xref: /openbmc/linux/kernel/sched/deadline.c (revision 56d06fa2)
1 /*
2  * Deadline Scheduling Class (SCHED_DEADLINE)
3  *
4  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5  *
6  * Tasks that periodically executes their instances for less than their
7  * runtime won't miss any of their deadlines.
8  * Tasks that are not periodic or sporadic or that tries to execute more
9  * than their reserved bandwidth will be slowed down (and may potentially
10  * miss some of their deadlines), and won't affect any other task.
11  *
12  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13  *                    Juri Lelli <juri.lelli@gmail.com>,
14  *                    Michael Trimarchi <michael@amarulasolutions.com>,
15  *                    Fabio Checconi <fchecconi@gmail.com>
16  */
17 #include "sched.h"
18 
19 #include <linux/slab.h>
20 
21 struct dl_bandwidth def_dl_bandwidth;
22 
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24 {
25 	return container_of(dl_se, struct task_struct, dl);
26 }
27 
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29 {
30 	return container_of(dl_rq, struct rq, dl);
31 }
32 
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34 {
35 	struct task_struct *p = dl_task_of(dl_se);
36 	struct rq *rq = task_rq(p);
37 
38 	return &rq->dl;
39 }
40 
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42 {
43 	return !RB_EMPTY_NODE(&dl_se->rb_node);
44 }
45 
46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47 {
48 	struct sched_dl_entity *dl_se = &p->dl;
49 
50 	return dl_rq->rb_leftmost == &dl_se->rb_node;
51 }
52 
53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
54 {
55 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 	dl_b->dl_period = period;
57 	dl_b->dl_runtime = runtime;
58 }
59 
60 void init_dl_bw(struct dl_bw *dl_b)
61 {
62 	raw_spin_lock_init(&dl_b->lock);
63 	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
64 	if (global_rt_runtime() == RUNTIME_INF)
65 		dl_b->bw = -1;
66 	else
67 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
68 	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
69 	dl_b->total_bw = 0;
70 }
71 
72 void init_dl_rq(struct dl_rq *dl_rq)
73 {
74 	dl_rq->rb_root = RB_ROOT;
75 
76 #ifdef CONFIG_SMP
77 	/* zero means no -deadline tasks */
78 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
79 
80 	dl_rq->dl_nr_migratory = 0;
81 	dl_rq->overloaded = 0;
82 	dl_rq->pushable_dl_tasks_root = RB_ROOT;
83 #else
84 	init_dl_bw(&dl_rq->dl_bw);
85 #endif
86 }
87 
88 #ifdef CONFIG_SMP
89 
90 static inline int dl_overloaded(struct rq *rq)
91 {
92 	return atomic_read(&rq->rd->dlo_count);
93 }
94 
95 static inline void dl_set_overload(struct rq *rq)
96 {
97 	if (!rq->online)
98 		return;
99 
100 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
101 	/*
102 	 * Must be visible before the overload count is
103 	 * set (as in sched_rt.c).
104 	 *
105 	 * Matched by the barrier in pull_dl_task().
106 	 */
107 	smp_wmb();
108 	atomic_inc(&rq->rd->dlo_count);
109 }
110 
111 static inline void dl_clear_overload(struct rq *rq)
112 {
113 	if (!rq->online)
114 		return;
115 
116 	atomic_dec(&rq->rd->dlo_count);
117 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
118 }
119 
120 static void update_dl_migration(struct dl_rq *dl_rq)
121 {
122 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
123 		if (!dl_rq->overloaded) {
124 			dl_set_overload(rq_of_dl_rq(dl_rq));
125 			dl_rq->overloaded = 1;
126 		}
127 	} else if (dl_rq->overloaded) {
128 		dl_clear_overload(rq_of_dl_rq(dl_rq));
129 		dl_rq->overloaded = 0;
130 	}
131 }
132 
133 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
134 {
135 	struct task_struct *p = dl_task_of(dl_se);
136 
137 	if (p->nr_cpus_allowed > 1)
138 		dl_rq->dl_nr_migratory++;
139 
140 	update_dl_migration(dl_rq);
141 }
142 
143 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
144 {
145 	struct task_struct *p = dl_task_of(dl_se);
146 
147 	if (p->nr_cpus_allowed > 1)
148 		dl_rq->dl_nr_migratory--;
149 
150 	update_dl_migration(dl_rq);
151 }
152 
153 /*
154  * The list of pushable -deadline task is not a plist, like in
155  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
156  */
157 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
158 {
159 	struct dl_rq *dl_rq = &rq->dl;
160 	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
161 	struct rb_node *parent = NULL;
162 	struct task_struct *entry;
163 	int leftmost = 1;
164 
165 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
166 
167 	while (*link) {
168 		parent = *link;
169 		entry = rb_entry(parent, struct task_struct,
170 				 pushable_dl_tasks);
171 		if (dl_entity_preempt(&p->dl, &entry->dl))
172 			link = &parent->rb_left;
173 		else {
174 			link = &parent->rb_right;
175 			leftmost = 0;
176 		}
177 	}
178 
179 	if (leftmost) {
180 		dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
181 		dl_rq->earliest_dl.next = p->dl.deadline;
182 	}
183 
184 	rb_link_node(&p->pushable_dl_tasks, parent, link);
185 	rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
186 }
187 
188 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
189 {
190 	struct dl_rq *dl_rq = &rq->dl;
191 
192 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
193 		return;
194 
195 	if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
196 		struct rb_node *next_node;
197 
198 		next_node = rb_next(&p->pushable_dl_tasks);
199 		dl_rq->pushable_dl_tasks_leftmost = next_node;
200 		if (next_node) {
201 			dl_rq->earliest_dl.next = rb_entry(next_node,
202 				struct task_struct, pushable_dl_tasks)->dl.deadline;
203 		}
204 	}
205 
206 	rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
207 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
208 }
209 
210 static inline int has_pushable_dl_tasks(struct rq *rq)
211 {
212 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
213 }
214 
215 static int push_dl_task(struct rq *rq);
216 
217 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
218 {
219 	return dl_task(prev);
220 }
221 
222 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
223 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
224 
225 static void push_dl_tasks(struct rq *);
226 static void pull_dl_task(struct rq *);
227 
228 static inline void queue_push_tasks(struct rq *rq)
229 {
230 	if (!has_pushable_dl_tasks(rq))
231 		return;
232 
233 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
234 }
235 
236 static inline void queue_pull_task(struct rq *rq)
237 {
238 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
239 }
240 
241 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
242 
243 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
244 {
245 	struct rq *later_rq = NULL;
246 	bool fallback = false;
247 
248 	later_rq = find_lock_later_rq(p, rq);
249 
250 	if (!later_rq) {
251 		int cpu;
252 
253 		/*
254 		 * If we cannot preempt any rq, fall back to pick any
255 		 * online cpu.
256 		 */
257 		fallback = true;
258 		cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
259 		if (cpu >= nr_cpu_ids) {
260 			/*
261 			 * Fail to find any suitable cpu.
262 			 * The task will never come back!
263 			 */
264 			BUG_ON(dl_bandwidth_enabled());
265 
266 			/*
267 			 * If admission control is disabled we
268 			 * try a little harder to let the task
269 			 * run.
270 			 */
271 			cpu = cpumask_any(cpu_active_mask);
272 		}
273 		later_rq = cpu_rq(cpu);
274 		double_lock_balance(rq, later_rq);
275 	}
276 
277 	/*
278 	 * By now the task is replenished and enqueued; migrate it.
279 	 */
280 	deactivate_task(rq, p, 0);
281 	set_task_cpu(p, later_rq->cpu);
282 	activate_task(later_rq, p, 0);
283 
284 	if (!fallback)
285 		resched_curr(later_rq);
286 
287 	double_unlock_balance(later_rq, rq);
288 
289 	return later_rq;
290 }
291 
292 #else
293 
294 static inline
295 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
296 {
297 }
298 
299 static inline
300 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
301 {
302 }
303 
304 static inline
305 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
306 {
307 }
308 
309 static inline
310 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
311 {
312 }
313 
314 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
315 {
316 	return false;
317 }
318 
319 static inline void pull_dl_task(struct rq *rq)
320 {
321 }
322 
323 static inline void queue_push_tasks(struct rq *rq)
324 {
325 }
326 
327 static inline void queue_pull_task(struct rq *rq)
328 {
329 }
330 #endif /* CONFIG_SMP */
331 
332 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
333 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
334 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
335 				  int flags);
336 
337 /*
338  * We are being explicitly informed that a new instance is starting,
339  * and this means that:
340  *  - the absolute deadline of the entity has to be placed at
341  *    current time + relative deadline;
342  *  - the runtime of the entity has to be set to the maximum value.
343  *
344  * The capability of specifying such event is useful whenever a -deadline
345  * entity wants to (try to!) synchronize its behaviour with the scheduler's
346  * one, and to (try to!) reconcile itself with its own scheduling
347  * parameters.
348  */
349 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
350 				       struct sched_dl_entity *pi_se)
351 {
352 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
353 	struct rq *rq = rq_of_dl_rq(dl_rq);
354 
355 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
356 
357 	/*
358 	 * We are racing with the deadline timer. So, do nothing because
359 	 * the deadline timer handler will take care of properly recharging
360 	 * the runtime and postponing the deadline
361 	 */
362 	if (dl_se->dl_throttled)
363 		return;
364 
365 	/*
366 	 * We use the regular wall clock time to set deadlines in the
367 	 * future; in fact, we must consider execution overheads (time
368 	 * spent on hardirq context, etc.).
369 	 */
370 	dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
371 	dl_se->runtime = pi_se->dl_runtime;
372 }
373 
374 /*
375  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
376  * possibility of a entity lasting more than what it declared, and thus
377  * exhausting its runtime.
378  *
379  * Here we are interested in making runtime overrun possible, but we do
380  * not want a entity which is misbehaving to affect the scheduling of all
381  * other entities.
382  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
383  * is used, in order to confine each entity within its own bandwidth.
384  *
385  * This function deals exactly with that, and ensures that when the runtime
386  * of a entity is replenished, its deadline is also postponed. That ensures
387  * the overrunning entity can't interfere with other entity in the system and
388  * can't make them miss their deadlines. Reasons why this kind of overruns
389  * could happen are, typically, a entity voluntarily trying to overcome its
390  * runtime, or it just underestimated it during sched_setattr().
391  */
392 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
393 				struct sched_dl_entity *pi_se)
394 {
395 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
396 	struct rq *rq = rq_of_dl_rq(dl_rq);
397 
398 	BUG_ON(pi_se->dl_runtime <= 0);
399 
400 	/*
401 	 * This could be the case for a !-dl task that is boosted.
402 	 * Just go with full inherited parameters.
403 	 */
404 	if (dl_se->dl_deadline == 0) {
405 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
406 		dl_se->runtime = pi_se->dl_runtime;
407 	}
408 
409 	if (dl_se->dl_yielded && dl_se->runtime > 0)
410 		dl_se->runtime = 0;
411 
412 	/*
413 	 * We keep moving the deadline away until we get some
414 	 * available runtime for the entity. This ensures correct
415 	 * handling of situations where the runtime overrun is
416 	 * arbitrary large.
417 	 */
418 	while (dl_se->runtime <= 0) {
419 		dl_se->deadline += pi_se->dl_period;
420 		dl_se->runtime += pi_se->dl_runtime;
421 	}
422 
423 	/*
424 	 * At this point, the deadline really should be "in
425 	 * the future" with respect to rq->clock. If it's
426 	 * not, we are, for some reason, lagging too much!
427 	 * Anyway, after having warn userspace abut that,
428 	 * we still try to keep the things running by
429 	 * resetting the deadline and the budget of the
430 	 * entity.
431 	 */
432 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
433 		printk_deferred_once("sched: DL replenish lagged too much\n");
434 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
435 		dl_se->runtime = pi_se->dl_runtime;
436 	}
437 
438 	if (dl_se->dl_yielded)
439 		dl_se->dl_yielded = 0;
440 	if (dl_se->dl_throttled)
441 		dl_se->dl_throttled = 0;
442 }
443 
444 /*
445  * Here we check if --at time t-- an entity (which is probably being
446  * [re]activated or, in general, enqueued) can use its remaining runtime
447  * and its current deadline _without_ exceeding the bandwidth it is
448  * assigned (function returns true if it can't). We are in fact applying
449  * one of the CBS rules: when a task wakes up, if the residual runtime
450  * over residual deadline fits within the allocated bandwidth, then we
451  * can keep the current (absolute) deadline and residual budget without
452  * disrupting the schedulability of the system. Otherwise, we should
453  * refill the runtime and set the deadline a period in the future,
454  * because keeping the current (absolute) deadline of the task would
455  * result in breaking guarantees promised to other tasks (refer to
456  * Documentation/scheduler/sched-deadline.txt for more informations).
457  *
458  * This function returns true if:
459  *
460  *   runtime / (deadline - t) > dl_runtime / dl_period ,
461  *
462  * IOW we can't recycle current parameters.
463  *
464  * Notice that the bandwidth check is done against the period. For
465  * task with deadline equal to period this is the same of using
466  * dl_deadline instead of dl_period in the equation above.
467  */
468 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
469 			       struct sched_dl_entity *pi_se, u64 t)
470 {
471 	u64 left, right;
472 
473 	/*
474 	 * left and right are the two sides of the equation above,
475 	 * after a bit of shuffling to use multiplications instead
476 	 * of divisions.
477 	 *
478 	 * Note that none of the time values involved in the two
479 	 * multiplications are absolute: dl_deadline and dl_runtime
480 	 * are the relative deadline and the maximum runtime of each
481 	 * instance, runtime is the runtime left for the last instance
482 	 * and (deadline - t), since t is rq->clock, is the time left
483 	 * to the (absolute) deadline. Even if overflowing the u64 type
484 	 * is very unlikely to occur in both cases, here we scale down
485 	 * as we want to avoid that risk at all. Scaling down by 10
486 	 * means that we reduce granularity to 1us. We are fine with it,
487 	 * since this is only a true/false check and, anyway, thinking
488 	 * of anything below microseconds resolution is actually fiction
489 	 * (but still we want to give the user that illusion >;).
490 	 */
491 	left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
492 	right = ((dl_se->deadline - t) >> DL_SCALE) *
493 		(pi_se->dl_runtime >> DL_SCALE);
494 
495 	return dl_time_before(right, left);
496 }
497 
498 /*
499  * When a -deadline entity is queued back on the runqueue, its runtime and
500  * deadline might need updating.
501  *
502  * The policy here is that we update the deadline of the entity only if:
503  *  - the current deadline is in the past,
504  *  - using the remaining runtime with the current deadline would make
505  *    the entity exceed its bandwidth.
506  */
507 static void update_dl_entity(struct sched_dl_entity *dl_se,
508 			     struct sched_dl_entity *pi_se)
509 {
510 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
511 	struct rq *rq = rq_of_dl_rq(dl_rq);
512 
513 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
514 	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
515 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
516 		dl_se->runtime = pi_se->dl_runtime;
517 	}
518 }
519 
520 /*
521  * If the entity depleted all its runtime, and if we want it to sleep
522  * while waiting for some new execution time to become available, we
523  * set the bandwidth enforcement timer to the replenishment instant
524  * and try to activate it.
525  *
526  * Notice that it is important for the caller to know if the timer
527  * actually started or not (i.e., the replenishment instant is in
528  * the future or in the past).
529  */
530 static int start_dl_timer(struct task_struct *p)
531 {
532 	struct sched_dl_entity *dl_se = &p->dl;
533 	struct hrtimer *timer = &dl_se->dl_timer;
534 	struct rq *rq = task_rq(p);
535 	ktime_t now, act;
536 	s64 delta;
537 
538 	lockdep_assert_held(&rq->lock);
539 
540 	/*
541 	 * We want the timer to fire at the deadline, but considering
542 	 * that it is actually coming from rq->clock and not from
543 	 * hrtimer's time base reading.
544 	 */
545 	act = ns_to_ktime(dl_se->deadline);
546 	now = hrtimer_cb_get_time(timer);
547 	delta = ktime_to_ns(now) - rq_clock(rq);
548 	act = ktime_add_ns(act, delta);
549 
550 	/*
551 	 * If the expiry time already passed, e.g., because the value
552 	 * chosen as the deadline is too small, don't even try to
553 	 * start the timer in the past!
554 	 */
555 	if (ktime_us_delta(act, now) < 0)
556 		return 0;
557 
558 	/*
559 	 * !enqueued will guarantee another callback; even if one is already in
560 	 * progress. This ensures a balanced {get,put}_task_struct().
561 	 *
562 	 * The race against __run_timer() clearing the enqueued state is
563 	 * harmless because we're holding task_rq()->lock, therefore the timer
564 	 * expiring after we've done the check will wait on its task_rq_lock()
565 	 * and observe our state.
566 	 */
567 	if (!hrtimer_is_queued(timer)) {
568 		get_task_struct(p);
569 		hrtimer_start(timer, act, HRTIMER_MODE_ABS);
570 	}
571 
572 	return 1;
573 }
574 
575 /*
576  * This is the bandwidth enforcement timer callback. If here, we know
577  * a task is not on its dl_rq, since the fact that the timer was running
578  * means the task is throttled and needs a runtime replenishment.
579  *
580  * However, what we actually do depends on the fact the task is active,
581  * (it is on its rq) or has been removed from there by a call to
582  * dequeue_task_dl(). In the former case we must issue the runtime
583  * replenishment and add the task back to the dl_rq; in the latter, we just
584  * do nothing but clearing dl_throttled, so that runtime and deadline
585  * updating (and the queueing back to dl_rq) will be done by the
586  * next call to enqueue_task_dl().
587  */
588 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
589 {
590 	struct sched_dl_entity *dl_se = container_of(timer,
591 						     struct sched_dl_entity,
592 						     dl_timer);
593 	struct task_struct *p = dl_task_of(dl_se);
594 	unsigned long flags;
595 	struct rq *rq;
596 
597 	rq = task_rq_lock(p, &flags);
598 
599 	/*
600 	 * The task might have changed its scheduling policy to something
601 	 * different than SCHED_DEADLINE (through switched_fromd_dl()).
602 	 */
603 	if (!dl_task(p)) {
604 		__dl_clear_params(p);
605 		goto unlock;
606 	}
607 
608 	/*
609 	 * The task might have been boosted by someone else and might be in the
610 	 * boosting/deboosting path, its not throttled.
611 	 */
612 	if (dl_se->dl_boosted)
613 		goto unlock;
614 
615 	/*
616 	 * Spurious timer due to start_dl_timer() race; or we already received
617 	 * a replenishment from rt_mutex_setprio().
618 	 */
619 	if (!dl_se->dl_throttled)
620 		goto unlock;
621 
622 	sched_clock_tick();
623 	update_rq_clock(rq);
624 
625 	/*
626 	 * If the throttle happened during sched-out; like:
627 	 *
628 	 *   schedule()
629 	 *     deactivate_task()
630 	 *       dequeue_task_dl()
631 	 *         update_curr_dl()
632 	 *           start_dl_timer()
633 	 *         __dequeue_task_dl()
634 	 *     prev->on_rq = 0;
635 	 *
636 	 * We can be both throttled and !queued. Replenish the counter
637 	 * but do not enqueue -- wait for our wakeup to do that.
638 	 */
639 	if (!task_on_rq_queued(p)) {
640 		replenish_dl_entity(dl_se, dl_se);
641 		goto unlock;
642 	}
643 
644 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
645 	if (dl_task(rq->curr))
646 		check_preempt_curr_dl(rq, p, 0);
647 	else
648 		resched_curr(rq);
649 
650 #ifdef CONFIG_SMP
651 	/*
652 	 * Perform balancing operations here; after the replenishments.  We
653 	 * cannot drop rq->lock before this, otherwise the assertion in
654 	 * start_dl_timer() about not missing updates is not true.
655 	 *
656 	 * If we find that the rq the task was on is no longer available, we
657 	 * need to select a new rq.
658 	 *
659 	 * XXX figure out if select_task_rq_dl() deals with offline cpus.
660 	 */
661 	if (unlikely(!rq->online))
662 		rq = dl_task_offline_migration(rq, p);
663 
664 	/*
665 	 * Queueing this task back might have overloaded rq, check if we need
666 	 * to kick someone away.
667 	 */
668 	if (has_pushable_dl_tasks(rq)) {
669 		/*
670 		 * Nothing relies on rq->lock after this, so its safe to drop
671 		 * rq->lock.
672 		 */
673 		lockdep_unpin_lock(&rq->lock);
674 		push_dl_task(rq);
675 		lockdep_pin_lock(&rq->lock);
676 	}
677 #endif
678 
679 unlock:
680 	task_rq_unlock(rq, p, &flags);
681 
682 	/*
683 	 * This can free the task_struct, including this hrtimer, do not touch
684 	 * anything related to that after this.
685 	 */
686 	put_task_struct(p);
687 
688 	return HRTIMER_NORESTART;
689 }
690 
691 void init_dl_task_timer(struct sched_dl_entity *dl_se)
692 {
693 	struct hrtimer *timer = &dl_se->dl_timer;
694 
695 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
696 	timer->function = dl_task_timer;
697 }
698 
699 static
700 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
701 {
702 	return (dl_se->runtime <= 0);
703 }
704 
705 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
706 
707 /*
708  * Update the current task's runtime statistics (provided it is still
709  * a -deadline task and has not been removed from the dl_rq).
710  */
711 static void update_curr_dl(struct rq *rq)
712 {
713 	struct task_struct *curr = rq->curr;
714 	struct sched_dl_entity *dl_se = &curr->dl;
715 	u64 delta_exec;
716 
717 	if (!dl_task(curr) || !on_dl_rq(dl_se))
718 		return;
719 
720 	/* Kick cpufreq (see the comment in linux/cpufreq.h). */
721 	if (cpu_of(rq) == smp_processor_id())
722 		cpufreq_trigger_update(rq_clock(rq));
723 
724 	/*
725 	 * Consumed budget is computed considering the time as
726 	 * observed by schedulable tasks (excluding time spent
727 	 * in hardirq context, etc.). Deadlines are instead
728 	 * computed using hard walltime. This seems to be the more
729 	 * natural solution, but the full ramifications of this
730 	 * approach need further study.
731 	 */
732 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
733 	if (unlikely((s64)delta_exec <= 0)) {
734 		if (unlikely(dl_se->dl_yielded))
735 			goto throttle;
736 		return;
737 	}
738 
739 	schedstat_set(curr->se.statistics.exec_max,
740 		      max(curr->se.statistics.exec_max, delta_exec));
741 
742 	curr->se.sum_exec_runtime += delta_exec;
743 	account_group_exec_runtime(curr, delta_exec);
744 
745 	curr->se.exec_start = rq_clock_task(rq);
746 	cpuacct_charge(curr, delta_exec);
747 
748 	sched_rt_avg_update(rq, delta_exec);
749 
750 	dl_se->runtime -= delta_exec;
751 
752 throttle:
753 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
754 		dl_se->dl_throttled = 1;
755 		__dequeue_task_dl(rq, curr, 0);
756 		if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
757 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
758 
759 		if (!is_leftmost(curr, &rq->dl))
760 			resched_curr(rq);
761 	}
762 
763 	/*
764 	 * Because -- for now -- we share the rt bandwidth, we need to
765 	 * account our runtime there too, otherwise actual rt tasks
766 	 * would be able to exceed the shared quota.
767 	 *
768 	 * Account to the root rt group for now.
769 	 *
770 	 * The solution we're working towards is having the RT groups scheduled
771 	 * using deadline servers -- however there's a few nasties to figure
772 	 * out before that can happen.
773 	 */
774 	if (rt_bandwidth_enabled()) {
775 		struct rt_rq *rt_rq = &rq->rt;
776 
777 		raw_spin_lock(&rt_rq->rt_runtime_lock);
778 		/*
779 		 * We'll let actual RT tasks worry about the overflow here, we
780 		 * have our own CBS to keep us inline; only account when RT
781 		 * bandwidth is relevant.
782 		 */
783 		if (sched_rt_bandwidth_account(rt_rq))
784 			rt_rq->rt_time += delta_exec;
785 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
786 	}
787 }
788 
789 #ifdef CONFIG_SMP
790 
791 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
792 {
793 	struct rq *rq = rq_of_dl_rq(dl_rq);
794 
795 	if (dl_rq->earliest_dl.curr == 0 ||
796 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
797 		dl_rq->earliest_dl.curr = deadline;
798 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
799 	}
800 }
801 
802 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
803 {
804 	struct rq *rq = rq_of_dl_rq(dl_rq);
805 
806 	/*
807 	 * Since we may have removed our earliest (and/or next earliest)
808 	 * task we must recompute them.
809 	 */
810 	if (!dl_rq->dl_nr_running) {
811 		dl_rq->earliest_dl.curr = 0;
812 		dl_rq->earliest_dl.next = 0;
813 		cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
814 	} else {
815 		struct rb_node *leftmost = dl_rq->rb_leftmost;
816 		struct sched_dl_entity *entry;
817 
818 		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
819 		dl_rq->earliest_dl.curr = entry->deadline;
820 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
821 	}
822 }
823 
824 #else
825 
826 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
827 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
828 
829 #endif /* CONFIG_SMP */
830 
831 static inline
832 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
833 {
834 	int prio = dl_task_of(dl_se)->prio;
835 	u64 deadline = dl_se->deadline;
836 
837 	WARN_ON(!dl_prio(prio));
838 	dl_rq->dl_nr_running++;
839 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
840 
841 	inc_dl_deadline(dl_rq, deadline);
842 	inc_dl_migration(dl_se, dl_rq);
843 }
844 
845 static inline
846 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
847 {
848 	int prio = dl_task_of(dl_se)->prio;
849 
850 	WARN_ON(!dl_prio(prio));
851 	WARN_ON(!dl_rq->dl_nr_running);
852 	dl_rq->dl_nr_running--;
853 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
854 
855 	dec_dl_deadline(dl_rq, dl_se->deadline);
856 	dec_dl_migration(dl_se, dl_rq);
857 }
858 
859 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
860 {
861 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
862 	struct rb_node **link = &dl_rq->rb_root.rb_node;
863 	struct rb_node *parent = NULL;
864 	struct sched_dl_entity *entry;
865 	int leftmost = 1;
866 
867 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
868 
869 	while (*link) {
870 		parent = *link;
871 		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
872 		if (dl_time_before(dl_se->deadline, entry->deadline))
873 			link = &parent->rb_left;
874 		else {
875 			link = &parent->rb_right;
876 			leftmost = 0;
877 		}
878 	}
879 
880 	if (leftmost)
881 		dl_rq->rb_leftmost = &dl_se->rb_node;
882 
883 	rb_link_node(&dl_se->rb_node, parent, link);
884 	rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
885 
886 	inc_dl_tasks(dl_se, dl_rq);
887 }
888 
889 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
890 {
891 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
892 
893 	if (RB_EMPTY_NODE(&dl_se->rb_node))
894 		return;
895 
896 	if (dl_rq->rb_leftmost == &dl_se->rb_node) {
897 		struct rb_node *next_node;
898 
899 		next_node = rb_next(&dl_se->rb_node);
900 		dl_rq->rb_leftmost = next_node;
901 	}
902 
903 	rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
904 	RB_CLEAR_NODE(&dl_se->rb_node);
905 
906 	dec_dl_tasks(dl_se, dl_rq);
907 }
908 
909 static void
910 enqueue_dl_entity(struct sched_dl_entity *dl_se,
911 		  struct sched_dl_entity *pi_se, int flags)
912 {
913 	BUG_ON(on_dl_rq(dl_se));
914 
915 	/*
916 	 * If this is a wakeup or a new instance, the scheduling
917 	 * parameters of the task might need updating. Otherwise,
918 	 * we want a replenishment of its runtime.
919 	 */
920 	if (flags & ENQUEUE_WAKEUP)
921 		update_dl_entity(dl_se, pi_se);
922 	else if (flags & ENQUEUE_REPLENISH)
923 		replenish_dl_entity(dl_se, pi_se);
924 
925 	__enqueue_dl_entity(dl_se);
926 }
927 
928 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
929 {
930 	__dequeue_dl_entity(dl_se);
931 }
932 
933 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
934 {
935 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
936 	struct sched_dl_entity *pi_se = &p->dl;
937 
938 	/*
939 	 * Use the scheduling parameters of the top pi-waiter
940 	 * task if we have one and its (absolute) deadline is
941 	 * smaller than our one... OTW we keep our runtime and
942 	 * deadline.
943 	 */
944 	if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
945 		pi_se = &pi_task->dl;
946 	} else if (!dl_prio(p->normal_prio)) {
947 		/*
948 		 * Special case in which we have a !SCHED_DEADLINE task
949 		 * that is going to be deboosted, but exceedes its
950 		 * runtime while doing so. No point in replenishing
951 		 * it, as it's going to return back to its original
952 		 * scheduling class after this.
953 		 */
954 		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
955 		return;
956 	}
957 
958 	/*
959 	 * If p is throttled, we do nothing. In fact, if it exhausted
960 	 * its budget it needs a replenishment and, since it now is on
961 	 * its rq, the bandwidth timer callback (which clearly has not
962 	 * run yet) will take care of this.
963 	 */
964 	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
965 		return;
966 
967 	enqueue_dl_entity(&p->dl, pi_se, flags);
968 
969 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
970 		enqueue_pushable_dl_task(rq, p);
971 }
972 
973 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
974 {
975 	dequeue_dl_entity(&p->dl);
976 	dequeue_pushable_dl_task(rq, p);
977 }
978 
979 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
980 {
981 	update_curr_dl(rq);
982 	__dequeue_task_dl(rq, p, flags);
983 }
984 
985 /*
986  * Yield task semantic for -deadline tasks is:
987  *
988  *   get off from the CPU until our next instance, with
989  *   a new runtime. This is of little use now, since we
990  *   don't have a bandwidth reclaiming mechanism. Anyway,
991  *   bandwidth reclaiming is planned for the future, and
992  *   yield_task_dl will indicate that some spare budget
993  *   is available for other task instances to use it.
994  */
995 static void yield_task_dl(struct rq *rq)
996 {
997 	/*
998 	 * We make the task go to sleep until its current deadline by
999 	 * forcing its runtime to zero. This way, update_curr_dl() stops
1000 	 * it and the bandwidth timer will wake it up and will give it
1001 	 * new scheduling parameters (thanks to dl_yielded=1).
1002 	 */
1003 	rq->curr->dl.dl_yielded = 1;
1004 
1005 	update_rq_clock(rq);
1006 	update_curr_dl(rq);
1007 	/*
1008 	 * Tell update_rq_clock() that we've just updated,
1009 	 * so we don't do microscopic update in schedule()
1010 	 * and double the fastpath cost.
1011 	 */
1012 	rq_clock_skip_update(rq, true);
1013 }
1014 
1015 #ifdef CONFIG_SMP
1016 
1017 static int find_later_rq(struct task_struct *task);
1018 
1019 static int
1020 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1021 {
1022 	struct task_struct *curr;
1023 	struct rq *rq;
1024 
1025 	if (sd_flag != SD_BALANCE_WAKE)
1026 		goto out;
1027 
1028 	rq = cpu_rq(cpu);
1029 
1030 	rcu_read_lock();
1031 	curr = READ_ONCE(rq->curr); /* unlocked access */
1032 
1033 	/*
1034 	 * If we are dealing with a -deadline task, we must
1035 	 * decide where to wake it up.
1036 	 * If it has a later deadline and the current task
1037 	 * on this rq can't move (provided the waking task
1038 	 * can!) we prefer to send it somewhere else. On the
1039 	 * other hand, if it has a shorter deadline, we
1040 	 * try to make it stay here, it might be important.
1041 	 */
1042 	if (unlikely(dl_task(curr)) &&
1043 	    (curr->nr_cpus_allowed < 2 ||
1044 	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1045 	    (p->nr_cpus_allowed > 1)) {
1046 		int target = find_later_rq(p);
1047 
1048 		if (target != -1 &&
1049 				(dl_time_before(p->dl.deadline,
1050 					cpu_rq(target)->dl.earliest_dl.curr) ||
1051 				(cpu_rq(target)->dl.dl_nr_running == 0)))
1052 			cpu = target;
1053 	}
1054 	rcu_read_unlock();
1055 
1056 out:
1057 	return cpu;
1058 }
1059 
1060 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1061 {
1062 	/*
1063 	 * Current can't be migrated, useless to reschedule,
1064 	 * let's hope p can move out.
1065 	 */
1066 	if (rq->curr->nr_cpus_allowed == 1 ||
1067 	    cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1068 		return;
1069 
1070 	/*
1071 	 * p is migratable, so let's not schedule it and
1072 	 * see if it is pushed or pulled somewhere else.
1073 	 */
1074 	if (p->nr_cpus_allowed != 1 &&
1075 	    cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1076 		return;
1077 
1078 	resched_curr(rq);
1079 }
1080 
1081 #endif /* CONFIG_SMP */
1082 
1083 /*
1084  * Only called when both the current and waking task are -deadline
1085  * tasks.
1086  */
1087 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1088 				  int flags)
1089 {
1090 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1091 		resched_curr(rq);
1092 		return;
1093 	}
1094 
1095 #ifdef CONFIG_SMP
1096 	/*
1097 	 * In the unlikely case current and p have the same deadline
1098 	 * let us try to decide what's the best thing to do...
1099 	 */
1100 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1101 	    !test_tsk_need_resched(rq->curr))
1102 		check_preempt_equal_dl(rq, p);
1103 #endif /* CONFIG_SMP */
1104 }
1105 
1106 #ifdef CONFIG_SCHED_HRTICK
1107 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1108 {
1109 	hrtick_start(rq, p->dl.runtime);
1110 }
1111 #else /* !CONFIG_SCHED_HRTICK */
1112 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1113 {
1114 }
1115 #endif
1116 
1117 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1118 						   struct dl_rq *dl_rq)
1119 {
1120 	struct rb_node *left = dl_rq->rb_leftmost;
1121 
1122 	if (!left)
1123 		return NULL;
1124 
1125 	return rb_entry(left, struct sched_dl_entity, rb_node);
1126 }
1127 
1128 struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
1129 {
1130 	struct sched_dl_entity *dl_se;
1131 	struct task_struct *p;
1132 	struct dl_rq *dl_rq;
1133 
1134 	dl_rq = &rq->dl;
1135 
1136 	if (need_pull_dl_task(rq, prev)) {
1137 		/*
1138 		 * This is OK, because current is on_cpu, which avoids it being
1139 		 * picked for load-balance and preemption/IRQs are still
1140 		 * disabled avoiding further scheduler activity on it and we're
1141 		 * being very careful to re-start the picking loop.
1142 		 */
1143 		lockdep_unpin_lock(&rq->lock);
1144 		pull_dl_task(rq);
1145 		lockdep_pin_lock(&rq->lock);
1146 		/*
1147 		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1148 		 * means a stop task can slip in, in which case we need to
1149 		 * re-start task selection.
1150 		 */
1151 		if (rq->stop && task_on_rq_queued(rq->stop))
1152 			return RETRY_TASK;
1153 	}
1154 
1155 	/*
1156 	 * When prev is DL, we may throttle it in put_prev_task().
1157 	 * So, we update time before we check for dl_nr_running.
1158 	 */
1159 	if (prev->sched_class == &dl_sched_class)
1160 		update_curr_dl(rq);
1161 
1162 	if (unlikely(!dl_rq->dl_nr_running))
1163 		return NULL;
1164 
1165 	put_prev_task(rq, prev);
1166 
1167 	dl_se = pick_next_dl_entity(rq, dl_rq);
1168 	BUG_ON(!dl_se);
1169 
1170 	p = dl_task_of(dl_se);
1171 	p->se.exec_start = rq_clock_task(rq);
1172 
1173 	/* Running task will never be pushed. */
1174        dequeue_pushable_dl_task(rq, p);
1175 
1176 	if (hrtick_enabled(rq))
1177 		start_hrtick_dl(rq, p);
1178 
1179 	queue_push_tasks(rq);
1180 
1181 	return p;
1182 }
1183 
1184 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1185 {
1186 	update_curr_dl(rq);
1187 
1188 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1189 		enqueue_pushable_dl_task(rq, p);
1190 }
1191 
1192 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1193 {
1194 	update_curr_dl(rq);
1195 
1196 	/*
1197 	 * Even when we have runtime, update_curr_dl() might have resulted in us
1198 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
1199 	 * be set and schedule() will start a new hrtick for the next task.
1200 	 */
1201 	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1202 	    is_leftmost(p, &rq->dl))
1203 		start_hrtick_dl(rq, p);
1204 }
1205 
1206 static void task_fork_dl(struct task_struct *p)
1207 {
1208 	/*
1209 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1210 	 * sched_fork()
1211 	 */
1212 }
1213 
1214 static void task_dead_dl(struct task_struct *p)
1215 {
1216 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1217 
1218 	/*
1219 	 * Since we are TASK_DEAD we won't slip out of the domain!
1220 	 */
1221 	raw_spin_lock_irq(&dl_b->lock);
1222 	/* XXX we should retain the bw until 0-lag */
1223 	dl_b->total_bw -= p->dl.dl_bw;
1224 	raw_spin_unlock_irq(&dl_b->lock);
1225 }
1226 
1227 static void set_curr_task_dl(struct rq *rq)
1228 {
1229 	struct task_struct *p = rq->curr;
1230 
1231 	p->se.exec_start = rq_clock_task(rq);
1232 
1233 	/* You can't push away the running task */
1234 	dequeue_pushable_dl_task(rq, p);
1235 }
1236 
1237 #ifdef CONFIG_SMP
1238 
1239 /* Only try algorithms three times */
1240 #define DL_MAX_TRIES 3
1241 
1242 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1243 {
1244 	if (!task_running(rq, p) &&
1245 	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1246 		return 1;
1247 	return 0;
1248 }
1249 
1250 /*
1251  * Return the earliest pushable rq's task, which is suitable to be executed
1252  * on the CPU, NULL otherwise:
1253  */
1254 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1255 {
1256 	struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
1257 	struct task_struct *p = NULL;
1258 
1259 	if (!has_pushable_dl_tasks(rq))
1260 		return NULL;
1261 
1262 next_node:
1263 	if (next_node) {
1264 		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1265 
1266 		if (pick_dl_task(rq, p, cpu))
1267 			return p;
1268 
1269 		next_node = rb_next(next_node);
1270 		goto next_node;
1271 	}
1272 
1273 	return NULL;
1274 }
1275 
1276 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1277 
1278 static int find_later_rq(struct task_struct *task)
1279 {
1280 	struct sched_domain *sd;
1281 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1282 	int this_cpu = smp_processor_id();
1283 	int best_cpu, cpu = task_cpu(task);
1284 
1285 	/* Make sure the mask is initialized first */
1286 	if (unlikely(!later_mask))
1287 		return -1;
1288 
1289 	if (task->nr_cpus_allowed == 1)
1290 		return -1;
1291 
1292 	/*
1293 	 * We have to consider system topology and task affinity
1294 	 * first, then we can look for a suitable cpu.
1295 	 */
1296 	best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1297 			task, later_mask);
1298 	if (best_cpu == -1)
1299 		return -1;
1300 
1301 	/*
1302 	 * If we are here, some target has been found,
1303 	 * the most suitable of which is cached in best_cpu.
1304 	 * This is, among the runqueues where the current tasks
1305 	 * have later deadlines than the task's one, the rq
1306 	 * with the latest possible one.
1307 	 *
1308 	 * Now we check how well this matches with task's
1309 	 * affinity and system topology.
1310 	 *
1311 	 * The last cpu where the task run is our first
1312 	 * guess, since it is most likely cache-hot there.
1313 	 */
1314 	if (cpumask_test_cpu(cpu, later_mask))
1315 		return cpu;
1316 	/*
1317 	 * Check if this_cpu is to be skipped (i.e., it is
1318 	 * not in the mask) or not.
1319 	 */
1320 	if (!cpumask_test_cpu(this_cpu, later_mask))
1321 		this_cpu = -1;
1322 
1323 	rcu_read_lock();
1324 	for_each_domain(cpu, sd) {
1325 		if (sd->flags & SD_WAKE_AFFINE) {
1326 
1327 			/*
1328 			 * If possible, preempting this_cpu is
1329 			 * cheaper than migrating.
1330 			 */
1331 			if (this_cpu != -1 &&
1332 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1333 				rcu_read_unlock();
1334 				return this_cpu;
1335 			}
1336 
1337 			/*
1338 			 * Last chance: if best_cpu is valid and is
1339 			 * in the mask, that becomes our choice.
1340 			 */
1341 			if (best_cpu < nr_cpu_ids &&
1342 			    cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1343 				rcu_read_unlock();
1344 				return best_cpu;
1345 			}
1346 		}
1347 	}
1348 	rcu_read_unlock();
1349 
1350 	/*
1351 	 * At this point, all our guesses failed, we just return
1352 	 * 'something', and let the caller sort the things out.
1353 	 */
1354 	if (this_cpu != -1)
1355 		return this_cpu;
1356 
1357 	cpu = cpumask_any(later_mask);
1358 	if (cpu < nr_cpu_ids)
1359 		return cpu;
1360 
1361 	return -1;
1362 }
1363 
1364 /* Locks the rq it finds */
1365 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1366 {
1367 	struct rq *later_rq = NULL;
1368 	int tries;
1369 	int cpu;
1370 
1371 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1372 		cpu = find_later_rq(task);
1373 
1374 		if ((cpu == -1) || (cpu == rq->cpu))
1375 			break;
1376 
1377 		later_rq = cpu_rq(cpu);
1378 
1379 		if (later_rq->dl.dl_nr_running &&
1380 		    !dl_time_before(task->dl.deadline,
1381 					later_rq->dl.earliest_dl.curr)) {
1382 			/*
1383 			 * Target rq has tasks of equal or earlier deadline,
1384 			 * retrying does not release any lock and is unlikely
1385 			 * to yield a different result.
1386 			 */
1387 			later_rq = NULL;
1388 			break;
1389 		}
1390 
1391 		/* Retry if something changed. */
1392 		if (double_lock_balance(rq, later_rq)) {
1393 			if (unlikely(task_rq(task) != rq ||
1394 				     !cpumask_test_cpu(later_rq->cpu,
1395 				                       &task->cpus_allowed) ||
1396 				     task_running(rq, task) ||
1397 				     !task_on_rq_queued(task))) {
1398 				double_unlock_balance(rq, later_rq);
1399 				later_rq = NULL;
1400 				break;
1401 			}
1402 		}
1403 
1404 		/*
1405 		 * If the rq we found has no -deadline task, or
1406 		 * its earliest one has a later deadline than our
1407 		 * task, the rq is a good one.
1408 		 */
1409 		if (!later_rq->dl.dl_nr_running ||
1410 		    dl_time_before(task->dl.deadline,
1411 				   later_rq->dl.earliest_dl.curr))
1412 			break;
1413 
1414 		/* Otherwise we try again. */
1415 		double_unlock_balance(rq, later_rq);
1416 		later_rq = NULL;
1417 	}
1418 
1419 	return later_rq;
1420 }
1421 
1422 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1423 {
1424 	struct task_struct *p;
1425 
1426 	if (!has_pushable_dl_tasks(rq))
1427 		return NULL;
1428 
1429 	p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1430 		     struct task_struct, pushable_dl_tasks);
1431 
1432 	BUG_ON(rq->cpu != task_cpu(p));
1433 	BUG_ON(task_current(rq, p));
1434 	BUG_ON(p->nr_cpus_allowed <= 1);
1435 
1436 	BUG_ON(!task_on_rq_queued(p));
1437 	BUG_ON(!dl_task(p));
1438 
1439 	return p;
1440 }
1441 
1442 /*
1443  * See if the non running -deadline tasks on this rq
1444  * can be sent to some other CPU where they can preempt
1445  * and start executing.
1446  */
1447 static int push_dl_task(struct rq *rq)
1448 {
1449 	struct task_struct *next_task;
1450 	struct rq *later_rq;
1451 	int ret = 0;
1452 
1453 	if (!rq->dl.overloaded)
1454 		return 0;
1455 
1456 	next_task = pick_next_pushable_dl_task(rq);
1457 	if (!next_task)
1458 		return 0;
1459 
1460 retry:
1461 	if (unlikely(next_task == rq->curr)) {
1462 		WARN_ON(1);
1463 		return 0;
1464 	}
1465 
1466 	/*
1467 	 * If next_task preempts rq->curr, and rq->curr
1468 	 * can move away, it makes sense to just reschedule
1469 	 * without going further in pushing next_task.
1470 	 */
1471 	if (dl_task(rq->curr) &&
1472 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1473 	    rq->curr->nr_cpus_allowed > 1) {
1474 		resched_curr(rq);
1475 		return 0;
1476 	}
1477 
1478 	/* We might release rq lock */
1479 	get_task_struct(next_task);
1480 
1481 	/* Will lock the rq it'll find */
1482 	later_rq = find_lock_later_rq(next_task, rq);
1483 	if (!later_rq) {
1484 		struct task_struct *task;
1485 
1486 		/*
1487 		 * We must check all this again, since
1488 		 * find_lock_later_rq releases rq->lock and it is
1489 		 * then possible that next_task has migrated.
1490 		 */
1491 		task = pick_next_pushable_dl_task(rq);
1492 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1493 			/*
1494 			 * The task is still there. We don't try
1495 			 * again, some other cpu will pull it when ready.
1496 			 */
1497 			goto out;
1498 		}
1499 
1500 		if (!task)
1501 			/* No more tasks */
1502 			goto out;
1503 
1504 		put_task_struct(next_task);
1505 		next_task = task;
1506 		goto retry;
1507 	}
1508 
1509 	deactivate_task(rq, next_task, 0);
1510 	set_task_cpu(next_task, later_rq->cpu);
1511 	activate_task(later_rq, next_task, 0);
1512 	ret = 1;
1513 
1514 	resched_curr(later_rq);
1515 
1516 	double_unlock_balance(rq, later_rq);
1517 
1518 out:
1519 	put_task_struct(next_task);
1520 
1521 	return ret;
1522 }
1523 
1524 static void push_dl_tasks(struct rq *rq)
1525 {
1526 	/* push_dl_task() will return true if it moved a -deadline task */
1527 	while (push_dl_task(rq))
1528 		;
1529 }
1530 
1531 static void pull_dl_task(struct rq *this_rq)
1532 {
1533 	int this_cpu = this_rq->cpu, cpu;
1534 	struct task_struct *p;
1535 	bool resched = false;
1536 	struct rq *src_rq;
1537 	u64 dmin = LONG_MAX;
1538 
1539 	if (likely(!dl_overloaded(this_rq)))
1540 		return;
1541 
1542 	/*
1543 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
1544 	 * see overloaded we must also see the dlo_mask bit.
1545 	 */
1546 	smp_rmb();
1547 
1548 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1549 		if (this_cpu == cpu)
1550 			continue;
1551 
1552 		src_rq = cpu_rq(cpu);
1553 
1554 		/*
1555 		 * It looks racy, abd it is! However, as in sched_rt.c,
1556 		 * we are fine with this.
1557 		 */
1558 		if (this_rq->dl.dl_nr_running &&
1559 		    dl_time_before(this_rq->dl.earliest_dl.curr,
1560 				   src_rq->dl.earliest_dl.next))
1561 			continue;
1562 
1563 		/* Might drop this_rq->lock */
1564 		double_lock_balance(this_rq, src_rq);
1565 
1566 		/*
1567 		 * If there are no more pullable tasks on the
1568 		 * rq, we're done with it.
1569 		 */
1570 		if (src_rq->dl.dl_nr_running <= 1)
1571 			goto skip;
1572 
1573 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1574 
1575 		/*
1576 		 * We found a task to be pulled if:
1577 		 *  - it preempts our current (if there's one),
1578 		 *  - it will preempt the last one we pulled (if any).
1579 		 */
1580 		if (p && dl_time_before(p->dl.deadline, dmin) &&
1581 		    (!this_rq->dl.dl_nr_running ||
1582 		     dl_time_before(p->dl.deadline,
1583 				    this_rq->dl.earliest_dl.curr))) {
1584 			WARN_ON(p == src_rq->curr);
1585 			WARN_ON(!task_on_rq_queued(p));
1586 
1587 			/*
1588 			 * Then we pull iff p has actually an earlier
1589 			 * deadline than the current task of its runqueue.
1590 			 */
1591 			if (dl_time_before(p->dl.deadline,
1592 					   src_rq->curr->dl.deadline))
1593 				goto skip;
1594 
1595 			resched = true;
1596 
1597 			deactivate_task(src_rq, p, 0);
1598 			set_task_cpu(p, this_cpu);
1599 			activate_task(this_rq, p, 0);
1600 			dmin = p->dl.deadline;
1601 
1602 			/* Is there any other task even earlier? */
1603 		}
1604 skip:
1605 		double_unlock_balance(this_rq, src_rq);
1606 	}
1607 
1608 	if (resched)
1609 		resched_curr(this_rq);
1610 }
1611 
1612 /*
1613  * Since the task is not running and a reschedule is not going to happen
1614  * anytime soon on its runqueue, we try pushing it away now.
1615  */
1616 static void task_woken_dl(struct rq *rq, struct task_struct *p)
1617 {
1618 	if (!task_running(rq, p) &&
1619 	    !test_tsk_need_resched(rq->curr) &&
1620 	    p->nr_cpus_allowed > 1 &&
1621 	    dl_task(rq->curr) &&
1622 	    (rq->curr->nr_cpus_allowed < 2 ||
1623 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1624 		push_dl_tasks(rq);
1625 	}
1626 }
1627 
1628 static void set_cpus_allowed_dl(struct task_struct *p,
1629 				const struct cpumask *new_mask)
1630 {
1631 	struct root_domain *src_rd;
1632 	struct rq *rq;
1633 
1634 	BUG_ON(!dl_task(p));
1635 
1636 	rq = task_rq(p);
1637 	src_rd = rq->rd;
1638 	/*
1639 	 * Migrating a SCHED_DEADLINE task between exclusive
1640 	 * cpusets (different root_domains) entails a bandwidth
1641 	 * update. We already made space for us in the destination
1642 	 * domain (see cpuset_can_attach()).
1643 	 */
1644 	if (!cpumask_intersects(src_rd->span, new_mask)) {
1645 		struct dl_bw *src_dl_b;
1646 
1647 		src_dl_b = dl_bw_of(cpu_of(rq));
1648 		/*
1649 		 * We now free resources of the root_domain we are migrating
1650 		 * off. In the worst case, sched_setattr() may temporary fail
1651 		 * until we complete the update.
1652 		 */
1653 		raw_spin_lock(&src_dl_b->lock);
1654 		__dl_clear(src_dl_b, p->dl.dl_bw);
1655 		raw_spin_unlock(&src_dl_b->lock);
1656 	}
1657 
1658 	set_cpus_allowed_common(p, new_mask);
1659 }
1660 
1661 /* Assumes rq->lock is held */
1662 static void rq_online_dl(struct rq *rq)
1663 {
1664 	if (rq->dl.overloaded)
1665 		dl_set_overload(rq);
1666 
1667 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
1668 	if (rq->dl.dl_nr_running > 0)
1669 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1670 }
1671 
1672 /* Assumes rq->lock is held */
1673 static void rq_offline_dl(struct rq *rq)
1674 {
1675 	if (rq->dl.overloaded)
1676 		dl_clear_overload(rq);
1677 
1678 	cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1679 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1680 }
1681 
1682 void __init init_sched_dl_class(void)
1683 {
1684 	unsigned int i;
1685 
1686 	for_each_possible_cpu(i)
1687 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1688 					GFP_KERNEL, cpu_to_node(i));
1689 }
1690 
1691 #endif /* CONFIG_SMP */
1692 
1693 static void switched_from_dl(struct rq *rq, struct task_struct *p)
1694 {
1695 	/*
1696 	 * Start the deadline timer; if we switch back to dl before this we'll
1697 	 * continue consuming our current CBS slice. If we stay outside of
1698 	 * SCHED_DEADLINE until the deadline passes, the timer will reset the
1699 	 * task.
1700 	 */
1701 	if (!start_dl_timer(p))
1702 		__dl_clear_params(p);
1703 
1704 	/*
1705 	 * Since this might be the only -deadline task on the rq,
1706 	 * this is the right place to try to pull some other one
1707 	 * from an overloaded cpu, if any.
1708 	 */
1709 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1710 		return;
1711 
1712 	queue_pull_task(rq);
1713 }
1714 
1715 /*
1716  * When switching to -deadline, we may overload the rq, then
1717  * we try to push someone off, if possible.
1718  */
1719 static void switched_to_dl(struct rq *rq, struct task_struct *p)
1720 {
1721 	if (dl_time_before(p->dl.deadline, rq_clock(rq)))
1722 		setup_new_dl_entity(&p->dl, &p->dl);
1723 
1724 	if (task_on_rq_queued(p) && rq->curr != p) {
1725 #ifdef CONFIG_SMP
1726 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
1727 			queue_push_tasks(rq);
1728 #else
1729 		if (dl_task(rq->curr))
1730 			check_preempt_curr_dl(rq, p, 0);
1731 		else
1732 			resched_curr(rq);
1733 #endif
1734 	}
1735 }
1736 
1737 /*
1738  * If the scheduling parameters of a -deadline task changed,
1739  * a push or pull operation might be needed.
1740  */
1741 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1742 			    int oldprio)
1743 {
1744 	if (task_on_rq_queued(p) || rq->curr == p) {
1745 #ifdef CONFIG_SMP
1746 		/*
1747 		 * This might be too much, but unfortunately
1748 		 * we don't have the old deadline value, and
1749 		 * we can't argue if the task is increasing
1750 		 * or lowering its prio, so...
1751 		 */
1752 		if (!rq->dl.overloaded)
1753 			queue_pull_task(rq);
1754 
1755 		/*
1756 		 * If we now have a earlier deadline task than p,
1757 		 * then reschedule, provided p is still on this
1758 		 * runqueue.
1759 		 */
1760 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
1761 			resched_curr(rq);
1762 #else
1763 		/*
1764 		 * Again, we don't know if p has a earlier
1765 		 * or later deadline, so let's blindly set a
1766 		 * (maybe not needed) rescheduling point.
1767 		 */
1768 		resched_curr(rq);
1769 #endif /* CONFIG_SMP */
1770 	}
1771 }
1772 
1773 const struct sched_class dl_sched_class = {
1774 	.next			= &rt_sched_class,
1775 	.enqueue_task		= enqueue_task_dl,
1776 	.dequeue_task		= dequeue_task_dl,
1777 	.yield_task		= yield_task_dl,
1778 
1779 	.check_preempt_curr	= check_preempt_curr_dl,
1780 
1781 	.pick_next_task		= pick_next_task_dl,
1782 	.put_prev_task		= put_prev_task_dl,
1783 
1784 #ifdef CONFIG_SMP
1785 	.select_task_rq		= select_task_rq_dl,
1786 	.set_cpus_allowed       = set_cpus_allowed_dl,
1787 	.rq_online              = rq_online_dl,
1788 	.rq_offline             = rq_offline_dl,
1789 	.task_woken		= task_woken_dl,
1790 #endif
1791 
1792 	.set_curr_task		= set_curr_task_dl,
1793 	.task_tick		= task_tick_dl,
1794 	.task_fork              = task_fork_dl,
1795 	.task_dead		= task_dead_dl,
1796 
1797 	.prio_changed           = prio_changed_dl,
1798 	.switched_from		= switched_from_dl,
1799 	.switched_to		= switched_to_dl,
1800 
1801 	.update_curr		= update_curr_dl,
1802 };
1803 
1804 #ifdef CONFIG_SCHED_DEBUG
1805 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1806 
1807 void print_dl_stats(struct seq_file *m, int cpu)
1808 {
1809 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1810 }
1811 #endif /* CONFIG_SCHED_DEBUG */
1812