1 /* 2 * Deadline Scheduling Class (SCHED_DEADLINE) 3 * 4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 5 * 6 * Tasks that periodically executes their instances for less than their 7 * runtime won't miss any of their deadlines. 8 * Tasks that are not periodic or sporadic or that tries to execute more 9 * than their reserved bandwidth will be slowed down (and may potentially 10 * miss some of their deadlines), and won't affect any other task. 11 * 12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 13 * Juri Lelli <juri.lelli@gmail.com>, 14 * Michael Trimarchi <michael@amarulasolutions.com>, 15 * Fabio Checconi <fchecconi@gmail.com> 16 */ 17 #include "sched.h" 18 19 #include <linux/slab.h> 20 21 struct dl_bandwidth def_dl_bandwidth; 22 23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 24 { 25 return container_of(dl_se, struct task_struct, dl); 26 } 27 28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 29 { 30 return container_of(dl_rq, struct rq, dl); 31 } 32 33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 34 { 35 struct task_struct *p = dl_task_of(dl_se); 36 struct rq *rq = task_rq(p); 37 38 return &rq->dl; 39 } 40 41 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 42 { 43 return !RB_EMPTY_NODE(&dl_se->rb_node); 44 } 45 46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) 47 { 48 struct sched_dl_entity *dl_se = &p->dl; 49 50 return dl_rq->rb_leftmost == &dl_se->rb_node; 51 } 52 53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) 54 { 55 raw_spin_lock_init(&dl_b->dl_runtime_lock); 56 dl_b->dl_period = period; 57 dl_b->dl_runtime = runtime; 58 } 59 60 void init_dl_bw(struct dl_bw *dl_b) 61 { 62 raw_spin_lock_init(&dl_b->lock); 63 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock); 64 if (global_rt_runtime() == RUNTIME_INF) 65 dl_b->bw = -1; 66 else 67 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 68 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock); 69 dl_b->total_bw = 0; 70 } 71 72 void init_dl_rq(struct dl_rq *dl_rq) 73 { 74 dl_rq->rb_root = RB_ROOT; 75 76 #ifdef CONFIG_SMP 77 /* zero means no -deadline tasks */ 78 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 79 80 dl_rq->dl_nr_migratory = 0; 81 dl_rq->overloaded = 0; 82 dl_rq->pushable_dl_tasks_root = RB_ROOT; 83 #else 84 init_dl_bw(&dl_rq->dl_bw); 85 #endif 86 } 87 88 #ifdef CONFIG_SMP 89 90 static inline int dl_overloaded(struct rq *rq) 91 { 92 return atomic_read(&rq->rd->dlo_count); 93 } 94 95 static inline void dl_set_overload(struct rq *rq) 96 { 97 if (!rq->online) 98 return; 99 100 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 101 /* 102 * Must be visible before the overload count is 103 * set (as in sched_rt.c). 104 * 105 * Matched by the barrier in pull_dl_task(). 106 */ 107 smp_wmb(); 108 atomic_inc(&rq->rd->dlo_count); 109 } 110 111 static inline void dl_clear_overload(struct rq *rq) 112 { 113 if (!rq->online) 114 return; 115 116 atomic_dec(&rq->rd->dlo_count); 117 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 118 } 119 120 static void update_dl_migration(struct dl_rq *dl_rq) 121 { 122 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { 123 if (!dl_rq->overloaded) { 124 dl_set_overload(rq_of_dl_rq(dl_rq)); 125 dl_rq->overloaded = 1; 126 } 127 } else if (dl_rq->overloaded) { 128 dl_clear_overload(rq_of_dl_rq(dl_rq)); 129 dl_rq->overloaded = 0; 130 } 131 } 132 133 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 134 { 135 struct task_struct *p = dl_task_of(dl_se); 136 137 if (p->nr_cpus_allowed > 1) 138 dl_rq->dl_nr_migratory++; 139 140 update_dl_migration(dl_rq); 141 } 142 143 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 144 { 145 struct task_struct *p = dl_task_of(dl_se); 146 147 if (p->nr_cpus_allowed > 1) 148 dl_rq->dl_nr_migratory--; 149 150 update_dl_migration(dl_rq); 151 } 152 153 /* 154 * The list of pushable -deadline task is not a plist, like in 155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 156 */ 157 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 158 { 159 struct dl_rq *dl_rq = &rq->dl; 160 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node; 161 struct rb_node *parent = NULL; 162 struct task_struct *entry; 163 int leftmost = 1; 164 165 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 166 167 while (*link) { 168 parent = *link; 169 entry = rb_entry(parent, struct task_struct, 170 pushable_dl_tasks); 171 if (dl_entity_preempt(&p->dl, &entry->dl)) 172 link = &parent->rb_left; 173 else { 174 link = &parent->rb_right; 175 leftmost = 0; 176 } 177 } 178 179 if (leftmost) 180 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks; 181 182 rb_link_node(&p->pushable_dl_tasks, parent, link); 183 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 184 } 185 186 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 187 { 188 struct dl_rq *dl_rq = &rq->dl; 189 190 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 191 return; 192 193 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) { 194 struct rb_node *next_node; 195 196 next_node = rb_next(&p->pushable_dl_tasks); 197 dl_rq->pushable_dl_tasks_leftmost = next_node; 198 } 199 200 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 201 RB_CLEAR_NODE(&p->pushable_dl_tasks); 202 } 203 204 static inline int has_pushable_dl_tasks(struct rq *rq) 205 { 206 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root); 207 } 208 209 static int push_dl_task(struct rq *rq); 210 211 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 212 { 213 return dl_task(prev); 214 } 215 216 static inline void set_post_schedule(struct rq *rq) 217 { 218 rq->post_schedule = has_pushable_dl_tasks(rq); 219 } 220 221 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); 222 223 static void dl_task_offline_migration(struct rq *rq, struct task_struct *p) 224 { 225 struct rq *later_rq = NULL; 226 bool fallback = false; 227 228 later_rq = find_lock_later_rq(p, rq); 229 230 if (!later_rq) { 231 int cpu; 232 233 /* 234 * If we cannot preempt any rq, fall back to pick any 235 * online cpu. 236 */ 237 fallback = true; 238 cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p)); 239 if (cpu >= nr_cpu_ids) { 240 /* 241 * Fail to find any suitable cpu. 242 * The task will never come back! 243 */ 244 BUG_ON(dl_bandwidth_enabled()); 245 246 /* 247 * If admission control is disabled we 248 * try a little harder to let the task 249 * run. 250 */ 251 cpu = cpumask_any(cpu_active_mask); 252 } 253 later_rq = cpu_rq(cpu); 254 double_lock_balance(rq, later_rq); 255 } 256 257 deactivate_task(rq, p, 0); 258 set_task_cpu(p, later_rq->cpu); 259 activate_task(later_rq, p, ENQUEUE_REPLENISH); 260 261 if (!fallback) 262 resched_curr(later_rq); 263 264 double_unlock_balance(rq, later_rq); 265 } 266 267 #else 268 269 static inline 270 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 271 { 272 } 273 274 static inline 275 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 276 { 277 } 278 279 static inline 280 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 281 { 282 } 283 284 static inline 285 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 286 { 287 } 288 289 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 290 { 291 return false; 292 } 293 294 static inline int pull_dl_task(struct rq *rq) 295 { 296 return 0; 297 } 298 299 static inline void set_post_schedule(struct rq *rq) 300 { 301 } 302 #endif /* CONFIG_SMP */ 303 304 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 305 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); 306 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 307 int flags); 308 309 /* 310 * We are being explicitly informed that a new instance is starting, 311 * and this means that: 312 * - the absolute deadline of the entity has to be placed at 313 * current time + relative deadline; 314 * - the runtime of the entity has to be set to the maximum value. 315 * 316 * The capability of specifying such event is useful whenever a -deadline 317 * entity wants to (try to!) synchronize its behaviour with the scheduler's 318 * one, and to (try to!) reconcile itself with its own scheduling 319 * parameters. 320 */ 321 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se, 322 struct sched_dl_entity *pi_se) 323 { 324 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 325 struct rq *rq = rq_of_dl_rq(dl_rq); 326 327 WARN_ON(!dl_se->dl_new || dl_se->dl_throttled); 328 329 /* 330 * We use the regular wall clock time to set deadlines in the 331 * future; in fact, we must consider execution overheads (time 332 * spent on hardirq context, etc.). 333 */ 334 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 335 dl_se->runtime = pi_se->dl_runtime; 336 dl_se->dl_new = 0; 337 } 338 339 /* 340 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 341 * possibility of a entity lasting more than what it declared, and thus 342 * exhausting its runtime. 343 * 344 * Here we are interested in making runtime overrun possible, but we do 345 * not want a entity which is misbehaving to affect the scheduling of all 346 * other entities. 347 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 348 * is used, in order to confine each entity within its own bandwidth. 349 * 350 * This function deals exactly with that, and ensures that when the runtime 351 * of a entity is replenished, its deadline is also postponed. That ensures 352 * the overrunning entity can't interfere with other entity in the system and 353 * can't make them miss their deadlines. Reasons why this kind of overruns 354 * could happen are, typically, a entity voluntarily trying to overcome its 355 * runtime, or it just underestimated it during sched_setattr(). 356 */ 357 static void replenish_dl_entity(struct sched_dl_entity *dl_se, 358 struct sched_dl_entity *pi_se) 359 { 360 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 361 struct rq *rq = rq_of_dl_rq(dl_rq); 362 363 BUG_ON(pi_se->dl_runtime <= 0); 364 365 /* 366 * This could be the case for a !-dl task that is boosted. 367 * Just go with full inherited parameters. 368 */ 369 if (dl_se->dl_deadline == 0) { 370 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 371 dl_se->runtime = pi_se->dl_runtime; 372 } 373 374 /* 375 * We keep moving the deadline away until we get some 376 * available runtime for the entity. This ensures correct 377 * handling of situations where the runtime overrun is 378 * arbitrary large. 379 */ 380 while (dl_se->runtime <= 0) { 381 dl_se->deadline += pi_se->dl_period; 382 dl_se->runtime += pi_se->dl_runtime; 383 } 384 385 /* 386 * At this point, the deadline really should be "in 387 * the future" with respect to rq->clock. If it's 388 * not, we are, for some reason, lagging too much! 389 * Anyway, after having warn userspace abut that, 390 * we still try to keep the things running by 391 * resetting the deadline and the budget of the 392 * entity. 393 */ 394 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 395 printk_deferred_once("sched: DL replenish lagged to much\n"); 396 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 397 dl_se->runtime = pi_se->dl_runtime; 398 } 399 400 if (dl_se->dl_yielded) 401 dl_se->dl_yielded = 0; 402 if (dl_se->dl_throttled) 403 dl_se->dl_throttled = 0; 404 } 405 406 /* 407 * Here we check if --at time t-- an entity (which is probably being 408 * [re]activated or, in general, enqueued) can use its remaining runtime 409 * and its current deadline _without_ exceeding the bandwidth it is 410 * assigned (function returns true if it can't). We are in fact applying 411 * one of the CBS rules: when a task wakes up, if the residual runtime 412 * over residual deadline fits within the allocated bandwidth, then we 413 * can keep the current (absolute) deadline and residual budget without 414 * disrupting the schedulability of the system. Otherwise, we should 415 * refill the runtime and set the deadline a period in the future, 416 * because keeping the current (absolute) deadline of the task would 417 * result in breaking guarantees promised to other tasks (refer to 418 * Documentation/scheduler/sched-deadline.txt for more informations). 419 * 420 * This function returns true if: 421 * 422 * runtime / (deadline - t) > dl_runtime / dl_period , 423 * 424 * IOW we can't recycle current parameters. 425 * 426 * Notice that the bandwidth check is done against the period. For 427 * task with deadline equal to period this is the same of using 428 * dl_deadline instead of dl_period in the equation above. 429 */ 430 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, 431 struct sched_dl_entity *pi_se, u64 t) 432 { 433 u64 left, right; 434 435 /* 436 * left and right are the two sides of the equation above, 437 * after a bit of shuffling to use multiplications instead 438 * of divisions. 439 * 440 * Note that none of the time values involved in the two 441 * multiplications are absolute: dl_deadline and dl_runtime 442 * are the relative deadline and the maximum runtime of each 443 * instance, runtime is the runtime left for the last instance 444 * and (deadline - t), since t is rq->clock, is the time left 445 * to the (absolute) deadline. Even if overflowing the u64 type 446 * is very unlikely to occur in both cases, here we scale down 447 * as we want to avoid that risk at all. Scaling down by 10 448 * means that we reduce granularity to 1us. We are fine with it, 449 * since this is only a true/false check and, anyway, thinking 450 * of anything below microseconds resolution is actually fiction 451 * (but still we want to give the user that illusion >;). 452 */ 453 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 454 right = ((dl_se->deadline - t) >> DL_SCALE) * 455 (pi_se->dl_runtime >> DL_SCALE); 456 457 return dl_time_before(right, left); 458 } 459 460 /* 461 * When a -deadline entity is queued back on the runqueue, its runtime and 462 * deadline might need updating. 463 * 464 * The policy here is that we update the deadline of the entity only if: 465 * - the current deadline is in the past, 466 * - using the remaining runtime with the current deadline would make 467 * the entity exceed its bandwidth. 468 */ 469 static void update_dl_entity(struct sched_dl_entity *dl_se, 470 struct sched_dl_entity *pi_se) 471 { 472 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 473 struct rq *rq = rq_of_dl_rq(dl_rq); 474 475 /* 476 * The arrival of a new instance needs special treatment, i.e., 477 * the actual scheduling parameters have to be "renewed". 478 */ 479 if (dl_se->dl_new) { 480 setup_new_dl_entity(dl_se, pi_se); 481 return; 482 } 483 484 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 485 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) { 486 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 487 dl_se->runtime = pi_se->dl_runtime; 488 } 489 } 490 491 /* 492 * If the entity depleted all its runtime, and if we want it to sleep 493 * while waiting for some new execution time to become available, we 494 * set the bandwidth enforcement timer to the replenishment instant 495 * and try to activate it. 496 * 497 * Notice that it is important for the caller to know if the timer 498 * actually started or not (i.e., the replenishment instant is in 499 * the future or in the past). 500 */ 501 static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted) 502 { 503 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 504 struct rq *rq = rq_of_dl_rq(dl_rq); 505 ktime_t now, act; 506 ktime_t soft, hard; 507 unsigned long range; 508 s64 delta; 509 510 if (boosted) 511 return 0; 512 /* 513 * We want the timer to fire at the deadline, but considering 514 * that it is actually coming from rq->clock and not from 515 * hrtimer's time base reading. 516 */ 517 act = ns_to_ktime(dl_se->deadline); 518 now = hrtimer_cb_get_time(&dl_se->dl_timer); 519 delta = ktime_to_ns(now) - rq_clock(rq); 520 act = ktime_add_ns(act, delta); 521 522 /* 523 * If the expiry time already passed, e.g., because the value 524 * chosen as the deadline is too small, don't even try to 525 * start the timer in the past! 526 */ 527 if (ktime_us_delta(act, now) < 0) 528 return 0; 529 530 hrtimer_set_expires(&dl_se->dl_timer, act); 531 532 soft = hrtimer_get_softexpires(&dl_se->dl_timer); 533 hard = hrtimer_get_expires(&dl_se->dl_timer); 534 range = ktime_to_ns(ktime_sub(hard, soft)); 535 __hrtimer_start_range_ns(&dl_se->dl_timer, soft, 536 range, HRTIMER_MODE_ABS, 0); 537 538 return hrtimer_active(&dl_se->dl_timer); 539 } 540 541 /* 542 * This is the bandwidth enforcement timer callback. If here, we know 543 * a task is not on its dl_rq, since the fact that the timer was running 544 * means the task is throttled and needs a runtime replenishment. 545 * 546 * However, what we actually do depends on the fact the task is active, 547 * (it is on its rq) or has been removed from there by a call to 548 * dequeue_task_dl(). In the former case we must issue the runtime 549 * replenishment and add the task back to the dl_rq; in the latter, we just 550 * do nothing but clearing dl_throttled, so that runtime and deadline 551 * updating (and the queueing back to dl_rq) will be done by the 552 * next call to enqueue_task_dl(). 553 */ 554 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 555 { 556 struct sched_dl_entity *dl_se = container_of(timer, 557 struct sched_dl_entity, 558 dl_timer); 559 struct task_struct *p = dl_task_of(dl_se); 560 unsigned long flags; 561 struct rq *rq; 562 563 rq = task_rq_lock(p, &flags); 564 565 /* 566 * We need to take care of several possible races here: 567 * 568 * - the task might have changed its scheduling policy 569 * to something different than SCHED_DEADLINE 570 * - the task might have changed its reservation parameters 571 * (through sched_setattr()) 572 * - the task might have been boosted by someone else and 573 * might be in the boosting/deboosting path 574 * 575 * In all this cases we bail out, as the task is already 576 * in the runqueue or is going to be enqueued back anyway. 577 */ 578 if (!dl_task(p) || dl_se->dl_new || 579 dl_se->dl_boosted || !dl_se->dl_throttled) 580 goto unlock; 581 582 sched_clock_tick(); 583 update_rq_clock(rq); 584 585 #ifdef CONFIG_SMP 586 /* 587 * If we find that the rq the task was on is no longer 588 * available, we need to select a new rq. 589 */ 590 if (unlikely(!rq->online)) { 591 dl_task_offline_migration(rq, p); 592 goto unlock; 593 } 594 #endif 595 596 /* 597 * If the throttle happened during sched-out; like: 598 * 599 * schedule() 600 * deactivate_task() 601 * dequeue_task_dl() 602 * update_curr_dl() 603 * start_dl_timer() 604 * __dequeue_task_dl() 605 * prev->on_rq = 0; 606 * 607 * We can be both throttled and !queued. Replenish the counter 608 * but do not enqueue -- wait for our wakeup to do that. 609 */ 610 if (!task_on_rq_queued(p)) { 611 replenish_dl_entity(dl_se, dl_se); 612 goto unlock; 613 } 614 615 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 616 if (dl_task(rq->curr)) 617 check_preempt_curr_dl(rq, p, 0); 618 else 619 resched_curr(rq); 620 #ifdef CONFIG_SMP 621 /* 622 * Queueing this task back might have overloaded rq, 623 * check if we need to kick someone away. 624 */ 625 if (has_pushable_dl_tasks(rq)) 626 push_dl_task(rq); 627 #endif 628 unlock: 629 task_rq_unlock(rq, p, &flags); 630 631 return HRTIMER_NORESTART; 632 } 633 634 void init_dl_task_timer(struct sched_dl_entity *dl_se) 635 { 636 struct hrtimer *timer = &dl_se->dl_timer; 637 638 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 639 timer->function = dl_task_timer; 640 } 641 642 static 643 int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se) 644 { 645 return (dl_se->runtime <= 0); 646 } 647 648 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 649 650 /* 651 * Update the current task's runtime statistics (provided it is still 652 * a -deadline task and has not been removed from the dl_rq). 653 */ 654 static void update_curr_dl(struct rq *rq) 655 { 656 struct task_struct *curr = rq->curr; 657 struct sched_dl_entity *dl_se = &curr->dl; 658 u64 delta_exec; 659 660 if (!dl_task(curr) || !on_dl_rq(dl_se)) 661 return; 662 663 /* 664 * Consumed budget is computed considering the time as 665 * observed by schedulable tasks (excluding time spent 666 * in hardirq context, etc.). Deadlines are instead 667 * computed using hard walltime. This seems to be the more 668 * natural solution, but the full ramifications of this 669 * approach need further study. 670 */ 671 delta_exec = rq_clock_task(rq) - curr->se.exec_start; 672 if (unlikely((s64)delta_exec <= 0)) 673 return; 674 675 schedstat_set(curr->se.statistics.exec_max, 676 max(curr->se.statistics.exec_max, delta_exec)); 677 678 curr->se.sum_exec_runtime += delta_exec; 679 account_group_exec_runtime(curr, delta_exec); 680 681 curr->se.exec_start = rq_clock_task(rq); 682 cpuacct_charge(curr, delta_exec); 683 684 sched_rt_avg_update(rq, delta_exec); 685 686 dl_se->runtime -= dl_se->dl_yielded ? 0 : delta_exec; 687 if (dl_runtime_exceeded(rq, dl_se)) { 688 dl_se->dl_throttled = 1; 689 __dequeue_task_dl(rq, curr, 0); 690 if (unlikely(!start_dl_timer(dl_se, curr->dl.dl_boosted))) 691 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); 692 693 if (!is_leftmost(curr, &rq->dl)) 694 resched_curr(rq); 695 } 696 697 /* 698 * Because -- for now -- we share the rt bandwidth, we need to 699 * account our runtime there too, otherwise actual rt tasks 700 * would be able to exceed the shared quota. 701 * 702 * Account to the root rt group for now. 703 * 704 * The solution we're working towards is having the RT groups scheduled 705 * using deadline servers -- however there's a few nasties to figure 706 * out before that can happen. 707 */ 708 if (rt_bandwidth_enabled()) { 709 struct rt_rq *rt_rq = &rq->rt; 710 711 raw_spin_lock(&rt_rq->rt_runtime_lock); 712 /* 713 * We'll let actual RT tasks worry about the overflow here, we 714 * have our own CBS to keep us inline; only account when RT 715 * bandwidth is relevant. 716 */ 717 if (sched_rt_bandwidth_account(rt_rq)) 718 rt_rq->rt_time += delta_exec; 719 raw_spin_unlock(&rt_rq->rt_runtime_lock); 720 } 721 } 722 723 #ifdef CONFIG_SMP 724 725 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu); 726 727 static inline u64 next_deadline(struct rq *rq) 728 { 729 struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu); 730 731 if (next && dl_prio(next->prio)) 732 return next->dl.deadline; 733 else 734 return 0; 735 } 736 737 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 738 { 739 struct rq *rq = rq_of_dl_rq(dl_rq); 740 741 if (dl_rq->earliest_dl.curr == 0 || 742 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 743 /* 744 * If the dl_rq had no -deadline tasks, or if the new task 745 * has shorter deadline than the current one on dl_rq, we 746 * know that the previous earliest becomes our next earliest, 747 * as the new task becomes the earliest itself. 748 */ 749 dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr; 750 dl_rq->earliest_dl.curr = deadline; 751 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1); 752 } else if (dl_rq->earliest_dl.next == 0 || 753 dl_time_before(deadline, dl_rq->earliest_dl.next)) { 754 /* 755 * On the other hand, if the new -deadline task has a 756 * a later deadline than the earliest one on dl_rq, but 757 * it is earlier than the next (if any), we must 758 * recompute the next-earliest. 759 */ 760 dl_rq->earliest_dl.next = next_deadline(rq); 761 } 762 } 763 764 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 765 { 766 struct rq *rq = rq_of_dl_rq(dl_rq); 767 768 /* 769 * Since we may have removed our earliest (and/or next earliest) 770 * task we must recompute them. 771 */ 772 if (!dl_rq->dl_nr_running) { 773 dl_rq->earliest_dl.curr = 0; 774 dl_rq->earliest_dl.next = 0; 775 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); 776 } else { 777 struct rb_node *leftmost = dl_rq->rb_leftmost; 778 struct sched_dl_entity *entry; 779 780 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node); 781 dl_rq->earliest_dl.curr = entry->deadline; 782 dl_rq->earliest_dl.next = next_deadline(rq); 783 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1); 784 } 785 } 786 787 #else 788 789 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 790 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 791 792 #endif /* CONFIG_SMP */ 793 794 static inline 795 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 796 { 797 int prio = dl_task_of(dl_se)->prio; 798 u64 deadline = dl_se->deadline; 799 800 WARN_ON(!dl_prio(prio)); 801 dl_rq->dl_nr_running++; 802 add_nr_running(rq_of_dl_rq(dl_rq), 1); 803 804 inc_dl_deadline(dl_rq, deadline); 805 inc_dl_migration(dl_se, dl_rq); 806 } 807 808 static inline 809 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 810 { 811 int prio = dl_task_of(dl_se)->prio; 812 813 WARN_ON(!dl_prio(prio)); 814 WARN_ON(!dl_rq->dl_nr_running); 815 dl_rq->dl_nr_running--; 816 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 817 818 dec_dl_deadline(dl_rq, dl_se->deadline); 819 dec_dl_migration(dl_se, dl_rq); 820 } 821 822 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 823 { 824 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 825 struct rb_node **link = &dl_rq->rb_root.rb_node; 826 struct rb_node *parent = NULL; 827 struct sched_dl_entity *entry; 828 int leftmost = 1; 829 830 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node)); 831 832 while (*link) { 833 parent = *link; 834 entry = rb_entry(parent, struct sched_dl_entity, rb_node); 835 if (dl_time_before(dl_se->deadline, entry->deadline)) 836 link = &parent->rb_left; 837 else { 838 link = &parent->rb_right; 839 leftmost = 0; 840 } 841 } 842 843 if (leftmost) 844 dl_rq->rb_leftmost = &dl_se->rb_node; 845 846 rb_link_node(&dl_se->rb_node, parent, link); 847 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root); 848 849 inc_dl_tasks(dl_se, dl_rq); 850 } 851 852 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 853 { 854 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 855 856 if (RB_EMPTY_NODE(&dl_se->rb_node)) 857 return; 858 859 if (dl_rq->rb_leftmost == &dl_se->rb_node) { 860 struct rb_node *next_node; 861 862 next_node = rb_next(&dl_se->rb_node); 863 dl_rq->rb_leftmost = next_node; 864 } 865 866 rb_erase(&dl_se->rb_node, &dl_rq->rb_root); 867 RB_CLEAR_NODE(&dl_se->rb_node); 868 869 dec_dl_tasks(dl_se, dl_rq); 870 } 871 872 static void 873 enqueue_dl_entity(struct sched_dl_entity *dl_se, 874 struct sched_dl_entity *pi_se, int flags) 875 { 876 BUG_ON(on_dl_rq(dl_se)); 877 878 /* 879 * If this is a wakeup or a new instance, the scheduling 880 * parameters of the task might need updating. Otherwise, 881 * we want a replenishment of its runtime. 882 */ 883 if (dl_se->dl_new || flags & ENQUEUE_WAKEUP) 884 update_dl_entity(dl_se, pi_se); 885 else if (flags & ENQUEUE_REPLENISH) 886 replenish_dl_entity(dl_se, pi_se); 887 888 __enqueue_dl_entity(dl_se); 889 } 890 891 static void dequeue_dl_entity(struct sched_dl_entity *dl_se) 892 { 893 __dequeue_dl_entity(dl_se); 894 } 895 896 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 897 { 898 struct task_struct *pi_task = rt_mutex_get_top_task(p); 899 struct sched_dl_entity *pi_se = &p->dl; 900 901 /* 902 * Use the scheduling parameters of the top pi-waiter 903 * task if we have one and its (relative) deadline is 904 * smaller than our one... OTW we keep our runtime and 905 * deadline. 906 */ 907 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) { 908 pi_se = &pi_task->dl; 909 } else if (!dl_prio(p->normal_prio)) { 910 /* 911 * Special case in which we have a !SCHED_DEADLINE task 912 * that is going to be deboosted, but exceedes its 913 * runtime while doing so. No point in replenishing 914 * it, as it's going to return back to its original 915 * scheduling class after this. 916 */ 917 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH); 918 return; 919 } 920 921 /* 922 * If p is throttled, we do nothing. In fact, if it exhausted 923 * its budget it needs a replenishment and, since it now is on 924 * its rq, the bandwidth timer callback (which clearly has not 925 * run yet) will take care of this. 926 */ 927 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) 928 return; 929 930 enqueue_dl_entity(&p->dl, pi_se, flags); 931 932 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 933 enqueue_pushable_dl_task(rq, p); 934 } 935 936 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 937 { 938 dequeue_dl_entity(&p->dl); 939 dequeue_pushable_dl_task(rq, p); 940 } 941 942 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 943 { 944 update_curr_dl(rq); 945 __dequeue_task_dl(rq, p, flags); 946 } 947 948 /* 949 * Yield task semantic for -deadline tasks is: 950 * 951 * get off from the CPU until our next instance, with 952 * a new runtime. This is of little use now, since we 953 * don't have a bandwidth reclaiming mechanism. Anyway, 954 * bandwidth reclaiming is planned for the future, and 955 * yield_task_dl will indicate that some spare budget 956 * is available for other task instances to use it. 957 */ 958 static void yield_task_dl(struct rq *rq) 959 { 960 struct task_struct *p = rq->curr; 961 962 /* 963 * We make the task go to sleep until its current deadline by 964 * forcing its runtime to zero. This way, update_curr_dl() stops 965 * it and the bandwidth timer will wake it up and will give it 966 * new scheduling parameters (thanks to dl_yielded=1). 967 */ 968 if (p->dl.runtime > 0) { 969 rq->curr->dl.dl_yielded = 1; 970 p->dl.runtime = 0; 971 } 972 update_rq_clock(rq); 973 update_curr_dl(rq); 974 /* 975 * Tell update_rq_clock() that we've just updated, 976 * so we don't do microscopic update in schedule() 977 * and double the fastpath cost. 978 */ 979 rq_clock_skip_update(rq, true); 980 } 981 982 #ifdef CONFIG_SMP 983 984 static int find_later_rq(struct task_struct *task); 985 986 static int 987 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags) 988 { 989 struct task_struct *curr; 990 struct rq *rq; 991 992 if (sd_flag != SD_BALANCE_WAKE) 993 goto out; 994 995 rq = cpu_rq(cpu); 996 997 rcu_read_lock(); 998 curr = ACCESS_ONCE(rq->curr); /* unlocked access */ 999 1000 /* 1001 * If we are dealing with a -deadline task, we must 1002 * decide where to wake it up. 1003 * If it has a later deadline and the current task 1004 * on this rq can't move (provided the waking task 1005 * can!) we prefer to send it somewhere else. On the 1006 * other hand, if it has a shorter deadline, we 1007 * try to make it stay here, it might be important. 1008 */ 1009 if (unlikely(dl_task(curr)) && 1010 (curr->nr_cpus_allowed < 2 || 1011 !dl_entity_preempt(&p->dl, &curr->dl)) && 1012 (p->nr_cpus_allowed > 1)) { 1013 int target = find_later_rq(p); 1014 1015 if (target != -1) 1016 cpu = target; 1017 } 1018 rcu_read_unlock(); 1019 1020 out: 1021 return cpu; 1022 } 1023 1024 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 1025 { 1026 /* 1027 * Current can't be migrated, useless to reschedule, 1028 * let's hope p can move out. 1029 */ 1030 if (rq->curr->nr_cpus_allowed == 1 || 1031 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1) 1032 return; 1033 1034 /* 1035 * p is migratable, so let's not schedule it and 1036 * see if it is pushed or pulled somewhere else. 1037 */ 1038 if (p->nr_cpus_allowed != 1 && 1039 cpudl_find(&rq->rd->cpudl, p, NULL) != -1) 1040 return; 1041 1042 resched_curr(rq); 1043 } 1044 1045 static int pull_dl_task(struct rq *this_rq); 1046 1047 #endif /* CONFIG_SMP */ 1048 1049 /* 1050 * Only called when both the current and waking task are -deadline 1051 * tasks. 1052 */ 1053 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 1054 int flags) 1055 { 1056 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { 1057 resched_curr(rq); 1058 return; 1059 } 1060 1061 #ifdef CONFIG_SMP 1062 /* 1063 * In the unlikely case current and p have the same deadline 1064 * let us try to decide what's the best thing to do... 1065 */ 1066 if ((p->dl.deadline == rq->curr->dl.deadline) && 1067 !test_tsk_need_resched(rq->curr)) 1068 check_preempt_equal_dl(rq, p); 1069 #endif /* CONFIG_SMP */ 1070 } 1071 1072 #ifdef CONFIG_SCHED_HRTICK 1073 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1074 { 1075 hrtick_start(rq, p->dl.runtime); 1076 } 1077 #else /* !CONFIG_SCHED_HRTICK */ 1078 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1079 { 1080 } 1081 #endif 1082 1083 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq, 1084 struct dl_rq *dl_rq) 1085 { 1086 struct rb_node *left = dl_rq->rb_leftmost; 1087 1088 if (!left) 1089 return NULL; 1090 1091 return rb_entry(left, struct sched_dl_entity, rb_node); 1092 } 1093 1094 struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev) 1095 { 1096 struct sched_dl_entity *dl_se; 1097 struct task_struct *p; 1098 struct dl_rq *dl_rq; 1099 1100 dl_rq = &rq->dl; 1101 1102 if (need_pull_dl_task(rq, prev)) { 1103 pull_dl_task(rq); 1104 /* 1105 * pull_rt_task() can drop (and re-acquire) rq->lock; this 1106 * means a stop task can slip in, in which case we need to 1107 * re-start task selection. 1108 */ 1109 if (rq->stop && task_on_rq_queued(rq->stop)) 1110 return RETRY_TASK; 1111 } 1112 1113 /* 1114 * When prev is DL, we may throttle it in put_prev_task(). 1115 * So, we update time before we check for dl_nr_running. 1116 */ 1117 if (prev->sched_class == &dl_sched_class) 1118 update_curr_dl(rq); 1119 1120 if (unlikely(!dl_rq->dl_nr_running)) 1121 return NULL; 1122 1123 put_prev_task(rq, prev); 1124 1125 dl_se = pick_next_dl_entity(rq, dl_rq); 1126 BUG_ON(!dl_se); 1127 1128 p = dl_task_of(dl_se); 1129 p->se.exec_start = rq_clock_task(rq); 1130 1131 /* Running task will never be pushed. */ 1132 dequeue_pushable_dl_task(rq, p); 1133 1134 if (hrtick_enabled(rq)) 1135 start_hrtick_dl(rq, p); 1136 1137 set_post_schedule(rq); 1138 1139 return p; 1140 } 1141 1142 static void put_prev_task_dl(struct rq *rq, struct task_struct *p) 1143 { 1144 update_curr_dl(rq); 1145 1146 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 1147 enqueue_pushable_dl_task(rq, p); 1148 } 1149 1150 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 1151 { 1152 update_curr_dl(rq); 1153 1154 /* 1155 * Even when we have runtime, update_curr_dl() might have resulted in us 1156 * not being the leftmost task anymore. In that case NEED_RESCHED will 1157 * be set and schedule() will start a new hrtick for the next task. 1158 */ 1159 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 && 1160 is_leftmost(p, &rq->dl)) 1161 start_hrtick_dl(rq, p); 1162 } 1163 1164 static void task_fork_dl(struct task_struct *p) 1165 { 1166 /* 1167 * SCHED_DEADLINE tasks cannot fork and this is achieved through 1168 * sched_fork() 1169 */ 1170 } 1171 1172 static void task_dead_dl(struct task_struct *p) 1173 { 1174 struct hrtimer *timer = &p->dl.dl_timer; 1175 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1176 1177 /* 1178 * Since we are TASK_DEAD we won't slip out of the domain! 1179 */ 1180 raw_spin_lock_irq(&dl_b->lock); 1181 /* XXX we should retain the bw until 0-lag */ 1182 dl_b->total_bw -= p->dl.dl_bw; 1183 raw_spin_unlock_irq(&dl_b->lock); 1184 1185 hrtimer_cancel(timer); 1186 } 1187 1188 static void set_curr_task_dl(struct rq *rq) 1189 { 1190 struct task_struct *p = rq->curr; 1191 1192 p->se.exec_start = rq_clock_task(rq); 1193 1194 /* You can't push away the running task */ 1195 dequeue_pushable_dl_task(rq, p); 1196 } 1197 1198 #ifdef CONFIG_SMP 1199 1200 /* Only try algorithms three times */ 1201 #define DL_MAX_TRIES 3 1202 1203 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) 1204 { 1205 if (!task_running(rq, p) && 1206 cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 1207 return 1; 1208 return 0; 1209 } 1210 1211 /* Returns the second earliest -deadline task, NULL otherwise */ 1212 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu) 1213 { 1214 struct rb_node *next_node = rq->dl.rb_leftmost; 1215 struct sched_dl_entity *dl_se; 1216 struct task_struct *p = NULL; 1217 1218 next_node: 1219 next_node = rb_next(next_node); 1220 if (next_node) { 1221 dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node); 1222 p = dl_task_of(dl_se); 1223 1224 if (pick_dl_task(rq, p, cpu)) 1225 return p; 1226 1227 goto next_node; 1228 } 1229 1230 return NULL; 1231 } 1232 1233 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 1234 1235 static int find_later_rq(struct task_struct *task) 1236 { 1237 struct sched_domain *sd; 1238 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 1239 int this_cpu = smp_processor_id(); 1240 int best_cpu, cpu = task_cpu(task); 1241 1242 /* Make sure the mask is initialized first */ 1243 if (unlikely(!later_mask)) 1244 return -1; 1245 1246 if (task->nr_cpus_allowed == 1) 1247 return -1; 1248 1249 /* 1250 * We have to consider system topology and task affinity 1251 * first, then we can look for a suitable cpu. 1252 */ 1253 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl, 1254 task, later_mask); 1255 if (best_cpu == -1) 1256 return -1; 1257 1258 /* 1259 * If we are here, some target has been found, 1260 * the most suitable of which is cached in best_cpu. 1261 * This is, among the runqueues where the current tasks 1262 * have later deadlines than the task's one, the rq 1263 * with the latest possible one. 1264 * 1265 * Now we check how well this matches with task's 1266 * affinity and system topology. 1267 * 1268 * The last cpu where the task run is our first 1269 * guess, since it is most likely cache-hot there. 1270 */ 1271 if (cpumask_test_cpu(cpu, later_mask)) 1272 return cpu; 1273 /* 1274 * Check if this_cpu is to be skipped (i.e., it is 1275 * not in the mask) or not. 1276 */ 1277 if (!cpumask_test_cpu(this_cpu, later_mask)) 1278 this_cpu = -1; 1279 1280 rcu_read_lock(); 1281 for_each_domain(cpu, sd) { 1282 if (sd->flags & SD_WAKE_AFFINE) { 1283 1284 /* 1285 * If possible, preempting this_cpu is 1286 * cheaper than migrating. 1287 */ 1288 if (this_cpu != -1 && 1289 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1290 rcu_read_unlock(); 1291 return this_cpu; 1292 } 1293 1294 /* 1295 * Last chance: if best_cpu is valid and is 1296 * in the mask, that becomes our choice. 1297 */ 1298 if (best_cpu < nr_cpu_ids && 1299 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) { 1300 rcu_read_unlock(); 1301 return best_cpu; 1302 } 1303 } 1304 } 1305 rcu_read_unlock(); 1306 1307 /* 1308 * At this point, all our guesses failed, we just return 1309 * 'something', and let the caller sort the things out. 1310 */ 1311 if (this_cpu != -1) 1312 return this_cpu; 1313 1314 cpu = cpumask_any(later_mask); 1315 if (cpu < nr_cpu_ids) 1316 return cpu; 1317 1318 return -1; 1319 } 1320 1321 /* Locks the rq it finds */ 1322 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 1323 { 1324 struct rq *later_rq = NULL; 1325 int tries; 1326 int cpu; 1327 1328 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 1329 cpu = find_later_rq(task); 1330 1331 if ((cpu == -1) || (cpu == rq->cpu)) 1332 break; 1333 1334 later_rq = cpu_rq(cpu); 1335 1336 /* Retry if something changed. */ 1337 if (double_lock_balance(rq, later_rq)) { 1338 if (unlikely(task_rq(task) != rq || 1339 !cpumask_test_cpu(later_rq->cpu, 1340 &task->cpus_allowed) || 1341 task_running(rq, task) || 1342 !task_on_rq_queued(task))) { 1343 double_unlock_balance(rq, later_rq); 1344 later_rq = NULL; 1345 break; 1346 } 1347 } 1348 1349 /* 1350 * If the rq we found has no -deadline task, or 1351 * its earliest one has a later deadline than our 1352 * task, the rq is a good one. 1353 */ 1354 if (!later_rq->dl.dl_nr_running || 1355 dl_time_before(task->dl.deadline, 1356 later_rq->dl.earliest_dl.curr)) 1357 break; 1358 1359 /* Otherwise we try again. */ 1360 double_unlock_balance(rq, later_rq); 1361 later_rq = NULL; 1362 } 1363 1364 return later_rq; 1365 } 1366 1367 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 1368 { 1369 struct task_struct *p; 1370 1371 if (!has_pushable_dl_tasks(rq)) 1372 return NULL; 1373 1374 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost, 1375 struct task_struct, pushable_dl_tasks); 1376 1377 BUG_ON(rq->cpu != task_cpu(p)); 1378 BUG_ON(task_current(rq, p)); 1379 BUG_ON(p->nr_cpus_allowed <= 1); 1380 1381 BUG_ON(!task_on_rq_queued(p)); 1382 BUG_ON(!dl_task(p)); 1383 1384 return p; 1385 } 1386 1387 /* 1388 * See if the non running -deadline tasks on this rq 1389 * can be sent to some other CPU where they can preempt 1390 * and start executing. 1391 */ 1392 static int push_dl_task(struct rq *rq) 1393 { 1394 struct task_struct *next_task; 1395 struct rq *later_rq; 1396 int ret = 0; 1397 1398 if (!rq->dl.overloaded) 1399 return 0; 1400 1401 next_task = pick_next_pushable_dl_task(rq); 1402 if (!next_task) 1403 return 0; 1404 1405 retry: 1406 if (unlikely(next_task == rq->curr)) { 1407 WARN_ON(1); 1408 return 0; 1409 } 1410 1411 /* 1412 * If next_task preempts rq->curr, and rq->curr 1413 * can move away, it makes sense to just reschedule 1414 * without going further in pushing next_task. 1415 */ 1416 if (dl_task(rq->curr) && 1417 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && 1418 rq->curr->nr_cpus_allowed > 1) { 1419 resched_curr(rq); 1420 return 0; 1421 } 1422 1423 /* We might release rq lock */ 1424 get_task_struct(next_task); 1425 1426 /* Will lock the rq it'll find */ 1427 later_rq = find_lock_later_rq(next_task, rq); 1428 if (!later_rq) { 1429 struct task_struct *task; 1430 1431 /* 1432 * We must check all this again, since 1433 * find_lock_later_rq releases rq->lock and it is 1434 * then possible that next_task has migrated. 1435 */ 1436 task = pick_next_pushable_dl_task(rq); 1437 if (task_cpu(next_task) == rq->cpu && task == next_task) { 1438 /* 1439 * The task is still there. We don't try 1440 * again, some other cpu will pull it when ready. 1441 */ 1442 goto out; 1443 } 1444 1445 if (!task) 1446 /* No more tasks */ 1447 goto out; 1448 1449 put_task_struct(next_task); 1450 next_task = task; 1451 goto retry; 1452 } 1453 1454 deactivate_task(rq, next_task, 0); 1455 set_task_cpu(next_task, later_rq->cpu); 1456 activate_task(later_rq, next_task, 0); 1457 ret = 1; 1458 1459 resched_curr(later_rq); 1460 1461 double_unlock_balance(rq, later_rq); 1462 1463 out: 1464 put_task_struct(next_task); 1465 1466 return ret; 1467 } 1468 1469 static void push_dl_tasks(struct rq *rq) 1470 { 1471 /* Terminates as it moves a -deadline task */ 1472 while (push_dl_task(rq)) 1473 ; 1474 } 1475 1476 static int pull_dl_task(struct rq *this_rq) 1477 { 1478 int this_cpu = this_rq->cpu, ret = 0, cpu; 1479 struct task_struct *p; 1480 struct rq *src_rq; 1481 u64 dmin = LONG_MAX; 1482 1483 if (likely(!dl_overloaded(this_rq))) 1484 return 0; 1485 1486 /* 1487 * Match the barrier from dl_set_overloaded; this guarantees that if we 1488 * see overloaded we must also see the dlo_mask bit. 1489 */ 1490 smp_rmb(); 1491 1492 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 1493 if (this_cpu == cpu) 1494 continue; 1495 1496 src_rq = cpu_rq(cpu); 1497 1498 /* 1499 * It looks racy, abd it is! However, as in sched_rt.c, 1500 * we are fine with this. 1501 */ 1502 if (this_rq->dl.dl_nr_running && 1503 dl_time_before(this_rq->dl.earliest_dl.curr, 1504 src_rq->dl.earliest_dl.next)) 1505 continue; 1506 1507 /* Might drop this_rq->lock */ 1508 double_lock_balance(this_rq, src_rq); 1509 1510 /* 1511 * If there are no more pullable tasks on the 1512 * rq, we're done with it. 1513 */ 1514 if (src_rq->dl.dl_nr_running <= 1) 1515 goto skip; 1516 1517 p = pick_next_earliest_dl_task(src_rq, this_cpu); 1518 1519 /* 1520 * We found a task to be pulled if: 1521 * - it preempts our current (if there's one), 1522 * - it will preempt the last one we pulled (if any). 1523 */ 1524 if (p && dl_time_before(p->dl.deadline, dmin) && 1525 (!this_rq->dl.dl_nr_running || 1526 dl_time_before(p->dl.deadline, 1527 this_rq->dl.earliest_dl.curr))) { 1528 WARN_ON(p == src_rq->curr); 1529 WARN_ON(!task_on_rq_queued(p)); 1530 1531 /* 1532 * Then we pull iff p has actually an earlier 1533 * deadline than the current task of its runqueue. 1534 */ 1535 if (dl_time_before(p->dl.deadline, 1536 src_rq->curr->dl.deadline)) 1537 goto skip; 1538 1539 ret = 1; 1540 1541 deactivate_task(src_rq, p, 0); 1542 set_task_cpu(p, this_cpu); 1543 activate_task(this_rq, p, 0); 1544 dmin = p->dl.deadline; 1545 1546 /* Is there any other task even earlier? */ 1547 } 1548 skip: 1549 double_unlock_balance(this_rq, src_rq); 1550 } 1551 1552 return ret; 1553 } 1554 1555 static void post_schedule_dl(struct rq *rq) 1556 { 1557 push_dl_tasks(rq); 1558 } 1559 1560 /* 1561 * Since the task is not running and a reschedule is not going to happen 1562 * anytime soon on its runqueue, we try pushing it away now. 1563 */ 1564 static void task_woken_dl(struct rq *rq, struct task_struct *p) 1565 { 1566 if (!task_running(rq, p) && 1567 !test_tsk_need_resched(rq->curr) && 1568 has_pushable_dl_tasks(rq) && 1569 p->nr_cpus_allowed > 1 && 1570 dl_task(rq->curr) && 1571 (rq->curr->nr_cpus_allowed < 2 || 1572 !dl_entity_preempt(&p->dl, &rq->curr->dl))) { 1573 push_dl_tasks(rq); 1574 } 1575 } 1576 1577 static void set_cpus_allowed_dl(struct task_struct *p, 1578 const struct cpumask *new_mask) 1579 { 1580 struct rq *rq; 1581 struct root_domain *src_rd; 1582 int weight; 1583 1584 BUG_ON(!dl_task(p)); 1585 1586 rq = task_rq(p); 1587 src_rd = rq->rd; 1588 /* 1589 * Migrating a SCHED_DEADLINE task between exclusive 1590 * cpusets (different root_domains) entails a bandwidth 1591 * update. We already made space for us in the destination 1592 * domain (see cpuset_can_attach()). 1593 */ 1594 if (!cpumask_intersects(src_rd->span, new_mask)) { 1595 struct dl_bw *src_dl_b; 1596 1597 src_dl_b = dl_bw_of(cpu_of(rq)); 1598 /* 1599 * We now free resources of the root_domain we are migrating 1600 * off. In the worst case, sched_setattr() may temporary fail 1601 * until we complete the update. 1602 */ 1603 raw_spin_lock(&src_dl_b->lock); 1604 __dl_clear(src_dl_b, p->dl.dl_bw); 1605 raw_spin_unlock(&src_dl_b->lock); 1606 } 1607 1608 /* 1609 * Update only if the task is actually running (i.e., 1610 * it is on the rq AND it is not throttled). 1611 */ 1612 if (!on_dl_rq(&p->dl)) 1613 return; 1614 1615 weight = cpumask_weight(new_mask); 1616 1617 /* 1618 * Only update if the process changes its state from whether it 1619 * can migrate or not. 1620 */ 1621 if ((p->nr_cpus_allowed > 1) == (weight > 1)) 1622 return; 1623 1624 /* 1625 * The process used to be able to migrate OR it can now migrate 1626 */ 1627 if (weight <= 1) { 1628 if (!task_current(rq, p)) 1629 dequeue_pushable_dl_task(rq, p); 1630 BUG_ON(!rq->dl.dl_nr_migratory); 1631 rq->dl.dl_nr_migratory--; 1632 } else { 1633 if (!task_current(rq, p)) 1634 enqueue_pushable_dl_task(rq, p); 1635 rq->dl.dl_nr_migratory++; 1636 } 1637 1638 update_dl_migration(&rq->dl); 1639 } 1640 1641 /* Assumes rq->lock is held */ 1642 static void rq_online_dl(struct rq *rq) 1643 { 1644 if (rq->dl.overloaded) 1645 dl_set_overload(rq); 1646 1647 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu); 1648 if (rq->dl.dl_nr_running > 0) 1649 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1); 1650 } 1651 1652 /* Assumes rq->lock is held */ 1653 static void rq_offline_dl(struct rq *rq) 1654 { 1655 if (rq->dl.overloaded) 1656 dl_clear_overload(rq); 1657 1658 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); 1659 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu); 1660 } 1661 1662 void init_sched_dl_class(void) 1663 { 1664 unsigned int i; 1665 1666 for_each_possible_cpu(i) 1667 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 1668 GFP_KERNEL, cpu_to_node(i)); 1669 } 1670 1671 #endif /* CONFIG_SMP */ 1672 1673 /* 1674 * Ensure p's dl_timer is cancelled. May drop rq->lock for a while. 1675 */ 1676 static void cancel_dl_timer(struct rq *rq, struct task_struct *p) 1677 { 1678 struct hrtimer *dl_timer = &p->dl.dl_timer; 1679 1680 /* Nobody will change task's class if pi_lock is held */ 1681 lockdep_assert_held(&p->pi_lock); 1682 1683 if (hrtimer_active(dl_timer)) { 1684 int ret = hrtimer_try_to_cancel(dl_timer); 1685 1686 if (unlikely(ret == -1)) { 1687 /* 1688 * Note, p may migrate OR new deadline tasks 1689 * may appear in rq when we are unlocking it. 1690 * A caller of us must be fine with that. 1691 */ 1692 raw_spin_unlock(&rq->lock); 1693 hrtimer_cancel(dl_timer); 1694 raw_spin_lock(&rq->lock); 1695 } 1696 } 1697 } 1698 1699 static void switched_from_dl(struct rq *rq, struct task_struct *p) 1700 { 1701 /* XXX we should retain the bw until 0-lag */ 1702 cancel_dl_timer(rq, p); 1703 __dl_clear_params(p); 1704 1705 /* 1706 * Since this might be the only -deadline task on the rq, 1707 * this is the right place to try to pull some other one 1708 * from an overloaded cpu, if any. 1709 */ 1710 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 1711 return; 1712 1713 if (pull_dl_task(rq)) 1714 resched_curr(rq); 1715 } 1716 1717 /* 1718 * When switching to -deadline, we may overload the rq, then 1719 * we try to push someone off, if possible. 1720 */ 1721 static void switched_to_dl(struct rq *rq, struct task_struct *p) 1722 { 1723 int check_resched = 1; 1724 1725 if (task_on_rq_queued(p) && rq->curr != p) { 1726 #ifdef CONFIG_SMP 1727 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded && 1728 push_dl_task(rq) && rq != task_rq(p)) 1729 /* Only reschedule if pushing failed */ 1730 check_resched = 0; 1731 #endif /* CONFIG_SMP */ 1732 if (check_resched) { 1733 if (dl_task(rq->curr)) 1734 check_preempt_curr_dl(rq, p, 0); 1735 else 1736 resched_curr(rq); 1737 } 1738 } 1739 } 1740 1741 /* 1742 * If the scheduling parameters of a -deadline task changed, 1743 * a push or pull operation might be needed. 1744 */ 1745 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 1746 int oldprio) 1747 { 1748 if (task_on_rq_queued(p) || rq->curr == p) { 1749 #ifdef CONFIG_SMP 1750 /* 1751 * This might be too much, but unfortunately 1752 * we don't have the old deadline value, and 1753 * we can't argue if the task is increasing 1754 * or lowering its prio, so... 1755 */ 1756 if (!rq->dl.overloaded) 1757 pull_dl_task(rq); 1758 1759 /* 1760 * If we now have a earlier deadline task than p, 1761 * then reschedule, provided p is still on this 1762 * runqueue. 1763 */ 1764 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) && 1765 rq->curr == p) 1766 resched_curr(rq); 1767 #else 1768 /* 1769 * Again, we don't know if p has a earlier 1770 * or later deadline, so let's blindly set a 1771 * (maybe not needed) rescheduling point. 1772 */ 1773 resched_curr(rq); 1774 #endif /* CONFIG_SMP */ 1775 } else 1776 switched_to_dl(rq, p); 1777 } 1778 1779 const struct sched_class dl_sched_class = { 1780 .next = &rt_sched_class, 1781 .enqueue_task = enqueue_task_dl, 1782 .dequeue_task = dequeue_task_dl, 1783 .yield_task = yield_task_dl, 1784 1785 .check_preempt_curr = check_preempt_curr_dl, 1786 1787 .pick_next_task = pick_next_task_dl, 1788 .put_prev_task = put_prev_task_dl, 1789 1790 #ifdef CONFIG_SMP 1791 .select_task_rq = select_task_rq_dl, 1792 .set_cpus_allowed = set_cpus_allowed_dl, 1793 .rq_online = rq_online_dl, 1794 .rq_offline = rq_offline_dl, 1795 .post_schedule = post_schedule_dl, 1796 .task_woken = task_woken_dl, 1797 #endif 1798 1799 .set_curr_task = set_curr_task_dl, 1800 .task_tick = task_tick_dl, 1801 .task_fork = task_fork_dl, 1802 .task_dead = task_dead_dl, 1803 1804 .prio_changed = prio_changed_dl, 1805 .switched_from = switched_from_dl, 1806 .switched_to = switched_to_dl, 1807 1808 .update_curr = update_curr_dl, 1809 }; 1810 1811 #ifdef CONFIG_SCHED_DEBUG 1812 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 1813 1814 void print_dl_stats(struct seq_file *m, int cpu) 1815 { 1816 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 1817 } 1818 #endif /* CONFIG_SCHED_DEBUG */ 1819