stop && task_on_rq_queued(rq->stop)) 1179 return RETRY_TASK; 1180 } 1181 1182 /* 1183 * When prev is DL, we may throttle it in put_prev_task(). 1184 * So, we update time before we check for dl_nr_running. 1185 */ 1186 if (prev->sched_class == &dl_sched_class) 1187 update_curr_dl(rq); 1188 1189 if (unlikely(!dl_rq->dl_nr_running)) 1190 return NULL; 1191 1192 put_prev_task(rq, prev); 1193 1194 dl_se = pick_next_dl_entity(rq, dl_rq); 1195 BUG_ON(!dl_se); 1196 1197 p = dl_task_of(dl_se); 1198 p->se.exec_start = rq_clock_task(rq); 1199 1200 /* Running task will never be pushed. */ 1201 dequeue_pushable_dl_task(rq, p); 1202 1203 if (hrtick_enabled(rq)) 1204 start_hrtick_dl(rq, p); 1205 1206 queue_push_tasks(rq); 1207 1208 return p; 1209 } 1210 1211 static void put_prev_task_dl(struct rq *rq, struct task_struct *p) 1212 { 1213 update_curr_dl(rq); 1214 1215 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 1216 enqueue_pushable_dl_task(rq, p); 1217 } 1218 1219 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 1220 { 1221 update_curr_dl(rq); 1222 1223 /* 1224 * Even when we have runtime, update_curr_dl() might have resulted in us 1225 * not being the leftmost task anymore. In that case NEED_RESCHED will 1226 * be set and schedule() will start a new hrtick for the next task. 1227 */ 1228 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 && 1229 is_leftmost(p, &rq->dl)) 1230 start_hrtick_dl(rq, p); 1231 } 1232 1233 static void task_fork_dl(struct task_struct *p) 1234 { 1235 /* 1236 * SCHED_DEADLINE tasks cannot fork and this is achieved through 1237 * sched_fork() 1238 */ 1239 } 1240 1241 static void task_dead_dl(struct task_struct *p) 1242 { 1243 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1244 1245 /* 1246 * Since we are TASK_DEAD we won't slip out of the domain! 1247 */ 1248 raw_spin_lock_irq(&dl_b->lock); 1249 /* XXX we should retain the bw until 0-lag */ 1250 dl_b->total_bw -= p->dl.dl_bw; 1251 raw_spin_unlock_irq(&dl_b->lock); 1252 } 1253 1254 static void set_curr_task_dl(struct rq *rq) 1255 { 1256 struct task_struct *p = rq->curr; 1257 1258 p->se.exec_start = rq_clock_task(rq); 1259 1260 /* You can't push away the running task */ 1261 dequeue_pushable_dl_task(rq, p); 1262 } 1263 1264 #ifdef CONFIG_SMP 1265 1266 /* Only try algorithms three times */ 1267 #define DL_MAX_TRIES 3 1268 1269 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) 1270 { 1271 if (!task_running(rq, p) && 1272 cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 1273 return 1; 1274 return 0; 1275 } 1276 1277 /* Returns the second earliest -deadline task, NULL otherwise */ 1278 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu) 1279 { 1280 struct rb_node *next_node = rq->dl.rb_leftmost; 1281 struct sched_dl_entity *dl_se; 1282 struct task_struct *p = NULL; 1283 1284 next_node: 1285 next_node = rb_next(next_node); 1286 if (next_node) { 1287 dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node); 1288 p = dl_task_of(dl_se); 1289 1290 if (pick_dl_task(rq, p, cpu)) 1291 return p; 1292 1293 goto next_node; 1294 } 1295 1296 return NULL; 1297 } 1298 1299 /* 1300 * Return the earliest pushable rq's task, which is suitable to be executed 1301 * on the CPU, NULL otherwise: 1302 */ 1303 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) 1304 { 1305 struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost; 1306 struct task_struct *p = NULL; 1307 1308 if (!has_pushable_dl_tasks(rq)) 1309 return NULL; 1310 1311 next_node: 1312 if (next_node) { 1313 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks); 1314 1315 if (pick_dl_task(rq, p, cpu)) 1316 return p; 1317 1318 next_node = rb_next(next_node); 1319 goto next_node; 1320 } 1321 1322 return NULL; 1323 } 1324 1325 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 1326 1327 static int find_later_rq(struct task_struct *task) 1328 { 1329 struct sched_domain *sd; 1330 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 1331 int this_cpu = smp_processor_id(); 1332 int best_cpu, cpu = task_cpu(task); 1333 1334 /* Make sure the mask is initialized first */ 1335 if (unlikely(!later_mask)) 1336 return -1; 1337 1338 if (task->nr_cpus_allowed == 1) 1339 return -1; 1340 1341 /* 1342 * We have to consider system topology and task affinity 1343 * first, then we can look for a suitable cpu. 1344 */ 1345 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl, 1346 task, later_mask); 1347 if (best_cpu == -1) 1348 return -1; 1349 1350 /* 1351 * If we are here, some target has been found, 1352 * the most suitable of which is cached in best_cpu. 1353 * This is, among the runqueues where the current tasks 1354 * have later deadlines than the task's one, the rq 1355 * with the latest possible one. 1356 * 1357 * Now we check how well this matches with task's 1358 * affinity and system topology. 1359 * 1360 * The last cpu where the task run is our first 1361 * guess, since it is most likely cache-hot there. 1362 */ 1363 if (cpumask_test_cpu(cpu, later_mask)) 1364 return cpu; 1365 /* 1366 * Check if this_cpu is to be skipped (i.e., it is 1367 * not in the mask) or not. 1368 */ 1369 if (!cpumask_test_cpu(this_cpu, later_mask)) 1370 this_cpu = -1; 1371 1372 rcu_read_lock(); 1373 for_each_domain(cpu, sd) { 1374 if (sd->flags & SD_WAKE_AFFINE) { 1375 1376 /* 1377 * If possible, preempting this_cpu is 1378 * cheaper than migrating. 1379 */ 1380 if (this_cpu != -1 && 1381 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1382 rcu_read_unlock(); 1383 return this_cpu; 1384 } 1385 1386 /* 1387 * Last chance: if best_cpu is valid and is 1388 * in the mask, that becomes our choice. 1389 */ 1390 if (best_cpu < nr_cpu_ids && 1391 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) { 1392 rcu_read_unlock(); 1393 return best_cpu; 1394 } 1395 } 1396 } 1397 rcu_read_unlock(); 1398 1399 /* 1400 * At this point, all our guesses failed, we just return 1401 * 'something', and let the caller sort the things out. 1402 */ 1403 if (this_cpu != -1) 1404 return this_cpu; 1405 1406 cpu = cpumask_any(later_mask); 1407 if (cpu < nr_cpu_ids) 1408 return cpu; 1409 1410 return -1; 1411 } 1412 1413 /* Locks the rq it finds */ 1414 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 1415 { 1416 struct rq *later_rq = NULL; 1417 int tries; 1418 int cpu; 1419 1420 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 1421 cpu = find_later_rq(task); 1422 1423 if ((cpu == -1) || (cpu == rq->cpu)) 1424 break; 1425 1426 later_rq = cpu_rq(cpu); 1427 1428 if (later_rq->dl.dl_nr_running && 1429 !dl_time_before(task->dl.deadline, 1430 later_rq->dl.earliest_dl.curr)) { 1431 /* 1432 * Target rq has tasks of equal or earlier deadline, 1433 * retrying does not release any lock and is unlikely 1434 * to yield a different result. 1435 */ 1436 later_rq = NULL; 1437 break; 1438 } 1439 1440 /* Retry if something changed. */ 1441 if (double_lock_balance(rq, later_rq)) { 1442 if (unlikely(task_rq(task) != rq || 1443 !cpumask_test_cpu(later_rq->cpu, 1444 &task->cpus_allowed) || 1445 task_running(rq, task) || 1446 !task_on_rq_queued(task))) { 1447 double_unlock_balance(rq, later_rq); 1448 later_rq = NULL; 1449 break; 1450 } 1451 } 1452 1453 /* 1454 * If the rq we found has no -deadline task, or 1455 * its earliest one has a later deadline than our 1456 * task, the rq is a good one. 1457 */ 1458 if (!later_rq->dl.dl_nr_running || 1459 dl_time_before(task->dl.deadline, 1460 later_rq->dl.earliest_dl.curr)) 1461 break; 1462 1463 /* Otherwise we try again. */ 1464 double_unlock_balance(rq, later_rq); 1465 later_rq = NULL; 1466 } 1467 1468 return later_rq; 1469 } 1470 1471 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 1472 { 1473 struct task_struct *p; 1474 1475 if (!has_pushable_dl_tasks(rq)) 1476 return NULL; 1477 1478 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost, 1479 struct task_struct, pushable_dl_tasks); 1480 1481 BUG_ON(rq->cpu != task_cpu(p)); 1482 BUG_ON(task_current(rq, p)); 1483 BUG_ON(p->nr_cpus_allowed <= 1); 1484 1485 BUG_ON(!task_on_rq_queued(p)); 1486 BUG_ON(!dl_task(p)); 1487 1488 return p; 1489 } 1490 1491 /* 1492 * See if the non running -deadline tasks on this rq 1493 * can be sent to some other CPU where they can preempt 1494 * and start executing. 1495 */ 1496 static int push_dl_task(struct rq *rq) 1497 { 1498 struct task_struct *next_task; 1499 struct rq *later_rq; 1500 int ret = 0; 1501 1502 if (!rq->dl.overloaded) 1503 return 0; 1504 1505 next_task = pick_next_pushable_dl_task(rq); 1506 if (!next_task) 1507 return 0; 1508 1509 retry: 1510 if (unlikely(next_task == rq->curr)) { 1511 WARN_ON(1); 1512 return 0; 1513 } 1514 1515 /* 1516 * If next_task preempts rq->curr, and rq->curr 1517 * can move away, it makes sense to just reschedule 1518 * without going further in pushing next_task. 1519 */ 1520 if (dl_task(rq->curr) && 1521 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && 1522 rq->curr->nr_cpus_allowed > 1) { 1523 resched_curr(rq); 1524 return 0; 1525 } 1526 1527 /* We might release rq lock */ 1528 get_task_struct(next_task); 1529 1530 /* Will lock the rq it'll find */ 1531 later_rq = find_lock_later_rq(next_task, rq); 1532 if (!later_rq) { 1533 struct task_struct *task; 1534 1535 /* 1536 * We must check all this again, since 1537 * find_lock_later_rq releases rq->lock and it is 1538 * then possible that next_task has migrated. 1539 */ 1540 task = pick_next_pushable_dl_task(rq); 1541 if (task_cpu(next_task) == rq->cpu && task == next_task) { 1542 /* 1543 * The task is still there. We don't try 1544 * again, some other cpu will pull it when ready. 1545 */ 1546 goto out; 1547 } 1548 1549 if (!task) 1550 /* No more tasks */ 1551 goto out; 1552 1553 put_task_struct(next_task); 1554 next_task = task; 1555 goto retry; 1556 } 1557 1558 deactivate_task(rq, next_task, 0); 1559 set_task_cpu(next_task, later_rq->cpu); 1560 activate_task(later_rq, next_task, 0); 1561 ret = 1; 1562 1563 resched_curr(later_rq); 1564 1565 double_unlock_balance(rq, later_rq); 1566 1567 out: 1568 put_task_struct(next_task); 1569 1570 return ret; 1571 } 1572 1573 static void push_dl_tasks(struct rq *rq) 1574 { 1575 /* push_dl_task() will return true if it moved a -deadline task */ 1576 while (push_dl_task(rq)) 1577 ; 1578 } 1579 1580 static void pull_dl_task(struct rq *this_rq) 1581 { 1582 int this_cpu = this_rq->cpu, cpu; 1583 struct task_struct *p; 1584 bool resched = false; 1585 struct rq *src_rq; 1586 u64 dmin = LONG_MAX; 1587 1588 if (likely(!dl_overloaded(this_rq))) 1589 return; 1590 1591 /* 1592 * Match the barrier from dl_set_overloaded; this guarantees that if we 1593 * see overloaded we must also see the dlo_mask bit. 1594 */ 1595 smp_rmb(); 1596 1597 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 1598 if (this_cpu == cpu) 1599 continue; 1600 1601 src_rq = cpu_rq(cpu); 1602 1603 /* 1604 * It looks racy, abd it is! However, as in sched_rt.c, 1605 * we are fine with this. 1606 */ 1607 if (this_rq->dl.dl_nr_running && 1608 dl_time_before(this_rq->dl.earliest_dl.curr, 1609 src_rq->dl.earliest_dl.next)) 1610 continue; 1611 1612 /* Might drop this_rq->lock */ 1613 double_lock_balance(this_rq, src_rq); 1614 1615 /* 1616 * If there are no more pullable tasks on the 1617 * rq, we're done with it. 1618 */ 1619 if (src_rq->dl.dl_nr_running <= 1) 1620 goto skip; 1621 1622 p = pick_earliest_pushable_dl_task(src_rq, this_cpu); 1623 1624 /* 1625 * We found a task to be pulled if: 1626 * - it preempts our current (if there's one), 1627 * - it will preempt the last one we pulled (if any). 1628 */ 1629 if (p && dl_time_before(p->dl.deadline, dmin) && 1630 (!this_rq->dl.dl_nr_running || 1631 dl_time_before(p->dl.deadline, 1632 this_rq->dl.earliest_dl.curr))) { 1633 WARN_ON(p == src_rq->curr); 1634 WARN_ON(!task_on_rq_queued(p)); 1635 1636 /* 1637 * Then we pull iff p has actually an earlier 1638 * deadline than the current task of its runqueue. 1639 */ 1640 if (dl_time_before(p->dl.deadline, 1641 src_rq->curr->dl.deadline)) 1642 goto skip; 1643 1644 resched = true; 1645 1646 deactivate_task(src_rq, p, 0); 1647 set_task_cpu(p, this_cpu); 1648 activate_task(this_rq, p, 0); 1649 dmin = p->dl.deadline; 1650 1651 /* Is there any other task even earlier? */ 1652 } 1653 skip: 1654 double_unlock_balance(this_rq, src_rq); 1655 } 1656 1657 if (resched) 1658 resched_curr(this_rq); 1659 } 1660 1661 /* 1662 * Since the task is not running and a reschedule is not going to happen 1663 * anytime soon on its runqueue, we try pushing it away now. 1664 */ 1665 static void task_woken_dl(struct rq *rq, struct task_struct *p) 1666 { 1667 if (!task_running(rq, p) && 1668 !test_tsk_need_resched(rq->curr) && 1669 p->nr_cpus_allowed > 1 && 1670 dl_task(rq->curr) && 1671 (rq->curr->nr_cpus_allowed < 2 || 1672 !dl_entity_preempt(&p->dl, &rq->curr->dl))) { 1673 push_dl_tasks(rq); 1674 } 1675 } 1676 1677 static void set_cpus_allowed_dl(struct task_struct *p, 1678 const struct cpumask *new_mask) 1679 { 1680 struct root_domain *src_rd; 1681 struct rq *rq; 1682 1683 BUG_ON(!dl_task(p)); 1684 1685 rq = task_rq(p); 1686 src_rd = rq->rd; 1687 /* 1688 * Migrating a SCHED_DEADLINE task between exclusive 1689 * cpusets (different root_domains) entails a bandwidth 1690 * update. We already made space for us in the destination 1691 * domain (see cpuset_can_attach()). 1692 */ 1693 if (!cpumask_intersects(src_rd->span, new_mask)) { 1694 struct dl_bw *src_dl_b; 1695 1696 src_dl_b = dl_bw_of(cpu_of(rq)); 1697 /* 1698 * We now free resources of the root_domain we are migrating 1699 * off. In the worst case, sched_setattr() may temporary fail 1700 * until we complete the update. 1701 */ 1702 raw_spin_lock(&src_dl_b->lock); 1703 __dl_clear(src_dl_b, p->dl.dl_bw); 1704 raw_spin_unlock(&src_dl_b->lock); 1705 } 1706 1707 set_cpus_allowed_common(p, new_mask); 1708 } 1709 1710 /* Assumes rq->lock is held */ 1711 static void rq_online_dl(struct rq *rq) 1712 { 1713 if (rq->dl.overloaded) 1714 dl_set_overload(rq); 1715 1716 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu); 1717 if (rq->dl.dl_nr_running > 0) 1718 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1); 1719 } 1720 1721 /* Assumes rq->lock is held */ 1722 static void rq_offline_dl(struct rq *rq) 1723 { 1724 if (rq->dl.overloaded) 1725 dl_clear_overload(rq); 1726 1727 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); 1728 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu); 1729 } 1730 1731 void __init init_sched_dl_class(void) 1732 { 1733 unsigned int i; 1734 1735 for_each_possible_cpu(i) 1736 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 1737 GFP_KERNEL, cpu_to_node(i)); 1738 } 1739 1740 #endif /* CONFIG_SMP */ 1741 1742 static void switched_from_dl(struct rq *rq, struct task_struct *p) 1743 { 1744 /* 1745 * Start the deadline timer; if we switch back to dl before this we'll 1746 * continue consuming our current CBS slice. If we stay outside of 1747 * SCHED_DEADLINE until the deadline passes, the timer will reset the 1748 * task. 1749 */ 1750 if (!start_dl_timer(p)) 1751 __dl_clear_params(p); 1752 1753 /* 1754 * Since this might be the only -deadline task on the rq, 1755 * this is the right place to try to pull some other one 1756 * from an overloaded cpu, if any. 1757 */ 1758 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 1759 return; 1760 1761 queue_pull_task(rq); 1762 } 1763 1764 /* 1765 * When switching to -deadline, we may overload the rq, then 1766 * we try to push someone off, if possible. 1767 */ 1768 static void switched_to_dl(struct rq *rq, struct task_struct *p) 1769 { 1770 if (task_on_rq_queued(p) && rq->curr != p) { 1771 #ifdef CONFIG_SMP 1772 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) 1773 queue_push_tasks(rq); 1774 #else 1775 if (dl_task(rq->curr)) 1776 check_preempt_curr_dl(rq, p, 0); 1777 else 1778 resched_curr(rq); 1779 #endif 1780 } 1781 } 1782 1783 /* 1784 * If the scheduling parameters of a -deadline task changed, 1785 * a push or pull operation might be needed. 1786 */ 1787 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 1788 int oldprio) 1789 { 1790 if (task_on_rq_queued(p) || rq->curr == p) { 1791 #ifdef CONFIG_SMP 1792 /* 1793 * This might be too much, but unfortunately 1794 * we don't have the old deadline value, and 1795 * we can't argue if the task is increasing 1796 * or lowering its prio, so... 1797 */ 1798 if (!rq->dl.overloaded) 1799 queue_pull_task(rq); 1800 1801 /* 1802 * If we now have a earlier deadline task than p, 1803 * then reschedule, provided p is still on this 1804 * runqueue. 1805 */ 1806 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) 1807 resched_curr(rq); 1808 #else 1809 /* 1810 * Again, we don't know if p has a earlier 1811 * or later deadline, so let's blindly set a 1812 * (maybe not needed) rescheduling point. 1813 */ 1814 resched_curr(rq); 1815 #endif /* CONFIG_SMP */ 1816 } else 1817 switched_to_dl(rq, p); 1818 } 1819 1820 const struct sched_class dl_sched_class = { 1821 .next = &rt_sched_class, 1822 .enqueue_task = enqueue_task_dl, 1823 .dequeue_task = dequeue_task_dl, 1824 .yield_task = yield_task_dl, 1825 1826 .check_preempt_curr = check_preempt_curr_dl, 1827 1828 .pick_next_task = pick_next_task_dl, 1829 .put_prev_task = put_prev_task_dl, 1830 1831 #ifdef CONFIG_SMP 1832 .select_task_rq = select_task_rq_dl, 1833 .set_cpus_allowed = set_cpus_allowed_dl, 1834 .rq_online = rq_online_dl, 1835 .rq_offline = rq_offline_dl, 1836 .task_woken = task_woken_dl, 1837 #endif 1838 1839 .set_curr_task = set_curr_task_dl, 1840 .task_tick = task_tick_dl, 1841 .task_fork = task_fork_dl, 1842 .task_dead = task_dead_dl, 1843 1844 .prio_changed = prio_changed_dl, 1845 .switched_from = switched_from_dl, 1846 .switched_to = switched_to_dl, 1847 1848 .update_curr = update_curr_dl, 1849 }; 1850 1851 #ifdef CONFIG_SCHED_DEBUG 1852 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 1853 1854 void print_dl_stats(struct seq_file *m, int cpu) 1855 { 1856 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 1857 } 1858 #endif /* CONFIG_SCHED_DEBUG */ 1859