1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Deadline Scheduling Class (SCHED_DEADLINE) 4 * 5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 6 * 7 * Tasks that periodically executes their instances for less than their 8 * runtime won't miss any of their deadlines. 9 * Tasks that are not periodic or sporadic or that tries to execute more 10 * than their reserved bandwidth will be slowed down (and may potentially 11 * miss some of their deadlines), and won't affect any other task. 12 * 13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 14 * Juri Lelli <juri.lelli@gmail.com>, 15 * Michael Trimarchi <michael@amarulasolutions.com>, 16 * Fabio Checconi <fchecconi@gmail.com> 17 */ 18 #include "sched.h" 19 20 #include <linux/slab.h> 21 #include <uapi/linux/sched/types.h> 22 23 struct dl_bandwidth def_dl_bandwidth; 24 25 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 26 { 27 return container_of(dl_se, struct task_struct, dl); 28 } 29 30 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 31 { 32 return container_of(dl_rq, struct rq, dl); 33 } 34 35 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 36 { 37 struct task_struct *p = dl_task_of(dl_se); 38 struct rq *rq = task_rq(p); 39 40 return &rq->dl; 41 } 42 43 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 44 { 45 return !RB_EMPTY_NODE(&dl_se->rb_node); 46 } 47 48 #ifdef CONFIG_SMP 49 static inline struct dl_bw *dl_bw_of(int i) 50 { 51 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 52 "sched RCU must be held"); 53 return &cpu_rq(i)->rd->dl_bw; 54 } 55 56 static inline int dl_bw_cpus(int i) 57 { 58 struct root_domain *rd = cpu_rq(i)->rd; 59 int cpus = 0; 60 61 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 62 "sched RCU must be held"); 63 for_each_cpu_and(i, rd->span, cpu_active_mask) 64 cpus++; 65 66 return cpus; 67 } 68 #else 69 static inline struct dl_bw *dl_bw_of(int i) 70 { 71 return &cpu_rq(i)->dl.dl_bw; 72 } 73 74 static inline int dl_bw_cpus(int i) 75 { 76 return 1; 77 } 78 #endif 79 80 static inline 81 void add_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 82 { 83 u64 old = dl_rq->running_bw; 84 85 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 86 dl_rq->running_bw += dl_bw; 87 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */ 88 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 89 } 90 91 static inline 92 void sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 93 { 94 u64 old = dl_rq->running_bw; 95 96 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 97 dl_rq->running_bw -= dl_bw; 98 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */ 99 if (dl_rq->running_bw > old) 100 dl_rq->running_bw = 0; 101 } 102 103 static inline 104 void add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 105 { 106 u64 old = dl_rq->this_bw; 107 108 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 109 dl_rq->this_bw += dl_bw; 110 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */ 111 } 112 113 static inline 114 void sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 115 { 116 u64 old = dl_rq->this_bw; 117 118 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 119 dl_rq->this_bw -= dl_bw; 120 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */ 121 if (dl_rq->this_bw > old) 122 dl_rq->this_bw = 0; 123 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 124 } 125 126 void dl_change_utilization(struct task_struct *p, u64 new_bw) 127 { 128 struct rq *rq; 129 130 if (task_on_rq_queued(p)) 131 return; 132 133 rq = task_rq(p); 134 if (p->dl.dl_non_contending) { 135 sub_running_bw(p->dl.dl_bw, &rq->dl); 136 p->dl.dl_non_contending = 0; 137 /* 138 * If the timer handler is currently running and the 139 * timer cannot be cancelled, inactive_task_timer() 140 * will see that dl_not_contending is not set, and 141 * will not touch the rq's active utilization, 142 * so we are still safe. 143 */ 144 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 145 put_task_struct(p); 146 } 147 sub_rq_bw(p->dl.dl_bw, &rq->dl); 148 add_rq_bw(new_bw, &rq->dl); 149 } 150 151 /* 152 * The utilization of a task cannot be immediately removed from 153 * the rq active utilization (running_bw) when the task blocks. 154 * Instead, we have to wait for the so called "0-lag time". 155 * 156 * If a task blocks before the "0-lag time", a timer (the inactive 157 * timer) is armed, and running_bw is decreased when the timer 158 * fires. 159 * 160 * If the task wakes up again before the inactive timer fires, 161 * the timer is cancelled, whereas if the task wakes up after the 162 * inactive timer fired (and running_bw has been decreased) the 163 * task's utilization has to be added to running_bw again. 164 * A flag in the deadline scheduling entity (dl_non_contending) 165 * is used to avoid race conditions between the inactive timer handler 166 * and task wakeups. 167 * 168 * The following diagram shows how running_bw is updated. A task is 169 * "ACTIVE" when its utilization contributes to running_bw; an 170 * "ACTIVE contending" task is in the TASK_RUNNING state, while an 171 * "ACTIVE non contending" task is a blocked task for which the "0-lag time" 172 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag" 173 * time already passed, which does not contribute to running_bw anymore. 174 * +------------------+ 175 * wakeup | ACTIVE | 176 * +------------------>+ contending | 177 * | add_running_bw | | 178 * | +----+------+------+ 179 * | | ^ 180 * | dequeue | | 181 * +--------+-------+ | | 182 * | | t >= 0-lag | | wakeup 183 * | INACTIVE |<---------------+ | 184 * | | sub_running_bw | | 185 * +--------+-------+ | | 186 * ^ | | 187 * | t < 0-lag | | 188 * | | | 189 * | V | 190 * | +----+------+------+ 191 * | sub_running_bw | ACTIVE | 192 * +-------------------+ | 193 * inactive timer | non contending | 194 * fired +------------------+ 195 * 196 * The task_non_contending() function is invoked when a task 197 * blocks, and checks if the 0-lag time already passed or 198 * not (in the first case, it directly updates running_bw; 199 * in the second case, it arms the inactive timer). 200 * 201 * The task_contending() function is invoked when a task wakes 202 * up, and checks if the task is still in the "ACTIVE non contending" 203 * state or not (in the second case, it updates running_bw). 204 */ 205 static void task_non_contending(struct task_struct *p) 206 { 207 struct sched_dl_entity *dl_se = &p->dl; 208 struct hrtimer *timer = &dl_se->inactive_timer; 209 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 210 struct rq *rq = rq_of_dl_rq(dl_rq); 211 s64 zerolag_time; 212 213 /* 214 * If this is a non-deadline task that has been boosted, 215 * do nothing 216 */ 217 if (dl_se->dl_runtime == 0) 218 return; 219 220 WARN_ON(hrtimer_active(&dl_se->inactive_timer)); 221 WARN_ON(dl_se->dl_non_contending); 222 223 zerolag_time = dl_se->deadline - 224 div64_long((dl_se->runtime * dl_se->dl_period), 225 dl_se->dl_runtime); 226 227 /* 228 * Using relative times instead of the absolute "0-lag time" 229 * allows to simplify the code 230 */ 231 zerolag_time -= rq_clock(rq); 232 233 /* 234 * If the "0-lag time" already passed, decrease the active 235 * utilization now, instead of starting a timer 236 */ 237 if (zerolag_time < 0) { 238 if (dl_task(p)) 239 sub_running_bw(dl_se->dl_bw, dl_rq); 240 if (!dl_task(p) || p->state == TASK_DEAD) { 241 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 242 243 if (p->state == TASK_DEAD) 244 sub_rq_bw(p->dl.dl_bw, &rq->dl); 245 raw_spin_lock(&dl_b->lock); 246 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 247 __dl_clear_params(p); 248 raw_spin_unlock(&dl_b->lock); 249 } 250 251 return; 252 } 253 254 dl_se->dl_non_contending = 1; 255 get_task_struct(p); 256 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL); 257 } 258 259 static void task_contending(struct sched_dl_entity *dl_se, int flags) 260 { 261 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 262 263 /* 264 * If this is a non-deadline task that has been boosted, 265 * do nothing 266 */ 267 if (dl_se->dl_runtime == 0) 268 return; 269 270 if (flags & ENQUEUE_MIGRATED) 271 add_rq_bw(dl_se->dl_bw, dl_rq); 272 273 if (dl_se->dl_non_contending) { 274 dl_se->dl_non_contending = 0; 275 /* 276 * If the timer handler is currently running and the 277 * timer cannot be cancelled, inactive_task_timer() 278 * will see that dl_not_contending is not set, and 279 * will not touch the rq's active utilization, 280 * so we are still safe. 281 */ 282 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) 283 put_task_struct(dl_task_of(dl_se)); 284 } else { 285 /* 286 * Since "dl_non_contending" is not set, the 287 * task's utilization has already been removed from 288 * active utilization (either when the task blocked, 289 * when the "inactive timer" fired). 290 * So, add it back. 291 */ 292 add_running_bw(dl_se->dl_bw, dl_rq); 293 } 294 } 295 296 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) 297 { 298 struct sched_dl_entity *dl_se = &p->dl; 299 300 return dl_rq->root.rb_leftmost == &dl_se->rb_node; 301 } 302 303 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) 304 { 305 raw_spin_lock_init(&dl_b->dl_runtime_lock); 306 dl_b->dl_period = period; 307 dl_b->dl_runtime = runtime; 308 } 309 310 void init_dl_bw(struct dl_bw *dl_b) 311 { 312 raw_spin_lock_init(&dl_b->lock); 313 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock); 314 if (global_rt_runtime() == RUNTIME_INF) 315 dl_b->bw = -1; 316 else 317 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 318 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock); 319 dl_b->total_bw = 0; 320 } 321 322 void init_dl_rq(struct dl_rq *dl_rq) 323 { 324 dl_rq->root = RB_ROOT_CACHED; 325 326 #ifdef CONFIG_SMP 327 /* zero means no -deadline tasks */ 328 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 329 330 dl_rq->dl_nr_migratory = 0; 331 dl_rq->overloaded = 0; 332 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED; 333 #else 334 init_dl_bw(&dl_rq->dl_bw); 335 #endif 336 337 dl_rq->running_bw = 0; 338 dl_rq->this_bw = 0; 339 init_dl_rq_bw_ratio(dl_rq); 340 } 341 342 #ifdef CONFIG_SMP 343 344 static inline int dl_overloaded(struct rq *rq) 345 { 346 return atomic_read(&rq->rd->dlo_count); 347 } 348 349 static inline void dl_set_overload(struct rq *rq) 350 { 351 if (!rq->online) 352 return; 353 354 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 355 /* 356 * Must be visible before the overload count is 357 * set (as in sched_rt.c). 358 * 359 * Matched by the barrier in pull_dl_task(). 360 */ 361 smp_wmb(); 362 atomic_inc(&rq->rd->dlo_count); 363 } 364 365 static inline void dl_clear_overload(struct rq *rq) 366 { 367 if (!rq->online) 368 return; 369 370 atomic_dec(&rq->rd->dlo_count); 371 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 372 } 373 374 static void update_dl_migration(struct dl_rq *dl_rq) 375 { 376 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { 377 if (!dl_rq->overloaded) { 378 dl_set_overload(rq_of_dl_rq(dl_rq)); 379 dl_rq->overloaded = 1; 380 } 381 } else if (dl_rq->overloaded) { 382 dl_clear_overload(rq_of_dl_rq(dl_rq)); 383 dl_rq->overloaded = 0; 384 } 385 } 386 387 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 388 { 389 struct task_struct *p = dl_task_of(dl_se); 390 391 if (p->nr_cpus_allowed > 1) 392 dl_rq->dl_nr_migratory++; 393 394 update_dl_migration(dl_rq); 395 } 396 397 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 398 { 399 struct task_struct *p = dl_task_of(dl_se); 400 401 if (p->nr_cpus_allowed > 1) 402 dl_rq->dl_nr_migratory--; 403 404 update_dl_migration(dl_rq); 405 } 406 407 /* 408 * The list of pushable -deadline task is not a plist, like in 409 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 410 */ 411 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 412 { 413 struct dl_rq *dl_rq = &rq->dl; 414 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node; 415 struct rb_node *parent = NULL; 416 struct task_struct *entry; 417 bool leftmost = true; 418 419 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 420 421 while (*link) { 422 parent = *link; 423 entry = rb_entry(parent, struct task_struct, 424 pushable_dl_tasks); 425 if (dl_entity_preempt(&p->dl, &entry->dl)) 426 link = &parent->rb_left; 427 else { 428 link = &parent->rb_right; 429 leftmost = false; 430 } 431 } 432 433 if (leftmost) 434 dl_rq->earliest_dl.next = p->dl.deadline; 435 436 rb_link_node(&p->pushable_dl_tasks, parent, link); 437 rb_insert_color_cached(&p->pushable_dl_tasks, 438 &dl_rq->pushable_dl_tasks_root, leftmost); 439 } 440 441 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 442 { 443 struct dl_rq *dl_rq = &rq->dl; 444 445 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 446 return; 447 448 if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) { 449 struct rb_node *next_node; 450 451 next_node = rb_next(&p->pushable_dl_tasks); 452 if (next_node) { 453 dl_rq->earliest_dl.next = rb_entry(next_node, 454 struct task_struct, pushable_dl_tasks)->dl.deadline; 455 } 456 } 457 458 rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 459 RB_CLEAR_NODE(&p->pushable_dl_tasks); 460 } 461 462 static inline int has_pushable_dl_tasks(struct rq *rq) 463 { 464 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root); 465 } 466 467 static int push_dl_task(struct rq *rq); 468 469 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 470 { 471 return dl_task(prev); 472 } 473 474 static DEFINE_PER_CPU(struct callback_head, dl_push_head); 475 static DEFINE_PER_CPU(struct callback_head, dl_pull_head); 476 477 static void push_dl_tasks(struct rq *); 478 static void pull_dl_task(struct rq *); 479 480 static inline void queue_push_tasks(struct rq *rq) 481 { 482 if (!has_pushable_dl_tasks(rq)) 483 return; 484 485 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); 486 } 487 488 static inline void queue_pull_task(struct rq *rq) 489 { 490 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); 491 } 492 493 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); 494 495 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) 496 { 497 struct rq *later_rq = NULL; 498 499 later_rq = find_lock_later_rq(p, rq); 500 if (!later_rq) { 501 int cpu; 502 503 /* 504 * If we cannot preempt any rq, fall back to pick any 505 * online cpu. 506 */ 507 cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed); 508 if (cpu >= nr_cpu_ids) { 509 /* 510 * Fail to find any suitable cpu. 511 * The task will never come back! 512 */ 513 BUG_ON(dl_bandwidth_enabled()); 514 515 /* 516 * If admission control is disabled we 517 * try a little harder to let the task 518 * run. 519 */ 520 cpu = cpumask_any(cpu_active_mask); 521 } 522 later_rq = cpu_rq(cpu); 523 double_lock_balance(rq, later_rq); 524 } 525 526 set_task_cpu(p, later_rq->cpu); 527 double_unlock_balance(later_rq, rq); 528 529 return later_rq; 530 } 531 532 #else 533 534 static inline 535 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 536 { 537 } 538 539 static inline 540 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 541 { 542 } 543 544 static inline 545 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 546 { 547 } 548 549 static inline 550 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 551 { 552 } 553 554 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 555 { 556 return false; 557 } 558 559 static inline void pull_dl_task(struct rq *rq) 560 { 561 } 562 563 static inline void queue_push_tasks(struct rq *rq) 564 { 565 } 566 567 static inline void queue_pull_task(struct rq *rq) 568 { 569 } 570 #endif /* CONFIG_SMP */ 571 572 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 573 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); 574 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 575 int flags); 576 577 /* 578 * We are being explicitly informed that a new instance is starting, 579 * and this means that: 580 * - the absolute deadline of the entity has to be placed at 581 * current time + relative deadline; 582 * - the runtime of the entity has to be set to the maximum value. 583 * 584 * The capability of specifying such event is useful whenever a -deadline 585 * entity wants to (try to!) synchronize its behaviour with the scheduler's 586 * one, and to (try to!) reconcile itself with its own scheduling 587 * parameters. 588 */ 589 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) 590 { 591 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 592 struct rq *rq = rq_of_dl_rq(dl_rq); 593 594 WARN_ON(dl_se->dl_boosted); 595 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); 596 597 /* 598 * We are racing with the deadline timer. So, do nothing because 599 * the deadline timer handler will take care of properly recharging 600 * the runtime and postponing the deadline 601 */ 602 if (dl_se->dl_throttled) 603 return; 604 605 /* 606 * We use the regular wall clock time to set deadlines in the 607 * future; in fact, we must consider execution overheads (time 608 * spent on hardirq context, etc.). 609 */ 610 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline; 611 dl_se->runtime = dl_se->dl_runtime; 612 } 613 614 /* 615 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 616 * possibility of a entity lasting more than what it declared, and thus 617 * exhausting its runtime. 618 * 619 * Here we are interested in making runtime overrun possible, but we do 620 * not want a entity which is misbehaving to affect the scheduling of all 621 * other entities. 622 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 623 * is used, in order to confine each entity within its own bandwidth. 624 * 625 * This function deals exactly with that, and ensures that when the runtime 626 * of a entity is replenished, its deadline is also postponed. That ensures 627 * the overrunning entity can't interfere with other entity in the system and 628 * can't make them miss their deadlines. Reasons why this kind of overruns 629 * could happen are, typically, a entity voluntarily trying to overcome its 630 * runtime, or it just underestimated it during sched_setattr(). 631 */ 632 static void replenish_dl_entity(struct sched_dl_entity *dl_se, 633 struct sched_dl_entity *pi_se) 634 { 635 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 636 struct rq *rq = rq_of_dl_rq(dl_rq); 637 638 BUG_ON(pi_se->dl_runtime <= 0); 639 640 /* 641 * This could be the case for a !-dl task that is boosted. 642 * Just go with full inherited parameters. 643 */ 644 if (dl_se->dl_deadline == 0) { 645 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 646 dl_se->runtime = pi_se->dl_runtime; 647 } 648 649 if (dl_se->dl_yielded && dl_se->runtime > 0) 650 dl_se->runtime = 0; 651 652 /* 653 * We keep moving the deadline away until we get some 654 * available runtime for the entity. This ensures correct 655 * handling of situations where the runtime overrun is 656 * arbitrary large. 657 */ 658 while (dl_se->runtime <= 0) { 659 dl_se->deadline += pi_se->dl_period; 660 dl_se->runtime += pi_se->dl_runtime; 661 } 662 663 /* 664 * At this point, the deadline really should be "in 665 * the future" with respect to rq->clock. If it's 666 * not, we are, for some reason, lagging too much! 667 * Anyway, after having warn userspace abut that, 668 * we still try to keep the things running by 669 * resetting the deadline and the budget of the 670 * entity. 671 */ 672 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 673 printk_deferred_once("sched: DL replenish lagged too much\n"); 674 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 675 dl_se->runtime = pi_se->dl_runtime; 676 } 677 678 if (dl_se->dl_yielded) 679 dl_se->dl_yielded = 0; 680 if (dl_se->dl_throttled) 681 dl_se->dl_throttled = 0; 682 } 683 684 /* 685 * Here we check if --at time t-- an entity (which is probably being 686 * [re]activated or, in general, enqueued) can use its remaining runtime 687 * and its current deadline _without_ exceeding the bandwidth it is 688 * assigned (function returns true if it can't). We are in fact applying 689 * one of the CBS rules: when a task wakes up, if the residual runtime 690 * over residual deadline fits within the allocated bandwidth, then we 691 * can keep the current (absolute) deadline and residual budget without 692 * disrupting the schedulability of the system. Otherwise, we should 693 * refill the runtime and set the deadline a period in the future, 694 * because keeping the current (absolute) deadline of the task would 695 * result in breaking guarantees promised to other tasks (refer to 696 * Documentation/scheduler/sched-deadline.txt for more informations). 697 * 698 * This function returns true if: 699 * 700 * runtime / (deadline - t) > dl_runtime / dl_deadline , 701 * 702 * IOW we can't recycle current parameters. 703 * 704 * Notice that the bandwidth check is done against the deadline. For 705 * task with deadline equal to period this is the same of using 706 * dl_period instead of dl_deadline in the equation above. 707 */ 708 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, 709 struct sched_dl_entity *pi_se, u64 t) 710 { 711 u64 left, right; 712 713 /* 714 * left and right are the two sides of the equation above, 715 * after a bit of shuffling to use multiplications instead 716 * of divisions. 717 * 718 * Note that none of the time values involved in the two 719 * multiplications are absolute: dl_deadline and dl_runtime 720 * are the relative deadline and the maximum runtime of each 721 * instance, runtime is the runtime left for the last instance 722 * and (deadline - t), since t is rq->clock, is the time left 723 * to the (absolute) deadline. Even if overflowing the u64 type 724 * is very unlikely to occur in both cases, here we scale down 725 * as we want to avoid that risk at all. Scaling down by 10 726 * means that we reduce granularity to 1us. We are fine with it, 727 * since this is only a true/false check and, anyway, thinking 728 * of anything below microseconds resolution is actually fiction 729 * (but still we want to give the user that illusion >;). 730 */ 731 left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 732 right = ((dl_se->deadline - t) >> DL_SCALE) * 733 (pi_se->dl_runtime >> DL_SCALE); 734 735 return dl_time_before(right, left); 736 } 737 738 /* 739 * Revised wakeup rule [1]: For self-suspending tasks, rather then 740 * re-initializing task's runtime and deadline, the revised wakeup 741 * rule adjusts the task's runtime to avoid the task to overrun its 742 * density. 743 * 744 * Reasoning: a task may overrun the density if: 745 * runtime / (deadline - t) > dl_runtime / dl_deadline 746 * 747 * Therefore, runtime can be adjusted to: 748 * runtime = (dl_runtime / dl_deadline) * (deadline - t) 749 * 750 * In such way that runtime will be equal to the maximum density 751 * the task can use without breaking any rule. 752 * 753 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant 754 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24. 755 */ 756 static void 757 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq) 758 { 759 u64 laxity = dl_se->deadline - rq_clock(rq); 760 761 /* 762 * If the task has deadline < period, and the deadline is in the past, 763 * it should already be throttled before this check. 764 * 765 * See update_dl_entity() comments for further details. 766 */ 767 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq))); 768 769 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT; 770 } 771 772 /* 773 * Regarding the deadline, a task with implicit deadline has a relative 774 * deadline == relative period. A task with constrained deadline has a 775 * relative deadline <= relative period. 776 * 777 * We support constrained deadline tasks. However, there are some restrictions 778 * applied only for tasks which do not have an implicit deadline. See 779 * update_dl_entity() to know more about such restrictions. 780 * 781 * The dl_is_implicit() returns true if the task has an implicit deadline. 782 */ 783 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se) 784 { 785 return dl_se->dl_deadline == dl_se->dl_period; 786 } 787 788 /* 789 * When a deadline entity is placed in the runqueue, its runtime and deadline 790 * might need to be updated. This is done by a CBS wake up rule. There are two 791 * different rules: 1) the original CBS; and 2) the Revisited CBS. 792 * 793 * When the task is starting a new period, the Original CBS is used. In this 794 * case, the runtime is replenished and a new absolute deadline is set. 795 * 796 * When a task is queued before the begin of the next period, using the 797 * remaining runtime and deadline could make the entity to overflow, see 798 * dl_entity_overflow() to find more about runtime overflow. When such case 799 * is detected, the runtime and deadline need to be updated. 800 * 801 * If the task has an implicit deadline, i.e., deadline == period, the Original 802 * CBS is applied. the runtime is replenished and a new absolute deadline is 803 * set, as in the previous cases. 804 * 805 * However, the Original CBS does not work properly for tasks with 806 * deadline < period, which are said to have a constrained deadline. By 807 * applying the Original CBS, a constrained deadline task would be able to run 808 * runtime/deadline in a period. With deadline < period, the task would 809 * overrun the runtime/period allowed bandwidth, breaking the admission test. 810 * 811 * In order to prevent this misbehave, the Revisited CBS is used for 812 * constrained deadline tasks when a runtime overflow is detected. In the 813 * Revisited CBS, rather than replenishing & setting a new absolute deadline, 814 * the remaining runtime of the task is reduced to avoid runtime overflow. 815 * Please refer to the comments update_dl_revised_wakeup() function to find 816 * more about the Revised CBS rule. 817 */ 818 static void update_dl_entity(struct sched_dl_entity *dl_se, 819 struct sched_dl_entity *pi_se) 820 { 821 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 822 struct rq *rq = rq_of_dl_rq(dl_rq); 823 824 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 825 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) { 826 827 if (unlikely(!dl_is_implicit(dl_se) && 828 !dl_time_before(dl_se->deadline, rq_clock(rq)) && 829 !dl_se->dl_boosted)){ 830 update_dl_revised_wakeup(dl_se, rq); 831 return; 832 } 833 834 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 835 dl_se->runtime = pi_se->dl_runtime; 836 } 837 } 838 839 static inline u64 dl_next_period(struct sched_dl_entity *dl_se) 840 { 841 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period; 842 } 843 844 /* 845 * If the entity depleted all its runtime, and if we want it to sleep 846 * while waiting for some new execution time to become available, we 847 * set the bandwidth replenishment timer to the replenishment instant 848 * and try to activate it. 849 * 850 * Notice that it is important for the caller to know if the timer 851 * actually started or not (i.e., the replenishment instant is in 852 * the future or in the past). 853 */ 854 static int start_dl_timer(struct task_struct *p) 855 { 856 struct sched_dl_entity *dl_se = &p->dl; 857 struct hrtimer *timer = &dl_se->dl_timer; 858 struct rq *rq = task_rq(p); 859 ktime_t now, act; 860 s64 delta; 861 862 lockdep_assert_held(&rq->lock); 863 864 /* 865 * We want the timer to fire at the deadline, but considering 866 * that it is actually coming from rq->clock and not from 867 * hrtimer's time base reading. 868 */ 869 act = ns_to_ktime(dl_next_period(dl_se)); 870 now = hrtimer_cb_get_time(timer); 871 delta = ktime_to_ns(now) - rq_clock(rq); 872 act = ktime_add_ns(act, delta); 873 874 /* 875 * If the expiry time already passed, e.g., because the value 876 * chosen as the deadline is too small, don't even try to 877 * start the timer in the past! 878 */ 879 if (ktime_us_delta(act, now) < 0) 880 return 0; 881 882 /* 883 * !enqueued will guarantee another callback; even if one is already in 884 * progress. This ensures a balanced {get,put}_task_struct(). 885 * 886 * The race against __run_timer() clearing the enqueued state is 887 * harmless because we're holding task_rq()->lock, therefore the timer 888 * expiring after we've done the check will wait on its task_rq_lock() 889 * and observe our state. 890 */ 891 if (!hrtimer_is_queued(timer)) { 892 get_task_struct(p); 893 hrtimer_start(timer, act, HRTIMER_MODE_ABS); 894 } 895 896 return 1; 897 } 898 899 /* 900 * This is the bandwidth enforcement timer callback. If here, we know 901 * a task is not on its dl_rq, since the fact that the timer was running 902 * means the task is throttled and needs a runtime replenishment. 903 * 904 * However, what we actually do depends on the fact the task is active, 905 * (it is on its rq) or has been removed from there by a call to 906 * dequeue_task_dl(). In the former case we must issue the runtime 907 * replenishment and add the task back to the dl_rq; in the latter, we just 908 * do nothing but clearing dl_throttled, so that runtime and deadline 909 * updating (and the queueing back to dl_rq) will be done by the 910 * next call to enqueue_task_dl(). 911 */ 912 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 913 { 914 struct sched_dl_entity *dl_se = container_of(timer, 915 struct sched_dl_entity, 916 dl_timer); 917 struct task_struct *p = dl_task_of(dl_se); 918 struct rq_flags rf; 919 struct rq *rq; 920 921 rq = task_rq_lock(p, &rf); 922 923 /* 924 * The task might have changed its scheduling policy to something 925 * different than SCHED_DEADLINE (through switched_from_dl()). 926 */ 927 if (!dl_task(p)) 928 goto unlock; 929 930 /* 931 * The task might have been boosted by someone else and might be in the 932 * boosting/deboosting path, its not throttled. 933 */ 934 if (dl_se->dl_boosted) 935 goto unlock; 936 937 /* 938 * Spurious timer due to start_dl_timer() race; or we already received 939 * a replenishment from rt_mutex_setprio(). 940 */ 941 if (!dl_se->dl_throttled) 942 goto unlock; 943 944 sched_clock_tick(); 945 update_rq_clock(rq); 946 947 /* 948 * If the throttle happened during sched-out; like: 949 * 950 * schedule() 951 * deactivate_task() 952 * dequeue_task_dl() 953 * update_curr_dl() 954 * start_dl_timer() 955 * __dequeue_task_dl() 956 * prev->on_rq = 0; 957 * 958 * We can be both throttled and !queued. Replenish the counter 959 * but do not enqueue -- wait for our wakeup to do that. 960 */ 961 if (!task_on_rq_queued(p)) { 962 replenish_dl_entity(dl_se, dl_se); 963 goto unlock; 964 } 965 966 #ifdef CONFIG_SMP 967 if (unlikely(!rq->online)) { 968 /* 969 * If the runqueue is no longer available, migrate the 970 * task elsewhere. This necessarily changes rq. 971 */ 972 lockdep_unpin_lock(&rq->lock, rf.cookie); 973 rq = dl_task_offline_migration(rq, p); 974 rf.cookie = lockdep_pin_lock(&rq->lock); 975 update_rq_clock(rq); 976 977 /* 978 * Now that the task has been migrated to the new RQ and we 979 * have that locked, proceed as normal and enqueue the task 980 * there. 981 */ 982 } 983 #endif 984 985 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 986 if (dl_task(rq->curr)) 987 check_preempt_curr_dl(rq, p, 0); 988 else 989 resched_curr(rq); 990 991 #ifdef CONFIG_SMP 992 /* 993 * Queueing this task back might have overloaded rq, check if we need 994 * to kick someone away. 995 */ 996 if (has_pushable_dl_tasks(rq)) { 997 /* 998 * Nothing relies on rq->lock after this, so its safe to drop 999 * rq->lock. 1000 */ 1001 rq_unpin_lock(rq, &rf); 1002 push_dl_task(rq); 1003 rq_repin_lock(rq, &rf); 1004 } 1005 #endif 1006 1007 unlock: 1008 task_rq_unlock(rq, p, &rf); 1009 1010 /* 1011 * This can free the task_struct, including this hrtimer, do not touch 1012 * anything related to that after this. 1013 */ 1014 put_task_struct(p); 1015 1016 return HRTIMER_NORESTART; 1017 } 1018 1019 void init_dl_task_timer(struct sched_dl_entity *dl_se) 1020 { 1021 struct hrtimer *timer = &dl_se->dl_timer; 1022 1023 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1024 timer->function = dl_task_timer; 1025 } 1026 1027 /* 1028 * During the activation, CBS checks if it can reuse the current task's 1029 * runtime and period. If the deadline of the task is in the past, CBS 1030 * cannot use the runtime, and so it replenishes the task. This rule 1031 * works fine for implicit deadline tasks (deadline == period), and the 1032 * CBS was designed for implicit deadline tasks. However, a task with 1033 * constrained deadline (deadine < period) might be awakened after the 1034 * deadline, but before the next period. In this case, replenishing the 1035 * task would allow it to run for runtime / deadline. As in this case 1036 * deadline < period, CBS enables a task to run for more than the 1037 * runtime / period. In a very loaded system, this can cause a domino 1038 * effect, making other tasks miss their deadlines. 1039 * 1040 * To avoid this problem, in the activation of a constrained deadline 1041 * task after the deadline but before the next period, throttle the 1042 * task and set the replenishing timer to the begin of the next period, 1043 * unless it is boosted. 1044 */ 1045 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) 1046 { 1047 struct task_struct *p = dl_task_of(dl_se); 1048 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se)); 1049 1050 if (dl_time_before(dl_se->deadline, rq_clock(rq)) && 1051 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) { 1052 if (unlikely(dl_se->dl_boosted || !start_dl_timer(p))) 1053 return; 1054 dl_se->dl_throttled = 1; 1055 if (dl_se->runtime > 0) 1056 dl_se->runtime = 0; 1057 } 1058 } 1059 1060 static 1061 int dl_runtime_exceeded(struct sched_dl_entity *dl_se) 1062 { 1063 return (dl_se->runtime <= 0); 1064 } 1065 1066 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 1067 1068 /* 1069 * This function implements the GRUB accounting rule: 1070 * according to the GRUB reclaiming algorithm, the runtime is 1071 * not decreased as "dq = -dt", but as 1072 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt", 1073 * where u is the utilization of the task, Umax is the maximum reclaimable 1074 * utilization, Uinact is the (per-runqueue) inactive utilization, computed 1075 * as the difference between the "total runqueue utilization" and the 1076 * runqueue active utilization, and Uextra is the (per runqueue) extra 1077 * reclaimable utilization. 1078 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations 1079 * multiplied by 2^BW_SHIFT, the result has to be shifted right by 1080 * BW_SHIFT. 1081 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT, 1082 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT. 1083 * Since delta is a 64 bit variable, to have an overflow its value 1084 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds. 1085 * So, overflow is not an issue here. 1086 */ 1087 u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se) 1088 { 1089 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */ 1090 u64 u_act; 1091 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT; 1092 1093 /* 1094 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)}, 1095 * we compare u_inact + rq->dl.extra_bw with 1096 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because 1097 * u_inact + rq->dl.extra_bw can be larger than 1098 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative 1099 * leading to wrong results) 1100 */ 1101 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min) 1102 u_act = u_act_min; 1103 else 1104 u_act = BW_UNIT - u_inact - rq->dl.extra_bw; 1105 1106 return (delta * u_act) >> BW_SHIFT; 1107 } 1108 1109 /* 1110 * Update the current task's runtime statistics (provided it is still 1111 * a -deadline task and has not been removed from the dl_rq). 1112 */ 1113 static void update_curr_dl(struct rq *rq) 1114 { 1115 struct task_struct *curr = rq->curr; 1116 struct sched_dl_entity *dl_se = &curr->dl; 1117 u64 delta_exec; 1118 1119 if (!dl_task(curr) || !on_dl_rq(dl_se)) 1120 return; 1121 1122 /* 1123 * Consumed budget is computed considering the time as 1124 * observed by schedulable tasks (excluding time spent 1125 * in hardirq context, etc.). Deadlines are instead 1126 * computed using hard walltime. This seems to be the more 1127 * natural solution, but the full ramifications of this 1128 * approach need further study. 1129 */ 1130 delta_exec = rq_clock_task(rq) - curr->se.exec_start; 1131 if (unlikely((s64)delta_exec <= 0)) { 1132 if (unlikely(dl_se->dl_yielded)) 1133 goto throttle; 1134 return; 1135 } 1136 1137 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 1138 cpufreq_update_util(rq, SCHED_CPUFREQ_DL); 1139 1140 schedstat_set(curr->se.statistics.exec_max, 1141 max(curr->se.statistics.exec_max, delta_exec)); 1142 1143 curr->se.sum_exec_runtime += delta_exec; 1144 account_group_exec_runtime(curr, delta_exec); 1145 1146 curr->se.exec_start = rq_clock_task(rq); 1147 cgroup_account_cputime(curr, delta_exec); 1148 1149 sched_rt_avg_update(rq, delta_exec); 1150 1151 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) 1152 delta_exec = grub_reclaim(delta_exec, rq, &curr->dl); 1153 dl_se->runtime -= delta_exec; 1154 1155 throttle: 1156 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) { 1157 dl_se->dl_throttled = 1; 1158 __dequeue_task_dl(rq, curr, 0); 1159 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr))) 1160 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); 1161 1162 if (!is_leftmost(curr, &rq->dl)) 1163 resched_curr(rq); 1164 } 1165 1166 /* 1167 * Because -- for now -- we share the rt bandwidth, we need to 1168 * account our runtime there too, otherwise actual rt tasks 1169 * would be able to exceed the shared quota. 1170 * 1171 * Account to the root rt group for now. 1172 * 1173 * The solution we're working towards is having the RT groups scheduled 1174 * using deadline servers -- however there's a few nasties to figure 1175 * out before that can happen. 1176 */ 1177 if (rt_bandwidth_enabled()) { 1178 struct rt_rq *rt_rq = &rq->rt; 1179 1180 raw_spin_lock(&rt_rq->rt_runtime_lock); 1181 /* 1182 * We'll let actual RT tasks worry about the overflow here, we 1183 * have our own CBS to keep us inline; only account when RT 1184 * bandwidth is relevant. 1185 */ 1186 if (sched_rt_bandwidth_account(rt_rq)) 1187 rt_rq->rt_time += delta_exec; 1188 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1189 } 1190 } 1191 1192 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer) 1193 { 1194 struct sched_dl_entity *dl_se = container_of(timer, 1195 struct sched_dl_entity, 1196 inactive_timer); 1197 struct task_struct *p = dl_task_of(dl_se); 1198 struct rq_flags rf; 1199 struct rq *rq; 1200 1201 rq = task_rq_lock(p, &rf); 1202 1203 if (!dl_task(p) || p->state == TASK_DEAD) { 1204 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1205 1206 if (p->state == TASK_DEAD && dl_se->dl_non_contending) { 1207 sub_running_bw(p->dl.dl_bw, dl_rq_of_se(&p->dl)); 1208 sub_rq_bw(p->dl.dl_bw, dl_rq_of_se(&p->dl)); 1209 dl_se->dl_non_contending = 0; 1210 } 1211 1212 raw_spin_lock(&dl_b->lock); 1213 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 1214 raw_spin_unlock(&dl_b->lock); 1215 __dl_clear_params(p); 1216 1217 goto unlock; 1218 } 1219 if (dl_se->dl_non_contending == 0) 1220 goto unlock; 1221 1222 sched_clock_tick(); 1223 update_rq_clock(rq); 1224 1225 sub_running_bw(dl_se->dl_bw, &rq->dl); 1226 dl_se->dl_non_contending = 0; 1227 unlock: 1228 task_rq_unlock(rq, p, &rf); 1229 put_task_struct(p); 1230 1231 return HRTIMER_NORESTART; 1232 } 1233 1234 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se) 1235 { 1236 struct hrtimer *timer = &dl_se->inactive_timer; 1237 1238 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1239 timer->function = inactive_task_timer; 1240 } 1241 1242 #ifdef CONFIG_SMP 1243 1244 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1245 { 1246 struct rq *rq = rq_of_dl_rq(dl_rq); 1247 1248 if (dl_rq->earliest_dl.curr == 0 || 1249 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 1250 dl_rq->earliest_dl.curr = deadline; 1251 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline); 1252 } 1253 } 1254 1255 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1256 { 1257 struct rq *rq = rq_of_dl_rq(dl_rq); 1258 1259 /* 1260 * Since we may have removed our earliest (and/or next earliest) 1261 * task we must recompute them. 1262 */ 1263 if (!dl_rq->dl_nr_running) { 1264 dl_rq->earliest_dl.curr = 0; 1265 dl_rq->earliest_dl.next = 0; 1266 cpudl_clear(&rq->rd->cpudl, rq->cpu); 1267 } else { 1268 struct rb_node *leftmost = dl_rq->root.rb_leftmost; 1269 struct sched_dl_entity *entry; 1270 1271 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node); 1272 dl_rq->earliest_dl.curr = entry->deadline; 1273 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline); 1274 } 1275 } 1276 1277 #else 1278 1279 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1280 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1281 1282 #endif /* CONFIG_SMP */ 1283 1284 static inline 1285 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1286 { 1287 int prio = dl_task_of(dl_se)->prio; 1288 u64 deadline = dl_se->deadline; 1289 1290 WARN_ON(!dl_prio(prio)); 1291 dl_rq->dl_nr_running++; 1292 add_nr_running(rq_of_dl_rq(dl_rq), 1); 1293 1294 inc_dl_deadline(dl_rq, deadline); 1295 inc_dl_migration(dl_se, dl_rq); 1296 } 1297 1298 static inline 1299 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1300 { 1301 int prio = dl_task_of(dl_se)->prio; 1302 1303 WARN_ON(!dl_prio(prio)); 1304 WARN_ON(!dl_rq->dl_nr_running); 1305 dl_rq->dl_nr_running--; 1306 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 1307 1308 dec_dl_deadline(dl_rq, dl_se->deadline); 1309 dec_dl_migration(dl_se, dl_rq); 1310 } 1311 1312 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 1313 { 1314 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1315 struct rb_node **link = &dl_rq->root.rb_root.rb_node; 1316 struct rb_node *parent = NULL; 1317 struct sched_dl_entity *entry; 1318 int leftmost = 1; 1319 1320 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node)); 1321 1322 while (*link) { 1323 parent = *link; 1324 entry = rb_entry(parent, struct sched_dl_entity, rb_node); 1325 if (dl_time_before(dl_se->deadline, entry->deadline)) 1326 link = &parent->rb_left; 1327 else { 1328 link = &parent->rb_right; 1329 leftmost = 0; 1330 } 1331 } 1332 1333 rb_link_node(&dl_se->rb_node, parent, link); 1334 rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost); 1335 1336 inc_dl_tasks(dl_se, dl_rq); 1337 } 1338 1339 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 1340 { 1341 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1342 1343 if (RB_EMPTY_NODE(&dl_se->rb_node)) 1344 return; 1345 1346 rb_erase_cached(&dl_se->rb_node, &dl_rq->root); 1347 RB_CLEAR_NODE(&dl_se->rb_node); 1348 1349 dec_dl_tasks(dl_se, dl_rq); 1350 } 1351 1352 static void 1353 enqueue_dl_entity(struct sched_dl_entity *dl_se, 1354 struct sched_dl_entity *pi_se, int flags) 1355 { 1356 BUG_ON(on_dl_rq(dl_se)); 1357 1358 /* 1359 * If this is a wakeup or a new instance, the scheduling 1360 * parameters of the task might need updating. Otherwise, 1361 * we want a replenishment of its runtime. 1362 */ 1363 if (flags & ENQUEUE_WAKEUP) { 1364 task_contending(dl_se, flags); 1365 update_dl_entity(dl_se, pi_se); 1366 } else if (flags & ENQUEUE_REPLENISH) { 1367 replenish_dl_entity(dl_se, pi_se); 1368 } else if ((flags & ENQUEUE_RESTORE) && 1369 dl_time_before(dl_se->deadline, 1370 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) { 1371 setup_new_dl_entity(dl_se); 1372 } 1373 1374 __enqueue_dl_entity(dl_se); 1375 } 1376 1377 static void dequeue_dl_entity(struct sched_dl_entity *dl_se) 1378 { 1379 __dequeue_dl_entity(dl_se); 1380 } 1381 1382 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1383 { 1384 struct task_struct *pi_task = rt_mutex_get_top_task(p); 1385 struct sched_dl_entity *pi_se = &p->dl; 1386 1387 /* 1388 * Use the scheduling parameters of the top pi-waiter task if: 1389 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND 1390 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is 1391 * smaller than our deadline OR we are a !SCHED_DEADLINE task getting 1392 * boosted due to a SCHED_DEADLINE pi-waiter). 1393 * Otherwise we keep our runtime and deadline. 1394 */ 1395 if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) { 1396 pi_se = &pi_task->dl; 1397 } else if (!dl_prio(p->normal_prio)) { 1398 /* 1399 * Special case in which we have a !SCHED_DEADLINE task 1400 * that is going to be deboosted, but exceeds its 1401 * runtime while doing so. No point in replenishing 1402 * it, as it's going to return back to its original 1403 * scheduling class after this. 1404 */ 1405 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH); 1406 return; 1407 } 1408 1409 /* 1410 * Check if a constrained deadline task was activated 1411 * after the deadline but before the next period. 1412 * If that is the case, the task will be throttled and 1413 * the replenishment timer will be set to the next period. 1414 */ 1415 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl)) 1416 dl_check_constrained_dl(&p->dl); 1417 1418 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) { 1419 add_rq_bw(p->dl.dl_bw, &rq->dl); 1420 add_running_bw(p->dl.dl_bw, &rq->dl); 1421 } 1422 1423 /* 1424 * If p is throttled, we do not enqueue it. In fact, if it exhausted 1425 * its budget it needs a replenishment and, since it now is on 1426 * its rq, the bandwidth timer callback (which clearly has not 1427 * run yet) will take care of this. 1428 * However, the active utilization does not depend on the fact 1429 * that the task is on the runqueue or not (but depends on the 1430 * task's state - in GRUB parlance, "inactive" vs "active contending"). 1431 * In other words, even if a task is throttled its utilization must 1432 * be counted in the active utilization; hence, we need to call 1433 * add_running_bw(). 1434 */ 1435 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) { 1436 if (flags & ENQUEUE_WAKEUP) 1437 task_contending(&p->dl, flags); 1438 1439 return; 1440 } 1441 1442 enqueue_dl_entity(&p->dl, pi_se, flags); 1443 1444 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1445 enqueue_pushable_dl_task(rq, p); 1446 } 1447 1448 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1449 { 1450 dequeue_dl_entity(&p->dl); 1451 dequeue_pushable_dl_task(rq, p); 1452 } 1453 1454 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1455 { 1456 update_curr_dl(rq); 1457 __dequeue_task_dl(rq, p, flags); 1458 1459 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) { 1460 sub_running_bw(p->dl.dl_bw, &rq->dl); 1461 sub_rq_bw(p->dl.dl_bw, &rq->dl); 1462 } 1463 1464 /* 1465 * This check allows to start the inactive timer (or to immediately 1466 * decrease the active utilization, if needed) in two cases: 1467 * when the task blocks and when it is terminating 1468 * (p->state == TASK_DEAD). We can handle the two cases in the same 1469 * way, because from GRUB's point of view the same thing is happening 1470 * (the task moves from "active contending" to "active non contending" 1471 * or "inactive") 1472 */ 1473 if (flags & DEQUEUE_SLEEP) 1474 task_non_contending(p); 1475 } 1476 1477 /* 1478 * Yield task semantic for -deadline tasks is: 1479 * 1480 * get off from the CPU until our next instance, with 1481 * a new runtime. This is of little use now, since we 1482 * don't have a bandwidth reclaiming mechanism. Anyway, 1483 * bandwidth reclaiming is planned for the future, and 1484 * yield_task_dl will indicate that some spare budget 1485 * is available for other task instances to use it. 1486 */ 1487 static void yield_task_dl(struct rq *rq) 1488 { 1489 /* 1490 * We make the task go to sleep until its current deadline by 1491 * forcing its runtime to zero. This way, update_curr_dl() stops 1492 * it and the bandwidth timer will wake it up and will give it 1493 * new scheduling parameters (thanks to dl_yielded=1). 1494 */ 1495 rq->curr->dl.dl_yielded = 1; 1496 1497 update_rq_clock(rq); 1498 update_curr_dl(rq); 1499 /* 1500 * Tell update_rq_clock() that we've just updated, 1501 * so we don't do microscopic update in schedule() 1502 * and double the fastpath cost. 1503 */ 1504 rq_clock_skip_update(rq, true); 1505 } 1506 1507 #ifdef CONFIG_SMP 1508 1509 static int find_later_rq(struct task_struct *task); 1510 1511 static int 1512 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags) 1513 { 1514 struct task_struct *curr; 1515 struct rq *rq; 1516 1517 if (sd_flag != SD_BALANCE_WAKE) 1518 goto out; 1519 1520 rq = cpu_rq(cpu); 1521 1522 rcu_read_lock(); 1523 curr = READ_ONCE(rq->curr); /* unlocked access */ 1524 1525 /* 1526 * If we are dealing with a -deadline task, we must 1527 * decide where to wake it up. 1528 * If it has a later deadline and the current task 1529 * on this rq can't move (provided the waking task 1530 * can!) we prefer to send it somewhere else. On the 1531 * other hand, if it has a shorter deadline, we 1532 * try to make it stay here, it might be important. 1533 */ 1534 if (unlikely(dl_task(curr)) && 1535 (curr->nr_cpus_allowed < 2 || 1536 !dl_entity_preempt(&p->dl, &curr->dl)) && 1537 (p->nr_cpus_allowed > 1)) { 1538 int target = find_later_rq(p); 1539 1540 if (target != -1 && 1541 (dl_time_before(p->dl.deadline, 1542 cpu_rq(target)->dl.earliest_dl.curr) || 1543 (cpu_rq(target)->dl.dl_nr_running == 0))) 1544 cpu = target; 1545 } 1546 rcu_read_unlock(); 1547 1548 out: 1549 return cpu; 1550 } 1551 1552 static void migrate_task_rq_dl(struct task_struct *p) 1553 { 1554 struct rq *rq; 1555 1556 if (p->state != TASK_WAKING) 1557 return; 1558 1559 rq = task_rq(p); 1560 /* 1561 * Since p->state == TASK_WAKING, set_task_cpu() has been called 1562 * from try_to_wake_up(). Hence, p->pi_lock is locked, but 1563 * rq->lock is not... So, lock it 1564 */ 1565 raw_spin_lock(&rq->lock); 1566 if (p->dl.dl_non_contending) { 1567 sub_running_bw(p->dl.dl_bw, &rq->dl); 1568 p->dl.dl_non_contending = 0; 1569 /* 1570 * If the timer handler is currently running and the 1571 * timer cannot be cancelled, inactive_task_timer() 1572 * will see that dl_not_contending is not set, and 1573 * will not touch the rq's active utilization, 1574 * so we are still safe. 1575 */ 1576 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 1577 put_task_struct(p); 1578 } 1579 sub_rq_bw(p->dl.dl_bw, &rq->dl); 1580 raw_spin_unlock(&rq->lock); 1581 } 1582 1583 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 1584 { 1585 /* 1586 * Current can't be migrated, useless to reschedule, 1587 * let's hope p can move out. 1588 */ 1589 if (rq->curr->nr_cpus_allowed == 1 || 1590 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL)) 1591 return; 1592 1593 /* 1594 * p is migratable, so let's not schedule it and 1595 * see if it is pushed or pulled somewhere else. 1596 */ 1597 if (p->nr_cpus_allowed != 1 && 1598 cpudl_find(&rq->rd->cpudl, p, NULL)) 1599 return; 1600 1601 resched_curr(rq); 1602 } 1603 1604 #endif /* CONFIG_SMP */ 1605 1606 /* 1607 * Only called when both the current and waking task are -deadline 1608 * tasks. 1609 */ 1610 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 1611 int flags) 1612 { 1613 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { 1614 resched_curr(rq); 1615 return; 1616 } 1617 1618 #ifdef CONFIG_SMP 1619 /* 1620 * In the unlikely case current and p have the same deadline 1621 * let us try to decide what's the best thing to do... 1622 */ 1623 if ((p->dl.deadline == rq->curr->dl.deadline) && 1624 !test_tsk_need_resched(rq->curr)) 1625 check_preempt_equal_dl(rq, p); 1626 #endif /* CONFIG_SMP */ 1627 } 1628 1629 #ifdef CONFIG_SCHED_HRTICK 1630 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1631 { 1632 hrtick_start(rq, p->dl.runtime); 1633 } 1634 #else /* !CONFIG_SCHED_HRTICK */ 1635 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1636 { 1637 } 1638 #endif 1639 1640 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq, 1641 struct dl_rq *dl_rq) 1642 { 1643 struct rb_node *left = rb_first_cached(&dl_rq->root); 1644 1645 if (!left) 1646 return NULL; 1647 1648 return rb_entry(left, struct sched_dl_entity, rb_node); 1649 } 1650 1651 static struct task_struct * 1652 pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 1653 { 1654 struct sched_dl_entity *dl_se; 1655 struct task_struct *p; 1656 struct dl_rq *dl_rq; 1657 1658 dl_rq = &rq->dl; 1659 1660 if (need_pull_dl_task(rq, prev)) { 1661 /* 1662 * This is OK, because current is on_cpu, which avoids it being 1663 * picked for load-balance and preemption/IRQs are still 1664 * disabled avoiding further scheduler activity on it and we're 1665 * being very careful to re-start the picking loop. 1666 */ 1667 rq_unpin_lock(rq, rf); 1668 pull_dl_task(rq); 1669 rq_repin_lock(rq, rf); 1670 /* 1671 * pull_dl_task() can drop (and re-acquire) rq->lock; this 1672 * means a stop task can slip in, in which case we need to 1673 * re-start task selection. 1674 */ 1675 if (rq->stop && task_on_rq_queued(rq->stop)) 1676 return RETRY_TASK; 1677 } 1678 1679 /* 1680 * When prev is DL, we may throttle it in put_prev_task(). 1681 * So, we update time before we check for dl_nr_running. 1682 */ 1683 if (prev->sched_class == &dl_sched_class) 1684 update_curr_dl(rq); 1685 1686 if (unlikely(!dl_rq->dl_nr_running)) 1687 return NULL; 1688 1689 put_prev_task(rq, prev); 1690 1691 dl_se = pick_next_dl_entity(rq, dl_rq); 1692 BUG_ON(!dl_se); 1693 1694 p = dl_task_of(dl_se); 1695 p->se.exec_start = rq_clock_task(rq); 1696 1697 /* Running task will never be pushed. */ 1698 dequeue_pushable_dl_task(rq, p); 1699 1700 if (hrtick_enabled(rq)) 1701 start_hrtick_dl(rq, p); 1702 1703 queue_push_tasks(rq); 1704 1705 return p; 1706 } 1707 1708 static void put_prev_task_dl(struct rq *rq, struct task_struct *p) 1709 { 1710 update_curr_dl(rq); 1711 1712 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 1713 enqueue_pushable_dl_task(rq, p); 1714 } 1715 1716 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 1717 { 1718 update_curr_dl(rq); 1719 1720 /* 1721 * Even when we have runtime, update_curr_dl() might have resulted in us 1722 * not being the leftmost task anymore. In that case NEED_RESCHED will 1723 * be set and schedule() will start a new hrtick for the next task. 1724 */ 1725 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 && 1726 is_leftmost(p, &rq->dl)) 1727 start_hrtick_dl(rq, p); 1728 } 1729 1730 static void task_fork_dl(struct task_struct *p) 1731 { 1732 /* 1733 * SCHED_DEADLINE tasks cannot fork and this is achieved through 1734 * sched_fork() 1735 */ 1736 } 1737 1738 static void set_curr_task_dl(struct rq *rq) 1739 { 1740 struct task_struct *p = rq->curr; 1741 1742 p->se.exec_start = rq_clock_task(rq); 1743 1744 /* You can't push away the running task */ 1745 dequeue_pushable_dl_task(rq, p); 1746 } 1747 1748 #ifdef CONFIG_SMP 1749 1750 /* Only try algorithms three times */ 1751 #define DL_MAX_TRIES 3 1752 1753 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) 1754 { 1755 if (!task_running(rq, p) && 1756 cpumask_test_cpu(cpu, &p->cpus_allowed)) 1757 return 1; 1758 return 0; 1759 } 1760 1761 /* 1762 * Return the earliest pushable rq's task, which is suitable to be executed 1763 * on the CPU, NULL otherwise: 1764 */ 1765 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) 1766 { 1767 struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost; 1768 struct task_struct *p = NULL; 1769 1770 if (!has_pushable_dl_tasks(rq)) 1771 return NULL; 1772 1773 next_node: 1774 if (next_node) { 1775 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks); 1776 1777 if (pick_dl_task(rq, p, cpu)) 1778 return p; 1779 1780 next_node = rb_next(next_node); 1781 goto next_node; 1782 } 1783 1784 return NULL; 1785 } 1786 1787 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 1788 1789 static int find_later_rq(struct task_struct *task) 1790 { 1791 struct sched_domain *sd; 1792 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 1793 int this_cpu = smp_processor_id(); 1794 int cpu = task_cpu(task); 1795 1796 /* Make sure the mask is initialized first */ 1797 if (unlikely(!later_mask)) 1798 return -1; 1799 1800 if (task->nr_cpus_allowed == 1) 1801 return -1; 1802 1803 /* 1804 * We have to consider system topology and task affinity 1805 * first, then we can look for a suitable cpu. 1806 */ 1807 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask)) 1808 return -1; 1809 1810 /* 1811 * If we are here, some targets have been found, including 1812 * the most suitable which is, among the runqueues where the 1813 * current tasks have later deadlines than the task's one, the 1814 * rq with the latest possible one. 1815 * 1816 * Now we check how well this matches with task's 1817 * affinity and system topology. 1818 * 1819 * The last cpu where the task run is our first 1820 * guess, since it is most likely cache-hot there. 1821 */ 1822 if (cpumask_test_cpu(cpu, later_mask)) 1823 return cpu; 1824 /* 1825 * Check if this_cpu is to be skipped (i.e., it is 1826 * not in the mask) or not. 1827 */ 1828 if (!cpumask_test_cpu(this_cpu, later_mask)) 1829 this_cpu = -1; 1830 1831 rcu_read_lock(); 1832 for_each_domain(cpu, sd) { 1833 if (sd->flags & SD_WAKE_AFFINE) { 1834 int best_cpu; 1835 1836 /* 1837 * If possible, preempting this_cpu is 1838 * cheaper than migrating. 1839 */ 1840 if (this_cpu != -1 && 1841 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1842 rcu_read_unlock(); 1843 return this_cpu; 1844 } 1845 1846 best_cpu = cpumask_first_and(later_mask, 1847 sched_domain_span(sd)); 1848 /* 1849 * Last chance: if a cpu being in both later_mask 1850 * and current sd span is valid, that becomes our 1851 * choice. Of course, the latest possible cpu is 1852 * already under consideration through later_mask. 1853 */ 1854 if (best_cpu < nr_cpu_ids) { 1855 rcu_read_unlock(); 1856 return best_cpu; 1857 } 1858 } 1859 } 1860 rcu_read_unlock(); 1861 1862 /* 1863 * At this point, all our guesses failed, we just return 1864 * 'something', and let the caller sort the things out. 1865 */ 1866 if (this_cpu != -1) 1867 return this_cpu; 1868 1869 cpu = cpumask_any(later_mask); 1870 if (cpu < nr_cpu_ids) 1871 return cpu; 1872 1873 return -1; 1874 } 1875 1876 /* Locks the rq it finds */ 1877 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 1878 { 1879 struct rq *later_rq = NULL; 1880 int tries; 1881 int cpu; 1882 1883 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 1884 cpu = find_later_rq(task); 1885 1886 if ((cpu == -1) || (cpu == rq->cpu)) 1887 break; 1888 1889 later_rq = cpu_rq(cpu); 1890 1891 if (later_rq->dl.dl_nr_running && 1892 !dl_time_before(task->dl.deadline, 1893 later_rq->dl.earliest_dl.curr)) { 1894 /* 1895 * Target rq has tasks of equal or earlier deadline, 1896 * retrying does not release any lock and is unlikely 1897 * to yield a different result. 1898 */ 1899 later_rq = NULL; 1900 break; 1901 } 1902 1903 /* Retry if something changed. */ 1904 if (double_lock_balance(rq, later_rq)) { 1905 if (unlikely(task_rq(task) != rq || 1906 !cpumask_test_cpu(later_rq->cpu, &task->cpus_allowed) || 1907 task_running(rq, task) || 1908 !dl_task(task) || 1909 !task_on_rq_queued(task))) { 1910 double_unlock_balance(rq, later_rq); 1911 later_rq = NULL; 1912 break; 1913 } 1914 } 1915 1916 /* 1917 * If the rq we found has no -deadline task, or 1918 * its earliest one has a later deadline than our 1919 * task, the rq is a good one. 1920 */ 1921 if (!later_rq->dl.dl_nr_running || 1922 dl_time_before(task->dl.deadline, 1923 later_rq->dl.earliest_dl.curr)) 1924 break; 1925 1926 /* Otherwise we try again. */ 1927 double_unlock_balance(rq, later_rq); 1928 later_rq = NULL; 1929 } 1930 1931 return later_rq; 1932 } 1933 1934 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 1935 { 1936 struct task_struct *p; 1937 1938 if (!has_pushable_dl_tasks(rq)) 1939 return NULL; 1940 1941 p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost, 1942 struct task_struct, pushable_dl_tasks); 1943 1944 BUG_ON(rq->cpu != task_cpu(p)); 1945 BUG_ON(task_current(rq, p)); 1946 BUG_ON(p->nr_cpus_allowed <= 1); 1947 1948 BUG_ON(!task_on_rq_queued(p)); 1949 BUG_ON(!dl_task(p)); 1950 1951 return p; 1952 } 1953 1954 /* 1955 * See if the non running -deadline tasks on this rq 1956 * can be sent to some other CPU where they can preempt 1957 * and start executing. 1958 */ 1959 static int push_dl_task(struct rq *rq) 1960 { 1961 struct task_struct *next_task; 1962 struct rq *later_rq; 1963 int ret = 0; 1964 1965 if (!rq->dl.overloaded) 1966 return 0; 1967 1968 next_task = pick_next_pushable_dl_task(rq); 1969 if (!next_task) 1970 return 0; 1971 1972 retry: 1973 if (unlikely(next_task == rq->curr)) { 1974 WARN_ON(1); 1975 return 0; 1976 } 1977 1978 /* 1979 * If next_task preempts rq->curr, and rq->curr 1980 * can move away, it makes sense to just reschedule 1981 * without going further in pushing next_task. 1982 */ 1983 if (dl_task(rq->curr) && 1984 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && 1985 rq->curr->nr_cpus_allowed > 1) { 1986 resched_curr(rq); 1987 return 0; 1988 } 1989 1990 /* We might release rq lock */ 1991 get_task_struct(next_task); 1992 1993 /* Will lock the rq it'll find */ 1994 later_rq = find_lock_later_rq(next_task, rq); 1995 if (!later_rq) { 1996 struct task_struct *task; 1997 1998 /* 1999 * We must check all this again, since 2000 * find_lock_later_rq releases rq->lock and it is 2001 * then possible that next_task has migrated. 2002 */ 2003 task = pick_next_pushable_dl_task(rq); 2004 if (task == next_task) { 2005 /* 2006 * The task is still there. We don't try 2007 * again, some other cpu will pull it when ready. 2008 */ 2009 goto out; 2010 } 2011 2012 if (!task) 2013 /* No more tasks */ 2014 goto out; 2015 2016 put_task_struct(next_task); 2017 next_task = task; 2018 goto retry; 2019 } 2020 2021 deactivate_task(rq, next_task, 0); 2022 sub_running_bw(next_task->dl.dl_bw, &rq->dl); 2023 sub_rq_bw(next_task->dl.dl_bw, &rq->dl); 2024 set_task_cpu(next_task, later_rq->cpu); 2025 add_rq_bw(next_task->dl.dl_bw, &later_rq->dl); 2026 add_running_bw(next_task->dl.dl_bw, &later_rq->dl); 2027 activate_task(later_rq, next_task, 0); 2028 ret = 1; 2029 2030 resched_curr(later_rq); 2031 2032 double_unlock_balance(rq, later_rq); 2033 2034 out: 2035 put_task_struct(next_task); 2036 2037 return ret; 2038 } 2039 2040 static void push_dl_tasks(struct rq *rq) 2041 { 2042 /* push_dl_task() will return true if it moved a -deadline task */ 2043 while (push_dl_task(rq)) 2044 ; 2045 } 2046 2047 static void pull_dl_task(struct rq *this_rq) 2048 { 2049 int this_cpu = this_rq->cpu, cpu; 2050 struct task_struct *p; 2051 bool resched = false; 2052 struct rq *src_rq; 2053 u64 dmin = LONG_MAX; 2054 2055 if (likely(!dl_overloaded(this_rq))) 2056 return; 2057 2058 /* 2059 * Match the barrier from dl_set_overloaded; this guarantees that if we 2060 * see overloaded we must also see the dlo_mask bit. 2061 */ 2062 smp_rmb(); 2063 2064 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 2065 if (this_cpu == cpu) 2066 continue; 2067 2068 src_rq = cpu_rq(cpu); 2069 2070 /* 2071 * It looks racy, abd it is! However, as in sched_rt.c, 2072 * we are fine with this. 2073 */ 2074 if (this_rq->dl.dl_nr_running && 2075 dl_time_before(this_rq->dl.earliest_dl.curr, 2076 src_rq->dl.earliest_dl.next)) 2077 continue; 2078 2079 /* Might drop this_rq->lock */ 2080 double_lock_balance(this_rq, src_rq); 2081 2082 /* 2083 * If there are no more pullable tasks on the 2084 * rq, we're done with it. 2085 */ 2086 if (src_rq->dl.dl_nr_running <= 1) 2087 goto skip; 2088 2089 p = pick_earliest_pushable_dl_task(src_rq, this_cpu); 2090 2091 /* 2092 * We found a task to be pulled if: 2093 * - it preempts our current (if there's one), 2094 * - it will preempt the last one we pulled (if any). 2095 */ 2096 if (p && dl_time_before(p->dl.deadline, dmin) && 2097 (!this_rq->dl.dl_nr_running || 2098 dl_time_before(p->dl.deadline, 2099 this_rq->dl.earliest_dl.curr))) { 2100 WARN_ON(p == src_rq->curr); 2101 WARN_ON(!task_on_rq_queued(p)); 2102 2103 /* 2104 * Then we pull iff p has actually an earlier 2105 * deadline than the current task of its runqueue. 2106 */ 2107 if (dl_time_before(p->dl.deadline, 2108 src_rq->curr->dl.deadline)) 2109 goto skip; 2110 2111 resched = true; 2112 2113 deactivate_task(src_rq, p, 0); 2114 sub_running_bw(p->dl.dl_bw, &src_rq->dl); 2115 sub_rq_bw(p->dl.dl_bw, &src_rq->dl); 2116 set_task_cpu(p, this_cpu); 2117 add_rq_bw(p->dl.dl_bw, &this_rq->dl); 2118 add_running_bw(p->dl.dl_bw, &this_rq->dl); 2119 activate_task(this_rq, p, 0); 2120 dmin = p->dl.deadline; 2121 2122 /* Is there any other task even earlier? */ 2123 } 2124 skip: 2125 double_unlock_balance(this_rq, src_rq); 2126 } 2127 2128 if (resched) 2129 resched_curr(this_rq); 2130 } 2131 2132 /* 2133 * Since the task is not running and a reschedule is not going to happen 2134 * anytime soon on its runqueue, we try pushing it away now. 2135 */ 2136 static void task_woken_dl(struct rq *rq, struct task_struct *p) 2137 { 2138 if (!task_running(rq, p) && 2139 !test_tsk_need_resched(rq->curr) && 2140 p->nr_cpus_allowed > 1 && 2141 dl_task(rq->curr) && 2142 (rq->curr->nr_cpus_allowed < 2 || 2143 !dl_entity_preempt(&p->dl, &rq->curr->dl))) { 2144 push_dl_tasks(rq); 2145 } 2146 } 2147 2148 static void set_cpus_allowed_dl(struct task_struct *p, 2149 const struct cpumask *new_mask) 2150 { 2151 struct root_domain *src_rd; 2152 struct rq *rq; 2153 2154 BUG_ON(!dl_task(p)); 2155 2156 rq = task_rq(p); 2157 src_rd = rq->rd; 2158 /* 2159 * Migrating a SCHED_DEADLINE task between exclusive 2160 * cpusets (different root_domains) entails a bandwidth 2161 * update. We already made space for us in the destination 2162 * domain (see cpuset_can_attach()). 2163 */ 2164 if (!cpumask_intersects(src_rd->span, new_mask)) { 2165 struct dl_bw *src_dl_b; 2166 2167 src_dl_b = dl_bw_of(cpu_of(rq)); 2168 /* 2169 * We now free resources of the root_domain we are migrating 2170 * off. In the worst case, sched_setattr() may temporary fail 2171 * until we complete the update. 2172 */ 2173 raw_spin_lock(&src_dl_b->lock); 2174 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 2175 raw_spin_unlock(&src_dl_b->lock); 2176 } 2177 2178 set_cpus_allowed_common(p, new_mask); 2179 } 2180 2181 /* Assumes rq->lock is held */ 2182 static void rq_online_dl(struct rq *rq) 2183 { 2184 if (rq->dl.overloaded) 2185 dl_set_overload(rq); 2186 2187 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu); 2188 if (rq->dl.dl_nr_running > 0) 2189 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr); 2190 } 2191 2192 /* Assumes rq->lock is held */ 2193 static void rq_offline_dl(struct rq *rq) 2194 { 2195 if (rq->dl.overloaded) 2196 dl_clear_overload(rq); 2197 2198 cpudl_clear(&rq->rd->cpudl, rq->cpu); 2199 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu); 2200 } 2201 2202 void __init init_sched_dl_class(void) 2203 { 2204 unsigned int i; 2205 2206 for_each_possible_cpu(i) 2207 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 2208 GFP_KERNEL, cpu_to_node(i)); 2209 } 2210 2211 #endif /* CONFIG_SMP */ 2212 2213 static void switched_from_dl(struct rq *rq, struct task_struct *p) 2214 { 2215 /* 2216 * task_non_contending() can start the "inactive timer" (if the 0-lag 2217 * time is in the future). If the task switches back to dl before 2218 * the "inactive timer" fires, it can continue to consume its current 2219 * runtime using its current deadline. If it stays outside of 2220 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer() 2221 * will reset the task parameters. 2222 */ 2223 if (task_on_rq_queued(p) && p->dl.dl_runtime) 2224 task_non_contending(p); 2225 2226 if (!task_on_rq_queued(p)) 2227 sub_rq_bw(p->dl.dl_bw, &rq->dl); 2228 2229 /* 2230 * We cannot use inactive_task_timer() to invoke sub_running_bw() 2231 * at the 0-lag time, because the task could have been migrated 2232 * while SCHED_OTHER in the meanwhile. 2233 */ 2234 if (p->dl.dl_non_contending) 2235 p->dl.dl_non_contending = 0; 2236 2237 /* 2238 * Since this might be the only -deadline task on the rq, 2239 * this is the right place to try to pull some other one 2240 * from an overloaded cpu, if any. 2241 */ 2242 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 2243 return; 2244 2245 queue_pull_task(rq); 2246 } 2247 2248 /* 2249 * When switching to -deadline, we may overload the rq, then 2250 * we try to push someone off, if possible. 2251 */ 2252 static void switched_to_dl(struct rq *rq, struct task_struct *p) 2253 { 2254 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 2255 put_task_struct(p); 2256 2257 /* If p is not queued we will update its parameters at next wakeup. */ 2258 if (!task_on_rq_queued(p)) { 2259 add_rq_bw(p->dl.dl_bw, &rq->dl); 2260 2261 return; 2262 } 2263 2264 if (rq->curr != p) { 2265 #ifdef CONFIG_SMP 2266 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) 2267 queue_push_tasks(rq); 2268 #endif 2269 if (dl_task(rq->curr)) 2270 check_preempt_curr_dl(rq, p, 0); 2271 else 2272 resched_curr(rq); 2273 } 2274 } 2275 2276 /* 2277 * If the scheduling parameters of a -deadline task changed, 2278 * a push or pull operation might be needed. 2279 */ 2280 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 2281 int oldprio) 2282 { 2283 if (task_on_rq_queued(p) || rq->curr == p) { 2284 #ifdef CONFIG_SMP 2285 /* 2286 * This might be too much, but unfortunately 2287 * we don't have the old deadline value, and 2288 * we can't argue if the task is increasing 2289 * or lowering its prio, so... 2290 */ 2291 if (!rq->dl.overloaded) 2292 queue_pull_task(rq); 2293 2294 /* 2295 * If we now have a earlier deadline task than p, 2296 * then reschedule, provided p is still on this 2297 * runqueue. 2298 */ 2299 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) 2300 resched_curr(rq); 2301 #else 2302 /* 2303 * Again, we don't know if p has a earlier 2304 * or later deadline, so let's blindly set a 2305 * (maybe not needed) rescheduling point. 2306 */ 2307 resched_curr(rq); 2308 #endif /* CONFIG_SMP */ 2309 } 2310 } 2311 2312 const struct sched_class dl_sched_class = { 2313 .next = &rt_sched_class, 2314 .enqueue_task = enqueue_task_dl, 2315 .dequeue_task = dequeue_task_dl, 2316 .yield_task = yield_task_dl, 2317 2318 .check_preempt_curr = check_preempt_curr_dl, 2319 2320 .pick_next_task = pick_next_task_dl, 2321 .put_prev_task = put_prev_task_dl, 2322 2323 #ifdef CONFIG_SMP 2324 .select_task_rq = select_task_rq_dl, 2325 .migrate_task_rq = migrate_task_rq_dl, 2326 .set_cpus_allowed = set_cpus_allowed_dl, 2327 .rq_online = rq_online_dl, 2328 .rq_offline = rq_offline_dl, 2329 .task_woken = task_woken_dl, 2330 #endif 2331 2332 .set_curr_task = set_curr_task_dl, 2333 .task_tick = task_tick_dl, 2334 .task_fork = task_fork_dl, 2335 2336 .prio_changed = prio_changed_dl, 2337 .switched_from = switched_from_dl, 2338 .switched_to = switched_to_dl, 2339 2340 .update_curr = update_curr_dl, 2341 }; 2342 2343 int sched_dl_global_validate(void) 2344 { 2345 u64 runtime = global_rt_runtime(); 2346 u64 period = global_rt_period(); 2347 u64 new_bw = to_ratio(period, runtime); 2348 struct dl_bw *dl_b; 2349 int cpu, ret = 0; 2350 unsigned long flags; 2351 2352 /* 2353 * Here we want to check the bandwidth not being set to some 2354 * value smaller than the currently allocated bandwidth in 2355 * any of the root_domains. 2356 * 2357 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 2358 * cycling on root_domains... Discussion on different/better 2359 * solutions is welcome! 2360 */ 2361 for_each_possible_cpu(cpu) { 2362 rcu_read_lock_sched(); 2363 dl_b = dl_bw_of(cpu); 2364 2365 raw_spin_lock_irqsave(&dl_b->lock, flags); 2366 if (new_bw < dl_b->total_bw) 2367 ret = -EBUSY; 2368 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2369 2370 rcu_read_unlock_sched(); 2371 2372 if (ret) 2373 break; 2374 } 2375 2376 return ret; 2377 } 2378 2379 void init_dl_rq_bw_ratio(struct dl_rq *dl_rq) 2380 { 2381 if (global_rt_runtime() == RUNTIME_INF) { 2382 dl_rq->bw_ratio = 1 << RATIO_SHIFT; 2383 dl_rq->extra_bw = 1 << BW_SHIFT; 2384 } else { 2385 dl_rq->bw_ratio = to_ratio(global_rt_runtime(), 2386 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT); 2387 dl_rq->extra_bw = to_ratio(global_rt_period(), 2388 global_rt_runtime()); 2389 } 2390 } 2391 2392 void sched_dl_do_global(void) 2393 { 2394 u64 new_bw = -1; 2395 struct dl_bw *dl_b; 2396 int cpu; 2397 unsigned long flags; 2398 2399 def_dl_bandwidth.dl_period = global_rt_period(); 2400 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 2401 2402 if (global_rt_runtime() != RUNTIME_INF) 2403 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 2404 2405 /* 2406 * FIXME: As above... 2407 */ 2408 for_each_possible_cpu(cpu) { 2409 rcu_read_lock_sched(); 2410 dl_b = dl_bw_of(cpu); 2411 2412 raw_spin_lock_irqsave(&dl_b->lock, flags); 2413 dl_b->bw = new_bw; 2414 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2415 2416 rcu_read_unlock_sched(); 2417 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl); 2418 } 2419 } 2420 2421 /* 2422 * We must be sure that accepting a new task (or allowing changing the 2423 * parameters of an existing one) is consistent with the bandwidth 2424 * constraints. If yes, this function also accordingly updates the currently 2425 * allocated bandwidth to reflect the new situation. 2426 * 2427 * This function is called while holding p's rq->lock. 2428 */ 2429 int sched_dl_overflow(struct task_struct *p, int policy, 2430 const struct sched_attr *attr) 2431 { 2432 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2433 u64 period = attr->sched_period ?: attr->sched_deadline; 2434 u64 runtime = attr->sched_runtime; 2435 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2436 int cpus, err = -1; 2437 2438 /* !deadline task may carry old deadline bandwidth */ 2439 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 2440 return 0; 2441 2442 /* 2443 * Either if a task, enters, leave, or stays -deadline but changes 2444 * its parameters, we may need to update accordingly the total 2445 * allocated bandwidth of the container. 2446 */ 2447 raw_spin_lock(&dl_b->lock); 2448 cpus = dl_bw_cpus(task_cpu(p)); 2449 if (dl_policy(policy) && !task_has_dl_policy(p) && 2450 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2451 if (hrtimer_active(&p->dl.inactive_timer)) 2452 __dl_sub(dl_b, p->dl.dl_bw, cpus); 2453 __dl_add(dl_b, new_bw, cpus); 2454 err = 0; 2455 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2456 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2457 /* 2458 * XXX this is slightly incorrect: when the task 2459 * utilization decreases, we should delay the total 2460 * utilization change until the task's 0-lag point. 2461 * But this would require to set the task's "inactive 2462 * timer" when the task is not inactive. 2463 */ 2464 __dl_sub(dl_b, p->dl.dl_bw, cpus); 2465 __dl_add(dl_b, new_bw, cpus); 2466 dl_change_utilization(p, new_bw); 2467 err = 0; 2468 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2469 /* 2470 * Do not decrease the total deadline utilization here, 2471 * switched_from_dl() will take care to do it at the correct 2472 * (0-lag) time. 2473 */ 2474 err = 0; 2475 } 2476 raw_spin_unlock(&dl_b->lock); 2477 2478 return err; 2479 } 2480 2481 /* 2482 * This function initializes the sched_dl_entity of a newly becoming 2483 * SCHED_DEADLINE task. 2484 * 2485 * Only the static values are considered here, the actual runtime and the 2486 * absolute deadline will be properly calculated when the task is enqueued 2487 * for the first time with its new policy. 2488 */ 2489 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 2490 { 2491 struct sched_dl_entity *dl_se = &p->dl; 2492 2493 dl_se->dl_runtime = attr->sched_runtime; 2494 dl_se->dl_deadline = attr->sched_deadline; 2495 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 2496 dl_se->flags = attr->sched_flags; 2497 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 2498 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 2499 } 2500 2501 void __getparam_dl(struct task_struct *p, struct sched_attr *attr) 2502 { 2503 struct sched_dl_entity *dl_se = &p->dl; 2504 2505 attr->sched_priority = p->rt_priority; 2506 attr->sched_runtime = dl_se->dl_runtime; 2507 attr->sched_deadline = dl_se->dl_deadline; 2508 attr->sched_period = dl_se->dl_period; 2509 attr->sched_flags = dl_se->flags; 2510 } 2511 2512 /* 2513 * This function validates the new parameters of a -deadline task. 2514 * We ask for the deadline not being zero, and greater or equal 2515 * than the runtime, as well as the period of being zero or 2516 * greater than deadline. Furthermore, we have to be sure that 2517 * user parameters are above the internal resolution of 1us (we 2518 * check sched_runtime only since it is always the smaller one) and 2519 * below 2^63 ns (we have to check both sched_deadline and 2520 * sched_period, as the latter can be zero). 2521 */ 2522 bool __checkparam_dl(const struct sched_attr *attr) 2523 { 2524 /* deadline != 0 */ 2525 if (attr->sched_deadline == 0) 2526 return false; 2527 2528 /* 2529 * Since we truncate DL_SCALE bits, make sure we're at least 2530 * that big. 2531 */ 2532 if (attr->sched_runtime < (1ULL << DL_SCALE)) 2533 return false; 2534 2535 /* 2536 * Since we use the MSB for wrap-around and sign issues, make 2537 * sure it's not set (mind that period can be equal to zero). 2538 */ 2539 if (attr->sched_deadline & (1ULL << 63) || 2540 attr->sched_period & (1ULL << 63)) 2541 return false; 2542 2543 /* runtime <= deadline <= period (if period != 0) */ 2544 if ((attr->sched_period != 0 && 2545 attr->sched_period < attr->sched_deadline) || 2546 attr->sched_deadline < attr->sched_runtime) 2547 return false; 2548 2549 return true; 2550 } 2551 2552 /* 2553 * This function clears the sched_dl_entity static params. 2554 */ 2555 void __dl_clear_params(struct task_struct *p) 2556 { 2557 struct sched_dl_entity *dl_se = &p->dl; 2558 2559 dl_se->dl_runtime = 0; 2560 dl_se->dl_deadline = 0; 2561 dl_se->dl_period = 0; 2562 dl_se->flags = 0; 2563 dl_se->dl_bw = 0; 2564 dl_se->dl_density = 0; 2565 2566 dl_se->dl_throttled = 0; 2567 dl_se->dl_yielded = 0; 2568 dl_se->dl_non_contending = 0; 2569 } 2570 2571 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) 2572 { 2573 struct sched_dl_entity *dl_se = &p->dl; 2574 2575 if (dl_se->dl_runtime != attr->sched_runtime || 2576 dl_se->dl_deadline != attr->sched_deadline || 2577 dl_se->dl_period != attr->sched_period || 2578 dl_se->flags != attr->sched_flags) 2579 return true; 2580 2581 return false; 2582 } 2583 2584 #ifdef CONFIG_SMP 2585 int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed) 2586 { 2587 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask, 2588 cs_cpus_allowed); 2589 struct dl_bw *dl_b; 2590 bool overflow; 2591 int cpus, ret; 2592 unsigned long flags; 2593 2594 rcu_read_lock_sched(); 2595 dl_b = dl_bw_of(dest_cpu); 2596 raw_spin_lock_irqsave(&dl_b->lock, flags); 2597 cpus = dl_bw_cpus(dest_cpu); 2598 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 2599 if (overflow) 2600 ret = -EBUSY; 2601 else { 2602 /* 2603 * We reserve space for this task in the destination 2604 * root_domain, as we can't fail after this point. 2605 * We will free resources in the source root_domain 2606 * later on (see set_cpus_allowed_dl()). 2607 */ 2608 __dl_add(dl_b, p->dl.dl_bw, cpus); 2609 ret = 0; 2610 } 2611 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2612 rcu_read_unlock_sched(); 2613 return ret; 2614 } 2615 2616 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, 2617 const struct cpumask *trial) 2618 { 2619 int ret = 1, trial_cpus; 2620 struct dl_bw *cur_dl_b; 2621 unsigned long flags; 2622 2623 rcu_read_lock_sched(); 2624 cur_dl_b = dl_bw_of(cpumask_any(cur)); 2625 trial_cpus = cpumask_weight(trial); 2626 2627 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 2628 if (cur_dl_b->bw != -1 && 2629 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 2630 ret = 0; 2631 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 2632 rcu_read_unlock_sched(); 2633 return ret; 2634 } 2635 2636 bool dl_cpu_busy(unsigned int cpu) 2637 { 2638 unsigned long flags; 2639 struct dl_bw *dl_b; 2640 bool overflow; 2641 int cpus; 2642 2643 rcu_read_lock_sched(); 2644 dl_b = dl_bw_of(cpu); 2645 raw_spin_lock_irqsave(&dl_b->lock, flags); 2646 cpus = dl_bw_cpus(cpu); 2647 overflow = __dl_overflow(dl_b, cpus, 0, 0); 2648 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2649 rcu_read_unlock_sched(); 2650 return overflow; 2651 } 2652 #endif 2653 2654 #ifdef CONFIG_SCHED_DEBUG 2655 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 2656 2657 void print_dl_stats(struct seq_file *m, int cpu) 2658 { 2659 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 2660 } 2661 #endif /* CONFIG_SCHED_DEBUG */ 2662