1 /* 2 * Deadline Scheduling Class (SCHED_DEADLINE) 3 * 4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 5 * 6 * Tasks that periodically executes their instances for less than their 7 * runtime won't miss any of their deadlines. 8 * Tasks that are not periodic or sporadic or that tries to execute more 9 * than their reserved bandwidth will be slowed down (and may potentially 10 * miss some of their deadlines), and won't affect any other task. 11 * 12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 13 * Juri Lelli <juri.lelli@gmail.com>, 14 * Michael Trimarchi <michael@amarulasolutions.com>, 15 * Fabio Checconi <fchecconi@gmail.com> 16 */ 17 #include "sched.h" 18 19 #include <linux/slab.h> 20 21 struct dl_bandwidth def_dl_bandwidth; 22 23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 24 { 25 return container_of(dl_se, struct task_struct, dl); 26 } 27 28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 29 { 30 return container_of(dl_rq, struct rq, dl); 31 } 32 33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 34 { 35 struct task_struct *p = dl_task_of(dl_se); 36 struct rq *rq = task_rq(p); 37 38 return &rq->dl; 39 } 40 41 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 42 { 43 return !RB_EMPTY_NODE(&dl_se->rb_node); 44 } 45 46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) 47 { 48 struct sched_dl_entity *dl_se = &p->dl; 49 50 return dl_rq->rb_leftmost == &dl_se->rb_node; 51 } 52 53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) 54 { 55 raw_spin_lock_init(&dl_b->dl_runtime_lock); 56 dl_b->dl_period = period; 57 dl_b->dl_runtime = runtime; 58 } 59 60 void init_dl_bw(struct dl_bw *dl_b) 61 { 62 raw_spin_lock_init(&dl_b->lock); 63 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock); 64 if (global_rt_runtime() == RUNTIME_INF) 65 dl_b->bw = -1; 66 else 67 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 68 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock); 69 dl_b->total_bw = 0; 70 } 71 72 void init_dl_rq(struct dl_rq *dl_rq) 73 { 74 dl_rq->rb_root = RB_ROOT; 75 76 #ifdef CONFIG_SMP 77 /* zero means no -deadline tasks */ 78 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 79 80 dl_rq->dl_nr_migratory = 0; 81 dl_rq->overloaded = 0; 82 dl_rq->pushable_dl_tasks_root = RB_ROOT; 83 #else 84 init_dl_bw(&dl_rq->dl_bw); 85 #endif 86 } 87 88 #ifdef CONFIG_SMP 89 90 static inline int dl_overloaded(struct rq *rq) 91 { 92 return atomic_read(&rq->rd->dlo_count); 93 } 94 95 static inline void dl_set_overload(struct rq *rq) 96 { 97 if (!rq->online) 98 return; 99 100 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 101 /* 102 * Must be visible before the overload count is 103 * set (as in sched_rt.c). 104 * 105 * Matched by the barrier in pull_dl_task(). 106 */ 107 smp_wmb(); 108 atomic_inc(&rq->rd->dlo_count); 109 } 110 111 static inline void dl_clear_overload(struct rq *rq) 112 { 113 if (!rq->online) 114 return; 115 116 atomic_dec(&rq->rd->dlo_count); 117 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 118 } 119 120 static void update_dl_migration(struct dl_rq *dl_rq) 121 { 122 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { 123 if (!dl_rq->overloaded) { 124 dl_set_overload(rq_of_dl_rq(dl_rq)); 125 dl_rq->overloaded = 1; 126 } 127 } else if (dl_rq->overloaded) { 128 dl_clear_overload(rq_of_dl_rq(dl_rq)); 129 dl_rq->overloaded = 0; 130 } 131 } 132 133 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 134 { 135 struct task_struct *p = dl_task_of(dl_se); 136 137 if (tsk_nr_cpus_allowed(p) > 1) 138 dl_rq->dl_nr_migratory++; 139 140 update_dl_migration(dl_rq); 141 } 142 143 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 144 { 145 struct task_struct *p = dl_task_of(dl_se); 146 147 if (tsk_nr_cpus_allowed(p) > 1) 148 dl_rq->dl_nr_migratory--; 149 150 update_dl_migration(dl_rq); 151 } 152 153 /* 154 * The list of pushable -deadline task is not a plist, like in 155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 156 */ 157 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 158 { 159 struct dl_rq *dl_rq = &rq->dl; 160 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node; 161 struct rb_node *parent = NULL; 162 struct task_struct *entry; 163 int leftmost = 1; 164 165 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 166 167 while (*link) { 168 parent = *link; 169 entry = rb_entry(parent, struct task_struct, 170 pushable_dl_tasks); 171 if (dl_entity_preempt(&p->dl, &entry->dl)) 172 link = &parent->rb_left; 173 else { 174 link = &parent->rb_right; 175 leftmost = 0; 176 } 177 } 178 179 if (leftmost) { 180 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks; 181 dl_rq->earliest_dl.next = p->dl.deadline; 182 } 183 184 rb_link_node(&p->pushable_dl_tasks, parent, link); 185 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 186 } 187 188 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 189 { 190 struct dl_rq *dl_rq = &rq->dl; 191 192 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 193 return; 194 195 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) { 196 struct rb_node *next_node; 197 198 next_node = rb_next(&p->pushable_dl_tasks); 199 dl_rq->pushable_dl_tasks_leftmost = next_node; 200 if (next_node) { 201 dl_rq->earliest_dl.next = rb_entry(next_node, 202 struct task_struct, pushable_dl_tasks)->dl.deadline; 203 } 204 } 205 206 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 207 RB_CLEAR_NODE(&p->pushable_dl_tasks); 208 } 209 210 static inline int has_pushable_dl_tasks(struct rq *rq) 211 { 212 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root); 213 } 214 215 static int push_dl_task(struct rq *rq); 216 217 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 218 { 219 return dl_task(prev); 220 } 221 222 static DEFINE_PER_CPU(struct callback_head, dl_push_head); 223 static DEFINE_PER_CPU(struct callback_head, dl_pull_head); 224 225 static void push_dl_tasks(struct rq *); 226 static void pull_dl_task(struct rq *); 227 228 static inline void queue_push_tasks(struct rq *rq) 229 { 230 if (!has_pushable_dl_tasks(rq)) 231 return; 232 233 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); 234 } 235 236 static inline void queue_pull_task(struct rq *rq) 237 { 238 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); 239 } 240 241 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); 242 243 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) 244 { 245 struct rq *later_rq = NULL; 246 bool fallback = false; 247 248 later_rq = find_lock_later_rq(p, rq); 249 250 if (!later_rq) { 251 int cpu; 252 253 /* 254 * If we cannot preempt any rq, fall back to pick any 255 * online cpu. 256 */ 257 fallback = true; 258 cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p)); 259 if (cpu >= nr_cpu_ids) { 260 /* 261 * Fail to find any suitable cpu. 262 * The task will never come back! 263 */ 264 BUG_ON(dl_bandwidth_enabled()); 265 266 /* 267 * If admission control is disabled we 268 * try a little harder to let the task 269 * run. 270 */ 271 cpu = cpumask_any(cpu_active_mask); 272 } 273 later_rq = cpu_rq(cpu); 274 double_lock_balance(rq, later_rq); 275 } 276 277 /* 278 * By now the task is replenished and enqueued; migrate it. 279 */ 280 deactivate_task(rq, p, 0); 281 set_task_cpu(p, later_rq->cpu); 282 activate_task(later_rq, p, 0); 283 284 if (!fallback) 285 resched_curr(later_rq); 286 287 double_unlock_balance(later_rq, rq); 288 289 return later_rq; 290 } 291 292 #else 293 294 static inline 295 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 296 { 297 } 298 299 static inline 300 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 301 { 302 } 303 304 static inline 305 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 306 { 307 } 308 309 static inline 310 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 311 { 312 } 313 314 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 315 { 316 return false; 317 } 318 319 static inline void pull_dl_task(struct rq *rq) 320 { 321 } 322 323 static inline void queue_push_tasks(struct rq *rq) 324 { 325 } 326 327 static inline void queue_pull_task(struct rq *rq) 328 { 329 } 330 #endif /* CONFIG_SMP */ 331 332 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 333 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); 334 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 335 int flags); 336 337 /* 338 * We are being explicitly informed that a new instance is starting, 339 * and this means that: 340 * - the absolute deadline of the entity has to be placed at 341 * current time + relative deadline; 342 * - the runtime of the entity has to be set to the maximum value. 343 * 344 * The capability of specifying such event is useful whenever a -deadline 345 * entity wants to (try to!) synchronize its behaviour with the scheduler's 346 * one, and to (try to!) reconcile itself with its own scheduling 347 * parameters. 348 */ 349 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se, 350 struct sched_dl_entity *pi_se) 351 { 352 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 353 struct rq *rq = rq_of_dl_rq(dl_rq); 354 355 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); 356 357 /* 358 * We are racing with the deadline timer. So, do nothing because 359 * the deadline timer handler will take care of properly recharging 360 * the runtime and postponing the deadline 361 */ 362 if (dl_se->dl_throttled) 363 return; 364 365 /* 366 * We use the regular wall clock time to set deadlines in the 367 * future; in fact, we must consider execution overheads (time 368 * spent on hardirq context, etc.). 369 */ 370 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 371 dl_se->runtime = pi_se->dl_runtime; 372 } 373 374 /* 375 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 376 * possibility of a entity lasting more than what it declared, and thus 377 * exhausting its runtime. 378 * 379 * Here we are interested in making runtime overrun possible, but we do 380 * not want a entity which is misbehaving to affect the scheduling of all 381 * other entities. 382 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 383 * is used, in order to confine each entity within its own bandwidth. 384 * 385 * This function deals exactly with that, and ensures that when the runtime 386 * of a entity is replenished, its deadline is also postponed. That ensures 387 * the overrunning entity can't interfere with other entity in the system and 388 * can't make them miss their deadlines. Reasons why this kind of overruns 389 * could happen are, typically, a entity voluntarily trying to overcome its 390 * runtime, or it just underestimated it during sched_setattr(). 391 */ 392 static void replenish_dl_entity(struct sched_dl_entity *dl_se, 393 struct sched_dl_entity *pi_se) 394 { 395 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 396 struct rq *rq = rq_of_dl_rq(dl_rq); 397 398 BUG_ON(pi_se->dl_runtime <= 0); 399 400 /* 401 * This could be the case for a !-dl task that is boosted. 402 * Just go with full inherited parameters. 403 */ 404 if (dl_se->dl_deadline == 0) { 405 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 406 dl_se->runtime = pi_se->dl_runtime; 407 } 408 409 if (dl_se->dl_yielded && dl_se->runtime > 0) 410 dl_se->runtime = 0; 411 412 /* 413 * We keep moving the deadline away until we get some 414 * available runtime for the entity. This ensures correct 415 * handling of situations where the runtime overrun is 416 * arbitrary large. 417 */ 418 while (dl_se->runtime <= 0) { 419 dl_se->deadline += pi_se->dl_period; 420 dl_se->runtime += pi_se->dl_runtime; 421 } 422 423 /* 424 * At this point, the deadline really should be "in 425 * the future" with respect to rq->clock. If it's 426 * not, we are, for some reason, lagging too much! 427 * Anyway, after having warn userspace abut that, 428 * we still try to keep the things running by 429 * resetting the deadline and the budget of the 430 * entity. 431 */ 432 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 433 printk_deferred_once("sched: DL replenish lagged too much\n"); 434 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 435 dl_se->runtime = pi_se->dl_runtime; 436 } 437 438 if (dl_se->dl_yielded) 439 dl_se->dl_yielded = 0; 440 if (dl_se->dl_throttled) 441 dl_se->dl_throttled = 0; 442 } 443 444 /* 445 * Here we check if --at time t-- an entity (which is probably being 446 * [re]activated or, in general, enqueued) can use its remaining runtime 447 * and its current deadline _without_ exceeding the bandwidth it is 448 * assigned (function returns true if it can't). We are in fact applying 449 * one of the CBS rules: when a task wakes up, if the residual runtime 450 * over residual deadline fits within the allocated bandwidth, then we 451 * can keep the current (absolute) deadline and residual budget without 452 * disrupting the schedulability of the system. Otherwise, we should 453 * refill the runtime and set the deadline a period in the future, 454 * because keeping the current (absolute) deadline of the task would 455 * result in breaking guarantees promised to other tasks (refer to 456 * Documentation/scheduler/sched-deadline.txt for more informations). 457 * 458 * This function returns true if: 459 * 460 * runtime / (deadline - t) > dl_runtime / dl_period , 461 * 462 * IOW we can't recycle current parameters. 463 * 464 * Notice that the bandwidth check is done against the period. For 465 * task with deadline equal to period this is the same of using 466 * dl_deadline instead of dl_period in the equation above. 467 */ 468 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, 469 struct sched_dl_entity *pi_se, u64 t) 470 { 471 u64 left, right; 472 473 /* 474 * left and right are the two sides of the equation above, 475 * after a bit of shuffling to use multiplications instead 476 * of divisions. 477 * 478 * Note that none of the time values involved in the two 479 * multiplications are absolute: dl_deadline and dl_runtime 480 * are the relative deadline and the maximum runtime of each 481 * instance, runtime is the runtime left for the last instance 482 * and (deadline - t), since t is rq->clock, is the time left 483 * to the (absolute) deadline. Even if overflowing the u64 type 484 * is very unlikely to occur in both cases, here we scale down 485 * as we want to avoid that risk at all. Scaling down by 10 486 * means that we reduce granularity to 1us. We are fine with it, 487 * since this is only a true/false check and, anyway, thinking 488 * of anything below microseconds resolution is actually fiction 489 * (but still we want to give the user that illusion >;). 490 */ 491 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 492 right = ((dl_se->deadline - t) >> DL_SCALE) * 493 (pi_se->dl_runtime >> DL_SCALE); 494 495 return dl_time_before(right, left); 496 } 497 498 /* 499 * When a -deadline entity is queued back on the runqueue, its runtime and 500 * deadline might need updating. 501 * 502 * The policy here is that we update the deadline of the entity only if: 503 * - the current deadline is in the past, 504 * - using the remaining runtime with the current deadline would make 505 * the entity exceed its bandwidth. 506 */ 507 static void update_dl_entity(struct sched_dl_entity *dl_se, 508 struct sched_dl_entity *pi_se) 509 { 510 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 511 struct rq *rq = rq_of_dl_rq(dl_rq); 512 513 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 514 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) { 515 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 516 dl_se->runtime = pi_se->dl_runtime; 517 } 518 } 519 520 /* 521 * If the entity depleted all its runtime, and if we want it to sleep 522 * while waiting for some new execution time to become available, we 523 * set the bandwidth enforcement timer to the replenishment instant 524 * and try to activate it. 525 * 526 * Notice that it is important for the caller to know if the timer 527 * actually started or not (i.e., the replenishment instant is in 528 * the future or in the past). 529 */ 530 static int start_dl_timer(struct task_struct *p) 531 { 532 struct sched_dl_entity *dl_se = &p->dl; 533 struct hrtimer *timer = &dl_se->dl_timer; 534 struct rq *rq = task_rq(p); 535 ktime_t now, act; 536 s64 delta; 537 538 lockdep_assert_held(&rq->lock); 539 540 /* 541 * We want the timer to fire at the deadline, but considering 542 * that it is actually coming from rq->clock and not from 543 * hrtimer's time base reading. 544 */ 545 act = ns_to_ktime(dl_se->deadline); 546 now = hrtimer_cb_get_time(timer); 547 delta = ktime_to_ns(now) - rq_clock(rq); 548 act = ktime_add_ns(act, delta); 549 550 /* 551 * If the expiry time already passed, e.g., because the value 552 * chosen as the deadline is too small, don't even try to 553 * start the timer in the past! 554 */ 555 if (ktime_us_delta(act, now) < 0) 556 return 0; 557 558 /* 559 * !enqueued will guarantee another callback; even if one is already in 560 * progress. This ensures a balanced {get,put}_task_struct(). 561 * 562 * The race against __run_timer() clearing the enqueued state is 563 * harmless because we're holding task_rq()->lock, therefore the timer 564 * expiring after we've done the check will wait on its task_rq_lock() 565 * and observe our state. 566 */ 567 if (!hrtimer_is_queued(timer)) { 568 get_task_struct(p); 569 hrtimer_start(timer, act, HRTIMER_MODE_ABS); 570 } 571 572 return 1; 573 } 574 575 /* 576 * This is the bandwidth enforcement timer callback. If here, we know 577 * a task is not on its dl_rq, since the fact that the timer was running 578 * means the task is throttled and needs a runtime replenishment. 579 * 580 * However, what we actually do depends on the fact the task is active, 581 * (it is on its rq) or has been removed from there by a call to 582 * dequeue_task_dl(). In the former case we must issue the runtime 583 * replenishment and add the task back to the dl_rq; in the latter, we just 584 * do nothing but clearing dl_throttled, so that runtime and deadline 585 * updating (and the queueing back to dl_rq) will be done by the 586 * next call to enqueue_task_dl(). 587 */ 588 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 589 { 590 struct sched_dl_entity *dl_se = container_of(timer, 591 struct sched_dl_entity, 592 dl_timer); 593 struct task_struct *p = dl_task_of(dl_se); 594 struct rq_flags rf; 595 struct rq *rq; 596 597 rq = task_rq_lock(p, &rf); 598 599 /* 600 * The task might have changed its scheduling policy to something 601 * different than SCHED_DEADLINE (through switched_fromd_dl()). 602 */ 603 if (!dl_task(p)) { 604 __dl_clear_params(p); 605 goto unlock; 606 } 607 608 /* 609 * The task might have been boosted by someone else and might be in the 610 * boosting/deboosting path, its not throttled. 611 */ 612 if (dl_se->dl_boosted) 613 goto unlock; 614 615 /* 616 * Spurious timer due to start_dl_timer() race; or we already received 617 * a replenishment from rt_mutex_setprio(). 618 */ 619 if (!dl_se->dl_throttled) 620 goto unlock; 621 622 sched_clock_tick(); 623 update_rq_clock(rq); 624 625 /* 626 * If the throttle happened during sched-out; like: 627 * 628 * schedule() 629 * deactivate_task() 630 * dequeue_task_dl() 631 * update_curr_dl() 632 * start_dl_timer() 633 * __dequeue_task_dl() 634 * prev->on_rq = 0; 635 * 636 * We can be both throttled and !queued. Replenish the counter 637 * but do not enqueue -- wait for our wakeup to do that. 638 */ 639 if (!task_on_rq_queued(p)) { 640 replenish_dl_entity(dl_se, dl_se); 641 goto unlock; 642 } 643 644 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 645 if (dl_task(rq->curr)) 646 check_preempt_curr_dl(rq, p, 0); 647 else 648 resched_curr(rq); 649 650 #ifdef CONFIG_SMP 651 /* 652 * Perform balancing operations here; after the replenishments. We 653 * cannot drop rq->lock before this, otherwise the assertion in 654 * start_dl_timer() about not missing updates is not true. 655 * 656 * If we find that the rq the task was on is no longer available, we 657 * need to select a new rq. 658 * 659 * XXX figure out if select_task_rq_dl() deals with offline cpus. 660 */ 661 if (unlikely(!rq->online)) { 662 lockdep_unpin_lock(&rq->lock, rf.cookie); 663 rq = dl_task_offline_migration(rq, p); 664 rf.cookie = lockdep_pin_lock(&rq->lock); 665 } 666 667 /* 668 * Queueing this task back might have overloaded rq, check if we need 669 * to kick someone away. 670 */ 671 if (has_pushable_dl_tasks(rq)) { 672 /* 673 * Nothing relies on rq->lock after this, so its safe to drop 674 * rq->lock. 675 */ 676 lockdep_unpin_lock(&rq->lock, rf.cookie); 677 push_dl_task(rq); 678 lockdep_repin_lock(&rq->lock, rf.cookie); 679 } 680 #endif 681 682 unlock: 683 task_rq_unlock(rq, p, &rf); 684 685 /* 686 * This can free the task_struct, including this hrtimer, do not touch 687 * anything related to that after this. 688 */ 689 put_task_struct(p); 690 691 return HRTIMER_NORESTART; 692 } 693 694 void init_dl_task_timer(struct sched_dl_entity *dl_se) 695 { 696 struct hrtimer *timer = &dl_se->dl_timer; 697 698 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 699 timer->function = dl_task_timer; 700 } 701 702 static 703 int dl_runtime_exceeded(struct sched_dl_entity *dl_se) 704 { 705 return (dl_se->runtime <= 0); 706 } 707 708 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 709 710 /* 711 * Update the current task's runtime statistics (provided it is still 712 * a -deadline task and has not been removed from the dl_rq). 713 */ 714 static void update_curr_dl(struct rq *rq) 715 { 716 struct task_struct *curr = rq->curr; 717 struct sched_dl_entity *dl_se = &curr->dl; 718 u64 delta_exec; 719 720 if (!dl_task(curr) || !on_dl_rq(dl_se)) 721 return; 722 723 /* 724 * Consumed budget is computed considering the time as 725 * observed by schedulable tasks (excluding time spent 726 * in hardirq context, etc.). Deadlines are instead 727 * computed using hard walltime. This seems to be the more 728 * natural solution, but the full ramifications of this 729 * approach need further study. 730 */ 731 delta_exec = rq_clock_task(rq) - curr->se.exec_start; 732 if (unlikely((s64)delta_exec <= 0)) { 733 if (unlikely(dl_se->dl_yielded)) 734 goto throttle; 735 return; 736 } 737 738 /* kick cpufreq (see the comment in linux/cpufreq.h). */ 739 if (cpu_of(rq) == smp_processor_id()) 740 cpufreq_trigger_update(rq_clock(rq)); 741 742 schedstat_set(curr->se.statistics.exec_max, 743 max(curr->se.statistics.exec_max, delta_exec)); 744 745 curr->se.sum_exec_runtime += delta_exec; 746 account_group_exec_runtime(curr, delta_exec); 747 748 curr->se.exec_start = rq_clock_task(rq); 749 cpuacct_charge(curr, delta_exec); 750 751 sched_rt_avg_update(rq, delta_exec); 752 753 dl_se->runtime -= delta_exec; 754 755 throttle: 756 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) { 757 dl_se->dl_throttled = 1; 758 __dequeue_task_dl(rq, curr, 0); 759 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr))) 760 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); 761 762 if (!is_leftmost(curr, &rq->dl)) 763 resched_curr(rq); 764 } 765 766 /* 767 * Because -- for now -- we share the rt bandwidth, we need to 768 * account our runtime there too, otherwise actual rt tasks 769 * would be able to exceed the shared quota. 770 * 771 * Account to the root rt group for now. 772 * 773 * The solution we're working towards is having the RT groups scheduled 774 * using deadline servers -- however there's a few nasties to figure 775 * out before that can happen. 776 */ 777 if (rt_bandwidth_enabled()) { 778 struct rt_rq *rt_rq = &rq->rt; 779 780 raw_spin_lock(&rt_rq->rt_runtime_lock); 781 /* 782 * We'll let actual RT tasks worry about the overflow here, we 783 * have our own CBS to keep us inline; only account when RT 784 * bandwidth is relevant. 785 */ 786 if (sched_rt_bandwidth_account(rt_rq)) 787 rt_rq->rt_time += delta_exec; 788 raw_spin_unlock(&rt_rq->rt_runtime_lock); 789 } 790 } 791 792 #ifdef CONFIG_SMP 793 794 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 795 { 796 struct rq *rq = rq_of_dl_rq(dl_rq); 797 798 if (dl_rq->earliest_dl.curr == 0 || 799 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 800 dl_rq->earliest_dl.curr = deadline; 801 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1); 802 } 803 } 804 805 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 806 { 807 struct rq *rq = rq_of_dl_rq(dl_rq); 808 809 /* 810 * Since we may have removed our earliest (and/or next earliest) 811 * task we must recompute them. 812 */ 813 if (!dl_rq->dl_nr_running) { 814 dl_rq->earliest_dl.curr = 0; 815 dl_rq->earliest_dl.next = 0; 816 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); 817 } else { 818 struct rb_node *leftmost = dl_rq->rb_leftmost; 819 struct sched_dl_entity *entry; 820 821 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node); 822 dl_rq->earliest_dl.curr = entry->deadline; 823 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1); 824 } 825 } 826 827 #else 828 829 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 830 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 831 832 #endif /* CONFIG_SMP */ 833 834 static inline 835 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 836 { 837 int prio = dl_task_of(dl_se)->prio; 838 u64 deadline = dl_se->deadline; 839 840 WARN_ON(!dl_prio(prio)); 841 dl_rq->dl_nr_running++; 842 add_nr_running(rq_of_dl_rq(dl_rq), 1); 843 844 inc_dl_deadline(dl_rq, deadline); 845 inc_dl_migration(dl_se, dl_rq); 846 } 847 848 static inline 849 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 850 { 851 int prio = dl_task_of(dl_se)->prio; 852 853 WARN_ON(!dl_prio(prio)); 854 WARN_ON(!dl_rq->dl_nr_running); 855 dl_rq->dl_nr_running--; 856 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 857 858 dec_dl_deadline(dl_rq, dl_se->deadline); 859 dec_dl_migration(dl_se, dl_rq); 860 } 861 862 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 863 { 864 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 865 struct rb_node **link = &dl_rq->rb_root.rb_node; 866 struct rb_node *parent = NULL; 867 struct sched_dl_entity *entry; 868 int leftmost = 1; 869 870 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node)); 871 872 while (*link) { 873 parent = *link; 874 entry = rb_entry(parent, struct sched_dl_entity, rb_node); 875 if (dl_time_before(dl_se->deadline, entry->deadline)) 876 link = &parent->rb_left; 877 else { 878 link = &parent->rb_right; 879 leftmost = 0; 880 } 881 } 882 883 if (leftmost) 884 dl_rq->rb_leftmost = &dl_se->rb_node; 885 886 rb_link_node(&dl_se->rb_node, parent, link); 887 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root); 888 889 inc_dl_tasks(dl_se, dl_rq); 890 } 891 892 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 893 { 894 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 895 896 if (RB_EMPTY_NODE(&dl_se->rb_node)) 897 return; 898 899 if (dl_rq->rb_leftmost == &dl_se->rb_node) { 900 struct rb_node *next_node; 901 902 next_node = rb_next(&dl_se->rb_node); 903 dl_rq->rb_leftmost = next_node; 904 } 905 906 rb_erase(&dl_se->rb_node, &dl_rq->rb_root); 907 RB_CLEAR_NODE(&dl_se->rb_node); 908 909 dec_dl_tasks(dl_se, dl_rq); 910 } 911 912 static void 913 enqueue_dl_entity(struct sched_dl_entity *dl_se, 914 struct sched_dl_entity *pi_se, int flags) 915 { 916 BUG_ON(on_dl_rq(dl_se)); 917 918 /* 919 * If this is a wakeup or a new instance, the scheduling 920 * parameters of the task might need updating. Otherwise, 921 * we want a replenishment of its runtime. 922 */ 923 if (flags & ENQUEUE_WAKEUP) 924 update_dl_entity(dl_se, pi_se); 925 else if (flags & ENQUEUE_REPLENISH) 926 replenish_dl_entity(dl_se, pi_se); 927 928 __enqueue_dl_entity(dl_se); 929 } 930 931 static void dequeue_dl_entity(struct sched_dl_entity *dl_se) 932 { 933 __dequeue_dl_entity(dl_se); 934 } 935 936 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 937 { 938 struct task_struct *pi_task = rt_mutex_get_top_task(p); 939 struct sched_dl_entity *pi_se = &p->dl; 940 941 /* 942 * Use the scheduling parameters of the top pi-waiter 943 * task if we have one and its (absolute) deadline is 944 * smaller than our one... OTW we keep our runtime and 945 * deadline. 946 */ 947 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) { 948 pi_se = &pi_task->dl; 949 } else if (!dl_prio(p->normal_prio)) { 950 /* 951 * Special case in which we have a !SCHED_DEADLINE task 952 * that is going to be deboosted, but exceedes its 953 * runtime while doing so. No point in replenishing 954 * it, as it's going to return back to its original 955 * scheduling class after this. 956 */ 957 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH); 958 return; 959 } 960 961 /* 962 * If p is throttled, we do nothing. In fact, if it exhausted 963 * its budget it needs a replenishment and, since it now is on 964 * its rq, the bandwidth timer callback (which clearly has not 965 * run yet) will take care of this. 966 */ 967 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) 968 return; 969 970 enqueue_dl_entity(&p->dl, pi_se, flags); 971 972 if (!task_current(rq, p) && tsk_nr_cpus_allowed(p) > 1) 973 enqueue_pushable_dl_task(rq, p); 974 } 975 976 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 977 { 978 dequeue_dl_entity(&p->dl); 979 dequeue_pushable_dl_task(rq, p); 980 } 981 982 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 983 { 984 update_curr_dl(rq); 985 __dequeue_task_dl(rq, p, flags); 986 } 987 988 /* 989 * Yield task semantic for -deadline tasks is: 990 * 991 * get off from the CPU until our next instance, with 992 * a new runtime. This is of little use now, since we 993 * don't have a bandwidth reclaiming mechanism. Anyway, 994 * bandwidth reclaiming is planned for the future, and 995 * yield_task_dl will indicate that some spare budget 996 * is available for other task instances to use it. 997 */ 998 static void yield_task_dl(struct rq *rq) 999 { 1000 /* 1001 * We make the task go to sleep until its current deadline by 1002 * forcing its runtime to zero. This way, update_curr_dl() stops 1003 * it and the bandwidth timer will wake it up and will give it 1004 * new scheduling parameters (thanks to dl_yielded=1). 1005 */ 1006 rq->curr->dl.dl_yielded = 1; 1007 1008 update_rq_clock(rq); 1009 update_curr_dl(rq); 1010 /* 1011 * Tell update_rq_clock() that we've just updated, 1012 * so we don't do microscopic update in schedule() 1013 * and double the fastpath cost. 1014 */ 1015 rq_clock_skip_update(rq, true); 1016 } 1017 1018 #ifdef CONFIG_SMP 1019 1020 static int find_later_rq(struct task_struct *task); 1021 1022 static int 1023 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags) 1024 { 1025 struct task_struct *curr; 1026 struct rq *rq; 1027 1028 if (sd_flag != SD_BALANCE_WAKE) 1029 goto out; 1030 1031 rq = cpu_rq(cpu); 1032 1033 rcu_read_lock(); 1034 curr = READ_ONCE(rq->curr); /* unlocked access */ 1035 1036 /* 1037 * If we are dealing with a -deadline task, we must 1038 * decide where to wake it up. 1039 * If it has a later deadline and the current task 1040 * on this rq can't move (provided the waking task 1041 * can!) we prefer to send it somewhere else. On the 1042 * other hand, if it has a shorter deadline, we 1043 * try to make it stay here, it might be important. 1044 */ 1045 if (unlikely(dl_task(curr)) && 1046 (tsk_nr_cpus_allowed(curr) < 2 || 1047 !dl_entity_preempt(&p->dl, &curr->dl)) && 1048 (tsk_nr_cpus_allowed(p) > 1)) { 1049 int target = find_later_rq(p); 1050 1051 if (target != -1 && 1052 (dl_time_before(p->dl.deadline, 1053 cpu_rq(target)->dl.earliest_dl.curr) || 1054 (cpu_rq(target)->dl.dl_nr_running == 0))) 1055 cpu = target; 1056 } 1057 rcu_read_unlock(); 1058 1059 out: 1060 return cpu; 1061 } 1062 1063 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 1064 { 1065 /* 1066 * Current can't be migrated, useless to reschedule, 1067 * let's hope p can move out. 1068 */ 1069 if (tsk_nr_cpus_allowed(rq->curr) == 1 || 1070 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1) 1071 return; 1072 1073 /* 1074 * p is migratable, so let's not schedule it and 1075 * see if it is pushed or pulled somewhere else. 1076 */ 1077 if (tsk_nr_cpus_allowed(p) != 1 && 1078 cpudl_find(&rq->rd->cpudl, p, NULL) != -1) 1079 return; 1080 1081 resched_curr(rq); 1082 } 1083 1084 #endif /* CONFIG_SMP */ 1085 1086 /* 1087 * Only called when both the current and waking task are -deadline 1088 * tasks. 1089 */ 1090 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 1091 int flags) 1092 { 1093 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { 1094 resched_curr(rq); 1095 return; 1096 } 1097 1098 #ifdef CONFIG_SMP 1099 /* 1100 * In the unlikely case current and p have the same deadline 1101 * let us try to decide what's the best thing to do... 1102 */ 1103 if ((p->dl.deadline == rq->curr->dl.deadline) && 1104 !test_tsk_need_resched(rq->curr)) 1105 check_preempt_equal_dl(rq, p); 1106 #endif /* CONFIG_SMP */ 1107 } 1108 1109 #ifdef CONFIG_SCHED_HRTICK 1110 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1111 { 1112 hrtick_start(rq, p->dl.runtime); 1113 } 1114 #else /* !CONFIG_SCHED_HRTICK */ 1115 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1116 { 1117 } 1118 #endif 1119 1120 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq, 1121 struct dl_rq *dl_rq) 1122 { 1123 struct rb_node *left = dl_rq->rb_leftmost; 1124 1125 if (!left) 1126 return NULL; 1127 1128 return rb_entry(left, struct sched_dl_entity, rb_node); 1129 } 1130 1131 struct task_struct * 1132 pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie) 1133 { 1134 struct sched_dl_entity *dl_se; 1135 struct task_struct *p; 1136 struct dl_rq *dl_rq; 1137 1138 dl_rq = &rq->dl; 1139 1140 if (need_pull_dl_task(rq, prev)) { 1141 /* 1142 * This is OK, because current is on_cpu, which avoids it being 1143 * picked for load-balance and preemption/IRQs are still 1144 * disabled avoiding further scheduler activity on it and we're 1145 * being very careful to re-start the picking loop. 1146 */ 1147 lockdep_unpin_lock(&rq->lock, cookie); 1148 pull_dl_task(rq); 1149 lockdep_repin_lock(&rq->lock, cookie); 1150 /* 1151 * pull_rt_task() can drop (and re-acquire) rq->lock; this 1152 * means a stop task can slip in, in which case we need to 1153 * re-start task selection. 1154 */ 1155 if (rq->stop && task_on_rq_queued(rq->stop)) 1156 return RETRY_TASK; 1157 } 1158 1159 /* 1160 * When prev is DL, we may throttle it in put_prev_task(). 1161 * So, we update time before we check for dl_nr_running. 1162 */ 1163 if (prev->sched_class == &dl_sched_class) 1164 update_curr_dl(rq); 1165 1166 if (unlikely(!dl_rq->dl_nr_running)) 1167 return NULL; 1168 1169 put_prev_task(rq, prev); 1170 1171 dl_se = pick_next_dl_entity(rq, dl_rq); 1172 BUG_ON(!dl_se); 1173 1174 p = dl_task_of(dl_se); 1175 p->se.exec_start = rq_clock_task(rq); 1176 1177 /* Running task will never be pushed. */ 1178 dequeue_pushable_dl_task(rq, p); 1179 1180 if (hrtick_enabled(rq)) 1181 start_hrtick_dl(rq, p); 1182 1183 queue_push_tasks(rq); 1184 1185 return p; 1186 } 1187 1188 static void put_prev_task_dl(struct rq *rq, struct task_struct *p) 1189 { 1190 update_curr_dl(rq); 1191 1192 if (on_dl_rq(&p->dl) && tsk_nr_cpus_allowed(p) > 1) 1193 enqueue_pushable_dl_task(rq, p); 1194 } 1195 1196 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 1197 { 1198 update_curr_dl(rq); 1199 1200 /* 1201 * Even when we have runtime, update_curr_dl() might have resulted in us 1202 * not being the leftmost task anymore. In that case NEED_RESCHED will 1203 * be set and schedule() will start a new hrtick for the next task. 1204 */ 1205 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 && 1206 is_leftmost(p, &rq->dl)) 1207 start_hrtick_dl(rq, p); 1208 } 1209 1210 static void task_fork_dl(struct task_struct *p) 1211 { 1212 /* 1213 * SCHED_DEADLINE tasks cannot fork and this is achieved through 1214 * sched_fork() 1215 */ 1216 } 1217 1218 static void task_dead_dl(struct task_struct *p) 1219 { 1220 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1221 1222 /* 1223 * Since we are TASK_DEAD we won't slip out of the domain! 1224 */ 1225 raw_spin_lock_irq(&dl_b->lock); 1226 /* XXX we should retain the bw until 0-lag */ 1227 dl_b->total_bw -= p->dl.dl_bw; 1228 raw_spin_unlock_irq(&dl_b->lock); 1229 } 1230 1231 static void set_curr_task_dl(struct rq *rq) 1232 { 1233 struct task_struct *p = rq->curr; 1234 1235 p->se.exec_start = rq_clock_task(rq); 1236 1237 /* You can't push away the running task */ 1238 dequeue_pushable_dl_task(rq, p); 1239 } 1240 1241 #ifdef CONFIG_SMP 1242 1243 /* Only try algorithms three times */ 1244 #define DL_MAX_TRIES 3 1245 1246 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) 1247 { 1248 if (!task_running(rq, p) && 1249 cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 1250 return 1; 1251 return 0; 1252 } 1253 1254 /* 1255 * Return the earliest pushable rq's task, which is suitable to be executed 1256 * on the CPU, NULL otherwise: 1257 */ 1258 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) 1259 { 1260 struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost; 1261 struct task_struct *p = NULL; 1262 1263 if (!has_pushable_dl_tasks(rq)) 1264 return NULL; 1265 1266 next_node: 1267 if (next_node) { 1268 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks); 1269 1270 if (pick_dl_task(rq, p, cpu)) 1271 return p; 1272 1273 next_node = rb_next(next_node); 1274 goto next_node; 1275 } 1276 1277 return NULL; 1278 } 1279 1280 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 1281 1282 static int find_later_rq(struct task_struct *task) 1283 { 1284 struct sched_domain *sd; 1285 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 1286 int this_cpu = smp_processor_id(); 1287 int best_cpu, cpu = task_cpu(task); 1288 1289 /* Make sure the mask is initialized first */ 1290 if (unlikely(!later_mask)) 1291 return -1; 1292 1293 if (tsk_nr_cpus_allowed(task) == 1) 1294 return -1; 1295 1296 /* 1297 * We have to consider system topology and task affinity 1298 * first, then we can look for a suitable cpu. 1299 */ 1300 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl, 1301 task, later_mask); 1302 if (best_cpu == -1) 1303 return -1; 1304 1305 /* 1306 * If we are here, some target has been found, 1307 * the most suitable of which is cached in best_cpu. 1308 * This is, among the runqueues where the current tasks 1309 * have later deadlines than the task's one, the rq 1310 * with the latest possible one. 1311 * 1312 * Now we check how well this matches with task's 1313 * affinity and system topology. 1314 * 1315 * The last cpu where the task run is our first 1316 * guess, since it is most likely cache-hot there. 1317 */ 1318 if (cpumask_test_cpu(cpu, later_mask)) 1319 return cpu; 1320 /* 1321 * Check if this_cpu is to be skipped (i.e., it is 1322 * not in the mask) or not. 1323 */ 1324 if (!cpumask_test_cpu(this_cpu, later_mask)) 1325 this_cpu = -1; 1326 1327 rcu_read_lock(); 1328 for_each_domain(cpu, sd) { 1329 if (sd->flags & SD_WAKE_AFFINE) { 1330 1331 /* 1332 * If possible, preempting this_cpu is 1333 * cheaper than migrating. 1334 */ 1335 if (this_cpu != -1 && 1336 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1337 rcu_read_unlock(); 1338 return this_cpu; 1339 } 1340 1341 /* 1342 * Last chance: if best_cpu is valid and is 1343 * in the mask, that becomes our choice. 1344 */ 1345 if (best_cpu < nr_cpu_ids && 1346 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) { 1347 rcu_read_unlock(); 1348 return best_cpu; 1349 } 1350 } 1351 } 1352 rcu_read_unlock(); 1353 1354 /* 1355 * At this point, all our guesses failed, we just return 1356 * 'something', and let the caller sort the things out. 1357 */ 1358 if (this_cpu != -1) 1359 return this_cpu; 1360 1361 cpu = cpumask_any(later_mask); 1362 if (cpu < nr_cpu_ids) 1363 return cpu; 1364 1365 return -1; 1366 } 1367 1368 /* Locks the rq it finds */ 1369 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 1370 { 1371 struct rq *later_rq = NULL; 1372 int tries; 1373 int cpu; 1374 1375 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 1376 cpu = find_later_rq(task); 1377 1378 if ((cpu == -1) || (cpu == rq->cpu)) 1379 break; 1380 1381 later_rq = cpu_rq(cpu); 1382 1383 if (later_rq->dl.dl_nr_running && 1384 !dl_time_before(task->dl.deadline, 1385 later_rq->dl.earliest_dl.curr)) { 1386 /* 1387 * Target rq has tasks of equal or earlier deadline, 1388 * retrying does not release any lock and is unlikely 1389 * to yield a different result. 1390 */ 1391 later_rq = NULL; 1392 break; 1393 } 1394 1395 /* Retry if something changed. */ 1396 if (double_lock_balance(rq, later_rq)) { 1397 if (unlikely(task_rq(task) != rq || 1398 !cpumask_test_cpu(later_rq->cpu, 1399 tsk_cpus_allowed(task)) || 1400 task_running(rq, task) || 1401 !dl_task(task) || 1402 !task_on_rq_queued(task))) { 1403 double_unlock_balance(rq, later_rq); 1404 later_rq = NULL; 1405 break; 1406 } 1407 } 1408 1409 /* 1410 * If the rq we found has no -deadline task, or 1411 * its earliest one has a later deadline than our 1412 * task, the rq is a good one. 1413 */ 1414 if (!later_rq->dl.dl_nr_running || 1415 dl_time_before(task->dl.deadline, 1416 later_rq->dl.earliest_dl.curr)) 1417 break; 1418 1419 /* Otherwise we try again. */ 1420 double_unlock_balance(rq, later_rq); 1421 later_rq = NULL; 1422 } 1423 1424 return later_rq; 1425 } 1426 1427 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 1428 { 1429 struct task_struct *p; 1430 1431 if (!has_pushable_dl_tasks(rq)) 1432 return NULL; 1433 1434 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost, 1435 struct task_struct, pushable_dl_tasks); 1436 1437 BUG_ON(rq->cpu != task_cpu(p)); 1438 BUG_ON(task_current(rq, p)); 1439 BUG_ON(tsk_nr_cpus_allowed(p) <= 1); 1440 1441 BUG_ON(!task_on_rq_queued(p)); 1442 BUG_ON(!dl_task(p)); 1443 1444 return p; 1445 } 1446 1447 /* 1448 * See if the non running -deadline tasks on this rq 1449 * can be sent to some other CPU where they can preempt 1450 * and start executing. 1451 */ 1452 static int push_dl_task(struct rq *rq) 1453 { 1454 struct task_struct *next_task; 1455 struct rq *later_rq; 1456 int ret = 0; 1457 1458 if (!rq->dl.overloaded) 1459 return 0; 1460 1461 next_task = pick_next_pushable_dl_task(rq); 1462 if (!next_task) 1463 return 0; 1464 1465 retry: 1466 if (unlikely(next_task == rq->curr)) { 1467 WARN_ON(1); 1468 return 0; 1469 } 1470 1471 /* 1472 * If next_task preempts rq->curr, and rq->curr 1473 * can move away, it makes sense to just reschedule 1474 * without going further in pushing next_task. 1475 */ 1476 if (dl_task(rq->curr) && 1477 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && 1478 tsk_nr_cpus_allowed(rq->curr) > 1) { 1479 resched_curr(rq); 1480 return 0; 1481 } 1482 1483 /* We might release rq lock */ 1484 get_task_struct(next_task); 1485 1486 /* Will lock the rq it'll find */ 1487 later_rq = find_lock_later_rq(next_task, rq); 1488 if (!later_rq) { 1489 struct task_struct *task; 1490 1491 /* 1492 * We must check all this again, since 1493 * find_lock_later_rq releases rq->lock and it is 1494 * then possible that next_task has migrated. 1495 */ 1496 task = pick_next_pushable_dl_task(rq); 1497 if (task_cpu(next_task) == rq->cpu && task == next_task) { 1498 /* 1499 * The task is still there. We don't try 1500 * again, some other cpu will pull it when ready. 1501 */ 1502 goto out; 1503 } 1504 1505 if (!task) 1506 /* No more tasks */ 1507 goto out; 1508 1509 put_task_struct(next_task); 1510 next_task = task; 1511 goto retry; 1512 } 1513 1514 deactivate_task(rq, next_task, 0); 1515 set_task_cpu(next_task, later_rq->cpu); 1516 activate_task(later_rq, next_task, 0); 1517 ret = 1; 1518 1519 resched_curr(later_rq); 1520 1521 double_unlock_balance(rq, later_rq); 1522 1523 out: 1524 put_task_struct(next_task); 1525 1526 return ret; 1527 } 1528 1529 static void push_dl_tasks(struct rq *rq) 1530 { 1531 /* push_dl_task() will return true if it moved a -deadline task */ 1532 while (push_dl_task(rq)) 1533 ; 1534 } 1535 1536 static void pull_dl_task(struct rq *this_rq) 1537 { 1538 int this_cpu = this_rq->cpu, cpu; 1539 struct task_struct *p; 1540 bool resched = false; 1541 struct rq *src_rq; 1542 u64 dmin = LONG_MAX; 1543 1544 if (likely(!dl_overloaded(this_rq))) 1545 return; 1546 1547 /* 1548 * Match the barrier from dl_set_overloaded; this guarantees that if we 1549 * see overloaded we must also see the dlo_mask bit. 1550 */ 1551 smp_rmb(); 1552 1553 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 1554 if (this_cpu == cpu) 1555 continue; 1556 1557 src_rq = cpu_rq(cpu); 1558 1559 /* 1560 * It looks racy, abd it is! However, as in sched_rt.c, 1561 * we are fine with this. 1562 */ 1563 if (this_rq->dl.dl_nr_running && 1564 dl_time_before(this_rq->dl.earliest_dl.curr, 1565 src_rq->dl.earliest_dl.next)) 1566 continue; 1567 1568 /* Might drop this_rq->lock */ 1569 double_lock_balance(this_rq, src_rq); 1570 1571 /* 1572 * If there are no more pullable tasks on the 1573 * rq, we're done with it. 1574 */ 1575 if (src_rq->dl.dl_nr_running <= 1) 1576 goto skip; 1577 1578 p = pick_earliest_pushable_dl_task(src_rq, this_cpu); 1579 1580 /* 1581 * We found a task to be pulled if: 1582 * - it preempts our current (if there's one), 1583 * - it will preempt the last one we pulled (if any). 1584 */ 1585 if (p && dl_time_before(p->dl.deadline, dmin) && 1586 (!this_rq->dl.dl_nr_running || 1587 dl_time_before(p->dl.deadline, 1588 this_rq->dl.earliest_dl.curr))) { 1589 WARN_ON(p == src_rq->curr); 1590 WARN_ON(!task_on_rq_queued(p)); 1591 1592 /* 1593 * Then we pull iff p has actually an earlier 1594 * deadline than the current task of its runqueue. 1595 */ 1596 if (dl_time_before(p->dl.deadline, 1597 src_rq->curr->dl.deadline)) 1598 goto skip; 1599 1600 resched = true; 1601 1602 deactivate_task(src_rq, p, 0); 1603 set_task_cpu(p, this_cpu); 1604 activate_task(this_rq, p, 0); 1605 dmin = p->dl.deadline; 1606 1607 /* Is there any other task even earlier? */ 1608 } 1609 skip: 1610 double_unlock_balance(this_rq, src_rq); 1611 } 1612 1613 if (resched) 1614 resched_curr(this_rq); 1615 } 1616 1617 /* 1618 * Since the task is not running and a reschedule is not going to happen 1619 * anytime soon on its runqueue, we try pushing it away now. 1620 */ 1621 static void task_woken_dl(struct rq *rq, struct task_struct *p) 1622 { 1623 if (!task_running(rq, p) && 1624 !test_tsk_need_resched(rq->curr) && 1625 tsk_nr_cpus_allowed(p) > 1 && 1626 dl_task(rq->curr) && 1627 (tsk_nr_cpus_allowed(rq->curr) < 2 || 1628 !dl_entity_preempt(&p->dl, &rq->curr->dl))) { 1629 push_dl_tasks(rq); 1630 } 1631 } 1632 1633 static void set_cpus_allowed_dl(struct task_struct *p, 1634 const struct cpumask *new_mask) 1635 { 1636 struct root_domain *src_rd; 1637 struct rq *rq; 1638 1639 BUG_ON(!dl_task(p)); 1640 1641 rq = task_rq(p); 1642 src_rd = rq->rd; 1643 /* 1644 * Migrating a SCHED_DEADLINE task between exclusive 1645 * cpusets (different root_domains) entails a bandwidth 1646 * update. We already made space for us in the destination 1647 * domain (see cpuset_can_attach()). 1648 */ 1649 if (!cpumask_intersects(src_rd->span, new_mask)) { 1650 struct dl_bw *src_dl_b; 1651 1652 src_dl_b = dl_bw_of(cpu_of(rq)); 1653 /* 1654 * We now free resources of the root_domain we are migrating 1655 * off. In the worst case, sched_setattr() may temporary fail 1656 * until we complete the update. 1657 */ 1658 raw_spin_lock(&src_dl_b->lock); 1659 __dl_clear(src_dl_b, p->dl.dl_bw); 1660 raw_spin_unlock(&src_dl_b->lock); 1661 } 1662 1663 set_cpus_allowed_common(p, new_mask); 1664 } 1665 1666 /* Assumes rq->lock is held */ 1667 static void rq_online_dl(struct rq *rq) 1668 { 1669 if (rq->dl.overloaded) 1670 dl_set_overload(rq); 1671 1672 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu); 1673 if (rq->dl.dl_nr_running > 0) 1674 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1); 1675 } 1676 1677 /* Assumes rq->lock is held */ 1678 static void rq_offline_dl(struct rq *rq) 1679 { 1680 if (rq->dl.overloaded) 1681 dl_clear_overload(rq); 1682 1683 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); 1684 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu); 1685 } 1686 1687 void __init init_sched_dl_class(void) 1688 { 1689 unsigned int i; 1690 1691 for_each_possible_cpu(i) 1692 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 1693 GFP_KERNEL, cpu_to_node(i)); 1694 } 1695 1696 #endif /* CONFIG_SMP */ 1697 1698 static void switched_from_dl(struct rq *rq, struct task_struct *p) 1699 { 1700 /* 1701 * Start the deadline timer; if we switch back to dl before this we'll 1702 * continue consuming our current CBS slice. If we stay outside of 1703 * SCHED_DEADLINE until the deadline passes, the timer will reset the 1704 * task. 1705 */ 1706 if (!start_dl_timer(p)) 1707 __dl_clear_params(p); 1708 1709 /* 1710 * Since this might be the only -deadline task on the rq, 1711 * this is the right place to try to pull some other one 1712 * from an overloaded cpu, if any. 1713 */ 1714 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 1715 return; 1716 1717 queue_pull_task(rq); 1718 } 1719 1720 /* 1721 * When switching to -deadline, we may overload the rq, then 1722 * we try to push someone off, if possible. 1723 */ 1724 static void switched_to_dl(struct rq *rq, struct task_struct *p) 1725 { 1726 if (dl_time_before(p->dl.deadline, rq_clock(rq))) 1727 setup_new_dl_entity(&p->dl, &p->dl); 1728 1729 if (task_on_rq_queued(p) && rq->curr != p) { 1730 #ifdef CONFIG_SMP 1731 if (tsk_nr_cpus_allowed(p) > 1 && rq->dl.overloaded) 1732 queue_push_tasks(rq); 1733 #else 1734 if (dl_task(rq->curr)) 1735 check_preempt_curr_dl(rq, p, 0); 1736 else 1737 resched_curr(rq); 1738 #endif 1739 } 1740 } 1741 1742 /* 1743 * If the scheduling parameters of a -deadline task changed, 1744 * a push or pull operation might be needed. 1745 */ 1746 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 1747 int oldprio) 1748 { 1749 if (task_on_rq_queued(p) || rq->curr == p) { 1750 #ifdef CONFIG_SMP 1751 /* 1752 * This might be too much, but unfortunately 1753 * we don't have the old deadline value, and 1754 * we can't argue if the task is increasing 1755 * or lowering its prio, so... 1756 */ 1757 if (!rq->dl.overloaded) 1758 queue_pull_task(rq); 1759 1760 /* 1761 * If we now have a earlier deadline task than p, 1762 * then reschedule, provided p is still on this 1763 * runqueue. 1764 */ 1765 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) 1766 resched_curr(rq); 1767 #else 1768 /* 1769 * Again, we don't know if p has a earlier 1770 * or later deadline, so let's blindly set a 1771 * (maybe not needed) rescheduling point. 1772 */ 1773 resched_curr(rq); 1774 #endif /* CONFIG_SMP */ 1775 } 1776 } 1777 1778 const struct sched_class dl_sched_class = { 1779 .next = &rt_sched_class, 1780 .enqueue_task = enqueue_task_dl, 1781 .dequeue_task = dequeue_task_dl, 1782 .yield_task = yield_task_dl, 1783 1784 .check_preempt_curr = check_preempt_curr_dl, 1785 1786 .pick_next_task = pick_next_task_dl, 1787 .put_prev_task = put_prev_task_dl, 1788 1789 #ifdef CONFIG_SMP 1790 .select_task_rq = select_task_rq_dl, 1791 .set_cpus_allowed = set_cpus_allowed_dl, 1792 .rq_online = rq_online_dl, 1793 .rq_offline = rq_offline_dl, 1794 .task_woken = task_woken_dl, 1795 #endif 1796 1797 .set_curr_task = set_curr_task_dl, 1798 .task_tick = task_tick_dl, 1799 .task_fork = task_fork_dl, 1800 .task_dead = task_dead_dl, 1801 1802 .prio_changed = prio_changed_dl, 1803 .switched_from = switched_from_dl, 1804 .switched_to = switched_to_dl, 1805 1806 .update_curr = update_curr_dl, 1807 }; 1808 1809 #ifdef CONFIG_SCHED_DEBUG 1810 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 1811 1812 void print_dl_stats(struct seq_file *m, int cpu) 1813 { 1814 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 1815 } 1816 #endif /* CONFIG_SCHED_DEBUG */ 1817