xref: /openbmc/linux/kernel/sched/deadline.c (revision 9be08a27)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Deadline Scheduling Class (SCHED_DEADLINE)
4  *
5  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6  *
7  * Tasks that periodically executes their instances for less than their
8  * runtime won't miss any of their deadlines.
9  * Tasks that are not periodic or sporadic or that tries to execute more
10  * than their reserved bandwidth will be slowed down (and may potentially
11  * miss some of their deadlines), and won't affect any other task.
12  *
13  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14  *                    Juri Lelli <juri.lelli@gmail.com>,
15  *                    Michael Trimarchi <michael@amarulasolutions.com>,
16  *                    Fabio Checconi <fchecconi@gmail.com>
17  */
18 #include "sched.h"
19 #include "pelt.h"
20 
21 struct dl_bandwidth def_dl_bandwidth;
22 
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24 {
25 	return container_of(dl_se, struct task_struct, dl);
26 }
27 
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29 {
30 	return container_of(dl_rq, struct rq, dl);
31 }
32 
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34 {
35 	struct task_struct *p = dl_task_of(dl_se);
36 	struct rq *rq = task_rq(p);
37 
38 	return &rq->dl;
39 }
40 
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42 {
43 	return !RB_EMPTY_NODE(&dl_se->rb_node);
44 }
45 
46 #ifdef CONFIG_SMP
47 static inline struct dl_bw *dl_bw_of(int i)
48 {
49 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
50 			 "sched RCU must be held");
51 	return &cpu_rq(i)->rd->dl_bw;
52 }
53 
54 static inline int dl_bw_cpus(int i)
55 {
56 	struct root_domain *rd = cpu_rq(i)->rd;
57 	int cpus = 0;
58 
59 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
60 			 "sched RCU must be held");
61 	for_each_cpu_and(i, rd->span, cpu_active_mask)
62 		cpus++;
63 
64 	return cpus;
65 }
66 #else
67 static inline struct dl_bw *dl_bw_of(int i)
68 {
69 	return &cpu_rq(i)->dl.dl_bw;
70 }
71 
72 static inline int dl_bw_cpus(int i)
73 {
74 	return 1;
75 }
76 #endif
77 
78 static inline
79 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
80 {
81 	u64 old = dl_rq->running_bw;
82 
83 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
84 	dl_rq->running_bw += dl_bw;
85 	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
86 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
87 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
88 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
89 }
90 
91 static inline
92 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
93 {
94 	u64 old = dl_rq->running_bw;
95 
96 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
97 	dl_rq->running_bw -= dl_bw;
98 	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
99 	if (dl_rq->running_bw > old)
100 		dl_rq->running_bw = 0;
101 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
102 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
103 }
104 
105 static inline
106 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
107 {
108 	u64 old = dl_rq->this_bw;
109 
110 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
111 	dl_rq->this_bw += dl_bw;
112 	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
113 }
114 
115 static inline
116 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
117 {
118 	u64 old = dl_rq->this_bw;
119 
120 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
121 	dl_rq->this_bw -= dl_bw;
122 	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
123 	if (dl_rq->this_bw > old)
124 		dl_rq->this_bw = 0;
125 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
126 }
127 
128 static inline
129 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
130 {
131 	if (!dl_entity_is_special(dl_se))
132 		__add_rq_bw(dl_se->dl_bw, dl_rq);
133 }
134 
135 static inline
136 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
137 {
138 	if (!dl_entity_is_special(dl_se))
139 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
140 }
141 
142 static inline
143 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
144 {
145 	if (!dl_entity_is_special(dl_se))
146 		__add_running_bw(dl_se->dl_bw, dl_rq);
147 }
148 
149 static inline
150 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
151 {
152 	if (!dl_entity_is_special(dl_se))
153 		__sub_running_bw(dl_se->dl_bw, dl_rq);
154 }
155 
156 void dl_change_utilization(struct task_struct *p, u64 new_bw)
157 {
158 	struct rq *rq;
159 
160 	BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
161 
162 	if (task_on_rq_queued(p))
163 		return;
164 
165 	rq = task_rq(p);
166 	if (p->dl.dl_non_contending) {
167 		sub_running_bw(&p->dl, &rq->dl);
168 		p->dl.dl_non_contending = 0;
169 		/*
170 		 * If the timer handler is currently running and the
171 		 * timer cannot be cancelled, inactive_task_timer()
172 		 * will see that dl_not_contending is not set, and
173 		 * will not touch the rq's active utilization,
174 		 * so we are still safe.
175 		 */
176 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
177 			put_task_struct(p);
178 	}
179 	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
180 	__add_rq_bw(new_bw, &rq->dl);
181 }
182 
183 /*
184  * The utilization of a task cannot be immediately removed from
185  * the rq active utilization (running_bw) when the task blocks.
186  * Instead, we have to wait for the so called "0-lag time".
187  *
188  * If a task blocks before the "0-lag time", a timer (the inactive
189  * timer) is armed, and running_bw is decreased when the timer
190  * fires.
191  *
192  * If the task wakes up again before the inactive timer fires,
193  * the timer is cancelled, whereas if the task wakes up after the
194  * inactive timer fired (and running_bw has been decreased) the
195  * task's utilization has to be added to running_bw again.
196  * A flag in the deadline scheduling entity (dl_non_contending)
197  * is used to avoid race conditions between the inactive timer handler
198  * and task wakeups.
199  *
200  * The following diagram shows how running_bw is updated. A task is
201  * "ACTIVE" when its utilization contributes to running_bw; an
202  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
203  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
204  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
205  * time already passed, which does not contribute to running_bw anymore.
206  *                              +------------------+
207  *             wakeup           |    ACTIVE        |
208  *          +------------------>+   contending     |
209  *          | add_running_bw    |                  |
210  *          |                   +----+------+------+
211  *          |                        |      ^
212  *          |                dequeue |      |
213  * +--------+-------+                |      |
214  * |                |   t >= 0-lag   |      | wakeup
215  * |    INACTIVE    |<---------------+      |
216  * |                | sub_running_bw |      |
217  * +--------+-------+                |      |
218  *          ^                        |      |
219  *          |              t < 0-lag |      |
220  *          |                        |      |
221  *          |                        V      |
222  *          |                   +----+------+------+
223  *          | sub_running_bw    |    ACTIVE        |
224  *          +-------------------+                  |
225  *            inactive timer    |  non contending  |
226  *            fired             +------------------+
227  *
228  * The task_non_contending() function is invoked when a task
229  * blocks, and checks if the 0-lag time already passed or
230  * not (in the first case, it directly updates running_bw;
231  * in the second case, it arms the inactive timer).
232  *
233  * The task_contending() function is invoked when a task wakes
234  * up, and checks if the task is still in the "ACTIVE non contending"
235  * state or not (in the second case, it updates running_bw).
236  */
237 static void task_non_contending(struct task_struct *p)
238 {
239 	struct sched_dl_entity *dl_se = &p->dl;
240 	struct hrtimer *timer = &dl_se->inactive_timer;
241 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
242 	struct rq *rq = rq_of_dl_rq(dl_rq);
243 	s64 zerolag_time;
244 
245 	/*
246 	 * If this is a non-deadline task that has been boosted,
247 	 * do nothing
248 	 */
249 	if (dl_se->dl_runtime == 0)
250 		return;
251 
252 	if (dl_entity_is_special(dl_se))
253 		return;
254 
255 	WARN_ON(hrtimer_active(&dl_se->inactive_timer));
256 	WARN_ON(dl_se->dl_non_contending);
257 
258 	zerolag_time = dl_se->deadline -
259 		 div64_long((dl_se->runtime * dl_se->dl_period),
260 			dl_se->dl_runtime);
261 
262 	/*
263 	 * Using relative times instead of the absolute "0-lag time"
264 	 * allows to simplify the code
265 	 */
266 	zerolag_time -= rq_clock(rq);
267 
268 	/*
269 	 * If the "0-lag time" already passed, decrease the active
270 	 * utilization now, instead of starting a timer
271 	 */
272 	if (zerolag_time < 0) {
273 		if (dl_task(p))
274 			sub_running_bw(dl_se, dl_rq);
275 		if (!dl_task(p) || p->state == TASK_DEAD) {
276 			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
277 
278 			if (p->state == TASK_DEAD)
279 				sub_rq_bw(&p->dl, &rq->dl);
280 			raw_spin_lock(&dl_b->lock);
281 			__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
282 			__dl_clear_params(p);
283 			raw_spin_unlock(&dl_b->lock);
284 		}
285 
286 		return;
287 	}
288 
289 	dl_se->dl_non_contending = 1;
290 	get_task_struct(p);
291 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL);
292 }
293 
294 static void task_contending(struct sched_dl_entity *dl_se, int flags)
295 {
296 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
297 
298 	/*
299 	 * If this is a non-deadline task that has been boosted,
300 	 * do nothing
301 	 */
302 	if (dl_se->dl_runtime == 0)
303 		return;
304 
305 	if (flags & ENQUEUE_MIGRATED)
306 		add_rq_bw(dl_se, dl_rq);
307 
308 	if (dl_se->dl_non_contending) {
309 		dl_se->dl_non_contending = 0;
310 		/*
311 		 * If the timer handler is currently running and the
312 		 * timer cannot be cancelled, inactive_task_timer()
313 		 * will see that dl_not_contending is not set, and
314 		 * will not touch the rq's active utilization,
315 		 * so we are still safe.
316 		 */
317 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
318 			put_task_struct(dl_task_of(dl_se));
319 	} else {
320 		/*
321 		 * Since "dl_non_contending" is not set, the
322 		 * task's utilization has already been removed from
323 		 * active utilization (either when the task blocked,
324 		 * when the "inactive timer" fired).
325 		 * So, add it back.
326 		 */
327 		add_running_bw(dl_se, dl_rq);
328 	}
329 }
330 
331 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
332 {
333 	struct sched_dl_entity *dl_se = &p->dl;
334 
335 	return dl_rq->root.rb_leftmost == &dl_se->rb_node;
336 }
337 
338 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
339 {
340 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
341 	dl_b->dl_period = period;
342 	dl_b->dl_runtime = runtime;
343 }
344 
345 void init_dl_bw(struct dl_bw *dl_b)
346 {
347 	raw_spin_lock_init(&dl_b->lock);
348 	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
349 	if (global_rt_runtime() == RUNTIME_INF)
350 		dl_b->bw = -1;
351 	else
352 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
353 	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
354 	dl_b->total_bw = 0;
355 }
356 
357 void init_dl_rq(struct dl_rq *dl_rq)
358 {
359 	dl_rq->root = RB_ROOT_CACHED;
360 
361 #ifdef CONFIG_SMP
362 	/* zero means no -deadline tasks */
363 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
364 
365 	dl_rq->dl_nr_migratory = 0;
366 	dl_rq->overloaded = 0;
367 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
368 #else
369 	init_dl_bw(&dl_rq->dl_bw);
370 #endif
371 
372 	dl_rq->running_bw = 0;
373 	dl_rq->this_bw = 0;
374 	init_dl_rq_bw_ratio(dl_rq);
375 }
376 
377 #ifdef CONFIG_SMP
378 
379 static inline int dl_overloaded(struct rq *rq)
380 {
381 	return atomic_read(&rq->rd->dlo_count);
382 }
383 
384 static inline void dl_set_overload(struct rq *rq)
385 {
386 	if (!rq->online)
387 		return;
388 
389 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
390 	/*
391 	 * Must be visible before the overload count is
392 	 * set (as in sched_rt.c).
393 	 *
394 	 * Matched by the barrier in pull_dl_task().
395 	 */
396 	smp_wmb();
397 	atomic_inc(&rq->rd->dlo_count);
398 }
399 
400 static inline void dl_clear_overload(struct rq *rq)
401 {
402 	if (!rq->online)
403 		return;
404 
405 	atomic_dec(&rq->rd->dlo_count);
406 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
407 }
408 
409 static void update_dl_migration(struct dl_rq *dl_rq)
410 {
411 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
412 		if (!dl_rq->overloaded) {
413 			dl_set_overload(rq_of_dl_rq(dl_rq));
414 			dl_rq->overloaded = 1;
415 		}
416 	} else if (dl_rq->overloaded) {
417 		dl_clear_overload(rq_of_dl_rq(dl_rq));
418 		dl_rq->overloaded = 0;
419 	}
420 }
421 
422 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
423 {
424 	struct task_struct *p = dl_task_of(dl_se);
425 
426 	if (p->nr_cpus_allowed > 1)
427 		dl_rq->dl_nr_migratory++;
428 
429 	update_dl_migration(dl_rq);
430 }
431 
432 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
433 {
434 	struct task_struct *p = dl_task_of(dl_se);
435 
436 	if (p->nr_cpus_allowed > 1)
437 		dl_rq->dl_nr_migratory--;
438 
439 	update_dl_migration(dl_rq);
440 }
441 
442 /*
443  * The list of pushable -deadline task is not a plist, like in
444  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
445  */
446 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
447 {
448 	struct dl_rq *dl_rq = &rq->dl;
449 	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
450 	struct rb_node *parent = NULL;
451 	struct task_struct *entry;
452 	bool leftmost = true;
453 
454 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
455 
456 	while (*link) {
457 		parent = *link;
458 		entry = rb_entry(parent, struct task_struct,
459 				 pushable_dl_tasks);
460 		if (dl_entity_preempt(&p->dl, &entry->dl))
461 			link = &parent->rb_left;
462 		else {
463 			link = &parent->rb_right;
464 			leftmost = false;
465 		}
466 	}
467 
468 	if (leftmost)
469 		dl_rq->earliest_dl.next = p->dl.deadline;
470 
471 	rb_link_node(&p->pushable_dl_tasks, parent, link);
472 	rb_insert_color_cached(&p->pushable_dl_tasks,
473 			       &dl_rq->pushable_dl_tasks_root, leftmost);
474 }
475 
476 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
477 {
478 	struct dl_rq *dl_rq = &rq->dl;
479 
480 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
481 		return;
482 
483 	if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
484 		struct rb_node *next_node;
485 
486 		next_node = rb_next(&p->pushable_dl_tasks);
487 		if (next_node) {
488 			dl_rq->earliest_dl.next = rb_entry(next_node,
489 				struct task_struct, pushable_dl_tasks)->dl.deadline;
490 		}
491 	}
492 
493 	rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
494 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
495 }
496 
497 static inline int has_pushable_dl_tasks(struct rq *rq)
498 {
499 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
500 }
501 
502 static int push_dl_task(struct rq *rq);
503 
504 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
505 {
506 	return dl_task(prev);
507 }
508 
509 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
510 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
511 
512 static void push_dl_tasks(struct rq *);
513 static void pull_dl_task(struct rq *);
514 
515 static inline void deadline_queue_push_tasks(struct rq *rq)
516 {
517 	if (!has_pushable_dl_tasks(rq))
518 		return;
519 
520 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
521 }
522 
523 static inline void deadline_queue_pull_task(struct rq *rq)
524 {
525 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
526 }
527 
528 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
529 
530 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
531 {
532 	struct rq *later_rq = NULL;
533 
534 	later_rq = find_lock_later_rq(p, rq);
535 	if (!later_rq) {
536 		int cpu;
537 
538 		/*
539 		 * If we cannot preempt any rq, fall back to pick any
540 		 * online CPU:
541 		 */
542 		cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
543 		if (cpu >= nr_cpu_ids) {
544 			/*
545 			 * Failed to find any suitable CPU.
546 			 * The task will never come back!
547 			 */
548 			BUG_ON(dl_bandwidth_enabled());
549 
550 			/*
551 			 * If admission control is disabled we
552 			 * try a little harder to let the task
553 			 * run.
554 			 */
555 			cpu = cpumask_any(cpu_active_mask);
556 		}
557 		later_rq = cpu_rq(cpu);
558 		double_lock_balance(rq, later_rq);
559 	}
560 
561 	set_task_cpu(p, later_rq->cpu);
562 	double_unlock_balance(later_rq, rq);
563 
564 	return later_rq;
565 }
566 
567 #else
568 
569 static inline
570 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
571 {
572 }
573 
574 static inline
575 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
576 {
577 }
578 
579 static inline
580 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
581 {
582 }
583 
584 static inline
585 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
586 {
587 }
588 
589 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
590 {
591 	return false;
592 }
593 
594 static inline void pull_dl_task(struct rq *rq)
595 {
596 }
597 
598 static inline void deadline_queue_push_tasks(struct rq *rq)
599 {
600 }
601 
602 static inline void deadline_queue_pull_task(struct rq *rq)
603 {
604 }
605 #endif /* CONFIG_SMP */
606 
607 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
608 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
609 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
610 
611 /*
612  * We are being explicitly informed that a new instance is starting,
613  * and this means that:
614  *  - the absolute deadline of the entity has to be placed at
615  *    current time + relative deadline;
616  *  - the runtime of the entity has to be set to the maximum value.
617  *
618  * The capability of specifying such event is useful whenever a -deadline
619  * entity wants to (try to!) synchronize its behaviour with the scheduler's
620  * one, and to (try to!) reconcile itself with its own scheduling
621  * parameters.
622  */
623 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
624 {
625 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
626 	struct rq *rq = rq_of_dl_rq(dl_rq);
627 
628 	WARN_ON(dl_se->dl_boosted);
629 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
630 
631 	/*
632 	 * We are racing with the deadline timer. So, do nothing because
633 	 * the deadline timer handler will take care of properly recharging
634 	 * the runtime and postponing the deadline
635 	 */
636 	if (dl_se->dl_throttled)
637 		return;
638 
639 	/*
640 	 * We use the regular wall clock time to set deadlines in the
641 	 * future; in fact, we must consider execution overheads (time
642 	 * spent on hardirq context, etc.).
643 	 */
644 	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
645 	dl_se->runtime = dl_se->dl_runtime;
646 }
647 
648 /*
649  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
650  * possibility of a entity lasting more than what it declared, and thus
651  * exhausting its runtime.
652  *
653  * Here we are interested in making runtime overrun possible, but we do
654  * not want a entity which is misbehaving to affect the scheduling of all
655  * other entities.
656  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
657  * is used, in order to confine each entity within its own bandwidth.
658  *
659  * This function deals exactly with that, and ensures that when the runtime
660  * of a entity is replenished, its deadline is also postponed. That ensures
661  * the overrunning entity can't interfere with other entity in the system and
662  * can't make them miss their deadlines. Reasons why this kind of overruns
663  * could happen are, typically, a entity voluntarily trying to overcome its
664  * runtime, or it just underestimated it during sched_setattr().
665  */
666 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
667 				struct sched_dl_entity *pi_se)
668 {
669 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
670 	struct rq *rq = rq_of_dl_rq(dl_rq);
671 
672 	BUG_ON(pi_se->dl_runtime <= 0);
673 
674 	/*
675 	 * This could be the case for a !-dl task that is boosted.
676 	 * Just go with full inherited parameters.
677 	 */
678 	if (dl_se->dl_deadline == 0) {
679 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
680 		dl_se->runtime = pi_se->dl_runtime;
681 	}
682 
683 	if (dl_se->dl_yielded && dl_se->runtime > 0)
684 		dl_se->runtime = 0;
685 
686 	/*
687 	 * We keep moving the deadline away until we get some
688 	 * available runtime for the entity. This ensures correct
689 	 * handling of situations where the runtime overrun is
690 	 * arbitrary large.
691 	 */
692 	while (dl_se->runtime <= 0) {
693 		dl_se->deadline += pi_se->dl_period;
694 		dl_se->runtime += pi_se->dl_runtime;
695 	}
696 
697 	/*
698 	 * At this point, the deadline really should be "in
699 	 * the future" with respect to rq->clock. If it's
700 	 * not, we are, for some reason, lagging too much!
701 	 * Anyway, after having warn userspace abut that,
702 	 * we still try to keep the things running by
703 	 * resetting the deadline and the budget of the
704 	 * entity.
705 	 */
706 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
707 		printk_deferred_once("sched: DL replenish lagged too much\n");
708 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
709 		dl_se->runtime = pi_se->dl_runtime;
710 	}
711 
712 	if (dl_se->dl_yielded)
713 		dl_se->dl_yielded = 0;
714 	if (dl_se->dl_throttled)
715 		dl_se->dl_throttled = 0;
716 }
717 
718 /*
719  * Here we check if --at time t-- an entity (which is probably being
720  * [re]activated or, in general, enqueued) can use its remaining runtime
721  * and its current deadline _without_ exceeding the bandwidth it is
722  * assigned (function returns true if it can't). We are in fact applying
723  * one of the CBS rules: when a task wakes up, if the residual runtime
724  * over residual deadline fits within the allocated bandwidth, then we
725  * can keep the current (absolute) deadline and residual budget without
726  * disrupting the schedulability of the system. Otherwise, we should
727  * refill the runtime and set the deadline a period in the future,
728  * because keeping the current (absolute) deadline of the task would
729  * result in breaking guarantees promised to other tasks (refer to
730  * Documentation/scheduler/sched-deadline.txt for more informations).
731  *
732  * This function returns true if:
733  *
734  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
735  *
736  * IOW we can't recycle current parameters.
737  *
738  * Notice that the bandwidth check is done against the deadline. For
739  * task with deadline equal to period this is the same of using
740  * dl_period instead of dl_deadline in the equation above.
741  */
742 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
743 			       struct sched_dl_entity *pi_se, u64 t)
744 {
745 	u64 left, right;
746 
747 	/*
748 	 * left and right are the two sides of the equation above,
749 	 * after a bit of shuffling to use multiplications instead
750 	 * of divisions.
751 	 *
752 	 * Note that none of the time values involved in the two
753 	 * multiplications are absolute: dl_deadline and dl_runtime
754 	 * are the relative deadline and the maximum runtime of each
755 	 * instance, runtime is the runtime left for the last instance
756 	 * and (deadline - t), since t is rq->clock, is the time left
757 	 * to the (absolute) deadline. Even if overflowing the u64 type
758 	 * is very unlikely to occur in both cases, here we scale down
759 	 * as we want to avoid that risk at all. Scaling down by 10
760 	 * means that we reduce granularity to 1us. We are fine with it,
761 	 * since this is only a true/false check and, anyway, thinking
762 	 * of anything below microseconds resolution is actually fiction
763 	 * (but still we want to give the user that illusion >;).
764 	 */
765 	left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
766 	right = ((dl_se->deadline - t) >> DL_SCALE) *
767 		(pi_se->dl_runtime >> DL_SCALE);
768 
769 	return dl_time_before(right, left);
770 }
771 
772 /*
773  * Revised wakeup rule [1]: For self-suspending tasks, rather then
774  * re-initializing task's runtime and deadline, the revised wakeup
775  * rule adjusts the task's runtime to avoid the task to overrun its
776  * density.
777  *
778  * Reasoning: a task may overrun the density if:
779  *    runtime / (deadline - t) > dl_runtime / dl_deadline
780  *
781  * Therefore, runtime can be adjusted to:
782  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
783  *
784  * In such way that runtime will be equal to the maximum density
785  * the task can use without breaking any rule.
786  *
787  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
788  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
789  */
790 static void
791 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
792 {
793 	u64 laxity = dl_se->deadline - rq_clock(rq);
794 
795 	/*
796 	 * If the task has deadline < period, and the deadline is in the past,
797 	 * it should already be throttled before this check.
798 	 *
799 	 * See update_dl_entity() comments for further details.
800 	 */
801 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
802 
803 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
804 }
805 
806 /*
807  * Regarding the deadline, a task with implicit deadline has a relative
808  * deadline == relative period. A task with constrained deadline has a
809  * relative deadline <= relative period.
810  *
811  * We support constrained deadline tasks. However, there are some restrictions
812  * applied only for tasks which do not have an implicit deadline. See
813  * update_dl_entity() to know more about such restrictions.
814  *
815  * The dl_is_implicit() returns true if the task has an implicit deadline.
816  */
817 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
818 {
819 	return dl_se->dl_deadline == dl_se->dl_period;
820 }
821 
822 /*
823  * When a deadline entity is placed in the runqueue, its runtime and deadline
824  * might need to be updated. This is done by a CBS wake up rule. There are two
825  * different rules: 1) the original CBS; and 2) the Revisited CBS.
826  *
827  * When the task is starting a new period, the Original CBS is used. In this
828  * case, the runtime is replenished and a new absolute deadline is set.
829  *
830  * When a task is queued before the begin of the next period, using the
831  * remaining runtime and deadline could make the entity to overflow, see
832  * dl_entity_overflow() to find more about runtime overflow. When such case
833  * is detected, the runtime and deadline need to be updated.
834  *
835  * If the task has an implicit deadline, i.e., deadline == period, the Original
836  * CBS is applied. the runtime is replenished and a new absolute deadline is
837  * set, as in the previous cases.
838  *
839  * However, the Original CBS does not work properly for tasks with
840  * deadline < period, which are said to have a constrained deadline. By
841  * applying the Original CBS, a constrained deadline task would be able to run
842  * runtime/deadline in a period. With deadline < period, the task would
843  * overrun the runtime/period allowed bandwidth, breaking the admission test.
844  *
845  * In order to prevent this misbehave, the Revisited CBS is used for
846  * constrained deadline tasks when a runtime overflow is detected. In the
847  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
848  * the remaining runtime of the task is reduced to avoid runtime overflow.
849  * Please refer to the comments update_dl_revised_wakeup() function to find
850  * more about the Revised CBS rule.
851  */
852 static void update_dl_entity(struct sched_dl_entity *dl_se,
853 			     struct sched_dl_entity *pi_se)
854 {
855 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
856 	struct rq *rq = rq_of_dl_rq(dl_rq);
857 
858 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
859 	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
860 
861 		if (unlikely(!dl_is_implicit(dl_se) &&
862 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
863 			     !dl_se->dl_boosted)){
864 			update_dl_revised_wakeup(dl_se, rq);
865 			return;
866 		}
867 
868 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
869 		dl_se->runtime = pi_se->dl_runtime;
870 	}
871 }
872 
873 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
874 {
875 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
876 }
877 
878 /*
879  * If the entity depleted all its runtime, and if we want it to sleep
880  * while waiting for some new execution time to become available, we
881  * set the bandwidth replenishment timer to the replenishment instant
882  * and try to activate it.
883  *
884  * Notice that it is important for the caller to know if the timer
885  * actually started or not (i.e., the replenishment instant is in
886  * the future or in the past).
887  */
888 static int start_dl_timer(struct task_struct *p)
889 {
890 	struct sched_dl_entity *dl_se = &p->dl;
891 	struct hrtimer *timer = &dl_se->dl_timer;
892 	struct rq *rq = task_rq(p);
893 	ktime_t now, act;
894 	s64 delta;
895 
896 	lockdep_assert_held(&rq->lock);
897 
898 	/*
899 	 * We want the timer to fire at the deadline, but considering
900 	 * that it is actually coming from rq->clock and not from
901 	 * hrtimer's time base reading.
902 	 */
903 	act = ns_to_ktime(dl_next_period(dl_se));
904 	now = hrtimer_cb_get_time(timer);
905 	delta = ktime_to_ns(now) - rq_clock(rq);
906 	act = ktime_add_ns(act, delta);
907 
908 	/*
909 	 * If the expiry time already passed, e.g., because the value
910 	 * chosen as the deadline is too small, don't even try to
911 	 * start the timer in the past!
912 	 */
913 	if (ktime_us_delta(act, now) < 0)
914 		return 0;
915 
916 	/*
917 	 * !enqueued will guarantee another callback; even if one is already in
918 	 * progress. This ensures a balanced {get,put}_task_struct().
919 	 *
920 	 * The race against __run_timer() clearing the enqueued state is
921 	 * harmless because we're holding task_rq()->lock, therefore the timer
922 	 * expiring after we've done the check will wait on its task_rq_lock()
923 	 * and observe our state.
924 	 */
925 	if (!hrtimer_is_queued(timer)) {
926 		get_task_struct(p);
927 		hrtimer_start(timer, act, HRTIMER_MODE_ABS);
928 	}
929 
930 	return 1;
931 }
932 
933 /*
934  * This is the bandwidth enforcement timer callback. If here, we know
935  * a task is not on its dl_rq, since the fact that the timer was running
936  * means the task is throttled and needs a runtime replenishment.
937  *
938  * However, what we actually do depends on the fact the task is active,
939  * (it is on its rq) or has been removed from there by a call to
940  * dequeue_task_dl(). In the former case we must issue the runtime
941  * replenishment and add the task back to the dl_rq; in the latter, we just
942  * do nothing but clearing dl_throttled, so that runtime and deadline
943  * updating (and the queueing back to dl_rq) will be done by the
944  * next call to enqueue_task_dl().
945  */
946 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
947 {
948 	struct sched_dl_entity *dl_se = container_of(timer,
949 						     struct sched_dl_entity,
950 						     dl_timer);
951 	struct task_struct *p = dl_task_of(dl_se);
952 	struct rq_flags rf;
953 	struct rq *rq;
954 
955 	rq = task_rq_lock(p, &rf);
956 
957 	/*
958 	 * The task might have changed its scheduling policy to something
959 	 * different than SCHED_DEADLINE (through switched_from_dl()).
960 	 */
961 	if (!dl_task(p))
962 		goto unlock;
963 
964 	/*
965 	 * The task might have been boosted by someone else and might be in the
966 	 * boosting/deboosting path, its not throttled.
967 	 */
968 	if (dl_se->dl_boosted)
969 		goto unlock;
970 
971 	/*
972 	 * Spurious timer due to start_dl_timer() race; or we already received
973 	 * a replenishment from rt_mutex_setprio().
974 	 */
975 	if (!dl_se->dl_throttled)
976 		goto unlock;
977 
978 	sched_clock_tick();
979 	update_rq_clock(rq);
980 
981 	/*
982 	 * If the throttle happened during sched-out; like:
983 	 *
984 	 *   schedule()
985 	 *     deactivate_task()
986 	 *       dequeue_task_dl()
987 	 *         update_curr_dl()
988 	 *           start_dl_timer()
989 	 *         __dequeue_task_dl()
990 	 *     prev->on_rq = 0;
991 	 *
992 	 * We can be both throttled and !queued. Replenish the counter
993 	 * but do not enqueue -- wait for our wakeup to do that.
994 	 */
995 	if (!task_on_rq_queued(p)) {
996 		replenish_dl_entity(dl_se, dl_se);
997 		goto unlock;
998 	}
999 
1000 #ifdef CONFIG_SMP
1001 	if (unlikely(!rq->online)) {
1002 		/*
1003 		 * If the runqueue is no longer available, migrate the
1004 		 * task elsewhere. This necessarily changes rq.
1005 		 */
1006 		lockdep_unpin_lock(&rq->lock, rf.cookie);
1007 		rq = dl_task_offline_migration(rq, p);
1008 		rf.cookie = lockdep_pin_lock(&rq->lock);
1009 		update_rq_clock(rq);
1010 
1011 		/*
1012 		 * Now that the task has been migrated to the new RQ and we
1013 		 * have that locked, proceed as normal and enqueue the task
1014 		 * there.
1015 		 */
1016 	}
1017 #endif
1018 
1019 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1020 	if (dl_task(rq->curr))
1021 		check_preempt_curr_dl(rq, p, 0);
1022 	else
1023 		resched_curr(rq);
1024 
1025 #ifdef CONFIG_SMP
1026 	/*
1027 	 * Queueing this task back might have overloaded rq, check if we need
1028 	 * to kick someone away.
1029 	 */
1030 	if (has_pushable_dl_tasks(rq)) {
1031 		/*
1032 		 * Nothing relies on rq->lock after this, so its safe to drop
1033 		 * rq->lock.
1034 		 */
1035 		rq_unpin_lock(rq, &rf);
1036 		push_dl_task(rq);
1037 		rq_repin_lock(rq, &rf);
1038 	}
1039 #endif
1040 
1041 unlock:
1042 	task_rq_unlock(rq, p, &rf);
1043 
1044 	/*
1045 	 * This can free the task_struct, including this hrtimer, do not touch
1046 	 * anything related to that after this.
1047 	 */
1048 	put_task_struct(p);
1049 
1050 	return HRTIMER_NORESTART;
1051 }
1052 
1053 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1054 {
1055 	struct hrtimer *timer = &dl_se->dl_timer;
1056 
1057 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1058 	timer->function = dl_task_timer;
1059 }
1060 
1061 /*
1062  * During the activation, CBS checks if it can reuse the current task's
1063  * runtime and period. If the deadline of the task is in the past, CBS
1064  * cannot use the runtime, and so it replenishes the task. This rule
1065  * works fine for implicit deadline tasks (deadline == period), and the
1066  * CBS was designed for implicit deadline tasks. However, a task with
1067  * constrained deadline (deadine < period) might be awakened after the
1068  * deadline, but before the next period. In this case, replenishing the
1069  * task would allow it to run for runtime / deadline. As in this case
1070  * deadline < period, CBS enables a task to run for more than the
1071  * runtime / period. In a very loaded system, this can cause a domino
1072  * effect, making other tasks miss their deadlines.
1073  *
1074  * To avoid this problem, in the activation of a constrained deadline
1075  * task after the deadline but before the next period, throttle the
1076  * task and set the replenishing timer to the begin of the next period,
1077  * unless it is boosted.
1078  */
1079 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1080 {
1081 	struct task_struct *p = dl_task_of(dl_se);
1082 	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1083 
1084 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1085 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1086 		if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1087 			return;
1088 		dl_se->dl_throttled = 1;
1089 		if (dl_se->runtime > 0)
1090 			dl_se->runtime = 0;
1091 	}
1092 }
1093 
1094 static
1095 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1096 {
1097 	return (dl_se->runtime <= 0);
1098 }
1099 
1100 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1101 
1102 /*
1103  * This function implements the GRUB accounting rule:
1104  * according to the GRUB reclaiming algorithm, the runtime is
1105  * not decreased as "dq = -dt", but as
1106  * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1107  * where u is the utilization of the task, Umax is the maximum reclaimable
1108  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1109  * as the difference between the "total runqueue utilization" and the
1110  * runqueue active utilization, and Uextra is the (per runqueue) extra
1111  * reclaimable utilization.
1112  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1113  * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1114  * BW_SHIFT.
1115  * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1116  * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1117  * Since delta is a 64 bit variable, to have an overflow its value
1118  * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1119  * So, overflow is not an issue here.
1120  */
1121 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1122 {
1123 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1124 	u64 u_act;
1125 	u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1126 
1127 	/*
1128 	 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1129 	 * we compare u_inact + rq->dl.extra_bw with
1130 	 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1131 	 * u_inact + rq->dl.extra_bw can be larger than
1132 	 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1133 	 * leading to wrong results)
1134 	 */
1135 	if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1136 		u_act = u_act_min;
1137 	else
1138 		u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1139 
1140 	return (delta * u_act) >> BW_SHIFT;
1141 }
1142 
1143 /*
1144  * Update the current task's runtime statistics (provided it is still
1145  * a -deadline task and has not been removed from the dl_rq).
1146  */
1147 static void update_curr_dl(struct rq *rq)
1148 {
1149 	struct task_struct *curr = rq->curr;
1150 	struct sched_dl_entity *dl_se = &curr->dl;
1151 	u64 delta_exec, scaled_delta_exec;
1152 	int cpu = cpu_of(rq);
1153 	u64 now;
1154 
1155 	if (!dl_task(curr) || !on_dl_rq(dl_se))
1156 		return;
1157 
1158 	/*
1159 	 * Consumed budget is computed considering the time as
1160 	 * observed by schedulable tasks (excluding time spent
1161 	 * in hardirq context, etc.). Deadlines are instead
1162 	 * computed using hard walltime. This seems to be the more
1163 	 * natural solution, but the full ramifications of this
1164 	 * approach need further study.
1165 	 */
1166 	now = rq_clock_task(rq);
1167 	delta_exec = now - curr->se.exec_start;
1168 	if (unlikely((s64)delta_exec <= 0)) {
1169 		if (unlikely(dl_se->dl_yielded))
1170 			goto throttle;
1171 		return;
1172 	}
1173 
1174 	schedstat_set(curr->se.statistics.exec_max,
1175 		      max(curr->se.statistics.exec_max, delta_exec));
1176 
1177 	curr->se.sum_exec_runtime += delta_exec;
1178 	account_group_exec_runtime(curr, delta_exec);
1179 
1180 	curr->se.exec_start = now;
1181 	cgroup_account_cputime(curr, delta_exec);
1182 
1183 	if (dl_entity_is_special(dl_se))
1184 		return;
1185 
1186 	/*
1187 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1188 	 * spare reclaimed bandwidth is used to clock down frequency.
1189 	 *
1190 	 * For the others, we still need to scale reservation parameters
1191 	 * according to current frequency and CPU maximum capacity.
1192 	 */
1193 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1194 		scaled_delta_exec = grub_reclaim(delta_exec,
1195 						 rq,
1196 						 &curr->dl);
1197 	} else {
1198 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1199 		unsigned long scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
1200 
1201 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1202 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1203 	}
1204 
1205 	dl_se->runtime -= scaled_delta_exec;
1206 
1207 throttle:
1208 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1209 		dl_se->dl_throttled = 1;
1210 
1211 		/* If requested, inform the user about runtime overruns. */
1212 		if (dl_runtime_exceeded(dl_se) &&
1213 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1214 			dl_se->dl_overrun = 1;
1215 
1216 		__dequeue_task_dl(rq, curr, 0);
1217 		if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
1218 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1219 
1220 		if (!is_leftmost(curr, &rq->dl))
1221 			resched_curr(rq);
1222 	}
1223 
1224 	/*
1225 	 * Because -- for now -- we share the rt bandwidth, we need to
1226 	 * account our runtime there too, otherwise actual rt tasks
1227 	 * would be able to exceed the shared quota.
1228 	 *
1229 	 * Account to the root rt group for now.
1230 	 *
1231 	 * The solution we're working towards is having the RT groups scheduled
1232 	 * using deadline servers -- however there's a few nasties to figure
1233 	 * out before that can happen.
1234 	 */
1235 	if (rt_bandwidth_enabled()) {
1236 		struct rt_rq *rt_rq = &rq->rt;
1237 
1238 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1239 		/*
1240 		 * We'll let actual RT tasks worry about the overflow here, we
1241 		 * have our own CBS to keep us inline; only account when RT
1242 		 * bandwidth is relevant.
1243 		 */
1244 		if (sched_rt_bandwidth_account(rt_rq))
1245 			rt_rq->rt_time += delta_exec;
1246 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1247 	}
1248 }
1249 
1250 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1251 {
1252 	struct sched_dl_entity *dl_se = container_of(timer,
1253 						     struct sched_dl_entity,
1254 						     inactive_timer);
1255 	struct task_struct *p = dl_task_of(dl_se);
1256 	struct rq_flags rf;
1257 	struct rq *rq;
1258 
1259 	rq = task_rq_lock(p, &rf);
1260 
1261 	sched_clock_tick();
1262 	update_rq_clock(rq);
1263 
1264 	if (!dl_task(p) || p->state == TASK_DEAD) {
1265 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1266 
1267 		if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1268 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1269 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1270 			dl_se->dl_non_contending = 0;
1271 		}
1272 
1273 		raw_spin_lock(&dl_b->lock);
1274 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1275 		raw_spin_unlock(&dl_b->lock);
1276 		__dl_clear_params(p);
1277 
1278 		goto unlock;
1279 	}
1280 	if (dl_se->dl_non_contending == 0)
1281 		goto unlock;
1282 
1283 	sub_running_bw(dl_se, &rq->dl);
1284 	dl_se->dl_non_contending = 0;
1285 unlock:
1286 	task_rq_unlock(rq, p, &rf);
1287 	put_task_struct(p);
1288 
1289 	return HRTIMER_NORESTART;
1290 }
1291 
1292 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1293 {
1294 	struct hrtimer *timer = &dl_se->inactive_timer;
1295 
1296 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1297 	timer->function = inactive_task_timer;
1298 }
1299 
1300 #ifdef CONFIG_SMP
1301 
1302 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1303 {
1304 	struct rq *rq = rq_of_dl_rq(dl_rq);
1305 
1306 	if (dl_rq->earliest_dl.curr == 0 ||
1307 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1308 		dl_rq->earliest_dl.curr = deadline;
1309 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1310 	}
1311 }
1312 
1313 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1314 {
1315 	struct rq *rq = rq_of_dl_rq(dl_rq);
1316 
1317 	/*
1318 	 * Since we may have removed our earliest (and/or next earliest)
1319 	 * task we must recompute them.
1320 	 */
1321 	if (!dl_rq->dl_nr_running) {
1322 		dl_rq->earliest_dl.curr = 0;
1323 		dl_rq->earliest_dl.next = 0;
1324 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1325 	} else {
1326 		struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1327 		struct sched_dl_entity *entry;
1328 
1329 		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1330 		dl_rq->earliest_dl.curr = entry->deadline;
1331 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1332 	}
1333 }
1334 
1335 #else
1336 
1337 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1338 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1339 
1340 #endif /* CONFIG_SMP */
1341 
1342 static inline
1343 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1344 {
1345 	int prio = dl_task_of(dl_se)->prio;
1346 	u64 deadline = dl_se->deadline;
1347 
1348 	WARN_ON(!dl_prio(prio));
1349 	dl_rq->dl_nr_running++;
1350 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1351 
1352 	inc_dl_deadline(dl_rq, deadline);
1353 	inc_dl_migration(dl_se, dl_rq);
1354 }
1355 
1356 static inline
1357 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1358 {
1359 	int prio = dl_task_of(dl_se)->prio;
1360 
1361 	WARN_ON(!dl_prio(prio));
1362 	WARN_ON(!dl_rq->dl_nr_running);
1363 	dl_rq->dl_nr_running--;
1364 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1365 
1366 	dec_dl_deadline(dl_rq, dl_se->deadline);
1367 	dec_dl_migration(dl_se, dl_rq);
1368 }
1369 
1370 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1371 {
1372 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1373 	struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1374 	struct rb_node *parent = NULL;
1375 	struct sched_dl_entity *entry;
1376 	int leftmost = 1;
1377 
1378 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1379 
1380 	while (*link) {
1381 		parent = *link;
1382 		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1383 		if (dl_time_before(dl_se->deadline, entry->deadline))
1384 			link = &parent->rb_left;
1385 		else {
1386 			link = &parent->rb_right;
1387 			leftmost = 0;
1388 		}
1389 	}
1390 
1391 	rb_link_node(&dl_se->rb_node, parent, link);
1392 	rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
1393 
1394 	inc_dl_tasks(dl_se, dl_rq);
1395 }
1396 
1397 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1398 {
1399 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1400 
1401 	if (RB_EMPTY_NODE(&dl_se->rb_node))
1402 		return;
1403 
1404 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1405 	RB_CLEAR_NODE(&dl_se->rb_node);
1406 
1407 	dec_dl_tasks(dl_se, dl_rq);
1408 }
1409 
1410 static void
1411 enqueue_dl_entity(struct sched_dl_entity *dl_se,
1412 		  struct sched_dl_entity *pi_se, int flags)
1413 {
1414 	BUG_ON(on_dl_rq(dl_se));
1415 
1416 	/*
1417 	 * If this is a wakeup or a new instance, the scheduling
1418 	 * parameters of the task might need updating. Otherwise,
1419 	 * we want a replenishment of its runtime.
1420 	 */
1421 	if (flags & ENQUEUE_WAKEUP) {
1422 		task_contending(dl_se, flags);
1423 		update_dl_entity(dl_se, pi_se);
1424 	} else if (flags & ENQUEUE_REPLENISH) {
1425 		replenish_dl_entity(dl_se, pi_se);
1426 	} else if ((flags & ENQUEUE_RESTORE) &&
1427 		  dl_time_before(dl_se->deadline,
1428 				 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1429 		setup_new_dl_entity(dl_se);
1430 	}
1431 
1432 	__enqueue_dl_entity(dl_se);
1433 }
1434 
1435 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1436 {
1437 	__dequeue_dl_entity(dl_se);
1438 }
1439 
1440 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1441 {
1442 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
1443 	struct sched_dl_entity *pi_se = &p->dl;
1444 
1445 	/*
1446 	 * Use the scheduling parameters of the top pi-waiter task if:
1447 	 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1448 	 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1449 	 *   smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1450 	 *   boosted due to a SCHED_DEADLINE pi-waiter).
1451 	 * Otherwise we keep our runtime and deadline.
1452 	 */
1453 	if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
1454 		pi_se = &pi_task->dl;
1455 	} else if (!dl_prio(p->normal_prio)) {
1456 		/*
1457 		 * Special case in which we have a !SCHED_DEADLINE task
1458 		 * that is going to be deboosted, but exceeds its
1459 		 * runtime while doing so. No point in replenishing
1460 		 * it, as it's going to return back to its original
1461 		 * scheduling class after this.
1462 		 */
1463 		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1464 		return;
1465 	}
1466 
1467 	/*
1468 	 * Check if a constrained deadline task was activated
1469 	 * after the deadline but before the next period.
1470 	 * If that is the case, the task will be throttled and
1471 	 * the replenishment timer will be set to the next period.
1472 	 */
1473 	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1474 		dl_check_constrained_dl(&p->dl);
1475 
1476 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1477 		add_rq_bw(&p->dl, &rq->dl);
1478 		add_running_bw(&p->dl, &rq->dl);
1479 	}
1480 
1481 	/*
1482 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1483 	 * its budget it needs a replenishment and, since it now is on
1484 	 * its rq, the bandwidth timer callback (which clearly has not
1485 	 * run yet) will take care of this.
1486 	 * However, the active utilization does not depend on the fact
1487 	 * that the task is on the runqueue or not (but depends on the
1488 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1489 	 * In other words, even if a task is throttled its utilization must
1490 	 * be counted in the active utilization; hence, we need to call
1491 	 * add_running_bw().
1492 	 */
1493 	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1494 		if (flags & ENQUEUE_WAKEUP)
1495 			task_contending(&p->dl, flags);
1496 
1497 		return;
1498 	}
1499 
1500 	enqueue_dl_entity(&p->dl, pi_se, flags);
1501 
1502 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1503 		enqueue_pushable_dl_task(rq, p);
1504 }
1505 
1506 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1507 {
1508 	dequeue_dl_entity(&p->dl);
1509 	dequeue_pushable_dl_task(rq, p);
1510 }
1511 
1512 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1513 {
1514 	update_curr_dl(rq);
1515 	__dequeue_task_dl(rq, p, flags);
1516 
1517 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1518 		sub_running_bw(&p->dl, &rq->dl);
1519 		sub_rq_bw(&p->dl, &rq->dl);
1520 	}
1521 
1522 	/*
1523 	 * This check allows to start the inactive timer (or to immediately
1524 	 * decrease the active utilization, if needed) in two cases:
1525 	 * when the task blocks and when it is terminating
1526 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1527 	 * way, because from GRUB's point of view the same thing is happening
1528 	 * (the task moves from "active contending" to "active non contending"
1529 	 * or "inactive")
1530 	 */
1531 	if (flags & DEQUEUE_SLEEP)
1532 		task_non_contending(p);
1533 }
1534 
1535 /*
1536  * Yield task semantic for -deadline tasks is:
1537  *
1538  *   get off from the CPU until our next instance, with
1539  *   a new runtime. This is of little use now, since we
1540  *   don't have a bandwidth reclaiming mechanism. Anyway,
1541  *   bandwidth reclaiming is planned for the future, and
1542  *   yield_task_dl will indicate that some spare budget
1543  *   is available for other task instances to use it.
1544  */
1545 static void yield_task_dl(struct rq *rq)
1546 {
1547 	/*
1548 	 * We make the task go to sleep until its current deadline by
1549 	 * forcing its runtime to zero. This way, update_curr_dl() stops
1550 	 * it and the bandwidth timer will wake it up and will give it
1551 	 * new scheduling parameters (thanks to dl_yielded=1).
1552 	 */
1553 	rq->curr->dl.dl_yielded = 1;
1554 
1555 	update_rq_clock(rq);
1556 	update_curr_dl(rq);
1557 	/*
1558 	 * Tell update_rq_clock() that we've just updated,
1559 	 * so we don't do microscopic update in schedule()
1560 	 * and double the fastpath cost.
1561 	 */
1562 	rq_clock_skip_update(rq);
1563 }
1564 
1565 #ifdef CONFIG_SMP
1566 
1567 static int find_later_rq(struct task_struct *task);
1568 
1569 static int
1570 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1571 {
1572 	struct task_struct *curr;
1573 	struct rq *rq;
1574 
1575 	if (sd_flag != SD_BALANCE_WAKE)
1576 		goto out;
1577 
1578 	rq = cpu_rq(cpu);
1579 
1580 	rcu_read_lock();
1581 	curr = READ_ONCE(rq->curr); /* unlocked access */
1582 
1583 	/*
1584 	 * If we are dealing with a -deadline task, we must
1585 	 * decide where to wake it up.
1586 	 * If it has a later deadline and the current task
1587 	 * on this rq can't move (provided the waking task
1588 	 * can!) we prefer to send it somewhere else. On the
1589 	 * other hand, if it has a shorter deadline, we
1590 	 * try to make it stay here, it might be important.
1591 	 */
1592 	if (unlikely(dl_task(curr)) &&
1593 	    (curr->nr_cpus_allowed < 2 ||
1594 	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1595 	    (p->nr_cpus_allowed > 1)) {
1596 		int target = find_later_rq(p);
1597 
1598 		if (target != -1 &&
1599 				(dl_time_before(p->dl.deadline,
1600 					cpu_rq(target)->dl.earliest_dl.curr) ||
1601 				(cpu_rq(target)->dl.dl_nr_running == 0)))
1602 			cpu = target;
1603 	}
1604 	rcu_read_unlock();
1605 
1606 out:
1607 	return cpu;
1608 }
1609 
1610 static void migrate_task_rq_dl(struct task_struct *p)
1611 {
1612 	struct rq *rq;
1613 
1614 	if (p->state != TASK_WAKING)
1615 		return;
1616 
1617 	rq = task_rq(p);
1618 	/*
1619 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1620 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1621 	 * rq->lock is not... So, lock it
1622 	 */
1623 	raw_spin_lock(&rq->lock);
1624 	if (p->dl.dl_non_contending) {
1625 		sub_running_bw(&p->dl, &rq->dl);
1626 		p->dl.dl_non_contending = 0;
1627 		/*
1628 		 * If the timer handler is currently running and the
1629 		 * timer cannot be cancelled, inactive_task_timer()
1630 		 * will see that dl_not_contending is not set, and
1631 		 * will not touch the rq's active utilization,
1632 		 * so we are still safe.
1633 		 */
1634 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1635 			put_task_struct(p);
1636 	}
1637 	sub_rq_bw(&p->dl, &rq->dl);
1638 	raw_spin_unlock(&rq->lock);
1639 }
1640 
1641 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1642 {
1643 	/*
1644 	 * Current can't be migrated, useless to reschedule,
1645 	 * let's hope p can move out.
1646 	 */
1647 	if (rq->curr->nr_cpus_allowed == 1 ||
1648 	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1649 		return;
1650 
1651 	/*
1652 	 * p is migratable, so let's not schedule it and
1653 	 * see if it is pushed or pulled somewhere else.
1654 	 */
1655 	if (p->nr_cpus_allowed != 1 &&
1656 	    cpudl_find(&rq->rd->cpudl, p, NULL))
1657 		return;
1658 
1659 	resched_curr(rq);
1660 }
1661 
1662 #endif /* CONFIG_SMP */
1663 
1664 /*
1665  * Only called when both the current and waking task are -deadline
1666  * tasks.
1667  */
1668 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1669 				  int flags)
1670 {
1671 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1672 		resched_curr(rq);
1673 		return;
1674 	}
1675 
1676 #ifdef CONFIG_SMP
1677 	/*
1678 	 * In the unlikely case current and p have the same deadline
1679 	 * let us try to decide what's the best thing to do...
1680 	 */
1681 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1682 	    !test_tsk_need_resched(rq->curr))
1683 		check_preempt_equal_dl(rq, p);
1684 #endif /* CONFIG_SMP */
1685 }
1686 
1687 #ifdef CONFIG_SCHED_HRTICK
1688 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1689 {
1690 	hrtick_start(rq, p->dl.runtime);
1691 }
1692 #else /* !CONFIG_SCHED_HRTICK */
1693 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1694 {
1695 }
1696 #endif
1697 
1698 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1699 						   struct dl_rq *dl_rq)
1700 {
1701 	struct rb_node *left = rb_first_cached(&dl_rq->root);
1702 
1703 	if (!left)
1704 		return NULL;
1705 
1706 	return rb_entry(left, struct sched_dl_entity, rb_node);
1707 }
1708 
1709 static struct task_struct *
1710 pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1711 {
1712 	struct sched_dl_entity *dl_se;
1713 	struct task_struct *p;
1714 	struct dl_rq *dl_rq;
1715 
1716 	dl_rq = &rq->dl;
1717 
1718 	if (need_pull_dl_task(rq, prev)) {
1719 		/*
1720 		 * This is OK, because current is on_cpu, which avoids it being
1721 		 * picked for load-balance and preemption/IRQs are still
1722 		 * disabled avoiding further scheduler activity on it and we're
1723 		 * being very careful to re-start the picking loop.
1724 		 */
1725 		rq_unpin_lock(rq, rf);
1726 		pull_dl_task(rq);
1727 		rq_repin_lock(rq, rf);
1728 		/*
1729 		 * pull_dl_task() can drop (and re-acquire) rq->lock; this
1730 		 * means a stop task can slip in, in which case we need to
1731 		 * re-start task selection.
1732 		 */
1733 		if (rq->stop && task_on_rq_queued(rq->stop))
1734 			return RETRY_TASK;
1735 	}
1736 
1737 	/*
1738 	 * When prev is DL, we may throttle it in put_prev_task().
1739 	 * So, we update time before we check for dl_nr_running.
1740 	 */
1741 	if (prev->sched_class == &dl_sched_class)
1742 		update_curr_dl(rq);
1743 
1744 	if (unlikely(!dl_rq->dl_nr_running))
1745 		return NULL;
1746 
1747 	put_prev_task(rq, prev);
1748 
1749 	dl_se = pick_next_dl_entity(rq, dl_rq);
1750 	BUG_ON(!dl_se);
1751 
1752 	p = dl_task_of(dl_se);
1753 	p->se.exec_start = rq_clock_task(rq);
1754 
1755 	/* Running task will never be pushed. */
1756        dequeue_pushable_dl_task(rq, p);
1757 
1758 	if (hrtick_enabled(rq))
1759 		start_hrtick_dl(rq, p);
1760 
1761 	deadline_queue_push_tasks(rq);
1762 
1763 	if (rq->curr->sched_class != &dl_sched_class)
1764 		update_dl_rq_load_avg(rq_clock_task(rq), rq, 0);
1765 
1766 	return p;
1767 }
1768 
1769 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1770 {
1771 	update_curr_dl(rq);
1772 
1773 	update_dl_rq_load_avg(rq_clock_task(rq), rq, 1);
1774 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1775 		enqueue_pushable_dl_task(rq, p);
1776 }
1777 
1778 /*
1779  * scheduler tick hitting a task of our scheduling class.
1780  *
1781  * NOTE: This function can be called remotely by the tick offload that
1782  * goes along full dynticks. Therefore no local assumption can be made
1783  * and everything must be accessed through the @rq and @curr passed in
1784  * parameters.
1785  */
1786 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1787 {
1788 	update_curr_dl(rq);
1789 
1790 	update_dl_rq_load_avg(rq_clock_task(rq), rq, 1);
1791 	/*
1792 	 * Even when we have runtime, update_curr_dl() might have resulted in us
1793 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
1794 	 * be set and schedule() will start a new hrtick for the next task.
1795 	 */
1796 	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1797 	    is_leftmost(p, &rq->dl))
1798 		start_hrtick_dl(rq, p);
1799 }
1800 
1801 static void task_fork_dl(struct task_struct *p)
1802 {
1803 	/*
1804 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1805 	 * sched_fork()
1806 	 */
1807 }
1808 
1809 static void set_curr_task_dl(struct rq *rq)
1810 {
1811 	struct task_struct *p = rq->curr;
1812 
1813 	p->se.exec_start = rq_clock_task(rq);
1814 
1815 	/* You can't push away the running task */
1816 	dequeue_pushable_dl_task(rq, p);
1817 }
1818 
1819 #ifdef CONFIG_SMP
1820 
1821 /* Only try algorithms three times */
1822 #define DL_MAX_TRIES 3
1823 
1824 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1825 {
1826 	if (!task_running(rq, p) &&
1827 	    cpumask_test_cpu(cpu, &p->cpus_allowed))
1828 		return 1;
1829 	return 0;
1830 }
1831 
1832 /*
1833  * Return the earliest pushable rq's task, which is suitable to be executed
1834  * on the CPU, NULL otherwise:
1835  */
1836 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1837 {
1838 	struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1839 	struct task_struct *p = NULL;
1840 
1841 	if (!has_pushable_dl_tasks(rq))
1842 		return NULL;
1843 
1844 next_node:
1845 	if (next_node) {
1846 		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1847 
1848 		if (pick_dl_task(rq, p, cpu))
1849 			return p;
1850 
1851 		next_node = rb_next(next_node);
1852 		goto next_node;
1853 	}
1854 
1855 	return NULL;
1856 }
1857 
1858 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1859 
1860 static int find_later_rq(struct task_struct *task)
1861 {
1862 	struct sched_domain *sd;
1863 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1864 	int this_cpu = smp_processor_id();
1865 	int cpu = task_cpu(task);
1866 
1867 	/* Make sure the mask is initialized first */
1868 	if (unlikely(!later_mask))
1869 		return -1;
1870 
1871 	if (task->nr_cpus_allowed == 1)
1872 		return -1;
1873 
1874 	/*
1875 	 * We have to consider system topology and task affinity
1876 	 * first, then we can look for a suitable CPU.
1877 	 */
1878 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1879 		return -1;
1880 
1881 	/*
1882 	 * If we are here, some targets have been found, including
1883 	 * the most suitable which is, among the runqueues where the
1884 	 * current tasks have later deadlines than the task's one, the
1885 	 * rq with the latest possible one.
1886 	 *
1887 	 * Now we check how well this matches with task's
1888 	 * affinity and system topology.
1889 	 *
1890 	 * The last CPU where the task run is our first
1891 	 * guess, since it is most likely cache-hot there.
1892 	 */
1893 	if (cpumask_test_cpu(cpu, later_mask))
1894 		return cpu;
1895 	/*
1896 	 * Check if this_cpu is to be skipped (i.e., it is
1897 	 * not in the mask) or not.
1898 	 */
1899 	if (!cpumask_test_cpu(this_cpu, later_mask))
1900 		this_cpu = -1;
1901 
1902 	rcu_read_lock();
1903 	for_each_domain(cpu, sd) {
1904 		if (sd->flags & SD_WAKE_AFFINE) {
1905 			int best_cpu;
1906 
1907 			/*
1908 			 * If possible, preempting this_cpu is
1909 			 * cheaper than migrating.
1910 			 */
1911 			if (this_cpu != -1 &&
1912 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1913 				rcu_read_unlock();
1914 				return this_cpu;
1915 			}
1916 
1917 			best_cpu = cpumask_first_and(later_mask,
1918 							sched_domain_span(sd));
1919 			/*
1920 			 * Last chance: if a CPU being in both later_mask
1921 			 * and current sd span is valid, that becomes our
1922 			 * choice. Of course, the latest possible CPU is
1923 			 * already under consideration through later_mask.
1924 			 */
1925 			if (best_cpu < nr_cpu_ids) {
1926 				rcu_read_unlock();
1927 				return best_cpu;
1928 			}
1929 		}
1930 	}
1931 	rcu_read_unlock();
1932 
1933 	/*
1934 	 * At this point, all our guesses failed, we just return
1935 	 * 'something', and let the caller sort the things out.
1936 	 */
1937 	if (this_cpu != -1)
1938 		return this_cpu;
1939 
1940 	cpu = cpumask_any(later_mask);
1941 	if (cpu < nr_cpu_ids)
1942 		return cpu;
1943 
1944 	return -1;
1945 }
1946 
1947 /* Locks the rq it finds */
1948 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1949 {
1950 	struct rq *later_rq = NULL;
1951 	int tries;
1952 	int cpu;
1953 
1954 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1955 		cpu = find_later_rq(task);
1956 
1957 		if ((cpu == -1) || (cpu == rq->cpu))
1958 			break;
1959 
1960 		later_rq = cpu_rq(cpu);
1961 
1962 		if (later_rq->dl.dl_nr_running &&
1963 		    !dl_time_before(task->dl.deadline,
1964 					later_rq->dl.earliest_dl.curr)) {
1965 			/*
1966 			 * Target rq has tasks of equal or earlier deadline,
1967 			 * retrying does not release any lock and is unlikely
1968 			 * to yield a different result.
1969 			 */
1970 			later_rq = NULL;
1971 			break;
1972 		}
1973 
1974 		/* Retry if something changed. */
1975 		if (double_lock_balance(rq, later_rq)) {
1976 			if (unlikely(task_rq(task) != rq ||
1977 				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_allowed) ||
1978 				     task_running(rq, task) ||
1979 				     !dl_task(task) ||
1980 				     !task_on_rq_queued(task))) {
1981 				double_unlock_balance(rq, later_rq);
1982 				later_rq = NULL;
1983 				break;
1984 			}
1985 		}
1986 
1987 		/*
1988 		 * If the rq we found has no -deadline task, or
1989 		 * its earliest one has a later deadline than our
1990 		 * task, the rq is a good one.
1991 		 */
1992 		if (!later_rq->dl.dl_nr_running ||
1993 		    dl_time_before(task->dl.deadline,
1994 				   later_rq->dl.earliest_dl.curr))
1995 			break;
1996 
1997 		/* Otherwise we try again. */
1998 		double_unlock_balance(rq, later_rq);
1999 		later_rq = NULL;
2000 	}
2001 
2002 	return later_rq;
2003 }
2004 
2005 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2006 {
2007 	struct task_struct *p;
2008 
2009 	if (!has_pushable_dl_tasks(rq))
2010 		return NULL;
2011 
2012 	p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2013 		     struct task_struct, pushable_dl_tasks);
2014 
2015 	BUG_ON(rq->cpu != task_cpu(p));
2016 	BUG_ON(task_current(rq, p));
2017 	BUG_ON(p->nr_cpus_allowed <= 1);
2018 
2019 	BUG_ON(!task_on_rq_queued(p));
2020 	BUG_ON(!dl_task(p));
2021 
2022 	return p;
2023 }
2024 
2025 /*
2026  * See if the non running -deadline tasks on this rq
2027  * can be sent to some other CPU where they can preempt
2028  * and start executing.
2029  */
2030 static int push_dl_task(struct rq *rq)
2031 {
2032 	struct task_struct *next_task;
2033 	struct rq *later_rq;
2034 	int ret = 0;
2035 
2036 	if (!rq->dl.overloaded)
2037 		return 0;
2038 
2039 	next_task = pick_next_pushable_dl_task(rq);
2040 	if (!next_task)
2041 		return 0;
2042 
2043 retry:
2044 	if (unlikely(next_task == rq->curr)) {
2045 		WARN_ON(1);
2046 		return 0;
2047 	}
2048 
2049 	/*
2050 	 * If next_task preempts rq->curr, and rq->curr
2051 	 * can move away, it makes sense to just reschedule
2052 	 * without going further in pushing next_task.
2053 	 */
2054 	if (dl_task(rq->curr) &&
2055 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2056 	    rq->curr->nr_cpus_allowed > 1) {
2057 		resched_curr(rq);
2058 		return 0;
2059 	}
2060 
2061 	/* We might release rq lock */
2062 	get_task_struct(next_task);
2063 
2064 	/* Will lock the rq it'll find */
2065 	later_rq = find_lock_later_rq(next_task, rq);
2066 	if (!later_rq) {
2067 		struct task_struct *task;
2068 
2069 		/*
2070 		 * We must check all this again, since
2071 		 * find_lock_later_rq releases rq->lock and it is
2072 		 * then possible that next_task has migrated.
2073 		 */
2074 		task = pick_next_pushable_dl_task(rq);
2075 		if (task == next_task) {
2076 			/*
2077 			 * The task is still there. We don't try
2078 			 * again, some other CPU will pull it when ready.
2079 			 */
2080 			goto out;
2081 		}
2082 
2083 		if (!task)
2084 			/* No more tasks */
2085 			goto out;
2086 
2087 		put_task_struct(next_task);
2088 		next_task = task;
2089 		goto retry;
2090 	}
2091 
2092 	deactivate_task(rq, next_task, 0);
2093 	sub_running_bw(&next_task->dl, &rq->dl);
2094 	sub_rq_bw(&next_task->dl, &rq->dl);
2095 	set_task_cpu(next_task, later_rq->cpu);
2096 	add_rq_bw(&next_task->dl, &later_rq->dl);
2097 
2098 	/*
2099 	 * Update the later_rq clock here, because the clock is used
2100 	 * by the cpufreq_update_util() inside __add_running_bw().
2101 	 */
2102 	update_rq_clock(later_rq);
2103 	add_running_bw(&next_task->dl, &later_rq->dl);
2104 	activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
2105 	ret = 1;
2106 
2107 	resched_curr(later_rq);
2108 
2109 	double_unlock_balance(rq, later_rq);
2110 
2111 out:
2112 	put_task_struct(next_task);
2113 
2114 	return ret;
2115 }
2116 
2117 static void push_dl_tasks(struct rq *rq)
2118 {
2119 	/* push_dl_task() will return true if it moved a -deadline task */
2120 	while (push_dl_task(rq))
2121 		;
2122 }
2123 
2124 static void pull_dl_task(struct rq *this_rq)
2125 {
2126 	int this_cpu = this_rq->cpu, cpu;
2127 	struct task_struct *p;
2128 	bool resched = false;
2129 	struct rq *src_rq;
2130 	u64 dmin = LONG_MAX;
2131 
2132 	if (likely(!dl_overloaded(this_rq)))
2133 		return;
2134 
2135 	/*
2136 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2137 	 * see overloaded we must also see the dlo_mask bit.
2138 	 */
2139 	smp_rmb();
2140 
2141 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2142 		if (this_cpu == cpu)
2143 			continue;
2144 
2145 		src_rq = cpu_rq(cpu);
2146 
2147 		/*
2148 		 * It looks racy, abd it is! However, as in sched_rt.c,
2149 		 * we are fine with this.
2150 		 */
2151 		if (this_rq->dl.dl_nr_running &&
2152 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2153 				   src_rq->dl.earliest_dl.next))
2154 			continue;
2155 
2156 		/* Might drop this_rq->lock */
2157 		double_lock_balance(this_rq, src_rq);
2158 
2159 		/*
2160 		 * If there are no more pullable tasks on the
2161 		 * rq, we're done with it.
2162 		 */
2163 		if (src_rq->dl.dl_nr_running <= 1)
2164 			goto skip;
2165 
2166 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2167 
2168 		/*
2169 		 * We found a task to be pulled if:
2170 		 *  - it preempts our current (if there's one),
2171 		 *  - it will preempt the last one we pulled (if any).
2172 		 */
2173 		if (p && dl_time_before(p->dl.deadline, dmin) &&
2174 		    (!this_rq->dl.dl_nr_running ||
2175 		     dl_time_before(p->dl.deadline,
2176 				    this_rq->dl.earliest_dl.curr))) {
2177 			WARN_ON(p == src_rq->curr);
2178 			WARN_ON(!task_on_rq_queued(p));
2179 
2180 			/*
2181 			 * Then we pull iff p has actually an earlier
2182 			 * deadline than the current task of its runqueue.
2183 			 */
2184 			if (dl_time_before(p->dl.deadline,
2185 					   src_rq->curr->dl.deadline))
2186 				goto skip;
2187 
2188 			resched = true;
2189 
2190 			deactivate_task(src_rq, p, 0);
2191 			sub_running_bw(&p->dl, &src_rq->dl);
2192 			sub_rq_bw(&p->dl, &src_rq->dl);
2193 			set_task_cpu(p, this_cpu);
2194 			add_rq_bw(&p->dl, &this_rq->dl);
2195 			add_running_bw(&p->dl, &this_rq->dl);
2196 			activate_task(this_rq, p, 0);
2197 			dmin = p->dl.deadline;
2198 
2199 			/* Is there any other task even earlier? */
2200 		}
2201 skip:
2202 		double_unlock_balance(this_rq, src_rq);
2203 	}
2204 
2205 	if (resched)
2206 		resched_curr(this_rq);
2207 }
2208 
2209 /*
2210  * Since the task is not running and a reschedule is not going to happen
2211  * anytime soon on its runqueue, we try pushing it away now.
2212  */
2213 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2214 {
2215 	if (!task_running(rq, p) &&
2216 	    !test_tsk_need_resched(rq->curr) &&
2217 	    p->nr_cpus_allowed > 1 &&
2218 	    dl_task(rq->curr) &&
2219 	    (rq->curr->nr_cpus_allowed < 2 ||
2220 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2221 		push_dl_tasks(rq);
2222 	}
2223 }
2224 
2225 static void set_cpus_allowed_dl(struct task_struct *p,
2226 				const struct cpumask *new_mask)
2227 {
2228 	struct root_domain *src_rd;
2229 	struct rq *rq;
2230 
2231 	BUG_ON(!dl_task(p));
2232 
2233 	rq = task_rq(p);
2234 	src_rd = rq->rd;
2235 	/*
2236 	 * Migrating a SCHED_DEADLINE task between exclusive
2237 	 * cpusets (different root_domains) entails a bandwidth
2238 	 * update. We already made space for us in the destination
2239 	 * domain (see cpuset_can_attach()).
2240 	 */
2241 	if (!cpumask_intersects(src_rd->span, new_mask)) {
2242 		struct dl_bw *src_dl_b;
2243 
2244 		src_dl_b = dl_bw_of(cpu_of(rq));
2245 		/*
2246 		 * We now free resources of the root_domain we are migrating
2247 		 * off. In the worst case, sched_setattr() may temporary fail
2248 		 * until we complete the update.
2249 		 */
2250 		raw_spin_lock(&src_dl_b->lock);
2251 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2252 		raw_spin_unlock(&src_dl_b->lock);
2253 	}
2254 
2255 	set_cpus_allowed_common(p, new_mask);
2256 }
2257 
2258 /* Assumes rq->lock is held */
2259 static void rq_online_dl(struct rq *rq)
2260 {
2261 	if (rq->dl.overloaded)
2262 		dl_set_overload(rq);
2263 
2264 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2265 	if (rq->dl.dl_nr_running > 0)
2266 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2267 }
2268 
2269 /* Assumes rq->lock is held */
2270 static void rq_offline_dl(struct rq *rq)
2271 {
2272 	if (rq->dl.overloaded)
2273 		dl_clear_overload(rq);
2274 
2275 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2276 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2277 }
2278 
2279 void __init init_sched_dl_class(void)
2280 {
2281 	unsigned int i;
2282 
2283 	for_each_possible_cpu(i)
2284 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2285 					GFP_KERNEL, cpu_to_node(i));
2286 }
2287 
2288 #endif /* CONFIG_SMP */
2289 
2290 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2291 {
2292 	/*
2293 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2294 	 * time is in the future). If the task switches back to dl before
2295 	 * the "inactive timer" fires, it can continue to consume its current
2296 	 * runtime using its current deadline. If it stays outside of
2297 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2298 	 * will reset the task parameters.
2299 	 */
2300 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2301 		task_non_contending(p);
2302 
2303 	if (!task_on_rq_queued(p)) {
2304 		/*
2305 		 * Inactive timer is armed. However, p is leaving DEADLINE and
2306 		 * might migrate away from this rq while continuing to run on
2307 		 * some other class. We need to remove its contribution from
2308 		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2309 		 */
2310 		if (p->dl.dl_non_contending)
2311 			sub_running_bw(&p->dl, &rq->dl);
2312 		sub_rq_bw(&p->dl, &rq->dl);
2313 	}
2314 
2315 	/*
2316 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2317 	 * at the 0-lag time, because the task could have been migrated
2318 	 * while SCHED_OTHER in the meanwhile.
2319 	 */
2320 	if (p->dl.dl_non_contending)
2321 		p->dl.dl_non_contending = 0;
2322 
2323 	/*
2324 	 * Since this might be the only -deadline task on the rq,
2325 	 * this is the right place to try to pull some other one
2326 	 * from an overloaded CPU, if any.
2327 	 */
2328 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2329 		return;
2330 
2331 	deadline_queue_pull_task(rq);
2332 }
2333 
2334 /*
2335  * When switching to -deadline, we may overload the rq, then
2336  * we try to push someone off, if possible.
2337  */
2338 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2339 {
2340 	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2341 		put_task_struct(p);
2342 
2343 	/* If p is not queued we will update its parameters at next wakeup. */
2344 	if (!task_on_rq_queued(p)) {
2345 		add_rq_bw(&p->dl, &rq->dl);
2346 
2347 		return;
2348 	}
2349 
2350 	if (rq->curr != p) {
2351 #ifdef CONFIG_SMP
2352 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2353 			deadline_queue_push_tasks(rq);
2354 #endif
2355 		if (dl_task(rq->curr))
2356 			check_preempt_curr_dl(rq, p, 0);
2357 		else
2358 			resched_curr(rq);
2359 	}
2360 }
2361 
2362 /*
2363  * If the scheduling parameters of a -deadline task changed,
2364  * a push or pull operation might be needed.
2365  */
2366 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2367 			    int oldprio)
2368 {
2369 	if (task_on_rq_queued(p) || rq->curr == p) {
2370 #ifdef CONFIG_SMP
2371 		/*
2372 		 * This might be too much, but unfortunately
2373 		 * we don't have the old deadline value, and
2374 		 * we can't argue if the task is increasing
2375 		 * or lowering its prio, so...
2376 		 */
2377 		if (!rq->dl.overloaded)
2378 			deadline_queue_pull_task(rq);
2379 
2380 		/*
2381 		 * If we now have a earlier deadline task than p,
2382 		 * then reschedule, provided p is still on this
2383 		 * runqueue.
2384 		 */
2385 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2386 			resched_curr(rq);
2387 #else
2388 		/*
2389 		 * Again, we don't know if p has a earlier
2390 		 * or later deadline, so let's blindly set a
2391 		 * (maybe not needed) rescheduling point.
2392 		 */
2393 		resched_curr(rq);
2394 #endif /* CONFIG_SMP */
2395 	}
2396 }
2397 
2398 const struct sched_class dl_sched_class = {
2399 	.next			= &rt_sched_class,
2400 	.enqueue_task		= enqueue_task_dl,
2401 	.dequeue_task		= dequeue_task_dl,
2402 	.yield_task		= yield_task_dl,
2403 
2404 	.check_preempt_curr	= check_preempt_curr_dl,
2405 
2406 	.pick_next_task		= pick_next_task_dl,
2407 	.put_prev_task		= put_prev_task_dl,
2408 
2409 #ifdef CONFIG_SMP
2410 	.select_task_rq		= select_task_rq_dl,
2411 	.migrate_task_rq	= migrate_task_rq_dl,
2412 	.set_cpus_allowed       = set_cpus_allowed_dl,
2413 	.rq_online              = rq_online_dl,
2414 	.rq_offline             = rq_offline_dl,
2415 	.task_woken		= task_woken_dl,
2416 #endif
2417 
2418 	.set_curr_task		= set_curr_task_dl,
2419 	.task_tick		= task_tick_dl,
2420 	.task_fork              = task_fork_dl,
2421 
2422 	.prio_changed           = prio_changed_dl,
2423 	.switched_from		= switched_from_dl,
2424 	.switched_to		= switched_to_dl,
2425 
2426 	.update_curr		= update_curr_dl,
2427 };
2428 
2429 int sched_dl_global_validate(void)
2430 {
2431 	u64 runtime = global_rt_runtime();
2432 	u64 period = global_rt_period();
2433 	u64 new_bw = to_ratio(period, runtime);
2434 	struct dl_bw *dl_b;
2435 	int cpu, ret = 0;
2436 	unsigned long flags;
2437 
2438 	/*
2439 	 * Here we want to check the bandwidth not being set to some
2440 	 * value smaller than the currently allocated bandwidth in
2441 	 * any of the root_domains.
2442 	 *
2443 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2444 	 * cycling on root_domains... Discussion on different/better
2445 	 * solutions is welcome!
2446 	 */
2447 	for_each_possible_cpu(cpu) {
2448 		rcu_read_lock_sched();
2449 		dl_b = dl_bw_of(cpu);
2450 
2451 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2452 		if (new_bw < dl_b->total_bw)
2453 			ret = -EBUSY;
2454 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2455 
2456 		rcu_read_unlock_sched();
2457 
2458 		if (ret)
2459 			break;
2460 	}
2461 
2462 	return ret;
2463 }
2464 
2465 void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2466 {
2467 	if (global_rt_runtime() == RUNTIME_INF) {
2468 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2469 		dl_rq->extra_bw = 1 << BW_SHIFT;
2470 	} else {
2471 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2472 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2473 		dl_rq->extra_bw = to_ratio(global_rt_period(),
2474 						    global_rt_runtime());
2475 	}
2476 }
2477 
2478 void sched_dl_do_global(void)
2479 {
2480 	u64 new_bw = -1;
2481 	struct dl_bw *dl_b;
2482 	int cpu;
2483 	unsigned long flags;
2484 
2485 	def_dl_bandwidth.dl_period = global_rt_period();
2486 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
2487 
2488 	if (global_rt_runtime() != RUNTIME_INF)
2489 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2490 
2491 	/*
2492 	 * FIXME: As above...
2493 	 */
2494 	for_each_possible_cpu(cpu) {
2495 		rcu_read_lock_sched();
2496 		dl_b = dl_bw_of(cpu);
2497 
2498 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2499 		dl_b->bw = new_bw;
2500 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2501 
2502 		rcu_read_unlock_sched();
2503 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2504 	}
2505 }
2506 
2507 /*
2508  * We must be sure that accepting a new task (or allowing changing the
2509  * parameters of an existing one) is consistent with the bandwidth
2510  * constraints. If yes, this function also accordingly updates the currently
2511  * allocated bandwidth to reflect the new situation.
2512  *
2513  * This function is called while holding p's rq->lock.
2514  */
2515 int sched_dl_overflow(struct task_struct *p, int policy,
2516 		      const struct sched_attr *attr)
2517 {
2518 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2519 	u64 period = attr->sched_period ?: attr->sched_deadline;
2520 	u64 runtime = attr->sched_runtime;
2521 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2522 	int cpus, err = -1;
2523 
2524 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2525 		return 0;
2526 
2527 	/* !deadline task may carry old deadline bandwidth */
2528 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2529 		return 0;
2530 
2531 	/*
2532 	 * Either if a task, enters, leave, or stays -deadline but changes
2533 	 * its parameters, we may need to update accordingly the total
2534 	 * allocated bandwidth of the container.
2535 	 */
2536 	raw_spin_lock(&dl_b->lock);
2537 	cpus = dl_bw_cpus(task_cpu(p));
2538 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2539 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2540 		if (hrtimer_active(&p->dl.inactive_timer))
2541 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2542 		__dl_add(dl_b, new_bw, cpus);
2543 		err = 0;
2544 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2545 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2546 		/*
2547 		 * XXX this is slightly incorrect: when the task
2548 		 * utilization decreases, we should delay the total
2549 		 * utilization change until the task's 0-lag point.
2550 		 * But this would require to set the task's "inactive
2551 		 * timer" when the task is not inactive.
2552 		 */
2553 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2554 		__dl_add(dl_b, new_bw, cpus);
2555 		dl_change_utilization(p, new_bw);
2556 		err = 0;
2557 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2558 		/*
2559 		 * Do not decrease the total deadline utilization here,
2560 		 * switched_from_dl() will take care to do it at the correct
2561 		 * (0-lag) time.
2562 		 */
2563 		err = 0;
2564 	}
2565 	raw_spin_unlock(&dl_b->lock);
2566 
2567 	return err;
2568 }
2569 
2570 /*
2571  * This function initializes the sched_dl_entity of a newly becoming
2572  * SCHED_DEADLINE task.
2573  *
2574  * Only the static values are considered here, the actual runtime and the
2575  * absolute deadline will be properly calculated when the task is enqueued
2576  * for the first time with its new policy.
2577  */
2578 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2579 {
2580 	struct sched_dl_entity *dl_se = &p->dl;
2581 
2582 	dl_se->dl_runtime = attr->sched_runtime;
2583 	dl_se->dl_deadline = attr->sched_deadline;
2584 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2585 	dl_se->flags = attr->sched_flags;
2586 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2587 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2588 }
2589 
2590 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2591 {
2592 	struct sched_dl_entity *dl_se = &p->dl;
2593 
2594 	attr->sched_priority = p->rt_priority;
2595 	attr->sched_runtime = dl_se->dl_runtime;
2596 	attr->sched_deadline = dl_se->dl_deadline;
2597 	attr->sched_period = dl_se->dl_period;
2598 	attr->sched_flags = dl_se->flags;
2599 }
2600 
2601 /*
2602  * This function validates the new parameters of a -deadline task.
2603  * We ask for the deadline not being zero, and greater or equal
2604  * than the runtime, as well as the period of being zero or
2605  * greater than deadline. Furthermore, we have to be sure that
2606  * user parameters are above the internal resolution of 1us (we
2607  * check sched_runtime only since it is always the smaller one) and
2608  * below 2^63 ns (we have to check both sched_deadline and
2609  * sched_period, as the latter can be zero).
2610  */
2611 bool __checkparam_dl(const struct sched_attr *attr)
2612 {
2613 	/* special dl tasks don't actually use any parameter */
2614 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2615 		return true;
2616 
2617 	/* deadline != 0 */
2618 	if (attr->sched_deadline == 0)
2619 		return false;
2620 
2621 	/*
2622 	 * Since we truncate DL_SCALE bits, make sure we're at least
2623 	 * that big.
2624 	 */
2625 	if (attr->sched_runtime < (1ULL << DL_SCALE))
2626 		return false;
2627 
2628 	/*
2629 	 * Since we use the MSB for wrap-around and sign issues, make
2630 	 * sure it's not set (mind that period can be equal to zero).
2631 	 */
2632 	if (attr->sched_deadline & (1ULL << 63) ||
2633 	    attr->sched_period & (1ULL << 63))
2634 		return false;
2635 
2636 	/* runtime <= deadline <= period (if period != 0) */
2637 	if ((attr->sched_period != 0 &&
2638 	     attr->sched_period < attr->sched_deadline) ||
2639 	    attr->sched_deadline < attr->sched_runtime)
2640 		return false;
2641 
2642 	return true;
2643 }
2644 
2645 /*
2646  * This function clears the sched_dl_entity static params.
2647  */
2648 void __dl_clear_params(struct task_struct *p)
2649 {
2650 	struct sched_dl_entity *dl_se = &p->dl;
2651 
2652 	dl_se->dl_runtime		= 0;
2653 	dl_se->dl_deadline		= 0;
2654 	dl_se->dl_period		= 0;
2655 	dl_se->flags			= 0;
2656 	dl_se->dl_bw			= 0;
2657 	dl_se->dl_density		= 0;
2658 
2659 	dl_se->dl_throttled		= 0;
2660 	dl_se->dl_yielded		= 0;
2661 	dl_se->dl_non_contending	= 0;
2662 	dl_se->dl_overrun		= 0;
2663 }
2664 
2665 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2666 {
2667 	struct sched_dl_entity *dl_se = &p->dl;
2668 
2669 	if (dl_se->dl_runtime != attr->sched_runtime ||
2670 	    dl_se->dl_deadline != attr->sched_deadline ||
2671 	    dl_se->dl_period != attr->sched_period ||
2672 	    dl_se->flags != attr->sched_flags)
2673 		return true;
2674 
2675 	return false;
2676 }
2677 
2678 #ifdef CONFIG_SMP
2679 int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2680 {
2681 	unsigned int dest_cpu;
2682 	struct dl_bw *dl_b;
2683 	bool overflow;
2684 	int cpus, ret;
2685 	unsigned long flags;
2686 
2687 	dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2688 
2689 	rcu_read_lock_sched();
2690 	dl_b = dl_bw_of(dest_cpu);
2691 	raw_spin_lock_irqsave(&dl_b->lock, flags);
2692 	cpus = dl_bw_cpus(dest_cpu);
2693 	overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
2694 	if (overflow) {
2695 		ret = -EBUSY;
2696 	} else {
2697 		/*
2698 		 * We reserve space for this task in the destination
2699 		 * root_domain, as we can't fail after this point.
2700 		 * We will free resources in the source root_domain
2701 		 * later on (see set_cpus_allowed_dl()).
2702 		 */
2703 		__dl_add(dl_b, p->dl.dl_bw, cpus);
2704 		ret = 0;
2705 	}
2706 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2707 	rcu_read_unlock_sched();
2708 
2709 	return ret;
2710 }
2711 
2712 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2713 				 const struct cpumask *trial)
2714 {
2715 	int ret = 1, trial_cpus;
2716 	struct dl_bw *cur_dl_b;
2717 	unsigned long flags;
2718 
2719 	rcu_read_lock_sched();
2720 	cur_dl_b = dl_bw_of(cpumask_any(cur));
2721 	trial_cpus = cpumask_weight(trial);
2722 
2723 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2724 	if (cur_dl_b->bw != -1 &&
2725 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2726 		ret = 0;
2727 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2728 	rcu_read_unlock_sched();
2729 
2730 	return ret;
2731 }
2732 
2733 bool dl_cpu_busy(unsigned int cpu)
2734 {
2735 	unsigned long flags;
2736 	struct dl_bw *dl_b;
2737 	bool overflow;
2738 	int cpus;
2739 
2740 	rcu_read_lock_sched();
2741 	dl_b = dl_bw_of(cpu);
2742 	raw_spin_lock_irqsave(&dl_b->lock, flags);
2743 	cpus = dl_bw_cpus(cpu);
2744 	overflow = __dl_overflow(dl_b, cpus, 0, 0);
2745 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2746 	rcu_read_unlock_sched();
2747 
2748 	return overflow;
2749 }
2750 #endif
2751 
2752 #ifdef CONFIG_SCHED_DEBUG
2753 void print_dl_stats(struct seq_file *m, int cpu)
2754 {
2755 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2756 }
2757 #endif /* CONFIG_SCHED_DEBUG */
2758