1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Deadline Scheduling Class (SCHED_DEADLINE) 4 * 5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 6 * 7 * Tasks that periodically executes their instances for less than their 8 * runtime won't miss any of their deadlines. 9 * Tasks that are not periodic or sporadic or that tries to execute more 10 * than their reserved bandwidth will be slowed down (and may potentially 11 * miss some of their deadlines), and won't affect any other task. 12 * 13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 14 * Juri Lelli <juri.lelli@gmail.com>, 15 * Michael Trimarchi <michael@amarulasolutions.com>, 16 * Fabio Checconi <fchecconi@gmail.com> 17 */ 18 #include "sched.h" 19 #include "pelt.h" 20 21 struct dl_bandwidth def_dl_bandwidth; 22 23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 24 { 25 return container_of(dl_se, struct task_struct, dl); 26 } 27 28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 29 { 30 return container_of(dl_rq, struct rq, dl); 31 } 32 33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 34 { 35 struct task_struct *p = dl_task_of(dl_se); 36 struct rq *rq = task_rq(p); 37 38 return &rq->dl; 39 } 40 41 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 42 { 43 return !RB_EMPTY_NODE(&dl_se->rb_node); 44 } 45 46 #ifdef CONFIG_SMP 47 static inline struct dl_bw *dl_bw_of(int i) 48 { 49 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 50 "sched RCU must be held"); 51 return &cpu_rq(i)->rd->dl_bw; 52 } 53 54 static inline int dl_bw_cpus(int i) 55 { 56 struct root_domain *rd = cpu_rq(i)->rd; 57 int cpus; 58 59 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 60 "sched RCU must be held"); 61 62 if (cpumask_subset(rd->span, cpu_active_mask)) 63 return cpumask_weight(rd->span); 64 65 cpus = 0; 66 67 for_each_cpu_and(i, rd->span, cpu_active_mask) 68 cpus++; 69 70 return cpus; 71 } 72 73 static inline unsigned long __dl_bw_capacity(int i) 74 { 75 struct root_domain *rd = cpu_rq(i)->rd; 76 unsigned long cap = 0; 77 78 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 79 "sched RCU must be held"); 80 81 for_each_cpu_and(i, rd->span, cpu_active_mask) 82 cap += capacity_orig_of(i); 83 84 return cap; 85 } 86 87 /* 88 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity 89 * of the CPU the task is running on rather rd's \Sum CPU capacity. 90 */ 91 static inline unsigned long dl_bw_capacity(int i) 92 { 93 if (!static_branch_unlikely(&sched_asym_cpucapacity) && 94 capacity_orig_of(i) == SCHED_CAPACITY_SCALE) { 95 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT; 96 } else { 97 return __dl_bw_capacity(i); 98 } 99 } 100 #else 101 static inline struct dl_bw *dl_bw_of(int i) 102 { 103 return &cpu_rq(i)->dl.dl_bw; 104 } 105 106 static inline int dl_bw_cpus(int i) 107 { 108 return 1; 109 } 110 111 static inline unsigned long dl_bw_capacity(int i) 112 { 113 return SCHED_CAPACITY_SCALE; 114 } 115 #endif 116 117 static inline 118 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 119 { 120 u64 old = dl_rq->running_bw; 121 122 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 123 dl_rq->running_bw += dl_bw; 124 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */ 125 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 126 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 127 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 128 } 129 130 static inline 131 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 132 { 133 u64 old = dl_rq->running_bw; 134 135 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 136 dl_rq->running_bw -= dl_bw; 137 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */ 138 if (dl_rq->running_bw > old) 139 dl_rq->running_bw = 0; 140 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 141 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 142 } 143 144 static inline 145 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 146 { 147 u64 old = dl_rq->this_bw; 148 149 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 150 dl_rq->this_bw += dl_bw; 151 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */ 152 } 153 154 static inline 155 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 156 { 157 u64 old = dl_rq->this_bw; 158 159 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 160 dl_rq->this_bw -= dl_bw; 161 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */ 162 if (dl_rq->this_bw > old) 163 dl_rq->this_bw = 0; 164 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 165 } 166 167 static inline 168 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 169 { 170 if (!dl_entity_is_special(dl_se)) 171 __add_rq_bw(dl_se->dl_bw, dl_rq); 172 } 173 174 static inline 175 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 176 { 177 if (!dl_entity_is_special(dl_se)) 178 __sub_rq_bw(dl_se->dl_bw, dl_rq); 179 } 180 181 static inline 182 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 183 { 184 if (!dl_entity_is_special(dl_se)) 185 __add_running_bw(dl_se->dl_bw, dl_rq); 186 } 187 188 static inline 189 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 190 { 191 if (!dl_entity_is_special(dl_se)) 192 __sub_running_bw(dl_se->dl_bw, dl_rq); 193 } 194 195 static void dl_change_utilization(struct task_struct *p, u64 new_bw) 196 { 197 struct rq *rq; 198 199 BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV); 200 201 if (task_on_rq_queued(p)) 202 return; 203 204 rq = task_rq(p); 205 if (p->dl.dl_non_contending) { 206 sub_running_bw(&p->dl, &rq->dl); 207 p->dl.dl_non_contending = 0; 208 /* 209 * If the timer handler is currently running and the 210 * timer cannot be cancelled, inactive_task_timer() 211 * will see that dl_not_contending is not set, and 212 * will not touch the rq's active utilization, 213 * so we are still safe. 214 */ 215 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 216 put_task_struct(p); 217 } 218 __sub_rq_bw(p->dl.dl_bw, &rq->dl); 219 __add_rq_bw(new_bw, &rq->dl); 220 } 221 222 /* 223 * The utilization of a task cannot be immediately removed from 224 * the rq active utilization (running_bw) when the task blocks. 225 * Instead, we have to wait for the so called "0-lag time". 226 * 227 * If a task blocks before the "0-lag time", a timer (the inactive 228 * timer) is armed, and running_bw is decreased when the timer 229 * fires. 230 * 231 * If the task wakes up again before the inactive timer fires, 232 * the timer is cancelled, whereas if the task wakes up after the 233 * inactive timer fired (and running_bw has been decreased) the 234 * task's utilization has to be added to running_bw again. 235 * A flag in the deadline scheduling entity (dl_non_contending) 236 * is used to avoid race conditions between the inactive timer handler 237 * and task wakeups. 238 * 239 * The following diagram shows how running_bw is updated. A task is 240 * "ACTIVE" when its utilization contributes to running_bw; an 241 * "ACTIVE contending" task is in the TASK_RUNNING state, while an 242 * "ACTIVE non contending" task is a blocked task for which the "0-lag time" 243 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag" 244 * time already passed, which does not contribute to running_bw anymore. 245 * +------------------+ 246 * wakeup | ACTIVE | 247 * +------------------>+ contending | 248 * | add_running_bw | | 249 * | +----+------+------+ 250 * | | ^ 251 * | dequeue | | 252 * +--------+-------+ | | 253 * | | t >= 0-lag | | wakeup 254 * | INACTIVE |<---------------+ | 255 * | | sub_running_bw | | 256 * +--------+-------+ | | 257 * ^ | | 258 * | t < 0-lag | | 259 * | | | 260 * | V | 261 * | +----+------+------+ 262 * | sub_running_bw | ACTIVE | 263 * +-------------------+ | 264 * inactive timer | non contending | 265 * fired +------------------+ 266 * 267 * The task_non_contending() function is invoked when a task 268 * blocks, and checks if the 0-lag time already passed or 269 * not (in the first case, it directly updates running_bw; 270 * in the second case, it arms the inactive timer). 271 * 272 * The task_contending() function is invoked when a task wakes 273 * up, and checks if the task is still in the "ACTIVE non contending" 274 * state or not (in the second case, it updates running_bw). 275 */ 276 static void task_non_contending(struct task_struct *p) 277 { 278 struct sched_dl_entity *dl_se = &p->dl; 279 struct hrtimer *timer = &dl_se->inactive_timer; 280 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 281 struct rq *rq = rq_of_dl_rq(dl_rq); 282 s64 zerolag_time; 283 284 /* 285 * If this is a non-deadline task that has been boosted, 286 * do nothing 287 */ 288 if (dl_se->dl_runtime == 0) 289 return; 290 291 if (dl_entity_is_special(dl_se)) 292 return; 293 294 WARN_ON(dl_se->dl_non_contending); 295 296 zerolag_time = dl_se->deadline - 297 div64_long((dl_se->runtime * dl_se->dl_period), 298 dl_se->dl_runtime); 299 300 /* 301 * Using relative times instead of the absolute "0-lag time" 302 * allows to simplify the code 303 */ 304 zerolag_time -= rq_clock(rq); 305 306 /* 307 * If the "0-lag time" already passed, decrease the active 308 * utilization now, instead of starting a timer 309 */ 310 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) { 311 if (dl_task(p)) 312 sub_running_bw(dl_se, dl_rq); 313 if (!dl_task(p) || p->state == TASK_DEAD) { 314 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 315 316 if (p->state == TASK_DEAD) 317 sub_rq_bw(&p->dl, &rq->dl); 318 raw_spin_lock(&dl_b->lock); 319 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 320 __dl_clear_params(p); 321 raw_spin_unlock(&dl_b->lock); 322 } 323 324 return; 325 } 326 327 dl_se->dl_non_contending = 1; 328 get_task_struct(p); 329 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD); 330 } 331 332 static void task_contending(struct sched_dl_entity *dl_se, int flags) 333 { 334 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 335 336 /* 337 * If this is a non-deadline task that has been boosted, 338 * do nothing 339 */ 340 if (dl_se->dl_runtime == 0) 341 return; 342 343 if (flags & ENQUEUE_MIGRATED) 344 add_rq_bw(dl_se, dl_rq); 345 346 if (dl_se->dl_non_contending) { 347 dl_se->dl_non_contending = 0; 348 /* 349 * If the timer handler is currently running and the 350 * timer cannot be cancelled, inactive_task_timer() 351 * will see that dl_not_contending is not set, and 352 * will not touch the rq's active utilization, 353 * so we are still safe. 354 */ 355 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) 356 put_task_struct(dl_task_of(dl_se)); 357 } else { 358 /* 359 * Since "dl_non_contending" is not set, the 360 * task's utilization has already been removed from 361 * active utilization (either when the task blocked, 362 * when the "inactive timer" fired). 363 * So, add it back. 364 */ 365 add_running_bw(dl_se, dl_rq); 366 } 367 } 368 369 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) 370 { 371 struct sched_dl_entity *dl_se = &p->dl; 372 373 return dl_rq->root.rb_leftmost == &dl_se->rb_node; 374 } 375 376 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq); 377 378 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) 379 { 380 raw_spin_lock_init(&dl_b->dl_runtime_lock); 381 dl_b->dl_period = period; 382 dl_b->dl_runtime = runtime; 383 } 384 385 void init_dl_bw(struct dl_bw *dl_b) 386 { 387 raw_spin_lock_init(&dl_b->lock); 388 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock); 389 if (global_rt_runtime() == RUNTIME_INF) 390 dl_b->bw = -1; 391 else 392 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 393 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock); 394 dl_b->total_bw = 0; 395 } 396 397 void init_dl_rq(struct dl_rq *dl_rq) 398 { 399 dl_rq->root = RB_ROOT_CACHED; 400 401 #ifdef CONFIG_SMP 402 /* zero means no -deadline tasks */ 403 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 404 405 dl_rq->dl_nr_migratory = 0; 406 dl_rq->overloaded = 0; 407 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED; 408 #else 409 init_dl_bw(&dl_rq->dl_bw); 410 #endif 411 412 dl_rq->running_bw = 0; 413 dl_rq->this_bw = 0; 414 init_dl_rq_bw_ratio(dl_rq); 415 } 416 417 #ifdef CONFIG_SMP 418 419 static inline int dl_overloaded(struct rq *rq) 420 { 421 return atomic_read(&rq->rd->dlo_count); 422 } 423 424 static inline void dl_set_overload(struct rq *rq) 425 { 426 if (!rq->online) 427 return; 428 429 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 430 /* 431 * Must be visible before the overload count is 432 * set (as in sched_rt.c). 433 * 434 * Matched by the barrier in pull_dl_task(). 435 */ 436 smp_wmb(); 437 atomic_inc(&rq->rd->dlo_count); 438 } 439 440 static inline void dl_clear_overload(struct rq *rq) 441 { 442 if (!rq->online) 443 return; 444 445 atomic_dec(&rq->rd->dlo_count); 446 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 447 } 448 449 static void update_dl_migration(struct dl_rq *dl_rq) 450 { 451 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { 452 if (!dl_rq->overloaded) { 453 dl_set_overload(rq_of_dl_rq(dl_rq)); 454 dl_rq->overloaded = 1; 455 } 456 } else if (dl_rq->overloaded) { 457 dl_clear_overload(rq_of_dl_rq(dl_rq)); 458 dl_rq->overloaded = 0; 459 } 460 } 461 462 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 463 { 464 struct task_struct *p = dl_task_of(dl_se); 465 466 if (p->nr_cpus_allowed > 1) 467 dl_rq->dl_nr_migratory++; 468 469 update_dl_migration(dl_rq); 470 } 471 472 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 473 { 474 struct task_struct *p = dl_task_of(dl_se); 475 476 if (p->nr_cpus_allowed > 1) 477 dl_rq->dl_nr_migratory--; 478 479 update_dl_migration(dl_rq); 480 } 481 482 /* 483 * The list of pushable -deadline task is not a plist, like in 484 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 485 */ 486 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 487 { 488 struct dl_rq *dl_rq = &rq->dl; 489 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node; 490 struct rb_node *parent = NULL; 491 struct task_struct *entry; 492 bool leftmost = true; 493 494 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 495 496 while (*link) { 497 parent = *link; 498 entry = rb_entry(parent, struct task_struct, 499 pushable_dl_tasks); 500 if (dl_entity_preempt(&p->dl, &entry->dl)) 501 link = &parent->rb_left; 502 else { 503 link = &parent->rb_right; 504 leftmost = false; 505 } 506 } 507 508 if (leftmost) 509 dl_rq->earliest_dl.next = p->dl.deadline; 510 511 rb_link_node(&p->pushable_dl_tasks, parent, link); 512 rb_insert_color_cached(&p->pushable_dl_tasks, 513 &dl_rq->pushable_dl_tasks_root, leftmost); 514 } 515 516 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 517 { 518 struct dl_rq *dl_rq = &rq->dl; 519 520 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 521 return; 522 523 if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) { 524 struct rb_node *next_node; 525 526 next_node = rb_next(&p->pushable_dl_tasks); 527 if (next_node) { 528 dl_rq->earliest_dl.next = rb_entry(next_node, 529 struct task_struct, pushable_dl_tasks)->dl.deadline; 530 } 531 } 532 533 rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 534 RB_CLEAR_NODE(&p->pushable_dl_tasks); 535 } 536 537 static inline int has_pushable_dl_tasks(struct rq *rq) 538 { 539 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root); 540 } 541 542 static int push_dl_task(struct rq *rq); 543 544 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 545 { 546 return dl_task(prev); 547 } 548 549 static DEFINE_PER_CPU(struct callback_head, dl_push_head); 550 static DEFINE_PER_CPU(struct callback_head, dl_pull_head); 551 552 static void push_dl_tasks(struct rq *); 553 static void pull_dl_task(struct rq *); 554 555 static inline void deadline_queue_push_tasks(struct rq *rq) 556 { 557 if (!has_pushable_dl_tasks(rq)) 558 return; 559 560 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); 561 } 562 563 static inline void deadline_queue_pull_task(struct rq *rq) 564 { 565 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); 566 } 567 568 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); 569 570 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) 571 { 572 struct rq *later_rq = NULL; 573 struct dl_bw *dl_b; 574 575 later_rq = find_lock_later_rq(p, rq); 576 if (!later_rq) { 577 int cpu; 578 579 /* 580 * If we cannot preempt any rq, fall back to pick any 581 * online CPU: 582 */ 583 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr); 584 if (cpu >= nr_cpu_ids) { 585 /* 586 * Failed to find any suitable CPU. 587 * The task will never come back! 588 */ 589 BUG_ON(dl_bandwidth_enabled()); 590 591 /* 592 * If admission control is disabled we 593 * try a little harder to let the task 594 * run. 595 */ 596 cpu = cpumask_any(cpu_active_mask); 597 } 598 later_rq = cpu_rq(cpu); 599 double_lock_balance(rq, later_rq); 600 } 601 602 if (p->dl.dl_non_contending || p->dl.dl_throttled) { 603 /* 604 * Inactive timer is armed (or callback is running, but 605 * waiting for us to release rq locks). In any case, when it 606 * will fire (or continue), it will see running_bw of this 607 * task migrated to later_rq (and correctly handle it). 608 */ 609 sub_running_bw(&p->dl, &rq->dl); 610 sub_rq_bw(&p->dl, &rq->dl); 611 612 add_rq_bw(&p->dl, &later_rq->dl); 613 add_running_bw(&p->dl, &later_rq->dl); 614 } else { 615 sub_rq_bw(&p->dl, &rq->dl); 616 add_rq_bw(&p->dl, &later_rq->dl); 617 } 618 619 /* 620 * And we finally need to fixup root_domain(s) bandwidth accounting, 621 * since p is still hanging out in the old (now moved to default) root 622 * domain. 623 */ 624 dl_b = &rq->rd->dl_bw; 625 raw_spin_lock(&dl_b->lock); 626 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 627 raw_spin_unlock(&dl_b->lock); 628 629 dl_b = &later_rq->rd->dl_bw; 630 raw_spin_lock(&dl_b->lock); 631 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span)); 632 raw_spin_unlock(&dl_b->lock); 633 634 set_task_cpu(p, later_rq->cpu); 635 double_unlock_balance(later_rq, rq); 636 637 return later_rq; 638 } 639 640 #else 641 642 static inline 643 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 644 { 645 } 646 647 static inline 648 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 649 { 650 } 651 652 static inline 653 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 654 { 655 } 656 657 static inline 658 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 659 { 660 } 661 662 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 663 { 664 return false; 665 } 666 667 static inline void pull_dl_task(struct rq *rq) 668 { 669 } 670 671 static inline void deadline_queue_push_tasks(struct rq *rq) 672 { 673 } 674 675 static inline void deadline_queue_pull_task(struct rq *rq) 676 { 677 } 678 #endif /* CONFIG_SMP */ 679 680 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 681 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); 682 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags); 683 684 /* 685 * We are being explicitly informed that a new instance is starting, 686 * and this means that: 687 * - the absolute deadline of the entity has to be placed at 688 * current time + relative deadline; 689 * - the runtime of the entity has to be set to the maximum value. 690 * 691 * The capability of specifying such event is useful whenever a -deadline 692 * entity wants to (try to!) synchronize its behaviour with the scheduler's 693 * one, and to (try to!) reconcile itself with its own scheduling 694 * parameters. 695 */ 696 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) 697 { 698 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 699 struct rq *rq = rq_of_dl_rq(dl_rq); 700 701 WARN_ON(dl_se->dl_boosted); 702 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); 703 704 /* 705 * We are racing with the deadline timer. So, do nothing because 706 * the deadline timer handler will take care of properly recharging 707 * the runtime and postponing the deadline 708 */ 709 if (dl_se->dl_throttled) 710 return; 711 712 /* 713 * We use the regular wall clock time to set deadlines in the 714 * future; in fact, we must consider execution overheads (time 715 * spent on hardirq context, etc.). 716 */ 717 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline; 718 dl_se->runtime = dl_se->dl_runtime; 719 } 720 721 /* 722 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 723 * possibility of a entity lasting more than what it declared, and thus 724 * exhausting its runtime. 725 * 726 * Here we are interested in making runtime overrun possible, but we do 727 * not want a entity which is misbehaving to affect the scheduling of all 728 * other entities. 729 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 730 * is used, in order to confine each entity within its own bandwidth. 731 * 732 * This function deals exactly with that, and ensures that when the runtime 733 * of a entity is replenished, its deadline is also postponed. That ensures 734 * the overrunning entity can't interfere with other entity in the system and 735 * can't make them miss their deadlines. Reasons why this kind of overruns 736 * could happen are, typically, a entity voluntarily trying to overcome its 737 * runtime, or it just underestimated it during sched_setattr(). 738 */ 739 static void replenish_dl_entity(struct sched_dl_entity *dl_se, 740 struct sched_dl_entity *pi_se) 741 { 742 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 743 struct rq *rq = rq_of_dl_rq(dl_rq); 744 745 BUG_ON(pi_se->dl_runtime <= 0); 746 747 /* 748 * This could be the case for a !-dl task that is boosted. 749 * Just go with full inherited parameters. 750 */ 751 if (dl_se->dl_deadline == 0) { 752 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 753 dl_se->runtime = pi_se->dl_runtime; 754 } 755 756 if (dl_se->dl_yielded && dl_se->runtime > 0) 757 dl_se->runtime = 0; 758 759 /* 760 * We keep moving the deadline away until we get some 761 * available runtime for the entity. This ensures correct 762 * handling of situations where the runtime overrun is 763 * arbitrary large. 764 */ 765 while (dl_se->runtime <= 0) { 766 dl_se->deadline += pi_se->dl_period; 767 dl_se->runtime += pi_se->dl_runtime; 768 } 769 770 /* 771 * At this point, the deadline really should be "in 772 * the future" with respect to rq->clock. If it's 773 * not, we are, for some reason, lagging too much! 774 * Anyway, after having warn userspace abut that, 775 * we still try to keep the things running by 776 * resetting the deadline and the budget of the 777 * entity. 778 */ 779 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 780 printk_deferred_once("sched: DL replenish lagged too much\n"); 781 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 782 dl_se->runtime = pi_se->dl_runtime; 783 } 784 785 if (dl_se->dl_yielded) 786 dl_se->dl_yielded = 0; 787 if (dl_se->dl_throttled) 788 dl_se->dl_throttled = 0; 789 } 790 791 /* 792 * Here we check if --at time t-- an entity (which is probably being 793 * [re]activated or, in general, enqueued) can use its remaining runtime 794 * and its current deadline _without_ exceeding the bandwidth it is 795 * assigned (function returns true if it can't). We are in fact applying 796 * one of the CBS rules: when a task wakes up, if the residual runtime 797 * over residual deadline fits within the allocated bandwidth, then we 798 * can keep the current (absolute) deadline and residual budget without 799 * disrupting the schedulability of the system. Otherwise, we should 800 * refill the runtime and set the deadline a period in the future, 801 * because keeping the current (absolute) deadline of the task would 802 * result in breaking guarantees promised to other tasks (refer to 803 * Documentation/scheduler/sched-deadline.rst for more information). 804 * 805 * This function returns true if: 806 * 807 * runtime / (deadline - t) > dl_runtime / dl_deadline , 808 * 809 * IOW we can't recycle current parameters. 810 * 811 * Notice that the bandwidth check is done against the deadline. For 812 * task with deadline equal to period this is the same of using 813 * dl_period instead of dl_deadline in the equation above. 814 */ 815 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, 816 struct sched_dl_entity *pi_se, u64 t) 817 { 818 u64 left, right; 819 820 /* 821 * left and right are the two sides of the equation above, 822 * after a bit of shuffling to use multiplications instead 823 * of divisions. 824 * 825 * Note that none of the time values involved in the two 826 * multiplications are absolute: dl_deadline and dl_runtime 827 * are the relative deadline and the maximum runtime of each 828 * instance, runtime is the runtime left for the last instance 829 * and (deadline - t), since t is rq->clock, is the time left 830 * to the (absolute) deadline. Even if overflowing the u64 type 831 * is very unlikely to occur in both cases, here we scale down 832 * as we want to avoid that risk at all. Scaling down by 10 833 * means that we reduce granularity to 1us. We are fine with it, 834 * since this is only a true/false check and, anyway, thinking 835 * of anything below microseconds resolution is actually fiction 836 * (but still we want to give the user that illusion >;). 837 */ 838 left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 839 right = ((dl_se->deadline - t) >> DL_SCALE) * 840 (pi_se->dl_runtime >> DL_SCALE); 841 842 return dl_time_before(right, left); 843 } 844 845 /* 846 * Revised wakeup rule [1]: For self-suspending tasks, rather then 847 * re-initializing task's runtime and deadline, the revised wakeup 848 * rule adjusts the task's runtime to avoid the task to overrun its 849 * density. 850 * 851 * Reasoning: a task may overrun the density if: 852 * runtime / (deadline - t) > dl_runtime / dl_deadline 853 * 854 * Therefore, runtime can be adjusted to: 855 * runtime = (dl_runtime / dl_deadline) * (deadline - t) 856 * 857 * In such way that runtime will be equal to the maximum density 858 * the task can use without breaking any rule. 859 * 860 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant 861 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24. 862 */ 863 static void 864 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq) 865 { 866 u64 laxity = dl_se->deadline - rq_clock(rq); 867 868 /* 869 * If the task has deadline < period, and the deadline is in the past, 870 * it should already be throttled before this check. 871 * 872 * See update_dl_entity() comments for further details. 873 */ 874 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq))); 875 876 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT; 877 } 878 879 /* 880 * Regarding the deadline, a task with implicit deadline has a relative 881 * deadline == relative period. A task with constrained deadline has a 882 * relative deadline <= relative period. 883 * 884 * We support constrained deadline tasks. However, there are some restrictions 885 * applied only for tasks which do not have an implicit deadline. See 886 * update_dl_entity() to know more about such restrictions. 887 * 888 * The dl_is_implicit() returns true if the task has an implicit deadline. 889 */ 890 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se) 891 { 892 return dl_se->dl_deadline == dl_se->dl_period; 893 } 894 895 /* 896 * When a deadline entity is placed in the runqueue, its runtime and deadline 897 * might need to be updated. This is done by a CBS wake up rule. There are two 898 * different rules: 1) the original CBS; and 2) the Revisited CBS. 899 * 900 * When the task is starting a new period, the Original CBS is used. In this 901 * case, the runtime is replenished and a new absolute deadline is set. 902 * 903 * When a task is queued before the begin of the next period, using the 904 * remaining runtime and deadline could make the entity to overflow, see 905 * dl_entity_overflow() to find more about runtime overflow. When such case 906 * is detected, the runtime and deadline need to be updated. 907 * 908 * If the task has an implicit deadline, i.e., deadline == period, the Original 909 * CBS is applied. the runtime is replenished and a new absolute deadline is 910 * set, as in the previous cases. 911 * 912 * However, the Original CBS does not work properly for tasks with 913 * deadline < period, which are said to have a constrained deadline. By 914 * applying the Original CBS, a constrained deadline task would be able to run 915 * runtime/deadline in a period. With deadline < period, the task would 916 * overrun the runtime/period allowed bandwidth, breaking the admission test. 917 * 918 * In order to prevent this misbehave, the Revisited CBS is used for 919 * constrained deadline tasks when a runtime overflow is detected. In the 920 * Revisited CBS, rather than replenishing & setting a new absolute deadline, 921 * the remaining runtime of the task is reduced to avoid runtime overflow. 922 * Please refer to the comments update_dl_revised_wakeup() function to find 923 * more about the Revised CBS rule. 924 */ 925 static void update_dl_entity(struct sched_dl_entity *dl_se, 926 struct sched_dl_entity *pi_se) 927 { 928 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 929 struct rq *rq = rq_of_dl_rq(dl_rq); 930 931 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 932 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) { 933 934 if (unlikely(!dl_is_implicit(dl_se) && 935 !dl_time_before(dl_se->deadline, rq_clock(rq)) && 936 !dl_se->dl_boosted)){ 937 update_dl_revised_wakeup(dl_se, rq); 938 return; 939 } 940 941 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 942 dl_se->runtime = pi_se->dl_runtime; 943 } 944 } 945 946 static inline u64 dl_next_period(struct sched_dl_entity *dl_se) 947 { 948 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period; 949 } 950 951 /* 952 * If the entity depleted all its runtime, and if we want it to sleep 953 * while waiting for some new execution time to become available, we 954 * set the bandwidth replenishment timer to the replenishment instant 955 * and try to activate it. 956 * 957 * Notice that it is important for the caller to know if the timer 958 * actually started or not (i.e., the replenishment instant is in 959 * the future or in the past). 960 */ 961 static int start_dl_timer(struct task_struct *p) 962 { 963 struct sched_dl_entity *dl_se = &p->dl; 964 struct hrtimer *timer = &dl_se->dl_timer; 965 struct rq *rq = task_rq(p); 966 ktime_t now, act; 967 s64 delta; 968 969 lockdep_assert_held(&rq->lock); 970 971 /* 972 * We want the timer to fire at the deadline, but considering 973 * that it is actually coming from rq->clock and not from 974 * hrtimer's time base reading. 975 */ 976 act = ns_to_ktime(dl_next_period(dl_se)); 977 now = hrtimer_cb_get_time(timer); 978 delta = ktime_to_ns(now) - rq_clock(rq); 979 act = ktime_add_ns(act, delta); 980 981 /* 982 * If the expiry time already passed, e.g., because the value 983 * chosen as the deadline is too small, don't even try to 984 * start the timer in the past! 985 */ 986 if (ktime_us_delta(act, now) < 0) 987 return 0; 988 989 /* 990 * !enqueued will guarantee another callback; even if one is already in 991 * progress. This ensures a balanced {get,put}_task_struct(). 992 * 993 * The race against __run_timer() clearing the enqueued state is 994 * harmless because we're holding task_rq()->lock, therefore the timer 995 * expiring after we've done the check will wait on its task_rq_lock() 996 * and observe our state. 997 */ 998 if (!hrtimer_is_queued(timer)) { 999 get_task_struct(p); 1000 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD); 1001 } 1002 1003 return 1; 1004 } 1005 1006 /* 1007 * This is the bandwidth enforcement timer callback. If here, we know 1008 * a task is not on its dl_rq, since the fact that the timer was running 1009 * means the task is throttled and needs a runtime replenishment. 1010 * 1011 * However, what we actually do depends on the fact the task is active, 1012 * (it is on its rq) or has been removed from there by a call to 1013 * dequeue_task_dl(). In the former case we must issue the runtime 1014 * replenishment and add the task back to the dl_rq; in the latter, we just 1015 * do nothing but clearing dl_throttled, so that runtime and deadline 1016 * updating (and the queueing back to dl_rq) will be done by the 1017 * next call to enqueue_task_dl(). 1018 */ 1019 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 1020 { 1021 struct sched_dl_entity *dl_se = container_of(timer, 1022 struct sched_dl_entity, 1023 dl_timer); 1024 struct task_struct *p = dl_task_of(dl_se); 1025 struct rq_flags rf; 1026 struct rq *rq; 1027 1028 rq = task_rq_lock(p, &rf); 1029 1030 /* 1031 * The task might have changed its scheduling policy to something 1032 * different than SCHED_DEADLINE (through switched_from_dl()). 1033 */ 1034 if (!dl_task(p)) 1035 goto unlock; 1036 1037 /* 1038 * The task might have been boosted by someone else and might be in the 1039 * boosting/deboosting path, its not throttled. 1040 */ 1041 if (dl_se->dl_boosted) 1042 goto unlock; 1043 1044 /* 1045 * Spurious timer due to start_dl_timer() race; or we already received 1046 * a replenishment from rt_mutex_setprio(). 1047 */ 1048 if (!dl_se->dl_throttled) 1049 goto unlock; 1050 1051 sched_clock_tick(); 1052 update_rq_clock(rq); 1053 1054 /* 1055 * If the throttle happened during sched-out; like: 1056 * 1057 * schedule() 1058 * deactivate_task() 1059 * dequeue_task_dl() 1060 * update_curr_dl() 1061 * start_dl_timer() 1062 * __dequeue_task_dl() 1063 * prev->on_rq = 0; 1064 * 1065 * We can be both throttled and !queued. Replenish the counter 1066 * but do not enqueue -- wait for our wakeup to do that. 1067 */ 1068 if (!task_on_rq_queued(p)) { 1069 replenish_dl_entity(dl_se, dl_se); 1070 goto unlock; 1071 } 1072 1073 #ifdef CONFIG_SMP 1074 if (unlikely(!rq->online)) { 1075 /* 1076 * If the runqueue is no longer available, migrate the 1077 * task elsewhere. This necessarily changes rq. 1078 */ 1079 lockdep_unpin_lock(&rq->lock, rf.cookie); 1080 rq = dl_task_offline_migration(rq, p); 1081 rf.cookie = lockdep_pin_lock(&rq->lock); 1082 update_rq_clock(rq); 1083 1084 /* 1085 * Now that the task has been migrated to the new RQ and we 1086 * have that locked, proceed as normal and enqueue the task 1087 * there. 1088 */ 1089 } 1090 #endif 1091 1092 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 1093 if (dl_task(rq->curr)) 1094 check_preempt_curr_dl(rq, p, 0); 1095 else 1096 resched_curr(rq); 1097 1098 #ifdef CONFIG_SMP 1099 /* 1100 * Queueing this task back might have overloaded rq, check if we need 1101 * to kick someone away. 1102 */ 1103 if (has_pushable_dl_tasks(rq)) { 1104 /* 1105 * Nothing relies on rq->lock after this, so its safe to drop 1106 * rq->lock. 1107 */ 1108 rq_unpin_lock(rq, &rf); 1109 push_dl_task(rq); 1110 rq_repin_lock(rq, &rf); 1111 } 1112 #endif 1113 1114 unlock: 1115 task_rq_unlock(rq, p, &rf); 1116 1117 /* 1118 * This can free the task_struct, including this hrtimer, do not touch 1119 * anything related to that after this. 1120 */ 1121 put_task_struct(p); 1122 1123 return HRTIMER_NORESTART; 1124 } 1125 1126 void init_dl_task_timer(struct sched_dl_entity *dl_se) 1127 { 1128 struct hrtimer *timer = &dl_se->dl_timer; 1129 1130 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1131 timer->function = dl_task_timer; 1132 } 1133 1134 /* 1135 * During the activation, CBS checks if it can reuse the current task's 1136 * runtime and period. If the deadline of the task is in the past, CBS 1137 * cannot use the runtime, and so it replenishes the task. This rule 1138 * works fine for implicit deadline tasks (deadline == period), and the 1139 * CBS was designed for implicit deadline tasks. However, a task with 1140 * constrained deadline (deadline < period) might be awakened after the 1141 * deadline, but before the next period. In this case, replenishing the 1142 * task would allow it to run for runtime / deadline. As in this case 1143 * deadline < period, CBS enables a task to run for more than the 1144 * runtime / period. In a very loaded system, this can cause a domino 1145 * effect, making other tasks miss their deadlines. 1146 * 1147 * To avoid this problem, in the activation of a constrained deadline 1148 * task after the deadline but before the next period, throttle the 1149 * task and set the replenishing timer to the begin of the next period, 1150 * unless it is boosted. 1151 */ 1152 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) 1153 { 1154 struct task_struct *p = dl_task_of(dl_se); 1155 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se)); 1156 1157 if (dl_time_before(dl_se->deadline, rq_clock(rq)) && 1158 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) { 1159 if (unlikely(dl_se->dl_boosted || !start_dl_timer(p))) 1160 return; 1161 dl_se->dl_throttled = 1; 1162 if (dl_se->runtime > 0) 1163 dl_se->runtime = 0; 1164 } 1165 } 1166 1167 static 1168 int dl_runtime_exceeded(struct sched_dl_entity *dl_se) 1169 { 1170 return (dl_se->runtime <= 0); 1171 } 1172 1173 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 1174 1175 /* 1176 * This function implements the GRUB accounting rule: 1177 * according to the GRUB reclaiming algorithm, the runtime is 1178 * not decreased as "dq = -dt", but as 1179 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt", 1180 * where u is the utilization of the task, Umax is the maximum reclaimable 1181 * utilization, Uinact is the (per-runqueue) inactive utilization, computed 1182 * as the difference between the "total runqueue utilization" and the 1183 * runqueue active utilization, and Uextra is the (per runqueue) extra 1184 * reclaimable utilization. 1185 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations 1186 * multiplied by 2^BW_SHIFT, the result has to be shifted right by 1187 * BW_SHIFT. 1188 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT, 1189 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT. 1190 * Since delta is a 64 bit variable, to have an overflow its value 1191 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds. 1192 * So, overflow is not an issue here. 1193 */ 1194 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se) 1195 { 1196 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */ 1197 u64 u_act; 1198 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT; 1199 1200 /* 1201 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)}, 1202 * we compare u_inact + rq->dl.extra_bw with 1203 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because 1204 * u_inact + rq->dl.extra_bw can be larger than 1205 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative 1206 * leading to wrong results) 1207 */ 1208 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min) 1209 u_act = u_act_min; 1210 else 1211 u_act = BW_UNIT - u_inact - rq->dl.extra_bw; 1212 1213 return (delta * u_act) >> BW_SHIFT; 1214 } 1215 1216 /* 1217 * Update the current task's runtime statistics (provided it is still 1218 * a -deadline task and has not been removed from the dl_rq). 1219 */ 1220 static void update_curr_dl(struct rq *rq) 1221 { 1222 struct task_struct *curr = rq->curr; 1223 struct sched_dl_entity *dl_se = &curr->dl; 1224 u64 delta_exec, scaled_delta_exec; 1225 int cpu = cpu_of(rq); 1226 u64 now; 1227 1228 if (!dl_task(curr) || !on_dl_rq(dl_se)) 1229 return; 1230 1231 /* 1232 * Consumed budget is computed considering the time as 1233 * observed by schedulable tasks (excluding time spent 1234 * in hardirq context, etc.). Deadlines are instead 1235 * computed using hard walltime. This seems to be the more 1236 * natural solution, but the full ramifications of this 1237 * approach need further study. 1238 */ 1239 now = rq_clock_task(rq); 1240 delta_exec = now - curr->se.exec_start; 1241 if (unlikely((s64)delta_exec <= 0)) { 1242 if (unlikely(dl_se->dl_yielded)) 1243 goto throttle; 1244 return; 1245 } 1246 1247 schedstat_set(curr->se.statistics.exec_max, 1248 max(curr->se.statistics.exec_max, delta_exec)); 1249 1250 curr->se.sum_exec_runtime += delta_exec; 1251 account_group_exec_runtime(curr, delta_exec); 1252 1253 curr->se.exec_start = now; 1254 cgroup_account_cputime(curr, delta_exec); 1255 1256 if (dl_entity_is_special(dl_se)) 1257 return; 1258 1259 /* 1260 * For tasks that participate in GRUB, we implement GRUB-PA: the 1261 * spare reclaimed bandwidth is used to clock down frequency. 1262 * 1263 * For the others, we still need to scale reservation parameters 1264 * according to current frequency and CPU maximum capacity. 1265 */ 1266 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) { 1267 scaled_delta_exec = grub_reclaim(delta_exec, 1268 rq, 1269 &curr->dl); 1270 } else { 1271 unsigned long scale_freq = arch_scale_freq_capacity(cpu); 1272 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu); 1273 1274 scaled_delta_exec = cap_scale(delta_exec, scale_freq); 1275 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu); 1276 } 1277 1278 dl_se->runtime -= scaled_delta_exec; 1279 1280 throttle: 1281 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) { 1282 dl_se->dl_throttled = 1; 1283 1284 /* If requested, inform the user about runtime overruns. */ 1285 if (dl_runtime_exceeded(dl_se) && 1286 (dl_se->flags & SCHED_FLAG_DL_OVERRUN)) 1287 dl_se->dl_overrun = 1; 1288 1289 __dequeue_task_dl(rq, curr, 0); 1290 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr))) 1291 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); 1292 1293 if (!is_leftmost(curr, &rq->dl)) 1294 resched_curr(rq); 1295 } 1296 1297 /* 1298 * Because -- for now -- we share the rt bandwidth, we need to 1299 * account our runtime there too, otherwise actual rt tasks 1300 * would be able to exceed the shared quota. 1301 * 1302 * Account to the root rt group for now. 1303 * 1304 * The solution we're working towards is having the RT groups scheduled 1305 * using deadline servers -- however there's a few nasties to figure 1306 * out before that can happen. 1307 */ 1308 if (rt_bandwidth_enabled()) { 1309 struct rt_rq *rt_rq = &rq->rt; 1310 1311 raw_spin_lock(&rt_rq->rt_runtime_lock); 1312 /* 1313 * We'll let actual RT tasks worry about the overflow here, we 1314 * have our own CBS to keep us inline; only account when RT 1315 * bandwidth is relevant. 1316 */ 1317 if (sched_rt_bandwidth_account(rt_rq)) 1318 rt_rq->rt_time += delta_exec; 1319 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1320 } 1321 } 1322 1323 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer) 1324 { 1325 struct sched_dl_entity *dl_se = container_of(timer, 1326 struct sched_dl_entity, 1327 inactive_timer); 1328 struct task_struct *p = dl_task_of(dl_se); 1329 struct rq_flags rf; 1330 struct rq *rq; 1331 1332 rq = task_rq_lock(p, &rf); 1333 1334 sched_clock_tick(); 1335 update_rq_clock(rq); 1336 1337 if (!dl_task(p) || p->state == TASK_DEAD) { 1338 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1339 1340 if (p->state == TASK_DEAD && dl_se->dl_non_contending) { 1341 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl)); 1342 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl)); 1343 dl_se->dl_non_contending = 0; 1344 } 1345 1346 raw_spin_lock(&dl_b->lock); 1347 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 1348 raw_spin_unlock(&dl_b->lock); 1349 __dl_clear_params(p); 1350 1351 goto unlock; 1352 } 1353 if (dl_se->dl_non_contending == 0) 1354 goto unlock; 1355 1356 sub_running_bw(dl_se, &rq->dl); 1357 dl_se->dl_non_contending = 0; 1358 unlock: 1359 task_rq_unlock(rq, p, &rf); 1360 put_task_struct(p); 1361 1362 return HRTIMER_NORESTART; 1363 } 1364 1365 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se) 1366 { 1367 struct hrtimer *timer = &dl_se->inactive_timer; 1368 1369 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1370 timer->function = inactive_task_timer; 1371 } 1372 1373 #ifdef CONFIG_SMP 1374 1375 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1376 { 1377 struct rq *rq = rq_of_dl_rq(dl_rq); 1378 1379 if (dl_rq->earliest_dl.curr == 0 || 1380 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 1381 dl_rq->earliest_dl.curr = deadline; 1382 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline); 1383 } 1384 } 1385 1386 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1387 { 1388 struct rq *rq = rq_of_dl_rq(dl_rq); 1389 1390 /* 1391 * Since we may have removed our earliest (and/or next earliest) 1392 * task we must recompute them. 1393 */ 1394 if (!dl_rq->dl_nr_running) { 1395 dl_rq->earliest_dl.curr = 0; 1396 dl_rq->earliest_dl.next = 0; 1397 cpudl_clear(&rq->rd->cpudl, rq->cpu); 1398 } else { 1399 struct rb_node *leftmost = dl_rq->root.rb_leftmost; 1400 struct sched_dl_entity *entry; 1401 1402 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node); 1403 dl_rq->earliest_dl.curr = entry->deadline; 1404 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline); 1405 } 1406 } 1407 1408 #else 1409 1410 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1411 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1412 1413 #endif /* CONFIG_SMP */ 1414 1415 static inline 1416 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1417 { 1418 int prio = dl_task_of(dl_se)->prio; 1419 u64 deadline = dl_se->deadline; 1420 1421 WARN_ON(!dl_prio(prio)); 1422 dl_rq->dl_nr_running++; 1423 add_nr_running(rq_of_dl_rq(dl_rq), 1); 1424 1425 inc_dl_deadline(dl_rq, deadline); 1426 inc_dl_migration(dl_se, dl_rq); 1427 } 1428 1429 static inline 1430 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1431 { 1432 int prio = dl_task_of(dl_se)->prio; 1433 1434 WARN_ON(!dl_prio(prio)); 1435 WARN_ON(!dl_rq->dl_nr_running); 1436 dl_rq->dl_nr_running--; 1437 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 1438 1439 dec_dl_deadline(dl_rq, dl_se->deadline); 1440 dec_dl_migration(dl_se, dl_rq); 1441 } 1442 1443 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 1444 { 1445 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1446 struct rb_node **link = &dl_rq->root.rb_root.rb_node; 1447 struct rb_node *parent = NULL; 1448 struct sched_dl_entity *entry; 1449 int leftmost = 1; 1450 1451 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node)); 1452 1453 while (*link) { 1454 parent = *link; 1455 entry = rb_entry(parent, struct sched_dl_entity, rb_node); 1456 if (dl_time_before(dl_se->deadline, entry->deadline)) 1457 link = &parent->rb_left; 1458 else { 1459 link = &parent->rb_right; 1460 leftmost = 0; 1461 } 1462 } 1463 1464 rb_link_node(&dl_se->rb_node, parent, link); 1465 rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost); 1466 1467 inc_dl_tasks(dl_se, dl_rq); 1468 } 1469 1470 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 1471 { 1472 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1473 1474 if (RB_EMPTY_NODE(&dl_se->rb_node)) 1475 return; 1476 1477 rb_erase_cached(&dl_se->rb_node, &dl_rq->root); 1478 RB_CLEAR_NODE(&dl_se->rb_node); 1479 1480 dec_dl_tasks(dl_se, dl_rq); 1481 } 1482 1483 static void 1484 enqueue_dl_entity(struct sched_dl_entity *dl_se, 1485 struct sched_dl_entity *pi_se, int flags) 1486 { 1487 BUG_ON(on_dl_rq(dl_se)); 1488 1489 /* 1490 * If this is a wakeup or a new instance, the scheduling 1491 * parameters of the task might need updating. Otherwise, 1492 * we want a replenishment of its runtime. 1493 */ 1494 if (flags & ENQUEUE_WAKEUP) { 1495 task_contending(dl_se, flags); 1496 update_dl_entity(dl_se, pi_se); 1497 } else if (flags & ENQUEUE_REPLENISH) { 1498 replenish_dl_entity(dl_se, pi_se); 1499 } else if ((flags & ENQUEUE_RESTORE) && 1500 dl_time_before(dl_se->deadline, 1501 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) { 1502 setup_new_dl_entity(dl_se); 1503 } 1504 1505 __enqueue_dl_entity(dl_se); 1506 } 1507 1508 static void dequeue_dl_entity(struct sched_dl_entity *dl_se) 1509 { 1510 __dequeue_dl_entity(dl_se); 1511 } 1512 1513 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1514 { 1515 struct task_struct *pi_task = rt_mutex_get_top_task(p); 1516 struct sched_dl_entity *pi_se = &p->dl; 1517 1518 /* 1519 * Use the scheduling parameters of the top pi-waiter task if: 1520 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND 1521 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is 1522 * smaller than our deadline OR we are a !SCHED_DEADLINE task getting 1523 * boosted due to a SCHED_DEADLINE pi-waiter). 1524 * Otherwise we keep our runtime and deadline. 1525 */ 1526 if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) { 1527 pi_se = &pi_task->dl; 1528 /* 1529 * Because of delays in the detection of the overrun of a 1530 * thread's runtime, it might be the case that a thread 1531 * goes to sleep in a rt mutex with negative runtime. As 1532 * a consequence, the thread will be throttled. 1533 * 1534 * While waiting for the mutex, this thread can also be 1535 * boosted via PI, resulting in a thread that is throttled 1536 * and boosted at the same time. 1537 * 1538 * In this case, the boost overrides the throttle. 1539 */ 1540 if (p->dl.dl_throttled) { 1541 /* 1542 * The replenish timer needs to be canceled. No 1543 * problem if it fires concurrently: boosted threads 1544 * are ignored in dl_task_timer(). 1545 */ 1546 hrtimer_try_to_cancel(&p->dl.dl_timer); 1547 p->dl.dl_throttled = 0; 1548 } 1549 } else if (!dl_prio(p->normal_prio)) { 1550 /* 1551 * Special case in which we have a !SCHED_DEADLINE task that is going 1552 * to be deboosted, but exceeds its runtime while doing so. No point in 1553 * replenishing it, as it's going to return back to its original 1554 * scheduling class after this. If it has been throttled, we need to 1555 * clear the flag, otherwise the task may wake up as throttled after 1556 * being boosted again with no means to replenish the runtime and clear 1557 * the throttle. 1558 */ 1559 p->dl.dl_throttled = 0; 1560 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH); 1561 return; 1562 } 1563 1564 /* 1565 * Check if a constrained deadline task was activated 1566 * after the deadline but before the next period. 1567 * If that is the case, the task will be throttled and 1568 * the replenishment timer will be set to the next period. 1569 */ 1570 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl)) 1571 dl_check_constrained_dl(&p->dl); 1572 1573 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) { 1574 add_rq_bw(&p->dl, &rq->dl); 1575 add_running_bw(&p->dl, &rq->dl); 1576 } 1577 1578 /* 1579 * If p is throttled, we do not enqueue it. In fact, if it exhausted 1580 * its budget it needs a replenishment and, since it now is on 1581 * its rq, the bandwidth timer callback (which clearly has not 1582 * run yet) will take care of this. 1583 * However, the active utilization does not depend on the fact 1584 * that the task is on the runqueue or not (but depends on the 1585 * task's state - in GRUB parlance, "inactive" vs "active contending"). 1586 * In other words, even if a task is throttled its utilization must 1587 * be counted in the active utilization; hence, we need to call 1588 * add_running_bw(). 1589 */ 1590 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) { 1591 if (flags & ENQUEUE_WAKEUP) 1592 task_contending(&p->dl, flags); 1593 1594 return; 1595 } 1596 1597 enqueue_dl_entity(&p->dl, pi_se, flags); 1598 1599 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1600 enqueue_pushable_dl_task(rq, p); 1601 } 1602 1603 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1604 { 1605 dequeue_dl_entity(&p->dl); 1606 dequeue_pushable_dl_task(rq, p); 1607 } 1608 1609 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1610 { 1611 update_curr_dl(rq); 1612 __dequeue_task_dl(rq, p, flags); 1613 1614 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) { 1615 sub_running_bw(&p->dl, &rq->dl); 1616 sub_rq_bw(&p->dl, &rq->dl); 1617 } 1618 1619 /* 1620 * This check allows to start the inactive timer (or to immediately 1621 * decrease the active utilization, if needed) in two cases: 1622 * when the task blocks and when it is terminating 1623 * (p->state == TASK_DEAD). We can handle the two cases in the same 1624 * way, because from GRUB's point of view the same thing is happening 1625 * (the task moves from "active contending" to "active non contending" 1626 * or "inactive") 1627 */ 1628 if (flags & DEQUEUE_SLEEP) 1629 task_non_contending(p); 1630 } 1631 1632 /* 1633 * Yield task semantic for -deadline tasks is: 1634 * 1635 * get off from the CPU until our next instance, with 1636 * a new runtime. This is of little use now, since we 1637 * don't have a bandwidth reclaiming mechanism. Anyway, 1638 * bandwidth reclaiming is planned for the future, and 1639 * yield_task_dl will indicate that some spare budget 1640 * is available for other task instances to use it. 1641 */ 1642 static void yield_task_dl(struct rq *rq) 1643 { 1644 /* 1645 * We make the task go to sleep until its current deadline by 1646 * forcing its runtime to zero. This way, update_curr_dl() stops 1647 * it and the bandwidth timer will wake it up and will give it 1648 * new scheduling parameters (thanks to dl_yielded=1). 1649 */ 1650 rq->curr->dl.dl_yielded = 1; 1651 1652 update_rq_clock(rq); 1653 update_curr_dl(rq); 1654 /* 1655 * Tell update_rq_clock() that we've just updated, 1656 * so we don't do microscopic update in schedule() 1657 * and double the fastpath cost. 1658 */ 1659 rq_clock_skip_update(rq); 1660 } 1661 1662 #ifdef CONFIG_SMP 1663 1664 static int find_later_rq(struct task_struct *task); 1665 1666 static int 1667 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags) 1668 { 1669 struct task_struct *curr; 1670 bool select_rq; 1671 struct rq *rq; 1672 1673 if (sd_flag != SD_BALANCE_WAKE) 1674 goto out; 1675 1676 rq = cpu_rq(cpu); 1677 1678 rcu_read_lock(); 1679 curr = READ_ONCE(rq->curr); /* unlocked access */ 1680 1681 /* 1682 * If we are dealing with a -deadline task, we must 1683 * decide where to wake it up. 1684 * If it has a later deadline and the current task 1685 * on this rq can't move (provided the waking task 1686 * can!) we prefer to send it somewhere else. On the 1687 * other hand, if it has a shorter deadline, we 1688 * try to make it stay here, it might be important. 1689 */ 1690 select_rq = unlikely(dl_task(curr)) && 1691 (curr->nr_cpus_allowed < 2 || 1692 !dl_entity_preempt(&p->dl, &curr->dl)) && 1693 p->nr_cpus_allowed > 1; 1694 1695 /* 1696 * Take the capacity of the CPU into account to 1697 * ensure it fits the requirement of the task. 1698 */ 1699 if (static_branch_unlikely(&sched_asym_cpucapacity)) 1700 select_rq |= !dl_task_fits_capacity(p, cpu); 1701 1702 if (select_rq) { 1703 int target = find_later_rq(p); 1704 1705 if (target != -1 && 1706 (dl_time_before(p->dl.deadline, 1707 cpu_rq(target)->dl.earliest_dl.curr) || 1708 (cpu_rq(target)->dl.dl_nr_running == 0))) 1709 cpu = target; 1710 } 1711 rcu_read_unlock(); 1712 1713 out: 1714 return cpu; 1715 } 1716 1717 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused) 1718 { 1719 struct rq *rq; 1720 1721 if (p->state != TASK_WAKING) 1722 return; 1723 1724 rq = task_rq(p); 1725 /* 1726 * Since p->state == TASK_WAKING, set_task_cpu() has been called 1727 * from try_to_wake_up(). Hence, p->pi_lock is locked, but 1728 * rq->lock is not... So, lock it 1729 */ 1730 raw_spin_lock(&rq->lock); 1731 if (p->dl.dl_non_contending) { 1732 sub_running_bw(&p->dl, &rq->dl); 1733 p->dl.dl_non_contending = 0; 1734 /* 1735 * If the timer handler is currently running and the 1736 * timer cannot be cancelled, inactive_task_timer() 1737 * will see that dl_not_contending is not set, and 1738 * will not touch the rq's active utilization, 1739 * so we are still safe. 1740 */ 1741 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 1742 put_task_struct(p); 1743 } 1744 sub_rq_bw(&p->dl, &rq->dl); 1745 raw_spin_unlock(&rq->lock); 1746 } 1747 1748 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 1749 { 1750 /* 1751 * Current can't be migrated, useless to reschedule, 1752 * let's hope p can move out. 1753 */ 1754 if (rq->curr->nr_cpus_allowed == 1 || 1755 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL)) 1756 return; 1757 1758 /* 1759 * p is migratable, so let's not schedule it and 1760 * see if it is pushed or pulled somewhere else. 1761 */ 1762 if (p->nr_cpus_allowed != 1 && 1763 cpudl_find(&rq->rd->cpudl, p, NULL)) 1764 return; 1765 1766 resched_curr(rq); 1767 } 1768 1769 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1770 { 1771 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) { 1772 /* 1773 * This is OK, because current is on_cpu, which avoids it being 1774 * picked for load-balance and preemption/IRQs are still 1775 * disabled avoiding further scheduler activity on it and we've 1776 * not yet started the picking loop. 1777 */ 1778 rq_unpin_lock(rq, rf); 1779 pull_dl_task(rq); 1780 rq_repin_lock(rq, rf); 1781 } 1782 1783 return sched_stop_runnable(rq) || sched_dl_runnable(rq); 1784 } 1785 #endif /* CONFIG_SMP */ 1786 1787 /* 1788 * Only called when both the current and waking task are -deadline 1789 * tasks. 1790 */ 1791 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 1792 int flags) 1793 { 1794 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { 1795 resched_curr(rq); 1796 return; 1797 } 1798 1799 #ifdef CONFIG_SMP 1800 /* 1801 * In the unlikely case current and p have the same deadline 1802 * let us try to decide what's the best thing to do... 1803 */ 1804 if ((p->dl.deadline == rq->curr->dl.deadline) && 1805 !test_tsk_need_resched(rq->curr)) 1806 check_preempt_equal_dl(rq, p); 1807 #endif /* CONFIG_SMP */ 1808 } 1809 1810 #ifdef CONFIG_SCHED_HRTICK 1811 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1812 { 1813 hrtick_start(rq, p->dl.runtime); 1814 } 1815 #else /* !CONFIG_SCHED_HRTICK */ 1816 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1817 { 1818 } 1819 #endif 1820 1821 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first) 1822 { 1823 p->se.exec_start = rq_clock_task(rq); 1824 1825 /* You can't push away the running task */ 1826 dequeue_pushable_dl_task(rq, p); 1827 1828 if (!first) 1829 return; 1830 1831 if (hrtick_enabled(rq)) 1832 start_hrtick_dl(rq, p); 1833 1834 if (rq->curr->sched_class != &dl_sched_class) 1835 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0); 1836 1837 deadline_queue_push_tasks(rq); 1838 } 1839 1840 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq, 1841 struct dl_rq *dl_rq) 1842 { 1843 struct rb_node *left = rb_first_cached(&dl_rq->root); 1844 1845 if (!left) 1846 return NULL; 1847 1848 return rb_entry(left, struct sched_dl_entity, rb_node); 1849 } 1850 1851 static struct task_struct *pick_next_task_dl(struct rq *rq) 1852 { 1853 struct sched_dl_entity *dl_se; 1854 struct dl_rq *dl_rq = &rq->dl; 1855 struct task_struct *p; 1856 1857 if (!sched_dl_runnable(rq)) 1858 return NULL; 1859 1860 dl_se = pick_next_dl_entity(rq, dl_rq); 1861 BUG_ON(!dl_se); 1862 p = dl_task_of(dl_se); 1863 set_next_task_dl(rq, p, true); 1864 return p; 1865 } 1866 1867 static void put_prev_task_dl(struct rq *rq, struct task_struct *p) 1868 { 1869 update_curr_dl(rq); 1870 1871 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 1872 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 1873 enqueue_pushable_dl_task(rq, p); 1874 } 1875 1876 /* 1877 * scheduler tick hitting a task of our scheduling class. 1878 * 1879 * NOTE: This function can be called remotely by the tick offload that 1880 * goes along full dynticks. Therefore no local assumption can be made 1881 * and everything must be accessed through the @rq and @curr passed in 1882 * parameters. 1883 */ 1884 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 1885 { 1886 update_curr_dl(rq); 1887 1888 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1); 1889 /* 1890 * Even when we have runtime, update_curr_dl() might have resulted in us 1891 * not being the leftmost task anymore. In that case NEED_RESCHED will 1892 * be set and schedule() will start a new hrtick for the next task. 1893 */ 1894 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 && 1895 is_leftmost(p, &rq->dl)) 1896 start_hrtick_dl(rq, p); 1897 } 1898 1899 static void task_fork_dl(struct task_struct *p) 1900 { 1901 /* 1902 * SCHED_DEADLINE tasks cannot fork and this is achieved through 1903 * sched_fork() 1904 */ 1905 } 1906 1907 #ifdef CONFIG_SMP 1908 1909 /* Only try algorithms three times */ 1910 #define DL_MAX_TRIES 3 1911 1912 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) 1913 { 1914 if (!task_running(rq, p) && 1915 cpumask_test_cpu(cpu, p->cpus_ptr)) 1916 return 1; 1917 return 0; 1918 } 1919 1920 /* 1921 * Return the earliest pushable rq's task, which is suitable to be executed 1922 * on the CPU, NULL otherwise: 1923 */ 1924 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) 1925 { 1926 struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost; 1927 struct task_struct *p = NULL; 1928 1929 if (!has_pushable_dl_tasks(rq)) 1930 return NULL; 1931 1932 next_node: 1933 if (next_node) { 1934 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks); 1935 1936 if (pick_dl_task(rq, p, cpu)) 1937 return p; 1938 1939 next_node = rb_next(next_node); 1940 goto next_node; 1941 } 1942 1943 return NULL; 1944 } 1945 1946 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 1947 1948 static int find_later_rq(struct task_struct *task) 1949 { 1950 struct sched_domain *sd; 1951 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 1952 int this_cpu = smp_processor_id(); 1953 int cpu = task_cpu(task); 1954 1955 /* Make sure the mask is initialized first */ 1956 if (unlikely(!later_mask)) 1957 return -1; 1958 1959 if (task->nr_cpus_allowed == 1) 1960 return -1; 1961 1962 /* 1963 * We have to consider system topology and task affinity 1964 * first, then we can look for a suitable CPU. 1965 */ 1966 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask)) 1967 return -1; 1968 1969 /* 1970 * If we are here, some targets have been found, including 1971 * the most suitable which is, among the runqueues where the 1972 * current tasks have later deadlines than the task's one, the 1973 * rq with the latest possible one. 1974 * 1975 * Now we check how well this matches with task's 1976 * affinity and system topology. 1977 * 1978 * The last CPU where the task run is our first 1979 * guess, since it is most likely cache-hot there. 1980 */ 1981 if (cpumask_test_cpu(cpu, later_mask)) 1982 return cpu; 1983 /* 1984 * Check if this_cpu is to be skipped (i.e., it is 1985 * not in the mask) or not. 1986 */ 1987 if (!cpumask_test_cpu(this_cpu, later_mask)) 1988 this_cpu = -1; 1989 1990 rcu_read_lock(); 1991 for_each_domain(cpu, sd) { 1992 if (sd->flags & SD_WAKE_AFFINE) { 1993 int best_cpu; 1994 1995 /* 1996 * If possible, preempting this_cpu is 1997 * cheaper than migrating. 1998 */ 1999 if (this_cpu != -1 && 2000 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 2001 rcu_read_unlock(); 2002 return this_cpu; 2003 } 2004 2005 best_cpu = cpumask_first_and(later_mask, 2006 sched_domain_span(sd)); 2007 /* 2008 * Last chance: if a CPU being in both later_mask 2009 * and current sd span is valid, that becomes our 2010 * choice. Of course, the latest possible CPU is 2011 * already under consideration through later_mask. 2012 */ 2013 if (best_cpu < nr_cpu_ids) { 2014 rcu_read_unlock(); 2015 return best_cpu; 2016 } 2017 } 2018 } 2019 rcu_read_unlock(); 2020 2021 /* 2022 * At this point, all our guesses failed, we just return 2023 * 'something', and let the caller sort the things out. 2024 */ 2025 if (this_cpu != -1) 2026 return this_cpu; 2027 2028 cpu = cpumask_any(later_mask); 2029 if (cpu < nr_cpu_ids) 2030 return cpu; 2031 2032 return -1; 2033 } 2034 2035 /* Locks the rq it finds */ 2036 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 2037 { 2038 struct rq *later_rq = NULL; 2039 int tries; 2040 int cpu; 2041 2042 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 2043 cpu = find_later_rq(task); 2044 2045 if ((cpu == -1) || (cpu == rq->cpu)) 2046 break; 2047 2048 later_rq = cpu_rq(cpu); 2049 2050 if (later_rq->dl.dl_nr_running && 2051 !dl_time_before(task->dl.deadline, 2052 later_rq->dl.earliest_dl.curr)) { 2053 /* 2054 * Target rq has tasks of equal or earlier deadline, 2055 * retrying does not release any lock and is unlikely 2056 * to yield a different result. 2057 */ 2058 later_rq = NULL; 2059 break; 2060 } 2061 2062 /* Retry if something changed. */ 2063 if (double_lock_balance(rq, later_rq)) { 2064 if (unlikely(task_rq(task) != rq || 2065 !cpumask_test_cpu(later_rq->cpu, task->cpus_ptr) || 2066 task_running(rq, task) || 2067 !dl_task(task) || 2068 !task_on_rq_queued(task))) { 2069 double_unlock_balance(rq, later_rq); 2070 later_rq = NULL; 2071 break; 2072 } 2073 } 2074 2075 /* 2076 * If the rq we found has no -deadline task, or 2077 * its earliest one has a later deadline than our 2078 * task, the rq is a good one. 2079 */ 2080 if (!later_rq->dl.dl_nr_running || 2081 dl_time_before(task->dl.deadline, 2082 later_rq->dl.earliest_dl.curr)) 2083 break; 2084 2085 /* Otherwise we try again. */ 2086 double_unlock_balance(rq, later_rq); 2087 later_rq = NULL; 2088 } 2089 2090 return later_rq; 2091 } 2092 2093 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 2094 { 2095 struct task_struct *p; 2096 2097 if (!has_pushable_dl_tasks(rq)) 2098 return NULL; 2099 2100 p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost, 2101 struct task_struct, pushable_dl_tasks); 2102 2103 BUG_ON(rq->cpu != task_cpu(p)); 2104 BUG_ON(task_current(rq, p)); 2105 BUG_ON(p->nr_cpus_allowed <= 1); 2106 2107 BUG_ON(!task_on_rq_queued(p)); 2108 BUG_ON(!dl_task(p)); 2109 2110 return p; 2111 } 2112 2113 /* 2114 * See if the non running -deadline tasks on this rq 2115 * can be sent to some other CPU where they can preempt 2116 * and start executing. 2117 */ 2118 static int push_dl_task(struct rq *rq) 2119 { 2120 struct task_struct *next_task; 2121 struct rq *later_rq; 2122 int ret = 0; 2123 2124 if (!rq->dl.overloaded) 2125 return 0; 2126 2127 next_task = pick_next_pushable_dl_task(rq); 2128 if (!next_task) 2129 return 0; 2130 2131 retry: 2132 if (WARN_ON(next_task == rq->curr)) 2133 return 0; 2134 2135 /* 2136 * If next_task preempts rq->curr, and rq->curr 2137 * can move away, it makes sense to just reschedule 2138 * without going further in pushing next_task. 2139 */ 2140 if (dl_task(rq->curr) && 2141 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && 2142 rq->curr->nr_cpus_allowed > 1) { 2143 resched_curr(rq); 2144 return 0; 2145 } 2146 2147 /* We might release rq lock */ 2148 get_task_struct(next_task); 2149 2150 /* Will lock the rq it'll find */ 2151 later_rq = find_lock_later_rq(next_task, rq); 2152 if (!later_rq) { 2153 struct task_struct *task; 2154 2155 /* 2156 * We must check all this again, since 2157 * find_lock_later_rq releases rq->lock and it is 2158 * then possible that next_task has migrated. 2159 */ 2160 task = pick_next_pushable_dl_task(rq); 2161 if (task == next_task) { 2162 /* 2163 * The task is still there. We don't try 2164 * again, some other CPU will pull it when ready. 2165 */ 2166 goto out; 2167 } 2168 2169 if (!task) 2170 /* No more tasks */ 2171 goto out; 2172 2173 put_task_struct(next_task); 2174 next_task = task; 2175 goto retry; 2176 } 2177 2178 deactivate_task(rq, next_task, 0); 2179 set_task_cpu(next_task, later_rq->cpu); 2180 2181 /* 2182 * Update the later_rq clock here, because the clock is used 2183 * by the cpufreq_update_util() inside __add_running_bw(). 2184 */ 2185 update_rq_clock(later_rq); 2186 activate_task(later_rq, next_task, ENQUEUE_NOCLOCK); 2187 ret = 1; 2188 2189 resched_curr(later_rq); 2190 2191 double_unlock_balance(rq, later_rq); 2192 2193 out: 2194 put_task_struct(next_task); 2195 2196 return ret; 2197 } 2198 2199 static void push_dl_tasks(struct rq *rq) 2200 { 2201 /* push_dl_task() will return true if it moved a -deadline task */ 2202 while (push_dl_task(rq)) 2203 ; 2204 } 2205 2206 static void pull_dl_task(struct rq *this_rq) 2207 { 2208 int this_cpu = this_rq->cpu, cpu; 2209 struct task_struct *p; 2210 bool resched = false; 2211 struct rq *src_rq; 2212 u64 dmin = LONG_MAX; 2213 2214 if (likely(!dl_overloaded(this_rq))) 2215 return; 2216 2217 /* 2218 * Match the barrier from dl_set_overloaded; this guarantees that if we 2219 * see overloaded we must also see the dlo_mask bit. 2220 */ 2221 smp_rmb(); 2222 2223 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 2224 if (this_cpu == cpu) 2225 continue; 2226 2227 src_rq = cpu_rq(cpu); 2228 2229 /* 2230 * It looks racy, abd it is! However, as in sched_rt.c, 2231 * we are fine with this. 2232 */ 2233 if (this_rq->dl.dl_nr_running && 2234 dl_time_before(this_rq->dl.earliest_dl.curr, 2235 src_rq->dl.earliest_dl.next)) 2236 continue; 2237 2238 /* Might drop this_rq->lock */ 2239 double_lock_balance(this_rq, src_rq); 2240 2241 /* 2242 * If there are no more pullable tasks on the 2243 * rq, we're done with it. 2244 */ 2245 if (src_rq->dl.dl_nr_running <= 1) 2246 goto skip; 2247 2248 p = pick_earliest_pushable_dl_task(src_rq, this_cpu); 2249 2250 /* 2251 * We found a task to be pulled if: 2252 * - it preempts our current (if there's one), 2253 * - it will preempt the last one we pulled (if any). 2254 */ 2255 if (p && dl_time_before(p->dl.deadline, dmin) && 2256 (!this_rq->dl.dl_nr_running || 2257 dl_time_before(p->dl.deadline, 2258 this_rq->dl.earliest_dl.curr))) { 2259 WARN_ON(p == src_rq->curr); 2260 WARN_ON(!task_on_rq_queued(p)); 2261 2262 /* 2263 * Then we pull iff p has actually an earlier 2264 * deadline than the current task of its runqueue. 2265 */ 2266 if (dl_time_before(p->dl.deadline, 2267 src_rq->curr->dl.deadline)) 2268 goto skip; 2269 2270 resched = true; 2271 2272 deactivate_task(src_rq, p, 0); 2273 set_task_cpu(p, this_cpu); 2274 activate_task(this_rq, p, 0); 2275 dmin = p->dl.deadline; 2276 2277 /* Is there any other task even earlier? */ 2278 } 2279 skip: 2280 double_unlock_balance(this_rq, src_rq); 2281 } 2282 2283 if (resched) 2284 resched_curr(this_rq); 2285 } 2286 2287 /* 2288 * Since the task is not running and a reschedule is not going to happen 2289 * anytime soon on its runqueue, we try pushing it away now. 2290 */ 2291 static void task_woken_dl(struct rq *rq, struct task_struct *p) 2292 { 2293 if (!task_running(rq, p) && 2294 !test_tsk_need_resched(rq->curr) && 2295 p->nr_cpus_allowed > 1 && 2296 dl_task(rq->curr) && 2297 (rq->curr->nr_cpus_allowed < 2 || 2298 !dl_entity_preempt(&p->dl, &rq->curr->dl))) { 2299 push_dl_tasks(rq); 2300 } 2301 } 2302 2303 static void set_cpus_allowed_dl(struct task_struct *p, 2304 const struct cpumask *new_mask) 2305 { 2306 struct root_domain *src_rd; 2307 struct rq *rq; 2308 2309 BUG_ON(!dl_task(p)); 2310 2311 rq = task_rq(p); 2312 src_rd = rq->rd; 2313 /* 2314 * Migrating a SCHED_DEADLINE task between exclusive 2315 * cpusets (different root_domains) entails a bandwidth 2316 * update. We already made space for us in the destination 2317 * domain (see cpuset_can_attach()). 2318 */ 2319 if (!cpumask_intersects(src_rd->span, new_mask)) { 2320 struct dl_bw *src_dl_b; 2321 2322 src_dl_b = dl_bw_of(cpu_of(rq)); 2323 /* 2324 * We now free resources of the root_domain we are migrating 2325 * off. In the worst case, sched_setattr() may temporary fail 2326 * until we complete the update. 2327 */ 2328 raw_spin_lock(&src_dl_b->lock); 2329 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 2330 raw_spin_unlock(&src_dl_b->lock); 2331 } 2332 2333 set_cpus_allowed_common(p, new_mask); 2334 } 2335 2336 /* Assumes rq->lock is held */ 2337 static void rq_online_dl(struct rq *rq) 2338 { 2339 if (rq->dl.overloaded) 2340 dl_set_overload(rq); 2341 2342 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu); 2343 if (rq->dl.dl_nr_running > 0) 2344 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr); 2345 } 2346 2347 /* Assumes rq->lock is held */ 2348 static void rq_offline_dl(struct rq *rq) 2349 { 2350 if (rq->dl.overloaded) 2351 dl_clear_overload(rq); 2352 2353 cpudl_clear(&rq->rd->cpudl, rq->cpu); 2354 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu); 2355 } 2356 2357 void __init init_sched_dl_class(void) 2358 { 2359 unsigned int i; 2360 2361 for_each_possible_cpu(i) 2362 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 2363 GFP_KERNEL, cpu_to_node(i)); 2364 } 2365 2366 void dl_add_task_root_domain(struct task_struct *p) 2367 { 2368 struct rq_flags rf; 2369 struct rq *rq; 2370 struct dl_bw *dl_b; 2371 2372 rq = task_rq_lock(p, &rf); 2373 if (!dl_task(p)) 2374 goto unlock; 2375 2376 dl_b = &rq->rd->dl_bw; 2377 raw_spin_lock(&dl_b->lock); 2378 2379 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span)); 2380 2381 raw_spin_unlock(&dl_b->lock); 2382 2383 unlock: 2384 task_rq_unlock(rq, p, &rf); 2385 } 2386 2387 void dl_clear_root_domain(struct root_domain *rd) 2388 { 2389 unsigned long flags; 2390 2391 raw_spin_lock_irqsave(&rd->dl_bw.lock, flags); 2392 rd->dl_bw.total_bw = 0; 2393 raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags); 2394 } 2395 2396 #endif /* CONFIG_SMP */ 2397 2398 static void switched_from_dl(struct rq *rq, struct task_struct *p) 2399 { 2400 /* 2401 * task_non_contending() can start the "inactive timer" (if the 0-lag 2402 * time is in the future). If the task switches back to dl before 2403 * the "inactive timer" fires, it can continue to consume its current 2404 * runtime using its current deadline. If it stays outside of 2405 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer() 2406 * will reset the task parameters. 2407 */ 2408 if (task_on_rq_queued(p) && p->dl.dl_runtime) 2409 task_non_contending(p); 2410 2411 if (!task_on_rq_queued(p)) { 2412 /* 2413 * Inactive timer is armed. However, p is leaving DEADLINE and 2414 * might migrate away from this rq while continuing to run on 2415 * some other class. We need to remove its contribution from 2416 * this rq running_bw now, or sub_rq_bw (below) will complain. 2417 */ 2418 if (p->dl.dl_non_contending) 2419 sub_running_bw(&p->dl, &rq->dl); 2420 sub_rq_bw(&p->dl, &rq->dl); 2421 } 2422 2423 /* 2424 * We cannot use inactive_task_timer() to invoke sub_running_bw() 2425 * at the 0-lag time, because the task could have been migrated 2426 * while SCHED_OTHER in the meanwhile. 2427 */ 2428 if (p->dl.dl_non_contending) 2429 p->dl.dl_non_contending = 0; 2430 2431 /* 2432 * Since this might be the only -deadline task on the rq, 2433 * this is the right place to try to pull some other one 2434 * from an overloaded CPU, if any. 2435 */ 2436 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 2437 return; 2438 2439 deadline_queue_pull_task(rq); 2440 } 2441 2442 /* 2443 * When switching to -deadline, we may overload the rq, then 2444 * we try to push someone off, if possible. 2445 */ 2446 static void switched_to_dl(struct rq *rq, struct task_struct *p) 2447 { 2448 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 2449 put_task_struct(p); 2450 2451 /* If p is not queued we will update its parameters at next wakeup. */ 2452 if (!task_on_rq_queued(p)) { 2453 add_rq_bw(&p->dl, &rq->dl); 2454 2455 return; 2456 } 2457 2458 if (rq->curr != p) { 2459 #ifdef CONFIG_SMP 2460 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) 2461 deadline_queue_push_tasks(rq); 2462 #endif 2463 if (dl_task(rq->curr)) 2464 check_preempt_curr_dl(rq, p, 0); 2465 else 2466 resched_curr(rq); 2467 } 2468 } 2469 2470 /* 2471 * If the scheduling parameters of a -deadline task changed, 2472 * a push or pull operation might be needed. 2473 */ 2474 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 2475 int oldprio) 2476 { 2477 if (task_on_rq_queued(p) || rq->curr == p) { 2478 #ifdef CONFIG_SMP 2479 /* 2480 * This might be too much, but unfortunately 2481 * we don't have the old deadline value, and 2482 * we can't argue if the task is increasing 2483 * or lowering its prio, so... 2484 */ 2485 if (!rq->dl.overloaded) 2486 deadline_queue_pull_task(rq); 2487 2488 /* 2489 * If we now have a earlier deadline task than p, 2490 * then reschedule, provided p is still on this 2491 * runqueue. 2492 */ 2493 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) 2494 resched_curr(rq); 2495 #else 2496 /* 2497 * Again, we don't know if p has a earlier 2498 * or later deadline, so let's blindly set a 2499 * (maybe not needed) rescheduling point. 2500 */ 2501 resched_curr(rq); 2502 #endif /* CONFIG_SMP */ 2503 } 2504 } 2505 2506 const struct sched_class dl_sched_class 2507 __section("__dl_sched_class") = { 2508 .enqueue_task = enqueue_task_dl, 2509 .dequeue_task = dequeue_task_dl, 2510 .yield_task = yield_task_dl, 2511 2512 .check_preempt_curr = check_preempt_curr_dl, 2513 2514 .pick_next_task = pick_next_task_dl, 2515 .put_prev_task = put_prev_task_dl, 2516 .set_next_task = set_next_task_dl, 2517 2518 #ifdef CONFIG_SMP 2519 .balance = balance_dl, 2520 .select_task_rq = select_task_rq_dl, 2521 .migrate_task_rq = migrate_task_rq_dl, 2522 .set_cpus_allowed = set_cpus_allowed_dl, 2523 .rq_online = rq_online_dl, 2524 .rq_offline = rq_offline_dl, 2525 .task_woken = task_woken_dl, 2526 #endif 2527 2528 .task_tick = task_tick_dl, 2529 .task_fork = task_fork_dl, 2530 2531 .prio_changed = prio_changed_dl, 2532 .switched_from = switched_from_dl, 2533 .switched_to = switched_to_dl, 2534 2535 .update_curr = update_curr_dl, 2536 }; 2537 2538 int sched_dl_global_validate(void) 2539 { 2540 u64 runtime = global_rt_runtime(); 2541 u64 period = global_rt_period(); 2542 u64 new_bw = to_ratio(period, runtime); 2543 struct dl_bw *dl_b; 2544 int cpu, ret = 0; 2545 unsigned long flags; 2546 2547 /* 2548 * Here we want to check the bandwidth not being set to some 2549 * value smaller than the currently allocated bandwidth in 2550 * any of the root_domains. 2551 * 2552 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 2553 * cycling on root_domains... Discussion on different/better 2554 * solutions is welcome! 2555 */ 2556 for_each_possible_cpu(cpu) { 2557 rcu_read_lock_sched(); 2558 dl_b = dl_bw_of(cpu); 2559 2560 raw_spin_lock_irqsave(&dl_b->lock, flags); 2561 if (new_bw < dl_b->total_bw) 2562 ret = -EBUSY; 2563 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2564 2565 rcu_read_unlock_sched(); 2566 2567 if (ret) 2568 break; 2569 } 2570 2571 return ret; 2572 } 2573 2574 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq) 2575 { 2576 if (global_rt_runtime() == RUNTIME_INF) { 2577 dl_rq->bw_ratio = 1 << RATIO_SHIFT; 2578 dl_rq->extra_bw = 1 << BW_SHIFT; 2579 } else { 2580 dl_rq->bw_ratio = to_ratio(global_rt_runtime(), 2581 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT); 2582 dl_rq->extra_bw = to_ratio(global_rt_period(), 2583 global_rt_runtime()); 2584 } 2585 } 2586 2587 void sched_dl_do_global(void) 2588 { 2589 u64 new_bw = -1; 2590 struct dl_bw *dl_b; 2591 int cpu; 2592 unsigned long flags; 2593 2594 def_dl_bandwidth.dl_period = global_rt_period(); 2595 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 2596 2597 if (global_rt_runtime() != RUNTIME_INF) 2598 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 2599 2600 /* 2601 * FIXME: As above... 2602 */ 2603 for_each_possible_cpu(cpu) { 2604 rcu_read_lock_sched(); 2605 dl_b = dl_bw_of(cpu); 2606 2607 raw_spin_lock_irqsave(&dl_b->lock, flags); 2608 dl_b->bw = new_bw; 2609 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2610 2611 rcu_read_unlock_sched(); 2612 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl); 2613 } 2614 } 2615 2616 /* 2617 * We must be sure that accepting a new task (or allowing changing the 2618 * parameters of an existing one) is consistent with the bandwidth 2619 * constraints. If yes, this function also accordingly updates the currently 2620 * allocated bandwidth to reflect the new situation. 2621 * 2622 * This function is called while holding p's rq->lock. 2623 */ 2624 int sched_dl_overflow(struct task_struct *p, int policy, 2625 const struct sched_attr *attr) 2626 { 2627 u64 period = attr->sched_period ?: attr->sched_deadline; 2628 u64 runtime = attr->sched_runtime; 2629 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2630 int cpus, err = -1, cpu = task_cpu(p); 2631 struct dl_bw *dl_b = dl_bw_of(cpu); 2632 unsigned long cap; 2633 2634 if (attr->sched_flags & SCHED_FLAG_SUGOV) 2635 return 0; 2636 2637 /* !deadline task may carry old deadline bandwidth */ 2638 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 2639 return 0; 2640 2641 /* 2642 * Either if a task, enters, leave, or stays -deadline but changes 2643 * its parameters, we may need to update accordingly the total 2644 * allocated bandwidth of the container. 2645 */ 2646 raw_spin_lock(&dl_b->lock); 2647 cpus = dl_bw_cpus(cpu); 2648 cap = dl_bw_capacity(cpu); 2649 2650 if (dl_policy(policy) && !task_has_dl_policy(p) && 2651 !__dl_overflow(dl_b, cap, 0, new_bw)) { 2652 if (hrtimer_active(&p->dl.inactive_timer)) 2653 __dl_sub(dl_b, p->dl.dl_bw, cpus); 2654 __dl_add(dl_b, new_bw, cpus); 2655 err = 0; 2656 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2657 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) { 2658 /* 2659 * XXX this is slightly incorrect: when the task 2660 * utilization decreases, we should delay the total 2661 * utilization change until the task's 0-lag point. 2662 * But this would require to set the task's "inactive 2663 * timer" when the task is not inactive. 2664 */ 2665 __dl_sub(dl_b, p->dl.dl_bw, cpus); 2666 __dl_add(dl_b, new_bw, cpus); 2667 dl_change_utilization(p, new_bw); 2668 err = 0; 2669 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2670 /* 2671 * Do not decrease the total deadline utilization here, 2672 * switched_from_dl() will take care to do it at the correct 2673 * (0-lag) time. 2674 */ 2675 err = 0; 2676 } 2677 raw_spin_unlock(&dl_b->lock); 2678 2679 return err; 2680 } 2681 2682 /* 2683 * This function initializes the sched_dl_entity of a newly becoming 2684 * SCHED_DEADLINE task. 2685 * 2686 * Only the static values are considered here, the actual runtime and the 2687 * absolute deadline will be properly calculated when the task is enqueued 2688 * for the first time with its new policy. 2689 */ 2690 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 2691 { 2692 struct sched_dl_entity *dl_se = &p->dl; 2693 2694 dl_se->dl_runtime = attr->sched_runtime; 2695 dl_se->dl_deadline = attr->sched_deadline; 2696 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 2697 dl_se->flags = attr->sched_flags; 2698 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 2699 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 2700 } 2701 2702 void __getparam_dl(struct task_struct *p, struct sched_attr *attr) 2703 { 2704 struct sched_dl_entity *dl_se = &p->dl; 2705 2706 attr->sched_priority = p->rt_priority; 2707 attr->sched_runtime = dl_se->dl_runtime; 2708 attr->sched_deadline = dl_se->dl_deadline; 2709 attr->sched_period = dl_se->dl_period; 2710 attr->sched_flags = dl_se->flags; 2711 } 2712 2713 /* 2714 * Default limits for DL period; on the top end we guard against small util 2715 * tasks still getting rediculous long effective runtimes, on the bottom end we 2716 * guard against timer DoS. 2717 */ 2718 unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */ 2719 unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */ 2720 2721 /* 2722 * This function validates the new parameters of a -deadline task. 2723 * We ask for the deadline not being zero, and greater or equal 2724 * than the runtime, as well as the period of being zero or 2725 * greater than deadline. Furthermore, we have to be sure that 2726 * user parameters are above the internal resolution of 1us (we 2727 * check sched_runtime only since it is always the smaller one) and 2728 * below 2^63 ns (we have to check both sched_deadline and 2729 * sched_period, as the latter can be zero). 2730 */ 2731 bool __checkparam_dl(const struct sched_attr *attr) 2732 { 2733 u64 period, max, min; 2734 2735 /* special dl tasks don't actually use any parameter */ 2736 if (attr->sched_flags & SCHED_FLAG_SUGOV) 2737 return true; 2738 2739 /* deadline != 0 */ 2740 if (attr->sched_deadline == 0) 2741 return false; 2742 2743 /* 2744 * Since we truncate DL_SCALE bits, make sure we're at least 2745 * that big. 2746 */ 2747 if (attr->sched_runtime < (1ULL << DL_SCALE)) 2748 return false; 2749 2750 /* 2751 * Since we use the MSB for wrap-around and sign issues, make 2752 * sure it's not set (mind that period can be equal to zero). 2753 */ 2754 if (attr->sched_deadline & (1ULL << 63) || 2755 attr->sched_period & (1ULL << 63)) 2756 return false; 2757 2758 period = attr->sched_period; 2759 if (!period) 2760 period = attr->sched_deadline; 2761 2762 /* runtime <= deadline <= period (if period != 0) */ 2763 if (period < attr->sched_deadline || 2764 attr->sched_deadline < attr->sched_runtime) 2765 return false; 2766 2767 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC; 2768 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC; 2769 2770 if (period < min || period > max) 2771 return false; 2772 2773 return true; 2774 } 2775 2776 /* 2777 * This function clears the sched_dl_entity static params. 2778 */ 2779 void __dl_clear_params(struct task_struct *p) 2780 { 2781 struct sched_dl_entity *dl_se = &p->dl; 2782 2783 dl_se->dl_runtime = 0; 2784 dl_se->dl_deadline = 0; 2785 dl_se->dl_period = 0; 2786 dl_se->flags = 0; 2787 dl_se->dl_bw = 0; 2788 dl_se->dl_density = 0; 2789 2790 dl_se->dl_boosted = 0; 2791 dl_se->dl_throttled = 0; 2792 dl_se->dl_yielded = 0; 2793 dl_se->dl_non_contending = 0; 2794 dl_se->dl_overrun = 0; 2795 } 2796 2797 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) 2798 { 2799 struct sched_dl_entity *dl_se = &p->dl; 2800 2801 if (dl_se->dl_runtime != attr->sched_runtime || 2802 dl_se->dl_deadline != attr->sched_deadline || 2803 dl_se->dl_period != attr->sched_period || 2804 dl_se->flags != attr->sched_flags) 2805 return true; 2806 2807 return false; 2808 } 2809 2810 #ifdef CONFIG_SMP 2811 int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed) 2812 { 2813 unsigned long flags, cap; 2814 unsigned int dest_cpu; 2815 struct dl_bw *dl_b; 2816 bool overflow; 2817 int ret; 2818 2819 dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed); 2820 2821 rcu_read_lock_sched(); 2822 dl_b = dl_bw_of(dest_cpu); 2823 raw_spin_lock_irqsave(&dl_b->lock, flags); 2824 cap = dl_bw_capacity(dest_cpu); 2825 overflow = __dl_overflow(dl_b, cap, 0, p->dl.dl_bw); 2826 if (overflow) { 2827 ret = -EBUSY; 2828 } else { 2829 /* 2830 * We reserve space for this task in the destination 2831 * root_domain, as we can't fail after this point. 2832 * We will free resources in the source root_domain 2833 * later on (see set_cpus_allowed_dl()). 2834 */ 2835 int cpus = dl_bw_cpus(dest_cpu); 2836 2837 __dl_add(dl_b, p->dl.dl_bw, cpus); 2838 ret = 0; 2839 } 2840 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2841 rcu_read_unlock_sched(); 2842 2843 return ret; 2844 } 2845 2846 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, 2847 const struct cpumask *trial) 2848 { 2849 int ret = 1, trial_cpus; 2850 struct dl_bw *cur_dl_b; 2851 unsigned long flags; 2852 2853 rcu_read_lock_sched(); 2854 cur_dl_b = dl_bw_of(cpumask_any(cur)); 2855 trial_cpus = cpumask_weight(trial); 2856 2857 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 2858 if (cur_dl_b->bw != -1 && 2859 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 2860 ret = 0; 2861 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 2862 rcu_read_unlock_sched(); 2863 2864 return ret; 2865 } 2866 2867 bool dl_cpu_busy(unsigned int cpu) 2868 { 2869 unsigned long flags, cap; 2870 struct dl_bw *dl_b; 2871 bool overflow; 2872 2873 rcu_read_lock_sched(); 2874 dl_b = dl_bw_of(cpu); 2875 raw_spin_lock_irqsave(&dl_b->lock, flags); 2876 cap = dl_bw_capacity(cpu); 2877 overflow = __dl_overflow(dl_b, cap, 0, 0); 2878 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2879 rcu_read_unlock_sched(); 2880 2881 return overflow; 2882 } 2883 #endif 2884 2885 #ifdef CONFIG_SCHED_DEBUG 2886 void print_dl_stats(struct seq_file *m, int cpu) 2887 { 2888 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 2889 } 2890 #endif /* CONFIG_SCHED_DEBUG */ 2891