xref: /openbmc/linux/kernel/sched/deadline.c (revision 5d7800d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Deadline Scheduling Class (SCHED_DEADLINE)
4  *
5  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6  *
7  * Tasks that periodically executes their instances for less than their
8  * runtime won't miss any of their deadlines.
9  * Tasks that are not periodic or sporadic or that tries to execute more
10  * than their reserved bandwidth will be slowed down (and may potentially
11  * miss some of their deadlines), and won't affect any other task.
12  *
13  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14  *                    Juri Lelli <juri.lelli@gmail.com>,
15  *                    Michael Trimarchi <michael@amarulasolutions.com>,
16  *                    Fabio Checconi <fchecconi@gmail.com>
17  */
18 
19 #include <linux/cpuset.h>
20 
21 /*
22  * Default limits for DL period; on the top end we guard against small util
23  * tasks still getting ridiculously long effective runtimes, on the bottom end we
24  * guard against timer DoS.
25  */
26 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
27 static unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
28 #ifdef CONFIG_SYSCTL
29 static struct ctl_table sched_dl_sysctls[] = {
30 	{
31 		.procname       = "sched_deadline_period_max_us",
32 		.data           = &sysctl_sched_dl_period_max,
33 		.maxlen         = sizeof(unsigned int),
34 		.mode           = 0644,
35 		.proc_handler   = proc_douintvec_minmax,
36 		.extra1         = (void *)&sysctl_sched_dl_period_min,
37 	},
38 	{
39 		.procname       = "sched_deadline_period_min_us",
40 		.data           = &sysctl_sched_dl_period_min,
41 		.maxlen         = sizeof(unsigned int),
42 		.mode           = 0644,
43 		.proc_handler   = proc_douintvec_minmax,
44 		.extra2         = (void *)&sysctl_sched_dl_period_max,
45 	},
46 	{}
47 };
48 
49 static int __init sched_dl_sysctl_init(void)
50 {
51 	register_sysctl_init("kernel", sched_dl_sysctls);
52 	return 0;
53 }
54 late_initcall(sched_dl_sysctl_init);
55 #endif
56 
57 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
58 {
59 	return container_of(dl_se, struct task_struct, dl);
60 }
61 
62 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
63 {
64 	return container_of(dl_rq, struct rq, dl);
65 }
66 
67 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
68 {
69 	struct task_struct *p = dl_task_of(dl_se);
70 	struct rq *rq = task_rq(p);
71 
72 	return &rq->dl;
73 }
74 
75 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
76 {
77 	return !RB_EMPTY_NODE(&dl_se->rb_node);
78 }
79 
80 #ifdef CONFIG_RT_MUTEXES
81 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
82 {
83 	return dl_se->pi_se;
84 }
85 
86 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
87 {
88 	return pi_of(dl_se) != dl_se;
89 }
90 #else
91 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
92 {
93 	return dl_se;
94 }
95 
96 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
97 {
98 	return false;
99 }
100 #endif
101 
102 #ifdef CONFIG_SMP
103 static inline struct dl_bw *dl_bw_of(int i)
104 {
105 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
106 			 "sched RCU must be held");
107 	return &cpu_rq(i)->rd->dl_bw;
108 }
109 
110 static inline int dl_bw_cpus(int i)
111 {
112 	struct root_domain *rd = cpu_rq(i)->rd;
113 	int cpus;
114 
115 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
116 			 "sched RCU must be held");
117 
118 	if (cpumask_subset(rd->span, cpu_active_mask))
119 		return cpumask_weight(rd->span);
120 
121 	cpus = 0;
122 
123 	for_each_cpu_and(i, rd->span, cpu_active_mask)
124 		cpus++;
125 
126 	return cpus;
127 }
128 
129 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
130 {
131 	unsigned long cap = 0;
132 	int i;
133 
134 	for_each_cpu_and(i, mask, cpu_active_mask)
135 		cap += capacity_orig_of(i);
136 
137 	return cap;
138 }
139 
140 /*
141  * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
142  * of the CPU the task is running on rather rd's \Sum CPU capacity.
143  */
144 static inline unsigned long dl_bw_capacity(int i)
145 {
146 	if (!sched_asym_cpucap_active() &&
147 	    capacity_orig_of(i) == SCHED_CAPACITY_SCALE) {
148 		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
149 	} else {
150 		RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
151 				 "sched RCU must be held");
152 
153 		return __dl_bw_capacity(cpu_rq(i)->rd->span);
154 	}
155 }
156 
157 static inline bool dl_bw_visited(int cpu, u64 gen)
158 {
159 	struct root_domain *rd = cpu_rq(cpu)->rd;
160 
161 	if (rd->visit_gen == gen)
162 		return true;
163 
164 	rd->visit_gen = gen;
165 	return false;
166 }
167 
168 static inline
169 void __dl_update(struct dl_bw *dl_b, s64 bw)
170 {
171 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
172 	int i;
173 
174 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
175 			 "sched RCU must be held");
176 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
177 		struct rq *rq = cpu_rq(i);
178 
179 		rq->dl.extra_bw += bw;
180 	}
181 }
182 #else
183 static inline struct dl_bw *dl_bw_of(int i)
184 {
185 	return &cpu_rq(i)->dl.dl_bw;
186 }
187 
188 static inline int dl_bw_cpus(int i)
189 {
190 	return 1;
191 }
192 
193 static inline unsigned long dl_bw_capacity(int i)
194 {
195 	return SCHED_CAPACITY_SCALE;
196 }
197 
198 static inline bool dl_bw_visited(int cpu, u64 gen)
199 {
200 	return false;
201 }
202 
203 static inline
204 void __dl_update(struct dl_bw *dl_b, s64 bw)
205 {
206 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
207 
208 	dl->extra_bw += bw;
209 }
210 #endif
211 
212 static inline
213 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
214 {
215 	dl_b->total_bw -= tsk_bw;
216 	__dl_update(dl_b, (s32)tsk_bw / cpus);
217 }
218 
219 static inline
220 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
221 {
222 	dl_b->total_bw += tsk_bw;
223 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
224 }
225 
226 static inline bool
227 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
228 {
229 	return dl_b->bw != -1 &&
230 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
231 }
232 
233 static inline
234 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
235 {
236 	u64 old = dl_rq->running_bw;
237 
238 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
239 	dl_rq->running_bw += dl_bw;
240 	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
241 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
242 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
243 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
244 }
245 
246 static inline
247 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
248 {
249 	u64 old = dl_rq->running_bw;
250 
251 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
252 	dl_rq->running_bw -= dl_bw;
253 	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
254 	if (dl_rq->running_bw > old)
255 		dl_rq->running_bw = 0;
256 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
257 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
258 }
259 
260 static inline
261 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
262 {
263 	u64 old = dl_rq->this_bw;
264 
265 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
266 	dl_rq->this_bw += dl_bw;
267 	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
268 }
269 
270 static inline
271 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
272 {
273 	u64 old = dl_rq->this_bw;
274 
275 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
276 	dl_rq->this_bw -= dl_bw;
277 	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
278 	if (dl_rq->this_bw > old)
279 		dl_rq->this_bw = 0;
280 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
281 }
282 
283 static inline
284 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
285 {
286 	if (!dl_entity_is_special(dl_se))
287 		__add_rq_bw(dl_se->dl_bw, dl_rq);
288 }
289 
290 static inline
291 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
292 {
293 	if (!dl_entity_is_special(dl_se))
294 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
295 }
296 
297 static inline
298 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
299 {
300 	if (!dl_entity_is_special(dl_se))
301 		__add_running_bw(dl_se->dl_bw, dl_rq);
302 }
303 
304 static inline
305 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
306 {
307 	if (!dl_entity_is_special(dl_se))
308 		__sub_running_bw(dl_se->dl_bw, dl_rq);
309 }
310 
311 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
312 {
313 	struct rq *rq;
314 
315 	WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
316 
317 	if (task_on_rq_queued(p))
318 		return;
319 
320 	rq = task_rq(p);
321 	if (p->dl.dl_non_contending) {
322 		sub_running_bw(&p->dl, &rq->dl);
323 		p->dl.dl_non_contending = 0;
324 		/*
325 		 * If the timer handler is currently running and the
326 		 * timer cannot be canceled, inactive_task_timer()
327 		 * will see that dl_not_contending is not set, and
328 		 * will not touch the rq's active utilization,
329 		 * so we are still safe.
330 		 */
331 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
332 			put_task_struct(p);
333 	}
334 	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
335 	__add_rq_bw(new_bw, &rq->dl);
336 }
337 
338 /*
339  * The utilization of a task cannot be immediately removed from
340  * the rq active utilization (running_bw) when the task blocks.
341  * Instead, we have to wait for the so called "0-lag time".
342  *
343  * If a task blocks before the "0-lag time", a timer (the inactive
344  * timer) is armed, and running_bw is decreased when the timer
345  * fires.
346  *
347  * If the task wakes up again before the inactive timer fires,
348  * the timer is canceled, whereas if the task wakes up after the
349  * inactive timer fired (and running_bw has been decreased) the
350  * task's utilization has to be added to running_bw again.
351  * A flag in the deadline scheduling entity (dl_non_contending)
352  * is used to avoid race conditions between the inactive timer handler
353  * and task wakeups.
354  *
355  * The following diagram shows how running_bw is updated. A task is
356  * "ACTIVE" when its utilization contributes to running_bw; an
357  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
358  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
359  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
360  * time already passed, which does not contribute to running_bw anymore.
361  *                              +------------------+
362  *             wakeup           |    ACTIVE        |
363  *          +------------------>+   contending     |
364  *          | add_running_bw    |                  |
365  *          |                   +----+------+------+
366  *          |                        |      ^
367  *          |                dequeue |      |
368  * +--------+-------+                |      |
369  * |                |   t >= 0-lag   |      | wakeup
370  * |    INACTIVE    |<---------------+      |
371  * |                | sub_running_bw |      |
372  * +--------+-------+                |      |
373  *          ^                        |      |
374  *          |              t < 0-lag |      |
375  *          |                        |      |
376  *          |                        V      |
377  *          |                   +----+------+------+
378  *          | sub_running_bw    |    ACTIVE        |
379  *          +-------------------+                  |
380  *            inactive timer    |  non contending  |
381  *            fired             +------------------+
382  *
383  * The task_non_contending() function is invoked when a task
384  * blocks, and checks if the 0-lag time already passed or
385  * not (in the first case, it directly updates running_bw;
386  * in the second case, it arms the inactive timer).
387  *
388  * The task_contending() function is invoked when a task wakes
389  * up, and checks if the task is still in the "ACTIVE non contending"
390  * state or not (in the second case, it updates running_bw).
391  */
392 static void task_non_contending(struct task_struct *p)
393 {
394 	struct sched_dl_entity *dl_se = &p->dl;
395 	struct hrtimer *timer = &dl_se->inactive_timer;
396 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
397 	struct rq *rq = rq_of_dl_rq(dl_rq);
398 	s64 zerolag_time;
399 
400 	/*
401 	 * If this is a non-deadline task that has been boosted,
402 	 * do nothing
403 	 */
404 	if (dl_se->dl_runtime == 0)
405 		return;
406 
407 	if (dl_entity_is_special(dl_se))
408 		return;
409 
410 	WARN_ON(dl_se->dl_non_contending);
411 
412 	zerolag_time = dl_se->deadline -
413 		 div64_long((dl_se->runtime * dl_se->dl_period),
414 			dl_se->dl_runtime);
415 
416 	/*
417 	 * Using relative times instead of the absolute "0-lag time"
418 	 * allows to simplify the code
419 	 */
420 	zerolag_time -= rq_clock(rq);
421 
422 	/*
423 	 * If the "0-lag time" already passed, decrease the active
424 	 * utilization now, instead of starting a timer
425 	 */
426 	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
427 		if (dl_task(p))
428 			sub_running_bw(dl_se, dl_rq);
429 		if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
430 			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
431 
432 			if (READ_ONCE(p->__state) == TASK_DEAD)
433 				sub_rq_bw(&p->dl, &rq->dl);
434 			raw_spin_lock(&dl_b->lock);
435 			__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
436 			raw_spin_unlock(&dl_b->lock);
437 			__dl_clear_params(p);
438 		}
439 
440 		return;
441 	}
442 
443 	dl_se->dl_non_contending = 1;
444 	get_task_struct(p);
445 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
446 }
447 
448 static void task_contending(struct sched_dl_entity *dl_se, int flags)
449 {
450 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
451 
452 	/*
453 	 * If this is a non-deadline task that has been boosted,
454 	 * do nothing
455 	 */
456 	if (dl_se->dl_runtime == 0)
457 		return;
458 
459 	if (flags & ENQUEUE_MIGRATED)
460 		add_rq_bw(dl_se, dl_rq);
461 
462 	if (dl_se->dl_non_contending) {
463 		dl_se->dl_non_contending = 0;
464 		/*
465 		 * If the timer handler is currently running and the
466 		 * timer cannot be canceled, inactive_task_timer()
467 		 * will see that dl_not_contending is not set, and
468 		 * will not touch the rq's active utilization,
469 		 * so we are still safe.
470 		 */
471 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
472 			put_task_struct(dl_task_of(dl_se));
473 	} else {
474 		/*
475 		 * Since "dl_non_contending" is not set, the
476 		 * task's utilization has already been removed from
477 		 * active utilization (either when the task blocked,
478 		 * when the "inactive timer" fired).
479 		 * So, add it back.
480 		 */
481 		add_running_bw(dl_se, dl_rq);
482 	}
483 }
484 
485 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
486 {
487 	struct sched_dl_entity *dl_se = &p->dl;
488 
489 	return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
490 }
491 
492 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
493 
494 void init_dl_bw(struct dl_bw *dl_b)
495 {
496 	raw_spin_lock_init(&dl_b->lock);
497 	if (global_rt_runtime() == RUNTIME_INF)
498 		dl_b->bw = -1;
499 	else
500 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
501 	dl_b->total_bw = 0;
502 }
503 
504 void init_dl_rq(struct dl_rq *dl_rq)
505 {
506 	dl_rq->root = RB_ROOT_CACHED;
507 
508 #ifdef CONFIG_SMP
509 	/* zero means no -deadline tasks */
510 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
511 
512 	dl_rq->dl_nr_migratory = 0;
513 	dl_rq->overloaded = 0;
514 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
515 #else
516 	init_dl_bw(&dl_rq->dl_bw);
517 #endif
518 
519 	dl_rq->running_bw = 0;
520 	dl_rq->this_bw = 0;
521 	init_dl_rq_bw_ratio(dl_rq);
522 }
523 
524 #ifdef CONFIG_SMP
525 
526 static inline int dl_overloaded(struct rq *rq)
527 {
528 	return atomic_read(&rq->rd->dlo_count);
529 }
530 
531 static inline void dl_set_overload(struct rq *rq)
532 {
533 	if (!rq->online)
534 		return;
535 
536 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
537 	/*
538 	 * Must be visible before the overload count is
539 	 * set (as in sched_rt.c).
540 	 *
541 	 * Matched by the barrier in pull_dl_task().
542 	 */
543 	smp_wmb();
544 	atomic_inc(&rq->rd->dlo_count);
545 }
546 
547 static inline void dl_clear_overload(struct rq *rq)
548 {
549 	if (!rq->online)
550 		return;
551 
552 	atomic_dec(&rq->rd->dlo_count);
553 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
554 }
555 
556 static void update_dl_migration(struct dl_rq *dl_rq)
557 {
558 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
559 		if (!dl_rq->overloaded) {
560 			dl_set_overload(rq_of_dl_rq(dl_rq));
561 			dl_rq->overloaded = 1;
562 		}
563 	} else if (dl_rq->overloaded) {
564 		dl_clear_overload(rq_of_dl_rq(dl_rq));
565 		dl_rq->overloaded = 0;
566 	}
567 }
568 
569 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
570 {
571 	struct task_struct *p = dl_task_of(dl_se);
572 
573 	if (p->nr_cpus_allowed > 1)
574 		dl_rq->dl_nr_migratory++;
575 
576 	update_dl_migration(dl_rq);
577 }
578 
579 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
580 {
581 	struct task_struct *p = dl_task_of(dl_se);
582 
583 	if (p->nr_cpus_allowed > 1)
584 		dl_rq->dl_nr_migratory--;
585 
586 	update_dl_migration(dl_rq);
587 }
588 
589 #define __node_2_pdl(node) \
590 	rb_entry((node), struct task_struct, pushable_dl_tasks)
591 
592 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
593 {
594 	return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
595 }
596 
597 /*
598  * The list of pushable -deadline task is not a plist, like in
599  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
600  */
601 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
602 {
603 	struct rb_node *leftmost;
604 
605 	WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
606 
607 	leftmost = rb_add_cached(&p->pushable_dl_tasks,
608 				 &rq->dl.pushable_dl_tasks_root,
609 				 __pushable_less);
610 	if (leftmost)
611 		rq->dl.earliest_dl.next = p->dl.deadline;
612 }
613 
614 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
615 {
616 	struct dl_rq *dl_rq = &rq->dl;
617 	struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
618 	struct rb_node *leftmost;
619 
620 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
621 		return;
622 
623 	leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
624 	if (leftmost)
625 		dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
626 
627 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
628 }
629 
630 static inline int has_pushable_dl_tasks(struct rq *rq)
631 {
632 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
633 }
634 
635 static int push_dl_task(struct rq *rq);
636 
637 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
638 {
639 	return rq->online && dl_task(prev);
640 }
641 
642 static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
643 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
644 
645 static void push_dl_tasks(struct rq *);
646 static void pull_dl_task(struct rq *);
647 
648 static inline void deadline_queue_push_tasks(struct rq *rq)
649 {
650 	if (!has_pushable_dl_tasks(rq))
651 		return;
652 
653 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
654 }
655 
656 static inline void deadline_queue_pull_task(struct rq *rq)
657 {
658 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
659 }
660 
661 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
662 
663 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
664 {
665 	struct rq *later_rq = NULL;
666 	struct dl_bw *dl_b;
667 
668 	later_rq = find_lock_later_rq(p, rq);
669 	if (!later_rq) {
670 		int cpu;
671 
672 		/*
673 		 * If we cannot preempt any rq, fall back to pick any
674 		 * online CPU:
675 		 */
676 		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
677 		if (cpu >= nr_cpu_ids) {
678 			/*
679 			 * Failed to find any suitable CPU.
680 			 * The task will never come back!
681 			 */
682 			WARN_ON_ONCE(dl_bandwidth_enabled());
683 
684 			/*
685 			 * If admission control is disabled we
686 			 * try a little harder to let the task
687 			 * run.
688 			 */
689 			cpu = cpumask_any(cpu_active_mask);
690 		}
691 		later_rq = cpu_rq(cpu);
692 		double_lock_balance(rq, later_rq);
693 	}
694 
695 	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
696 		/*
697 		 * Inactive timer is armed (or callback is running, but
698 		 * waiting for us to release rq locks). In any case, when it
699 		 * will fire (or continue), it will see running_bw of this
700 		 * task migrated to later_rq (and correctly handle it).
701 		 */
702 		sub_running_bw(&p->dl, &rq->dl);
703 		sub_rq_bw(&p->dl, &rq->dl);
704 
705 		add_rq_bw(&p->dl, &later_rq->dl);
706 		add_running_bw(&p->dl, &later_rq->dl);
707 	} else {
708 		sub_rq_bw(&p->dl, &rq->dl);
709 		add_rq_bw(&p->dl, &later_rq->dl);
710 	}
711 
712 	/*
713 	 * And we finally need to fixup root_domain(s) bandwidth accounting,
714 	 * since p is still hanging out in the old (now moved to default) root
715 	 * domain.
716 	 */
717 	dl_b = &rq->rd->dl_bw;
718 	raw_spin_lock(&dl_b->lock);
719 	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
720 	raw_spin_unlock(&dl_b->lock);
721 
722 	dl_b = &later_rq->rd->dl_bw;
723 	raw_spin_lock(&dl_b->lock);
724 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
725 	raw_spin_unlock(&dl_b->lock);
726 
727 	set_task_cpu(p, later_rq->cpu);
728 	double_unlock_balance(later_rq, rq);
729 
730 	return later_rq;
731 }
732 
733 #else
734 
735 static inline
736 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
737 {
738 }
739 
740 static inline
741 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
742 {
743 }
744 
745 static inline
746 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
747 {
748 }
749 
750 static inline
751 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
752 {
753 }
754 
755 static inline void deadline_queue_push_tasks(struct rq *rq)
756 {
757 }
758 
759 static inline void deadline_queue_pull_task(struct rq *rq)
760 {
761 }
762 #endif /* CONFIG_SMP */
763 
764 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
765 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
766 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
767 
768 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
769 					    struct rq *rq)
770 {
771 	/* for non-boosted task, pi_of(dl_se) == dl_se */
772 	dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
773 	dl_se->runtime = pi_of(dl_se)->dl_runtime;
774 }
775 
776 /*
777  * We are being explicitly informed that a new instance is starting,
778  * and this means that:
779  *  - the absolute deadline of the entity has to be placed at
780  *    current time + relative deadline;
781  *  - the runtime of the entity has to be set to the maximum value.
782  *
783  * The capability of specifying such event is useful whenever a -deadline
784  * entity wants to (try to!) synchronize its behaviour with the scheduler's
785  * one, and to (try to!) reconcile itself with its own scheduling
786  * parameters.
787  */
788 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
789 {
790 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
791 	struct rq *rq = rq_of_dl_rq(dl_rq);
792 
793 	WARN_ON(is_dl_boosted(dl_se));
794 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
795 
796 	/*
797 	 * We are racing with the deadline timer. So, do nothing because
798 	 * the deadline timer handler will take care of properly recharging
799 	 * the runtime and postponing the deadline
800 	 */
801 	if (dl_se->dl_throttled)
802 		return;
803 
804 	/*
805 	 * We use the regular wall clock time to set deadlines in the
806 	 * future; in fact, we must consider execution overheads (time
807 	 * spent on hardirq context, etc.).
808 	 */
809 	replenish_dl_new_period(dl_se, rq);
810 }
811 
812 /*
813  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
814  * possibility of a entity lasting more than what it declared, and thus
815  * exhausting its runtime.
816  *
817  * Here we are interested in making runtime overrun possible, but we do
818  * not want a entity which is misbehaving to affect the scheduling of all
819  * other entities.
820  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
821  * is used, in order to confine each entity within its own bandwidth.
822  *
823  * This function deals exactly with that, and ensures that when the runtime
824  * of a entity is replenished, its deadline is also postponed. That ensures
825  * the overrunning entity can't interfere with other entity in the system and
826  * can't make them miss their deadlines. Reasons why this kind of overruns
827  * could happen are, typically, a entity voluntarily trying to overcome its
828  * runtime, or it just underestimated it during sched_setattr().
829  */
830 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
831 {
832 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
833 	struct rq *rq = rq_of_dl_rq(dl_rq);
834 
835 	WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
836 
837 	/*
838 	 * This could be the case for a !-dl task that is boosted.
839 	 * Just go with full inherited parameters.
840 	 */
841 	if (dl_se->dl_deadline == 0)
842 		replenish_dl_new_period(dl_se, rq);
843 
844 	if (dl_se->dl_yielded && dl_se->runtime > 0)
845 		dl_se->runtime = 0;
846 
847 	/*
848 	 * We keep moving the deadline away until we get some
849 	 * available runtime for the entity. This ensures correct
850 	 * handling of situations where the runtime overrun is
851 	 * arbitrary large.
852 	 */
853 	while (dl_se->runtime <= 0) {
854 		dl_se->deadline += pi_of(dl_se)->dl_period;
855 		dl_se->runtime += pi_of(dl_se)->dl_runtime;
856 	}
857 
858 	/*
859 	 * At this point, the deadline really should be "in
860 	 * the future" with respect to rq->clock. If it's
861 	 * not, we are, for some reason, lagging too much!
862 	 * Anyway, after having warn userspace abut that,
863 	 * we still try to keep the things running by
864 	 * resetting the deadline and the budget of the
865 	 * entity.
866 	 */
867 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
868 		printk_deferred_once("sched: DL replenish lagged too much\n");
869 		replenish_dl_new_period(dl_se, rq);
870 	}
871 
872 	if (dl_se->dl_yielded)
873 		dl_se->dl_yielded = 0;
874 	if (dl_se->dl_throttled)
875 		dl_se->dl_throttled = 0;
876 }
877 
878 /*
879  * Here we check if --at time t-- an entity (which is probably being
880  * [re]activated or, in general, enqueued) can use its remaining runtime
881  * and its current deadline _without_ exceeding the bandwidth it is
882  * assigned (function returns true if it can't). We are in fact applying
883  * one of the CBS rules: when a task wakes up, if the residual runtime
884  * over residual deadline fits within the allocated bandwidth, then we
885  * can keep the current (absolute) deadline and residual budget without
886  * disrupting the schedulability of the system. Otherwise, we should
887  * refill the runtime and set the deadline a period in the future,
888  * because keeping the current (absolute) deadline of the task would
889  * result in breaking guarantees promised to other tasks (refer to
890  * Documentation/scheduler/sched-deadline.rst for more information).
891  *
892  * This function returns true if:
893  *
894  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
895  *
896  * IOW we can't recycle current parameters.
897  *
898  * Notice that the bandwidth check is done against the deadline. For
899  * task with deadline equal to period this is the same of using
900  * dl_period instead of dl_deadline in the equation above.
901  */
902 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
903 {
904 	u64 left, right;
905 
906 	/*
907 	 * left and right are the two sides of the equation above,
908 	 * after a bit of shuffling to use multiplications instead
909 	 * of divisions.
910 	 *
911 	 * Note that none of the time values involved in the two
912 	 * multiplications are absolute: dl_deadline and dl_runtime
913 	 * are the relative deadline and the maximum runtime of each
914 	 * instance, runtime is the runtime left for the last instance
915 	 * and (deadline - t), since t is rq->clock, is the time left
916 	 * to the (absolute) deadline. Even if overflowing the u64 type
917 	 * is very unlikely to occur in both cases, here we scale down
918 	 * as we want to avoid that risk at all. Scaling down by 10
919 	 * means that we reduce granularity to 1us. We are fine with it,
920 	 * since this is only a true/false check and, anyway, thinking
921 	 * of anything below microseconds resolution is actually fiction
922 	 * (but still we want to give the user that illusion >;).
923 	 */
924 	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
925 	right = ((dl_se->deadline - t) >> DL_SCALE) *
926 		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
927 
928 	return dl_time_before(right, left);
929 }
930 
931 /*
932  * Revised wakeup rule [1]: For self-suspending tasks, rather then
933  * re-initializing task's runtime and deadline, the revised wakeup
934  * rule adjusts the task's runtime to avoid the task to overrun its
935  * density.
936  *
937  * Reasoning: a task may overrun the density if:
938  *    runtime / (deadline - t) > dl_runtime / dl_deadline
939  *
940  * Therefore, runtime can be adjusted to:
941  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
942  *
943  * In such way that runtime will be equal to the maximum density
944  * the task can use without breaking any rule.
945  *
946  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
947  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
948  */
949 static void
950 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
951 {
952 	u64 laxity = dl_se->deadline - rq_clock(rq);
953 
954 	/*
955 	 * If the task has deadline < period, and the deadline is in the past,
956 	 * it should already be throttled before this check.
957 	 *
958 	 * See update_dl_entity() comments for further details.
959 	 */
960 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
961 
962 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
963 }
964 
965 /*
966  * Regarding the deadline, a task with implicit deadline has a relative
967  * deadline == relative period. A task with constrained deadline has a
968  * relative deadline <= relative period.
969  *
970  * We support constrained deadline tasks. However, there are some restrictions
971  * applied only for tasks which do not have an implicit deadline. See
972  * update_dl_entity() to know more about such restrictions.
973  *
974  * The dl_is_implicit() returns true if the task has an implicit deadline.
975  */
976 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
977 {
978 	return dl_se->dl_deadline == dl_se->dl_period;
979 }
980 
981 /*
982  * When a deadline entity is placed in the runqueue, its runtime and deadline
983  * might need to be updated. This is done by a CBS wake up rule. There are two
984  * different rules: 1) the original CBS; and 2) the Revisited CBS.
985  *
986  * When the task is starting a new period, the Original CBS is used. In this
987  * case, the runtime is replenished and a new absolute deadline is set.
988  *
989  * When a task is queued before the begin of the next period, using the
990  * remaining runtime and deadline could make the entity to overflow, see
991  * dl_entity_overflow() to find more about runtime overflow. When such case
992  * is detected, the runtime and deadline need to be updated.
993  *
994  * If the task has an implicit deadline, i.e., deadline == period, the Original
995  * CBS is applied. the runtime is replenished and a new absolute deadline is
996  * set, as in the previous cases.
997  *
998  * However, the Original CBS does not work properly for tasks with
999  * deadline < period, which are said to have a constrained deadline. By
1000  * applying the Original CBS, a constrained deadline task would be able to run
1001  * runtime/deadline in a period. With deadline < period, the task would
1002  * overrun the runtime/period allowed bandwidth, breaking the admission test.
1003  *
1004  * In order to prevent this misbehave, the Revisited CBS is used for
1005  * constrained deadline tasks when a runtime overflow is detected. In the
1006  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1007  * the remaining runtime of the task is reduced to avoid runtime overflow.
1008  * Please refer to the comments update_dl_revised_wakeup() function to find
1009  * more about the Revised CBS rule.
1010  */
1011 static void update_dl_entity(struct sched_dl_entity *dl_se)
1012 {
1013 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1014 	struct rq *rq = rq_of_dl_rq(dl_rq);
1015 
1016 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1017 	    dl_entity_overflow(dl_se, rq_clock(rq))) {
1018 
1019 		if (unlikely(!dl_is_implicit(dl_se) &&
1020 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1021 			     !is_dl_boosted(dl_se))) {
1022 			update_dl_revised_wakeup(dl_se, rq);
1023 			return;
1024 		}
1025 
1026 		replenish_dl_new_period(dl_se, rq);
1027 	}
1028 }
1029 
1030 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1031 {
1032 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1033 }
1034 
1035 /*
1036  * If the entity depleted all its runtime, and if we want it to sleep
1037  * while waiting for some new execution time to become available, we
1038  * set the bandwidth replenishment timer to the replenishment instant
1039  * and try to activate it.
1040  *
1041  * Notice that it is important for the caller to know if the timer
1042  * actually started or not (i.e., the replenishment instant is in
1043  * the future or in the past).
1044  */
1045 static int start_dl_timer(struct task_struct *p)
1046 {
1047 	struct sched_dl_entity *dl_se = &p->dl;
1048 	struct hrtimer *timer = &dl_se->dl_timer;
1049 	struct rq *rq = task_rq(p);
1050 	ktime_t now, act;
1051 	s64 delta;
1052 
1053 	lockdep_assert_rq_held(rq);
1054 
1055 	/*
1056 	 * We want the timer to fire at the deadline, but considering
1057 	 * that it is actually coming from rq->clock and not from
1058 	 * hrtimer's time base reading.
1059 	 */
1060 	act = ns_to_ktime(dl_next_period(dl_se));
1061 	now = hrtimer_cb_get_time(timer);
1062 	delta = ktime_to_ns(now) - rq_clock(rq);
1063 	act = ktime_add_ns(act, delta);
1064 
1065 	/*
1066 	 * If the expiry time already passed, e.g., because the value
1067 	 * chosen as the deadline is too small, don't even try to
1068 	 * start the timer in the past!
1069 	 */
1070 	if (ktime_us_delta(act, now) < 0)
1071 		return 0;
1072 
1073 	/*
1074 	 * !enqueued will guarantee another callback; even if one is already in
1075 	 * progress. This ensures a balanced {get,put}_task_struct().
1076 	 *
1077 	 * The race against __run_timer() clearing the enqueued state is
1078 	 * harmless because we're holding task_rq()->lock, therefore the timer
1079 	 * expiring after we've done the check will wait on its task_rq_lock()
1080 	 * and observe our state.
1081 	 */
1082 	if (!hrtimer_is_queued(timer)) {
1083 		get_task_struct(p);
1084 		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1085 	}
1086 
1087 	return 1;
1088 }
1089 
1090 /*
1091  * This is the bandwidth enforcement timer callback. If here, we know
1092  * a task is not on its dl_rq, since the fact that the timer was running
1093  * means the task is throttled and needs a runtime replenishment.
1094  *
1095  * However, what we actually do depends on the fact the task is active,
1096  * (it is on its rq) or has been removed from there by a call to
1097  * dequeue_task_dl(). In the former case we must issue the runtime
1098  * replenishment and add the task back to the dl_rq; in the latter, we just
1099  * do nothing but clearing dl_throttled, so that runtime and deadline
1100  * updating (and the queueing back to dl_rq) will be done by the
1101  * next call to enqueue_task_dl().
1102  */
1103 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1104 {
1105 	struct sched_dl_entity *dl_se = container_of(timer,
1106 						     struct sched_dl_entity,
1107 						     dl_timer);
1108 	struct task_struct *p = dl_task_of(dl_se);
1109 	struct rq_flags rf;
1110 	struct rq *rq;
1111 
1112 	rq = task_rq_lock(p, &rf);
1113 
1114 	/*
1115 	 * The task might have changed its scheduling policy to something
1116 	 * different than SCHED_DEADLINE (through switched_from_dl()).
1117 	 */
1118 	if (!dl_task(p))
1119 		goto unlock;
1120 
1121 	/*
1122 	 * The task might have been boosted by someone else and might be in the
1123 	 * boosting/deboosting path, its not throttled.
1124 	 */
1125 	if (is_dl_boosted(dl_se))
1126 		goto unlock;
1127 
1128 	/*
1129 	 * Spurious timer due to start_dl_timer() race; or we already received
1130 	 * a replenishment from rt_mutex_setprio().
1131 	 */
1132 	if (!dl_se->dl_throttled)
1133 		goto unlock;
1134 
1135 	sched_clock_tick();
1136 	update_rq_clock(rq);
1137 
1138 	/*
1139 	 * If the throttle happened during sched-out; like:
1140 	 *
1141 	 *   schedule()
1142 	 *     deactivate_task()
1143 	 *       dequeue_task_dl()
1144 	 *         update_curr_dl()
1145 	 *           start_dl_timer()
1146 	 *         __dequeue_task_dl()
1147 	 *     prev->on_rq = 0;
1148 	 *
1149 	 * We can be both throttled and !queued. Replenish the counter
1150 	 * but do not enqueue -- wait for our wakeup to do that.
1151 	 */
1152 	if (!task_on_rq_queued(p)) {
1153 		replenish_dl_entity(dl_se);
1154 		goto unlock;
1155 	}
1156 
1157 #ifdef CONFIG_SMP
1158 	if (unlikely(!rq->online)) {
1159 		/*
1160 		 * If the runqueue is no longer available, migrate the
1161 		 * task elsewhere. This necessarily changes rq.
1162 		 */
1163 		lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1164 		rq = dl_task_offline_migration(rq, p);
1165 		rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1166 		update_rq_clock(rq);
1167 
1168 		/*
1169 		 * Now that the task has been migrated to the new RQ and we
1170 		 * have that locked, proceed as normal and enqueue the task
1171 		 * there.
1172 		 */
1173 	}
1174 #endif
1175 
1176 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1177 	if (dl_task(rq->curr))
1178 		check_preempt_curr_dl(rq, p, 0);
1179 	else
1180 		resched_curr(rq);
1181 
1182 #ifdef CONFIG_SMP
1183 	/*
1184 	 * Queueing this task back might have overloaded rq, check if we need
1185 	 * to kick someone away.
1186 	 */
1187 	if (has_pushable_dl_tasks(rq)) {
1188 		/*
1189 		 * Nothing relies on rq->lock after this, so its safe to drop
1190 		 * rq->lock.
1191 		 */
1192 		rq_unpin_lock(rq, &rf);
1193 		push_dl_task(rq);
1194 		rq_repin_lock(rq, &rf);
1195 	}
1196 #endif
1197 
1198 unlock:
1199 	task_rq_unlock(rq, p, &rf);
1200 
1201 	/*
1202 	 * This can free the task_struct, including this hrtimer, do not touch
1203 	 * anything related to that after this.
1204 	 */
1205 	put_task_struct(p);
1206 
1207 	return HRTIMER_NORESTART;
1208 }
1209 
1210 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1211 {
1212 	struct hrtimer *timer = &dl_se->dl_timer;
1213 
1214 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1215 	timer->function = dl_task_timer;
1216 }
1217 
1218 /*
1219  * During the activation, CBS checks if it can reuse the current task's
1220  * runtime and period. If the deadline of the task is in the past, CBS
1221  * cannot use the runtime, and so it replenishes the task. This rule
1222  * works fine for implicit deadline tasks (deadline == period), and the
1223  * CBS was designed for implicit deadline tasks. However, a task with
1224  * constrained deadline (deadline < period) might be awakened after the
1225  * deadline, but before the next period. In this case, replenishing the
1226  * task would allow it to run for runtime / deadline. As in this case
1227  * deadline < period, CBS enables a task to run for more than the
1228  * runtime / period. In a very loaded system, this can cause a domino
1229  * effect, making other tasks miss their deadlines.
1230  *
1231  * To avoid this problem, in the activation of a constrained deadline
1232  * task after the deadline but before the next period, throttle the
1233  * task and set the replenishing timer to the begin of the next period,
1234  * unless it is boosted.
1235  */
1236 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1237 {
1238 	struct task_struct *p = dl_task_of(dl_se);
1239 	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1240 
1241 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1242 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1243 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p)))
1244 			return;
1245 		dl_se->dl_throttled = 1;
1246 		if (dl_se->runtime > 0)
1247 			dl_se->runtime = 0;
1248 	}
1249 }
1250 
1251 static
1252 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1253 {
1254 	return (dl_se->runtime <= 0);
1255 }
1256 
1257 /*
1258  * This function implements the GRUB accounting rule. According to the
1259  * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1260  * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
1261  * where u is the utilization of the task, Umax is the maximum reclaimable
1262  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1263  * as the difference between the "total runqueue utilization" and the
1264  * "runqueue active utilization", and Uextra is the (per runqueue) extra
1265  * reclaimable utilization.
1266  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1267  * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1268  * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1269  * is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1270  * Since delta is a 64 bit variable, to have an overflow its value should be
1271  * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1272  * not an issue here.
1273  */
1274 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1275 {
1276 	u64 u_act;
1277 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1278 
1279 	/*
1280 	 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1281 	 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1282 	 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1283 	 * negative leading to wrong results.
1284 	 */
1285 	if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
1286 		u_act = dl_se->dl_bw;
1287 	else
1288 		u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
1289 
1290 	u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
1291 	return (delta * u_act) >> BW_SHIFT;
1292 }
1293 
1294 /*
1295  * Update the current task's runtime statistics (provided it is still
1296  * a -deadline task and has not been removed from the dl_rq).
1297  */
1298 static void update_curr_dl(struct rq *rq)
1299 {
1300 	struct task_struct *curr = rq->curr;
1301 	struct sched_dl_entity *dl_se = &curr->dl;
1302 	u64 delta_exec, scaled_delta_exec;
1303 	int cpu = cpu_of(rq);
1304 	u64 now;
1305 
1306 	if (!dl_task(curr) || !on_dl_rq(dl_se))
1307 		return;
1308 
1309 	/*
1310 	 * Consumed budget is computed considering the time as
1311 	 * observed by schedulable tasks (excluding time spent
1312 	 * in hardirq context, etc.). Deadlines are instead
1313 	 * computed using hard walltime. This seems to be the more
1314 	 * natural solution, but the full ramifications of this
1315 	 * approach need further study.
1316 	 */
1317 	now = rq_clock_task(rq);
1318 	delta_exec = now - curr->se.exec_start;
1319 	if (unlikely((s64)delta_exec <= 0)) {
1320 		if (unlikely(dl_se->dl_yielded))
1321 			goto throttle;
1322 		return;
1323 	}
1324 
1325 	schedstat_set(curr->stats.exec_max,
1326 		      max(curr->stats.exec_max, delta_exec));
1327 
1328 	trace_sched_stat_runtime(curr, delta_exec, 0);
1329 
1330 	update_current_exec_runtime(curr, now, delta_exec);
1331 
1332 	if (dl_entity_is_special(dl_se))
1333 		return;
1334 
1335 	/*
1336 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1337 	 * spare reclaimed bandwidth is used to clock down frequency.
1338 	 *
1339 	 * For the others, we still need to scale reservation parameters
1340 	 * according to current frequency and CPU maximum capacity.
1341 	 */
1342 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1343 		scaled_delta_exec = grub_reclaim(delta_exec,
1344 						 rq,
1345 						 &curr->dl);
1346 	} else {
1347 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1348 		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1349 
1350 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1351 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1352 	}
1353 
1354 	dl_se->runtime -= scaled_delta_exec;
1355 
1356 throttle:
1357 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1358 		dl_se->dl_throttled = 1;
1359 
1360 		/* If requested, inform the user about runtime overruns. */
1361 		if (dl_runtime_exceeded(dl_se) &&
1362 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1363 			dl_se->dl_overrun = 1;
1364 
1365 		__dequeue_task_dl(rq, curr, 0);
1366 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr)))
1367 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1368 
1369 		if (!is_leftmost(curr, &rq->dl))
1370 			resched_curr(rq);
1371 	}
1372 
1373 	/*
1374 	 * Because -- for now -- we share the rt bandwidth, we need to
1375 	 * account our runtime there too, otherwise actual rt tasks
1376 	 * would be able to exceed the shared quota.
1377 	 *
1378 	 * Account to the root rt group for now.
1379 	 *
1380 	 * The solution we're working towards is having the RT groups scheduled
1381 	 * using deadline servers -- however there's a few nasties to figure
1382 	 * out before that can happen.
1383 	 */
1384 	if (rt_bandwidth_enabled()) {
1385 		struct rt_rq *rt_rq = &rq->rt;
1386 
1387 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1388 		/*
1389 		 * We'll let actual RT tasks worry about the overflow here, we
1390 		 * have our own CBS to keep us inline; only account when RT
1391 		 * bandwidth is relevant.
1392 		 */
1393 		if (sched_rt_bandwidth_account(rt_rq))
1394 			rt_rq->rt_time += delta_exec;
1395 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1396 	}
1397 }
1398 
1399 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1400 {
1401 	struct sched_dl_entity *dl_se = container_of(timer,
1402 						     struct sched_dl_entity,
1403 						     inactive_timer);
1404 	struct task_struct *p = dl_task_of(dl_se);
1405 	struct rq_flags rf;
1406 	struct rq *rq;
1407 
1408 	rq = task_rq_lock(p, &rf);
1409 
1410 	sched_clock_tick();
1411 	update_rq_clock(rq);
1412 
1413 	if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1414 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1415 
1416 		if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1417 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1418 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1419 			dl_se->dl_non_contending = 0;
1420 		}
1421 
1422 		raw_spin_lock(&dl_b->lock);
1423 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1424 		raw_spin_unlock(&dl_b->lock);
1425 		__dl_clear_params(p);
1426 
1427 		goto unlock;
1428 	}
1429 	if (dl_se->dl_non_contending == 0)
1430 		goto unlock;
1431 
1432 	sub_running_bw(dl_se, &rq->dl);
1433 	dl_se->dl_non_contending = 0;
1434 unlock:
1435 	task_rq_unlock(rq, p, &rf);
1436 	put_task_struct(p);
1437 
1438 	return HRTIMER_NORESTART;
1439 }
1440 
1441 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1442 {
1443 	struct hrtimer *timer = &dl_se->inactive_timer;
1444 
1445 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1446 	timer->function = inactive_task_timer;
1447 }
1448 
1449 #define __node_2_dle(node) \
1450 	rb_entry((node), struct sched_dl_entity, rb_node)
1451 
1452 #ifdef CONFIG_SMP
1453 
1454 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1455 {
1456 	struct rq *rq = rq_of_dl_rq(dl_rq);
1457 
1458 	if (dl_rq->earliest_dl.curr == 0 ||
1459 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1460 		if (dl_rq->earliest_dl.curr == 0)
1461 			cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1462 		dl_rq->earliest_dl.curr = deadline;
1463 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1464 	}
1465 }
1466 
1467 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1468 {
1469 	struct rq *rq = rq_of_dl_rq(dl_rq);
1470 
1471 	/*
1472 	 * Since we may have removed our earliest (and/or next earliest)
1473 	 * task we must recompute them.
1474 	 */
1475 	if (!dl_rq->dl_nr_running) {
1476 		dl_rq->earliest_dl.curr = 0;
1477 		dl_rq->earliest_dl.next = 0;
1478 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1479 		cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1480 	} else {
1481 		struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1482 		struct sched_dl_entity *entry = __node_2_dle(leftmost);
1483 
1484 		dl_rq->earliest_dl.curr = entry->deadline;
1485 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1486 	}
1487 }
1488 
1489 #else
1490 
1491 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1492 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1493 
1494 #endif /* CONFIG_SMP */
1495 
1496 static inline
1497 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1498 {
1499 	int prio = dl_task_of(dl_se)->prio;
1500 	u64 deadline = dl_se->deadline;
1501 
1502 	WARN_ON(!dl_prio(prio));
1503 	dl_rq->dl_nr_running++;
1504 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1505 
1506 	inc_dl_deadline(dl_rq, deadline);
1507 	inc_dl_migration(dl_se, dl_rq);
1508 }
1509 
1510 static inline
1511 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1512 {
1513 	int prio = dl_task_of(dl_se)->prio;
1514 
1515 	WARN_ON(!dl_prio(prio));
1516 	WARN_ON(!dl_rq->dl_nr_running);
1517 	dl_rq->dl_nr_running--;
1518 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1519 
1520 	dec_dl_deadline(dl_rq, dl_se->deadline);
1521 	dec_dl_migration(dl_se, dl_rq);
1522 }
1523 
1524 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1525 {
1526 	return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1527 }
1528 
1529 static inline struct sched_statistics *
1530 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1531 {
1532 	return &dl_task_of(dl_se)->stats;
1533 }
1534 
1535 static inline void
1536 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1537 {
1538 	struct sched_statistics *stats;
1539 
1540 	if (!schedstat_enabled())
1541 		return;
1542 
1543 	stats = __schedstats_from_dl_se(dl_se);
1544 	__update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1545 }
1546 
1547 static inline void
1548 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1549 {
1550 	struct sched_statistics *stats;
1551 
1552 	if (!schedstat_enabled())
1553 		return;
1554 
1555 	stats = __schedstats_from_dl_se(dl_se);
1556 	__update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1557 }
1558 
1559 static inline void
1560 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1561 {
1562 	struct sched_statistics *stats;
1563 
1564 	if (!schedstat_enabled())
1565 		return;
1566 
1567 	stats = __schedstats_from_dl_se(dl_se);
1568 	__update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1569 }
1570 
1571 static inline void
1572 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1573 			int flags)
1574 {
1575 	if (!schedstat_enabled())
1576 		return;
1577 
1578 	if (flags & ENQUEUE_WAKEUP)
1579 		update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1580 }
1581 
1582 static inline void
1583 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1584 			int flags)
1585 {
1586 	struct task_struct *p = dl_task_of(dl_se);
1587 
1588 	if (!schedstat_enabled())
1589 		return;
1590 
1591 	if ((flags & DEQUEUE_SLEEP)) {
1592 		unsigned int state;
1593 
1594 		state = READ_ONCE(p->__state);
1595 		if (state & TASK_INTERRUPTIBLE)
1596 			__schedstat_set(p->stats.sleep_start,
1597 					rq_clock(rq_of_dl_rq(dl_rq)));
1598 
1599 		if (state & TASK_UNINTERRUPTIBLE)
1600 			__schedstat_set(p->stats.block_start,
1601 					rq_clock(rq_of_dl_rq(dl_rq)));
1602 	}
1603 }
1604 
1605 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1606 {
1607 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1608 
1609 	WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
1610 
1611 	rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1612 
1613 	inc_dl_tasks(dl_se, dl_rq);
1614 }
1615 
1616 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1617 {
1618 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1619 
1620 	if (RB_EMPTY_NODE(&dl_se->rb_node))
1621 		return;
1622 
1623 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1624 
1625 	RB_CLEAR_NODE(&dl_se->rb_node);
1626 
1627 	dec_dl_tasks(dl_se, dl_rq);
1628 }
1629 
1630 static void
1631 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1632 {
1633 	WARN_ON_ONCE(on_dl_rq(dl_se));
1634 
1635 	update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1636 
1637 	/*
1638 	 * If this is a wakeup or a new instance, the scheduling
1639 	 * parameters of the task might need updating. Otherwise,
1640 	 * we want a replenishment of its runtime.
1641 	 */
1642 	if (flags & ENQUEUE_WAKEUP) {
1643 		task_contending(dl_se, flags);
1644 		update_dl_entity(dl_se);
1645 	} else if (flags & ENQUEUE_REPLENISH) {
1646 		replenish_dl_entity(dl_se);
1647 	} else if ((flags & ENQUEUE_RESTORE) &&
1648 		  dl_time_before(dl_se->deadline,
1649 				 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1650 		setup_new_dl_entity(dl_se);
1651 	}
1652 
1653 	__enqueue_dl_entity(dl_se);
1654 }
1655 
1656 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1657 {
1658 	__dequeue_dl_entity(dl_se);
1659 }
1660 
1661 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1662 {
1663 	if (is_dl_boosted(&p->dl)) {
1664 		/*
1665 		 * Because of delays in the detection of the overrun of a
1666 		 * thread's runtime, it might be the case that a thread
1667 		 * goes to sleep in a rt mutex with negative runtime. As
1668 		 * a consequence, the thread will be throttled.
1669 		 *
1670 		 * While waiting for the mutex, this thread can also be
1671 		 * boosted via PI, resulting in a thread that is throttled
1672 		 * and boosted at the same time.
1673 		 *
1674 		 * In this case, the boost overrides the throttle.
1675 		 */
1676 		if (p->dl.dl_throttled) {
1677 			/*
1678 			 * The replenish timer needs to be canceled. No
1679 			 * problem if it fires concurrently: boosted threads
1680 			 * are ignored in dl_task_timer().
1681 			 */
1682 			hrtimer_try_to_cancel(&p->dl.dl_timer);
1683 			p->dl.dl_throttled = 0;
1684 		}
1685 	} else if (!dl_prio(p->normal_prio)) {
1686 		/*
1687 		 * Special case in which we have a !SCHED_DEADLINE task that is going
1688 		 * to be deboosted, but exceeds its runtime while doing so. No point in
1689 		 * replenishing it, as it's going to return back to its original
1690 		 * scheduling class after this. If it has been throttled, we need to
1691 		 * clear the flag, otherwise the task may wake up as throttled after
1692 		 * being boosted again with no means to replenish the runtime and clear
1693 		 * the throttle.
1694 		 */
1695 		p->dl.dl_throttled = 0;
1696 		if (!(flags & ENQUEUE_REPLENISH))
1697 			printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
1698 					     task_pid_nr(p));
1699 
1700 		return;
1701 	}
1702 
1703 	/*
1704 	 * Check if a constrained deadline task was activated
1705 	 * after the deadline but before the next period.
1706 	 * If that is the case, the task will be throttled and
1707 	 * the replenishment timer will be set to the next period.
1708 	 */
1709 	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1710 		dl_check_constrained_dl(&p->dl);
1711 
1712 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1713 		add_rq_bw(&p->dl, &rq->dl);
1714 		add_running_bw(&p->dl, &rq->dl);
1715 	}
1716 
1717 	/*
1718 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1719 	 * its budget it needs a replenishment and, since it now is on
1720 	 * its rq, the bandwidth timer callback (which clearly has not
1721 	 * run yet) will take care of this.
1722 	 * However, the active utilization does not depend on the fact
1723 	 * that the task is on the runqueue or not (but depends on the
1724 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1725 	 * In other words, even if a task is throttled its utilization must
1726 	 * be counted in the active utilization; hence, we need to call
1727 	 * add_running_bw().
1728 	 */
1729 	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1730 		if (flags & ENQUEUE_WAKEUP)
1731 			task_contending(&p->dl, flags);
1732 
1733 		return;
1734 	}
1735 
1736 	check_schedstat_required();
1737 	update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
1738 
1739 	enqueue_dl_entity(&p->dl, flags);
1740 
1741 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1742 		enqueue_pushable_dl_task(rq, p);
1743 }
1744 
1745 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1746 {
1747 	update_stats_dequeue_dl(&rq->dl, &p->dl, flags);
1748 	dequeue_dl_entity(&p->dl);
1749 	dequeue_pushable_dl_task(rq, p);
1750 }
1751 
1752 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1753 {
1754 	update_curr_dl(rq);
1755 	__dequeue_task_dl(rq, p, flags);
1756 
1757 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1758 		sub_running_bw(&p->dl, &rq->dl);
1759 		sub_rq_bw(&p->dl, &rq->dl);
1760 	}
1761 
1762 	/*
1763 	 * This check allows to start the inactive timer (or to immediately
1764 	 * decrease the active utilization, if needed) in two cases:
1765 	 * when the task blocks and when it is terminating
1766 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1767 	 * way, because from GRUB's point of view the same thing is happening
1768 	 * (the task moves from "active contending" to "active non contending"
1769 	 * or "inactive")
1770 	 */
1771 	if (flags & DEQUEUE_SLEEP)
1772 		task_non_contending(p);
1773 }
1774 
1775 /*
1776  * Yield task semantic for -deadline tasks is:
1777  *
1778  *   get off from the CPU until our next instance, with
1779  *   a new runtime. This is of little use now, since we
1780  *   don't have a bandwidth reclaiming mechanism. Anyway,
1781  *   bandwidth reclaiming is planned for the future, and
1782  *   yield_task_dl will indicate that some spare budget
1783  *   is available for other task instances to use it.
1784  */
1785 static void yield_task_dl(struct rq *rq)
1786 {
1787 	/*
1788 	 * We make the task go to sleep until its current deadline by
1789 	 * forcing its runtime to zero. This way, update_curr_dl() stops
1790 	 * it and the bandwidth timer will wake it up and will give it
1791 	 * new scheduling parameters (thanks to dl_yielded=1).
1792 	 */
1793 	rq->curr->dl.dl_yielded = 1;
1794 
1795 	update_rq_clock(rq);
1796 	update_curr_dl(rq);
1797 	/*
1798 	 * Tell update_rq_clock() that we've just updated,
1799 	 * so we don't do microscopic update in schedule()
1800 	 * and double the fastpath cost.
1801 	 */
1802 	rq_clock_skip_update(rq);
1803 }
1804 
1805 #ifdef CONFIG_SMP
1806 
1807 static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
1808 						 struct rq *rq)
1809 {
1810 	return (!rq->dl.dl_nr_running ||
1811 		dl_time_before(p->dl.deadline,
1812 			       rq->dl.earliest_dl.curr));
1813 }
1814 
1815 static int find_later_rq(struct task_struct *task);
1816 
1817 static int
1818 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
1819 {
1820 	struct task_struct *curr;
1821 	bool select_rq;
1822 	struct rq *rq;
1823 
1824 	if (!(flags & WF_TTWU))
1825 		goto out;
1826 
1827 	rq = cpu_rq(cpu);
1828 
1829 	rcu_read_lock();
1830 	curr = READ_ONCE(rq->curr); /* unlocked access */
1831 
1832 	/*
1833 	 * If we are dealing with a -deadline task, we must
1834 	 * decide where to wake it up.
1835 	 * If it has a later deadline and the current task
1836 	 * on this rq can't move (provided the waking task
1837 	 * can!) we prefer to send it somewhere else. On the
1838 	 * other hand, if it has a shorter deadline, we
1839 	 * try to make it stay here, it might be important.
1840 	 */
1841 	select_rq = unlikely(dl_task(curr)) &&
1842 		    (curr->nr_cpus_allowed < 2 ||
1843 		     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1844 		    p->nr_cpus_allowed > 1;
1845 
1846 	/*
1847 	 * Take the capacity of the CPU into account to
1848 	 * ensure it fits the requirement of the task.
1849 	 */
1850 	if (sched_asym_cpucap_active())
1851 		select_rq |= !dl_task_fits_capacity(p, cpu);
1852 
1853 	if (select_rq) {
1854 		int target = find_later_rq(p);
1855 
1856 		if (target != -1 &&
1857 		    dl_task_is_earliest_deadline(p, cpu_rq(target)))
1858 			cpu = target;
1859 	}
1860 	rcu_read_unlock();
1861 
1862 out:
1863 	return cpu;
1864 }
1865 
1866 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1867 {
1868 	struct rq_flags rf;
1869 	struct rq *rq;
1870 
1871 	if (READ_ONCE(p->__state) != TASK_WAKING)
1872 		return;
1873 
1874 	rq = task_rq(p);
1875 	/*
1876 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1877 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1878 	 * rq->lock is not... So, lock it
1879 	 */
1880 	rq_lock(rq, &rf);
1881 	if (p->dl.dl_non_contending) {
1882 		update_rq_clock(rq);
1883 		sub_running_bw(&p->dl, &rq->dl);
1884 		p->dl.dl_non_contending = 0;
1885 		/*
1886 		 * If the timer handler is currently running and the
1887 		 * timer cannot be canceled, inactive_task_timer()
1888 		 * will see that dl_not_contending is not set, and
1889 		 * will not touch the rq's active utilization,
1890 		 * so we are still safe.
1891 		 */
1892 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1893 			put_task_struct(p);
1894 	}
1895 	sub_rq_bw(&p->dl, &rq->dl);
1896 	rq_unlock(rq, &rf);
1897 }
1898 
1899 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1900 {
1901 	/*
1902 	 * Current can't be migrated, useless to reschedule,
1903 	 * let's hope p can move out.
1904 	 */
1905 	if (rq->curr->nr_cpus_allowed == 1 ||
1906 	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1907 		return;
1908 
1909 	/*
1910 	 * p is migratable, so let's not schedule it and
1911 	 * see if it is pushed or pulled somewhere else.
1912 	 */
1913 	if (p->nr_cpus_allowed != 1 &&
1914 	    cpudl_find(&rq->rd->cpudl, p, NULL))
1915 		return;
1916 
1917 	resched_curr(rq);
1918 }
1919 
1920 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1921 {
1922 	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1923 		/*
1924 		 * This is OK, because current is on_cpu, which avoids it being
1925 		 * picked for load-balance and preemption/IRQs are still
1926 		 * disabled avoiding further scheduler activity on it and we've
1927 		 * not yet started the picking loop.
1928 		 */
1929 		rq_unpin_lock(rq, rf);
1930 		pull_dl_task(rq);
1931 		rq_repin_lock(rq, rf);
1932 	}
1933 
1934 	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1935 }
1936 #endif /* CONFIG_SMP */
1937 
1938 /*
1939  * Only called when both the current and waking task are -deadline
1940  * tasks.
1941  */
1942 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1943 				  int flags)
1944 {
1945 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1946 		resched_curr(rq);
1947 		return;
1948 	}
1949 
1950 #ifdef CONFIG_SMP
1951 	/*
1952 	 * In the unlikely case current and p have the same deadline
1953 	 * let us try to decide what's the best thing to do...
1954 	 */
1955 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1956 	    !test_tsk_need_resched(rq->curr))
1957 		check_preempt_equal_dl(rq, p);
1958 #endif /* CONFIG_SMP */
1959 }
1960 
1961 #ifdef CONFIG_SCHED_HRTICK
1962 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1963 {
1964 	hrtick_start(rq, p->dl.runtime);
1965 }
1966 #else /* !CONFIG_SCHED_HRTICK */
1967 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1968 {
1969 }
1970 #endif
1971 
1972 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1973 {
1974 	struct sched_dl_entity *dl_se = &p->dl;
1975 	struct dl_rq *dl_rq = &rq->dl;
1976 
1977 	p->se.exec_start = rq_clock_task(rq);
1978 	if (on_dl_rq(&p->dl))
1979 		update_stats_wait_end_dl(dl_rq, dl_se);
1980 
1981 	/* You can't push away the running task */
1982 	dequeue_pushable_dl_task(rq, p);
1983 
1984 	if (!first)
1985 		return;
1986 
1987 	if (hrtick_enabled_dl(rq))
1988 		start_hrtick_dl(rq, p);
1989 
1990 	if (rq->curr->sched_class != &dl_sched_class)
1991 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1992 
1993 	deadline_queue_push_tasks(rq);
1994 }
1995 
1996 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
1997 {
1998 	struct rb_node *left = rb_first_cached(&dl_rq->root);
1999 
2000 	if (!left)
2001 		return NULL;
2002 
2003 	return __node_2_dle(left);
2004 }
2005 
2006 static struct task_struct *pick_task_dl(struct rq *rq)
2007 {
2008 	struct sched_dl_entity *dl_se;
2009 	struct dl_rq *dl_rq = &rq->dl;
2010 	struct task_struct *p;
2011 
2012 	if (!sched_dl_runnable(rq))
2013 		return NULL;
2014 
2015 	dl_se = pick_next_dl_entity(dl_rq);
2016 	WARN_ON_ONCE(!dl_se);
2017 	p = dl_task_of(dl_se);
2018 
2019 	return p;
2020 }
2021 
2022 static struct task_struct *pick_next_task_dl(struct rq *rq)
2023 {
2024 	struct task_struct *p;
2025 
2026 	p = pick_task_dl(rq);
2027 	if (p)
2028 		set_next_task_dl(rq, p, true);
2029 
2030 	return p;
2031 }
2032 
2033 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
2034 {
2035 	struct sched_dl_entity *dl_se = &p->dl;
2036 	struct dl_rq *dl_rq = &rq->dl;
2037 
2038 	if (on_dl_rq(&p->dl))
2039 		update_stats_wait_start_dl(dl_rq, dl_se);
2040 
2041 	update_curr_dl(rq);
2042 
2043 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2044 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2045 		enqueue_pushable_dl_task(rq, p);
2046 }
2047 
2048 /*
2049  * scheduler tick hitting a task of our scheduling class.
2050  *
2051  * NOTE: This function can be called remotely by the tick offload that
2052  * goes along full dynticks. Therefore no local assumption can be made
2053  * and everything must be accessed through the @rq and @curr passed in
2054  * parameters.
2055  */
2056 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2057 {
2058 	update_curr_dl(rq);
2059 
2060 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2061 	/*
2062 	 * Even when we have runtime, update_curr_dl() might have resulted in us
2063 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
2064 	 * be set and schedule() will start a new hrtick for the next task.
2065 	 */
2066 	if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2067 	    is_leftmost(p, &rq->dl))
2068 		start_hrtick_dl(rq, p);
2069 }
2070 
2071 static void task_fork_dl(struct task_struct *p)
2072 {
2073 	/*
2074 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2075 	 * sched_fork()
2076 	 */
2077 }
2078 
2079 #ifdef CONFIG_SMP
2080 
2081 /* Only try algorithms three times */
2082 #define DL_MAX_TRIES 3
2083 
2084 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
2085 {
2086 	if (!task_on_cpu(rq, p) &&
2087 	    cpumask_test_cpu(cpu, &p->cpus_mask))
2088 		return 1;
2089 	return 0;
2090 }
2091 
2092 /*
2093  * Return the earliest pushable rq's task, which is suitable to be executed
2094  * on the CPU, NULL otherwise:
2095  */
2096 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2097 {
2098 	struct task_struct *p = NULL;
2099 	struct rb_node *next_node;
2100 
2101 	if (!has_pushable_dl_tasks(rq))
2102 		return NULL;
2103 
2104 	next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2105 
2106 next_node:
2107 	if (next_node) {
2108 		p = __node_2_pdl(next_node);
2109 
2110 		if (pick_dl_task(rq, p, cpu))
2111 			return p;
2112 
2113 		next_node = rb_next(next_node);
2114 		goto next_node;
2115 	}
2116 
2117 	return NULL;
2118 }
2119 
2120 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2121 
2122 static int find_later_rq(struct task_struct *task)
2123 {
2124 	struct sched_domain *sd;
2125 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2126 	int this_cpu = smp_processor_id();
2127 	int cpu = task_cpu(task);
2128 
2129 	/* Make sure the mask is initialized first */
2130 	if (unlikely(!later_mask))
2131 		return -1;
2132 
2133 	if (task->nr_cpus_allowed == 1)
2134 		return -1;
2135 
2136 	/*
2137 	 * We have to consider system topology and task affinity
2138 	 * first, then we can look for a suitable CPU.
2139 	 */
2140 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2141 		return -1;
2142 
2143 	/*
2144 	 * If we are here, some targets have been found, including
2145 	 * the most suitable which is, among the runqueues where the
2146 	 * current tasks have later deadlines than the task's one, the
2147 	 * rq with the latest possible one.
2148 	 *
2149 	 * Now we check how well this matches with task's
2150 	 * affinity and system topology.
2151 	 *
2152 	 * The last CPU where the task run is our first
2153 	 * guess, since it is most likely cache-hot there.
2154 	 */
2155 	if (cpumask_test_cpu(cpu, later_mask))
2156 		return cpu;
2157 	/*
2158 	 * Check if this_cpu is to be skipped (i.e., it is
2159 	 * not in the mask) or not.
2160 	 */
2161 	if (!cpumask_test_cpu(this_cpu, later_mask))
2162 		this_cpu = -1;
2163 
2164 	rcu_read_lock();
2165 	for_each_domain(cpu, sd) {
2166 		if (sd->flags & SD_WAKE_AFFINE) {
2167 			int best_cpu;
2168 
2169 			/*
2170 			 * If possible, preempting this_cpu is
2171 			 * cheaper than migrating.
2172 			 */
2173 			if (this_cpu != -1 &&
2174 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2175 				rcu_read_unlock();
2176 				return this_cpu;
2177 			}
2178 
2179 			best_cpu = cpumask_any_and_distribute(later_mask,
2180 							      sched_domain_span(sd));
2181 			/*
2182 			 * Last chance: if a CPU being in both later_mask
2183 			 * and current sd span is valid, that becomes our
2184 			 * choice. Of course, the latest possible CPU is
2185 			 * already under consideration through later_mask.
2186 			 */
2187 			if (best_cpu < nr_cpu_ids) {
2188 				rcu_read_unlock();
2189 				return best_cpu;
2190 			}
2191 		}
2192 	}
2193 	rcu_read_unlock();
2194 
2195 	/*
2196 	 * At this point, all our guesses failed, we just return
2197 	 * 'something', and let the caller sort the things out.
2198 	 */
2199 	if (this_cpu != -1)
2200 		return this_cpu;
2201 
2202 	cpu = cpumask_any_distribute(later_mask);
2203 	if (cpu < nr_cpu_ids)
2204 		return cpu;
2205 
2206 	return -1;
2207 }
2208 
2209 /* Locks the rq it finds */
2210 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2211 {
2212 	struct rq *later_rq = NULL;
2213 	int tries;
2214 	int cpu;
2215 
2216 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2217 		cpu = find_later_rq(task);
2218 
2219 		if ((cpu == -1) || (cpu == rq->cpu))
2220 			break;
2221 
2222 		later_rq = cpu_rq(cpu);
2223 
2224 		if (!dl_task_is_earliest_deadline(task, later_rq)) {
2225 			/*
2226 			 * Target rq has tasks of equal or earlier deadline,
2227 			 * retrying does not release any lock and is unlikely
2228 			 * to yield a different result.
2229 			 */
2230 			later_rq = NULL;
2231 			break;
2232 		}
2233 
2234 		/* Retry if something changed. */
2235 		if (double_lock_balance(rq, later_rq)) {
2236 			if (unlikely(task_rq(task) != rq ||
2237 				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2238 				     task_on_cpu(rq, task) ||
2239 				     !dl_task(task) ||
2240 				     is_migration_disabled(task) ||
2241 				     !task_on_rq_queued(task))) {
2242 				double_unlock_balance(rq, later_rq);
2243 				later_rq = NULL;
2244 				break;
2245 			}
2246 		}
2247 
2248 		/*
2249 		 * If the rq we found has no -deadline task, or
2250 		 * its earliest one has a later deadline than our
2251 		 * task, the rq is a good one.
2252 		 */
2253 		if (dl_task_is_earliest_deadline(task, later_rq))
2254 			break;
2255 
2256 		/* Otherwise we try again. */
2257 		double_unlock_balance(rq, later_rq);
2258 		later_rq = NULL;
2259 	}
2260 
2261 	return later_rq;
2262 }
2263 
2264 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2265 {
2266 	struct task_struct *p;
2267 
2268 	if (!has_pushable_dl_tasks(rq))
2269 		return NULL;
2270 
2271 	p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2272 
2273 	WARN_ON_ONCE(rq->cpu != task_cpu(p));
2274 	WARN_ON_ONCE(task_current(rq, p));
2275 	WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2276 
2277 	WARN_ON_ONCE(!task_on_rq_queued(p));
2278 	WARN_ON_ONCE(!dl_task(p));
2279 
2280 	return p;
2281 }
2282 
2283 /*
2284  * See if the non running -deadline tasks on this rq
2285  * can be sent to some other CPU where they can preempt
2286  * and start executing.
2287  */
2288 static int push_dl_task(struct rq *rq)
2289 {
2290 	struct task_struct *next_task;
2291 	struct rq *later_rq;
2292 	int ret = 0;
2293 
2294 	if (!rq->dl.overloaded)
2295 		return 0;
2296 
2297 	next_task = pick_next_pushable_dl_task(rq);
2298 	if (!next_task)
2299 		return 0;
2300 
2301 retry:
2302 	/*
2303 	 * If next_task preempts rq->curr, and rq->curr
2304 	 * can move away, it makes sense to just reschedule
2305 	 * without going further in pushing next_task.
2306 	 */
2307 	if (dl_task(rq->curr) &&
2308 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2309 	    rq->curr->nr_cpus_allowed > 1) {
2310 		resched_curr(rq);
2311 		return 0;
2312 	}
2313 
2314 	if (is_migration_disabled(next_task))
2315 		return 0;
2316 
2317 	if (WARN_ON(next_task == rq->curr))
2318 		return 0;
2319 
2320 	/* We might release rq lock */
2321 	get_task_struct(next_task);
2322 
2323 	/* Will lock the rq it'll find */
2324 	later_rq = find_lock_later_rq(next_task, rq);
2325 	if (!later_rq) {
2326 		struct task_struct *task;
2327 
2328 		/*
2329 		 * We must check all this again, since
2330 		 * find_lock_later_rq releases rq->lock and it is
2331 		 * then possible that next_task has migrated.
2332 		 */
2333 		task = pick_next_pushable_dl_task(rq);
2334 		if (task == next_task) {
2335 			/*
2336 			 * The task is still there. We don't try
2337 			 * again, some other CPU will pull it when ready.
2338 			 */
2339 			goto out;
2340 		}
2341 
2342 		if (!task)
2343 			/* No more tasks */
2344 			goto out;
2345 
2346 		put_task_struct(next_task);
2347 		next_task = task;
2348 		goto retry;
2349 	}
2350 
2351 	deactivate_task(rq, next_task, 0);
2352 	set_task_cpu(next_task, later_rq->cpu);
2353 	activate_task(later_rq, next_task, 0);
2354 	ret = 1;
2355 
2356 	resched_curr(later_rq);
2357 
2358 	double_unlock_balance(rq, later_rq);
2359 
2360 out:
2361 	put_task_struct(next_task);
2362 
2363 	return ret;
2364 }
2365 
2366 static void push_dl_tasks(struct rq *rq)
2367 {
2368 	/* push_dl_task() will return true if it moved a -deadline task */
2369 	while (push_dl_task(rq))
2370 		;
2371 }
2372 
2373 static void pull_dl_task(struct rq *this_rq)
2374 {
2375 	int this_cpu = this_rq->cpu, cpu;
2376 	struct task_struct *p, *push_task;
2377 	bool resched = false;
2378 	struct rq *src_rq;
2379 	u64 dmin = LONG_MAX;
2380 
2381 	if (likely(!dl_overloaded(this_rq)))
2382 		return;
2383 
2384 	/*
2385 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2386 	 * see overloaded we must also see the dlo_mask bit.
2387 	 */
2388 	smp_rmb();
2389 
2390 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2391 		if (this_cpu == cpu)
2392 			continue;
2393 
2394 		src_rq = cpu_rq(cpu);
2395 
2396 		/*
2397 		 * It looks racy, abd it is! However, as in sched_rt.c,
2398 		 * we are fine with this.
2399 		 */
2400 		if (this_rq->dl.dl_nr_running &&
2401 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2402 				   src_rq->dl.earliest_dl.next))
2403 			continue;
2404 
2405 		/* Might drop this_rq->lock */
2406 		push_task = NULL;
2407 		double_lock_balance(this_rq, src_rq);
2408 
2409 		/*
2410 		 * If there are no more pullable tasks on the
2411 		 * rq, we're done with it.
2412 		 */
2413 		if (src_rq->dl.dl_nr_running <= 1)
2414 			goto skip;
2415 
2416 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2417 
2418 		/*
2419 		 * We found a task to be pulled if:
2420 		 *  - it preempts our current (if there's one),
2421 		 *  - it will preempt the last one we pulled (if any).
2422 		 */
2423 		if (p && dl_time_before(p->dl.deadline, dmin) &&
2424 		    dl_task_is_earliest_deadline(p, this_rq)) {
2425 			WARN_ON(p == src_rq->curr);
2426 			WARN_ON(!task_on_rq_queued(p));
2427 
2428 			/*
2429 			 * Then we pull iff p has actually an earlier
2430 			 * deadline than the current task of its runqueue.
2431 			 */
2432 			if (dl_time_before(p->dl.deadline,
2433 					   src_rq->curr->dl.deadline))
2434 				goto skip;
2435 
2436 			if (is_migration_disabled(p)) {
2437 				push_task = get_push_task(src_rq);
2438 			} else {
2439 				deactivate_task(src_rq, p, 0);
2440 				set_task_cpu(p, this_cpu);
2441 				activate_task(this_rq, p, 0);
2442 				dmin = p->dl.deadline;
2443 				resched = true;
2444 			}
2445 
2446 			/* Is there any other task even earlier? */
2447 		}
2448 skip:
2449 		double_unlock_balance(this_rq, src_rq);
2450 
2451 		if (push_task) {
2452 			raw_spin_rq_unlock(this_rq);
2453 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2454 					    push_task, &src_rq->push_work);
2455 			raw_spin_rq_lock(this_rq);
2456 		}
2457 	}
2458 
2459 	if (resched)
2460 		resched_curr(this_rq);
2461 }
2462 
2463 /*
2464  * Since the task is not running and a reschedule is not going to happen
2465  * anytime soon on its runqueue, we try pushing it away now.
2466  */
2467 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2468 {
2469 	if (!task_on_cpu(rq, p) &&
2470 	    !test_tsk_need_resched(rq->curr) &&
2471 	    p->nr_cpus_allowed > 1 &&
2472 	    dl_task(rq->curr) &&
2473 	    (rq->curr->nr_cpus_allowed < 2 ||
2474 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2475 		push_dl_tasks(rq);
2476 	}
2477 }
2478 
2479 static void set_cpus_allowed_dl(struct task_struct *p,
2480 				struct affinity_context *ctx)
2481 {
2482 	struct root_domain *src_rd;
2483 	struct rq *rq;
2484 
2485 	WARN_ON_ONCE(!dl_task(p));
2486 
2487 	rq = task_rq(p);
2488 	src_rd = rq->rd;
2489 	/*
2490 	 * Migrating a SCHED_DEADLINE task between exclusive
2491 	 * cpusets (different root_domains) entails a bandwidth
2492 	 * update. We already made space for us in the destination
2493 	 * domain (see cpuset_can_attach()).
2494 	 */
2495 	if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
2496 		struct dl_bw *src_dl_b;
2497 
2498 		src_dl_b = dl_bw_of(cpu_of(rq));
2499 		/*
2500 		 * We now free resources of the root_domain we are migrating
2501 		 * off. In the worst case, sched_setattr() may temporary fail
2502 		 * until we complete the update.
2503 		 */
2504 		raw_spin_lock(&src_dl_b->lock);
2505 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2506 		raw_spin_unlock(&src_dl_b->lock);
2507 	}
2508 
2509 	set_cpus_allowed_common(p, ctx);
2510 }
2511 
2512 /* Assumes rq->lock is held */
2513 static void rq_online_dl(struct rq *rq)
2514 {
2515 	if (rq->dl.overloaded)
2516 		dl_set_overload(rq);
2517 
2518 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2519 	if (rq->dl.dl_nr_running > 0)
2520 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2521 }
2522 
2523 /* Assumes rq->lock is held */
2524 static void rq_offline_dl(struct rq *rq)
2525 {
2526 	if (rq->dl.overloaded)
2527 		dl_clear_overload(rq);
2528 
2529 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2530 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2531 }
2532 
2533 void __init init_sched_dl_class(void)
2534 {
2535 	unsigned int i;
2536 
2537 	for_each_possible_cpu(i)
2538 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2539 					GFP_KERNEL, cpu_to_node(i));
2540 }
2541 
2542 void dl_add_task_root_domain(struct task_struct *p)
2543 {
2544 	struct rq_flags rf;
2545 	struct rq *rq;
2546 	struct dl_bw *dl_b;
2547 
2548 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2549 	if (!dl_task(p)) {
2550 		raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2551 		return;
2552 	}
2553 
2554 	rq = __task_rq_lock(p, &rf);
2555 
2556 	dl_b = &rq->rd->dl_bw;
2557 	raw_spin_lock(&dl_b->lock);
2558 
2559 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2560 
2561 	raw_spin_unlock(&dl_b->lock);
2562 
2563 	task_rq_unlock(rq, p, &rf);
2564 }
2565 
2566 void dl_clear_root_domain(struct root_domain *rd)
2567 {
2568 	unsigned long flags;
2569 
2570 	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2571 	rd->dl_bw.total_bw = 0;
2572 	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2573 }
2574 
2575 #endif /* CONFIG_SMP */
2576 
2577 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2578 {
2579 	/*
2580 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2581 	 * time is in the future). If the task switches back to dl before
2582 	 * the "inactive timer" fires, it can continue to consume its current
2583 	 * runtime using its current deadline. If it stays outside of
2584 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2585 	 * will reset the task parameters.
2586 	 */
2587 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2588 		task_non_contending(p);
2589 
2590 	/*
2591 	 * In case a task is setscheduled out from SCHED_DEADLINE we need to
2592 	 * keep track of that on its cpuset (for correct bandwidth tracking).
2593 	 */
2594 	dec_dl_tasks_cs(p);
2595 
2596 	if (!task_on_rq_queued(p)) {
2597 		/*
2598 		 * Inactive timer is armed. However, p is leaving DEADLINE and
2599 		 * might migrate away from this rq while continuing to run on
2600 		 * some other class. We need to remove its contribution from
2601 		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2602 		 */
2603 		if (p->dl.dl_non_contending)
2604 			sub_running_bw(&p->dl, &rq->dl);
2605 		sub_rq_bw(&p->dl, &rq->dl);
2606 	}
2607 
2608 	/*
2609 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2610 	 * at the 0-lag time, because the task could have been migrated
2611 	 * while SCHED_OTHER in the meanwhile.
2612 	 */
2613 	if (p->dl.dl_non_contending)
2614 		p->dl.dl_non_contending = 0;
2615 
2616 	/*
2617 	 * Since this might be the only -deadline task on the rq,
2618 	 * this is the right place to try to pull some other one
2619 	 * from an overloaded CPU, if any.
2620 	 */
2621 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2622 		return;
2623 
2624 	deadline_queue_pull_task(rq);
2625 }
2626 
2627 /*
2628  * When switching to -deadline, we may overload the rq, then
2629  * we try to push someone off, if possible.
2630  */
2631 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2632 {
2633 	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2634 		put_task_struct(p);
2635 
2636 	/*
2637 	 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
2638 	 * track of that on its cpuset (for correct bandwidth tracking).
2639 	 */
2640 	inc_dl_tasks_cs(p);
2641 
2642 	/* If p is not queued we will update its parameters at next wakeup. */
2643 	if (!task_on_rq_queued(p)) {
2644 		add_rq_bw(&p->dl, &rq->dl);
2645 
2646 		return;
2647 	}
2648 
2649 	if (rq->curr != p) {
2650 #ifdef CONFIG_SMP
2651 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2652 			deadline_queue_push_tasks(rq);
2653 #endif
2654 		if (dl_task(rq->curr))
2655 			check_preempt_curr_dl(rq, p, 0);
2656 		else
2657 			resched_curr(rq);
2658 	} else {
2659 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2660 	}
2661 }
2662 
2663 /*
2664  * If the scheduling parameters of a -deadline task changed,
2665  * a push or pull operation might be needed.
2666  */
2667 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2668 			    int oldprio)
2669 {
2670 	if (!task_on_rq_queued(p))
2671 		return;
2672 
2673 #ifdef CONFIG_SMP
2674 	/*
2675 	 * This might be too much, but unfortunately
2676 	 * we don't have the old deadline value, and
2677 	 * we can't argue if the task is increasing
2678 	 * or lowering its prio, so...
2679 	 */
2680 	if (!rq->dl.overloaded)
2681 		deadline_queue_pull_task(rq);
2682 
2683 	if (task_current(rq, p)) {
2684 		/*
2685 		 * If we now have a earlier deadline task than p,
2686 		 * then reschedule, provided p is still on this
2687 		 * runqueue.
2688 		 */
2689 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2690 			resched_curr(rq);
2691 	} else {
2692 		/*
2693 		 * Current may not be deadline in case p was throttled but we
2694 		 * have just replenished it (e.g. rt_mutex_setprio()).
2695 		 *
2696 		 * Otherwise, if p was given an earlier deadline, reschedule.
2697 		 */
2698 		if (!dl_task(rq->curr) ||
2699 		    dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
2700 			resched_curr(rq);
2701 	}
2702 #else
2703 	/*
2704 	 * We don't know if p has a earlier or later deadline, so let's blindly
2705 	 * set a (maybe not needed) rescheduling point.
2706 	 */
2707 	resched_curr(rq);
2708 #endif
2709 }
2710 
2711 #ifdef CONFIG_SCHED_CORE
2712 static int task_is_throttled_dl(struct task_struct *p, int cpu)
2713 {
2714 	return p->dl.dl_throttled;
2715 }
2716 #endif
2717 
2718 DEFINE_SCHED_CLASS(dl) = {
2719 
2720 	.enqueue_task		= enqueue_task_dl,
2721 	.dequeue_task		= dequeue_task_dl,
2722 	.yield_task		= yield_task_dl,
2723 
2724 	.check_preempt_curr	= check_preempt_curr_dl,
2725 
2726 	.pick_next_task		= pick_next_task_dl,
2727 	.put_prev_task		= put_prev_task_dl,
2728 	.set_next_task		= set_next_task_dl,
2729 
2730 #ifdef CONFIG_SMP
2731 	.balance		= balance_dl,
2732 	.pick_task		= pick_task_dl,
2733 	.select_task_rq		= select_task_rq_dl,
2734 	.migrate_task_rq	= migrate_task_rq_dl,
2735 	.set_cpus_allowed       = set_cpus_allowed_dl,
2736 	.rq_online              = rq_online_dl,
2737 	.rq_offline             = rq_offline_dl,
2738 	.task_woken		= task_woken_dl,
2739 	.find_lock_rq		= find_lock_later_rq,
2740 #endif
2741 
2742 	.task_tick		= task_tick_dl,
2743 	.task_fork              = task_fork_dl,
2744 
2745 	.prio_changed           = prio_changed_dl,
2746 	.switched_from		= switched_from_dl,
2747 	.switched_to		= switched_to_dl,
2748 
2749 	.update_curr		= update_curr_dl,
2750 #ifdef CONFIG_SCHED_CORE
2751 	.task_is_throttled	= task_is_throttled_dl,
2752 #endif
2753 };
2754 
2755 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
2756 static u64 dl_generation;
2757 
2758 int sched_dl_global_validate(void)
2759 {
2760 	u64 runtime = global_rt_runtime();
2761 	u64 period = global_rt_period();
2762 	u64 new_bw = to_ratio(period, runtime);
2763 	u64 gen = ++dl_generation;
2764 	struct dl_bw *dl_b;
2765 	int cpu, cpus, ret = 0;
2766 	unsigned long flags;
2767 
2768 	/*
2769 	 * Here we want to check the bandwidth not being set to some
2770 	 * value smaller than the currently allocated bandwidth in
2771 	 * any of the root_domains.
2772 	 */
2773 	for_each_possible_cpu(cpu) {
2774 		rcu_read_lock_sched();
2775 
2776 		if (dl_bw_visited(cpu, gen))
2777 			goto next;
2778 
2779 		dl_b = dl_bw_of(cpu);
2780 		cpus = dl_bw_cpus(cpu);
2781 
2782 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2783 		if (new_bw * cpus < dl_b->total_bw)
2784 			ret = -EBUSY;
2785 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2786 
2787 next:
2788 		rcu_read_unlock_sched();
2789 
2790 		if (ret)
2791 			break;
2792 	}
2793 
2794 	return ret;
2795 }
2796 
2797 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2798 {
2799 	if (global_rt_runtime() == RUNTIME_INF) {
2800 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2801 		dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
2802 	} else {
2803 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2804 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2805 		dl_rq->max_bw = dl_rq->extra_bw =
2806 			to_ratio(global_rt_period(), global_rt_runtime());
2807 	}
2808 }
2809 
2810 void sched_dl_do_global(void)
2811 {
2812 	u64 new_bw = -1;
2813 	u64 gen = ++dl_generation;
2814 	struct dl_bw *dl_b;
2815 	int cpu;
2816 	unsigned long flags;
2817 
2818 	if (global_rt_runtime() != RUNTIME_INF)
2819 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2820 
2821 	for_each_possible_cpu(cpu) {
2822 		rcu_read_lock_sched();
2823 
2824 		if (dl_bw_visited(cpu, gen)) {
2825 			rcu_read_unlock_sched();
2826 			continue;
2827 		}
2828 
2829 		dl_b = dl_bw_of(cpu);
2830 
2831 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2832 		dl_b->bw = new_bw;
2833 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2834 
2835 		rcu_read_unlock_sched();
2836 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2837 	}
2838 }
2839 
2840 /*
2841  * We must be sure that accepting a new task (or allowing changing the
2842  * parameters of an existing one) is consistent with the bandwidth
2843  * constraints. If yes, this function also accordingly updates the currently
2844  * allocated bandwidth to reflect the new situation.
2845  *
2846  * This function is called while holding p's rq->lock.
2847  */
2848 int sched_dl_overflow(struct task_struct *p, int policy,
2849 		      const struct sched_attr *attr)
2850 {
2851 	u64 period = attr->sched_period ?: attr->sched_deadline;
2852 	u64 runtime = attr->sched_runtime;
2853 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2854 	int cpus, err = -1, cpu = task_cpu(p);
2855 	struct dl_bw *dl_b = dl_bw_of(cpu);
2856 	unsigned long cap;
2857 
2858 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2859 		return 0;
2860 
2861 	/* !deadline task may carry old deadline bandwidth */
2862 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2863 		return 0;
2864 
2865 	/*
2866 	 * Either if a task, enters, leave, or stays -deadline but changes
2867 	 * its parameters, we may need to update accordingly the total
2868 	 * allocated bandwidth of the container.
2869 	 */
2870 	raw_spin_lock(&dl_b->lock);
2871 	cpus = dl_bw_cpus(cpu);
2872 	cap = dl_bw_capacity(cpu);
2873 
2874 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2875 	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
2876 		if (hrtimer_active(&p->dl.inactive_timer))
2877 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2878 		__dl_add(dl_b, new_bw, cpus);
2879 		err = 0;
2880 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2881 		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2882 		/*
2883 		 * XXX this is slightly incorrect: when the task
2884 		 * utilization decreases, we should delay the total
2885 		 * utilization change until the task's 0-lag point.
2886 		 * But this would require to set the task's "inactive
2887 		 * timer" when the task is not inactive.
2888 		 */
2889 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2890 		__dl_add(dl_b, new_bw, cpus);
2891 		dl_change_utilization(p, new_bw);
2892 		err = 0;
2893 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2894 		/*
2895 		 * Do not decrease the total deadline utilization here,
2896 		 * switched_from_dl() will take care to do it at the correct
2897 		 * (0-lag) time.
2898 		 */
2899 		err = 0;
2900 	}
2901 	raw_spin_unlock(&dl_b->lock);
2902 
2903 	return err;
2904 }
2905 
2906 /*
2907  * This function initializes the sched_dl_entity of a newly becoming
2908  * SCHED_DEADLINE task.
2909  *
2910  * Only the static values are considered here, the actual runtime and the
2911  * absolute deadline will be properly calculated when the task is enqueued
2912  * for the first time with its new policy.
2913  */
2914 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2915 {
2916 	struct sched_dl_entity *dl_se = &p->dl;
2917 
2918 	dl_se->dl_runtime = attr->sched_runtime;
2919 	dl_se->dl_deadline = attr->sched_deadline;
2920 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2921 	dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
2922 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2923 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2924 }
2925 
2926 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2927 {
2928 	struct sched_dl_entity *dl_se = &p->dl;
2929 
2930 	attr->sched_priority = p->rt_priority;
2931 	attr->sched_runtime = dl_se->dl_runtime;
2932 	attr->sched_deadline = dl_se->dl_deadline;
2933 	attr->sched_period = dl_se->dl_period;
2934 	attr->sched_flags &= ~SCHED_DL_FLAGS;
2935 	attr->sched_flags |= dl_se->flags;
2936 }
2937 
2938 /*
2939  * This function validates the new parameters of a -deadline task.
2940  * We ask for the deadline not being zero, and greater or equal
2941  * than the runtime, as well as the period of being zero or
2942  * greater than deadline. Furthermore, we have to be sure that
2943  * user parameters are above the internal resolution of 1us (we
2944  * check sched_runtime only since it is always the smaller one) and
2945  * below 2^63 ns (we have to check both sched_deadline and
2946  * sched_period, as the latter can be zero).
2947  */
2948 bool __checkparam_dl(const struct sched_attr *attr)
2949 {
2950 	u64 period, max, min;
2951 
2952 	/* special dl tasks don't actually use any parameter */
2953 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2954 		return true;
2955 
2956 	/* deadline != 0 */
2957 	if (attr->sched_deadline == 0)
2958 		return false;
2959 
2960 	/*
2961 	 * Since we truncate DL_SCALE bits, make sure we're at least
2962 	 * that big.
2963 	 */
2964 	if (attr->sched_runtime < (1ULL << DL_SCALE))
2965 		return false;
2966 
2967 	/*
2968 	 * Since we use the MSB for wrap-around and sign issues, make
2969 	 * sure it's not set (mind that period can be equal to zero).
2970 	 */
2971 	if (attr->sched_deadline & (1ULL << 63) ||
2972 	    attr->sched_period & (1ULL << 63))
2973 		return false;
2974 
2975 	period = attr->sched_period;
2976 	if (!period)
2977 		period = attr->sched_deadline;
2978 
2979 	/* runtime <= deadline <= period (if period != 0) */
2980 	if (period < attr->sched_deadline ||
2981 	    attr->sched_deadline < attr->sched_runtime)
2982 		return false;
2983 
2984 	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
2985 	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
2986 
2987 	if (period < min || period > max)
2988 		return false;
2989 
2990 	return true;
2991 }
2992 
2993 /*
2994  * This function clears the sched_dl_entity static params.
2995  */
2996 void __dl_clear_params(struct task_struct *p)
2997 {
2998 	struct sched_dl_entity *dl_se = &p->dl;
2999 
3000 	dl_se->dl_runtime		= 0;
3001 	dl_se->dl_deadline		= 0;
3002 	dl_se->dl_period		= 0;
3003 	dl_se->flags			= 0;
3004 	dl_se->dl_bw			= 0;
3005 	dl_se->dl_density		= 0;
3006 
3007 	dl_se->dl_throttled		= 0;
3008 	dl_se->dl_yielded		= 0;
3009 	dl_se->dl_non_contending	= 0;
3010 	dl_se->dl_overrun		= 0;
3011 
3012 #ifdef CONFIG_RT_MUTEXES
3013 	dl_se->pi_se			= dl_se;
3014 #endif
3015 }
3016 
3017 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
3018 {
3019 	struct sched_dl_entity *dl_se = &p->dl;
3020 
3021 	if (dl_se->dl_runtime != attr->sched_runtime ||
3022 	    dl_se->dl_deadline != attr->sched_deadline ||
3023 	    dl_se->dl_period != attr->sched_period ||
3024 	    dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3025 		return true;
3026 
3027 	return false;
3028 }
3029 
3030 #ifdef CONFIG_SMP
3031 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3032 				 const struct cpumask *trial)
3033 {
3034 	unsigned long flags, cap;
3035 	struct dl_bw *cur_dl_b;
3036 	int ret = 1;
3037 
3038 	rcu_read_lock_sched();
3039 	cur_dl_b = dl_bw_of(cpumask_any(cur));
3040 	cap = __dl_bw_capacity(trial);
3041 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3042 	if (__dl_overflow(cur_dl_b, cap, 0, 0))
3043 		ret = 0;
3044 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3045 	rcu_read_unlock_sched();
3046 
3047 	return ret;
3048 }
3049 
3050 enum dl_bw_request {
3051 	dl_bw_req_check_overflow = 0,
3052 	dl_bw_req_alloc,
3053 	dl_bw_req_free
3054 };
3055 
3056 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
3057 {
3058 	unsigned long flags;
3059 	struct dl_bw *dl_b;
3060 	bool overflow = 0;
3061 
3062 	rcu_read_lock_sched();
3063 	dl_b = dl_bw_of(cpu);
3064 	raw_spin_lock_irqsave(&dl_b->lock, flags);
3065 
3066 	if (req == dl_bw_req_free) {
3067 		__dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
3068 	} else {
3069 		unsigned long cap = dl_bw_capacity(cpu);
3070 
3071 		overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
3072 
3073 		if (req == dl_bw_req_alloc && !overflow) {
3074 			/*
3075 			 * We reserve space in the destination
3076 			 * root_domain, as we can't fail after this point.
3077 			 * We will free resources in the source root_domain
3078 			 * later on (see set_cpus_allowed_dl()).
3079 			 */
3080 			__dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
3081 		}
3082 	}
3083 
3084 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3085 	rcu_read_unlock_sched();
3086 
3087 	return overflow ? -EBUSY : 0;
3088 }
3089 
3090 int dl_bw_check_overflow(int cpu)
3091 {
3092 	return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0);
3093 }
3094 
3095 int dl_bw_alloc(int cpu, u64 dl_bw)
3096 {
3097 	return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
3098 }
3099 
3100 void dl_bw_free(int cpu, u64 dl_bw)
3101 {
3102 	dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
3103 }
3104 #endif
3105 
3106 #ifdef CONFIG_SCHED_DEBUG
3107 void print_dl_stats(struct seq_file *m, int cpu)
3108 {
3109 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3110 }
3111 #endif /* CONFIG_SCHED_DEBUG */
3112