1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Deadline Scheduling Class (SCHED_DEADLINE) 4 * 5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). 6 * 7 * Tasks that periodically executes their instances for less than their 8 * runtime won't miss any of their deadlines. 9 * Tasks that are not periodic or sporadic or that tries to execute more 10 * than their reserved bandwidth will be slowed down (and may potentially 11 * miss some of their deadlines), and won't affect any other task. 12 * 13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, 14 * Juri Lelli <juri.lelli@gmail.com>, 15 * Michael Trimarchi <michael@amarulasolutions.com>, 16 * Fabio Checconi <fchecconi@gmail.com> 17 */ 18 #include "sched.h" 19 20 struct dl_bandwidth def_dl_bandwidth; 21 22 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) 23 { 24 return container_of(dl_se, struct task_struct, dl); 25 } 26 27 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) 28 { 29 return container_of(dl_rq, struct rq, dl); 30 } 31 32 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) 33 { 34 struct task_struct *p = dl_task_of(dl_se); 35 struct rq *rq = task_rq(p); 36 37 return &rq->dl; 38 } 39 40 static inline int on_dl_rq(struct sched_dl_entity *dl_se) 41 { 42 return !RB_EMPTY_NODE(&dl_se->rb_node); 43 } 44 45 #ifdef CONFIG_SMP 46 static inline struct dl_bw *dl_bw_of(int i) 47 { 48 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 49 "sched RCU must be held"); 50 return &cpu_rq(i)->rd->dl_bw; 51 } 52 53 static inline int dl_bw_cpus(int i) 54 { 55 struct root_domain *rd = cpu_rq(i)->rd; 56 int cpus = 0; 57 58 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 59 "sched RCU must be held"); 60 for_each_cpu_and(i, rd->span, cpu_active_mask) 61 cpus++; 62 63 return cpus; 64 } 65 #else 66 static inline struct dl_bw *dl_bw_of(int i) 67 { 68 return &cpu_rq(i)->dl.dl_bw; 69 } 70 71 static inline int dl_bw_cpus(int i) 72 { 73 return 1; 74 } 75 #endif 76 77 static inline 78 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 79 { 80 u64 old = dl_rq->running_bw; 81 82 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 83 dl_rq->running_bw += dl_bw; 84 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */ 85 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 86 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 87 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 88 } 89 90 static inline 91 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq) 92 { 93 u64 old = dl_rq->running_bw; 94 95 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 96 dl_rq->running_bw -= dl_bw; 97 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */ 98 if (dl_rq->running_bw > old) 99 dl_rq->running_bw = 0; 100 /* kick cpufreq (see the comment in kernel/sched/sched.h). */ 101 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0); 102 } 103 104 static inline 105 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 106 { 107 u64 old = dl_rq->this_bw; 108 109 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 110 dl_rq->this_bw += dl_bw; 111 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */ 112 } 113 114 static inline 115 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq) 116 { 117 u64 old = dl_rq->this_bw; 118 119 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock); 120 dl_rq->this_bw -= dl_bw; 121 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */ 122 if (dl_rq->this_bw > old) 123 dl_rq->this_bw = 0; 124 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw); 125 } 126 127 static inline 128 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 129 { 130 if (!dl_entity_is_special(dl_se)) 131 __add_rq_bw(dl_se->dl_bw, dl_rq); 132 } 133 134 static inline 135 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 136 { 137 if (!dl_entity_is_special(dl_se)) 138 __sub_rq_bw(dl_se->dl_bw, dl_rq); 139 } 140 141 static inline 142 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 143 { 144 if (!dl_entity_is_special(dl_se)) 145 __add_running_bw(dl_se->dl_bw, dl_rq); 146 } 147 148 static inline 149 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 150 { 151 if (!dl_entity_is_special(dl_se)) 152 __sub_running_bw(dl_se->dl_bw, dl_rq); 153 } 154 155 void dl_change_utilization(struct task_struct *p, u64 new_bw) 156 { 157 struct rq *rq; 158 159 BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV); 160 161 if (task_on_rq_queued(p)) 162 return; 163 164 rq = task_rq(p); 165 if (p->dl.dl_non_contending) { 166 sub_running_bw(&p->dl, &rq->dl); 167 p->dl.dl_non_contending = 0; 168 /* 169 * If the timer handler is currently running and the 170 * timer cannot be cancelled, inactive_task_timer() 171 * will see that dl_not_contending is not set, and 172 * will not touch the rq's active utilization, 173 * so we are still safe. 174 */ 175 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 176 put_task_struct(p); 177 } 178 __sub_rq_bw(p->dl.dl_bw, &rq->dl); 179 __add_rq_bw(new_bw, &rq->dl); 180 } 181 182 /* 183 * The utilization of a task cannot be immediately removed from 184 * the rq active utilization (running_bw) when the task blocks. 185 * Instead, we have to wait for the so called "0-lag time". 186 * 187 * If a task blocks before the "0-lag time", a timer (the inactive 188 * timer) is armed, and running_bw is decreased when the timer 189 * fires. 190 * 191 * If the task wakes up again before the inactive timer fires, 192 * the timer is cancelled, whereas if the task wakes up after the 193 * inactive timer fired (and running_bw has been decreased) the 194 * task's utilization has to be added to running_bw again. 195 * A flag in the deadline scheduling entity (dl_non_contending) 196 * is used to avoid race conditions between the inactive timer handler 197 * and task wakeups. 198 * 199 * The following diagram shows how running_bw is updated. A task is 200 * "ACTIVE" when its utilization contributes to running_bw; an 201 * "ACTIVE contending" task is in the TASK_RUNNING state, while an 202 * "ACTIVE non contending" task is a blocked task for which the "0-lag time" 203 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag" 204 * time already passed, which does not contribute to running_bw anymore. 205 * +------------------+ 206 * wakeup | ACTIVE | 207 * +------------------>+ contending | 208 * | add_running_bw | | 209 * | +----+------+------+ 210 * | | ^ 211 * | dequeue | | 212 * +--------+-------+ | | 213 * | | t >= 0-lag | | wakeup 214 * | INACTIVE |<---------------+ | 215 * | | sub_running_bw | | 216 * +--------+-------+ | | 217 * ^ | | 218 * | t < 0-lag | | 219 * | | | 220 * | V | 221 * | +----+------+------+ 222 * | sub_running_bw | ACTIVE | 223 * +-------------------+ | 224 * inactive timer | non contending | 225 * fired +------------------+ 226 * 227 * The task_non_contending() function is invoked when a task 228 * blocks, and checks if the 0-lag time already passed or 229 * not (in the first case, it directly updates running_bw; 230 * in the second case, it arms the inactive timer). 231 * 232 * The task_contending() function is invoked when a task wakes 233 * up, and checks if the task is still in the "ACTIVE non contending" 234 * state or not (in the second case, it updates running_bw). 235 */ 236 static void task_non_contending(struct task_struct *p) 237 { 238 struct sched_dl_entity *dl_se = &p->dl; 239 struct hrtimer *timer = &dl_se->inactive_timer; 240 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 241 struct rq *rq = rq_of_dl_rq(dl_rq); 242 s64 zerolag_time; 243 244 /* 245 * If this is a non-deadline task that has been boosted, 246 * do nothing 247 */ 248 if (dl_se->dl_runtime == 0) 249 return; 250 251 if (dl_entity_is_special(dl_se)) 252 return; 253 254 WARN_ON(hrtimer_active(&dl_se->inactive_timer)); 255 WARN_ON(dl_se->dl_non_contending); 256 257 zerolag_time = dl_se->deadline - 258 div64_long((dl_se->runtime * dl_se->dl_period), 259 dl_se->dl_runtime); 260 261 /* 262 * Using relative times instead of the absolute "0-lag time" 263 * allows to simplify the code 264 */ 265 zerolag_time -= rq_clock(rq); 266 267 /* 268 * If the "0-lag time" already passed, decrease the active 269 * utilization now, instead of starting a timer 270 */ 271 if (zerolag_time < 0) { 272 if (dl_task(p)) 273 sub_running_bw(dl_se, dl_rq); 274 if (!dl_task(p) || p->state == TASK_DEAD) { 275 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 276 277 if (p->state == TASK_DEAD) 278 sub_rq_bw(&p->dl, &rq->dl); 279 raw_spin_lock(&dl_b->lock); 280 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 281 __dl_clear_params(p); 282 raw_spin_unlock(&dl_b->lock); 283 } 284 285 return; 286 } 287 288 dl_se->dl_non_contending = 1; 289 get_task_struct(p); 290 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL); 291 } 292 293 static void task_contending(struct sched_dl_entity *dl_se, int flags) 294 { 295 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 296 297 /* 298 * If this is a non-deadline task that has been boosted, 299 * do nothing 300 */ 301 if (dl_se->dl_runtime == 0) 302 return; 303 304 if (flags & ENQUEUE_MIGRATED) 305 add_rq_bw(dl_se, dl_rq); 306 307 if (dl_se->dl_non_contending) { 308 dl_se->dl_non_contending = 0; 309 /* 310 * If the timer handler is currently running and the 311 * timer cannot be cancelled, inactive_task_timer() 312 * will see that dl_not_contending is not set, and 313 * will not touch the rq's active utilization, 314 * so we are still safe. 315 */ 316 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) 317 put_task_struct(dl_task_of(dl_se)); 318 } else { 319 /* 320 * Since "dl_non_contending" is not set, the 321 * task's utilization has already been removed from 322 * active utilization (either when the task blocked, 323 * when the "inactive timer" fired). 324 * So, add it back. 325 */ 326 add_running_bw(dl_se, dl_rq); 327 } 328 } 329 330 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) 331 { 332 struct sched_dl_entity *dl_se = &p->dl; 333 334 return dl_rq->root.rb_leftmost == &dl_se->rb_node; 335 } 336 337 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) 338 { 339 raw_spin_lock_init(&dl_b->dl_runtime_lock); 340 dl_b->dl_period = period; 341 dl_b->dl_runtime = runtime; 342 } 343 344 void init_dl_bw(struct dl_bw *dl_b) 345 { 346 raw_spin_lock_init(&dl_b->lock); 347 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock); 348 if (global_rt_runtime() == RUNTIME_INF) 349 dl_b->bw = -1; 350 else 351 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); 352 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock); 353 dl_b->total_bw = 0; 354 } 355 356 void init_dl_rq(struct dl_rq *dl_rq) 357 { 358 dl_rq->root = RB_ROOT_CACHED; 359 360 #ifdef CONFIG_SMP 361 /* zero means no -deadline tasks */ 362 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; 363 364 dl_rq->dl_nr_migratory = 0; 365 dl_rq->overloaded = 0; 366 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED; 367 #else 368 init_dl_bw(&dl_rq->dl_bw); 369 #endif 370 371 dl_rq->running_bw = 0; 372 dl_rq->this_bw = 0; 373 init_dl_rq_bw_ratio(dl_rq); 374 } 375 376 #ifdef CONFIG_SMP 377 378 static inline int dl_overloaded(struct rq *rq) 379 { 380 return atomic_read(&rq->rd->dlo_count); 381 } 382 383 static inline void dl_set_overload(struct rq *rq) 384 { 385 if (!rq->online) 386 return; 387 388 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); 389 /* 390 * Must be visible before the overload count is 391 * set (as in sched_rt.c). 392 * 393 * Matched by the barrier in pull_dl_task(). 394 */ 395 smp_wmb(); 396 atomic_inc(&rq->rd->dlo_count); 397 } 398 399 static inline void dl_clear_overload(struct rq *rq) 400 { 401 if (!rq->online) 402 return; 403 404 atomic_dec(&rq->rd->dlo_count); 405 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); 406 } 407 408 static void update_dl_migration(struct dl_rq *dl_rq) 409 { 410 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) { 411 if (!dl_rq->overloaded) { 412 dl_set_overload(rq_of_dl_rq(dl_rq)); 413 dl_rq->overloaded = 1; 414 } 415 } else if (dl_rq->overloaded) { 416 dl_clear_overload(rq_of_dl_rq(dl_rq)); 417 dl_rq->overloaded = 0; 418 } 419 } 420 421 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 422 { 423 struct task_struct *p = dl_task_of(dl_se); 424 425 if (p->nr_cpus_allowed > 1) 426 dl_rq->dl_nr_migratory++; 427 428 update_dl_migration(dl_rq); 429 } 430 431 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 432 { 433 struct task_struct *p = dl_task_of(dl_se); 434 435 if (p->nr_cpus_allowed > 1) 436 dl_rq->dl_nr_migratory--; 437 438 update_dl_migration(dl_rq); 439 } 440 441 /* 442 * The list of pushable -deadline task is not a plist, like in 443 * sched_rt.c, it is an rb-tree with tasks ordered by deadline. 444 */ 445 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 446 { 447 struct dl_rq *dl_rq = &rq->dl; 448 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node; 449 struct rb_node *parent = NULL; 450 struct task_struct *entry; 451 bool leftmost = true; 452 453 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); 454 455 while (*link) { 456 parent = *link; 457 entry = rb_entry(parent, struct task_struct, 458 pushable_dl_tasks); 459 if (dl_entity_preempt(&p->dl, &entry->dl)) 460 link = &parent->rb_left; 461 else { 462 link = &parent->rb_right; 463 leftmost = false; 464 } 465 } 466 467 if (leftmost) 468 dl_rq->earliest_dl.next = p->dl.deadline; 469 470 rb_link_node(&p->pushable_dl_tasks, parent, link); 471 rb_insert_color_cached(&p->pushable_dl_tasks, 472 &dl_rq->pushable_dl_tasks_root, leftmost); 473 } 474 475 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 476 { 477 struct dl_rq *dl_rq = &rq->dl; 478 479 if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) 480 return; 481 482 if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) { 483 struct rb_node *next_node; 484 485 next_node = rb_next(&p->pushable_dl_tasks); 486 if (next_node) { 487 dl_rq->earliest_dl.next = rb_entry(next_node, 488 struct task_struct, pushable_dl_tasks)->dl.deadline; 489 } 490 } 491 492 rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); 493 RB_CLEAR_NODE(&p->pushable_dl_tasks); 494 } 495 496 static inline int has_pushable_dl_tasks(struct rq *rq) 497 { 498 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root); 499 } 500 501 static int push_dl_task(struct rq *rq); 502 503 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 504 { 505 return dl_task(prev); 506 } 507 508 static DEFINE_PER_CPU(struct callback_head, dl_push_head); 509 static DEFINE_PER_CPU(struct callback_head, dl_pull_head); 510 511 static void push_dl_tasks(struct rq *); 512 static void pull_dl_task(struct rq *); 513 514 static inline void deadline_queue_push_tasks(struct rq *rq) 515 { 516 if (!has_pushable_dl_tasks(rq)) 517 return; 518 519 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks); 520 } 521 522 static inline void deadline_queue_pull_task(struct rq *rq) 523 { 524 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task); 525 } 526 527 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq); 528 529 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p) 530 { 531 struct rq *later_rq = NULL; 532 533 later_rq = find_lock_later_rq(p, rq); 534 if (!later_rq) { 535 int cpu; 536 537 /* 538 * If we cannot preempt any rq, fall back to pick any 539 * online CPU: 540 */ 541 cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed); 542 if (cpu >= nr_cpu_ids) { 543 /* 544 * Failed to find any suitable CPU. 545 * The task will never come back! 546 */ 547 BUG_ON(dl_bandwidth_enabled()); 548 549 /* 550 * If admission control is disabled we 551 * try a little harder to let the task 552 * run. 553 */ 554 cpu = cpumask_any(cpu_active_mask); 555 } 556 later_rq = cpu_rq(cpu); 557 double_lock_balance(rq, later_rq); 558 } 559 560 set_task_cpu(p, later_rq->cpu); 561 double_unlock_balance(later_rq, rq); 562 563 return later_rq; 564 } 565 566 #else 567 568 static inline 569 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) 570 { 571 } 572 573 static inline 574 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) 575 { 576 } 577 578 static inline 579 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 580 { 581 } 582 583 static inline 584 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 585 { 586 } 587 588 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev) 589 { 590 return false; 591 } 592 593 static inline void pull_dl_task(struct rq *rq) 594 { 595 } 596 597 static inline void deadline_queue_push_tasks(struct rq *rq) 598 { 599 } 600 601 static inline void deadline_queue_pull_task(struct rq *rq) 602 { 603 } 604 #endif /* CONFIG_SMP */ 605 606 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); 607 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); 608 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags); 609 610 /* 611 * We are being explicitly informed that a new instance is starting, 612 * and this means that: 613 * - the absolute deadline of the entity has to be placed at 614 * current time + relative deadline; 615 * - the runtime of the entity has to be set to the maximum value. 616 * 617 * The capability of specifying such event is useful whenever a -deadline 618 * entity wants to (try to!) synchronize its behaviour with the scheduler's 619 * one, and to (try to!) reconcile itself with its own scheduling 620 * parameters. 621 */ 622 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) 623 { 624 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 625 struct rq *rq = rq_of_dl_rq(dl_rq); 626 627 WARN_ON(dl_se->dl_boosted); 628 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); 629 630 /* 631 * We are racing with the deadline timer. So, do nothing because 632 * the deadline timer handler will take care of properly recharging 633 * the runtime and postponing the deadline 634 */ 635 if (dl_se->dl_throttled) 636 return; 637 638 /* 639 * We use the regular wall clock time to set deadlines in the 640 * future; in fact, we must consider execution overheads (time 641 * spent on hardirq context, etc.). 642 */ 643 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline; 644 dl_se->runtime = dl_se->dl_runtime; 645 } 646 647 /* 648 * Pure Earliest Deadline First (EDF) scheduling does not deal with the 649 * possibility of a entity lasting more than what it declared, and thus 650 * exhausting its runtime. 651 * 652 * Here we are interested in making runtime overrun possible, but we do 653 * not want a entity which is misbehaving to affect the scheduling of all 654 * other entities. 655 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) 656 * is used, in order to confine each entity within its own bandwidth. 657 * 658 * This function deals exactly with that, and ensures that when the runtime 659 * of a entity is replenished, its deadline is also postponed. That ensures 660 * the overrunning entity can't interfere with other entity in the system and 661 * can't make them miss their deadlines. Reasons why this kind of overruns 662 * could happen are, typically, a entity voluntarily trying to overcome its 663 * runtime, or it just underestimated it during sched_setattr(). 664 */ 665 static void replenish_dl_entity(struct sched_dl_entity *dl_se, 666 struct sched_dl_entity *pi_se) 667 { 668 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 669 struct rq *rq = rq_of_dl_rq(dl_rq); 670 671 BUG_ON(pi_se->dl_runtime <= 0); 672 673 /* 674 * This could be the case for a !-dl task that is boosted. 675 * Just go with full inherited parameters. 676 */ 677 if (dl_se->dl_deadline == 0) { 678 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 679 dl_se->runtime = pi_se->dl_runtime; 680 } 681 682 if (dl_se->dl_yielded && dl_se->runtime > 0) 683 dl_se->runtime = 0; 684 685 /* 686 * We keep moving the deadline away until we get some 687 * available runtime for the entity. This ensures correct 688 * handling of situations where the runtime overrun is 689 * arbitrary large. 690 */ 691 while (dl_se->runtime <= 0) { 692 dl_se->deadline += pi_se->dl_period; 693 dl_se->runtime += pi_se->dl_runtime; 694 } 695 696 /* 697 * At this point, the deadline really should be "in 698 * the future" with respect to rq->clock. If it's 699 * not, we are, for some reason, lagging too much! 700 * Anyway, after having warn userspace abut that, 701 * we still try to keep the things running by 702 * resetting the deadline and the budget of the 703 * entity. 704 */ 705 if (dl_time_before(dl_se->deadline, rq_clock(rq))) { 706 printk_deferred_once("sched: DL replenish lagged too much\n"); 707 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 708 dl_se->runtime = pi_se->dl_runtime; 709 } 710 711 if (dl_se->dl_yielded) 712 dl_se->dl_yielded = 0; 713 if (dl_se->dl_throttled) 714 dl_se->dl_throttled = 0; 715 } 716 717 /* 718 * Here we check if --at time t-- an entity (which is probably being 719 * [re]activated or, in general, enqueued) can use its remaining runtime 720 * and its current deadline _without_ exceeding the bandwidth it is 721 * assigned (function returns true if it can't). We are in fact applying 722 * one of the CBS rules: when a task wakes up, if the residual runtime 723 * over residual deadline fits within the allocated bandwidth, then we 724 * can keep the current (absolute) deadline and residual budget without 725 * disrupting the schedulability of the system. Otherwise, we should 726 * refill the runtime and set the deadline a period in the future, 727 * because keeping the current (absolute) deadline of the task would 728 * result in breaking guarantees promised to other tasks (refer to 729 * Documentation/scheduler/sched-deadline.txt for more informations). 730 * 731 * This function returns true if: 732 * 733 * runtime / (deadline - t) > dl_runtime / dl_deadline , 734 * 735 * IOW we can't recycle current parameters. 736 * 737 * Notice that the bandwidth check is done against the deadline. For 738 * task with deadline equal to period this is the same of using 739 * dl_period instead of dl_deadline in the equation above. 740 */ 741 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, 742 struct sched_dl_entity *pi_se, u64 t) 743 { 744 u64 left, right; 745 746 /* 747 * left and right are the two sides of the equation above, 748 * after a bit of shuffling to use multiplications instead 749 * of divisions. 750 * 751 * Note that none of the time values involved in the two 752 * multiplications are absolute: dl_deadline and dl_runtime 753 * are the relative deadline and the maximum runtime of each 754 * instance, runtime is the runtime left for the last instance 755 * and (deadline - t), since t is rq->clock, is the time left 756 * to the (absolute) deadline. Even if overflowing the u64 type 757 * is very unlikely to occur in both cases, here we scale down 758 * as we want to avoid that risk at all. Scaling down by 10 759 * means that we reduce granularity to 1us. We are fine with it, 760 * since this is only a true/false check and, anyway, thinking 761 * of anything below microseconds resolution is actually fiction 762 * (but still we want to give the user that illusion >;). 763 */ 764 left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); 765 right = ((dl_se->deadline - t) >> DL_SCALE) * 766 (pi_se->dl_runtime >> DL_SCALE); 767 768 return dl_time_before(right, left); 769 } 770 771 /* 772 * Revised wakeup rule [1]: For self-suspending tasks, rather then 773 * re-initializing task's runtime and deadline, the revised wakeup 774 * rule adjusts the task's runtime to avoid the task to overrun its 775 * density. 776 * 777 * Reasoning: a task may overrun the density if: 778 * runtime / (deadline - t) > dl_runtime / dl_deadline 779 * 780 * Therefore, runtime can be adjusted to: 781 * runtime = (dl_runtime / dl_deadline) * (deadline - t) 782 * 783 * In such way that runtime will be equal to the maximum density 784 * the task can use without breaking any rule. 785 * 786 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant 787 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24. 788 */ 789 static void 790 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq) 791 { 792 u64 laxity = dl_se->deadline - rq_clock(rq); 793 794 /* 795 * If the task has deadline < period, and the deadline is in the past, 796 * it should already be throttled before this check. 797 * 798 * See update_dl_entity() comments for further details. 799 */ 800 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq))); 801 802 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT; 803 } 804 805 /* 806 * Regarding the deadline, a task with implicit deadline has a relative 807 * deadline == relative period. A task with constrained deadline has a 808 * relative deadline <= relative period. 809 * 810 * We support constrained deadline tasks. However, there are some restrictions 811 * applied only for tasks which do not have an implicit deadline. See 812 * update_dl_entity() to know more about such restrictions. 813 * 814 * The dl_is_implicit() returns true if the task has an implicit deadline. 815 */ 816 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se) 817 { 818 return dl_se->dl_deadline == dl_se->dl_period; 819 } 820 821 /* 822 * When a deadline entity is placed in the runqueue, its runtime and deadline 823 * might need to be updated. This is done by a CBS wake up rule. There are two 824 * different rules: 1) the original CBS; and 2) the Revisited CBS. 825 * 826 * When the task is starting a new period, the Original CBS is used. In this 827 * case, the runtime is replenished and a new absolute deadline is set. 828 * 829 * When a task is queued before the begin of the next period, using the 830 * remaining runtime and deadline could make the entity to overflow, see 831 * dl_entity_overflow() to find more about runtime overflow. When such case 832 * is detected, the runtime and deadline need to be updated. 833 * 834 * If the task has an implicit deadline, i.e., deadline == period, the Original 835 * CBS is applied. the runtime is replenished and a new absolute deadline is 836 * set, as in the previous cases. 837 * 838 * However, the Original CBS does not work properly for tasks with 839 * deadline < period, which are said to have a constrained deadline. By 840 * applying the Original CBS, a constrained deadline task would be able to run 841 * runtime/deadline in a period. With deadline < period, the task would 842 * overrun the runtime/period allowed bandwidth, breaking the admission test. 843 * 844 * In order to prevent this misbehave, the Revisited CBS is used for 845 * constrained deadline tasks when a runtime overflow is detected. In the 846 * Revisited CBS, rather than replenishing & setting a new absolute deadline, 847 * the remaining runtime of the task is reduced to avoid runtime overflow. 848 * Please refer to the comments update_dl_revised_wakeup() function to find 849 * more about the Revised CBS rule. 850 */ 851 static void update_dl_entity(struct sched_dl_entity *dl_se, 852 struct sched_dl_entity *pi_se) 853 { 854 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 855 struct rq *rq = rq_of_dl_rq(dl_rq); 856 857 if (dl_time_before(dl_se->deadline, rq_clock(rq)) || 858 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) { 859 860 if (unlikely(!dl_is_implicit(dl_se) && 861 !dl_time_before(dl_se->deadline, rq_clock(rq)) && 862 !dl_se->dl_boosted)){ 863 update_dl_revised_wakeup(dl_se, rq); 864 return; 865 } 866 867 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; 868 dl_se->runtime = pi_se->dl_runtime; 869 } 870 } 871 872 static inline u64 dl_next_period(struct sched_dl_entity *dl_se) 873 { 874 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period; 875 } 876 877 /* 878 * If the entity depleted all its runtime, and if we want it to sleep 879 * while waiting for some new execution time to become available, we 880 * set the bandwidth replenishment timer to the replenishment instant 881 * and try to activate it. 882 * 883 * Notice that it is important for the caller to know if the timer 884 * actually started or not (i.e., the replenishment instant is in 885 * the future or in the past). 886 */ 887 static int start_dl_timer(struct task_struct *p) 888 { 889 struct sched_dl_entity *dl_se = &p->dl; 890 struct hrtimer *timer = &dl_se->dl_timer; 891 struct rq *rq = task_rq(p); 892 ktime_t now, act; 893 s64 delta; 894 895 lockdep_assert_held(&rq->lock); 896 897 /* 898 * We want the timer to fire at the deadline, but considering 899 * that it is actually coming from rq->clock and not from 900 * hrtimer's time base reading. 901 */ 902 act = ns_to_ktime(dl_next_period(dl_se)); 903 now = hrtimer_cb_get_time(timer); 904 delta = ktime_to_ns(now) - rq_clock(rq); 905 act = ktime_add_ns(act, delta); 906 907 /* 908 * If the expiry time already passed, e.g., because the value 909 * chosen as the deadline is too small, don't even try to 910 * start the timer in the past! 911 */ 912 if (ktime_us_delta(act, now) < 0) 913 return 0; 914 915 /* 916 * !enqueued will guarantee another callback; even if one is already in 917 * progress. This ensures a balanced {get,put}_task_struct(). 918 * 919 * The race against __run_timer() clearing the enqueued state is 920 * harmless because we're holding task_rq()->lock, therefore the timer 921 * expiring after we've done the check will wait on its task_rq_lock() 922 * and observe our state. 923 */ 924 if (!hrtimer_is_queued(timer)) { 925 get_task_struct(p); 926 hrtimer_start(timer, act, HRTIMER_MODE_ABS); 927 } 928 929 return 1; 930 } 931 932 /* 933 * This is the bandwidth enforcement timer callback. If here, we know 934 * a task is not on its dl_rq, since the fact that the timer was running 935 * means the task is throttled and needs a runtime replenishment. 936 * 937 * However, what we actually do depends on the fact the task is active, 938 * (it is on its rq) or has been removed from there by a call to 939 * dequeue_task_dl(). In the former case we must issue the runtime 940 * replenishment and add the task back to the dl_rq; in the latter, we just 941 * do nothing but clearing dl_throttled, so that runtime and deadline 942 * updating (and the queueing back to dl_rq) will be done by the 943 * next call to enqueue_task_dl(). 944 */ 945 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) 946 { 947 struct sched_dl_entity *dl_se = container_of(timer, 948 struct sched_dl_entity, 949 dl_timer); 950 struct task_struct *p = dl_task_of(dl_se); 951 struct rq_flags rf; 952 struct rq *rq; 953 954 rq = task_rq_lock(p, &rf); 955 956 /* 957 * The task might have changed its scheduling policy to something 958 * different than SCHED_DEADLINE (through switched_from_dl()). 959 */ 960 if (!dl_task(p)) 961 goto unlock; 962 963 /* 964 * The task might have been boosted by someone else and might be in the 965 * boosting/deboosting path, its not throttled. 966 */ 967 if (dl_se->dl_boosted) 968 goto unlock; 969 970 /* 971 * Spurious timer due to start_dl_timer() race; or we already received 972 * a replenishment from rt_mutex_setprio(). 973 */ 974 if (!dl_se->dl_throttled) 975 goto unlock; 976 977 sched_clock_tick(); 978 update_rq_clock(rq); 979 980 /* 981 * If the throttle happened during sched-out; like: 982 * 983 * schedule() 984 * deactivate_task() 985 * dequeue_task_dl() 986 * update_curr_dl() 987 * start_dl_timer() 988 * __dequeue_task_dl() 989 * prev->on_rq = 0; 990 * 991 * We can be both throttled and !queued. Replenish the counter 992 * but do not enqueue -- wait for our wakeup to do that. 993 */ 994 if (!task_on_rq_queued(p)) { 995 replenish_dl_entity(dl_se, dl_se); 996 goto unlock; 997 } 998 999 #ifdef CONFIG_SMP 1000 if (unlikely(!rq->online)) { 1001 /* 1002 * If the runqueue is no longer available, migrate the 1003 * task elsewhere. This necessarily changes rq. 1004 */ 1005 lockdep_unpin_lock(&rq->lock, rf.cookie); 1006 rq = dl_task_offline_migration(rq, p); 1007 rf.cookie = lockdep_pin_lock(&rq->lock); 1008 update_rq_clock(rq); 1009 1010 /* 1011 * Now that the task has been migrated to the new RQ and we 1012 * have that locked, proceed as normal and enqueue the task 1013 * there. 1014 */ 1015 } 1016 #endif 1017 1018 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); 1019 if (dl_task(rq->curr)) 1020 check_preempt_curr_dl(rq, p, 0); 1021 else 1022 resched_curr(rq); 1023 1024 #ifdef CONFIG_SMP 1025 /* 1026 * Queueing this task back might have overloaded rq, check if we need 1027 * to kick someone away. 1028 */ 1029 if (has_pushable_dl_tasks(rq)) { 1030 /* 1031 * Nothing relies on rq->lock after this, so its safe to drop 1032 * rq->lock. 1033 */ 1034 rq_unpin_lock(rq, &rf); 1035 push_dl_task(rq); 1036 rq_repin_lock(rq, &rf); 1037 } 1038 #endif 1039 1040 unlock: 1041 task_rq_unlock(rq, p, &rf); 1042 1043 /* 1044 * This can free the task_struct, including this hrtimer, do not touch 1045 * anything related to that after this. 1046 */ 1047 put_task_struct(p); 1048 1049 return HRTIMER_NORESTART; 1050 } 1051 1052 void init_dl_task_timer(struct sched_dl_entity *dl_se) 1053 { 1054 struct hrtimer *timer = &dl_se->dl_timer; 1055 1056 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1057 timer->function = dl_task_timer; 1058 } 1059 1060 /* 1061 * During the activation, CBS checks if it can reuse the current task's 1062 * runtime and period. If the deadline of the task is in the past, CBS 1063 * cannot use the runtime, and so it replenishes the task. This rule 1064 * works fine for implicit deadline tasks (deadline == period), and the 1065 * CBS was designed for implicit deadline tasks. However, a task with 1066 * constrained deadline (deadine < period) might be awakened after the 1067 * deadline, but before the next period. In this case, replenishing the 1068 * task would allow it to run for runtime / deadline. As in this case 1069 * deadline < period, CBS enables a task to run for more than the 1070 * runtime / period. In a very loaded system, this can cause a domino 1071 * effect, making other tasks miss their deadlines. 1072 * 1073 * To avoid this problem, in the activation of a constrained deadline 1074 * task after the deadline but before the next period, throttle the 1075 * task and set the replenishing timer to the begin of the next period, 1076 * unless it is boosted. 1077 */ 1078 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) 1079 { 1080 struct task_struct *p = dl_task_of(dl_se); 1081 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se)); 1082 1083 if (dl_time_before(dl_se->deadline, rq_clock(rq)) && 1084 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) { 1085 if (unlikely(dl_se->dl_boosted || !start_dl_timer(p))) 1086 return; 1087 dl_se->dl_throttled = 1; 1088 if (dl_se->runtime > 0) 1089 dl_se->runtime = 0; 1090 } 1091 } 1092 1093 static 1094 int dl_runtime_exceeded(struct sched_dl_entity *dl_se) 1095 { 1096 return (dl_se->runtime <= 0); 1097 } 1098 1099 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 1100 1101 /* 1102 * This function implements the GRUB accounting rule: 1103 * according to the GRUB reclaiming algorithm, the runtime is 1104 * not decreased as "dq = -dt", but as 1105 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt", 1106 * where u is the utilization of the task, Umax is the maximum reclaimable 1107 * utilization, Uinact is the (per-runqueue) inactive utilization, computed 1108 * as the difference between the "total runqueue utilization" and the 1109 * runqueue active utilization, and Uextra is the (per runqueue) extra 1110 * reclaimable utilization. 1111 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations 1112 * multiplied by 2^BW_SHIFT, the result has to be shifted right by 1113 * BW_SHIFT. 1114 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT, 1115 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT. 1116 * Since delta is a 64 bit variable, to have an overflow its value 1117 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds. 1118 * So, overflow is not an issue here. 1119 */ 1120 u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se) 1121 { 1122 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */ 1123 u64 u_act; 1124 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT; 1125 1126 /* 1127 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)}, 1128 * we compare u_inact + rq->dl.extra_bw with 1129 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because 1130 * u_inact + rq->dl.extra_bw can be larger than 1131 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative 1132 * leading to wrong results) 1133 */ 1134 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min) 1135 u_act = u_act_min; 1136 else 1137 u_act = BW_UNIT - u_inact - rq->dl.extra_bw; 1138 1139 return (delta * u_act) >> BW_SHIFT; 1140 } 1141 1142 /* 1143 * Update the current task's runtime statistics (provided it is still 1144 * a -deadline task and has not been removed from the dl_rq). 1145 */ 1146 static void update_curr_dl(struct rq *rq) 1147 { 1148 struct task_struct *curr = rq->curr; 1149 struct sched_dl_entity *dl_se = &curr->dl; 1150 u64 delta_exec, scaled_delta_exec; 1151 int cpu = cpu_of(rq); 1152 u64 now; 1153 1154 if (!dl_task(curr) || !on_dl_rq(dl_se)) 1155 return; 1156 1157 /* 1158 * Consumed budget is computed considering the time as 1159 * observed by schedulable tasks (excluding time spent 1160 * in hardirq context, etc.). Deadlines are instead 1161 * computed using hard walltime. This seems to be the more 1162 * natural solution, but the full ramifications of this 1163 * approach need further study. 1164 */ 1165 now = rq_clock_task(rq); 1166 delta_exec = now - curr->se.exec_start; 1167 if (unlikely((s64)delta_exec <= 0)) { 1168 if (unlikely(dl_se->dl_yielded)) 1169 goto throttle; 1170 return; 1171 } 1172 1173 schedstat_set(curr->se.statistics.exec_max, 1174 max(curr->se.statistics.exec_max, delta_exec)); 1175 1176 curr->se.sum_exec_runtime += delta_exec; 1177 account_group_exec_runtime(curr, delta_exec); 1178 1179 curr->se.exec_start = now; 1180 cgroup_account_cputime(curr, delta_exec); 1181 1182 sched_rt_avg_update(rq, delta_exec); 1183 1184 if (dl_entity_is_special(dl_se)) 1185 return; 1186 1187 /* 1188 * For tasks that participate in GRUB, we implement GRUB-PA: the 1189 * spare reclaimed bandwidth is used to clock down frequency. 1190 * 1191 * For the others, we still need to scale reservation parameters 1192 * according to current frequency and CPU maximum capacity. 1193 */ 1194 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) { 1195 scaled_delta_exec = grub_reclaim(delta_exec, 1196 rq, 1197 &curr->dl); 1198 } else { 1199 unsigned long scale_freq = arch_scale_freq_capacity(cpu); 1200 unsigned long scale_cpu = arch_scale_cpu_capacity(NULL, cpu); 1201 1202 scaled_delta_exec = cap_scale(delta_exec, scale_freq); 1203 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu); 1204 } 1205 1206 dl_se->runtime -= scaled_delta_exec; 1207 1208 throttle: 1209 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) { 1210 dl_se->dl_throttled = 1; 1211 1212 /* If requested, inform the user about runtime overruns. */ 1213 if (dl_runtime_exceeded(dl_se) && 1214 (dl_se->flags & SCHED_FLAG_DL_OVERRUN)) 1215 dl_se->dl_overrun = 1; 1216 1217 __dequeue_task_dl(rq, curr, 0); 1218 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr))) 1219 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); 1220 1221 if (!is_leftmost(curr, &rq->dl)) 1222 resched_curr(rq); 1223 } 1224 1225 /* 1226 * Because -- for now -- we share the rt bandwidth, we need to 1227 * account our runtime there too, otherwise actual rt tasks 1228 * would be able to exceed the shared quota. 1229 * 1230 * Account to the root rt group for now. 1231 * 1232 * The solution we're working towards is having the RT groups scheduled 1233 * using deadline servers -- however there's a few nasties to figure 1234 * out before that can happen. 1235 */ 1236 if (rt_bandwidth_enabled()) { 1237 struct rt_rq *rt_rq = &rq->rt; 1238 1239 raw_spin_lock(&rt_rq->rt_runtime_lock); 1240 /* 1241 * We'll let actual RT tasks worry about the overflow here, we 1242 * have our own CBS to keep us inline; only account when RT 1243 * bandwidth is relevant. 1244 */ 1245 if (sched_rt_bandwidth_account(rt_rq)) 1246 rt_rq->rt_time += delta_exec; 1247 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1248 } 1249 } 1250 1251 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer) 1252 { 1253 struct sched_dl_entity *dl_se = container_of(timer, 1254 struct sched_dl_entity, 1255 inactive_timer); 1256 struct task_struct *p = dl_task_of(dl_se); 1257 struct rq_flags rf; 1258 struct rq *rq; 1259 1260 rq = task_rq_lock(p, &rf); 1261 1262 if (!dl_task(p) || p->state == TASK_DEAD) { 1263 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1264 1265 if (p->state == TASK_DEAD && dl_se->dl_non_contending) { 1266 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl)); 1267 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl)); 1268 dl_se->dl_non_contending = 0; 1269 } 1270 1271 raw_spin_lock(&dl_b->lock); 1272 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 1273 raw_spin_unlock(&dl_b->lock); 1274 __dl_clear_params(p); 1275 1276 goto unlock; 1277 } 1278 if (dl_se->dl_non_contending == 0) 1279 goto unlock; 1280 1281 sched_clock_tick(); 1282 update_rq_clock(rq); 1283 1284 sub_running_bw(dl_se, &rq->dl); 1285 dl_se->dl_non_contending = 0; 1286 unlock: 1287 task_rq_unlock(rq, p, &rf); 1288 put_task_struct(p); 1289 1290 return HRTIMER_NORESTART; 1291 } 1292 1293 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se) 1294 { 1295 struct hrtimer *timer = &dl_se->inactive_timer; 1296 1297 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1298 timer->function = inactive_task_timer; 1299 } 1300 1301 #ifdef CONFIG_SMP 1302 1303 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1304 { 1305 struct rq *rq = rq_of_dl_rq(dl_rq); 1306 1307 if (dl_rq->earliest_dl.curr == 0 || 1308 dl_time_before(deadline, dl_rq->earliest_dl.curr)) { 1309 dl_rq->earliest_dl.curr = deadline; 1310 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline); 1311 } 1312 } 1313 1314 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) 1315 { 1316 struct rq *rq = rq_of_dl_rq(dl_rq); 1317 1318 /* 1319 * Since we may have removed our earliest (and/or next earliest) 1320 * task we must recompute them. 1321 */ 1322 if (!dl_rq->dl_nr_running) { 1323 dl_rq->earliest_dl.curr = 0; 1324 dl_rq->earliest_dl.next = 0; 1325 cpudl_clear(&rq->rd->cpudl, rq->cpu); 1326 } else { 1327 struct rb_node *leftmost = dl_rq->root.rb_leftmost; 1328 struct sched_dl_entity *entry; 1329 1330 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node); 1331 dl_rq->earliest_dl.curr = entry->deadline; 1332 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline); 1333 } 1334 } 1335 1336 #else 1337 1338 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1339 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} 1340 1341 #endif /* CONFIG_SMP */ 1342 1343 static inline 1344 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1345 { 1346 int prio = dl_task_of(dl_se)->prio; 1347 u64 deadline = dl_se->deadline; 1348 1349 WARN_ON(!dl_prio(prio)); 1350 dl_rq->dl_nr_running++; 1351 add_nr_running(rq_of_dl_rq(dl_rq), 1); 1352 1353 inc_dl_deadline(dl_rq, deadline); 1354 inc_dl_migration(dl_se, dl_rq); 1355 } 1356 1357 static inline 1358 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) 1359 { 1360 int prio = dl_task_of(dl_se)->prio; 1361 1362 WARN_ON(!dl_prio(prio)); 1363 WARN_ON(!dl_rq->dl_nr_running); 1364 dl_rq->dl_nr_running--; 1365 sub_nr_running(rq_of_dl_rq(dl_rq), 1); 1366 1367 dec_dl_deadline(dl_rq, dl_se->deadline); 1368 dec_dl_migration(dl_se, dl_rq); 1369 } 1370 1371 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) 1372 { 1373 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1374 struct rb_node **link = &dl_rq->root.rb_root.rb_node; 1375 struct rb_node *parent = NULL; 1376 struct sched_dl_entity *entry; 1377 int leftmost = 1; 1378 1379 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node)); 1380 1381 while (*link) { 1382 parent = *link; 1383 entry = rb_entry(parent, struct sched_dl_entity, rb_node); 1384 if (dl_time_before(dl_se->deadline, entry->deadline)) 1385 link = &parent->rb_left; 1386 else { 1387 link = &parent->rb_right; 1388 leftmost = 0; 1389 } 1390 } 1391 1392 rb_link_node(&dl_se->rb_node, parent, link); 1393 rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost); 1394 1395 inc_dl_tasks(dl_se, dl_rq); 1396 } 1397 1398 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) 1399 { 1400 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 1401 1402 if (RB_EMPTY_NODE(&dl_se->rb_node)) 1403 return; 1404 1405 rb_erase_cached(&dl_se->rb_node, &dl_rq->root); 1406 RB_CLEAR_NODE(&dl_se->rb_node); 1407 1408 dec_dl_tasks(dl_se, dl_rq); 1409 } 1410 1411 static void 1412 enqueue_dl_entity(struct sched_dl_entity *dl_se, 1413 struct sched_dl_entity *pi_se, int flags) 1414 { 1415 BUG_ON(on_dl_rq(dl_se)); 1416 1417 /* 1418 * If this is a wakeup or a new instance, the scheduling 1419 * parameters of the task might need updating. Otherwise, 1420 * we want a replenishment of its runtime. 1421 */ 1422 if (flags & ENQUEUE_WAKEUP) { 1423 task_contending(dl_se, flags); 1424 update_dl_entity(dl_se, pi_se); 1425 } else if (flags & ENQUEUE_REPLENISH) { 1426 replenish_dl_entity(dl_se, pi_se); 1427 } else if ((flags & ENQUEUE_RESTORE) && 1428 dl_time_before(dl_se->deadline, 1429 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) { 1430 setup_new_dl_entity(dl_se); 1431 } 1432 1433 __enqueue_dl_entity(dl_se); 1434 } 1435 1436 static void dequeue_dl_entity(struct sched_dl_entity *dl_se) 1437 { 1438 __dequeue_dl_entity(dl_se); 1439 } 1440 1441 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1442 { 1443 struct task_struct *pi_task = rt_mutex_get_top_task(p); 1444 struct sched_dl_entity *pi_se = &p->dl; 1445 1446 /* 1447 * Use the scheduling parameters of the top pi-waiter task if: 1448 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND 1449 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is 1450 * smaller than our deadline OR we are a !SCHED_DEADLINE task getting 1451 * boosted due to a SCHED_DEADLINE pi-waiter). 1452 * Otherwise we keep our runtime and deadline. 1453 */ 1454 if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) { 1455 pi_se = &pi_task->dl; 1456 } else if (!dl_prio(p->normal_prio)) { 1457 /* 1458 * Special case in which we have a !SCHED_DEADLINE task 1459 * that is going to be deboosted, but exceeds its 1460 * runtime while doing so. No point in replenishing 1461 * it, as it's going to return back to its original 1462 * scheduling class after this. 1463 */ 1464 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH); 1465 return; 1466 } 1467 1468 /* 1469 * Check if a constrained deadline task was activated 1470 * after the deadline but before the next period. 1471 * If that is the case, the task will be throttled and 1472 * the replenishment timer will be set to the next period. 1473 */ 1474 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl)) 1475 dl_check_constrained_dl(&p->dl); 1476 1477 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) { 1478 add_rq_bw(&p->dl, &rq->dl); 1479 add_running_bw(&p->dl, &rq->dl); 1480 } 1481 1482 /* 1483 * If p is throttled, we do not enqueue it. In fact, if it exhausted 1484 * its budget it needs a replenishment and, since it now is on 1485 * its rq, the bandwidth timer callback (which clearly has not 1486 * run yet) will take care of this. 1487 * However, the active utilization does not depend on the fact 1488 * that the task is on the runqueue or not (but depends on the 1489 * task's state - in GRUB parlance, "inactive" vs "active contending"). 1490 * In other words, even if a task is throttled its utilization must 1491 * be counted in the active utilization; hence, we need to call 1492 * add_running_bw(). 1493 */ 1494 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) { 1495 if (flags & ENQUEUE_WAKEUP) 1496 task_contending(&p->dl, flags); 1497 1498 return; 1499 } 1500 1501 enqueue_dl_entity(&p->dl, pi_se, flags); 1502 1503 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1504 enqueue_pushable_dl_task(rq, p); 1505 } 1506 1507 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1508 { 1509 dequeue_dl_entity(&p->dl); 1510 dequeue_pushable_dl_task(rq, p); 1511 } 1512 1513 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) 1514 { 1515 update_curr_dl(rq); 1516 __dequeue_task_dl(rq, p, flags); 1517 1518 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) { 1519 sub_running_bw(&p->dl, &rq->dl); 1520 sub_rq_bw(&p->dl, &rq->dl); 1521 } 1522 1523 /* 1524 * This check allows to start the inactive timer (or to immediately 1525 * decrease the active utilization, if needed) in two cases: 1526 * when the task blocks and when it is terminating 1527 * (p->state == TASK_DEAD). We can handle the two cases in the same 1528 * way, because from GRUB's point of view the same thing is happening 1529 * (the task moves from "active contending" to "active non contending" 1530 * or "inactive") 1531 */ 1532 if (flags & DEQUEUE_SLEEP) 1533 task_non_contending(p); 1534 } 1535 1536 /* 1537 * Yield task semantic for -deadline tasks is: 1538 * 1539 * get off from the CPU until our next instance, with 1540 * a new runtime. This is of little use now, since we 1541 * don't have a bandwidth reclaiming mechanism. Anyway, 1542 * bandwidth reclaiming is planned for the future, and 1543 * yield_task_dl will indicate that some spare budget 1544 * is available for other task instances to use it. 1545 */ 1546 static void yield_task_dl(struct rq *rq) 1547 { 1548 /* 1549 * We make the task go to sleep until its current deadline by 1550 * forcing its runtime to zero. This way, update_curr_dl() stops 1551 * it and the bandwidth timer will wake it up and will give it 1552 * new scheduling parameters (thanks to dl_yielded=1). 1553 */ 1554 rq->curr->dl.dl_yielded = 1; 1555 1556 update_rq_clock(rq); 1557 update_curr_dl(rq); 1558 /* 1559 * Tell update_rq_clock() that we've just updated, 1560 * so we don't do microscopic update in schedule() 1561 * and double the fastpath cost. 1562 */ 1563 rq_clock_skip_update(rq); 1564 } 1565 1566 #ifdef CONFIG_SMP 1567 1568 static int find_later_rq(struct task_struct *task); 1569 1570 static int 1571 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags) 1572 { 1573 struct task_struct *curr; 1574 struct rq *rq; 1575 1576 if (sd_flag != SD_BALANCE_WAKE) 1577 goto out; 1578 1579 rq = cpu_rq(cpu); 1580 1581 rcu_read_lock(); 1582 curr = READ_ONCE(rq->curr); /* unlocked access */ 1583 1584 /* 1585 * If we are dealing with a -deadline task, we must 1586 * decide where to wake it up. 1587 * If it has a later deadline and the current task 1588 * on this rq can't move (provided the waking task 1589 * can!) we prefer to send it somewhere else. On the 1590 * other hand, if it has a shorter deadline, we 1591 * try to make it stay here, it might be important. 1592 */ 1593 if (unlikely(dl_task(curr)) && 1594 (curr->nr_cpus_allowed < 2 || 1595 !dl_entity_preempt(&p->dl, &curr->dl)) && 1596 (p->nr_cpus_allowed > 1)) { 1597 int target = find_later_rq(p); 1598 1599 if (target != -1 && 1600 (dl_time_before(p->dl.deadline, 1601 cpu_rq(target)->dl.earliest_dl.curr) || 1602 (cpu_rq(target)->dl.dl_nr_running == 0))) 1603 cpu = target; 1604 } 1605 rcu_read_unlock(); 1606 1607 out: 1608 return cpu; 1609 } 1610 1611 static void migrate_task_rq_dl(struct task_struct *p) 1612 { 1613 struct rq *rq; 1614 1615 if (p->state != TASK_WAKING) 1616 return; 1617 1618 rq = task_rq(p); 1619 /* 1620 * Since p->state == TASK_WAKING, set_task_cpu() has been called 1621 * from try_to_wake_up(). Hence, p->pi_lock is locked, but 1622 * rq->lock is not... So, lock it 1623 */ 1624 raw_spin_lock(&rq->lock); 1625 if (p->dl.dl_non_contending) { 1626 sub_running_bw(&p->dl, &rq->dl); 1627 p->dl.dl_non_contending = 0; 1628 /* 1629 * If the timer handler is currently running and the 1630 * timer cannot be cancelled, inactive_task_timer() 1631 * will see that dl_not_contending is not set, and 1632 * will not touch the rq's active utilization, 1633 * so we are still safe. 1634 */ 1635 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 1636 put_task_struct(p); 1637 } 1638 sub_rq_bw(&p->dl, &rq->dl); 1639 raw_spin_unlock(&rq->lock); 1640 } 1641 1642 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) 1643 { 1644 /* 1645 * Current can't be migrated, useless to reschedule, 1646 * let's hope p can move out. 1647 */ 1648 if (rq->curr->nr_cpus_allowed == 1 || 1649 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL)) 1650 return; 1651 1652 /* 1653 * p is migratable, so let's not schedule it and 1654 * see if it is pushed or pulled somewhere else. 1655 */ 1656 if (p->nr_cpus_allowed != 1 && 1657 cpudl_find(&rq->rd->cpudl, p, NULL)) 1658 return; 1659 1660 resched_curr(rq); 1661 } 1662 1663 #endif /* CONFIG_SMP */ 1664 1665 /* 1666 * Only called when both the current and waking task are -deadline 1667 * tasks. 1668 */ 1669 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, 1670 int flags) 1671 { 1672 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { 1673 resched_curr(rq); 1674 return; 1675 } 1676 1677 #ifdef CONFIG_SMP 1678 /* 1679 * In the unlikely case current and p have the same deadline 1680 * let us try to decide what's the best thing to do... 1681 */ 1682 if ((p->dl.deadline == rq->curr->dl.deadline) && 1683 !test_tsk_need_resched(rq->curr)) 1684 check_preempt_equal_dl(rq, p); 1685 #endif /* CONFIG_SMP */ 1686 } 1687 1688 #ifdef CONFIG_SCHED_HRTICK 1689 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1690 { 1691 hrtick_start(rq, p->dl.runtime); 1692 } 1693 #else /* !CONFIG_SCHED_HRTICK */ 1694 static void start_hrtick_dl(struct rq *rq, struct task_struct *p) 1695 { 1696 } 1697 #endif 1698 1699 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq, 1700 struct dl_rq *dl_rq) 1701 { 1702 struct rb_node *left = rb_first_cached(&dl_rq->root); 1703 1704 if (!left) 1705 return NULL; 1706 1707 return rb_entry(left, struct sched_dl_entity, rb_node); 1708 } 1709 1710 static struct task_struct * 1711 pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 1712 { 1713 struct sched_dl_entity *dl_se; 1714 struct task_struct *p; 1715 struct dl_rq *dl_rq; 1716 1717 dl_rq = &rq->dl; 1718 1719 if (need_pull_dl_task(rq, prev)) { 1720 /* 1721 * This is OK, because current is on_cpu, which avoids it being 1722 * picked for load-balance and preemption/IRQs are still 1723 * disabled avoiding further scheduler activity on it and we're 1724 * being very careful to re-start the picking loop. 1725 */ 1726 rq_unpin_lock(rq, rf); 1727 pull_dl_task(rq); 1728 rq_repin_lock(rq, rf); 1729 /* 1730 * pull_dl_task() can drop (and re-acquire) rq->lock; this 1731 * means a stop task can slip in, in which case we need to 1732 * re-start task selection. 1733 */ 1734 if (rq->stop && task_on_rq_queued(rq->stop)) 1735 return RETRY_TASK; 1736 } 1737 1738 /* 1739 * When prev is DL, we may throttle it in put_prev_task(). 1740 * So, we update time before we check for dl_nr_running. 1741 */ 1742 if (prev->sched_class == &dl_sched_class) 1743 update_curr_dl(rq); 1744 1745 if (unlikely(!dl_rq->dl_nr_running)) 1746 return NULL; 1747 1748 put_prev_task(rq, prev); 1749 1750 dl_se = pick_next_dl_entity(rq, dl_rq); 1751 BUG_ON(!dl_se); 1752 1753 p = dl_task_of(dl_se); 1754 p->se.exec_start = rq_clock_task(rq); 1755 1756 /* Running task will never be pushed. */ 1757 dequeue_pushable_dl_task(rq, p); 1758 1759 if (hrtick_enabled(rq)) 1760 start_hrtick_dl(rq, p); 1761 1762 deadline_queue_push_tasks(rq); 1763 1764 return p; 1765 } 1766 1767 static void put_prev_task_dl(struct rq *rq, struct task_struct *p) 1768 { 1769 update_curr_dl(rq); 1770 1771 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) 1772 enqueue_pushable_dl_task(rq, p); 1773 } 1774 1775 /* 1776 * scheduler tick hitting a task of our scheduling class. 1777 * 1778 * NOTE: This function can be called remotely by the tick offload that 1779 * goes along full dynticks. Therefore no local assumption can be made 1780 * and everything must be accessed through the @rq and @curr passed in 1781 * parameters. 1782 */ 1783 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) 1784 { 1785 update_curr_dl(rq); 1786 1787 /* 1788 * Even when we have runtime, update_curr_dl() might have resulted in us 1789 * not being the leftmost task anymore. In that case NEED_RESCHED will 1790 * be set and schedule() will start a new hrtick for the next task. 1791 */ 1792 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 && 1793 is_leftmost(p, &rq->dl)) 1794 start_hrtick_dl(rq, p); 1795 } 1796 1797 static void task_fork_dl(struct task_struct *p) 1798 { 1799 /* 1800 * SCHED_DEADLINE tasks cannot fork and this is achieved through 1801 * sched_fork() 1802 */ 1803 } 1804 1805 static void set_curr_task_dl(struct rq *rq) 1806 { 1807 struct task_struct *p = rq->curr; 1808 1809 p->se.exec_start = rq_clock_task(rq); 1810 1811 /* You can't push away the running task */ 1812 dequeue_pushable_dl_task(rq, p); 1813 } 1814 1815 #ifdef CONFIG_SMP 1816 1817 /* Only try algorithms three times */ 1818 #define DL_MAX_TRIES 3 1819 1820 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) 1821 { 1822 if (!task_running(rq, p) && 1823 cpumask_test_cpu(cpu, &p->cpus_allowed)) 1824 return 1; 1825 return 0; 1826 } 1827 1828 /* 1829 * Return the earliest pushable rq's task, which is suitable to be executed 1830 * on the CPU, NULL otherwise: 1831 */ 1832 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu) 1833 { 1834 struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost; 1835 struct task_struct *p = NULL; 1836 1837 if (!has_pushable_dl_tasks(rq)) 1838 return NULL; 1839 1840 next_node: 1841 if (next_node) { 1842 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks); 1843 1844 if (pick_dl_task(rq, p, cpu)) 1845 return p; 1846 1847 next_node = rb_next(next_node); 1848 goto next_node; 1849 } 1850 1851 return NULL; 1852 } 1853 1854 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); 1855 1856 static int find_later_rq(struct task_struct *task) 1857 { 1858 struct sched_domain *sd; 1859 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl); 1860 int this_cpu = smp_processor_id(); 1861 int cpu = task_cpu(task); 1862 1863 /* Make sure the mask is initialized first */ 1864 if (unlikely(!later_mask)) 1865 return -1; 1866 1867 if (task->nr_cpus_allowed == 1) 1868 return -1; 1869 1870 /* 1871 * We have to consider system topology and task affinity 1872 * first, then we can look for a suitable CPU. 1873 */ 1874 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask)) 1875 return -1; 1876 1877 /* 1878 * If we are here, some targets have been found, including 1879 * the most suitable which is, among the runqueues where the 1880 * current tasks have later deadlines than the task's one, the 1881 * rq with the latest possible one. 1882 * 1883 * Now we check how well this matches with task's 1884 * affinity and system topology. 1885 * 1886 * The last CPU where the task run is our first 1887 * guess, since it is most likely cache-hot there. 1888 */ 1889 if (cpumask_test_cpu(cpu, later_mask)) 1890 return cpu; 1891 /* 1892 * Check if this_cpu is to be skipped (i.e., it is 1893 * not in the mask) or not. 1894 */ 1895 if (!cpumask_test_cpu(this_cpu, later_mask)) 1896 this_cpu = -1; 1897 1898 rcu_read_lock(); 1899 for_each_domain(cpu, sd) { 1900 if (sd->flags & SD_WAKE_AFFINE) { 1901 int best_cpu; 1902 1903 /* 1904 * If possible, preempting this_cpu is 1905 * cheaper than migrating. 1906 */ 1907 if (this_cpu != -1 && 1908 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1909 rcu_read_unlock(); 1910 return this_cpu; 1911 } 1912 1913 best_cpu = cpumask_first_and(later_mask, 1914 sched_domain_span(sd)); 1915 /* 1916 * Last chance: if a CPU being in both later_mask 1917 * and current sd span is valid, that becomes our 1918 * choice. Of course, the latest possible CPU is 1919 * already under consideration through later_mask. 1920 */ 1921 if (best_cpu < nr_cpu_ids) { 1922 rcu_read_unlock(); 1923 return best_cpu; 1924 } 1925 } 1926 } 1927 rcu_read_unlock(); 1928 1929 /* 1930 * At this point, all our guesses failed, we just return 1931 * 'something', and let the caller sort the things out. 1932 */ 1933 if (this_cpu != -1) 1934 return this_cpu; 1935 1936 cpu = cpumask_any(later_mask); 1937 if (cpu < nr_cpu_ids) 1938 return cpu; 1939 1940 return -1; 1941 } 1942 1943 /* Locks the rq it finds */ 1944 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) 1945 { 1946 struct rq *later_rq = NULL; 1947 int tries; 1948 int cpu; 1949 1950 for (tries = 0; tries < DL_MAX_TRIES; tries++) { 1951 cpu = find_later_rq(task); 1952 1953 if ((cpu == -1) || (cpu == rq->cpu)) 1954 break; 1955 1956 later_rq = cpu_rq(cpu); 1957 1958 if (later_rq->dl.dl_nr_running && 1959 !dl_time_before(task->dl.deadline, 1960 later_rq->dl.earliest_dl.curr)) { 1961 /* 1962 * Target rq has tasks of equal or earlier deadline, 1963 * retrying does not release any lock and is unlikely 1964 * to yield a different result. 1965 */ 1966 later_rq = NULL; 1967 break; 1968 } 1969 1970 /* Retry if something changed. */ 1971 if (double_lock_balance(rq, later_rq)) { 1972 if (unlikely(task_rq(task) != rq || 1973 !cpumask_test_cpu(later_rq->cpu, &task->cpus_allowed) || 1974 task_running(rq, task) || 1975 !dl_task(task) || 1976 !task_on_rq_queued(task))) { 1977 double_unlock_balance(rq, later_rq); 1978 later_rq = NULL; 1979 break; 1980 } 1981 } 1982 1983 /* 1984 * If the rq we found has no -deadline task, or 1985 * its earliest one has a later deadline than our 1986 * task, the rq is a good one. 1987 */ 1988 if (!later_rq->dl.dl_nr_running || 1989 dl_time_before(task->dl.deadline, 1990 later_rq->dl.earliest_dl.curr)) 1991 break; 1992 1993 /* Otherwise we try again. */ 1994 double_unlock_balance(rq, later_rq); 1995 later_rq = NULL; 1996 } 1997 1998 return later_rq; 1999 } 2000 2001 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) 2002 { 2003 struct task_struct *p; 2004 2005 if (!has_pushable_dl_tasks(rq)) 2006 return NULL; 2007 2008 p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost, 2009 struct task_struct, pushable_dl_tasks); 2010 2011 BUG_ON(rq->cpu != task_cpu(p)); 2012 BUG_ON(task_current(rq, p)); 2013 BUG_ON(p->nr_cpus_allowed <= 1); 2014 2015 BUG_ON(!task_on_rq_queued(p)); 2016 BUG_ON(!dl_task(p)); 2017 2018 return p; 2019 } 2020 2021 /* 2022 * See if the non running -deadline tasks on this rq 2023 * can be sent to some other CPU where they can preempt 2024 * and start executing. 2025 */ 2026 static int push_dl_task(struct rq *rq) 2027 { 2028 struct task_struct *next_task; 2029 struct rq *later_rq; 2030 int ret = 0; 2031 2032 if (!rq->dl.overloaded) 2033 return 0; 2034 2035 next_task = pick_next_pushable_dl_task(rq); 2036 if (!next_task) 2037 return 0; 2038 2039 retry: 2040 if (unlikely(next_task == rq->curr)) { 2041 WARN_ON(1); 2042 return 0; 2043 } 2044 2045 /* 2046 * If next_task preempts rq->curr, and rq->curr 2047 * can move away, it makes sense to just reschedule 2048 * without going further in pushing next_task. 2049 */ 2050 if (dl_task(rq->curr) && 2051 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && 2052 rq->curr->nr_cpus_allowed > 1) { 2053 resched_curr(rq); 2054 return 0; 2055 } 2056 2057 /* We might release rq lock */ 2058 get_task_struct(next_task); 2059 2060 /* Will lock the rq it'll find */ 2061 later_rq = find_lock_later_rq(next_task, rq); 2062 if (!later_rq) { 2063 struct task_struct *task; 2064 2065 /* 2066 * We must check all this again, since 2067 * find_lock_later_rq releases rq->lock and it is 2068 * then possible that next_task has migrated. 2069 */ 2070 task = pick_next_pushable_dl_task(rq); 2071 if (task == next_task) { 2072 /* 2073 * The task is still there. We don't try 2074 * again, some other CPU will pull it when ready. 2075 */ 2076 goto out; 2077 } 2078 2079 if (!task) 2080 /* No more tasks */ 2081 goto out; 2082 2083 put_task_struct(next_task); 2084 next_task = task; 2085 goto retry; 2086 } 2087 2088 deactivate_task(rq, next_task, 0); 2089 sub_running_bw(&next_task->dl, &rq->dl); 2090 sub_rq_bw(&next_task->dl, &rq->dl); 2091 set_task_cpu(next_task, later_rq->cpu); 2092 add_rq_bw(&next_task->dl, &later_rq->dl); 2093 add_running_bw(&next_task->dl, &later_rq->dl); 2094 activate_task(later_rq, next_task, 0); 2095 ret = 1; 2096 2097 resched_curr(later_rq); 2098 2099 double_unlock_balance(rq, later_rq); 2100 2101 out: 2102 put_task_struct(next_task); 2103 2104 return ret; 2105 } 2106 2107 static void push_dl_tasks(struct rq *rq) 2108 { 2109 /* push_dl_task() will return true if it moved a -deadline task */ 2110 while (push_dl_task(rq)) 2111 ; 2112 } 2113 2114 static void pull_dl_task(struct rq *this_rq) 2115 { 2116 int this_cpu = this_rq->cpu, cpu; 2117 struct task_struct *p; 2118 bool resched = false; 2119 struct rq *src_rq; 2120 u64 dmin = LONG_MAX; 2121 2122 if (likely(!dl_overloaded(this_rq))) 2123 return; 2124 2125 /* 2126 * Match the barrier from dl_set_overloaded; this guarantees that if we 2127 * see overloaded we must also see the dlo_mask bit. 2128 */ 2129 smp_rmb(); 2130 2131 for_each_cpu(cpu, this_rq->rd->dlo_mask) { 2132 if (this_cpu == cpu) 2133 continue; 2134 2135 src_rq = cpu_rq(cpu); 2136 2137 /* 2138 * It looks racy, abd it is! However, as in sched_rt.c, 2139 * we are fine with this. 2140 */ 2141 if (this_rq->dl.dl_nr_running && 2142 dl_time_before(this_rq->dl.earliest_dl.curr, 2143 src_rq->dl.earliest_dl.next)) 2144 continue; 2145 2146 /* Might drop this_rq->lock */ 2147 double_lock_balance(this_rq, src_rq); 2148 2149 /* 2150 * If there are no more pullable tasks on the 2151 * rq, we're done with it. 2152 */ 2153 if (src_rq->dl.dl_nr_running <= 1) 2154 goto skip; 2155 2156 p = pick_earliest_pushable_dl_task(src_rq, this_cpu); 2157 2158 /* 2159 * We found a task to be pulled if: 2160 * - it preempts our current (if there's one), 2161 * - it will preempt the last one we pulled (if any). 2162 */ 2163 if (p && dl_time_before(p->dl.deadline, dmin) && 2164 (!this_rq->dl.dl_nr_running || 2165 dl_time_before(p->dl.deadline, 2166 this_rq->dl.earliest_dl.curr))) { 2167 WARN_ON(p == src_rq->curr); 2168 WARN_ON(!task_on_rq_queued(p)); 2169 2170 /* 2171 * Then we pull iff p has actually an earlier 2172 * deadline than the current task of its runqueue. 2173 */ 2174 if (dl_time_before(p->dl.deadline, 2175 src_rq->curr->dl.deadline)) 2176 goto skip; 2177 2178 resched = true; 2179 2180 deactivate_task(src_rq, p, 0); 2181 sub_running_bw(&p->dl, &src_rq->dl); 2182 sub_rq_bw(&p->dl, &src_rq->dl); 2183 set_task_cpu(p, this_cpu); 2184 add_rq_bw(&p->dl, &this_rq->dl); 2185 add_running_bw(&p->dl, &this_rq->dl); 2186 activate_task(this_rq, p, 0); 2187 dmin = p->dl.deadline; 2188 2189 /* Is there any other task even earlier? */ 2190 } 2191 skip: 2192 double_unlock_balance(this_rq, src_rq); 2193 } 2194 2195 if (resched) 2196 resched_curr(this_rq); 2197 } 2198 2199 /* 2200 * Since the task is not running and a reschedule is not going to happen 2201 * anytime soon on its runqueue, we try pushing it away now. 2202 */ 2203 static void task_woken_dl(struct rq *rq, struct task_struct *p) 2204 { 2205 if (!task_running(rq, p) && 2206 !test_tsk_need_resched(rq->curr) && 2207 p->nr_cpus_allowed > 1 && 2208 dl_task(rq->curr) && 2209 (rq->curr->nr_cpus_allowed < 2 || 2210 !dl_entity_preempt(&p->dl, &rq->curr->dl))) { 2211 push_dl_tasks(rq); 2212 } 2213 } 2214 2215 static void set_cpus_allowed_dl(struct task_struct *p, 2216 const struct cpumask *new_mask) 2217 { 2218 struct root_domain *src_rd; 2219 struct rq *rq; 2220 2221 BUG_ON(!dl_task(p)); 2222 2223 rq = task_rq(p); 2224 src_rd = rq->rd; 2225 /* 2226 * Migrating a SCHED_DEADLINE task between exclusive 2227 * cpusets (different root_domains) entails a bandwidth 2228 * update. We already made space for us in the destination 2229 * domain (see cpuset_can_attach()). 2230 */ 2231 if (!cpumask_intersects(src_rd->span, new_mask)) { 2232 struct dl_bw *src_dl_b; 2233 2234 src_dl_b = dl_bw_of(cpu_of(rq)); 2235 /* 2236 * We now free resources of the root_domain we are migrating 2237 * off. In the worst case, sched_setattr() may temporary fail 2238 * until we complete the update. 2239 */ 2240 raw_spin_lock(&src_dl_b->lock); 2241 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p))); 2242 raw_spin_unlock(&src_dl_b->lock); 2243 } 2244 2245 set_cpus_allowed_common(p, new_mask); 2246 } 2247 2248 /* Assumes rq->lock is held */ 2249 static void rq_online_dl(struct rq *rq) 2250 { 2251 if (rq->dl.overloaded) 2252 dl_set_overload(rq); 2253 2254 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu); 2255 if (rq->dl.dl_nr_running > 0) 2256 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr); 2257 } 2258 2259 /* Assumes rq->lock is held */ 2260 static void rq_offline_dl(struct rq *rq) 2261 { 2262 if (rq->dl.overloaded) 2263 dl_clear_overload(rq); 2264 2265 cpudl_clear(&rq->rd->cpudl, rq->cpu); 2266 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu); 2267 } 2268 2269 void __init init_sched_dl_class(void) 2270 { 2271 unsigned int i; 2272 2273 for_each_possible_cpu(i) 2274 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), 2275 GFP_KERNEL, cpu_to_node(i)); 2276 } 2277 2278 #endif /* CONFIG_SMP */ 2279 2280 static void switched_from_dl(struct rq *rq, struct task_struct *p) 2281 { 2282 /* 2283 * task_non_contending() can start the "inactive timer" (if the 0-lag 2284 * time is in the future). If the task switches back to dl before 2285 * the "inactive timer" fires, it can continue to consume its current 2286 * runtime using its current deadline. If it stays outside of 2287 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer() 2288 * will reset the task parameters. 2289 */ 2290 if (task_on_rq_queued(p) && p->dl.dl_runtime) 2291 task_non_contending(p); 2292 2293 if (!task_on_rq_queued(p)) 2294 sub_rq_bw(&p->dl, &rq->dl); 2295 2296 /* 2297 * We cannot use inactive_task_timer() to invoke sub_running_bw() 2298 * at the 0-lag time, because the task could have been migrated 2299 * while SCHED_OTHER in the meanwhile. 2300 */ 2301 if (p->dl.dl_non_contending) 2302 p->dl.dl_non_contending = 0; 2303 2304 /* 2305 * Since this might be the only -deadline task on the rq, 2306 * this is the right place to try to pull some other one 2307 * from an overloaded CPU, if any. 2308 */ 2309 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running) 2310 return; 2311 2312 deadline_queue_pull_task(rq); 2313 } 2314 2315 /* 2316 * When switching to -deadline, we may overload the rq, then 2317 * we try to push someone off, if possible. 2318 */ 2319 static void switched_to_dl(struct rq *rq, struct task_struct *p) 2320 { 2321 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1) 2322 put_task_struct(p); 2323 2324 /* If p is not queued we will update its parameters at next wakeup. */ 2325 if (!task_on_rq_queued(p)) { 2326 add_rq_bw(&p->dl, &rq->dl); 2327 2328 return; 2329 } 2330 2331 if (rq->curr != p) { 2332 #ifdef CONFIG_SMP 2333 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded) 2334 deadline_queue_push_tasks(rq); 2335 #endif 2336 if (dl_task(rq->curr)) 2337 check_preempt_curr_dl(rq, p, 0); 2338 else 2339 resched_curr(rq); 2340 } 2341 } 2342 2343 /* 2344 * If the scheduling parameters of a -deadline task changed, 2345 * a push or pull operation might be needed. 2346 */ 2347 static void prio_changed_dl(struct rq *rq, struct task_struct *p, 2348 int oldprio) 2349 { 2350 if (task_on_rq_queued(p) || rq->curr == p) { 2351 #ifdef CONFIG_SMP 2352 /* 2353 * This might be too much, but unfortunately 2354 * we don't have the old deadline value, and 2355 * we can't argue if the task is increasing 2356 * or lowering its prio, so... 2357 */ 2358 if (!rq->dl.overloaded) 2359 deadline_queue_pull_task(rq); 2360 2361 /* 2362 * If we now have a earlier deadline task than p, 2363 * then reschedule, provided p is still on this 2364 * runqueue. 2365 */ 2366 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline)) 2367 resched_curr(rq); 2368 #else 2369 /* 2370 * Again, we don't know if p has a earlier 2371 * or later deadline, so let's blindly set a 2372 * (maybe not needed) rescheduling point. 2373 */ 2374 resched_curr(rq); 2375 #endif /* CONFIG_SMP */ 2376 } 2377 } 2378 2379 const struct sched_class dl_sched_class = { 2380 .next = &rt_sched_class, 2381 .enqueue_task = enqueue_task_dl, 2382 .dequeue_task = dequeue_task_dl, 2383 .yield_task = yield_task_dl, 2384 2385 .check_preempt_curr = check_preempt_curr_dl, 2386 2387 .pick_next_task = pick_next_task_dl, 2388 .put_prev_task = put_prev_task_dl, 2389 2390 #ifdef CONFIG_SMP 2391 .select_task_rq = select_task_rq_dl, 2392 .migrate_task_rq = migrate_task_rq_dl, 2393 .set_cpus_allowed = set_cpus_allowed_dl, 2394 .rq_online = rq_online_dl, 2395 .rq_offline = rq_offline_dl, 2396 .task_woken = task_woken_dl, 2397 #endif 2398 2399 .set_curr_task = set_curr_task_dl, 2400 .task_tick = task_tick_dl, 2401 .task_fork = task_fork_dl, 2402 2403 .prio_changed = prio_changed_dl, 2404 .switched_from = switched_from_dl, 2405 .switched_to = switched_to_dl, 2406 2407 .update_curr = update_curr_dl, 2408 }; 2409 2410 int sched_dl_global_validate(void) 2411 { 2412 u64 runtime = global_rt_runtime(); 2413 u64 period = global_rt_period(); 2414 u64 new_bw = to_ratio(period, runtime); 2415 struct dl_bw *dl_b; 2416 int cpu, ret = 0; 2417 unsigned long flags; 2418 2419 /* 2420 * Here we want to check the bandwidth not being set to some 2421 * value smaller than the currently allocated bandwidth in 2422 * any of the root_domains. 2423 * 2424 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 2425 * cycling on root_domains... Discussion on different/better 2426 * solutions is welcome! 2427 */ 2428 for_each_possible_cpu(cpu) { 2429 rcu_read_lock_sched(); 2430 dl_b = dl_bw_of(cpu); 2431 2432 raw_spin_lock_irqsave(&dl_b->lock, flags); 2433 if (new_bw < dl_b->total_bw) 2434 ret = -EBUSY; 2435 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2436 2437 rcu_read_unlock_sched(); 2438 2439 if (ret) 2440 break; 2441 } 2442 2443 return ret; 2444 } 2445 2446 void init_dl_rq_bw_ratio(struct dl_rq *dl_rq) 2447 { 2448 if (global_rt_runtime() == RUNTIME_INF) { 2449 dl_rq->bw_ratio = 1 << RATIO_SHIFT; 2450 dl_rq->extra_bw = 1 << BW_SHIFT; 2451 } else { 2452 dl_rq->bw_ratio = to_ratio(global_rt_runtime(), 2453 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT); 2454 dl_rq->extra_bw = to_ratio(global_rt_period(), 2455 global_rt_runtime()); 2456 } 2457 } 2458 2459 void sched_dl_do_global(void) 2460 { 2461 u64 new_bw = -1; 2462 struct dl_bw *dl_b; 2463 int cpu; 2464 unsigned long flags; 2465 2466 def_dl_bandwidth.dl_period = global_rt_period(); 2467 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 2468 2469 if (global_rt_runtime() != RUNTIME_INF) 2470 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 2471 2472 /* 2473 * FIXME: As above... 2474 */ 2475 for_each_possible_cpu(cpu) { 2476 rcu_read_lock_sched(); 2477 dl_b = dl_bw_of(cpu); 2478 2479 raw_spin_lock_irqsave(&dl_b->lock, flags); 2480 dl_b->bw = new_bw; 2481 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2482 2483 rcu_read_unlock_sched(); 2484 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl); 2485 } 2486 } 2487 2488 /* 2489 * We must be sure that accepting a new task (or allowing changing the 2490 * parameters of an existing one) is consistent with the bandwidth 2491 * constraints. If yes, this function also accordingly updates the currently 2492 * allocated bandwidth to reflect the new situation. 2493 * 2494 * This function is called while holding p's rq->lock. 2495 */ 2496 int sched_dl_overflow(struct task_struct *p, int policy, 2497 const struct sched_attr *attr) 2498 { 2499 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2500 u64 period = attr->sched_period ?: attr->sched_deadline; 2501 u64 runtime = attr->sched_runtime; 2502 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2503 int cpus, err = -1; 2504 2505 if (attr->sched_flags & SCHED_FLAG_SUGOV) 2506 return 0; 2507 2508 /* !deadline task may carry old deadline bandwidth */ 2509 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p)) 2510 return 0; 2511 2512 /* 2513 * Either if a task, enters, leave, or stays -deadline but changes 2514 * its parameters, we may need to update accordingly the total 2515 * allocated bandwidth of the container. 2516 */ 2517 raw_spin_lock(&dl_b->lock); 2518 cpus = dl_bw_cpus(task_cpu(p)); 2519 if (dl_policy(policy) && !task_has_dl_policy(p) && 2520 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2521 if (hrtimer_active(&p->dl.inactive_timer)) 2522 __dl_sub(dl_b, p->dl.dl_bw, cpus); 2523 __dl_add(dl_b, new_bw, cpus); 2524 err = 0; 2525 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2526 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2527 /* 2528 * XXX this is slightly incorrect: when the task 2529 * utilization decreases, we should delay the total 2530 * utilization change until the task's 0-lag point. 2531 * But this would require to set the task's "inactive 2532 * timer" when the task is not inactive. 2533 */ 2534 __dl_sub(dl_b, p->dl.dl_bw, cpus); 2535 __dl_add(dl_b, new_bw, cpus); 2536 dl_change_utilization(p, new_bw); 2537 err = 0; 2538 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2539 /* 2540 * Do not decrease the total deadline utilization here, 2541 * switched_from_dl() will take care to do it at the correct 2542 * (0-lag) time. 2543 */ 2544 err = 0; 2545 } 2546 raw_spin_unlock(&dl_b->lock); 2547 2548 return err; 2549 } 2550 2551 /* 2552 * This function initializes the sched_dl_entity of a newly becoming 2553 * SCHED_DEADLINE task. 2554 * 2555 * Only the static values are considered here, the actual runtime and the 2556 * absolute deadline will be properly calculated when the task is enqueued 2557 * for the first time with its new policy. 2558 */ 2559 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 2560 { 2561 struct sched_dl_entity *dl_se = &p->dl; 2562 2563 dl_se->dl_runtime = attr->sched_runtime; 2564 dl_se->dl_deadline = attr->sched_deadline; 2565 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 2566 dl_se->flags = attr->sched_flags; 2567 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 2568 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime); 2569 } 2570 2571 void __getparam_dl(struct task_struct *p, struct sched_attr *attr) 2572 { 2573 struct sched_dl_entity *dl_se = &p->dl; 2574 2575 attr->sched_priority = p->rt_priority; 2576 attr->sched_runtime = dl_se->dl_runtime; 2577 attr->sched_deadline = dl_se->dl_deadline; 2578 attr->sched_period = dl_se->dl_period; 2579 attr->sched_flags = dl_se->flags; 2580 } 2581 2582 /* 2583 * This function validates the new parameters of a -deadline task. 2584 * We ask for the deadline not being zero, and greater or equal 2585 * than the runtime, as well as the period of being zero or 2586 * greater than deadline. Furthermore, we have to be sure that 2587 * user parameters are above the internal resolution of 1us (we 2588 * check sched_runtime only since it is always the smaller one) and 2589 * below 2^63 ns (we have to check both sched_deadline and 2590 * sched_period, as the latter can be zero). 2591 */ 2592 bool __checkparam_dl(const struct sched_attr *attr) 2593 { 2594 /* special dl tasks don't actually use any parameter */ 2595 if (attr->sched_flags & SCHED_FLAG_SUGOV) 2596 return true; 2597 2598 /* deadline != 0 */ 2599 if (attr->sched_deadline == 0) 2600 return false; 2601 2602 /* 2603 * Since we truncate DL_SCALE bits, make sure we're at least 2604 * that big. 2605 */ 2606 if (attr->sched_runtime < (1ULL << DL_SCALE)) 2607 return false; 2608 2609 /* 2610 * Since we use the MSB for wrap-around and sign issues, make 2611 * sure it's not set (mind that period can be equal to zero). 2612 */ 2613 if (attr->sched_deadline & (1ULL << 63) || 2614 attr->sched_period & (1ULL << 63)) 2615 return false; 2616 2617 /* runtime <= deadline <= period (if period != 0) */ 2618 if ((attr->sched_period != 0 && 2619 attr->sched_period < attr->sched_deadline) || 2620 attr->sched_deadline < attr->sched_runtime) 2621 return false; 2622 2623 return true; 2624 } 2625 2626 /* 2627 * This function clears the sched_dl_entity static params. 2628 */ 2629 void __dl_clear_params(struct task_struct *p) 2630 { 2631 struct sched_dl_entity *dl_se = &p->dl; 2632 2633 dl_se->dl_runtime = 0; 2634 dl_se->dl_deadline = 0; 2635 dl_se->dl_period = 0; 2636 dl_se->flags = 0; 2637 dl_se->dl_bw = 0; 2638 dl_se->dl_density = 0; 2639 2640 dl_se->dl_throttled = 0; 2641 dl_se->dl_yielded = 0; 2642 dl_se->dl_non_contending = 0; 2643 dl_se->dl_overrun = 0; 2644 } 2645 2646 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr) 2647 { 2648 struct sched_dl_entity *dl_se = &p->dl; 2649 2650 if (dl_se->dl_runtime != attr->sched_runtime || 2651 dl_se->dl_deadline != attr->sched_deadline || 2652 dl_se->dl_period != attr->sched_period || 2653 dl_se->flags != attr->sched_flags) 2654 return true; 2655 2656 return false; 2657 } 2658 2659 #ifdef CONFIG_SMP 2660 int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed) 2661 { 2662 unsigned int dest_cpu; 2663 struct dl_bw *dl_b; 2664 bool overflow; 2665 int cpus, ret; 2666 unsigned long flags; 2667 2668 dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed); 2669 2670 rcu_read_lock_sched(); 2671 dl_b = dl_bw_of(dest_cpu); 2672 raw_spin_lock_irqsave(&dl_b->lock, flags); 2673 cpus = dl_bw_cpus(dest_cpu); 2674 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 2675 if (overflow) { 2676 ret = -EBUSY; 2677 } else { 2678 /* 2679 * We reserve space for this task in the destination 2680 * root_domain, as we can't fail after this point. 2681 * We will free resources in the source root_domain 2682 * later on (see set_cpus_allowed_dl()). 2683 */ 2684 __dl_add(dl_b, p->dl.dl_bw, cpus); 2685 ret = 0; 2686 } 2687 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2688 rcu_read_unlock_sched(); 2689 2690 return ret; 2691 } 2692 2693 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, 2694 const struct cpumask *trial) 2695 { 2696 int ret = 1, trial_cpus; 2697 struct dl_bw *cur_dl_b; 2698 unsigned long flags; 2699 2700 rcu_read_lock_sched(); 2701 cur_dl_b = dl_bw_of(cpumask_any(cur)); 2702 trial_cpus = cpumask_weight(trial); 2703 2704 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 2705 if (cur_dl_b->bw != -1 && 2706 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 2707 ret = 0; 2708 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 2709 rcu_read_unlock_sched(); 2710 2711 return ret; 2712 } 2713 2714 bool dl_cpu_busy(unsigned int cpu) 2715 { 2716 unsigned long flags; 2717 struct dl_bw *dl_b; 2718 bool overflow; 2719 int cpus; 2720 2721 rcu_read_lock_sched(); 2722 dl_b = dl_bw_of(cpu); 2723 raw_spin_lock_irqsave(&dl_b->lock, flags); 2724 cpus = dl_bw_cpus(cpu); 2725 overflow = __dl_overflow(dl_b, cpus, 0, 0); 2726 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 2727 rcu_read_unlock_sched(); 2728 2729 return overflow; 2730 } 2731 #endif 2732 2733 #ifdef CONFIG_SCHED_DEBUG 2734 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 2735 2736 void print_dl_stats(struct seq_file *m, int cpu) 2737 { 2738 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl); 2739 } 2740 #endif /* CONFIG_SCHED_DEBUG */ 2741