1 /* 2 * Deadline Scheduling Class (SCHED_DEADLINE) 3 * 4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 5 * 6 * Tasks that periodically executes their instances for less than their 7 * runtime won't miss any of their deadlines. 8 * Tasks that are not periodic or sporadic or that tries to execute more 9 * than their reserved bandwidth will be slowed down (and may potentially 10 * miss some of their deadlines), and won't affect any other task. 11 * 12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 13 * Juri Lelli <juri.lelli@gmail.com>, 14 * Michael Trimarchi <michael@amarulasolutions.com>, 15 * Fabio Checconi <fchecconi@gmail.com> 16 */ 17 #include "sched.h" 18 19 #include <linux/slab.h> 20 21 struct dl_bandwidth def_dl_bandwidth; 22 23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 24 { 25 return container_of(dl_se, struct task_struct, dl); 26 } 27 28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 29 { 30 return container_of(dl_rq, struct rq, dl); 31 } 32 33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 34 { 35 struct task_struct *p = dl_task_of(dl_se); 36 struct rq *rq = task_rq(p); 37 38 return &rq->dl; 39 } 40 41 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 42 { 43 return !RB_EMPTY_NODE(&dl_se->rb_node); 44 } 45 46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) 47 { 48 struct sched_dl_entity *dl_se = &p->dl; 49 50 return dl_rq->rb_leftmost == &dl_se->rb_node; 51 } 52 53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) 54 { 55 raw_spin_lock_init(&dl_b->dl_runtime_lock); 56 dl_b->dl_period = period; 57 dl_b->dl_runtime = runtime; 58 } 59 60 void init_dl_bw(struct dl_bw *dl_b) 61 { 62 raw_spin_lock_init(&dl_b->lock); 63 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock); 64 if (global_rt_runtime() == RUNTIME_INF) 65 dl_b->bw = -1; 66 else 67 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 68 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock); 69 dl_b->total_bw = 0; 70 } 71 72 void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq) 73 { 74 dl_rq->rb_root = RB_ROOT; 75 76 #ifdef CONFIG_SMP 77 /* zero means no -deadline tasks */ 78 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 79 80 dl_rq->dl_nr_migratory = 0; 81 dl_rq->overloaded = 0; 82 dl_rq->pushable_dl_tasks_root = RB_ROOT; 83 #else 84 init_dl_bw(&dl_rq->dl_bw); 85 #endif 86 } 87 88 #ifdef CONFIG_SMP 89 90 static inline int dl_overloaded(struct rq *rq) 91 { 92 return atomic_read(&rq->rd->dlo_count); 93 } 94 95 static inline void dl_set_overload(struct rq *rq) 96 { 97 if (!rq->online) 98 return; 99 100 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 101 /* 102 * Must be visible before the overload count is 103 * set (as in sched_rt.c). 104 * 105 * Matched by the barrier in pull_dl_task(). 106 */ 107 smp_wmb(); 108 atomic_inc(&rq->rd->dlo_count); 109 } 110 111 static inline void dl_clear_overload(struct rq *rq) 112 { 113 if (!rq->online) 114 return; 115 116 atomic_dec(&rq->rd->dlo_count); 117 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 118 } 119 120 static void update_dl_migration(struct dl_rq *dl_rq) 121 { 122 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { 123 if (!dl_rq->overloaded) { 124 dl_set_overload(rq_of_dl_rq(dl_rq)); 125 dl_rq->overloaded = 1; 126 } 127 } else if (dl_rq->overloaded) { 128 dl_clear_overload(rq_of_dl_rq(dl_rq)); 129 dl_rq->overloaded = 0; 130 } 131 } 132 133 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 134 { 135 struct task_struct *p = dl_task_of(dl_se); 136 137 if (p->nr_cpus_allowed > 1) 138 dl_rq->dl_nr_migratory++; 139 140 update_dl_migration(dl_rq); 141 } 142 143 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 144 { 145 struct task_struct *p = dl_task_of(dl_se); 146 147 if (p->nr_cpus_allowed > 1) 148 dl_rq->dl_nr_migratory--; 149 150 update_dl_migration(dl_rq); 151 } 152 153 /* 154 * The list of pushable -deadline task is not a plist, like in 155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 156 */ 157 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 158 { 159 struct dl_rq *dl_rq = &rq->dl; 160 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node; 161 struct rb_node *parent = NULL; 162 struct task_struct *entry; 163 int leftmost = 1; 164 165 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 166 167 while (*link) { 168 parent = *link; 169 entry = rb_entry(parent, struct task_struct, 170 pushable_dl_tasks); 171 if (dl_entity_preempt(&p->dl, &entry->dl)) 172 link = &parent->rb_left; 173 else { 174 link = &parent->rb_right; 175 leftmost = 0; 176 } 177 } 178 179 if (leftmost) 180 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks; 181 182 rb_link_node(&p->pushable_dl_tasks, parent, link); 183 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 184 } 185 186 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 187 { 188 struct dl_rq *dl_rq = &rq->dl; 189 190 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 191 return; 192 193 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) { 194 struct rb_node *next_node; 195 196 next_node = rb_next(&p->pushable_dl_tasks); 197 dl_rq->pushable_dl_tasks_leftmost = next_node; 198 } 199 200 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 201 RB_CLEAR_NODE(&p->pushable_dl_tasks); 202 } 203 204 static inline int has_pushable_dl_tasks(struct rq *rq) 205 { 206 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root); 207 } 208 209 static int push_dl_task(struct rq *rq); 210 211 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 212 { 213 return dl_task(prev); 214 } 215 216 static inline void set_post_schedule(struct rq *rq) 217 { 218 rq->post_schedule = has_pushable_dl_tasks(rq); 219 } 220 221 #else 222 223 static inline 224 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 225 { 226 } 227 228 static inline 229 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 230 { 231 } 232 233 static inline 234 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 235 { 236 } 237 238 static inline 239 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 240 { 241 } 242 243 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 244 { 245 return false; 246 } 247 248 static inline int pull_dl_task(struct rq *rq) 249 { 250 return 0; 251 } 252 253 static inline void set_post_schedule(struct rq *rq) 254 { 255 } 256 #endif /* CONFIG_SMP */ 257 258 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 259 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); 260 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 261 int flags); 262 263 /* 264 * We are being explicitly informed that a new instance is starting, 265 * and this means that: 266 * - the absolute deadline of the entity has to be placed at 267 * current time + relative deadline; 268 * - the runtime of the entity has to be set to the maximum value. 269 * 270 * The capability of specifying such event is useful whenever a -deadline 271 * entity wants to (try to!) synchronize its behaviour with the scheduler's 272 * one, and to (try to!) reconcile itself with its own scheduling 273 * parameters. 274 */ 275 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se, 276 struct sched_dl_entity *pi_se) 277 { 278 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 279 struct rq *rq = rq_of_dl_rq(dl_rq); 280 281 WARN_ON(!dl_se->dl_new || dl_se->dl_throttled); 282 283 /* 284 * We use the regular wall clock time to set deadlines in the 285 * future; in fact, we must consider execution overheads (time 286 * spent on hardirq context, etc.). 287 */ 288 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 289 dl_se->runtime = pi_se->dl_runtime; 290 dl_se->dl_new = 0; 291 } 292 293 /* 294 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 295 * possibility of a entity lasting more than what it declared, and thus 296 * exhausting its runtime. 297 * 298 * Here we are interested in making runtime overrun possible, but we do 299 * not want a entity which is misbehaving to affect the scheduling of all 300 * other entities. 301 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 302 * is used, in order to confine each entity within its own bandwidth. 303 * 304 * This function deals exactly with that, and ensures that when the runtime 305 * of a entity is replenished, its deadline is also postponed. That ensures 306 * the overrunning entity can't interfere with other entity in the system and 307 * can't make them miss their deadlines. Reasons why this kind of overruns 308 * could happen are, typically, a entity voluntarily trying to overcome its 309 * runtime, or it just underestimated it during sched_setattr(). 310 */ 311 static void replenish_dl_entity(struct sched_dl_entity *dl_se, 312 struct sched_dl_entity *pi_se) 313 { 314 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 315 struct rq *rq = rq_of_dl_rq(dl_rq); 316 317 BUG_ON(pi_se->dl_runtime <= 0); 318 319 /* 320 * This could be the case for a !-dl task that is boosted. 321 * Just go with full inherited parameters. 322 */ 323 if (dl_se->dl_deadline == 0) { 324 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 325 dl_se->runtime = pi_se->dl_runtime; 326 } 327 328 /* 329 * We keep moving the deadline away until we get some 330 * available runtime for the entity. This ensures correct 331 * handling of situations where the runtime overrun is 332 * arbitrary large. 333 */ 334 while (dl_se->runtime <= 0) { 335 dl_se->deadline += pi_se->dl_period; 336 dl_se->runtime += pi_se->dl_runtime; 337 } 338 339 /* 340 * At this point, the deadline really should be "in 341 * the future" with respect to rq->clock. If it's 342 * not, we are, for some reason, lagging too much! 343 * Anyway, after having warn userspace abut that, 344 * we still try to keep the things running by 345 * resetting the deadline and the budget of the 346 * entity. 347 */ 348 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 349 printk_deferred_once("sched: DL replenish lagged to much\n"); 350 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 351 dl_se->runtime = pi_se->dl_runtime; 352 } 353 } 354 355 /* 356 * Here we check if --at time t-- an entity (which is probably being 357 * [re]activated or, in general, enqueued) can use its remaining runtime 358 * and its current deadline _without_ exceeding the bandwidth it is 359 * assigned (function returns true if it can't). We are in fact applying 360 * one of the CBS rules: when a task wakes up, if the residual runtime 361 * over residual deadline fits within the allocated bandwidth, then we 362 * can keep the current (absolute) deadline and residual budget without 363 * disrupting the schedulability of the system. Otherwise, we should 364 * refill the runtime and set the deadline a period in the future, 365 * because keeping the current (absolute) deadline of the task would 366 * result in breaking guarantees promised to other tasks (refer to 367 * Documentation/scheduler/sched-deadline.txt for more informations). 368 * 369 * This function returns true if: 370 * 371 * runtime / (deadline - t) > dl_runtime / dl_period , 372 * 373 * IOW we can't recycle current parameters. 374 * 375 * Notice that the bandwidth check is done against the period. For 376 * task with deadline equal to period this is the same of using 377 * dl_deadline instead of dl_period in the equation above. 378 */ 379 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, 380 struct sched_dl_entity *pi_se, u64 t) 381 { 382 u64 left, right; 383 384 /* 385 * left and right are the two sides of the equation above, 386 * after a bit of shuffling to use multiplications instead 387 * of divisions. 388 * 389 * Note that none of the time values involved in the two 390 * multiplications are absolute: dl_deadline and dl_runtime 391 * are the relative deadline and the maximum runtime of each 392 * instance, runtime is the runtime left for the last instance 393 * and (deadline - t), since t is rq->clock, is the time left 394 * to the (absolute) deadline. Even if overflowing the u64 type 395 * is very unlikely to occur in both cases, here we scale down 396 * as we want to avoid that risk at all. Scaling down by 10 397 * means that we reduce granularity to 1us. We are fine with it, 398 * since this is only a true/false check and, anyway, thinking 399 * of anything below microseconds resolution is actually fiction 400 * (but still we want to give the user that illusion >;). 401 */ 402 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 403 right = ((dl_se->deadline - t) >> DL_SCALE) * 404 (pi_se->dl_runtime >> DL_SCALE); 405 406 return dl_time_before(right, left); 407 } 408 409 /* 410 * When a -deadline entity is queued back on the runqueue, its runtime and 411 * deadline might need updating. 412 * 413 * The policy here is that we update the deadline of the entity only if: 414 * - the current deadline is in the past, 415 * - using the remaining runtime with the current deadline would make 416 * the entity exceed its bandwidth. 417 */ 418 static void update_dl_entity(struct sched_dl_entity *dl_se, 419 struct sched_dl_entity *pi_se) 420 { 421 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 422 struct rq *rq = rq_of_dl_rq(dl_rq); 423 424 /* 425 * The arrival of a new instance needs special treatment, i.e., 426 * the actual scheduling parameters have to be "renewed". 427 */ 428 if (dl_se->dl_new) { 429 setup_new_dl_entity(dl_se, pi_se); 430 return; 431 } 432 433 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 434 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) { 435 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 436 dl_se->runtime = pi_se->dl_runtime; 437 } 438 } 439 440 /* 441 * If the entity depleted all its runtime, and if we want it to sleep 442 * while waiting for some new execution time to become available, we 443 * set the bandwidth enforcement timer to the replenishment instant 444 * and try to activate it. 445 * 446 * Notice that it is important for the caller to know if the timer 447 * actually started or not (i.e., the replenishment instant is in 448 * the future or in the past). 449 */ 450 static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted) 451 { 452 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 453 struct rq *rq = rq_of_dl_rq(dl_rq); 454 ktime_t now, act; 455 ktime_t soft, hard; 456 unsigned long range; 457 s64 delta; 458 459 if (boosted) 460 return 0; 461 /* 462 * We want the timer to fire at the deadline, but considering 463 * that it is actually coming from rq->clock and not from 464 * hrtimer's time base reading. 465 */ 466 act = ns_to_ktime(dl_se->deadline); 467 now = hrtimer_cb_get_time(&dl_se->dl_timer); 468 delta = ktime_to_ns(now) - rq_clock(rq); 469 act = ktime_add_ns(act, delta); 470 471 /* 472 * If the expiry time already passed, e.g., because the value 473 * chosen as the deadline is too small, don't even try to 474 * start the timer in the past! 475 */ 476 if (ktime_us_delta(act, now) < 0) 477 return 0; 478 479 hrtimer_set_expires(&dl_se->dl_timer, act); 480 481 soft = hrtimer_get_softexpires(&dl_se->dl_timer); 482 hard = hrtimer_get_expires(&dl_se->dl_timer); 483 range = ktime_to_ns(ktime_sub(hard, soft)); 484 __hrtimer_start_range_ns(&dl_se->dl_timer, soft, 485 range, HRTIMER_MODE_ABS, 0); 486 487 return hrtimer_active(&dl_se->dl_timer); 488 } 489 490 /* 491 * This is the bandwidth enforcement timer callback. If here, we know 492 * a task is not on its dl_rq, since the fact that the timer was running 493 * means the task is throttled and needs a runtime replenishment. 494 * 495 * However, what we actually do depends on the fact the task is active, 496 * (it is on its rq) or has been removed from there by a call to 497 * dequeue_task_dl(). In the former case we must issue the runtime 498 * replenishment and add the task back to the dl_rq; in the latter, we just 499 * do nothing but clearing dl_throttled, so that runtime and deadline 500 * updating (and the queueing back to dl_rq) will be done by the 501 * next call to enqueue_task_dl(). 502 */ 503 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 504 { 505 struct sched_dl_entity *dl_se = container_of(timer, 506 struct sched_dl_entity, 507 dl_timer); 508 struct task_struct *p = dl_task_of(dl_se); 509 struct rq *rq; 510 again: 511 rq = task_rq(p); 512 raw_spin_lock(&rq->lock); 513 514 if (rq != task_rq(p)) { 515 /* Task was moved, retrying. */ 516 raw_spin_unlock(&rq->lock); 517 goto again; 518 } 519 520 /* 521 * We need to take care of a possible races here. In fact, the 522 * task might have changed its scheduling policy to something 523 * different from SCHED_DEADLINE or changed its reservation 524 * parameters (through sched_setattr()). 525 */ 526 if (!dl_task(p) || dl_se->dl_new) 527 goto unlock; 528 529 sched_clock_tick(); 530 update_rq_clock(rq); 531 dl_se->dl_throttled = 0; 532 dl_se->dl_yielded = 0; 533 if (task_on_rq_queued(p)) { 534 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 535 if (task_has_dl_policy(rq->curr)) 536 check_preempt_curr_dl(rq, p, 0); 537 else 538 resched_curr(rq); 539 #ifdef CONFIG_SMP 540 /* 541 * Queueing this task back might have overloaded rq, 542 * check if we need to kick someone away. 543 */ 544 if (has_pushable_dl_tasks(rq)) 545 push_dl_task(rq); 546 #endif 547 } 548 unlock: 549 raw_spin_unlock(&rq->lock); 550 551 return HRTIMER_NORESTART; 552 } 553 554 void init_dl_task_timer(struct sched_dl_entity *dl_se) 555 { 556 struct hrtimer *timer = &dl_se->dl_timer; 557 558 if (hrtimer_active(timer)) { 559 hrtimer_try_to_cancel(timer); 560 return; 561 } 562 563 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 564 timer->function = dl_task_timer; 565 } 566 567 static 568 int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se) 569 { 570 int dmiss = dl_time_before(dl_se->deadline, rq_clock(rq)); 571 int rorun = dl_se->runtime <= 0; 572 573 if (!rorun && !dmiss) 574 return 0; 575 576 /* 577 * If we are beyond our current deadline and we are still 578 * executing, then we have already used some of the runtime of 579 * the next instance. Thus, if we do not account that, we are 580 * stealing bandwidth from the system at each deadline miss! 581 */ 582 if (dmiss) { 583 dl_se->runtime = rorun ? dl_se->runtime : 0; 584 dl_se->runtime -= rq_clock(rq) - dl_se->deadline; 585 } 586 587 return 1; 588 } 589 590 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 591 592 /* 593 * Update the current task's runtime statistics (provided it is still 594 * a -deadline task and has not been removed from the dl_rq). 595 */ 596 static void update_curr_dl(struct rq *rq) 597 { 598 struct task_struct *curr = rq->curr; 599 struct sched_dl_entity *dl_se = &curr->dl; 600 u64 delta_exec; 601 602 if (!dl_task(curr) || !on_dl_rq(dl_se)) 603 return; 604 605 /* 606 * Consumed budget is computed considering the time as 607 * observed by schedulable tasks (excluding time spent 608 * in hardirq context, etc.). Deadlines are instead 609 * computed using hard walltime. This seems to be the more 610 * natural solution, but the full ramifications of this 611 * approach need further study. 612 */ 613 delta_exec = rq_clock_task(rq) - curr->se.exec_start; 614 if (unlikely((s64)delta_exec <= 0)) 615 return; 616 617 schedstat_set(curr->se.statistics.exec_max, 618 max(curr->se.statistics.exec_max, delta_exec)); 619 620 curr->se.sum_exec_runtime += delta_exec; 621 account_group_exec_runtime(curr, delta_exec); 622 623 curr->se.exec_start = rq_clock_task(rq); 624 cpuacct_charge(curr, delta_exec); 625 626 sched_rt_avg_update(rq, delta_exec); 627 628 dl_se->runtime -= delta_exec; 629 if (dl_runtime_exceeded(rq, dl_se)) { 630 __dequeue_task_dl(rq, curr, 0); 631 if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted))) 632 dl_se->dl_throttled = 1; 633 else 634 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); 635 636 if (!is_leftmost(curr, &rq->dl)) 637 resched_curr(rq); 638 } 639 640 /* 641 * Because -- for now -- we share the rt bandwidth, we need to 642 * account our runtime there too, otherwise actual rt tasks 643 * would be able to exceed the shared quota. 644 * 645 * Account to the root rt group for now. 646 * 647 * The solution we're working towards is having the RT groups scheduled 648 * using deadline servers -- however there's a few nasties to figure 649 * out before that can happen. 650 */ 651 if (rt_bandwidth_enabled()) { 652 struct rt_rq *rt_rq = &rq->rt; 653 654 raw_spin_lock(&rt_rq->rt_runtime_lock); 655 /* 656 * We'll let actual RT tasks worry about the overflow here, we 657 * have our own CBS to keep us inline; only account when RT 658 * bandwidth is relevant. 659 */ 660 if (sched_rt_bandwidth_account(rt_rq)) 661 rt_rq->rt_time += delta_exec; 662 raw_spin_unlock(&rt_rq->rt_runtime_lock); 663 } 664 } 665 666 #ifdef CONFIG_SMP 667 668 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu); 669 670 static inline u64 next_deadline(struct rq *rq) 671 { 672 struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu); 673 674 if (next && dl_prio(next->prio)) 675 return next->dl.deadline; 676 else 677 return 0; 678 } 679 680 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 681 { 682 struct rq *rq = rq_of_dl_rq(dl_rq); 683 684 if (dl_rq->earliest_dl.curr == 0 || 685 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 686 /* 687 * If the dl_rq had no -deadline tasks, or if the new task 688 * has shorter deadline than the current one on dl_rq, we 689 * know that the previous earliest becomes our next earliest, 690 * as the new task becomes the earliest itself. 691 */ 692 dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr; 693 dl_rq->earliest_dl.curr = deadline; 694 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1); 695 } else if (dl_rq->earliest_dl.next == 0 || 696 dl_time_before(deadline, dl_rq->earliest_dl.next)) { 697 /* 698 * On the other hand, if the new -deadline task has a 699 * a later deadline than the earliest one on dl_rq, but 700 * it is earlier than the next (if any), we must 701 * recompute the next-earliest. 702 */ 703 dl_rq->earliest_dl.next = next_deadline(rq); 704 } 705 } 706 707 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 708 { 709 struct rq *rq = rq_of_dl_rq(dl_rq); 710 711 /* 712 * Since we may have removed our earliest (and/or next earliest) 713 * task we must recompute them. 714 */ 715 if (!dl_rq->dl_nr_running) { 716 dl_rq->earliest_dl.curr = 0; 717 dl_rq->earliest_dl.next = 0; 718 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); 719 } else { 720 struct rb_node *leftmost = dl_rq->rb_leftmost; 721 struct sched_dl_entity *entry; 722 723 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node); 724 dl_rq->earliest_dl.curr = entry->deadline; 725 dl_rq->earliest_dl.next = next_deadline(rq); 726 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1); 727 } 728 } 729 730 #else 731 732 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 733 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 734 735 #endif /* CONFIG_SMP */ 736 737 static inline 738 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 739 { 740 int prio = dl_task_of(dl_se)->prio; 741 u64 deadline = dl_se->deadline; 742 743 WARN_ON(!dl_prio(prio)); 744 dl_rq->dl_nr_running++; 745 add_nr_running(rq_of_dl_rq(dl_rq), 1); 746 747 inc_dl_deadline(dl_rq, deadline); 748 inc_dl_migration(dl_se, dl_rq); 749 } 750 751 static inline 752 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 753 { 754 int prio = dl_task_of(dl_se)->prio; 755 756 WARN_ON(!dl_prio(prio)); 757 WARN_ON(!dl_rq->dl_nr_running); 758 dl_rq->dl_nr_running--; 759 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 760 761 dec_dl_deadline(dl_rq, dl_se->deadline); 762 dec_dl_migration(dl_se, dl_rq); 763 } 764 765 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 766 { 767 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 768 struct rb_node **link = &dl_rq->rb_root.rb_node; 769 struct rb_node *parent = NULL; 770 struct sched_dl_entity *entry; 771 int leftmost = 1; 772 773 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node)); 774 775 while (*link) { 776 parent = *link; 777 entry = rb_entry(parent, struct sched_dl_entity, rb_node); 778 if (dl_time_before(dl_se->deadline, entry->deadline)) 779 link = &parent->rb_left; 780 else { 781 link = &parent->rb_right; 782 leftmost = 0; 783 } 784 } 785 786 if (leftmost) 787 dl_rq->rb_leftmost = &dl_se->rb_node; 788 789 rb_link_node(&dl_se->rb_node, parent, link); 790 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root); 791 792 inc_dl_tasks(dl_se, dl_rq); 793 } 794 795 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 796 { 797 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 798 799 if (RB_EMPTY_NODE(&dl_se->rb_node)) 800 return; 801 802 if (dl_rq->rb_leftmost == &dl_se->rb_node) { 803 struct rb_node *next_node; 804 805 next_node = rb_next(&dl_se->rb_node); 806 dl_rq->rb_leftmost = next_node; 807 } 808 809 rb_erase(&dl_se->rb_node, &dl_rq->rb_root); 810 RB_CLEAR_NODE(&dl_se->rb_node); 811 812 dec_dl_tasks(dl_se, dl_rq); 813 } 814 815 static void 816 enqueue_dl_entity(struct sched_dl_entity *dl_se, 817 struct sched_dl_entity *pi_se, int flags) 818 { 819 BUG_ON(on_dl_rq(dl_se)); 820 821 /* 822 * If this is a wakeup or a new instance, the scheduling 823 * parameters of the task might need updating. Otherwise, 824 * we want a replenishment of its runtime. 825 */ 826 if (!dl_se->dl_new && flags & ENQUEUE_REPLENISH) 827 replenish_dl_entity(dl_se, pi_se); 828 else 829 update_dl_entity(dl_se, pi_se); 830 831 __enqueue_dl_entity(dl_se); 832 } 833 834 static void dequeue_dl_entity(struct sched_dl_entity *dl_se) 835 { 836 __dequeue_dl_entity(dl_se); 837 } 838 839 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 840 { 841 struct task_struct *pi_task = rt_mutex_get_top_task(p); 842 struct sched_dl_entity *pi_se = &p->dl; 843 844 /* 845 * Use the scheduling parameters of the top pi-waiter 846 * task if we have one and its (relative) deadline is 847 * smaller than our one... OTW we keep our runtime and 848 * deadline. 849 */ 850 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) 851 pi_se = &pi_task->dl; 852 853 /* 854 * If p is throttled, we do nothing. In fact, if it exhausted 855 * its budget it needs a replenishment and, since it now is on 856 * its rq, the bandwidth timer callback (which clearly has not 857 * run yet) will take care of this. 858 */ 859 if (p->dl.dl_throttled) 860 return; 861 862 enqueue_dl_entity(&p->dl, pi_se, flags); 863 864 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 865 enqueue_pushable_dl_task(rq, p); 866 } 867 868 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 869 { 870 dequeue_dl_entity(&p->dl); 871 dequeue_pushable_dl_task(rq, p); 872 } 873 874 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 875 { 876 update_curr_dl(rq); 877 __dequeue_task_dl(rq, p, flags); 878 } 879 880 /* 881 * Yield task semantic for -deadline tasks is: 882 * 883 * get off from the CPU until our next instance, with 884 * a new runtime. This is of little use now, since we 885 * don't have a bandwidth reclaiming mechanism. Anyway, 886 * bandwidth reclaiming is planned for the future, and 887 * yield_task_dl will indicate that some spare budget 888 * is available for other task instances to use it. 889 */ 890 static void yield_task_dl(struct rq *rq) 891 { 892 struct task_struct *p = rq->curr; 893 894 /* 895 * We make the task go to sleep until its current deadline by 896 * forcing its runtime to zero. This way, update_curr_dl() stops 897 * it and the bandwidth timer will wake it up and will give it 898 * new scheduling parameters (thanks to dl_yielded=1). 899 */ 900 if (p->dl.runtime > 0) { 901 rq->curr->dl.dl_yielded = 1; 902 p->dl.runtime = 0; 903 } 904 update_curr_dl(rq); 905 } 906 907 #ifdef CONFIG_SMP 908 909 static int find_later_rq(struct task_struct *task); 910 911 static int 912 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags) 913 { 914 struct task_struct *curr; 915 struct rq *rq; 916 917 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 918 goto out; 919 920 rq = cpu_rq(cpu); 921 922 rcu_read_lock(); 923 curr = ACCESS_ONCE(rq->curr); /* unlocked access */ 924 925 /* 926 * If we are dealing with a -deadline task, we must 927 * decide where to wake it up. 928 * If it has a later deadline and the current task 929 * on this rq can't move (provided the waking task 930 * can!) we prefer to send it somewhere else. On the 931 * other hand, if it has a shorter deadline, we 932 * try to make it stay here, it might be important. 933 */ 934 if (unlikely(dl_task(curr)) && 935 (curr->nr_cpus_allowed < 2 || 936 !dl_entity_preempt(&p->dl, &curr->dl)) && 937 (p->nr_cpus_allowed > 1)) { 938 int target = find_later_rq(p); 939 940 if (target != -1) 941 cpu = target; 942 } 943 rcu_read_unlock(); 944 945 out: 946 return cpu; 947 } 948 949 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 950 { 951 /* 952 * Current can't be migrated, useless to reschedule, 953 * let's hope p can move out. 954 */ 955 if (rq->curr->nr_cpus_allowed == 1 || 956 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1) 957 return; 958 959 /* 960 * p is migratable, so let's not schedule it and 961 * see if it is pushed or pulled somewhere else. 962 */ 963 if (p->nr_cpus_allowed != 1 && 964 cpudl_find(&rq->rd->cpudl, p, NULL) != -1) 965 return; 966 967 resched_curr(rq); 968 } 969 970 static int pull_dl_task(struct rq *this_rq); 971 972 #endif /* CONFIG_SMP */ 973 974 /* 975 * Only called when both the current and waking task are -deadline 976 * tasks. 977 */ 978 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 979 int flags) 980 { 981 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { 982 resched_curr(rq); 983 return; 984 } 985 986 #ifdef CONFIG_SMP 987 /* 988 * In the unlikely case current and p have the same deadline 989 * let us try to decide what's the best thing to do... 990 */ 991 if ((p->dl.deadline == rq->curr->dl.deadline) && 992 !test_tsk_need_resched(rq->curr)) 993 check_preempt_equal_dl(rq, p); 994 #endif /* CONFIG_SMP */ 995 } 996 997 #ifdef CONFIG_SCHED_HRTICK 998 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 999 { 1000 hrtick_start(rq, p->dl.runtime); 1001 } 1002 #endif 1003 1004 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq, 1005 struct dl_rq *dl_rq) 1006 { 1007 struct rb_node *left = dl_rq->rb_leftmost; 1008 1009 if (!left) 1010 return NULL; 1011 1012 return rb_entry(left, struct sched_dl_entity, rb_node); 1013 } 1014 1015 struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev) 1016 { 1017 struct sched_dl_entity *dl_se; 1018 struct task_struct *p; 1019 struct dl_rq *dl_rq; 1020 1021 dl_rq = &rq->dl; 1022 1023 if (need_pull_dl_task(rq, prev)) { 1024 pull_dl_task(rq); 1025 /* 1026 * pull_rt_task() can drop (and re-acquire) rq->lock; this 1027 * means a stop task can slip in, in which case we need to 1028 * re-start task selection. 1029 */ 1030 if (rq->stop && task_on_rq_queued(rq->stop)) 1031 return RETRY_TASK; 1032 } 1033 1034 /* 1035 * When prev is DL, we may throttle it in put_prev_task(). 1036 * So, we update time before we check for dl_nr_running. 1037 */ 1038 if (prev->sched_class == &dl_sched_class) 1039 update_curr_dl(rq); 1040 1041 if (unlikely(!dl_rq->dl_nr_running)) 1042 return NULL; 1043 1044 put_prev_task(rq, prev); 1045 1046 dl_se = pick_next_dl_entity(rq, dl_rq); 1047 BUG_ON(!dl_se); 1048 1049 p = dl_task_of(dl_se); 1050 p->se.exec_start = rq_clock_task(rq); 1051 1052 /* Running task will never be pushed. */ 1053 dequeue_pushable_dl_task(rq, p); 1054 1055 #ifdef CONFIG_SCHED_HRTICK 1056 if (hrtick_enabled(rq)) 1057 start_hrtick_dl(rq, p); 1058 #endif 1059 1060 set_post_schedule(rq); 1061 1062 return p; 1063 } 1064 1065 static void put_prev_task_dl(struct rq *rq, struct task_struct *p) 1066 { 1067 update_curr_dl(rq); 1068 1069 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 1070 enqueue_pushable_dl_task(rq, p); 1071 } 1072 1073 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 1074 { 1075 update_curr_dl(rq); 1076 1077 #ifdef CONFIG_SCHED_HRTICK 1078 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0) 1079 start_hrtick_dl(rq, p); 1080 #endif 1081 } 1082 1083 static void task_fork_dl(struct task_struct *p) 1084 { 1085 /* 1086 * SCHED_DEADLINE tasks cannot fork and this is achieved through 1087 * sched_fork() 1088 */ 1089 } 1090 1091 static void task_dead_dl(struct task_struct *p) 1092 { 1093 struct hrtimer *timer = &p->dl.dl_timer; 1094 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1095 1096 /* 1097 * Since we are TASK_DEAD we won't slip out of the domain! 1098 */ 1099 raw_spin_lock_irq(&dl_b->lock); 1100 dl_b->total_bw -= p->dl.dl_bw; 1101 raw_spin_unlock_irq(&dl_b->lock); 1102 1103 hrtimer_cancel(timer); 1104 } 1105 1106 static void set_curr_task_dl(struct rq *rq) 1107 { 1108 struct task_struct *p = rq->curr; 1109 1110 p->se.exec_start = rq_clock_task(rq); 1111 1112 /* You can't push away the running task */ 1113 dequeue_pushable_dl_task(rq, p); 1114 } 1115 1116 #ifdef CONFIG_SMP 1117 1118 /* Only try algorithms three times */ 1119 #define DL_MAX_TRIES 3 1120 1121 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) 1122 { 1123 if (!task_running(rq, p) && 1124 cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 1125 return 1; 1126 return 0; 1127 } 1128 1129 /* Returns the second earliest -deadline task, NULL otherwise */ 1130 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu) 1131 { 1132 struct rb_node *next_node = rq->dl.rb_leftmost; 1133 struct sched_dl_entity *dl_se; 1134 struct task_struct *p = NULL; 1135 1136 next_node: 1137 next_node = rb_next(next_node); 1138 if (next_node) { 1139 dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node); 1140 p = dl_task_of(dl_se); 1141 1142 if (pick_dl_task(rq, p, cpu)) 1143 return p; 1144 1145 goto next_node; 1146 } 1147 1148 return NULL; 1149 } 1150 1151 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 1152 1153 static int find_later_rq(struct task_struct *task) 1154 { 1155 struct sched_domain *sd; 1156 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 1157 int this_cpu = smp_processor_id(); 1158 int best_cpu, cpu = task_cpu(task); 1159 1160 /* Make sure the mask is initialized first */ 1161 if (unlikely(!later_mask)) 1162 return -1; 1163 1164 if (task->nr_cpus_allowed == 1) 1165 return -1; 1166 1167 /* 1168 * We have to consider system topology and task affinity 1169 * first, then we can look for a suitable cpu. 1170 */ 1171 cpumask_copy(later_mask, task_rq(task)->rd->span); 1172 cpumask_and(later_mask, later_mask, cpu_active_mask); 1173 cpumask_and(later_mask, later_mask, &task->cpus_allowed); 1174 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl, 1175 task, later_mask); 1176 if (best_cpu == -1) 1177 return -1; 1178 1179 /* 1180 * If we are here, some target has been found, 1181 * the most suitable of which is cached in best_cpu. 1182 * This is, among the runqueues where the current tasks 1183 * have later deadlines than the task's one, the rq 1184 * with the latest possible one. 1185 * 1186 * Now we check how well this matches with task's 1187 * affinity and system topology. 1188 * 1189 * The last cpu where the task run is our first 1190 * guess, since it is most likely cache-hot there. 1191 */ 1192 if (cpumask_test_cpu(cpu, later_mask)) 1193 return cpu; 1194 /* 1195 * Check if this_cpu is to be skipped (i.e., it is 1196 * not in the mask) or not. 1197 */ 1198 if (!cpumask_test_cpu(this_cpu, later_mask)) 1199 this_cpu = -1; 1200 1201 rcu_read_lock(); 1202 for_each_domain(cpu, sd) { 1203 if (sd->flags & SD_WAKE_AFFINE) { 1204 1205 /* 1206 * If possible, preempting this_cpu is 1207 * cheaper than migrating. 1208 */ 1209 if (this_cpu != -1 && 1210 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1211 rcu_read_unlock(); 1212 return this_cpu; 1213 } 1214 1215 /* 1216 * Last chance: if best_cpu is valid and is 1217 * in the mask, that becomes our choice. 1218 */ 1219 if (best_cpu < nr_cpu_ids && 1220 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) { 1221 rcu_read_unlock(); 1222 return best_cpu; 1223 } 1224 } 1225 } 1226 rcu_read_unlock(); 1227 1228 /* 1229 * At this point, all our guesses failed, we just return 1230 * 'something', and let the caller sort the things out. 1231 */ 1232 if (this_cpu != -1) 1233 return this_cpu; 1234 1235 cpu = cpumask_any(later_mask); 1236 if (cpu < nr_cpu_ids) 1237 return cpu; 1238 1239 return -1; 1240 } 1241 1242 /* Locks the rq it finds */ 1243 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 1244 { 1245 struct rq *later_rq = NULL; 1246 int tries; 1247 int cpu; 1248 1249 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 1250 cpu = find_later_rq(task); 1251 1252 if ((cpu == -1) || (cpu == rq->cpu)) 1253 break; 1254 1255 later_rq = cpu_rq(cpu); 1256 1257 /* Retry if something changed. */ 1258 if (double_lock_balance(rq, later_rq)) { 1259 if (unlikely(task_rq(task) != rq || 1260 !cpumask_test_cpu(later_rq->cpu, 1261 &task->cpus_allowed) || 1262 task_running(rq, task) || 1263 !task_on_rq_queued(task))) { 1264 double_unlock_balance(rq, later_rq); 1265 later_rq = NULL; 1266 break; 1267 } 1268 } 1269 1270 /* 1271 * If the rq we found has no -deadline task, or 1272 * its earliest one has a later deadline than our 1273 * task, the rq is a good one. 1274 */ 1275 if (!later_rq->dl.dl_nr_running || 1276 dl_time_before(task->dl.deadline, 1277 later_rq->dl.earliest_dl.curr)) 1278 break; 1279 1280 /* Otherwise we try again. */ 1281 double_unlock_balance(rq, later_rq); 1282 later_rq = NULL; 1283 } 1284 1285 return later_rq; 1286 } 1287 1288 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 1289 { 1290 struct task_struct *p; 1291 1292 if (!has_pushable_dl_tasks(rq)) 1293 return NULL; 1294 1295 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost, 1296 struct task_struct, pushable_dl_tasks); 1297 1298 BUG_ON(rq->cpu != task_cpu(p)); 1299 BUG_ON(task_current(rq, p)); 1300 BUG_ON(p->nr_cpus_allowed <= 1); 1301 1302 BUG_ON(!task_on_rq_queued(p)); 1303 BUG_ON(!dl_task(p)); 1304 1305 return p; 1306 } 1307 1308 /* 1309 * See if the non running -deadline tasks on this rq 1310 * can be sent to some other CPU where they can preempt 1311 * and start executing. 1312 */ 1313 static int push_dl_task(struct rq *rq) 1314 { 1315 struct task_struct *next_task; 1316 struct rq *later_rq; 1317 1318 if (!rq->dl.overloaded) 1319 return 0; 1320 1321 next_task = pick_next_pushable_dl_task(rq); 1322 if (!next_task) 1323 return 0; 1324 1325 retry: 1326 if (unlikely(next_task == rq->curr)) { 1327 WARN_ON(1); 1328 return 0; 1329 } 1330 1331 /* 1332 * If next_task preempts rq->curr, and rq->curr 1333 * can move away, it makes sense to just reschedule 1334 * without going further in pushing next_task. 1335 */ 1336 if (dl_task(rq->curr) && 1337 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && 1338 rq->curr->nr_cpus_allowed > 1) { 1339 resched_curr(rq); 1340 return 0; 1341 } 1342 1343 /* We might release rq lock */ 1344 get_task_struct(next_task); 1345 1346 /* Will lock the rq it'll find */ 1347 later_rq = find_lock_later_rq(next_task, rq); 1348 if (!later_rq) { 1349 struct task_struct *task; 1350 1351 /* 1352 * We must check all this again, since 1353 * find_lock_later_rq releases rq->lock and it is 1354 * then possible that next_task has migrated. 1355 */ 1356 task = pick_next_pushable_dl_task(rq); 1357 if (task_cpu(next_task) == rq->cpu && task == next_task) { 1358 /* 1359 * The task is still there. We don't try 1360 * again, some other cpu will pull it when ready. 1361 */ 1362 dequeue_pushable_dl_task(rq, next_task); 1363 goto out; 1364 } 1365 1366 if (!task) 1367 /* No more tasks */ 1368 goto out; 1369 1370 put_task_struct(next_task); 1371 next_task = task; 1372 goto retry; 1373 } 1374 1375 deactivate_task(rq, next_task, 0); 1376 set_task_cpu(next_task, later_rq->cpu); 1377 activate_task(later_rq, next_task, 0); 1378 1379 resched_curr(later_rq); 1380 1381 double_unlock_balance(rq, later_rq); 1382 1383 out: 1384 put_task_struct(next_task); 1385 1386 return 1; 1387 } 1388 1389 static void push_dl_tasks(struct rq *rq) 1390 { 1391 /* Terminates as it moves a -deadline task */ 1392 while (push_dl_task(rq)) 1393 ; 1394 } 1395 1396 static int pull_dl_task(struct rq *this_rq) 1397 { 1398 int this_cpu = this_rq->cpu, ret = 0, cpu; 1399 struct task_struct *p; 1400 struct rq *src_rq; 1401 u64 dmin = LONG_MAX; 1402 1403 if (likely(!dl_overloaded(this_rq))) 1404 return 0; 1405 1406 /* 1407 * Match the barrier from dl_set_overloaded; this guarantees that if we 1408 * see overloaded we must also see the dlo_mask bit. 1409 */ 1410 smp_rmb(); 1411 1412 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 1413 if (this_cpu == cpu) 1414 continue; 1415 1416 src_rq = cpu_rq(cpu); 1417 1418 /* 1419 * It looks racy, abd it is! However, as in sched_rt.c, 1420 * we are fine with this. 1421 */ 1422 if (this_rq->dl.dl_nr_running && 1423 dl_time_before(this_rq->dl.earliest_dl.curr, 1424 src_rq->dl.earliest_dl.next)) 1425 continue; 1426 1427 /* Might drop this_rq->lock */ 1428 double_lock_balance(this_rq, src_rq); 1429 1430 /* 1431 * If there are no more pullable tasks on the 1432 * rq, we're done with it. 1433 */ 1434 if (src_rq->dl.dl_nr_running <= 1) 1435 goto skip; 1436 1437 p = pick_next_earliest_dl_task(src_rq, this_cpu); 1438 1439 /* 1440 * We found a task to be pulled if: 1441 * - it preempts our current (if there's one), 1442 * - it will preempt the last one we pulled (if any). 1443 */ 1444 if (p && dl_time_before(p->dl.deadline, dmin) && 1445 (!this_rq->dl.dl_nr_running || 1446 dl_time_before(p->dl.deadline, 1447 this_rq->dl.earliest_dl.curr))) { 1448 WARN_ON(p == src_rq->curr); 1449 WARN_ON(!task_on_rq_queued(p)); 1450 1451 /* 1452 * Then we pull iff p has actually an earlier 1453 * deadline than the current task of its runqueue. 1454 */ 1455 if (dl_time_before(p->dl.deadline, 1456 src_rq->curr->dl.deadline)) 1457 goto skip; 1458 1459 ret = 1; 1460 1461 deactivate_task(src_rq, p, 0); 1462 set_task_cpu(p, this_cpu); 1463 activate_task(this_rq, p, 0); 1464 dmin = p->dl.deadline; 1465 1466 /* Is there any other task even earlier? */ 1467 } 1468 skip: 1469 double_unlock_balance(this_rq, src_rq); 1470 } 1471 1472 return ret; 1473 } 1474 1475 static void post_schedule_dl(struct rq *rq) 1476 { 1477 push_dl_tasks(rq); 1478 } 1479 1480 /* 1481 * Since the task is not running and a reschedule is not going to happen 1482 * anytime soon on its runqueue, we try pushing it away now. 1483 */ 1484 static void task_woken_dl(struct rq *rq, struct task_struct *p) 1485 { 1486 if (!task_running(rq, p) && 1487 !test_tsk_need_resched(rq->curr) && 1488 has_pushable_dl_tasks(rq) && 1489 p->nr_cpus_allowed > 1 && 1490 dl_task(rq->curr) && 1491 (rq->curr->nr_cpus_allowed < 2 || 1492 dl_entity_preempt(&rq->curr->dl, &p->dl))) { 1493 push_dl_tasks(rq); 1494 } 1495 } 1496 1497 static void set_cpus_allowed_dl(struct task_struct *p, 1498 const struct cpumask *new_mask) 1499 { 1500 struct rq *rq; 1501 int weight; 1502 1503 BUG_ON(!dl_task(p)); 1504 1505 /* 1506 * Update only if the task is actually running (i.e., 1507 * it is on the rq AND it is not throttled). 1508 */ 1509 if (!on_dl_rq(&p->dl)) 1510 return; 1511 1512 weight = cpumask_weight(new_mask); 1513 1514 /* 1515 * Only update if the process changes its state from whether it 1516 * can migrate or not. 1517 */ 1518 if ((p->nr_cpus_allowed > 1) == (weight > 1)) 1519 return; 1520 1521 rq = task_rq(p); 1522 1523 /* 1524 * The process used to be able to migrate OR it can now migrate 1525 */ 1526 if (weight <= 1) { 1527 if (!task_current(rq, p)) 1528 dequeue_pushable_dl_task(rq, p); 1529 BUG_ON(!rq->dl.dl_nr_migratory); 1530 rq->dl.dl_nr_migratory--; 1531 } else { 1532 if (!task_current(rq, p)) 1533 enqueue_pushable_dl_task(rq, p); 1534 rq->dl.dl_nr_migratory++; 1535 } 1536 1537 update_dl_migration(&rq->dl); 1538 } 1539 1540 /* Assumes rq->lock is held */ 1541 static void rq_online_dl(struct rq *rq) 1542 { 1543 if (rq->dl.overloaded) 1544 dl_set_overload(rq); 1545 1546 if (rq->dl.dl_nr_running > 0) 1547 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1); 1548 } 1549 1550 /* Assumes rq->lock is held */ 1551 static void rq_offline_dl(struct rq *rq) 1552 { 1553 if (rq->dl.overloaded) 1554 dl_clear_overload(rq); 1555 1556 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); 1557 } 1558 1559 void init_sched_dl_class(void) 1560 { 1561 unsigned int i; 1562 1563 for_each_possible_cpu(i) 1564 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 1565 GFP_KERNEL, cpu_to_node(i)); 1566 } 1567 1568 #endif /* CONFIG_SMP */ 1569 1570 static void switched_from_dl(struct rq *rq, struct task_struct *p) 1571 { 1572 if (hrtimer_active(&p->dl.dl_timer) && !dl_policy(p->policy)) 1573 hrtimer_try_to_cancel(&p->dl.dl_timer); 1574 1575 __dl_clear_params(p); 1576 1577 #ifdef CONFIG_SMP 1578 /* 1579 * Since this might be the only -deadline task on the rq, 1580 * this is the right place to try to pull some other one 1581 * from an overloaded cpu, if any. 1582 */ 1583 if (!rq->dl.dl_nr_running) 1584 pull_dl_task(rq); 1585 #endif 1586 } 1587 1588 /* 1589 * When switching to -deadline, we may overload the rq, then 1590 * we try to push someone off, if possible. 1591 */ 1592 static void switched_to_dl(struct rq *rq, struct task_struct *p) 1593 { 1594 int check_resched = 1; 1595 1596 /* 1597 * If p is throttled, don't consider the possibility 1598 * of preempting rq->curr, the check will be done right 1599 * after its runtime will get replenished. 1600 */ 1601 if (unlikely(p->dl.dl_throttled)) 1602 return; 1603 1604 if (task_on_rq_queued(p) && rq->curr != p) { 1605 #ifdef CONFIG_SMP 1606 if (rq->dl.overloaded && push_dl_task(rq) && rq != task_rq(p)) 1607 /* Only reschedule if pushing failed */ 1608 check_resched = 0; 1609 #endif /* CONFIG_SMP */ 1610 if (check_resched && task_has_dl_policy(rq->curr)) 1611 check_preempt_curr_dl(rq, p, 0); 1612 } 1613 } 1614 1615 /* 1616 * If the scheduling parameters of a -deadline task changed, 1617 * a push or pull operation might be needed. 1618 */ 1619 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 1620 int oldprio) 1621 { 1622 if (task_on_rq_queued(p) || rq->curr == p) { 1623 #ifdef CONFIG_SMP 1624 /* 1625 * This might be too much, but unfortunately 1626 * we don't have the old deadline value, and 1627 * we can't argue if the task is increasing 1628 * or lowering its prio, so... 1629 */ 1630 if (!rq->dl.overloaded) 1631 pull_dl_task(rq); 1632 1633 /* 1634 * If we now have a earlier deadline task than p, 1635 * then reschedule, provided p is still on this 1636 * runqueue. 1637 */ 1638 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) && 1639 rq->curr == p) 1640 resched_curr(rq); 1641 #else 1642 /* 1643 * Again, we don't know if p has a earlier 1644 * or later deadline, so let's blindly set a 1645 * (maybe not needed) rescheduling point. 1646 */ 1647 resched_curr(rq); 1648 #endif /* CONFIG_SMP */ 1649 } else 1650 switched_to_dl(rq, p); 1651 } 1652 1653 const struct sched_class dl_sched_class = { 1654 .next = &rt_sched_class, 1655 .enqueue_task = enqueue_task_dl, 1656 .dequeue_task = dequeue_task_dl, 1657 .yield_task = yield_task_dl, 1658 1659 .check_preempt_curr = check_preempt_curr_dl, 1660 1661 .pick_next_task = pick_next_task_dl, 1662 .put_prev_task = put_prev_task_dl, 1663 1664 #ifdef CONFIG_SMP 1665 .select_task_rq = select_task_rq_dl, 1666 .set_cpus_allowed = set_cpus_allowed_dl, 1667 .rq_online = rq_online_dl, 1668 .rq_offline = rq_offline_dl, 1669 .post_schedule = post_schedule_dl, 1670 .task_woken = task_woken_dl, 1671 #endif 1672 1673 .set_curr_task = set_curr_task_dl, 1674 .task_tick = task_tick_dl, 1675 .task_fork = task_fork_dl, 1676 .task_dead = task_dead_dl, 1677 1678 .prio_changed = prio_changed_dl, 1679 .switched_from = switched_from_dl, 1680 .switched_to = switched_to_dl, 1681 }; 1682