xref: /openbmc/linux/kernel/sched/deadline.c (revision 7e60e389)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Deadline Scheduling Class (SCHED_DEADLINE)
4  *
5  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6  *
7  * Tasks that periodically executes their instances for less than their
8  * runtime won't miss any of their deadlines.
9  * Tasks that are not periodic or sporadic or that tries to execute more
10  * than their reserved bandwidth will be slowed down (and may potentially
11  * miss some of their deadlines), and won't affect any other task.
12  *
13  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14  *                    Juri Lelli <juri.lelli@gmail.com>,
15  *                    Michael Trimarchi <michael@amarulasolutions.com>,
16  *                    Fabio Checconi <fchecconi@gmail.com>
17  */
18 #include "sched.h"
19 #include "pelt.h"
20 
21 struct dl_bandwidth def_dl_bandwidth;
22 
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24 {
25 	return container_of(dl_se, struct task_struct, dl);
26 }
27 
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29 {
30 	return container_of(dl_rq, struct rq, dl);
31 }
32 
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34 {
35 	struct task_struct *p = dl_task_of(dl_se);
36 	struct rq *rq = task_rq(p);
37 
38 	return &rq->dl;
39 }
40 
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42 {
43 	return !RB_EMPTY_NODE(&dl_se->rb_node);
44 }
45 
46 #ifdef CONFIG_RT_MUTEXES
47 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
48 {
49 	return dl_se->pi_se;
50 }
51 
52 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
53 {
54 	return pi_of(dl_se) != dl_se;
55 }
56 #else
57 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
58 {
59 	return dl_se;
60 }
61 
62 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
63 {
64 	return false;
65 }
66 #endif
67 
68 #ifdef CONFIG_SMP
69 static inline struct dl_bw *dl_bw_of(int i)
70 {
71 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
72 			 "sched RCU must be held");
73 	return &cpu_rq(i)->rd->dl_bw;
74 }
75 
76 static inline int dl_bw_cpus(int i)
77 {
78 	struct root_domain *rd = cpu_rq(i)->rd;
79 	int cpus;
80 
81 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
82 			 "sched RCU must be held");
83 
84 	if (cpumask_subset(rd->span, cpu_active_mask))
85 		return cpumask_weight(rd->span);
86 
87 	cpus = 0;
88 
89 	for_each_cpu_and(i, rd->span, cpu_active_mask)
90 		cpus++;
91 
92 	return cpus;
93 }
94 
95 static inline unsigned long __dl_bw_capacity(int i)
96 {
97 	struct root_domain *rd = cpu_rq(i)->rd;
98 	unsigned long cap = 0;
99 
100 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
101 			 "sched RCU must be held");
102 
103 	for_each_cpu_and(i, rd->span, cpu_active_mask)
104 		cap += capacity_orig_of(i);
105 
106 	return cap;
107 }
108 
109 /*
110  * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
111  * of the CPU the task is running on rather rd's \Sum CPU capacity.
112  */
113 static inline unsigned long dl_bw_capacity(int i)
114 {
115 	if (!static_branch_unlikely(&sched_asym_cpucapacity) &&
116 	    capacity_orig_of(i) == SCHED_CAPACITY_SCALE) {
117 		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
118 	} else {
119 		return __dl_bw_capacity(i);
120 	}
121 }
122 
123 static inline bool dl_bw_visited(int cpu, u64 gen)
124 {
125 	struct root_domain *rd = cpu_rq(cpu)->rd;
126 
127 	if (rd->visit_gen == gen)
128 		return true;
129 
130 	rd->visit_gen = gen;
131 	return false;
132 }
133 #else
134 static inline struct dl_bw *dl_bw_of(int i)
135 {
136 	return &cpu_rq(i)->dl.dl_bw;
137 }
138 
139 static inline int dl_bw_cpus(int i)
140 {
141 	return 1;
142 }
143 
144 static inline unsigned long dl_bw_capacity(int i)
145 {
146 	return SCHED_CAPACITY_SCALE;
147 }
148 
149 static inline bool dl_bw_visited(int cpu, u64 gen)
150 {
151 	return false;
152 }
153 #endif
154 
155 static inline
156 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
157 {
158 	u64 old = dl_rq->running_bw;
159 
160 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
161 	dl_rq->running_bw += dl_bw;
162 	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
163 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
164 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
165 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
166 }
167 
168 static inline
169 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
170 {
171 	u64 old = dl_rq->running_bw;
172 
173 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
174 	dl_rq->running_bw -= dl_bw;
175 	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
176 	if (dl_rq->running_bw > old)
177 		dl_rq->running_bw = 0;
178 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
179 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
180 }
181 
182 static inline
183 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
184 {
185 	u64 old = dl_rq->this_bw;
186 
187 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
188 	dl_rq->this_bw += dl_bw;
189 	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
190 }
191 
192 static inline
193 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
194 {
195 	u64 old = dl_rq->this_bw;
196 
197 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
198 	dl_rq->this_bw -= dl_bw;
199 	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
200 	if (dl_rq->this_bw > old)
201 		dl_rq->this_bw = 0;
202 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
203 }
204 
205 static inline
206 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
207 {
208 	if (!dl_entity_is_special(dl_se))
209 		__add_rq_bw(dl_se->dl_bw, dl_rq);
210 }
211 
212 static inline
213 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
214 {
215 	if (!dl_entity_is_special(dl_se))
216 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
217 }
218 
219 static inline
220 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
221 {
222 	if (!dl_entity_is_special(dl_se))
223 		__add_running_bw(dl_se->dl_bw, dl_rq);
224 }
225 
226 static inline
227 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
228 {
229 	if (!dl_entity_is_special(dl_se))
230 		__sub_running_bw(dl_se->dl_bw, dl_rq);
231 }
232 
233 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
234 {
235 	struct rq *rq;
236 
237 	BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
238 
239 	if (task_on_rq_queued(p))
240 		return;
241 
242 	rq = task_rq(p);
243 	if (p->dl.dl_non_contending) {
244 		sub_running_bw(&p->dl, &rq->dl);
245 		p->dl.dl_non_contending = 0;
246 		/*
247 		 * If the timer handler is currently running and the
248 		 * timer cannot be cancelled, inactive_task_timer()
249 		 * will see that dl_not_contending is not set, and
250 		 * will not touch the rq's active utilization,
251 		 * so we are still safe.
252 		 */
253 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
254 			put_task_struct(p);
255 	}
256 	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
257 	__add_rq_bw(new_bw, &rq->dl);
258 }
259 
260 /*
261  * The utilization of a task cannot be immediately removed from
262  * the rq active utilization (running_bw) when the task blocks.
263  * Instead, we have to wait for the so called "0-lag time".
264  *
265  * If a task blocks before the "0-lag time", a timer (the inactive
266  * timer) is armed, and running_bw is decreased when the timer
267  * fires.
268  *
269  * If the task wakes up again before the inactive timer fires,
270  * the timer is cancelled, whereas if the task wakes up after the
271  * inactive timer fired (and running_bw has been decreased) the
272  * task's utilization has to be added to running_bw again.
273  * A flag in the deadline scheduling entity (dl_non_contending)
274  * is used to avoid race conditions between the inactive timer handler
275  * and task wakeups.
276  *
277  * The following diagram shows how running_bw is updated. A task is
278  * "ACTIVE" when its utilization contributes to running_bw; an
279  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
280  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
281  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
282  * time already passed, which does not contribute to running_bw anymore.
283  *                              +------------------+
284  *             wakeup           |    ACTIVE        |
285  *          +------------------>+   contending     |
286  *          | add_running_bw    |                  |
287  *          |                   +----+------+------+
288  *          |                        |      ^
289  *          |                dequeue |      |
290  * +--------+-------+                |      |
291  * |                |   t >= 0-lag   |      | wakeup
292  * |    INACTIVE    |<---------------+      |
293  * |                | sub_running_bw |      |
294  * +--------+-------+                |      |
295  *          ^                        |      |
296  *          |              t < 0-lag |      |
297  *          |                        |      |
298  *          |                        V      |
299  *          |                   +----+------+------+
300  *          | sub_running_bw    |    ACTIVE        |
301  *          +-------------------+                  |
302  *            inactive timer    |  non contending  |
303  *            fired             +------------------+
304  *
305  * The task_non_contending() function is invoked when a task
306  * blocks, and checks if the 0-lag time already passed or
307  * not (in the first case, it directly updates running_bw;
308  * in the second case, it arms the inactive timer).
309  *
310  * The task_contending() function is invoked when a task wakes
311  * up, and checks if the task is still in the "ACTIVE non contending"
312  * state or not (in the second case, it updates running_bw).
313  */
314 static void task_non_contending(struct task_struct *p)
315 {
316 	struct sched_dl_entity *dl_se = &p->dl;
317 	struct hrtimer *timer = &dl_se->inactive_timer;
318 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
319 	struct rq *rq = rq_of_dl_rq(dl_rq);
320 	s64 zerolag_time;
321 
322 	/*
323 	 * If this is a non-deadline task that has been boosted,
324 	 * do nothing
325 	 */
326 	if (dl_se->dl_runtime == 0)
327 		return;
328 
329 	if (dl_entity_is_special(dl_se))
330 		return;
331 
332 	WARN_ON(dl_se->dl_non_contending);
333 
334 	zerolag_time = dl_se->deadline -
335 		 div64_long((dl_se->runtime * dl_se->dl_period),
336 			dl_se->dl_runtime);
337 
338 	/*
339 	 * Using relative times instead of the absolute "0-lag time"
340 	 * allows to simplify the code
341 	 */
342 	zerolag_time -= rq_clock(rq);
343 
344 	/*
345 	 * If the "0-lag time" already passed, decrease the active
346 	 * utilization now, instead of starting a timer
347 	 */
348 	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
349 		if (dl_task(p))
350 			sub_running_bw(dl_se, dl_rq);
351 		if (!dl_task(p) || p->state == TASK_DEAD) {
352 			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
353 
354 			if (p->state == TASK_DEAD)
355 				sub_rq_bw(&p->dl, &rq->dl);
356 			raw_spin_lock(&dl_b->lock);
357 			__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
358 			__dl_clear_params(p);
359 			raw_spin_unlock(&dl_b->lock);
360 		}
361 
362 		return;
363 	}
364 
365 	dl_se->dl_non_contending = 1;
366 	get_task_struct(p);
367 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
368 }
369 
370 static void task_contending(struct sched_dl_entity *dl_se, int flags)
371 {
372 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
373 
374 	/*
375 	 * If this is a non-deadline task that has been boosted,
376 	 * do nothing
377 	 */
378 	if (dl_se->dl_runtime == 0)
379 		return;
380 
381 	if (flags & ENQUEUE_MIGRATED)
382 		add_rq_bw(dl_se, dl_rq);
383 
384 	if (dl_se->dl_non_contending) {
385 		dl_se->dl_non_contending = 0;
386 		/*
387 		 * If the timer handler is currently running and the
388 		 * timer cannot be cancelled, inactive_task_timer()
389 		 * will see that dl_not_contending is not set, and
390 		 * will not touch the rq's active utilization,
391 		 * so we are still safe.
392 		 */
393 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
394 			put_task_struct(dl_task_of(dl_se));
395 	} else {
396 		/*
397 		 * Since "dl_non_contending" is not set, the
398 		 * task's utilization has already been removed from
399 		 * active utilization (either when the task blocked,
400 		 * when the "inactive timer" fired).
401 		 * So, add it back.
402 		 */
403 		add_running_bw(dl_se, dl_rq);
404 	}
405 }
406 
407 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
408 {
409 	struct sched_dl_entity *dl_se = &p->dl;
410 
411 	return dl_rq->root.rb_leftmost == &dl_se->rb_node;
412 }
413 
414 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
415 
416 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
417 {
418 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
419 	dl_b->dl_period = period;
420 	dl_b->dl_runtime = runtime;
421 }
422 
423 void init_dl_bw(struct dl_bw *dl_b)
424 {
425 	raw_spin_lock_init(&dl_b->lock);
426 	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
427 	if (global_rt_runtime() == RUNTIME_INF)
428 		dl_b->bw = -1;
429 	else
430 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
431 	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
432 	dl_b->total_bw = 0;
433 }
434 
435 void init_dl_rq(struct dl_rq *dl_rq)
436 {
437 	dl_rq->root = RB_ROOT_CACHED;
438 
439 #ifdef CONFIG_SMP
440 	/* zero means no -deadline tasks */
441 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
442 
443 	dl_rq->dl_nr_migratory = 0;
444 	dl_rq->overloaded = 0;
445 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
446 #else
447 	init_dl_bw(&dl_rq->dl_bw);
448 #endif
449 
450 	dl_rq->running_bw = 0;
451 	dl_rq->this_bw = 0;
452 	init_dl_rq_bw_ratio(dl_rq);
453 }
454 
455 #ifdef CONFIG_SMP
456 
457 static inline int dl_overloaded(struct rq *rq)
458 {
459 	return atomic_read(&rq->rd->dlo_count);
460 }
461 
462 static inline void dl_set_overload(struct rq *rq)
463 {
464 	if (!rq->online)
465 		return;
466 
467 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
468 	/*
469 	 * Must be visible before the overload count is
470 	 * set (as in sched_rt.c).
471 	 *
472 	 * Matched by the barrier in pull_dl_task().
473 	 */
474 	smp_wmb();
475 	atomic_inc(&rq->rd->dlo_count);
476 }
477 
478 static inline void dl_clear_overload(struct rq *rq)
479 {
480 	if (!rq->online)
481 		return;
482 
483 	atomic_dec(&rq->rd->dlo_count);
484 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
485 }
486 
487 static void update_dl_migration(struct dl_rq *dl_rq)
488 {
489 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
490 		if (!dl_rq->overloaded) {
491 			dl_set_overload(rq_of_dl_rq(dl_rq));
492 			dl_rq->overloaded = 1;
493 		}
494 	} else if (dl_rq->overloaded) {
495 		dl_clear_overload(rq_of_dl_rq(dl_rq));
496 		dl_rq->overloaded = 0;
497 	}
498 }
499 
500 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
501 {
502 	struct task_struct *p = dl_task_of(dl_se);
503 
504 	if (p->nr_cpus_allowed > 1)
505 		dl_rq->dl_nr_migratory++;
506 
507 	update_dl_migration(dl_rq);
508 }
509 
510 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
511 {
512 	struct task_struct *p = dl_task_of(dl_se);
513 
514 	if (p->nr_cpus_allowed > 1)
515 		dl_rq->dl_nr_migratory--;
516 
517 	update_dl_migration(dl_rq);
518 }
519 
520 /*
521  * The list of pushable -deadline task is not a plist, like in
522  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
523  */
524 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
525 {
526 	struct dl_rq *dl_rq = &rq->dl;
527 	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
528 	struct rb_node *parent = NULL;
529 	struct task_struct *entry;
530 	bool leftmost = true;
531 
532 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
533 
534 	while (*link) {
535 		parent = *link;
536 		entry = rb_entry(parent, struct task_struct,
537 				 pushable_dl_tasks);
538 		if (dl_entity_preempt(&p->dl, &entry->dl))
539 			link = &parent->rb_left;
540 		else {
541 			link = &parent->rb_right;
542 			leftmost = false;
543 		}
544 	}
545 
546 	if (leftmost)
547 		dl_rq->earliest_dl.next = p->dl.deadline;
548 
549 	rb_link_node(&p->pushable_dl_tasks, parent, link);
550 	rb_insert_color_cached(&p->pushable_dl_tasks,
551 			       &dl_rq->pushable_dl_tasks_root, leftmost);
552 }
553 
554 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
555 {
556 	struct dl_rq *dl_rq = &rq->dl;
557 
558 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
559 		return;
560 
561 	if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
562 		struct rb_node *next_node;
563 
564 		next_node = rb_next(&p->pushable_dl_tasks);
565 		if (next_node) {
566 			dl_rq->earliest_dl.next = rb_entry(next_node,
567 				struct task_struct, pushable_dl_tasks)->dl.deadline;
568 		}
569 	}
570 
571 	rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
572 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
573 }
574 
575 static inline int has_pushable_dl_tasks(struct rq *rq)
576 {
577 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
578 }
579 
580 static int push_dl_task(struct rq *rq);
581 
582 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
583 {
584 	return rq->online && dl_task(prev);
585 }
586 
587 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
588 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
589 
590 static void push_dl_tasks(struct rq *);
591 static void pull_dl_task(struct rq *);
592 
593 static inline void deadline_queue_push_tasks(struct rq *rq)
594 {
595 	if (!has_pushable_dl_tasks(rq))
596 		return;
597 
598 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
599 }
600 
601 static inline void deadline_queue_pull_task(struct rq *rq)
602 {
603 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
604 }
605 
606 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
607 
608 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
609 {
610 	struct rq *later_rq = NULL;
611 	struct dl_bw *dl_b;
612 
613 	later_rq = find_lock_later_rq(p, rq);
614 	if (!later_rq) {
615 		int cpu;
616 
617 		/*
618 		 * If we cannot preempt any rq, fall back to pick any
619 		 * online CPU:
620 		 */
621 		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
622 		if (cpu >= nr_cpu_ids) {
623 			/*
624 			 * Failed to find any suitable CPU.
625 			 * The task will never come back!
626 			 */
627 			BUG_ON(dl_bandwidth_enabled());
628 
629 			/*
630 			 * If admission control is disabled we
631 			 * try a little harder to let the task
632 			 * run.
633 			 */
634 			cpu = cpumask_any(cpu_active_mask);
635 		}
636 		later_rq = cpu_rq(cpu);
637 		double_lock_balance(rq, later_rq);
638 	}
639 
640 	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
641 		/*
642 		 * Inactive timer is armed (or callback is running, but
643 		 * waiting for us to release rq locks). In any case, when it
644 		 * will fire (or continue), it will see running_bw of this
645 		 * task migrated to later_rq (and correctly handle it).
646 		 */
647 		sub_running_bw(&p->dl, &rq->dl);
648 		sub_rq_bw(&p->dl, &rq->dl);
649 
650 		add_rq_bw(&p->dl, &later_rq->dl);
651 		add_running_bw(&p->dl, &later_rq->dl);
652 	} else {
653 		sub_rq_bw(&p->dl, &rq->dl);
654 		add_rq_bw(&p->dl, &later_rq->dl);
655 	}
656 
657 	/*
658 	 * And we finally need to fixup root_domain(s) bandwidth accounting,
659 	 * since p is still hanging out in the old (now moved to default) root
660 	 * domain.
661 	 */
662 	dl_b = &rq->rd->dl_bw;
663 	raw_spin_lock(&dl_b->lock);
664 	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
665 	raw_spin_unlock(&dl_b->lock);
666 
667 	dl_b = &later_rq->rd->dl_bw;
668 	raw_spin_lock(&dl_b->lock);
669 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
670 	raw_spin_unlock(&dl_b->lock);
671 
672 	set_task_cpu(p, later_rq->cpu);
673 	double_unlock_balance(later_rq, rq);
674 
675 	return later_rq;
676 }
677 
678 #else
679 
680 static inline
681 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
682 {
683 }
684 
685 static inline
686 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
687 {
688 }
689 
690 static inline
691 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
692 {
693 }
694 
695 static inline
696 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
697 {
698 }
699 
700 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
701 {
702 	return false;
703 }
704 
705 static inline void pull_dl_task(struct rq *rq)
706 {
707 }
708 
709 static inline void deadline_queue_push_tasks(struct rq *rq)
710 {
711 }
712 
713 static inline void deadline_queue_pull_task(struct rq *rq)
714 {
715 }
716 #endif /* CONFIG_SMP */
717 
718 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
719 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
720 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
721 
722 /*
723  * We are being explicitly informed that a new instance is starting,
724  * and this means that:
725  *  - the absolute deadline of the entity has to be placed at
726  *    current time + relative deadline;
727  *  - the runtime of the entity has to be set to the maximum value.
728  *
729  * The capability of specifying such event is useful whenever a -deadline
730  * entity wants to (try to!) synchronize its behaviour with the scheduler's
731  * one, and to (try to!) reconcile itself with its own scheduling
732  * parameters.
733  */
734 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
735 {
736 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
737 	struct rq *rq = rq_of_dl_rq(dl_rq);
738 
739 	WARN_ON(is_dl_boosted(dl_se));
740 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
741 
742 	/*
743 	 * We are racing with the deadline timer. So, do nothing because
744 	 * the deadline timer handler will take care of properly recharging
745 	 * the runtime and postponing the deadline
746 	 */
747 	if (dl_se->dl_throttled)
748 		return;
749 
750 	/*
751 	 * We use the regular wall clock time to set deadlines in the
752 	 * future; in fact, we must consider execution overheads (time
753 	 * spent on hardirq context, etc.).
754 	 */
755 	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
756 	dl_se->runtime = dl_se->dl_runtime;
757 }
758 
759 /*
760  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
761  * possibility of a entity lasting more than what it declared, and thus
762  * exhausting its runtime.
763  *
764  * Here we are interested in making runtime overrun possible, but we do
765  * not want a entity which is misbehaving to affect the scheduling of all
766  * other entities.
767  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
768  * is used, in order to confine each entity within its own bandwidth.
769  *
770  * This function deals exactly with that, and ensures that when the runtime
771  * of a entity is replenished, its deadline is also postponed. That ensures
772  * the overrunning entity can't interfere with other entity in the system and
773  * can't make them miss their deadlines. Reasons why this kind of overruns
774  * could happen are, typically, a entity voluntarily trying to overcome its
775  * runtime, or it just underestimated it during sched_setattr().
776  */
777 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
778 {
779 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
780 	struct rq *rq = rq_of_dl_rq(dl_rq);
781 
782 	BUG_ON(pi_of(dl_se)->dl_runtime <= 0);
783 
784 	/*
785 	 * This could be the case for a !-dl task that is boosted.
786 	 * Just go with full inherited parameters.
787 	 */
788 	if (dl_se->dl_deadline == 0) {
789 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
790 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
791 	}
792 
793 	if (dl_se->dl_yielded && dl_se->runtime > 0)
794 		dl_se->runtime = 0;
795 
796 	/*
797 	 * We keep moving the deadline away until we get some
798 	 * available runtime for the entity. This ensures correct
799 	 * handling of situations where the runtime overrun is
800 	 * arbitrary large.
801 	 */
802 	while (dl_se->runtime <= 0) {
803 		dl_se->deadline += pi_of(dl_se)->dl_period;
804 		dl_se->runtime += pi_of(dl_se)->dl_runtime;
805 	}
806 
807 	/*
808 	 * At this point, the deadline really should be "in
809 	 * the future" with respect to rq->clock. If it's
810 	 * not, we are, for some reason, lagging too much!
811 	 * Anyway, after having warn userspace abut that,
812 	 * we still try to keep the things running by
813 	 * resetting the deadline and the budget of the
814 	 * entity.
815 	 */
816 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
817 		printk_deferred_once("sched: DL replenish lagged too much\n");
818 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
819 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
820 	}
821 
822 	if (dl_se->dl_yielded)
823 		dl_se->dl_yielded = 0;
824 	if (dl_se->dl_throttled)
825 		dl_se->dl_throttled = 0;
826 }
827 
828 /*
829  * Here we check if --at time t-- an entity (which is probably being
830  * [re]activated or, in general, enqueued) can use its remaining runtime
831  * and its current deadline _without_ exceeding the bandwidth it is
832  * assigned (function returns true if it can't). We are in fact applying
833  * one of the CBS rules: when a task wakes up, if the residual runtime
834  * over residual deadline fits within the allocated bandwidth, then we
835  * can keep the current (absolute) deadline and residual budget without
836  * disrupting the schedulability of the system. Otherwise, we should
837  * refill the runtime and set the deadline a period in the future,
838  * because keeping the current (absolute) deadline of the task would
839  * result in breaking guarantees promised to other tasks (refer to
840  * Documentation/scheduler/sched-deadline.rst for more information).
841  *
842  * This function returns true if:
843  *
844  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
845  *
846  * IOW we can't recycle current parameters.
847  *
848  * Notice that the bandwidth check is done against the deadline. For
849  * task with deadline equal to period this is the same of using
850  * dl_period instead of dl_deadline in the equation above.
851  */
852 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
853 {
854 	u64 left, right;
855 
856 	/*
857 	 * left and right are the two sides of the equation above,
858 	 * after a bit of shuffling to use multiplications instead
859 	 * of divisions.
860 	 *
861 	 * Note that none of the time values involved in the two
862 	 * multiplications are absolute: dl_deadline and dl_runtime
863 	 * are the relative deadline and the maximum runtime of each
864 	 * instance, runtime is the runtime left for the last instance
865 	 * and (deadline - t), since t is rq->clock, is the time left
866 	 * to the (absolute) deadline. Even if overflowing the u64 type
867 	 * is very unlikely to occur in both cases, here we scale down
868 	 * as we want to avoid that risk at all. Scaling down by 10
869 	 * means that we reduce granularity to 1us. We are fine with it,
870 	 * since this is only a true/false check and, anyway, thinking
871 	 * of anything below microseconds resolution is actually fiction
872 	 * (but still we want to give the user that illusion >;).
873 	 */
874 	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
875 	right = ((dl_se->deadline - t) >> DL_SCALE) *
876 		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
877 
878 	return dl_time_before(right, left);
879 }
880 
881 /*
882  * Revised wakeup rule [1]: For self-suspending tasks, rather then
883  * re-initializing task's runtime and deadline, the revised wakeup
884  * rule adjusts the task's runtime to avoid the task to overrun its
885  * density.
886  *
887  * Reasoning: a task may overrun the density if:
888  *    runtime / (deadline - t) > dl_runtime / dl_deadline
889  *
890  * Therefore, runtime can be adjusted to:
891  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
892  *
893  * In such way that runtime will be equal to the maximum density
894  * the task can use without breaking any rule.
895  *
896  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
897  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
898  */
899 static void
900 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
901 {
902 	u64 laxity = dl_se->deadline - rq_clock(rq);
903 
904 	/*
905 	 * If the task has deadline < period, and the deadline is in the past,
906 	 * it should already be throttled before this check.
907 	 *
908 	 * See update_dl_entity() comments for further details.
909 	 */
910 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
911 
912 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
913 }
914 
915 /*
916  * Regarding the deadline, a task with implicit deadline has a relative
917  * deadline == relative period. A task with constrained deadline has a
918  * relative deadline <= relative period.
919  *
920  * We support constrained deadline tasks. However, there are some restrictions
921  * applied only for tasks which do not have an implicit deadline. See
922  * update_dl_entity() to know more about such restrictions.
923  *
924  * The dl_is_implicit() returns true if the task has an implicit deadline.
925  */
926 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
927 {
928 	return dl_se->dl_deadline == dl_se->dl_period;
929 }
930 
931 /*
932  * When a deadline entity is placed in the runqueue, its runtime and deadline
933  * might need to be updated. This is done by a CBS wake up rule. There are two
934  * different rules: 1) the original CBS; and 2) the Revisited CBS.
935  *
936  * When the task is starting a new period, the Original CBS is used. In this
937  * case, the runtime is replenished and a new absolute deadline is set.
938  *
939  * When a task is queued before the begin of the next period, using the
940  * remaining runtime and deadline could make the entity to overflow, see
941  * dl_entity_overflow() to find more about runtime overflow. When such case
942  * is detected, the runtime and deadline need to be updated.
943  *
944  * If the task has an implicit deadline, i.e., deadline == period, the Original
945  * CBS is applied. the runtime is replenished and a new absolute deadline is
946  * set, as in the previous cases.
947  *
948  * However, the Original CBS does not work properly for tasks with
949  * deadline < period, which are said to have a constrained deadline. By
950  * applying the Original CBS, a constrained deadline task would be able to run
951  * runtime/deadline in a period. With deadline < period, the task would
952  * overrun the runtime/period allowed bandwidth, breaking the admission test.
953  *
954  * In order to prevent this misbehave, the Revisited CBS is used for
955  * constrained deadline tasks when a runtime overflow is detected. In the
956  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
957  * the remaining runtime of the task is reduced to avoid runtime overflow.
958  * Please refer to the comments update_dl_revised_wakeup() function to find
959  * more about the Revised CBS rule.
960  */
961 static void update_dl_entity(struct sched_dl_entity *dl_se)
962 {
963 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
964 	struct rq *rq = rq_of_dl_rq(dl_rq);
965 
966 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
967 	    dl_entity_overflow(dl_se, rq_clock(rq))) {
968 
969 		if (unlikely(!dl_is_implicit(dl_se) &&
970 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
971 			     !is_dl_boosted(dl_se))) {
972 			update_dl_revised_wakeup(dl_se, rq);
973 			return;
974 		}
975 
976 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
977 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
978 	}
979 }
980 
981 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
982 {
983 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
984 }
985 
986 /*
987  * If the entity depleted all its runtime, and if we want it to sleep
988  * while waiting for some new execution time to become available, we
989  * set the bandwidth replenishment timer to the replenishment instant
990  * and try to activate it.
991  *
992  * Notice that it is important for the caller to know if the timer
993  * actually started or not (i.e., the replenishment instant is in
994  * the future or in the past).
995  */
996 static int start_dl_timer(struct task_struct *p)
997 {
998 	struct sched_dl_entity *dl_se = &p->dl;
999 	struct hrtimer *timer = &dl_se->dl_timer;
1000 	struct rq *rq = task_rq(p);
1001 	ktime_t now, act;
1002 	s64 delta;
1003 
1004 	lockdep_assert_held(&rq->lock);
1005 
1006 	/*
1007 	 * We want the timer to fire at the deadline, but considering
1008 	 * that it is actually coming from rq->clock and not from
1009 	 * hrtimer's time base reading.
1010 	 */
1011 	act = ns_to_ktime(dl_next_period(dl_se));
1012 	now = hrtimer_cb_get_time(timer);
1013 	delta = ktime_to_ns(now) - rq_clock(rq);
1014 	act = ktime_add_ns(act, delta);
1015 
1016 	/*
1017 	 * If the expiry time already passed, e.g., because the value
1018 	 * chosen as the deadline is too small, don't even try to
1019 	 * start the timer in the past!
1020 	 */
1021 	if (ktime_us_delta(act, now) < 0)
1022 		return 0;
1023 
1024 	/*
1025 	 * !enqueued will guarantee another callback; even if one is already in
1026 	 * progress. This ensures a balanced {get,put}_task_struct().
1027 	 *
1028 	 * The race against __run_timer() clearing the enqueued state is
1029 	 * harmless because we're holding task_rq()->lock, therefore the timer
1030 	 * expiring after we've done the check will wait on its task_rq_lock()
1031 	 * and observe our state.
1032 	 */
1033 	if (!hrtimer_is_queued(timer)) {
1034 		get_task_struct(p);
1035 		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1036 	}
1037 
1038 	return 1;
1039 }
1040 
1041 /*
1042  * This is the bandwidth enforcement timer callback. If here, we know
1043  * a task is not on its dl_rq, since the fact that the timer was running
1044  * means the task is throttled and needs a runtime replenishment.
1045  *
1046  * However, what we actually do depends on the fact the task is active,
1047  * (it is on its rq) or has been removed from there by a call to
1048  * dequeue_task_dl(). In the former case we must issue the runtime
1049  * replenishment and add the task back to the dl_rq; in the latter, we just
1050  * do nothing but clearing dl_throttled, so that runtime and deadline
1051  * updating (and the queueing back to dl_rq) will be done by the
1052  * next call to enqueue_task_dl().
1053  */
1054 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1055 {
1056 	struct sched_dl_entity *dl_se = container_of(timer,
1057 						     struct sched_dl_entity,
1058 						     dl_timer);
1059 	struct task_struct *p = dl_task_of(dl_se);
1060 	struct rq_flags rf;
1061 	struct rq *rq;
1062 
1063 	rq = task_rq_lock(p, &rf);
1064 
1065 	/*
1066 	 * The task might have changed its scheduling policy to something
1067 	 * different than SCHED_DEADLINE (through switched_from_dl()).
1068 	 */
1069 	if (!dl_task(p))
1070 		goto unlock;
1071 
1072 	/*
1073 	 * The task might have been boosted by someone else and might be in the
1074 	 * boosting/deboosting path, its not throttled.
1075 	 */
1076 	if (is_dl_boosted(dl_se))
1077 		goto unlock;
1078 
1079 	/*
1080 	 * Spurious timer due to start_dl_timer() race; or we already received
1081 	 * a replenishment from rt_mutex_setprio().
1082 	 */
1083 	if (!dl_se->dl_throttled)
1084 		goto unlock;
1085 
1086 	sched_clock_tick();
1087 	update_rq_clock(rq);
1088 
1089 	/*
1090 	 * If the throttle happened during sched-out; like:
1091 	 *
1092 	 *   schedule()
1093 	 *     deactivate_task()
1094 	 *       dequeue_task_dl()
1095 	 *         update_curr_dl()
1096 	 *           start_dl_timer()
1097 	 *         __dequeue_task_dl()
1098 	 *     prev->on_rq = 0;
1099 	 *
1100 	 * We can be both throttled and !queued. Replenish the counter
1101 	 * but do not enqueue -- wait for our wakeup to do that.
1102 	 */
1103 	if (!task_on_rq_queued(p)) {
1104 		replenish_dl_entity(dl_se);
1105 		goto unlock;
1106 	}
1107 
1108 #ifdef CONFIG_SMP
1109 	if (unlikely(!rq->online)) {
1110 		/*
1111 		 * If the runqueue is no longer available, migrate the
1112 		 * task elsewhere. This necessarily changes rq.
1113 		 */
1114 		lockdep_unpin_lock(&rq->lock, rf.cookie);
1115 		rq = dl_task_offline_migration(rq, p);
1116 		rf.cookie = lockdep_pin_lock(&rq->lock);
1117 		update_rq_clock(rq);
1118 
1119 		/*
1120 		 * Now that the task has been migrated to the new RQ and we
1121 		 * have that locked, proceed as normal and enqueue the task
1122 		 * there.
1123 		 */
1124 	}
1125 #endif
1126 
1127 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1128 	if (dl_task(rq->curr))
1129 		check_preempt_curr_dl(rq, p, 0);
1130 	else
1131 		resched_curr(rq);
1132 
1133 #ifdef CONFIG_SMP
1134 	/*
1135 	 * Queueing this task back might have overloaded rq, check if we need
1136 	 * to kick someone away.
1137 	 */
1138 	if (has_pushable_dl_tasks(rq)) {
1139 		/*
1140 		 * Nothing relies on rq->lock after this, so its safe to drop
1141 		 * rq->lock.
1142 		 */
1143 		rq_unpin_lock(rq, &rf);
1144 		push_dl_task(rq);
1145 		rq_repin_lock(rq, &rf);
1146 	}
1147 #endif
1148 
1149 unlock:
1150 	task_rq_unlock(rq, p, &rf);
1151 
1152 	/*
1153 	 * This can free the task_struct, including this hrtimer, do not touch
1154 	 * anything related to that after this.
1155 	 */
1156 	put_task_struct(p);
1157 
1158 	return HRTIMER_NORESTART;
1159 }
1160 
1161 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1162 {
1163 	struct hrtimer *timer = &dl_se->dl_timer;
1164 
1165 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1166 	timer->function = dl_task_timer;
1167 }
1168 
1169 /*
1170  * During the activation, CBS checks if it can reuse the current task's
1171  * runtime and period. If the deadline of the task is in the past, CBS
1172  * cannot use the runtime, and so it replenishes the task. This rule
1173  * works fine for implicit deadline tasks (deadline == period), and the
1174  * CBS was designed for implicit deadline tasks. However, a task with
1175  * constrained deadline (deadline < period) might be awakened after the
1176  * deadline, but before the next period. In this case, replenishing the
1177  * task would allow it to run for runtime / deadline. As in this case
1178  * deadline < period, CBS enables a task to run for more than the
1179  * runtime / period. In a very loaded system, this can cause a domino
1180  * effect, making other tasks miss their deadlines.
1181  *
1182  * To avoid this problem, in the activation of a constrained deadline
1183  * task after the deadline but before the next period, throttle the
1184  * task and set the replenishing timer to the begin of the next period,
1185  * unless it is boosted.
1186  */
1187 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1188 {
1189 	struct task_struct *p = dl_task_of(dl_se);
1190 	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1191 
1192 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1193 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1194 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p)))
1195 			return;
1196 		dl_se->dl_throttled = 1;
1197 		if (dl_se->runtime > 0)
1198 			dl_se->runtime = 0;
1199 	}
1200 }
1201 
1202 static
1203 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1204 {
1205 	return (dl_se->runtime <= 0);
1206 }
1207 
1208 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1209 
1210 /*
1211  * This function implements the GRUB accounting rule:
1212  * according to the GRUB reclaiming algorithm, the runtime is
1213  * not decreased as "dq = -dt", but as
1214  * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1215  * where u is the utilization of the task, Umax is the maximum reclaimable
1216  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1217  * as the difference between the "total runqueue utilization" and the
1218  * runqueue active utilization, and Uextra is the (per runqueue) extra
1219  * reclaimable utilization.
1220  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1221  * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1222  * BW_SHIFT.
1223  * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1224  * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1225  * Since delta is a 64 bit variable, to have an overflow its value
1226  * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1227  * So, overflow is not an issue here.
1228  */
1229 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1230 {
1231 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1232 	u64 u_act;
1233 	u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1234 
1235 	/*
1236 	 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1237 	 * we compare u_inact + rq->dl.extra_bw with
1238 	 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1239 	 * u_inact + rq->dl.extra_bw can be larger than
1240 	 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1241 	 * leading to wrong results)
1242 	 */
1243 	if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1244 		u_act = u_act_min;
1245 	else
1246 		u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1247 
1248 	return (delta * u_act) >> BW_SHIFT;
1249 }
1250 
1251 /*
1252  * Update the current task's runtime statistics (provided it is still
1253  * a -deadline task and has not been removed from the dl_rq).
1254  */
1255 static void update_curr_dl(struct rq *rq)
1256 {
1257 	struct task_struct *curr = rq->curr;
1258 	struct sched_dl_entity *dl_se = &curr->dl;
1259 	u64 delta_exec, scaled_delta_exec;
1260 	int cpu = cpu_of(rq);
1261 	u64 now;
1262 
1263 	if (!dl_task(curr) || !on_dl_rq(dl_se))
1264 		return;
1265 
1266 	/*
1267 	 * Consumed budget is computed considering the time as
1268 	 * observed by schedulable tasks (excluding time spent
1269 	 * in hardirq context, etc.). Deadlines are instead
1270 	 * computed using hard walltime. This seems to be the more
1271 	 * natural solution, but the full ramifications of this
1272 	 * approach need further study.
1273 	 */
1274 	now = rq_clock_task(rq);
1275 	delta_exec = now - curr->se.exec_start;
1276 	if (unlikely((s64)delta_exec <= 0)) {
1277 		if (unlikely(dl_se->dl_yielded))
1278 			goto throttle;
1279 		return;
1280 	}
1281 
1282 	schedstat_set(curr->se.statistics.exec_max,
1283 		      max(curr->se.statistics.exec_max, delta_exec));
1284 
1285 	curr->se.sum_exec_runtime += delta_exec;
1286 	account_group_exec_runtime(curr, delta_exec);
1287 
1288 	curr->se.exec_start = now;
1289 	cgroup_account_cputime(curr, delta_exec);
1290 
1291 	if (dl_entity_is_special(dl_se))
1292 		return;
1293 
1294 	/*
1295 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1296 	 * spare reclaimed bandwidth is used to clock down frequency.
1297 	 *
1298 	 * For the others, we still need to scale reservation parameters
1299 	 * according to current frequency and CPU maximum capacity.
1300 	 */
1301 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1302 		scaled_delta_exec = grub_reclaim(delta_exec,
1303 						 rq,
1304 						 &curr->dl);
1305 	} else {
1306 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1307 		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1308 
1309 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1310 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1311 	}
1312 
1313 	dl_se->runtime -= scaled_delta_exec;
1314 
1315 throttle:
1316 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1317 		dl_se->dl_throttled = 1;
1318 
1319 		/* If requested, inform the user about runtime overruns. */
1320 		if (dl_runtime_exceeded(dl_se) &&
1321 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1322 			dl_se->dl_overrun = 1;
1323 
1324 		__dequeue_task_dl(rq, curr, 0);
1325 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr)))
1326 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1327 
1328 		if (!is_leftmost(curr, &rq->dl))
1329 			resched_curr(rq);
1330 	}
1331 
1332 	/*
1333 	 * Because -- for now -- we share the rt bandwidth, we need to
1334 	 * account our runtime there too, otherwise actual rt tasks
1335 	 * would be able to exceed the shared quota.
1336 	 *
1337 	 * Account to the root rt group for now.
1338 	 *
1339 	 * The solution we're working towards is having the RT groups scheduled
1340 	 * using deadline servers -- however there's a few nasties to figure
1341 	 * out before that can happen.
1342 	 */
1343 	if (rt_bandwidth_enabled()) {
1344 		struct rt_rq *rt_rq = &rq->rt;
1345 
1346 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1347 		/*
1348 		 * We'll let actual RT tasks worry about the overflow here, we
1349 		 * have our own CBS to keep us inline; only account when RT
1350 		 * bandwidth is relevant.
1351 		 */
1352 		if (sched_rt_bandwidth_account(rt_rq))
1353 			rt_rq->rt_time += delta_exec;
1354 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1355 	}
1356 }
1357 
1358 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1359 {
1360 	struct sched_dl_entity *dl_se = container_of(timer,
1361 						     struct sched_dl_entity,
1362 						     inactive_timer);
1363 	struct task_struct *p = dl_task_of(dl_se);
1364 	struct rq_flags rf;
1365 	struct rq *rq;
1366 
1367 	rq = task_rq_lock(p, &rf);
1368 
1369 	sched_clock_tick();
1370 	update_rq_clock(rq);
1371 
1372 	if (!dl_task(p) || p->state == TASK_DEAD) {
1373 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1374 
1375 		if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1376 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1377 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1378 			dl_se->dl_non_contending = 0;
1379 		}
1380 
1381 		raw_spin_lock(&dl_b->lock);
1382 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1383 		raw_spin_unlock(&dl_b->lock);
1384 		__dl_clear_params(p);
1385 
1386 		goto unlock;
1387 	}
1388 	if (dl_se->dl_non_contending == 0)
1389 		goto unlock;
1390 
1391 	sub_running_bw(dl_se, &rq->dl);
1392 	dl_se->dl_non_contending = 0;
1393 unlock:
1394 	task_rq_unlock(rq, p, &rf);
1395 	put_task_struct(p);
1396 
1397 	return HRTIMER_NORESTART;
1398 }
1399 
1400 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1401 {
1402 	struct hrtimer *timer = &dl_se->inactive_timer;
1403 
1404 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1405 	timer->function = inactive_task_timer;
1406 }
1407 
1408 #ifdef CONFIG_SMP
1409 
1410 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1411 {
1412 	struct rq *rq = rq_of_dl_rq(dl_rq);
1413 
1414 	if (dl_rq->earliest_dl.curr == 0 ||
1415 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1416 		if (dl_rq->earliest_dl.curr == 0)
1417 			cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1418 		dl_rq->earliest_dl.curr = deadline;
1419 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1420 	}
1421 }
1422 
1423 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1424 {
1425 	struct rq *rq = rq_of_dl_rq(dl_rq);
1426 
1427 	/*
1428 	 * Since we may have removed our earliest (and/or next earliest)
1429 	 * task we must recompute them.
1430 	 */
1431 	if (!dl_rq->dl_nr_running) {
1432 		dl_rq->earliest_dl.curr = 0;
1433 		dl_rq->earliest_dl.next = 0;
1434 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1435 		cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1436 	} else {
1437 		struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1438 		struct sched_dl_entity *entry;
1439 
1440 		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1441 		dl_rq->earliest_dl.curr = entry->deadline;
1442 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1443 	}
1444 }
1445 
1446 #else
1447 
1448 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1449 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1450 
1451 #endif /* CONFIG_SMP */
1452 
1453 static inline
1454 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1455 {
1456 	int prio = dl_task_of(dl_se)->prio;
1457 	u64 deadline = dl_se->deadline;
1458 
1459 	WARN_ON(!dl_prio(prio));
1460 	dl_rq->dl_nr_running++;
1461 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1462 
1463 	inc_dl_deadline(dl_rq, deadline);
1464 	inc_dl_migration(dl_se, dl_rq);
1465 }
1466 
1467 static inline
1468 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1469 {
1470 	int prio = dl_task_of(dl_se)->prio;
1471 
1472 	WARN_ON(!dl_prio(prio));
1473 	WARN_ON(!dl_rq->dl_nr_running);
1474 	dl_rq->dl_nr_running--;
1475 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1476 
1477 	dec_dl_deadline(dl_rq, dl_se->deadline);
1478 	dec_dl_migration(dl_se, dl_rq);
1479 }
1480 
1481 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1482 {
1483 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1484 	struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1485 	struct rb_node *parent = NULL;
1486 	struct sched_dl_entity *entry;
1487 	int leftmost = 1;
1488 
1489 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1490 
1491 	while (*link) {
1492 		parent = *link;
1493 		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1494 		if (dl_time_before(dl_se->deadline, entry->deadline))
1495 			link = &parent->rb_left;
1496 		else {
1497 			link = &parent->rb_right;
1498 			leftmost = 0;
1499 		}
1500 	}
1501 
1502 	rb_link_node(&dl_se->rb_node, parent, link);
1503 	rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
1504 
1505 	inc_dl_tasks(dl_se, dl_rq);
1506 }
1507 
1508 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1509 {
1510 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1511 
1512 	if (RB_EMPTY_NODE(&dl_se->rb_node))
1513 		return;
1514 
1515 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1516 	RB_CLEAR_NODE(&dl_se->rb_node);
1517 
1518 	dec_dl_tasks(dl_se, dl_rq);
1519 }
1520 
1521 static void
1522 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1523 {
1524 	BUG_ON(on_dl_rq(dl_se));
1525 
1526 	/*
1527 	 * If this is a wakeup or a new instance, the scheduling
1528 	 * parameters of the task might need updating. Otherwise,
1529 	 * we want a replenishment of its runtime.
1530 	 */
1531 	if (flags & ENQUEUE_WAKEUP) {
1532 		task_contending(dl_se, flags);
1533 		update_dl_entity(dl_se);
1534 	} else if (flags & ENQUEUE_REPLENISH) {
1535 		replenish_dl_entity(dl_se);
1536 	} else if ((flags & ENQUEUE_RESTORE) &&
1537 		  dl_time_before(dl_se->deadline,
1538 				 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1539 		setup_new_dl_entity(dl_se);
1540 	}
1541 
1542 	__enqueue_dl_entity(dl_se);
1543 }
1544 
1545 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1546 {
1547 	__dequeue_dl_entity(dl_se);
1548 }
1549 
1550 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1551 {
1552 	if (is_dl_boosted(&p->dl)) {
1553 		/*
1554 		 * Because of delays in the detection of the overrun of a
1555 		 * thread's runtime, it might be the case that a thread
1556 		 * goes to sleep in a rt mutex with negative runtime. As
1557 		 * a consequence, the thread will be throttled.
1558 		 *
1559 		 * While waiting for the mutex, this thread can also be
1560 		 * boosted via PI, resulting in a thread that is throttled
1561 		 * and boosted at the same time.
1562 		 *
1563 		 * In this case, the boost overrides the throttle.
1564 		 */
1565 		if (p->dl.dl_throttled) {
1566 			/*
1567 			 * The replenish timer needs to be canceled. No
1568 			 * problem if it fires concurrently: boosted threads
1569 			 * are ignored in dl_task_timer().
1570 			 */
1571 			hrtimer_try_to_cancel(&p->dl.dl_timer);
1572 			p->dl.dl_throttled = 0;
1573 		}
1574 	} else if (!dl_prio(p->normal_prio)) {
1575 		/*
1576 		 * Special case in which we have a !SCHED_DEADLINE task that is going
1577 		 * to be deboosted, but exceeds its runtime while doing so. No point in
1578 		 * replenishing it, as it's going to return back to its original
1579 		 * scheduling class after this. If it has been throttled, we need to
1580 		 * clear the flag, otherwise the task may wake up as throttled after
1581 		 * being boosted again with no means to replenish the runtime and clear
1582 		 * the throttle.
1583 		 */
1584 		p->dl.dl_throttled = 0;
1585 		BUG_ON(!is_dl_boosted(&p->dl) || flags != ENQUEUE_REPLENISH);
1586 		return;
1587 	}
1588 
1589 	/*
1590 	 * Check if a constrained deadline task was activated
1591 	 * after the deadline but before the next period.
1592 	 * If that is the case, the task will be throttled and
1593 	 * the replenishment timer will be set to the next period.
1594 	 */
1595 	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1596 		dl_check_constrained_dl(&p->dl);
1597 
1598 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1599 		add_rq_bw(&p->dl, &rq->dl);
1600 		add_running_bw(&p->dl, &rq->dl);
1601 	}
1602 
1603 	/*
1604 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1605 	 * its budget it needs a replenishment and, since it now is on
1606 	 * its rq, the bandwidth timer callback (which clearly has not
1607 	 * run yet) will take care of this.
1608 	 * However, the active utilization does not depend on the fact
1609 	 * that the task is on the runqueue or not (but depends on the
1610 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1611 	 * In other words, even if a task is throttled its utilization must
1612 	 * be counted in the active utilization; hence, we need to call
1613 	 * add_running_bw().
1614 	 */
1615 	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1616 		if (flags & ENQUEUE_WAKEUP)
1617 			task_contending(&p->dl, flags);
1618 
1619 		return;
1620 	}
1621 
1622 	enqueue_dl_entity(&p->dl, flags);
1623 
1624 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1625 		enqueue_pushable_dl_task(rq, p);
1626 }
1627 
1628 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1629 {
1630 	dequeue_dl_entity(&p->dl);
1631 	dequeue_pushable_dl_task(rq, p);
1632 }
1633 
1634 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1635 {
1636 	update_curr_dl(rq);
1637 	__dequeue_task_dl(rq, p, flags);
1638 
1639 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1640 		sub_running_bw(&p->dl, &rq->dl);
1641 		sub_rq_bw(&p->dl, &rq->dl);
1642 	}
1643 
1644 	/*
1645 	 * This check allows to start the inactive timer (or to immediately
1646 	 * decrease the active utilization, if needed) in two cases:
1647 	 * when the task blocks and when it is terminating
1648 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1649 	 * way, because from GRUB's point of view the same thing is happening
1650 	 * (the task moves from "active contending" to "active non contending"
1651 	 * or "inactive")
1652 	 */
1653 	if (flags & DEQUEUE_SLEEP)
1654 		task_non_contending(p);
1655 }
1656 
1657 /*
1658  * Yield task semantic for -deadline tasks is:
1659  *
1660  *   get off from the CPU until our next instance, with
1661  *   a new runtime. This is of little use now, since we
1662  *   don't have a bandwidth reclaiming mechanism. Anyway,
1663  *   bandwidth reclaiming is planned for the future, and
1664  *   yield_task_dl will indicate that some spare budget
1665  *   is available for other task instances to use it.
1666  */
1667 static void yield_task_dl(struct rq *rq)
1668 {
1669 	/*
1670 	 * We make the task go to sleep until its current deadline by
1671 	 * forcing its runtime to zero. This way, update_curr_dl() stops
1672 	 * it and the bandwidth timer will wake it up and will give it
1673 	 * new scheduling parameters (thanks to dl_yielded=1).
1674 	 */
1675 	rq->curr->dl.dl_yielded = 1;
1676 
1677 	update_rq_clock(rq);
1678 	update_curr_dl(rq);
1679 	/*
1680 	 * Tell update_rq_clock() that we've just updated,
1681 	 * so we don't do microscopic update in schedule()
1682 	 * and double the fastpath cost.
1683 	 */
1684 	rq_clock_skip_update(rq);
1685 }
1686 
1687 #ifdef CONFIG_SMP
1688 
1689 static int find_later_rq(struct task_struct *task);
1690 
1691 static int
1692 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
1693 {
1694 	struct task_struct *curr;
1695 	bool select_rq;
1696 	struct rq *rq;
1697 
1698 	if (!(flags & WF_TTWU))
1699 		goto out;
1700 
1701 	rq = cpu_rq(cpu);
1702 
1703 	rcu_read_lock();
1704 	curr = READ_ONCE(rq->curr); /* unlocked access */
1705 
1706 	/*
1707 	 * If we are dealing with a -deadline task, we must
1708 	 * decide where to wake it up.
1709 	 * If it has a later deadline and the current task
1710 	 * on this rq can't move (provided the waking task
1711 	 * can!) we prefer to send it somewhere else. On the
1712 	 * other hand, if it has a shorter deadline, we
1713 	 * try to make it stay here, it might be important.
1714 	 */
1715 	select_rq = unlikely(dl_task(curr)) &&
1716 		    (curr->nr_cpus_allowed < 2 ||
1717 		     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1718 		    p->nr_cpus_allowed > 1;
1719 
1720 	/*
1721 	 * Take the capacity of the CPU into account to
1722 	 * ensure it fits the requirement of the task.
1723 	 */
1724 	if (static_branch_unlikely(&sched_asym_cpucapacity))
1725 		select_rq |= !dl_task_fits_capacity(p, cpu);
1726 
1727 	if (select_rq) {
1728 		int target = find_later_rq(p);
1729 
1730 		if (target != -1 &&
1731 				(dl_time_before(p->dl.deadline,
1732 					cpu_rq(target)->dl.earliest_dl.curr) ||
1733 				(cpu_rq(target)->dl.dl_nr_running == 0)))
1734 			cpu = target;
1735 	}
1736 	rcu_read_unlock();
1737 
1738 out:
1739 	return cpu;
1740 }
1741 
1742 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1743 {
1744 	struct rq *rq;
1745 
1746 	if (p->state != TASK_WAKING)
1747 		return;
1748 
1749 	rq = task_rq(p);
1750 	/*
1751 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1752 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1753 	 * rq->lock is not... So, lock it
1754 	 */
1755 	raw_spin_lock(&rq->lock);
1756 	if (p->dl.dl_non_contending) {
1757 		sub_running_bw(&p->dl, &rq->dl);
1758 		p->dl.dl_non_contending = 0;
1759 		/*
1760 		 * If the timer handler is currently running and the
1761 		 * timer cannot be cancelled, inactive_task_timer()
1762 		 * will see that dl_not_contending is not set, and
1763 		 * will not touch the rq's active utilization,
1764 		 * so we are still safe.
1765 		 */
1766 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1767 			put_task_struct(p);
1768 	}
1769 	sub_rq_bw(&p->dl, &rq->dl);
1770 	raw_spin_unlock(&rq->lock);
1771 }
1772 
1773 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1774 {
1775 	/*
1776 	 * Current can't be migrated, useless to reschedule,
1777 	 * let's hope p can move out.
1778 	 */
1779 	if (rq->curr->nr_cpus_allowed == 1 ||
1780 	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1781 		return;
1782 
1783 	/*
1784 	 * p is migratable, so let's not schedule it and
1785 	 * see if it is pushed or pulled somewhere else.
1786 	 */
1787 	if (p->nr_cpus_allowed != 1 &&
1788 	    cpudl_find(&rq->rd->cpudl, p, NULL))
1789 		return;
1790 
1791 	resched_curr(rq);
1792 }
1793 
1794 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1795 {
1796 	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1797 		/*
1798 		 * This is OK, because current is on_cpu, which avoids it being
1799 		 * picked for load-balance and preemption/IRQs are still
1800 		 * disabled avoiding further scheduler activity on it and we've
1801 		 * not yet started the picking loop.
1802 		 */
1803 		rq_unpin_lock(rq, rf);
1804 		pull_dl_task(rq);
1805 		rq_repin_lock(rq, rf);
1806 	}
1807 
1808 	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1809 }
1810 #endif /* CONFIG_SMP */
1811 
1812 /*
1813  * Only called when both the current and waking task are -deadline
1814  * tasks.
1815  */
1816 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1817 				  int flags)
1818 {
1819 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1820 		resched_curr(rq);
1821 		return;
1822 	}
1823 
1824 #ifdef CONFIG_SMP
1825 	/*
1826 	 * In the unlikely case current and p have the same deadline
1827 	 * let us try to decide what's the best thing to do...
1828 	 */
1829 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1830 	    !test_tsk_need_resched(rq->curr))
1831 		check_preempt_equal_dl(rq, p);
1832 #endif /* CONFIG_SMP */
1833 }
1834 
1835 #ifdef CONFIG_SCHED_HRTICK
1836 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1837 {
1838 	hrtick_start(rq, p->dl.runtime);
1839 }
1840 #else /* !CONFIG_SCHED_HRTICK */
1841 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1842 {
1843 }
1844 #endif
1845 
1846 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1847 {
1848 	p->se.exec_start = rq_clock_task(rq);
1849 
1850 	/* You can't push away the running task */
1851 	dequeue_pushable_dl_task(rq, p);
1852 
1853 	if (!first)
1854 		return;
1855 
1856 	if (hrtick_enabled(rq))
1857 		start_hrtick_dl(rq, p);
1858 
1859 	if (rq->curr->sched_class != &dl_sched_class)
1860 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1861 
1862 	deadline_queue_push_tasks(rq);
1863 }
1864 
1865 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1866 						   struct dl_rq *dl_rq)
1867 {
1868 	struct rb_node *left = rb_first_cached(&dl_rq->root);
1869 
1870 	if (!left)
1871 		return NULL;
1872 
1873 	return rb_entry(left, struct sched_dl_entity, rb_node);
1874 }
1875 
1876 static struct task_struct *pick_next_task_dl(struct rq *rq)
1877 {
1878 	struct sched_dl_entity *dl_se;
1879 	struct dl_rq *dl_rq = &rq->dl;
1880 	struct task_struct *p;
1881 
1882 	if (!sched_dl_runnable(rq))
1883 		return NULL;
1884 
1885 	dl_se = pick_next_dl_entity(rq, dl_rq);
1886 	BUG_ON(!dl_se);
1887 	p = dl_task_of(dl_se);
1888 	set_next_task_dl(rq, p, true);
1889 	return p;
1890 }
1891 
1892 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1893 {
1894 	update_curr_dl(rq);
1895 
1896 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1897 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1898 		enqueue_pushable_dl_task(rq, p);
1899 }
1900 
1901 /*
1902  * scheduler tick hitting a task of our scheduling class.
1903  *
1904  * NOTE: This function can be called remotely by the tick offload that
1905  * goes along full dynticks. Therefore no local assumption can be made
1906  * and everything must be accessed through the @rq and @curr passed in
1907  * parameters.
1908  */
1909 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1910 {
1911 	update_curr_dl(rq);
1912 
1913 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1914 	/*
1915 	 * Even when we have runtime, update_curr_dl() might have resulted in us
1916 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
1917 	 * be set and schedule() will start a new hrtick for the next task.
1918 	 */
1919 	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1920 	    is_leftmost(p, &rq->dl))
1921 		start_hrtick_dl(rq, p);
1922 }
1923 
1924 static void task_fork_dl(struct task_struct *p)
1925 {
1926 	/*
1927 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1928 	 * sched_fork()
1929 	 */
1930 }
1931 
1932 #ifdef CONFIG_SMP
1933 
1934 /* Only try algorithms three times */
1935 #define DL_MAX_TRIES 3
1936 
1937 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1938 {
1939 	if (!task_running(rq, p) &&
1940 	    cpumask_test_cpu(cpu, &p->cpus_mask))
1941 		return 1;
1942 	return 0;
1943 }
1944 
1945 /*
1946  * Return the earliest pushable rq's task, which is suitable to be executed
1947  * on the CPU, NULL otherwise:
1948  */
1949 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1950 {
1951 	struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1952 	struct task_struct *p = NULL;
1953 
1954 	if (!has_pushable_dl_tasks(rq))
1955 		return NULL;
1956 
1957 next_node:
1958 	if (next_node) {
1959 		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1960 
1961 		if (pick_dl_task(rq, p, cpu))
1962 			return p;
1963 
1964 		next_node = rb_next(next_node);
1965 		goto next_node;
1966 	}
1967 
1968 	return NULL;
1969 }
1970 
1971 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1972 
1973 static int find_later_rq(struct task_struct *task)
1974 {
1975 	struct sched_domain *sd;
1976 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1977 	int this_cpu = smp_processor_id();
1978 	int cpu = task_cpu(task);
1979 
1980 	/* Make sure the mask is initialized first */
1981 	if (unlikely(!later_mask))
1982 		return -1;
1983 
1984 	if (task->nr_cpus_allowed == 1)
1985 		return -1;
1986 
1987 	/*
1988 	 * We have to consider system topology and task affinity
1989 	 * first, then we can look for a suitable CPU.
1990 	 */
1991 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1992 		return -1;
1993 
1994 	/*
1995 	 * If we are here, some targets have been found, including
1996 	 * the most suitable which is, among the runqueues where the
1997 	 * current tasks have later deadlines than the task's one, the
1998 	 * rq with the latest possible one.
1999 	 *
2000 	 * Now we check how well this matches with task's
2001 	 * affinity and system topology.
2002 	 *
2003 	 * The last CPU where the task run is our first
2004 	 * guess, since it is most likely cache-hot there.
2005 	 */
2006 	if (cpumask_test_cpu(cpu, later_mask))
2007 		return cpu;
2008 	/*
2009 	 * Check if this_cpu is to be skipped (i.e., it is
2010 	 * not in the mask) or not.
2011 	 */
2012 	if (!cpumask_test_cpu(this_cpu, later_mask))
2013 		this_cpu = -1;
2014 
2015 	rcu_read_lock();
2016 	for_each_domain(cpu, sd) {
2017 		if (sd->flags & SD_WAKE_AFFINE) {
2018 			int best_cpu;
2019 
2020 			/*
2021 			 * If possible, preempting this_cpu is
2022 			 * cheaper than migrating.
2023 			 */
2024 			if (this_cpu != -1 &&
2025 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2026 				rcu_read_unlock();
2027 				return this_cpu;
2028 			}
2029 
2030 			best_cpu = cpumask_any_and_distribute(later_mask,
2031 							      sched_domain_span(sd));
2032 			/*
2033 			 * Last chance: if a CPU being in both later_mask
2034 			 * and current sd span is valid, that becomes our
2035 			 * choice. Of course, the latest possible CPU is
2036 			 * already under consideration through later_mask.
2037 			 */
2038 			if (best_cpu < nr_cpu_ids) {
2039 				rcu_read_unlock();
2040 				return best_cpu;
2041 			}
2042 		}
2043 	}
2044 	rcu_read_unlock();
2045 
2046 	/*
2047 	 * At this point, all our guesses failed, we just return
2048 	 * 'something', and let the caller sort the things out.
2049 	 */
2050 	if (this_cpu != -1)
2051 		return this_cpu;
2052 
2053 	cpu = cpumask_any_distribute(later_mask);
2054 	if (cpu < nr_cpu_ids)
2055 		return cpu;
2056 
2057 	return -1;
2058 }
2059 
2060 /* Locks the rq it finds */
2061 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2062 {
2063 	struct rq *later_rq = NULL;
2064 	int tries;
2065 	int cpu;
2066 
2067 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2068 		cpu = find_later_rq(task);
2069 
2070 		if ((cpu == -1) || (cpu == rq->cpu))
2071 			break;
2072 
2073 		later_rq = cpu_rq(cpu);
2074 
2075 		if (later_rq->dl.dl_nr_running &&
2076 		    !dl_time_before(task->dl.deadline,
2077 					later_rq->dl.earliest_dl.curr)) {
2078 			/*
2079 			 * Target rq has tasks of equal or earlier deadline,
2080 			 * retrying does not release any lock and is unlikely
2081 			 * to yield a different result.
2082 			 */
2083 			later_rq = NULL;
2084 			break;
2085 		}
2086 
2087 		/* Retry if something changed. */
2088 		if (double_lock_balance(rq, later_rq)) {
2089 			if (unlikely(task_rq(task) != rq ||
2090 				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2091 				     task_running(rq, task) ||
2092 				     !dl_task(task) ||
2093 				     !task_on_rq_queued(task))) {
2094 				double_unlock_balance(rq, later_rq);
2095 				later_rq = NULL;
2096 				break;
2097 			}
2098 		}
2099 
2100 		/*
2101 		 * If the rq we found has no -deadline task, or
2102 		 * its earliest one has a later deadline than our
2103 		 * task, the rq is a good one.
2104 		 */
2105 		if (!later_rq->dl.dl_nr_running ||
2106 		    dl_time_before(task->dl.deadline,
2107 				   later_rq->dl.earliest_dl.curr))
2108 			break;
2109 
2110 		/* Otherwise we try again. */
2111 		double_unlock_balance(rq, later_rq);
2112 		later_rq = NULL;
2113 	}
2114 
2115 	return later_rq;
2116 }
2117 
2118 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2119 {
2120 	struct task_struct *p;
2121 
2122 	if (!has_pushable_dl_tasks(rq))
2123 		return NULL;
2124 
2125 	p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2126 		     struct task_struct, pushable_dl_tasks);
2127 
2128 	BUG_ON(rq->cpu != task_cpu(p));
2129 	BUG_ON(task_current(rq, p));
2130 	BUG_ON(p->nr_cpus_allowed <= 1);
2131 
2132 	BUG_ON(!task_on_rq_queued(p));
2133 	BUG_ON(!dl_task(p));
2134 
2135 	return p;
2136 }
2137 
2138 /*
2139  * See if the non running -deadline tasks on this rq
2140  * can be sent to some other CPU where they can preempt
2141  * and start executing.
2142  */
2143 static int push_dl_task(struct rq *rq)
2144 {
2145 	struct task_struct *next_task;
2146 	struct rq *later_rq;
2147 	int ret = 0;
2148 
2149 	if (!rq->dl.overloaded)
2150 		return 0;
2151 
2152 	next_task = pick_next_pushable_dl_task(rq);
2153 	if (!next_task)
2154 		return 0;
2155 
2156 retry:
2157 	if (is_migration_disabled(next_task))
2158 		return 0;
2159 
2160 	if (WARN_ON(next_task == rq->curr))
2161 		return 0;
2162 
2163 	/*
2164 	 * If next_task preempts rq->curr, and rq->curr
2165 	 * can move away, it makes sense to just reschedule
2166 	 * without going further in pushing next_task.
2167 	 */
2168 	if (dl_task(rq->curr) &&
2169 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2170 	    rq->curr->nr_cpus_allowed > 1) {
2171 		resched_curr(rq);
2172 		return 0;
2173 	}
2174 
2175 	/* We might release rq lock */
2176 	get_task_struct(next_task);
2177 
2178 	/* Will lock the rq it'll find */
2179 	later_rq = find_lock_later_rq(next_task, rq);
2180 	if (!later_rq) {
2181 		struct task_struct *task;
2182 
2183 		/*
2184 		 * We must check all this again, since
2185 		 * find_lock_later_rq releases rq->lock and it is
2186 		 * then possible that next_task has migrated.
2187 		 */
2188 		task = pick_next_pushable_dl_task(rq);
2189 		if (task == next_task) {
2190 			/*
2191 			 * The task is still there. We don't try
2192 			 * again, some other CPU will pull it when ready.
2193 			 */
2194 			goto out;
2195 		}
2196 
2197 		if (!task)
2198 			/* No more tasks */
2199 			goto out;
2200 
2201 		put_task_struct(next_task);
2202 		next_task = task;
2203 		goto retry;
2204 	}
2205 
2206 	deactivate_task(rq, next_task, 0);
2207 	set_task_cpu(next_task, later_rq->cpu);
2208 
2209 	/*
2210 	 * Update the later_rq clock here, because the clock is used
2211 	 * by the cpufreq_update_util() inside __add_running_bw().
2212 	 */
2213 	update_rq_clock(later_rq);
2214 	activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
2215 	ret = 1;
2216 
2217 	resched_curr(later_rq);
2218 
2219 	double_unlock_balance(rq, later_rq);
2220 
2221 out:
2222 	put_task_struct(next_task);
2223 
2224 	return ret;
2225 }
2226 
2227 static void push_dl_tasks(struct rq *rq)
2228 {
2229 	/* push_dl_task() will return true if it moved a -deadline task */
2230 	while (push_dl_task(rq))
2231 		;
2232 }
2233 
2234 static void pull_dl_task(struct rq *this_rq)
2235 {
2236 	int this_cpu = this_rq->cpu, cpu;
2237 	struct task_struct *p, *push_task;
2238 	bool resched = false;
2239 	struct rq *src_rq;
2240 	u64 dmin = LONG_MAX;
2241 
2242 	if (likely(!dl_overloaded(this_rq)))
2243 		return;
2244 
2245 	/*
2246 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2247 	 * see overloaded we must also see the dlo_mask bit.
2248 	 */
2249 	smp_rmb();
2250 
2251 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2252 		if (this_cpu == cpu)
2253 			continue;
2254 
2255 		src_rq = cpu_rq(cpu);
2256 
2257 		/*
2258 		 * It looks racy, abd it is! However, as in sched_rt.c,
2259 		 * we are fine with this.
2260 		 */
2261 		if (this_rq->dl.dl_nr_running &&
2262 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2263 				   src_rq->dl.earliest_dl.next))
2264 			continue;
2265 
2266 		/* Might drop this_rq->lock */
2267 		push_task = NULL;
2268 		double_lock_balance(this_rq, src_rq);
2269 
2270 		/*
2271 		 * If there are no more pullable tasks on the
2272 		 * rq, we're done with it.
2273 		 */
2274 		if (src_rq->dl.dl_nr_running <= 1)
2275 			goto skip;
2276 
2277 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2278 
2279 		/*
2280 		 * We found a task to be pulled if:
2281 		 *  - it preempts our current (if there's one),
2282 		 *  - it will preempt the last one we pulled (if any).
2283 		 */
2284 		if (p && dl_time_before(p->dl.deadline, dmin) &&
2285 		    (!this_rq->dl.dl_nr_running ||
2286 		     dl_time_before(p->dl.deadline,
2287 				    this_rq->dl.earliest_dl.curr))) {
2288 			WARN_ON(p == src_rq->curr);
2289 			WARN_ON(!task_on_rq_queued(p));
2290 
2291 			/*
2292 			 * Then we pull iff p has actually an earlier
2293 			 * deadline than the current task of its runqueue.
2294 			 */
2295 			if (dl_time_before(p->dl.deadline,
2296 					   src_rq->curr->dl.deadline))
2297 				goto skip;
2298 
2299 			if (is_migration_disabled(p)) {
2300 				push_task = get_push_task(src_rq);
2301 			} else {
2302 				deactivate_task(src_rq, p, 0);
2303 				set_task_cpu(p, this_cpu);
2304 				activate_task(this_rq, p, 0);
2305 				dmin = p->dl.deadline;
2306 				resched = true;
2307 			}
2308 
2309 			/* Is there any other task even earlier? */
2310 		}
2311 skip:
2312 		double_unlock_balance(this_rq, src_rq);
2313 
2314 		if (push_task) {
2315 			raw_spin_unlock(&this_rq->lock);
2316 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2317 					    push_task, &src_rq->push_work);
2318 			raw_spin_lock(&this_rq->lock);
2319 		}
2320 	}
2321 
2322 	if (resched)
2323 		resched_curr(this_rq);
2324 }
2325 
2326 /*
2327  * Since the task is not running and a reschedule is not going to happen
2328  * anytime soon on its runqueue, we try pushing it away now.
2329  */
2330 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2331 {
2332 	if (!task_running(rq, p) &&
2333 	    !test_tsk_need_resched(rq->curr) &&
2334 	    p->nr_cpus_allowed > 1 &&
2335 	    dl_task(rq->curr) &&
2336 	    (rq->curr->nr_cpus_allowed < 2 ||
2337 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2338 		push_dl_tasks(rq);
2339 	}
2340 }
2341 
2342 static void set_cpus_allowed_dl(struct task_struct *p,
2343 				const struct cpumask *new_mask,
2344 				u32 flags)
2345 {
2346 	struct root_domain *src_rd;
2347 	struct rq *rq;
2348 
2349 	BUG_ON(!dl_task(p));
2350 
2351 	rq = task_rq(p);
2352 	src_rd = rq->rd;
2353 	/*
2354 	 * Migrating a SCHED_DEADLINE task between exclusive
2355 	 * cpusets (different root_domains) entails a bandwidth
2356 	 * update. We already made space for us in the destination
2357 	 * domain (see cpuset_can_attach()).
2358 	 */
2359 	if (!cpumask_intersects(src_rd->span, new_mask)) {
2360 		struct dl_bw *src_dl_b;
2361 
2362 		src_dl_b = dl_bw_of(cpu_of(rq));
2363 		/*
2364 		 * We now free resources of the root_domain we are migrating
2365 		 * off. In the worst case, sched_setattr() may temporary fail
2366 		 * until we complete the update.
2367 		 */
2368 		raw_spin_lock(&src_dl_b->lock);
2369 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2370 		raw_spin_unlock(&src_dl_b->lock);
2371 	}
2372 
2373 	set_cpus_allowed_common(p, new_mask, flags);
2374 }
2375 
2376 /* Assumes rq->lock is held */
2377 static void rq_online_dl(struct rq *rq)
2378 {
2379 	if (rq->dl.overloaded)
2380 		dl_set_overload(rq);
2381 
2382 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2383 	if (rq->dl.dl_nr_running > 0)
2384 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2385 }
2386 
2387 /* Assumes rq->lock is held */
2388 static void rq_offline_dl(struct rq *rq)
2389 {
2390 	if (rq->dl.overloaded)
2391 		dl_clear_overload(rq);
2392 
2393 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2394 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2395 }
2396 
2397 void __init init_sched_dl_class(void)
2398 {
2399 	unsigned int i;
2400 
2401 	for_each_possible_cpu(i)
2402 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2403 					GFP_KERNEL, cpu_to_node(i));
2404 }
2405 
2406 void dl_add_task_root_domain(struct task_struct *p)
2407 {
2408 	struct rq_flags rf;
2409 	struct rq *rq;
2410 	struct dl_bw *dl_b;
2411 
2412 	rq = task_rq_lock(p, &rf);
2413 	if (!dl_task(p))
2414 		goto unlock;
2415 
2416 	dl_b = &rq->rd->dl_bw;
2417 	raw_spin_lock(&dl_b->lock);
2418 
2419 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2420 
2421 	raw_spin_unlock(&dl_b->lock);
2422 
2423 unlock:
2424 	task_rq_unlock(rq, p, &rf);
2425 }
2426 
2427 void dl_clear_root_domain(struct root_domain *rd)
2428 {
2429 	unsigned long flags;
2430 
2431 	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2432 	rd->dl_bw.total_bw = 0;
2433 	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2434 }
2435 
2436 #endif /* CONFIG_SMP */
2437 
2438 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2439 {
2440 	/*
2441 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2442 	 * time is in the future). If the task switches back to dl before
2443 	 * the "inactive timer" fires, it can continue to consume its current
2444 	 * runtime using its current deadline. If it stays outside of
2445 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2446 	 * will reset the task parameters.
2447 	 */
2448 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2449 		task_non_contending(p);
2450 
2451 	if (!task_on_rq_queued(p)) {
2452 		/*
2453 		 * Inactive timer is armed. However, p is leaving DEADLINE and
2454 		 * might migrate away from this rq while continuing to run on
2455 		 * some other class. We need to remove its contribution from
2456 		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2457 		 */
2458 		if (p->dl.dl_non_contending)
2459 			sub_running_bw(&p->dl, &rq->dl);
2460 		sub_rq_bw(&p->dl, &rq->dl);
2461 	}
2462 
2463 	/*
2464 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2465 	 * at the 0-lag time, because the task could have been migrated
2466 	 * while SCHED_OTHER in the meanwhile.
2467 	 */
2468 	if (p->dl.dl_non_contending)
2469 		p->dl.dl_non_contending = 0;
2470 
2471 	/*
2472 	 * Since this might be the only -deadline task on the rq,
2473 	 * this is the right place to try to pull some other one
2474 	 * from an overloaded CPU, if any.
2475 	 */
2476 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2477 		return;
2478 
2479 	deadline_queue_pull_task(rq);
2480 }
2481 
2482 /*
2483  * When switching to -deadline, we may overload the rq, then
2484  * we try to push someone off, if possible.
2485  */
2486 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2487 {
2488 	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2489 		put_task_struct(p);
2490 
2491 	/* If p is not queued we will update its parameters at next wakeup. */
2492 	if (!task_on_rq_queued(p)) {
2493 		add_rq_bw(&p->dl, &rq->dl);
2494 
2495 		return;
2496 	}
2497 
2498 	if (rq->curr != p) {
2499 #ifdef CONFIG_SMP
2500 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2501 			deadline_queue_push_tasks(rq);
2502 #endif
2503 		if (dl_task(rq->curr))
2504 			check_preempt_curr_dl(rq, p, 0);
2505 		else
2506 			resched_curr(rq);
2507 	}
2508 }
2509 
2510 /*
2511  * If the scheduling parameters of a -deadline task changed,
2512  * a push or pull operation might be needed.
2513  */
2514 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2515 			    int oldprio)
2516 {
2517 	if (task_on_rq_queued(p) || rq->curr == p) {
2518 #ifdef CONFIG_SMP
2519 		/*
2520 		 * This might be too much, but unfortunately
2521 		 * we don't have the old deadline value, and
2522 		 * we can't argue if the task is increasing
2523 		 * or lowering its prio, so...
2524 		 */
2525 		if (!rq->dl.overloaded)
2526 			deadline_queue_pull_task(rq);
2527 
2528 		/*
2529 		 * If we now have a earlier deadline task than p,
2530 		 * then reschedule, provided p is still on this
2531 		 * runqueue.
2532 		 */
2533 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2534 			resched_curr(rq);
2535 #else
2536 		/*
2537 		 * Again, we don't know if p has a earlier
2538 		 * or later deadline, so let's blindly set a
2539 		 * (maybe not needed) rescheduling point.
2540 		 */
2541 		resched_curr(rq);
2542 #endif /* CONFIG_SMP */
2543 	}
2544 }
2545 
2546 DEFINE_SCHED_CLASS(dl) = {
2547 
2548 	.enqueue_task		= enqueue_task_dl,
2549 	.dequeue_task		= dequeue_task_dl,
2550 	.yield_task		= yield_task_dl,
2551 
2552 	.check_preempt_curr	= check_preempt_curr_dl,
2553 
2554 	.pick_next_task		= pick_next_task_dl,
2555 	.put_prev_task		= put_prev_task_dl,
2556 	.set_next_task		= set_next_task_dl,
2557 
2558 #ifdef CONFIG_SMP
2559 	.balance		= balance_dl,
2560 	.select_task_rq		= select_task_rq_dl,
2561 	.migrate_task_rq	= migrate_task_rq_dl,
2562 	.set_cpus_allowed       = set_cpus_allowed_dl,
2563 	.rq_online              = rq_online_dl,
2564 	.rq_offline             = rq_offline_dl,
2565 	.task_woken		= task_woken_dl,
2566 	.find_lock_rq		= find_lock_later_rq,
2567 #endif
2568 
2569 	.task_tick		= task_tick_dl,
2570 	.task_fork              = task_fork_dl,
2571 
2572 	.prio_changed           = prio_changed_dl,
2573 	.switched_from		= switched_from_dl,
2574 	.switched_to		= switched_to_dl,
2575 
2576 	.update_curr		= update_curr_dl,
2577 };
2578 
2579 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
2580 static u64 dl_generation;
2581 
2582 int sched_dl_global_validate(void)
2583 {
2584 	u64 runtime = global_rt_runtime();
2585 	u64 period = global_rt_period();
2586 	u64 new_bw = to_ratio(period, runtime);
2587 	u64 gen = ++dl_generation;
2588 	struct dl_bw *dl_b;
2589 	int cpu, cpus, ret = 0;
2590 	unsigned long flags;
2591 
2592 	/*
2593 	 * Here we want to check the bandwidth not being set to some
2594 	 * value smaller than the currently allocated bandwidth in
2595 	 * any of the root_domains.
2596 	 */
2597 	for_each_possible_cpu(cpu) {
2598 		rcu_read_lock_sched();
2599 
2600 		if (dl_bw_visited(cpu, gen))
2601 			goto next;
2602 
2603 		dl_b = dl_bw_of(cpu);
2604 		cpus = dl_bw_cpus(cpu);
2605 
2606 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2607 		if (new_bw * cpus < dl_b->total_bw)
2608 			ret = -EBUSY;
2609 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2610 
2611 next:
2612 		rcu_read_unlock_sched();
2613 
2614 		if (ret)
2615 			break;
2616 	}
2617 
2618 	return ret;
2619 }
2620 
2621 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2622 {
2623 	if (global_rt_runtime() == RUNTIME_INF) {
2624 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2625 		dl_rq->extra_bw = 1 << BW_SHIFT;
2626 	} else {
2627 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2628 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2629 		dl_rq->extra_bw = to_ratio(global_rt_period(),
2630 						    global_rt_runtime());
2631 	}
2632 }
2633 
2634 void sched_dl_do_global(void)
2635 {
2636 	u64 new_bw = -1;
2637 	u64 gen = ++dl_generation;
2638 	struct dl_bw *dl_b;
2639 	int cpu;
2640 	unsigned long flags;
2641 
2642 	def_dl_bandwidth.dl_period = global_rt_period();
2643 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
2644 
2645 	if (global_rt_runtime() != RUNTIME_INF)
2646 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2647 
2648 	for_each_possible_cpu(cpu) {
2649 		rcu_read_lock_sched();
2650 
2651 		if (dl_bw_visited(cpu, gen)) {
2652 			rcu_read_unlock_sched();
2653 			continue;
2654 		}
2655 
2656 		dl_b = dl_bw_of(cpu);
2657 
2658 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2659 		dl_b->bw = new_bw;
2660 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2661 
2662 		rcu_read_unlock_sched();
2663 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2664 	}
2665 }
2666 
2667 /*
2668  * We must be sure that accepting a new task (or allowing changing the
2669  * parameters of an existing one) is consistent with the bandwidth
2670  * constraints. If yes, this function also accordingly updates the currently
2671  * allocated bandwidth to reflect the new situation.
2672  *
2673  * This function is called while holding p's rq->lock.
2674  */
2675 int sched_dl_overflow(struct task_struct *p, int policy,
2676 		      const struct sched_attr *attr)
2677 {
2678 	u64 period = attr->sched_period ?: attr->sched_deadline;
2679 	u64 runtime = attr->sched_runtime;
2680 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2681 	int cpus, err = -1, cpu = task_cpu(p);
2682 	struct dl_bw *dl_b = dl_bw_of(cpu);
2683 	unsigned long cap;
2684 
2685 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2686 		return 0;
2687 
2688 	/* !deadline task may carry old deadline bandwidth */
2689 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2690 		return 0;
2691 
2692 	/*
2693 	 * Either if a task, enters, leave, or stays -deadline but changes
2694 	 * its parameters, we may need to update accordingly the total
2695 	 * allocated bandwidth of the container.
2696 	 */
2697 	raw_spin_lock(&dl_b->lock);
2698 	cpus = dl_bw_cpus(cpu);
2699 	cap = dl_bw_capacity(cpu);
2700 
2701 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2702 	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
2703 		if (hrtimer_active(&p->dl.inactive_timer))
2704 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2705 		__dl_add(dl_b, new_bw, cpus);
2706 		err = 0;
2707 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2708 		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2709 		/*
2710 		 * XXX this is slightly incorrect: when the task
2711 		 * utilization decreases, we should delay the total
2712 		 * utilization change until the task's 0-lag point.
2713 		 * But this would require to set the task's "inactive
2714 		 * timer" when the task is not inactive.
2715 		 */
2716 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2717 		__dl_add(dl_b, new_bw, cpus);
2718 		dl_change_utilization(p, new_bw);
2719 		err = 0;
2720 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2721 		/*
2722 		 * Do not decrease the total deadline utilization here,
2723 		 * switched_from_dl() will take care to do it at the correct
2724 		 * (0-lag) time.
2725 		 */
2726 		err = 0;
2727 	}
2728 	raw_spin_unlock(&dl_b->lock);
2729 
2730 	return err;
2731 }
2732 
2733 /*
2734  * This function initializes the sched_dl_entity of a newly becoming
2735  * SCHED_DEADLINE task.
2736  *
2737  * Only the static values are considered here, the actual runtime and the
2738  * absolute deadline will be properly calculated when the task is enqueued
2739  * for the first time with its new policy.
2740  */
2741 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2742 {
2743 	struct sched_dl_entity *dl_se = &p->dl;
2744 
2745 	dl_se->dl_runtime = attr->sched_runtime;
2746 	dl_se->dl_deadline = attr->sched_deadline;
2747 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2748 	dl_se->flags = attr->sched_flags;
2749 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2750 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2751 }
2752 
2753 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2754 {
2755 	struct sched_dl_entity *dl_se = &p->dl;
2756 
2757 	attr->sched_priority = p->rt_priority;
2758 	attr->sched_runtime = dl_se->dl_runtime;
2759 	attr->sched_deadline = dl_se->dl_deadline;
2760 	attr->sched_period = dl_se->dl_period;
2761 	attr->sched_flags = dl_se->flags;
2762 }
2763 
2764 /*
2765  * Default limits for DL period; on the top end we guard against small util
2766  * tasks still getting rediculous long effective runtimes, on the bottom end we
2767  * guard against timer DoS.
2768  */
2769 unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
2770 unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
2771 
2772 /*
2773  * This function validates the new parameters of a -deadline task.
2774  * We ask for the deadline not being zero, and greater or equal
2775  * than the runtime, as well as the period of being zero or
2776  * greater than deadline. Furthermore, we have to be sure that
2777  * user parameters are above the internal resolution of 1us (we
2778  * check sched_runtime only since it is always the smaller one) and
2779  * below 2^63 ns (we have to check both sched_deadline and
2780  * sched_period, as the latter can be zero).
2781  */
2782 bool __checkparam_dl(const struct sched_attr *attr)
2783 {
2784 	u64 period, max, min;
2785 
2786 	/* special dl tasks don't actually use any parameter */
2787 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2788 		return true;
2789 
2790 	/* deadline != 0 */
2791 	if (attr->sched_deadline == 0)
2792 		return false;
2793 
2794 	/*
2795 	 * Since we truncate DL_SCALE bits, make sure we're at least
2796 	 * that big.
2797 	 */
2798 	if (attr->sched_runtime < (1ULL << DL_SCALE))
2799 		return false;
2800 
2801 	/*
2802 	 * Since we use the MSB for wrap-around and sign issues, make
2803 	 * sure it's not set (mind that period can be equal to zero).
2804 	 */
2805 	if (attr->sched_deadline & (1ULL << 63) ||
2806 	    attr->sched_period & (1ULL << 63))
2807 		return false;
2808 
2809 	period = attr->sched_period;
2810 	if (!period)
2811 		period = attr->sched_deadline;
2812 
2813 	/* runtime <= deadline <= period (if period != 0) */
2814 	if (period < attr->sched_deadline ||
2815 	    attr->sched_deadline < attr->sched_runtime)
2816 		return false;
2817 
2818 	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
2819 	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
2820 
2821 	if (period < min || period > max)
2822 		return false;
2823 
2824 	return true;
2825 }
2826 
2827 /*
2828  * This function clears the sched_dl_entity static params.
2829  */
2830 void __dl_clear_params(struct task_struct *p)
2831 {
2832 	struct sched_dl_entity *dl_se = &p->dl;
2833 
2834 	dl_se->dl_runtime		= 0;
2835 	dl_se->dl_deadline		= 0;
2836 	dl_se->dl_period		= 0;
2837 	dl_se->flags			= 0;
2838 	dl_se->dl_bw			= 0;
2839 	dl_se->dl_density		= 0;
2840 
2841 	dl_se->dl_throttled		= 0;
2842 	dl_se->dl_yielded		= 0;
2843 	dl_se->dl_non_contending	= 0;
2844 	dl_se->dl_overrun		= 0;
2845 
2846 #ifdef CONFIG_RT_MUTEXES
2847 	dl_se->pi_se			= dl_se;
2848 #endif
2849 }
2850 
2851 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2852 {
2853 	struct sched_dl_entity *dl_se = &p->dl;
2854 
2855 	if (dl_se->dl_runtime != attr->sched_runtime ||
2856 	    dl_se->dl_deadline != attr->sched_deadline ||
2857 	    dl_se->dl_period != attr->sched_period ||
2858 	    dl_se->flags != attr->sched_flags)
2859 		return true;
2860 
2861 	return false;
2862 }
2863 
2864 #ifdef CONFIG_SMP
2865 int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2866 {
2867 	unsigned long flags, cap;
2868 	unsigned int dest_cpu;
2869 	struct dl_bw *dl_b;
2870 	bool overflow;
2871 	int ret;
2872 
2873 	dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2874 
2875 	rcu_read_lock_sched();
2876 	dl_b = dl_bw_of(dest_cpu);
2877 	raw_spin_lock_irqsave(&dl_b->lock, flags);
2878 	cap = dl_bw_capacity(dest_cpu);
2879 	overflow = __dl_overflow(dl_b, cap, 0, p->dl.dl_bw);
2880 	if (overflow) {
2881 		ret = -EBUSY;
2882 	} else {
2883 		/*
2884 		 * We reserve space for this task in the destination
2885 		 * root_domain, as we can't fail after this point.
2886 		 * We will free resources in the source root_domain
2887 		 * later on (see set_cpus_allowed_dl()).
2888 		 */
2889 		int cpus = dl_bw_cpus(dest_cpu);
2890 
2891 		__dl_add(dl_b, p->dl.dl_bw, cpus);
2892 		ret = 0;
2893 	}
2894 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2895 	rcu_read_unlock_sched();
2896 
2897 	return ret;
2898 }
2899 
2900 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2901 				 const struct cpumask *trial)
2902 {
2903 	int ret = 1, trial_cpus;
2904 	struct dl_bw *cur_dl_b;
2905 	unsigned long flags;
2906 
2907 	rcu_read_lock_sched();
2908 	cur_dl_b = dl_bw_of(cpumask_any(cur));
2909 	trial_cpus = cpumask_weight(trial);
2910 
2911 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2912 	if (cur_dl_b->bw != -1 &&
2913 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2914 		ret = 0;
2915 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2916 	rcu_read_unlock_sched();
2917 
2918 	return ret;
2919 }
2920 
2921 bool dl_cpu_busy(unsigned int cpu)
2922 {
2923 	unsigned long flags, cap;
2924 	struct dl_bw *dl_b;
2925 	bool overflow;
2926 
2927 	rcu_read_lock_sched();
2928 	dl_b = dl_bw_of(cpu);
2929 	raw_spin_lock_irqsave(&dl_b->lock, flags);
2930 	cap = dl_bw_capacity(cpu);
2931 	overflow = __dl_overflow(dl_b, cap, 0, 0);
2932 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2933 	rcu_read_unlock_sched();
2934 
2935 	return overflow;
2936 }
2937 #endif
2938 
2939 #ifdef CONFIG_SCHED_DEBUG
2940 void print_dl_stats(struct seq_file *m, int cpu)
2941 {
2942 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2943 }
2944 #endif /* CONFIG_SCHED_DEBUG */
2945