xref: /openbmc/linux/kernel/sched/deadline.c (revision 293d5b43)
1 /*
2  * Deadline Scheduling Class (SCHED_DEADLINE)
3  *
4  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5  *
6  * Tasks that periodically executes their instances for less than their
7  * runtime won't miss any of their deadlines.
8  * Tasks that are not periodic or sporadic or that tries to execute more
9  * than their reserved bandwidth will be slowed down (and may potentially
10  * miss some of their deadlines), and won't affect any other task.
11  *
12  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13  *                    Juri Lelli <juri.lelli@gmail.com>,
14  *                    Michael Trimarchi <michael@amarulasolutions.com>,
15  *                    Fabio Checconi <fchecconi@gmail.com>
16  */
17 #include "sched.h"
18 
19 #include <linux/slab.h>
20 
21 struct dl_bandwidth def_dl_bandwidth;
22 
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24 {
25 	return container_of(dl_se, struct task_struct, dl);
26 }
27 
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29 {
30 	return container_of(dl_rq, struct rq, dl);
31 }
32 
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34 {
35 	struct task_struct *p = dl_task_of(dl_se);
36 	struct rq *rq = task_rq(p);
37 
38 	return &rq->dl;
39 }
40 
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42 {
43 	return !RB_EMPTY_NODE(&dl_se->rb_node);
44 }
45 
46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47 {
48 	struct sched_dl_entity *dl_se = &p->dl;
49 
50 	return dl_rq->rb_leftmost == &dl_se->rb_node;
51 }
52 
53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
54 {
55 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 	dl_b->dl_period = period;
57 	dl_b->dl_runtime = runtime;
58 }
59 
60 void init_dl_bw(struct dl_bw *dl_b)
61 {
62 	raw_spin_lock_init(&dl_b->lock);
63 	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
64 	if (global_rt_runtime() == RUNTIME_INF)
65 		dl_b->bw = -1;
66 	else
67 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
68 	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
69 	dl_b->total_bw = 0;
70 }
71 
72 void init_dl_rq(struct dl_rq *dl_rq)
73 {
74 	dl_rq->rb_root = RB_ROOT;
75 
76 #ifdef CONFIG_SMP
77 	/* zero means no -deadline tasks */
78 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
79 
80 	dl_rq->dl_nr_migratory = 0;
81 	dl_rq->overloaded = 0;
82 	dl_rq->pushable_dl_tasks_root = RB_ROOT;
83 #else
84 	init_dl_bw(&dl_rq->dl_bw);
85 #endif
86 }
87 
88 #ifdef CONFIG_SMP
89 
90 static inline int dl_overloaded(struct rq *rq)
91 {
92 	return atomic_read(&rq->rd->dlo_count);
93 }
94 
95 static inline void dl_set_overload(struct rq *rq)
96 {
97 	if (!rq->online)
98 		return;
99 
100 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
101 	/*
102 	 * Must be visible before the overload count is
103 	 * set (as in sched_rt.c).
104 	 *
105 	 * Matched by the barrier in pull_dl_task().
106 	 */
107 	smp_wmb();
108 	atomic_inc(&rq->rd->dlo_count);
109 }
110 
111 static inline void dl_clear_overload(struct rq *rq)
112 {
113 	if (!rq->online)
114 		return;
115 
116 	atomic_dec(&rq->rd->dlo_count);
117 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
118 }
119 
120 static void update_dl_migration(struct dl_rq *dl_rq)
121 {
122 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
123 		if (!dl_rq->overloaded) {
124 			dl_set_overload(rq_of_dl_rq(dl_rq));
125 			dl_rq->overloaded = 1;
126 		}
127 	} else if (dl_rq->overloaded) {
128 		dl_clear_overload(rq_of_dl_rq(dl_rq));
129 		dl_rq->overloaded = 0;
130 	}
131 }
132 
133 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
134 {
135 	struct task_struct *p = dl_task_of(dl_se);
136 
137 	if (tsk_nr_cpus_allowed(p) > 1)
138 		dl_rq->dl_nr_migratory++;
139 
140 	update_dl_migration(dl_rq);
141 }
142 
143 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
144 {
145 	struct task_struct *p = dl_task_of(dl_se);
146 
147 	if (tsk_nr_cpus_allowed(p) > 1)
148 		dl_rq->dl_nr_migratory--;
149 
150 	update_dl_migration(dl_rq);
151 }
152 
153 /*
154  * The list of pushable -deadline task is not a plist, like in
155  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
156  */
157 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
158 {
159 	struct dl_rq *dl_rq = &rq->dl;
160 	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
161 	struct rb_node *parent = NULL;
162 	struct task_struct *entry;
163 	int leftmost = 1;
164 
165 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
166 
167 	while (*link) {
168 		parent = *link;
169 		entry = rb_entry(parent, struct task_struct,
170 				 pushable_dl_tasks);
171 		if (dl_entity_preempt(&p->dl, &entry->dl))
172 			link = &parent->rb_left;
173 		else {
174 			link = &parent->rb_right;
175 			leftmost = 0;
176 		}
177 	}
178 
179 	if (leftmost) {
180 		dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
181 		dl_rq->earliest_dl.next = p->dl.deadline;
182 	}
183 
184 	rb_link_node(&p->pushable_dl_tasks, parent, link);
185 	rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
186 }
187 
188 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
189 {
190 	struct dl_rq *dl_rq = &rq->dl;
191 
192 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
193 		return;
194 
195 	if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
196 		struct rb_node *next_node;
197 
198 		next_node = rb_next(&p->pushable_dl_tasks);
199 		dl_rq->pushable_dl_tasks_leftmost = next_node;
200 		if (next_node) {
201 			dl_rq->earliest_dl.next = rb_entry(next_node,
202 				struct task_struct, pushable_dl_tasks)->dl.deadline;
203 		}
204 	}
205 
206 	rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
207 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
208 }
209 
210 static inline int has_pushable_dl_tasks(struct rq *rq)
211 {
212 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
213 }
214 
215 static int push_dl_task(struct rq *rq);
216 
217 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
218 {
219 	return dl_task(prev);
220 }
221 
222 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
223 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
224 
225 static void push_dl_tasks(struct rq *);
226 static void pull_dl_task(struct rq *);
227 
228 static inline void queue_push_tasks(struct rq *rq)
229 {
230 	if (!has_pushable_dl_tasks(rq))
231 		return;
232 
233 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
234 }
235 
236 static inline void queue_pull_task(struct rq *rq)
237 {
238 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
239 }
240 
241 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
242 
243 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
244 {
245 	struct rq *later_rq = NULL;
246 	bool fallback = false;
247 
248 	later_rq = find_lock_later_rq(p, rq);
249 
250 	if (!later_rq) {
251 		int cpu;
252 
253 		/*
254 		 * If we cannot preempt any rq, fall back to pick any
255 		 * online cpu.
256 		 */
257 		fallback = true;
258 		cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
259 		if (cpu >= nr_cpu_ids) {
260 			/*
261 			 * Fail to find any suitable cpu.
262 			 * The task will never come back!
263 			 */
264 			BUG_ON(dl_bandwidth_enabled());
265 
266 			/*
267 			 * If admission control is disabled we
268 			 * try a little harder to let the task
269 			 * run.
270 			 */
271 			cpu = cpumask_any(cpu_active_mask);
272 		}
273 		later_rq = cpu_rq(cpu);
274 		double_lock_balance(rq, later_rq);
275 	}
276 
277 	/*
278 	 * By now the task is replenished and enqueued; migrate it.
279 	 */
280 	deactivate_task(rq, p, 0);
281 	set_task_cpu(p, later_rq->cpu);
282 	activate_task(later_rq, p, 0);
283 
284 	if (!fallback)
285 		resched_curr(later_rq);
286 
287 	double_unlock_balance(later_rq, rq);
288 
289 	return later_rq;
290 }
291 
292 #else
293 
294 static inline
295 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
296 {
297 }
298 
299 static inline
300 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
301 {
302 }
303 
304 static inline
305 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
306 {
307 }
308 
309 static inline
310 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
311 {
312 }
313 
314 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
315 {
316 	return false;
317 }
318 
319 static inline void pull_dl_task(struct rq *rq)
320 {
321 }
322 
323 static inline void queue_push_tasks(struct rq *rq)
324 {
325 }
326 
327 static inline void queue_pull_task(struct rq *rq)
328 {
329 }
330 #endif /* CONFIG_SMP */
331 
332 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
333 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
334 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
335 				  int flags);
336 
337 /*
338  * We are being explicitly informed that a new instance is starting,
339  * and this means that:
340  *  - the absolute deadline of the entity has to be placed at
341  *    current time + relative deadline;
342  *  - the runtime of the entity has to be set to the maximum value.
343  *
344  * The capability of specifying such event is useful whenever a -deadline
345  * entity wants to (try to!) synchronize its behaviour with the scheduler's
346  * one, and to (try to!) reconcile itself with its own scheduling
347  * parameters.
348  */
349 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
350 				       struct sched_dl_entity *pi_se)
351 {
352 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
353 	struct rq *rq = rq_of_dl_rq(dl_rq);
354 
355 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
356 
357 	/*
358 	 * We are racing with the deadline timer. So, do nothing because
359 	 * the deadline timer handler will take care of properly recharging
360 	 * the runtime and postponing the deadline
361 	 */
362 	if (dl_se->dl_throttled)
363 		return;
364 
365 	/*
366 	 * We use the regular wall clock time to set deadlines in the
367 	 * future; in fact, we must consider execution overheads (time
368 	 * spent on hardirq context, etc.).
369 	 */
370 	dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
371 	dl_se->runtime = pi_se->dl_runtime;
372 }
373 
374 /*
375  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
376  * possibility of a entity lasting more than what it declared, and thus
377  * exhausting its runtime.
378  *
379  * Here we are interested in making runtime overrun possible, but we do
380  * not want a entity which is misbehaving to affect the scheduling of all
381  * other entities.
382  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
383  * is used, in order to confine each entity within its own bandwidth.
384  *
385  * This function deals exactly with that, and ensures that when the runtime
386  * of a entity is replenished, its deadline is also postponed. That ensures
387  * the overrunning entity can't interfere with other entity in the system and
388  * can't make them miss their deadlines. Reasons why this kind of overruns
389  * could happen are, typically, a entity voluntarily trying to overcome its
390  * runtime, or it just underestimated it during sched_setattr().
391  */
392 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
393 				struct sched_dl_entity *pi_se)
394 {
395 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
396 	struct rq *rq = rq_of_dl_rq(dl_rq);
397 
398 	BUG_ON(pi_se->dl_runtime <= 0);
399 
400 	/*
401 	 * This could be the case for a !-dl task that is boosted.
402 	 * Just go with full inherited parameters.
403 	 */
404 	if (dl_se->dl_deadline == 0) {
405 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
406 		dl_se->runtime = pi_se->dl_runtime;
407 	}
408 
409 	if (dl_se->dl_yielded && dl_se->runtime > 0)
410 		dl_se->runtime = 0;
411 
412 	/*
413 	 * We keep moving the deadline away until we get some
414 	 * available runtime for the entity. This ensures correct
415 	 * handling of situations where the runtime overrun is
416 	 * arbitrary large.
417 	 */
418 	while (dl_se->runtime <= 0) {
419 		dl_se->deadline += pi_se->dl_period;
420 		dl_se->runtime += pi_se->dl_runtime;
421 	}
422 
423 	/*
424 	 * At this point, the deadline really should be "in
425 	 * the future" with respect to rq->clock. If it's
426 	 * not, we are, for some reason, lagging too much!
427 	 * Anyway, after having warn userspace abut that,
428 	 * we still try to keep the things running by
429 	 * resetting the deadline and the budget of the
430 	 * entity.
431 	 */
432 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
433 		printk_deferred_once("sched: DL replenish lagged too much\n");
434 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
435 		dl_se->runtime = pi_se->dl_runtime;
436 	}
437 
438 	if (dl_se->dl_yielded)
439 		dl_se->dl_yielded = 0;
440 	if (dl_se->dl_throttled)
441 		dl_se->dl_throttled = 0;
442 }
443 
444 /*
445  * Here we check if --at time t-- an entity (which is probably being
446  * [re]activated or, in general, enqueued) can use its remaining runtime
447  * and its current deadline _without_ exceeding the bandwidth it is
448  * assigned (function returns true if it can't). We are in fact applying
449  * one of the CBS rules: when a task wakes up, if the residual runtime
450  * over residual deadline fits within the allocated bandwidth, then we
451  * can keep the current (absolute) deadline and residual budget without
452  * disrupting the schedulability of the system. Otherwise, we should
453  * refill the runtime and set the deadline a period in the future,
454  * because keeping the current (absolute) deadline of the task would
455  * result in breaking guarantees promised to other tasks (refer to
456  * Documentation/scheduler/sched-deadline.txt for more informations).
457  *
458  * This function returns true if:
459  *
460  *   runtime / (deadline - t) > dl_runtime / dl_period ,
461  *
462  * IOW we can't recycle current parameters.
463  *
464  * Notice that the bandwidth check is done against the period. For
465  * task with deadline equal to period this is the same of using
466  * dl_deadline instead of dl_period in the equation above.
467  */
468 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
469 			       struct sched_dl_entity *pi_se, u64 t)
470 {
471 	u64 left, right;
472 
473 	/*
474 	 * left and right are the two sides of the equation above,
475 	 * after a bit of shuffling to use multiplications instead
476 	 * of divisions.
477 	 *
478 	 * Note that none of the time values involved in the two
479 	 * multiplications are absolute: dl_deadline and dl_runtime
480 	 * are the relative deadline and the maximum runtime of each
481 	 * instance, runtime is the runtime left for the last instance
482 	 * and (deadline - t), since t is rq->clock, is the time left
483 	 * to the (absolute) deadline. Even if overflowing the u64 type
484 	 * is very unlikely to occur in both cases, here we scale down
485 	 * as we want to avoid that risk at all. Scaling down by 10
486 	 * means that we reduce granularity to 1us. We are fine with it,
487 	 * since this is only a true/false check and, anyway, thinking
488 	 * of anything below microseconds resolution is actually fiction
489 	 * (but still we want to give the user that illusion >;).
490 	 */
491 	left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
492 	right = ((dl_se->deadline - t) >> DL_SCALE) *
493 		(pi_se->dl_runtime >> DL_SCALE);
494 
495 	return dl_time_before(right, left);
496 }
497 
498 /*
499  * When a -deadline entity is queued back on the runqueue, its runtime and
500  * deadline might need updating.
501  *
502  * The policy here is that we update the deadline of the entity only if:
503  *  - the current deadline is in the past,
504  *  - using the remaining runtime with the current deadline would make
505  *    the entity exceed its bandwidth.
506  */
507 static void update_dl_entity(struct sched_dl_entity *dl_se,
508 			     struct sched_dl_entity *pi_se)
509 {
510 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
511 	struct rq *rq = rq_of_dl_rq(dl_rq);
512 
513 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
514 	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
515 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
516 		dl_se->runtime = pi_se->dl_runtime;
517 	}
518 }
519 
520 /*
521  * If the entity depleted all its runtime, and if we want it to sleep
522  * while waiting for some new execution time to become available, we
523  * set the bandwidth enforcement timer to the replenishment instant
524  * and try to activate it.
525  *
526  * Notice that it is important for the caller to know if the timer
527  * actually started or not (i.e., the replenishment instant is in
528  * the future or in the past).
529  */
530 static int start_dl_timer(struct task_struct *p)
531 {
532 	struct sched_dl_entity *dl_se = &p->dl;
533 	struct hrtimer *timer = &dl_se->dl_timer;
534 	struct rq *rq = task_rq(p);
535 	ktime_t now, act;
536 	s64 delta;
537 
538 	lockdep_assert_held(&rq->lock);
539 
540 	/*
541 	 * We want the timer to fire at the deadline, but considering
542 	 * that it is actually coming from rq->clock and not from
543 	 * hrtimer's time base reading.
544 	 */
545 	act = ns_to_ktime(dl_se->deadline);
546 	now = hrtimer_cb_get_time(timer);
547 	delta = ktime_to_ns(now) - rq_clock(rq);
548 	act = ktime_add_ns(act, delta);
549 
550 	/*
551 	 * If the expiry time already passed, e.g., because the value
552 	 * chosen as the deadline is too small, don't even try to
553 	 * start the timer in the past!
554 	 */
555 	if (ktime_us_delta(act, now) < 0)
556 		return 0;
557 
558 	/*
559 	 * !enqueued will guarantee another callback; even if one is already in
560 	 * progress. This ensures a balanced {get,put}_task_struct().
561 	 *
562 	 * The race against __run_timer() clearing the enqueued state is
563 	 * harmless because we're holding task_rq()->lock, therefore the timer
564 	 * expiring after we've done the check will wait on its task_rq_lock()
565 	 * and observe our state.
566 	 */
567 	if (!hrtimer_is_queued(timer)) {
568 		get_task_struct(p);
569 		hrtimer_start(timer, act, HRTIMER_MODE_ABS);
570 	}
571 
572 	return 1;
573 }
574 
575 /*
576  * This is the bandwidth enforcement timer callback. If here, we know
577  * a task is not on its dl_rq, since the fact that the timer was running
578  * means the task is throttled and needs a runtime replenishment.
579  *
580  * However, what we actually do depends on the fact the task is active,
581  * (it is on its rq) or has been removed from there by a call to
582  * dequeue_task_dl(). In the former case we must issue the runtime
583  * replenishment and add the task back to the dl_rq; in the latter, we just
584  * do nothing but clearing dl_throttled, so that runtime and deadline
585  * updating (and the queueing back to dl_rq) will be done by the
586  * next call to enqueue_task_dl().
587  */
588 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
589 {
590 	struct sched_dl_entity *dl_se = container_of(timer,
591 						     struct sched_dl_entity,
592 						     dl_timer);
593 	struct task_struct *p = dl_task_of(dl_se);
594 	struct rq_flags rf;
595 	struct rq *rq;
596 
597 	rq = task_rq_lock(p, &rf);
598 
599 	/*
600 	 * The task might have changed its scheduling policy to something
601 	 * different than SCHED_DEADLINE (through switched_fromd_dl()).
602 	 */
603 	if (!dl_task(p)) {
604 		__dl_clear_params(p);
605 		goto unlock;
606 	}
607 
608 	/*
609 	 * The task might have been boosted by someone else and might be in the
610 	 * boosting/deboosting path, its not throttled.
611 	 */
612 	if (dl_se->dl_boosted)
613 		goto unlock;
614 
615 	/*
616 	 * Spurious timer due to start_dl_timer() race; or we already received
617 	 * a replenishment from rt_mutex_setprio().
618 	 */
619 	if (!dl_se->dl_throttled)
620 		goto unlock;
621 
622 	sched_clock_tick();
623 	update_rq_clock(rq);
624 
625 	/*
626 	 * If the throttle happened during sched-out; like:
627 	 *
628 	 *   schedule()
629 	 *     deactivate_task()
630 	 *       dequeue_task_dl()
631 	 *         update_curr_dl()
632 	 *           start_dl_timer()
633 	 *         __dequeue_task_dl()
634 	 *     prev->on_rq = 0;
635 	 *
636 	 * We can be both throttled and !queued. Replenish the counter
637 	 * but do not enqueue -- wait for our wakeup to do that.
638 	 */
639 	if (!task_on_rq_queued(p)) {
640 		replenish_dl_entity(dl_se, dl_se);
641 		goto unlock;
642 	}
643 
644 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
645 	if (dl_task(rq->curr))
646 		check_preempt_curr_dl(rq, p, 0);
647 	else
648 		resched_curr(rq);
649 
650 #ifdef CONFIG_SMP
651 	/*
652 	 * Perform balancing operations here; after the replenishments.  We
653 	 * cannot drop rq->lock before this, otherwise the assertion in
654 	 * start_dl_timer() about not missing updates is not true.
655 	 *
656 	 * If we find that the rq the task was on is no longer available, we
657 	 * need to select a new rq.
658 	 *
659 	 * XXX figure out if select_task_rq_dl() deals with offline cpus.
660 	 */
661 	if (unlikely(!rq->online)) {
662 		lockdep_unpin_lock(&rq->lock, rf.cookie);
663 		rq = dl_task_offline_migration(rq, p);
664 		rf.cookie = lockdep_pin_lock(&rq->lock);
665 	}
666 
667 	/*
668 	 * Queueing this task back might have overloaded rq, check if we need
669 	 * to kick someone away.
670 	 */
671 	if (has_pushable_dl_tasks(rq)) {
672 		/*
673 		 * Nothing relies on rq->lock after this, so its safe to drop
674 		 * rq->lock.
675 		 */
676 		lockdep_unpin_lock(&rq->lock, rf.cookie);
677 		push_dl_task(rq);
678 		lockdep_repin_lock(&rq->lock, rf.cookie);
679 	}
680 #endif
681 
682 unlock:
683 	task_rq_unlock(rq, p, &rf);
684 
685 	/*
686 	 * This can free the task_struct, including this hrtimer, do not touch
687 	 * anything related to that after this.
688 	 */
689 	put_task_struct(p);
690 
691 	return HRTIMER_NORESTART;
692 }
693 
694 void init_dl_task_timer(struct sched_dl_entity *dl_se)
695 {
696 	struct hrtimer *timer = &dl_se->dl_timer;
697 
698 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
699 	timer->function = dl_task_timer;
700 }
701 
702 static
703 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
704 {
705 	return (dl_se->runtime <= 0);
706 }
707 
708 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
709 
710 /*
711  * Update the current task's runtime statistics (provided it is still
712  * a -deadline task and has not been removed from the dl_rq).
713  */
714 static void update_curr_dl(struct rq *rq)
715 {
716 	struct task_struct *curr = rq->curr;
717 	struct sched_dl_entity *dl_se = &curr->dl;
718 	u64 delta_exec;
719 
720 	if (!dl_task(curr) || !on_dl_rq(dl_se))
721 		return;
722 
723 	/*
724 	 * Consumed budget is computed considering the time as
725 	 * observed by schedulable tasks (excluding time spent
726 	 * in hardirq context, etc.). Deadlines are instead
727 	 * computed using hard walltime. This seems to be the more
728 	 * natural solution, but the full ramifications of this
729 	 * approach need further study.
730 	 */
731 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
732 	if (unlikely((s64)delta_exec <= 0)) {
733 		if (unlikely(dl_se->dl_yielded))
734 			goto throttle;
735 		return;
736 	}
737 
738 	/* kick cpufreq (see the comment in linux/cpufreq.h). */
739 	if (cpu_of(rq) == smp_processor_id())
740 		cpufreq_trigger_update(rq_clock(rq));
741 
742 	schedstat_set(curr->se.statistics.exec_max,
743 		      max(curr->se.statistics.exec_max, delta_exec));
744 
745 	curr->se.sum_exec_runtime += delta_exec;
746 	account_group_exec_runtime(curr, delta_exec);
747 
748 	curr->se.exec_start = rq_clock_task(rq);
749 	cpuacct_charge(curr, delta_exec);
750 
751 	sched_rt_avg_update(rq, delta_exec);
752 
753 	dl_se->runtime -= delta_exec;
754 
755 throttle:
756 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
757 		dl_se->dl_throttled = 1;
758 		__dequeue_task_dl(rq, curr, 0);
759 		if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
760 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
761 
762 		if (!is_leftmost(curr, &rq->dl))
763 			resched_curr(rq);
764 	}
765 
766 	/*
767 	 * Because -- for now -- we share the rt bandwidth, we need to
768 	 * account our runtime there too, otherwise actual rt tasks
769 	 * would be able to exceed the shared quota.
770 	 *
771 	 * Account to the root rt group for now.
772 	 *
773 	 * The solution we're working towards is having the RT groups scheduled
774 	 * using deadline servers -- however there's a few nasties to figure
775 	 * out before that can happen.
776 	 */
777 	if (rt_bandwidth_enabled()) {
778 		struct rt_rq *rt_rq = &rq->rt;
779 
780 		raw_spin_lock(&rt_rq->rt_runtime_lock);
781 		/*
782 		 * We'll let actual RT tasks worry about the overflow here, we
783 		 * have our own CBS to keep us inline; only account when RT
784 		 * bandwidth is relevant.
785 		 */
786 		if (sched_rt_bandwidth_account(rt_rq))
787 			rt_rq->rt_time += delta_exec;
788 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
789 	}
790 }
791 
792 #ifdef CONFIG_SMP
793 
794 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
795 {
796 	struct rq *rq = rq_of_dl_rq(dl_rq);
797 
798 	if (dl_rq->earliest_dl.curr == 0 ||
799 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
800 		dl_rq->earliest_dl.curr = deadline;
801 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
802 	}
803 }
804 
805 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
806 {
807 	struct rq *rq = rq_of_dl_rq(dl_rq);
808 
809 	/*
810 	 * Since we may have removed our earliest (and/or next earliest)
811 	 * task we must recompute them.
812 	 */
813 	if (!dl_rq->dl_nr_running) {
814 		dl_rq->earliest_dl.curr = 0;
815 		dl_rq->earliest_dl.next = 0;
816 		cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
817 	} else {
818 		struct rb_node *leftmost = dl_rq->rb_leftmost;
819 		struct sched_dl_entity *entry;
820 
821 		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
822 		dl_rq->earliest_dl.curr = entry->deadline;
823 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
824 	}
825 }
826 
827 #else
828 
829 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
830 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
831 
832 #endif /* CONFIG_SMP */
833 
834 static inline
835 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
836 {
837 	int prio = dl_task_of(dl_se)->prio;
838 	u64 deadline = dl_se->deadline;
839 
840 	WARN_ON(!dl_prio(prio));
841 	dl_rq->dl_nr_running++;
842 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
843 
844 	inc_dl_deadline(dl_rq, deadline);
845 	inc_dl_migration(dl_se, dl_rq);
846 }
847 
848 static inline
849 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
850 {
851 	int prio = dl_task_of(dl_se)->prio;
852 
853 	WARN_ON(!dl_prio(prio));
854 	WARN_ON(!dl_rq->dl_nr_running);
855 	dl_rq->dl_nr_running--;
856 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
857 
858 	dec_dl_deadline(dl_rq, dl_se->deadline);
859 	dec_dl_migration(dl_se, dl_rq);
860 }
861 
862 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
863 {
864 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
865 	struct rb_node **link = &dl_rq->rb_root.rb_node;
866 	struct rb_node *parent = NULL;
867 	struct sched_dl_entity *entry;
868 	int leftmost = 1;
869 
870 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
871 
872 	while (*link) {
873 		parent = *link;
874 		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
875 		if (dl_time_before(dl_se->deadline, entry->deadline))
876 			link = &parent->rb_left;
877 		else {
878 			link = &parent->rb_right;
879 			leftmost = 0;
880 		}
881 	}
882 
883 	if (leftmost)
884 		dl_rq->rb_leftmost = &dl_se->rb_node;
885 
886 	rb_link_node(&dl_se->rb_node, parent, link);
887 	rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
888 
889 	inc_dl_tasks(dl_se, dl_rq);
890 }
891 
892 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
893 {
894 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
895 
896 	if (RB_EMPTY_NODE(&dl_se->rb_node))
897 		return;
898 
899 	if (dl_rq->rb_leftmost == &dl_se->rb_node) {
900 		struct rb_node *next_node;
901 
902 		next_node = rb_next(&dl_se->rb_node);
903 		dl_rq->rb_leftmost = next_node;
904 	}
905 
906 	rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
907 	RB_CLEAR_NODE(&dl_se->rb_node);
908 
909 	dec_dl_tasks(dl_se, dl_rq);
910 }
911 
912 static void
913 enqueue_dl_entity(struct sched_dl_entity *dl_se,
914 		  struct sched_dl_entity *pi_se, int flags)
915 {
916 	BUG_ON(on_dl_rq(dl_se));
917 
918 	/*
919 	 * If this is a wakeup or a new instance, the scheduling
920 	 * parameters of the task might need updating. Otherwise,
921 	 * we want a replenishment of its runtime.
922 	 */
923 	if (flags & ENQUEUE_WAKEUP)
924 		update_dl_entity(dl_se, pi_se);
925 	else if (flags & ENQUEUE_REPLENISH)
926 		replenish_dl_entity(dl_se, pi_se);
927 
928 	__enqueue_dl_entity(dl_se);
929 }
930 
931 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
932 {
933 	__dequeue_dl_entity(dl_se);
934 }
935 
936 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
937 {
938 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
939 	struct sched_dl_entity *pi_se = &p->dl;
940 
941 	/*
942 	 * Use the scheduling parameters of the top pi-waiter
943 	 * task if we have one and its (absolute) deadline is
944 	 * smaller than our one... OTW we keep our runtime and
945 	 * deadline.
946 	 */
947 	if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
948 		pi_se = &pi_task->dl;
949 	} else if (!dl_prio(p->normal_prio)) {
950 		/*
951 		 * Special case in which we have a !SCHED_DEADLINE task
952 		 * that is going to be deboosted, but exceedes its
953 		 * runtime while doing so. No point in replenishing
954 		 * it, as it's going to return back to its original
955 		 * scheduling class after this.
956 		 */
957 		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
958 		return;
959 	}
960 
961 	/*
962 	 * If p is throttled, we do nothing. In fact, if it exhausted
963 	 * its budget it needs a replenishment and, since it now is on
964 	 * its rq, the bandwidth timer callback (which clearly has not
965 	 * run yet) will take care of this.
966 	 */
967 	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
968 		return;
969 
970 	enqueue_dl_entity(&p->dl, pi_se, flags);
971 
972 	if (!task_current(rq, p) && tsk_nr_cpus_allowed(p) > 1)
973 		enqueue_pushable_dl_task(rq, p);
974 }
975 
976 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
977 {
978 	dequeue_dl_entity(&p->dl);
979 	dequeue_pushable_dl_task(rq, p);
980 }
981 
982 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
983 {
984 	update_curr_dl(rq);
985 	__dequeue_task_dl(rq, p, flags);
986 }
987 
988 /*
989  * Yield task semantic for -deadline tasks is:
990  *
991  *   get off from the CPU until our next instance, with
992  *   a new runtime. This is of little use now, since we
993  *   don't have a bandwidth reclaiming mechanism. Anyway,
994  *   bandwidth reclaiming is planned for the future, and
995  *   yield_task_dl will indicate that some spare budget
996  *   is available for other task instances to use it.
997  */
998 static void yield_task_dl(struct rq *rq)
999 {
1000 	/*
1001 	 * We make the task go to sleep until its current deadline by
1002 	 * forcing its runtime to zero. This way, update_curr_dl() stops
1003 	 * it and the bandwidth timer will wake it up and will give it
1004 	 * new scheduling parameters (thanks to dl_yielded=1).
1005 	 */
1006 	rq->curr->dl.dl_yielded = 1;
1007 
1008 	update_rq_clock(rq);
1009 	update_curr_dl(rq);
1010 	/*
1011 	 * Tell update_rq_clock() that we've just updated,
1012 	 * so we don't do microscopic update in schedule()
1013 	 * and double the fastpath cost.
1014 	 */
1015 	rq_clock_skip_update(rq, true);
1016 }
1017 
1018 #ifdef CONFIG_SMP
1019 
1020 static int find_later_rq(struct task_struct *task);
1021 
1022 static int
1023 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1024 {
1025 	struct task_struct *curr;
1026 	struct rq *rq;
1027 
1028 	if (sd_flag != SD_BALANCE_WAKE)
1029 		goto out;
1030 
1031 	rq = cpu_rq(cpu);
1032 
1033 	rcu_read_lock();
1034 	curr = READ_ONCE(rq->curr); /* unlocked access */
1035 
1036 	/*
1037 	 * If we are dealing with a -deadline task, we must
1038 	 * decide where to wake it up.
1039 	 * If it has a later deadline and the current task
1040 	 * on this rq can't move (provided the waking task
1041 	 * can!) we prefer to send it somewhere else. On the
1042 	 * other hand, if it has a shorter deadline, we
1043 	 * try to make it stay here, it might be important.
1044 	 */
1045 	if (unlikely(dl_task(curr)) &&
1046 	    (tsk_nr_cpus_allowed(curr) < 2 ||
1047 	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1048 	    (tsk_nr_cpus_allowed(p) > 1)) {
1049 		int target = find_later_rq(p);
1050 
1051 		if (target != -1 &&
1052 				(dl_time_before(p->dl.deadline,
1053 					cpu_rq(target)->dl.earliest_dl.curr) ||
1054 				(cpu_rq(target)->dl.dl_nr_running == 0)))
1055 			cpu = target;
1056 	}
1057 	rcu_read_unlock();
1058 
1059 out:
1060 	return cpu;
1061 }
1062 
1063 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1064 {
1065 	/*
1066 	 * Current can't be migrated, useless to reschedule,
1067 	 * let's hope p can move out.
1068 	 */
1069 	if (tsk_nr_cpus_allowed(rq->curr) == 1 ||
1070 	    cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1071 		return;
1072 
1073 	/*
1074 	 * p is migratable, so let's not schedule it and
1075 	 * see if it is pushed or pulled somewhere else.
1076 	 */
1077 	if (tsk_nr_cpus_allowed(p) != 1 &&
1078 	    cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1079 		return;
1080 
1081 	resched_curr(rq);
1082 }
1083 
1084 #endif /* CONFIG_SMP */
1085 
1086 /*
1087  * Only called when both the current and waking task are -deadline
1088  * tasks.
1089  */
1090 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1091 				  int flags)
1092 {
1093 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1094 		resched_curr(rq);
1095 		return;
1096 	}
1097 
1098 #ifdef CONFIG_SMP
1099 	/*
1100 	 * In the unlikely case current and p have the same deadline
1101 	 * let us try to decide what's the best thing to do...
1102 	 */
1103 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1104 	    !test_tsk_need_resched(rq->curr))
1105 		check_preempt_equal_dl(rq, p);
1106 #endif /* CONFIG_SMP */
1107 }
1108 
1109 #ifdef CONFIG_SCHED_HRTICK
1110 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1111 {
1112 	hrtick_start(rq, p->dl.runtime);
1113 }
1114 #else /* !CONFIG_SCHED_HRTICK */
1115 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1116 {
1117 }
1118 #endif
1119 
1120 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1121 						   struct dl_rq *dl_rq)
1122 {
1123 	struct rb_node *left = dl_rq->rb_leftmost;
1124 
1125 	if (!left)
1126 		return NULL;
1127 
1128 	return rb_entry(left, struct sched_dl_entity, rb_node);
1129 }
1130 
1131 struct task_struct *
1132 pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
1133 {
1134 	struct sched_dl_entity *dl_se;
1135 	struct task_struct *p;
1136 	struct dl_rq *dl_rq;
1137 
1138 	dl_rq = &rq->dl;
1139 
1140 	if (need_pull_dl_task(rq, prev)) {
1141 		/*
1142 		 * This is OK, because current is on_cpu, which avoids it being
1143 		 * picked for load-balance and preemption/IRQs are still
1144 		 * disabled avoiding further scheduler activity on it and we're
1145 		 * being very careful to re-start the picking loop.
1146 		 */
1147 		lockdep_unpin_lock(&rq->lock, cookie);
1148 		pull_dl_task(rq);
1149 		lockdep_repin_lock(&rq->lock, cookie);
1150 		/*
1151 		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1152 		 * means a stop task can slip in, in which case we need to
1153 		 * re-start task selection.
1154 		 */
1155 		if (rq->stop && task_on_rq_queued(rq->stop))
1156 			return RETRY_TASK;
1157 	}
1158 
1159 	/*
1160 	 * When prev is DL, we may throttle it in put_prev_task().
1161 	 * So, we update time before we check for dl_nr_running.
1162 	 */
1163 	if (prev->sched_class == &dl_sched_class)
1164 		update_curr_dl(rq);
1165 
1166 	if (unlikely(!dl_rq->dl_nr_running))
1167 		return NULL;
1168 
1169 	put_prev_task(rq, prev);
1170 
1171 	dl_se = pick_next_dl_entity(rq, dl_rq);
1172 	BUG_ON(!dl_se);
1173 
1174 	p = dl_task_of(dl_se);
1175 	p->se.exec_start = rq_clock_task(rq);
1176 
1177 	/* Running task will never be pushed. */
1178        dequeue_pushable_dl_task(rq, p);
1179 
1180 	if (hrtick_enabled(rq))
1181 		start_hrtick_dl(rq, p);
1182 
1183 	queue_push_tasks(rq);
1184 
1185 	return p;
1186 }
1187 
1188 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1189 {
1190 	update_curr_dl(rq);
1191 
1192 	if (on_dl_rq(&p->dl) && tsk_nr_cpus_allowed(p) > 1)
1193 		enqueue_pushable_dl_task(rq, p);
1194 }
1195 
1196 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1197 {
1198 	update_curr_dl(rq);
1199 
1200 	/*
1201 	 * Even when we have runtime, update_curr_dl() might have resulted in us
1202 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
1203 	 * be set and schedule() will start a new hrtick for the next task.
1204 	 */
1205 	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1206 	    is_leftmost(p, &rq->dl))
1207 		start_hrtick_dl(rq, p);
1208 }
1209 
1210 static void task_fork_dl(struct task_struct *p)
1211 {
1212 	/*
1213 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1214 	 * sched_fork()
1215 	 */
1216 }
1217 
1218 static void task_dead_dl(struct task_struct *p)
1219 {
1220 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1221 
1222 	/*
1223 	 * Since we are TASK_DEAD we won't slip out of the domain!
1224 	 */
1225 	raw_spin_lock_irq(&dl_b->lock);
1226 	/* XXX we should retain the bw until 0-lag */
1227 	dl_b->total_bw -= p->dl.dl_bw;
1228 	raw_spin_unlock_irq(&dl_b->lock);
1229 }
1230 
1231 static void set_curr_task_dl(struct rq *rq)
1232 {
1233 	struct task_struct *p = rq->curr;
1234 
1235 	p->se.exec_start = rq_clock_task(rq);
1236 
1237 	/* You can't push away the running task */
1238 	dequeue_pushable_dl_task(rq, p);
1239 }
1240 
1241 #ifdef CONFIG_SMP
1242 
1243 /* Only try algorithms three times */
1244 #define DL_MAX_TRIES 3
1245 
1246 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1247 {
1248 	if (!task_running(rq, p) &&
1249 	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1250 		return 1;
1251 	return 0;
1252 }
1253 
1254 /*
1255  * Return the earliest pushable rq's task, which is suitable to be executed
1256  * on the CPU, NULL otherwise:
1257  */
1258 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1259 {
1260 	struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
1261 	struct task_struct *p = NULL;
1262 
1263 	if (!has_pushable_dl_tasks(rq))
1264 		return NULL;
1265 
1266 next_node:
1267 	if (next_node) {
1268 		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1269 
1270 		if (pick_dl_task(rq, p, cpu))
1271 			return p;
1272 
1273 		next_node = rb_next(next_node);
1274 		goto next_node;
1275 	}
1276 
1277 	return NULL;
1278 }
1279 
1280 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1281 
1282 static int find_later_rq(struct task_struct *task)
1283 {
1284 	struct sched_domain *sd;
1285 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1286 	int this_cpu = smp_processor_id();
1287 	int best_cpu, cpu = task_cpu(task);
1288 
1289 	/* Make sure the mask is initialized first */
1290 	if (unlikely(!later_mask))
1291 		return -1;
1292 
1293 	if (tsk_nr_cpus_allowed(task) == 1)
1294 		return -1;
1295 
1296 	/*
1297 	 * We have to consider system topology and task affinity
1298 	 * first, then we can look for a suitable cpu.
1299 	 */
1300 	best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1301 			task, later_mask);
1302 	if (best_cpu == -1)
1303 		return -1;
1304 
1305 	/*
1306 	 * If we are here, some target has been found,
1307 	 * the most suitable of which is cached in best_cpu.
1308 	 * This is, among the runqueues where the current tasks
1309 	 * have later deadlines than the task's one, the rq
1310 	 * with the latest possible one.
1311 	 *
1312 	 * Now we check how well this matches with task's
1313 	 * affinity and system topology.
1314 	 *
1315 	 * The last cpu where the task run is our first
1316 	 * guess, since it is most likely cache-hot there.
1317 	 */
1318 	if (cpumask_test_cpu(cpu, later_mask))
1319 		return cpu;
1320 	/*
1321 	 * Check if this_cpu is to be skipped (i.e., it is
1322 	 * not in the mask) or not.
1323 	 */
1324 	if (!cpumask_test_cpu(this_cpu, later_mask))
1325 		this_cpu = -1;
1326 
1327 	rcu_read_lock();
1328 	for_each_domain(cpu, sd) {
1329 		if (sd->flags & SD_WAKE_AFFINE) {
1330 
1331 			/*
1332 			 * If possible, preempting this_cpu is
1333 			 * cheaper than migrating.
1334 			 */
1335 			if (this_cpu != -1 &&
1336 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1337 				rcu_read_unlock();
1338 				return this_cpu;
1339 			}
1340 
1341 			/*
1342 			 * Last chance: if best_cpu is valid and is
1343 			 * in the mask, that becomes our choice.
1344 			 */
1345 			if (best_cpu < nr_cpu_ids &&
1346 			    cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1347 				rcu_read_unlock();
1348 				return best_cpu;
1349 			}
1350 		}
1351 	}
1352 	rcu_read_unlock();
1353 
1354 	/*
1355 	 * At this point, all our guesses failed, we just return
1356 	 * 'something', and let the caller sort the things out.
1357 	 */
1358 	if (this_cpu != -1)
1359 		return this_cpu;
1360 
1361 	cpu = cpumask_any(later_mask);
1362 	if (cpu < nr_cpu_ids)
1363 		return cpu;
1364 
1365 	return -1;
1366 }
1367 
1368 /* Locks the rq it finds */
1369 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1370 {
1371 	struct rq *later_rq = NULL;
1372 	int tries;
1373 	int cpu;
1374 
1375 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1376 		cpu = find_later_rq(task);
1377 
1378 		if ((cpu == -1) || (cpu == rq->cpu))
1379 			break;
1380 
1381 		later_rq = cpu_rq(cpu);
1382 
1383 		if (later_rq->dl.dl_nr_running &&
1384 		    !dl_time_before(task->dl.deadline,
1385 					later_rq->dl.earliest_dl.curr)) {
1386 			/*
1387 			 * Target rq has tasks of equal or earlier deadline,
1388 			 * retrying does not release any lock and is unlikely
1389 			 * to yield a different result.
1390 			 */
1391 			later_rq = NULL;
1392 			break;
1393 		}
1394 
1395 		/* Retry if something changed. */
1396 		if (double_lock_balance(rq, later_rq)) {
1397 			if (unlikely(task_rq(task) != rq ||
1398 				     !cpumask_test_cpu(later_rq->cpu,
1399 						       tsk_cpus_allowed(task)) ||
1400 				     task_running(rq, task) ||
1401 				     !dl_task(task) ||
1402 				     !task_on_rq_queued(task))) {
1403 				double_unlock_balance(rq, later_rq);
1404 				later_rq = NULL;
1405 				break;
1406 			}
1407 		}
1408 
1409 		/*
1410 		 * If the rq we found has no -deadline task, or
1411 		 * its earliest one has a later deadline than our
1412 		 * task, the rq is a good one.
1413 		 */
1414 		if (!later_rq->dl.dl_nr_running ||
1415 		    dl_time_before(task->dl.deadline,
1416 				   later_rq->dl.earliest_dl.curr))
1417 			break;
1418 
1419 		/* Otherwise we try again. */
1420 		double_unlock_balance(rq, later_rq);
1421 		later_rq = NULL;
1422 	}
1423 
1424 	return later_rq;
1425 }
1426 
1427 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1428 {
1429 	struct task_struct *p;
1430 
1431 	if (!has_pushable_dl_tasks(rq))
1432 		return NULL;
1433 
1434 	p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1435 		     struct task_struct, pushable_dl_tasks);
1436 
1437 	BUG_ON(rq->cpu != task_cpu(p));
1438 	BUG_ON(task_current(rq, p));
1439 	BUG_ON(tsk_nr_cpus_allowed(p) <= 1);
1440 
1441 	BUG_ON(!task_on_rq_queued(p));
1442 	BUG_ON(!dl_task(p));
1443 
1444 	return p;
1445 }
1446 
1447 /*
1448  * See if the non running -deadline tasks on this rq
1449  * can be sent to some other CPU where they can preempt
1450  * and start executing.
1451  */
1452 static int push_dl_task(struct rq *rq)
1453 {
1454 	struct task_struct *next_task;
1455 	struct rq *later_rq;
1456 	int ret = 0;
1457 
1458 	if (!rq->dl.overloaded)
1459 		return 0;
1460 
1461 	next_task = pick_next_pushable_dl_task(rq);
1462 	if (!next_task)
1463 		return 0;
1464 
1465 retry:
1466 	if (unlikely(next_task == rq->curr)) {
1467 		WARN_ON(1);
1468 		return 0;
1469 	}
1470 
1471 	/*
1472 	 * If next_task preempts rq->curr, and rq->curr
1473 	 * can move away, it makes sense to just reschedule
1474 	 * without going further in pushing next_task.
1475 	 */
1476 	if (dl_task(rq->curr) &&
1477 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1478 	    tsk_nr_cpus_allowed(rq->curr) > 1) {
1479 		resched_curr(rq);
1480 		return 0;
1481 	}
1482 
1483 	/* We might release rq lock */
1484 	get_task_struct(next_task);
1485 
1486 	/* Will lock the rq it'll find */
1487 	later_rq = find_lock_later_rq(next_task, rq);
1488 	if (!later_rq) {
1489 		struct task_struct *task;
1490 
1491 		/*
1492 		 * We must check all this again, since
1493 		 * find_lock_later_rq releases rq->lock and it is
1494 		 * then possible that next_task has migrated.
1495 		 */
1496 		task = pick_next_pushable_dl_task(rq);
1497 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1498 			/*
1499 			 * The task is still there. We don't try
1500 			 * again, some other cpu will pull it when ready.
1501 			 */
1502 			goto out;
1503 		}
1504 
1505 		if (!task)
1506 			/* No more tasks */
1507 			goto out;
1508 
1509 		put_task_struct(next_task);
1510 		next_task = task;
1511 		goto retry;
1512 	}
1513 
1514 	deactivate_task(rq, next_task, 0);
1515 	set_task_cpu(next_task, later_rq->cpu);
1516 	activate_task(later_rq, next_task, 0);
1517 	ret = 1;
1518 
1519 	resched_curr(later_rq);
1520 
1521 	double_unlock_balance(rq, later_rq);
1522 
1523 out:
1524 	put_task_struct(next_task);
1525 
1526 	return ret;
1527 }
1528 
1529 static void push_dl_tasks(struct rq *rq)
1530 {
1531 	/* push_dl_task() will return true if it moved a -deadline task */
1532 	while (push_dl_task(rq))
1533 		;
1534 }
1535 
1536 static void pull_dl_task(struct rq *this_rq)
1537 {
1538 	int this_cpu = this_rq->cpu, cpu;
1539 	struct task_struct *p;
1540 	bool resched = false;
1541 	struct rq *src_rq;
1542 	u64 dmin = LONG_MAX;
1543 
1544 	if (likely(!dl_overloaded(this_rq)))
1545 		return;
1546 
1547 	/*
1548 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
1549 	 * see overloaded we must also see the dlo_mask bit.
1550 	 */
1551 	smp_rmb();
1552 
1553 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1554 		if (this_cpu == cpu)
1555 			continue;
1556 
1557 		src_rq = cpu_rq(cpu);
1558 
1559 		/*
1560 		 * It looks racy, abd it is! However, as in sched_rt.c,
1561 		 * we are fine with this.
1562 		 */
1563 		if (this_rq->dl.dl_nr_running &&
1564 		    dl_time_before(this_rq->dl.earliest_dl.curr,
1565 				   src_rq->dl.earliest_dl.next))
1566 			continue;
1567 
1568 		/* Might drop this_rq->lock */
1569 		double_lock_balance(this_rq, src_rq);
1570 
1571 		/*
1572 		 * If there are no more pullable tasks on the
1573 		 * rq, we're done with it.
1574 		 */
1575 		if (src_rq->dl.dl_nr_running <= 1)
1576 			goto skip;
1577 
1578 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1579 
1580 		/*
1581 		 * We found a task to be pulled if:
1582 		 *  - it preempts our current (if there's one),
1583 		 *  - it will preempt the last one we pulled (if any).
1584 		 */
1585 		if (p && dl_time_before(p->dl.deadline, dmin) &&
1586 		    (!this_rq->dl.dl_nr_running ||
1587 		     dl_time_before(p->dl.deadline,
1588 				    this_rq->dl.earliest_dl.curr))) {
1589 			WARN_ON(p == src_rq->curr);
1590 			WARN_ON(!task_on_rq_queued(p));
1591 
1592 			/*
1593 			 * Then we pull iff p has actually an earlier
1594 			 * deadline than the current task of its runqueue.
1595 			 */
1596 			if (dl_time_before(p->dl.deadline,
1597 					   src_rq->curr->dl.deadline))
1598 				goto skip;
1599 
1600 			resched = true;
1601 
1602 			deactivate_task(src_rq, p, 0);
1603 			set_task_cpu(p, this_cpu);
1604 			activate_task(this_rq, p, 0);
1605 			dmin = p->dl.deadline;
1606 
1607 			/* Is there any other task even earlier? */
1608 		}
1609 skip:
1610 		double_unlock_balance(this_rq, src_rq);
1611 	}
1612 
1613 	if (resched)
1614 		resched_curr(this_rq);
1615 }
1616 
1617 /*
1618  * Since the task is not running and a reschedule is not going to happen
1619  * anytime soon on its runqueue, we try pushing it away now.
1620  */
1621 static void task_woken_dl(struct rq *rq, struct task_struct *p)
1622 {
1623 	if (!task_running(rq, p) &&
1624 	    !test_tsk_need_resched(rq->curr) &&
1625 	    tsk_nr_cpus_allowed(p) > 1 &&
1626 	    dl_task(rq->curr) &&
1627 	    (tsk_nr_cpus_allowed(rq->curr) < 2 ||
1628 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1629 		push_dl_tasks(rq);
1630 	}
1631 }
1632 
1633 static void set_cpus_allowed_dl(struct task_struct *p,
1634 				const struct cpumask *new_mask)
1635 {
1636 	struct root_domain *src_rd;
1637 	struct rq *rq;
1638 
1639 	BUG_ON(!dl_task(p));
1640 
1641 	rq = task_rq(p);
1642 	src_rd = rq->rd;
1643 	/*
1644 	 * Migrating a SCHED_DEADLINE task between exclusive
1645 	 * cpusets (different root_domains) entails a bandwidth
1646 	 * update. We already made space for us in the destination
1647 	 * domain (see cpuset_can_attach()).
1648 	 */
1649 	if (!cpumask_intersects(src_rd->span, new_mask)) {
1650 		struct dl_bw *src_dl_b;
1651 
1652 		src_dl_b = dl_bw_of(cpu_of(rq));
1653 		/*
1654 		 * We now free resources of the root_domain we are migrating
1655 		 * off. In the worst case, sched_setattr() may temporary fail
1656 		 * until we complete the update.
1657 		 */
1658 		raw_spin_lock(&src_dl_b->lock);
1659 		__dl_clear(src_dl_b, p->dl.dl_bw);
1660 		raw_spin_unlock(&src_dl_b->lock);
1661 	}
1662 
1663 	set_cpus_allowed_common(p, new_mask);
1664 }
1665 
1666 /* Assumes rq->lock is held */
1667 static void rq_online_dl(struct rq *rq)
1668 {
1669 	if (rq->dl.overloaded)
1670 		dl_set_overload(rq);
1671 
1672 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
1673 	if (rq->dl.dl_nr_running > 0)
1674 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1675 }
1676 
1677 /* Assumes rq->lock is held */
1678 static void rq_offline_dl(struct rq *rq)
1679 {
1680 	if (rq->dl.overloaded)
1681 		dl_clear_overload(rq);
1682 
1683 	cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1684 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1685 }
1686 
1687 void __init init_sched_dl_class(void)
1688 {
1689 	unsigned int i;
1690 
1691 	for_each_possible_cpu(i)
1692 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1693 					GFP_KERNEL, cpu_to_node(i));
1694 }
1695 
1696 #endif /* CONFIG_SMP */
1697 
1698 static void switched_from_dl(struct rq *rq, struct task_struct *p)
1699 {
1700 	/*
1701 	 * Start the deadline timer; if we switch back to dl before this we'll
1702 	 * continue consuming our current CBS slice. If we stay outside of
1703 	 * SCHED_DEADLINE until the deadline passes, the timer will reset the
1704 	 * task.
1705 	 */
1706 	if (!start_dl_timer(p))
1707 		__dl_clear_params(p);
1708 
1709 	/*
1710 	 * Since this might be the only -deadline task on the rq,
1711 	 * this is the right place to try to pull some other one
1712 	 * from an overloaded cpu, if any.
1713 	 */
1714 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1715 		return;
1716 
1717 	queue_pull_task(rq);
1718 }
1719 
1720 /*
1721  * When switching to -deadline, we may overload the rq, then
1722  * we try to push someone off, if possible.
1723  */
1724 static void switched_to_dl(struct rq *rq, struct task_struct *p)
1725 {
1726 	if (dl_time_before(p->dl.deadline, rq_clock(rq)))
1727 		setup_new_dl_entity(&p->dl, &p->dl);
1728 
1729 	if (task_on_rq_queued(p) && rq->curr != p) {
1730 #ifdef CONFIG_SMP
1731 		if (tsk_nr_cpus_allowed(p) > 1 && rq->dl.overloaded)
1732 			queue_push_tasks(rq);
1733 #else
1734 		if (dl_task(rq->curr))
1735 			check_preempt_curr_dl(rq, p, 0);
1736 		else
1737 			resched_curr(rq);
1738 #endif
1739 	}
1740 }
1741 
1742 /*
1743  * If the scheduling parameters of a -deadline task changed,
1744  * a push or pull operation might be needed.
1745  */
1746 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1747 			    int oldprio)
1748 {
1749 	if (task_on_rq_queued(p) || rq->curr == p) {
1750 #ifdef CONFIG_SMP
1751 		/*
1752 		 * This might be too much, but unfortunately
1753 		 * we don't have the old deadline value, and
1754 		 * we can't argue if the task is increasing
1755 		 * or lowering its prio, so...
1756 		 */
1757 		if (!rq->dl.overloaded)
1758 			queue_pull_task(rq);
1759 
1760 		/*
1761 		 * If we now have a earlier deadline task than p,
1762 		 * then reschedule, provided p is still on this
1763 		 * runqueue.
1764 		 */
1765 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
1766 			resched_curr(rq);
1767 #else
1768 		/*
1769 		 * Again, we don't know if p has a earlier
1770 		 * or later deadline, so let's blindly set a
1771 		 * (maybe not needed) rescheduling point.
1772 		 */
1773 		resched_curr(rq);
1774 #endif /* CONFIG_SMP */
1775 	}
1776 }
1777 
1778 const struct sched_class dl_sched_class = {
1779 	.next			= &rt_sched_class,
1780 	.enqueue_task		= enqueue_task_dl,
1781 	.dequeue_task		= dequeue_task_dl,
1782 	.yield_task		= yield_task_dl,
1783 
1784 	.check_preempt_curr	= check_preempt_curr_dl,
1785 
1786 	.pick_next_task		= pick_next_task_dl,
1787 	.put_prev_task		= put_prev_task_dl,
1788 
1789 #ifdef CONFIG_SMP
1790 	.select_task_rq		= select_task_rq_dl,
1791 	.set_cpus_allowed       = set_cpus_allowed_dl,
1792 	.rq_online              = rq_online_dl,
1793 	.rq_offline             = rq_offline_dl,
1794 	.task_woken		= task_woken_dl,
1795 #endif
1796 
1797 	.set_curr_task		= set_curr_task_dl,
1798 	.task_tick		= task_tick_dl,
1799 	.task_fork              = task_fork_dl,
1800 	.task_dead		= task_dead_dl,
1801 
1802 	.prio_changed           = prio_changed_dl,
1803 	.switched_from		= switched_from_dl,
1804 	.switched_to		= switched_to_dl,
1805 
1806 	.update_curr		= update_curr_dl,
1807 };
1808 
1809 #ifdef CONFIG_SCHED_DEBUG
1810 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1811 
1812 void print_dl_stats(struct seq_file *m, int cpu)
1813 {
1814 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1815 }
1816 #endif /* CONFIG_SCHED_DEBUG */
1817