xref: /openbmc/linux/kernel/sched/deadline.c (revision 2359ccdd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Deadline Scheduling Class (SCHED_DEADLINE)
4  *
5  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6  *
7  * Tasks that periodically executes their instances for less than their
8  * runtime won't miss any of their deadlines.
9  * Tasks that are not periodic or sporadic or that tries to execute more
10  * than their reserved bandwidth will be slowed down (and may potentially
11  * miss some of their deadlines), and won't affect any other task.
12  *
13  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14  *                    Juri Lelli <juri.lelli@gmail.com>,
15  *                    Michael Trimarchi <michael@amarulasolutions.com>,
16  *                    Fabio Checconi <fchecconi@gmail.com>
17  */
18 #include "sched.h"
19 
20 struct dl_bandwidth def_dl_bandwidth;
21 
22 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
23 {
24 	return container_of(dl_se, struct task_struct, dl);
25 }
26 
27 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
28 {
29 	return container_of(dl_rq, struct rq, dl);
30 }
31 
32 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
33 {
34 	struct task_struct *p = dl_task_of(dl_se);
35 	struct rq *rq = task_rq(p);
36 
37 	return &rq->dl;
38 }
39 
40 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
41 {
42 	return !RB_EMPTY_NODE(&dl_se->rb_node);
43 }
44 
45 #ifdef CONFIG_SMP
46 static inline struct dl_bw *dl_bw_of(int i)
47 {
48 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
49 			 "sched RCU must be held");
50 	return &cpu_rq(i)->rd->dl_bw;
51 }
52 
53 static inline int dl_bw_cpus(int i)
54 {
55 	struct root_domain *rd = cpu_rq(i)->rd;
56 	int cpus = 0;
57 
58 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
59 			 "sched RCU must be held");
60 	for_each_cpu_and(i, rd->span, cpu_active_mask)
61 		cpus++;
62 
63 	return cpus;
64 }
65 #else
66 static inline struct dl_bw *dl_bw_of(int i)
67 {
68 	return &cpu_rq(i)->dl.dl_bw;
69 }
70 
71 static inline int dl_bw_cpus(int i)
72 {
73 	return 1;
74 }
75 #endif
76 
77 static inline
78 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
79 {
80 	u64 old = dl_rq->running_bw;
81 
82 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
83 	dl_rq->running_bw += dl_bw;
84 	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
85 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
86 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
87 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
88 }
89 
90 static inline
91 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
92 {
93 	u64 old = dl_rq->running_bw;
94 
95 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
96 	dl_rq->running_bw -= dl_bw;
97 	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
98 	if (dl_rq->running_bw > old)
99 		dl_rq->running_bw = 0;
100 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
101 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
102 }
103 
104 static inline
105 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
106 {
107 	u64 old = dl_rq->this_bw;
108 
109 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
110 	dl_rq->this_bw += dl_bw;
111 	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
112 }
113 
114 static inline
115 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
116 {
117 	u64 old = dl_rq->this_bw;
118 
119 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
120 	dl_rq->this_bw -= dl_bw;
121 	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
122 	if (dl_rq->this_bw > old)
123 		dl_rq->this_bw = 0;
124 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
125 }
126 
127 static inline
128 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
129 {
130 	if (!dl_entity_is_special(dl_se))
131 		__add_rq_bw(dl_se->dl_bw, dl_rq);
132 }
133 
134 static inline
135 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
136 {
137 	if (!dl_entity_is_special(dl_se))
138 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
139 }
140 
141 static inline
142 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
143 {
144 	if (!dl_entity_is_special(dl_se))
145 		__add_running_bw(dl_se->dl_bw, dl_rq);
146 }
147 
148 static inline
149 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
150 {
151 	if (!dl_entity_is_special(dl_se))
152 		__sub_running_bw(dl_se->dl_bw, dl_rq);
153 }
154 
155 void dl_change_utilization(struct task_struct *p, u64 new_bw)
156 {
157 	struct rq *rq;
158 
159 	BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
160 
161 	if (task_on_rq_queued(p))
162 		return;
163 
164 	rq = task_rq(p);
165 	if (p->dl.dl_non_contending) {
166 		sub_running_bw(&p->dl, &rq->dl);
167 		p->dl.dl_non_contending = 0;
168 		/*
169 		 * If the timer handler is currently running and the
170 		 * timer cannot be cancelled, inactive_task_timer()
171 		 * will see that dl_not_contending is not set, and
172 		 * will not touch the rq's active utilization,
173 		 * so we are still safe.
174 		 */
175 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
176 			put_task_struct(p);
177 	}
178 	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
179 	__add_rq_bw(new_bw, &rq->dl);
180 }
181 
182 /*
183  * The utilization of a task cannot be immediately removed from
184  * the rq active utilization (running_bw) when the task blocks.
185  * Instead, we have to wait for the so called "0-lag time".
186  *
187  * If a task blocks before the "0-lag time", a timer (the inactive
188  * timer) is armed, and running_bw is decreased when the timer
189  * fires.
190  *
191  * If the task wakes up again before the inactive timer fires,
192  * the timer is cancelled, whereas if the task wakes up after the
193  * inactive timer fired (and running_bw has been decreased) the
194  * task's utilization has to be added to running_bw again.
195  * A flag in the deadline scheduling entity (dl_non_contending)
196  * is used to avoid race conditions between the inactive timer handler
197  * and task wakeups.
198  *
199  * The following diagram shows how running_bw is updated. A task is
200  * "ACTIVE" when its utilization contributes to running_bw; an
201  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
202  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
203  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
204  * time already passed, which does not contribute to running_bw anymore.
205  *                              +------------------+
206  *             wakeup           |    ACTIVE        |
207  *          +------------------>+   contending     |
208  *          | add_running_bw    |                  |
209  *          |                   +----+------+------+
210  *          |                        |      ^
211  *          |                dequeue |      |
212  * +--------+-------+                |      |
213  * |                |   t >= 0-lag   |      | wakeup
214  * |    INACTIVE    |<---------------+      |
215  * |                | sub_running_bw |      |
216  * +--------+-------+                |      |
217  *          ^                        |      |
218  *          |              t < 0-lag |      |
219  *          |                        |      |
220  *          |                        V      |
221  *          |                   +----+------+------+
222  *          | sub_running_bw    |    ACTIVE        |
223  *          +-------------------+                  |
224  *            inactive timer    |  non contending  |
225  *            fired             +------------------+
226  *
227  * The task_non_contending() function is invoked when a task
228  * blocks, and checks if the 0-lag time already passed or
229  * not (in the first case, it directly updates running_bw;
230  * in the second case, it arms the inactive timer).
231  *
232  * The task_contending() function is invoked when a task wakes
233  * up, and checks if the task is still in the "ACTIVE non contending"
234  * state or not (in the second case, it updates running_bw).
235  */
236 static void task_non_contending(struct task_struct *p)
237 {
238 	struct sched_dl_entity *dl_se = &p->dl;
239 	struct hrtimer *timer = &dl_se->inactive_timer;
240 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
241 	struct rq *rq = rq_of_dl_rq(dl_rq);
242 	s64 zerolag_time;
243 
244 	/*
245 	 * If this is a non-deadline task that has been boosted,
246 	 * do nothing
247 	 */
248 	if (dl_se->dl_runtime == 0)
249 		return;
250 
251 	if (dl_entity_is_special(dl_se))
252 		return;
253 
254 	WARN_ON(hrtimer_active(&dl_se->inactive_timer));
255 	WARN_ON(dl_se->dl_non_contending);
256 
257 	zerolag_time = dl_se->deadline -
258 		 div64_long((dl_se->runtime * dl_se->dl_period),
259 			dl_se->dl_runtime);
260 
261 	/*
262 	 * Using relative times instead of the absolute "0-lag time"
263 	 * allows to simplify the code
264 	 */
265 	zerolag_time -= rq_clock(rq);
266 
267 	/*
268 	 * If the "0-lag time" already passed, decrease the active
269 	 * utilization now, instead of starting a timer
270 	 */
271 	if (zerolag_time < 0) {
272 		if (dl_task(p))
273 			sub_running_bw(dl_se, dl_rq);
274 		if (!dl_task(p) || p->state == TASK_DEAD) {
275 			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
276 
277 			if (p->state == TASK_DEAD)
278 				sub_rq_bw(&p->dl, &rq->dl);
279 			raw_spin_lock(&dl_b->lock);
280 			__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
281 			__dl_clear_params(p);
282 			raw_spin_unlock(&dl_b->lock);
283 		}
284 
285 		return;
286 	}
287 
288 	dl_se->dl_non_contending = 1;
289 	get_task_struct(p);
290 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL);
291 }
292 
293 static void task_contending(struct sched_dl_entity *dl_se, int flags)
294 {
295 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
296 
297 	/*
298 	 * If this is a non-deadline task that has been boosted,
299 	 * do nothing
300 	 */
301 	if (dl_se->dl_runtime == 0)
302 		return;
303 
304 	if (flags & ENQUEUE_MIGRATED)
305 		add_rq_bw(dl_se, dl_rq);
306 
307 	if (dl_se->dl_non_contending) {
308 		dl_se->dl_non_contending = 0;
309 		/*
310 		 * If the timer handler is currently running and the
311 		 * timer cannot be cancelled, inactive_task_timer()
312 		 * will see that dl_not_contending is not set, and
313 		 * will not touch the rq's active utilization,
314 		 * so we are still safe.
315 		 */
316 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
317 			put_task_struct(dl_task_of(dl_se));
318 	} else {
319 		/*
320 		 * Since "dl_non_contending" is not set, the
321 		 * task's utilization has already been removed from
322 		 * active utilization (either when the task blocked,
323 		 * when the "inactive timer" fired).
324 		 * So, add it back.
325 		 */
326 		add_running_bw(dl_se, dl_rq);
327 	}
328 }
329 
330 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
331 {
332 	struct sched_dl_entity *dl_se = &p->dl;
333 
334 	return dl_rq->root.rb_leftmost == &dl_se->rb_node;
335 }
336 
337 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
338 {
339 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
340 	dl_b->dl_period = period;
341 	dl_b->dl_runtime = runtime;
342 }
343 
344 void init_dl_bw(struct dl_bw *dl_b)
345 {
346 	raw_spin_lock_init(&dl_b->lock);
347 	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
348 	if (global_rt_runtime() == RUNTIME_INF)
349 		dl_b->bw = -1;
350 	else
351 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
352 	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
353 	dl_b->total_bw = 0;
354 }
355 
356 void init_dl_rq(struct dl_rq *dl_rq)
357 {
358 	dl_rq->root = RB_ROOT_CACHED;
359 
360 #ifdef CONFIG_SMP
361 	/* zero means no -deadline tasks */
362 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
363 
364 	dl_rq->dl_nr_migratory = 0;
365 	dl_rq->overloaded = 0;
366 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
367 #else
368 	init_dl_bw(&dl_rq->dl_bw);
369 #endif
370 
371 	dl_rq->running_bw = 0;
372 	dl_rq->this_bw = 0;
373 	init_dl_rq_bw_ratio(dl_rq);
374 }
375 
376 #ifdef CONFIG_SMP
377 
378 static inline int dl_overloaded(struct rq *rq)
379 {
380 	return atomic_read(&rq->rd->dlo_count);
381 }
382 
383 static inline void dl_set_overload(struct rq *rq)
384 {
385 	if (!rq->online)
386 		return;
387 
388 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
389 	/*
390 	 * Must be visible before the overload count is
391 	 * set (as in sched_rt.c).
392 	 *
393 	 * Matched by the barrier in pull_dl_task().
394 	 */
395 	smp_wmb();
396 	atomic_inc(&rq->rd->dlo_count);
397 }
398 
399 static inline void dl_clear_overload(struct rq *rq)
400 {
401 	if (!rq->online)
402 		return;
403 
404 	atomic_dec(&rq->rd->dlo_count);
405 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
406 }
407 
408 static void update_dl_migration(struct dl_rq *dl_rq)
409 {
410 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
411 		if (!dl_rq->overloaded) {
412 			dl_set_overload(rq_of_dl_rq(dl_rq));
413 			dl_rq->overloaded = 1;
414 		}
415 	} else if (dl_rq->overloaded) {
416 		dl_clear_overload(rq_of_dl_rq(dl_rq));
417 		dl_rq->overloaded = 0;
418 	}
419 }
420 
421 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
422 {
423 	struct task_struct *p = dl_task_of(dl_se);
424 
425 	if (p->nr_cpus_allowed > 1)
426 		dl_rq->dl_nr_migratory++;
427 
428 	update_dl_migration(dl_rq);
429 }
430 
431 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
432 {
433 	struct task_struct *p = dl_task_of(dl_se);
434 
435 	if (p->nr_cpus_allowed > 1)
436 		dl_rq->dl_nr_migratory--;
437 
438 	update_dl_migration(dl_rq);
439 }
440 
441 /*
442  * The list of pushable -deadline task is not a plist, like in
443  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
444  */
445 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
446 {
447 	struct dl_rq *dl_rq = &rq->dl;
448 	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
449 	struct rb_node *parent = NULL;
450 	struct task_struct *entry;
451 	bool leftmost = true;
452 
453 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
454 
455 	while (*link) {
456 		parent = *link;
457 		entry = rb_entry(parent, struct task_struct,
458 				 pushable_dl_tasks);
459 		if (dl_entity_preempt(&p->dl, &entry->dl))
460 			link = &parent->rb_left;
461 		else {
462 			link = &parent->rb_right;
463 			leftmost = false;
464 		}
465 	}
466 
467 	if (leftmost)
468 		dl_rq->earliest_dl.next = p->dl.deadline;
469 
470 	rb_link_node(&p->pushable_dl_tasks, parent, link);
471 	rb_insert_color_cached(&p->pushable_dl_tasks,
472 			       &dl_rq->pushable_dl_tasks_root, leftmost);
473 }
474 
475 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
476 {
477 	struct dl_rq *dl_rq = &rq->dl;
478 
479 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
480 		return;
481 
482 	if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
483 		struct rb_node *next_node;
484 
485 		next_node = rb_next(&p->pushable_dl_tasks);
486 		if (next_node) {
487 			dl_rq->earliest_dl.next = rb_entry(next_node,
488 				struct task_struct, pushable_dl_tasks)->dl.deadline;
489 		}
490 	}
491 
492 	rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
493 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
494 }
495 
496 static inline int has_pushable_dl_tasks(struct rq *rq)
497 {
498 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
499 }
500 
501 static int push_dl_task(struct rq *rq);
502 
503 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
504 {
505 	return dl_task(prev);
506 }
507 
508 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
509 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
510 
511 static void push_dl_tasks(struct rq *);
512 static void pull_dl_task(struct rq *);
513 
514 static inline void deadline_queue_push_tasks(struct rq *rq)
515 {
516 	if (!has_pushable_dl_tasks(rq))
517 		return;
518 
519 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
520 }
521 
522 static inline void deadline_queue_pull_task(struct rq *rq)
523 {
524 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
525 }
526 
527 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
528 
529 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
530 {
531 	struct rq *later_rq = NULL;
532 
533 	later_rq = find_lock_later_rq(p, rq);
534 	if (!later_rq) {
535 		int cpu;
536 
537 		/*
538 		 * If we cannot preempt any rq, fall back to pick any
539 		 * online CPU:
540 		 */
541 		cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
542 		if (cpu >= nr_cpu_ids) {
543 			/*
544 			 * Failed to find any suitable CPU.
545 			 * The task will never come back!
546 			 */
547 			BUG_ON(dl_bandwidth_enabled());
548 
549 			/*
550 			 * If admission control is disabled we
551 			 * try a little harder to let the task
552 			 * run.
553 			 */
554 			cpu = cpumask_any(cpu_active_mask);
555 		}
556 		later_rq = cpu_rq(cpu);
557 		double_lock_balance(rq, later_rq);
558 	}
559 
560 	set_task_cpu(p, later_rq->cpu);
561 	double_unlock_balance(later_rq, rq);
562 
563 	return later_rq;
564 }
565 
566 #else
567 
568 static inline
569 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
570 {
571 }
572 
573 static inline
574 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
575 {
576 }
577 
578 static inline
579 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
580 {
581 }
582 
583 static inline
584 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
585 {
586 }
587 
588 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
589 {
590 	return false;
591 }
592 
593 static inline void pull_dl_task(struct rq *rq)
594 {
595 }
596 
597 static inline void deadline_queue_push_tasks(struct rq *rq)
598 {
599 }
600 
601 static inline void deadline_queue_pull_task(struct rq *rq)
602 {
603 }
604 #endif /* CONFIG_SMP */
605 
606 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
607 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
608 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
609 
610 /*
611  * We are being explicitly informed that a new instance is starting,
612  * and this means that:
613  *  - the absolute deadline of the entity has to be placed at
614  *    current time + relative deadline;
615  *  - the runtime of the entity has to be set to the maximum value.
616  *
617  * The capability of specifying such event is useful whenever a -deadline
618  * entity wants to (try to!) synchronize its behaviour with the scheduler's
619  * one, and to (try to!) reconcile itself with its own scheduling
620  * parameters.
621  */
622 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
623 {
624 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
625 	struct rq *rq = rq_of_dl_rq(dl_rq);
626 
627 	WARN_ON(dl_se->dl_boosted);
628 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
629 
630 	/*
631 	 * We are racing with the deadline timer. So, do nothing because
632 	 * the deadline timer handler will take care of properly recharging
633 	 * the runtime and postponing the deadline
634 	 */
635 	if (dl_se->dl_throttled)
636 		return;
637 
638 	/*
639 	 * We use the regular wall clock time to set deadlines in the
640 	 * future; in fact, we must consider execution overheads (time
641 	 * spent on hardirq context, etc.).
642 	 */
643 	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
644 	dl_se->runtime = dl_se->dl_runtime;
645 }
646 
647 /*
648  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
649  * possibility of a entity lasting more than what it declared, and thus
650  * exhausting its runtime.
651  *
652  * Here we are interested in making runtime overrun possible, but we do
653  * not want a entity which is misbehaving to affect the scheduling of all
654  * other entities.
655  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
656  * is used, in order to confine each entity within its own bandwidth.
657  *
658  * This function deals exactly with that, and ensures that when the runtime
659  * of a entity is replenished, its deadline is also postponed. That ensures
660  * the overrunning entity can't interfere with other entity in the system and
661  * can't make them miss their deadlines. Reasons why this kind of overruns
662  * could happen are, typically, a entity voluntarily trying to overcome its
663  * runtime, or it just underestimated it during sched_setattr().
664  */
665 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
666 				struct sched_dl_entity *pi_se)
667 {
668 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
669 	struct rq *rq = rq_of_dl_rq(dl_rq);
670 
671 	BUG_ON(pi_se->dl_runtime <= 0);
672 
673 	/*
674 	 * This could be the case for a !-dl task that is boosted.
675 	 * Just go with full inherited parameters.
676 	 */
677 	if (dl_se->dl_deadline == 0) {
678 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
679 		dl_se->runtime = pi_se->dl_runtime;
680 	}
681 
682 	if (dl_se->dl_yielded && dl_se->runtime > 0)
683 		dl_se->runtime = 0;
684 
685 	/*
686 	 * We keep moving the deadline away until we get some
687 	 * available runtime for the entity. This ensures correct
688 	 * handling of situations where the runtime overrun is
689 	 * arbitrary large.
690 	 */
691 	while (dl_se->runtime <= 0) {
692 		dl_se->deadline += pi_se->dl_period;
693 		dl_se->runtime += pi_se->dl_runtime;
694 	}
695 
696 	/*
697 	 * At this point, the deadline really should be "in
698 	 * the future" with respect to rq->clock. If it's
699 	 * not, we are, for some reason, lagging too much!
700 	 * Anyway, after having warn userspace abut that,
701 	 * we still try to keep the things running by
702 	 * resetting the deadline and the budget of the
703 	 * entity.
704 	 */
705 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
706 		printk_deferred_once("sched: DL replenish lagged too much\n");
707 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
708 		dl_se->runtime = pi_se->dl_runtime;
709 	}
710 
711 	if (dl_se->dl_yielded)
712 		dl_se->dl_yielded = 0;
713 	if (dl_se->dl_throttled)
714 		dl_se->dl_throttled = 0;
715 }
716 
717 /*
718  * Here we check if --at time t-- an entity (which is probably being
719  * [re]activated or, in general, enqueued) can use its remaining runtime
720  * and its current deadline _without_ exceeding the bandwidth it is
721  * assigned (function returns true if it can't). We are in fact applying
722  * one of the CBS rules: when a task wakes up, if the residual runtime
723  * over residual deadline fits within the allocated bandwidth, then we
724  * can keep the current (absolute) deadline and residual budget without
725  * disrupting the schedulability of the system. Otherwise, we should
726  * refill the runtime and set the deadline a period in the future,
727  * because keeping the current (absolute) deadline of the task would
728  * result in breaking guarantees promised to other tasks (refer to
729  * Documentation/scheduler/sched-deadline.txt for more informations).
730  *
731  * This function returns true if:
732  *
733  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
734  *
735  * IOW we can't recycle current parameters.
736  *
737  * Notice that the bandwidth check is done against the deadline. For
738  * task with deadline equal to period this is the same of using
739  * dl_period instead of dl_deadline in the equation above.
740  */
741 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
742 			       struct sched_dl_entity *pi_se, u64 t)
743 {
744 	u64 left, right;
745 
746 	/*
747 	 * left and right are the two sides of the equation above,
748 	 * after a bit of shuffling to use multiplications instead
749 	 * of divisions.
750 	 *
751 	 * Note that none of the time values involved in the two
752 	 * multiplications are absolute: dl_deadline and dl_runtime
753 	 * are the relative deadline and the maximum runtime of each
754 	 * instance, runtime is the runtime left for the last instance
755 	 * and (deadline - t), since t is rq->clock, is the time left
756 	 * to the (absolute) deadline. Even if overflowing the u64 type
757 	 * is very unlikely to occur in both cases, here we scale down
758 	 * as we want to avoid that risk at all. Scaling down by 10
759 	 * means that we reduce granularity to 1us. We are fine with it,
760 	 * since this is only a true/false check and, anyway, thinking
761 	 * of anything below microseconds resolution is actually fiction
762 	 * (but still we want to give the user that illusion >;).
763 	 */
764 	left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
765 	right = ((dl_se->deadline - t) >> DL_SCALE) *
766 		(pi_se->dl_runtime >> DL_SCALE);
767 
768 	return dl_time_before(right, left);
769 }
770 
771 /*
772  * Revised wakeup rule [1]: For self-suspending tasks, rather then
773  * re-initializing task's runtime and deadline, the revised wakeup
774  * rule adjusts the task's runtime to avoid the task to overrun its
775  * density.
776  *
777  * Reasoning: a task may overrun the density if:
778  *    runtime / (deadline - t) > dl_runtime / dl_deadline
779  *
780  * Therefore, runtime can be adjusted to:
781  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
782  *
783  * In such way that runtime will be equal to the maximum density
784  * the task can use without breaking any rule.
785  *
786  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
787  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
788  */
789 static void
790 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
791 {
792 	u64 laxity = dl_se->deadline - rq_clock(rq);
793 
794 	/*
795 	 * If the task has deadline < period, and the deadline is in the past,
796 	 * it should already be throttled before this check.
797 	 *
798 	 * See update_dl_entity() comments for further details.
799 	 */
800 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
801 
802 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
803 }
804 
805 /*
806  * Regarding the deadline, a task with implicit deadline has a relative
807  * deadline == relative period. A task with constrained deadline has a
808  * relative deadline <= relative period.
809  *
810  * We support constrained deadline tasks. However, there are some restrictions
811  * applied only for tasks which do not have an implicit deadline. See
812  * update_dl_entity() to know more about such restrictions.
813  *
814  * The dl_is_implicit() returns true if the task has an implicit deadline.
815  */
816 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
817 {
818 	return dl_se->dl_deadline == dl_se->dl_period;
819 }
820 
821 /*
822  * When a deadline entity is placed in the runqueue, its runtime and deadline
823  * might need to be updated. This is done by a CBS wake up rule. There are two
824  * different rules: 1) the original CBS; and 2) the Revisited CBS.
825  *
826  * When the task is starting a new period, the Original CBS is used. In this
827  * case, the runtime is replenished and a new absolute deadline is set.
828  *
829  * When a task is queued before the begin of the next period, using the
830  * remaining runtime and deadline could make the entity to overflow, see
831  * dl_entity_overflow() to find more about runtime overflow. When such case
832  * is detected, the runtime and deadline need to be updated.
833  *
834  * If the task has an implicit deadline, i.e., deadline == period, the Original
835  * CBS is applied. the runtime is replenished and a new absolute deadline is
836  * set, as in the previous cases.
837  *
838  * However, the Original CBS does not work properly for tasks with
839  * deadline < period, which are said to have a constrained deadline. By
840  * applying the Original CBS, a constrained deadline task would be able to run
841  * runtime/deadline in a period. With deadline < period, the task would
842  * overrun the runtime/period allowed bandwidth, breaking the admission test.
843  *
844  * In order to prevent this misbehave, the Revisited CBS is used for
845  * constrained deadline tasks when a runtime overflow is detected. In the
846  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
847  * the remaining runtime of the task is reduced to avoid runtime overflow.
848  * Please refer to the comments update_dl_revised_wakeup() function to find
849  * more about the Revised CBS rule.
850  */
851 static void update_dl_entity(struct sched_dl_entity *dl_se,
852 			     struct sched_dl_entity *pi_se)
853 {
854 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
855 	struct rq *rq = rq_of_dl_rq(dl_rq);
856 
857 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
858 	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
859 
860 		if (unlikely(!dl_is_implicit(dl_se) &&
861 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
862 			     !dl_se->dl_boosted)){
863 			update_dl_revised_wakeup(dl_se, rq);
864 			return;
865 		}
866 
867 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
868 		dl_se->runtime = pi_se->dl_runtime;
869 	}
870 }
871 
872 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
873 {
874 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
875 }
876 
877 /*
878  * If the entity depleted all its runtime, and if we want it to sleep
879  * while waiting for some new execution time to become available, we
880  * set the bandwidth replenishment timer to the replenishment instant
881  * and try to activate it.
882  *
883  * Notice that it is important for the caller to know if the timer
884  * actually started or not (i.e., the replenishment instant is in
885  * the future or in the past).
886  */
887 static int start_dl_timer(struct task_struct *p)
888 {
889 	struct sched_dl_entity *dl_se = &p->dl;
890 	struct hrtimer *timer = &dl_se->dl_timer;
891 	struct rq *rq = task_rq(p);
892 	ktime_t now, act;
893 	s64 delta;
894 
895 	lockdep_assert_held(&rq->lock);
896 
897 	/*
898 	 * We want the timer to fire at the deadline, but considering
899 	 * that it is actually coming from rq->clock and not from
900 	 * hrtimer's time base reading.
901 	 */
902 	act = ns_to_ktime(dl_next_period(dl_se));
903 	now = hrtimer_cb_get_time(timer);
904 	delta = ktime_to_ns(now) - rq_clock(rq);
905 	act = ktime_add_ns(act, delta);
906 
907 	/*
908 	 * If the expiry time already passed, e.g., because the value
909 	 * chosen as the deadline is too small, don't even try to
910 	 * start the timer in the past!
911 	 */
912 	if (ktime_us_delta(act, now) < 0)
913 		return 0;
914 
915 	/*
916 	 * !enqueued will guarantee another callback; even if one is already in
917 	 * progress. This ensures a balanced {get,put}_task_struct().
918 	 *
919 	 * The race against __run_timer() clearing the enqueued state is
920 	 * harmless because we're holding task_rq()->lock, therefore the timer
921 	 * expiring after we've done the check will wait on its task_rq_lock()
922 	 * and observe our state.
923 	 */
924 	if (!hrtimer_is_queued(timer)) {
925 		get_task_struct(p);
926 		hrtimer_start(timer, act, HRTIMER_MODE_ABS);
927 	}
928 
929 	return 1;
930 }
931 
932 /*
933  * This is the bandwidth enforcement timer callback. If here, we know
934  * a task is not on its dl_rq, since the fact that the timer was running
935  * means the task is throttled and needs a runtime replenishment.
936  *
937  * However, what we actually do depends on the fact the task is active,
938  * (it is on its rq) or has been removed from there by a call to
939  * dequeue_task_dl(). In the former case we must issue the runtime
940  * replenishment and add the task back to the dl_rq; in the latter, we just
941  * do nothing but clearing dl_throttled, so that runtime and deadline
942  * updating (and the queueing back to dl_rq) will be done by the
943  * next call to enqueue_task_dl().
944  */
945 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
946 {
947 	struct sched_dl_entity *dl_se = container_of(timer,
948 						     struct sched_dl_entity,
949 						     dl_timer);
950 	struct task_struct *p = dl_task_of(dl_se);
951 	struct rq_flags rf;
952 	struct rq *rq;
953 
954 	rq = task_rq_lock(p, &rf);
955 
956 	/*
957 	 * The task might have changed its scheduling policy to something
958 	 * different than SCHED_DEADLINE (through switched_from_dl()).
959 	 */
960 	if (!dl_task(p))
961 		goto unlock;
962 
963 	/*
964 	 * The task might have been boosted by someone else and might be in the
965 	 * boosting/deboosting path, its not throttled.
966 	 */
967 	if (dl_se->dl_boosted)
968 		goto unlock;
969 
970 	/*
971 	 * Spurious timer due to start_dl_timer() race; or we already received
972 	 * a replenishment from rt_mutex_setprio().
973 	 */
974 	if (!dl_se->dl_throttled)
975 		goto unlock;
976 
977 	sched_clock_tick();
978 	update_rq_clock(rq);
979 
980 	/*
981 	 * If the throttle happened during sched-out; like:
982 	 *
983 	 *   schedule()
984 	 *     deactivate_task()
985 	 *       dequeue_task_dl()
986 	 *         update_curr_dl()
987 	 *           start_dl_timer()
988 	 *         __dequeue_task_dl()
989 	 *     prev->on_rq = 0;
990 	 *
991 	 * We can be both throttled and !queued. Replenish the counter
992 	 * but do not enqueue -- wait for our wakeup to do that.
993 	 */
994 	if (!task_on_rq_queued(p)) {
995 		replenish_dl_entity(dl_se, dl_se);
996 		goto unlock;
997 	}
998 
999 #ifdef CONFIG_SMP
1000 	if (unlikely(!rq->online)) {
1001 		/*
1002 		 * If the runqueue is no longer available, migrate the
1003 		 * task elsewhere. This necessarily changes rq.
1004 		 */
1005 		lockdep_unpin_lock(&rq->lock, rf.cookie);
1006 		rq = dl_task_offline_migration(rq, p);
1007 		rf.cookie = lockdep_pin_lock(&rq->lock);
1008 		update_rq_clock(rq);
1009 
1010 		/*
1011 		 * Now that the task has been migrated to the new RQ and we
1012 		 * have that locked, proceed as normal and enqueue the task
1013 		 * there.
1014 		 */
1015 	}
1016 #endif
1017 
1018 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1019 	if (dl_task(rq->curr))
1020 		check_preempt_curr_dl(rq, p, 0);
1021 	else
1022 		resched_curr(rq);
1023 
1024 #ifdef CONFIG_SMP
1025 	/*
1026 	 * Queueing this task back might have overloaded rq, check if we need
1027 	 * to kick someone away.
1028 	 */
1029 	if (has_pushable_dl_tasks(rq)) {
1030 		/*
1031 		 * Nothing relies on rq->lock after this, so its safe to drop
1032 		 * rq->lock.
1033 		 */
1034 		rq_unpin_lock(rq, &rf);
1035 		push_dl_task(rq);
1036 		rq_repin_lock(rq, &rf);
1037 	}
1038 #endif
1039 
1040 unlock:
1041 	task_rq_unlock(rq, p, &rf);
1042 
1043 	/*
1044 	 * This can free the task_struct, including this hrtimer, do not touch
1045 	 * anything related to that after this.
1046 	 */
1047 	put_task_struct(p);
1048 
1049 	return HRTIMER_NORESTART;
1050 }
1051 
1052 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1053 {
1054 	struct hrtimer *timer = &dl_se->dl_timer;
1055 
1056 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1057 	timer->function = dl_task_timer;
1058 }
1059 
1060 /*
1061  * During the activation, CBS checks if it can reuse the current task's
1062  * runtime and period. If the deadline of the task is in the past, CBS
1063  * cannot use the runtime, and so it replenishes the task. This rule
1064  * works fine for implicit deadline tasks (deadline == period), and the
1065  * CBS was designed for implicit deadline tasks. However, a task with
1066  * constrained deadline (deadine < period) might be awakened after the
1067  * deadline, but before the next period. In this case, replenishing the
1068  * task would allow it to run for runtime / deadline. As in this case
1069  * deadline < period, CBS enables a task to run for more than the
1070  * runtime / period. In a very loaded system, this can cause a domino
1071  * effect, making other tasks miss their deadlines.
1072  *
1073  * To avoid this problem, in the activation of a constrained deadline
1074  * task after the deadline but before the next period, throttle the
1075  * task and set the replenishing timer to the begin of the next period,
1076  * unless it is boosted.
1077  */
1078 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1079 {
1080 	struct task_struct *p = dl_task_of(dl_se);
1081 	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1082 
1083 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1084 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1085 		if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1086 			return;
1087 		dl_se->dl_throttled = 1;
1088 		if (dl_se->runtime > 0)
1089 			dl_se->runtime = 0;
1090 	}
1091 }
1092 
1093 static
1094 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1095 {
1096 	return (dl_se->runtime <= 0);
1097 }
1098 
1099 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1100 
1101 /*
1102  * This function implements the GRUB accounting rule:
1103  * according to the GRUB reclaiming algorithm, the runtime is
1104  * not decreased as "dq = -dt", but as
1105  * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1106  * where u is the utilization of the task, Umax is the maximum reclaimable
1107  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1108  * as the difference between the "total runqueue utilization" and the
1109  * runqueue active utilization, and Uextra is the (per runqueue) extra
1110  * reclaimable utilization.
1111  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1112  * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1113  * BW_SHIFT.
1114  * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1115  * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1116  * Since delta is a 64 bit variable, to have an overflow its value
1117  * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1118  * So, overflow is not an issue here.
1119  */
1120 u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1121 {
1122 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1123 	u64 u_act;
1124 	u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1125 
1126 	/*
1127 	 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1128 	 * we compare u_inact + rq->dl.extra_bw with
1129 	 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1130 	 * u_inact + rq->dl.extra_bw can be larger than
1131 	 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1132 	 * leading to wrong results)
1133 	 */
1134 	if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1135 		u_act = u_act_min;
1136 	else
1137 		u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1138 
1139 	return (delta * u_act) >> BW_SHIFT;
1140 }
1141 
1142 /*
1143  * Update the current task's runtime statistics (provided it is still
1144  * a -deadline task and has not been removed from the dl_rq).
1145  */
1146 static void update_curr_dl(struct rq *rq)
1147 {
1148 	struct task_struct *curr = rq->curr;
1149 	struct sched_dl_entity *dl_se = &curr->dl;
1150 	u64 delta_exec, scaled_delta_exec;
1151 	int cpu = cpu_of(rq);
1152 	u64 now;
1153 
1154 	if (!dl_task(curr) || !on_dl_rq(dl_se))
1155 		return;
1156 
1157 	/*
1158 	 * Consumed budget is computed considering the time as
1159 	 * observed by schedulable tasks (excluding time spent
1160 	 * in hardirq context, etc.). Deadlines are instead
1161 	 * computed using hard walltime. This seems to be the more
1162 	 * natural solution, but the full ramifications of this
1163 	 * approach need further study.
1164 	 */
1165 	now = rq_clock_task(rq);
1166 	delta_exec = now - curr->se.exec_start;
1167 	if (unlikely((s64)delta_exec <= 0)) {
1168 		if (unlikely(dl_se->dl_yielded))
1169 			goto throttle;
1170 		return;
1171 	}
1172 
1173 	schedstat_set(curr->se.statistics.exec_max,
1174 		      max(curr->se.statistics.exec_max, delta_exec));
1175 
1176 	curr->se.sum_exec_runtime += delta_exec;
1177 	account_group_exec_runtime(curr, delta_exec);
1178 
1179 	curr->se.exec_start = now;
1180 	cgroup_account_cputime(curr, delta_exec);
1181 
1182 	sched_rt_avg_update(rq, delta_exec);
1183 
1184 	if (dl_entity_is_special(dl_se))
1185 		return;
1186 
1187 	/*
1188 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1189 	 * spare reclaimed bandwidth is used to clock down frequency.
1190 	 *
1191 	 * For the others, we still need to scale reservation parameters
1192 	 * according to current frequency and CPU maximum capacity.
1193 	 */
1194 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1195 		scaled_delta_exec = grub_reclaim(delta_exec,
1196 						 rq,
1197 						 &curr->dl);
1198 	} else {
1199 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1200 		unsigned long scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
1201 
1202 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1203 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1204 	}
1205 
1206 	dl_se->runtime -= scaled_delta_exec;
1207 
1208 throttle:
1209 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1210 		dl_se->dl_throttled = 1;
1211 
1212 		/* If requested, inform the user about runtime overruns. */
1213 		if (dl_runtime_exceeded(dl_se) &&
1214 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1215 			dl_se->dl_overrun = 1;
1216 
1217 		__dequeue_task_dl(rq, curr, 0);
1218 		if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
1219 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1220 
1221 		if (!is_leftmost(curr, &rq->dl))
1222 			resched_curr(rq);
1223 	}
1224 
1225 	/*
1226 	 * Because -- for now -- we share the rt bandwidth, we need to
1227 	 * account our runtime there too, otherwise actual rt tasks
1228 	 * would be able to exceed the shared quota.
1229 	 *
1230 	 * Account to the root rt group for now.
1231 	 *
1232 	 * The solution we're working towards is having the RT groups scheduled
1233 	 * using deadline servers -- however there's a few nasties to figure
1234 	 * out before that can happen.
1235 	 */
1236 	if (rt_bandwidth_enabled()) {
1237 		struct rt_rq *rt_rq = &rq->rt;
1238 
1239 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1240 		/*
1241 		 * We'll let actual RT tasks worry about the overflow here, we
1242 		 * have our own CBS to keep us inline; only account when RT
1243 		 * bandwidth is relevant.
1244 		 */
1245 		if (sched_rt_bandwidth_account(rt_rq))
1246 			rt_rq->rt_time += delta_exec;
1247 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1248 	}
1249 }
1250 
1251 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1252 {
1253 	struct sched_dl_entity *dl_se = container_of(timer,
1254 						     struct sched_dl_entity,
1255 						     inactive_timer);
1256 	struct task_struct *p = dl_task_of(dl_se);
1257 	struct rq_flags rf;
1258 	struct rq *rq;
1259 
1260 	rq = task_rq_lock(p, &rf);
1261 
1262 	if (!dl_task(p) || p->state == TASK_DEAD) {
1263 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1264 
1265 		if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1266 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1267 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1268 			dl_se->dl_non_contending = 0;
1269 		}
1270 
1271 		raw_spin_lock(&dl_b->lock);
1272 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1273 		raw_spin_unlock(&dl_b->lock);
1274 		__dl_clear_params(p);
1275 
1276 		goto unlock;
1277 	}
1278 	if (dl_se->dl_non_contending == 0)
1279 		goto unlock;
1280 
1281 	sched_clock_tick();
1282 	update_rq_clock(rq);
1283 
1284 	sub_running_bw(dl_se, &rq->dl);
1285 	dl_se->dl_non_contending = 0;
1286 unlock:
1287 	task_rq_unlock(rq, p, &rf);
1288 	put_task_struct(p);
1289 
1290 	return HRTIMER_NORESTART;
1291 }
1292 
1293 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1294 {
1295 	struct hrtimer *timer = &dl_se->inactive_timer;
1296 
1297 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1298 	timer->function = inactive_task_timer;
1299 }
1300 
1301 #ifdef CONFIG_SMP
1302 
1303 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1304 {
1305 	struct rq *rq = rq_of_dl_rq(dl_rq);
1306 
1307 	if (dl_rq->earliest_dl.curr == 0 ||
1308 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1309 		dl_rq->earliest_dl.curr = deadline;
1310 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1311 	}
1312 }
1313 
1314 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1315 {
1316 	struct rq *rq = rq_of_dl_rq(dl_rq);
1317 
1318 	/*
1319 	 * Since we may have removed our earliest (and/or next earliest)
1320 	 * task we must recompute them.
1321 	 */
1322 	if (!dl_rq->dl_nr_running) {
1323 		dl_rq->earliest_dl.curr = 0;
1324 		dl_rq->earliest_dl.next = 0;
1325 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1326 	} else {
1327 		struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1328 		struct sched_dl_entity *entry;
1329 
1330 		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1331 		dl_rq->earliest_dl.curr = entry->deadline;
1332 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1333 	}
1334 }
1335 
1336 #else
1337 
1338 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1339 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1340 
1341 #endif /* CONFIG_SMP */
1342 
1343 static inline
1344 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1345 {
1346 	int prio = dl_task_of(dl_se)->prio;
1347 	u64 deadline = dl_se->deadline;
1348 
1349 	WARN_ON(!dl_prio(prio));
1350 	dl_rq->dl_nr_running++;
1351 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1352 
1353 	inc_dl_deadline(dl_rq, deadline);
1354 	inc_dl_migration(dl_se, dl_rq);
1355 }
1356 
1357 static inline
1358 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1359 {
1360 	int prio = dl_task_of(dl_se)->prio;
1361 
1362 	WARN_ON(!dl_prio(prio));
1363 	WARN_ON(!dl_rq->dl_nr_running);
1364 	dl_rq->dl_nr_running--;
1365 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1366 
1367 	dec_dl_deadline(dl_rq, dl_se->deadline);
1368 	dec_dl_migration(dl_se, dl_rq);
1369 }
1370 
1371 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1372 {
1373 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1374 	struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1375 	struct rb_node *parent = NULL;
1376 	struct sched_dl_entity *entry;
1377 	int leftmost = 1;
1378 
1379 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1380 
1381 	while (*link) {
1382 		parent = *link;
1383 		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1384 		if (dl_time_before(dl_se->deadline, entry->deadline))
1385 			link = &parent->rb_left;
1386 		else {
1387 			link = &parent->rb_right;
1388 			leftmost = 0;
1389 		}
1390 	}
1391 
1392 	rb_link_node(&dl_se->rb_node, parent, link);
1393 	rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
1394 
1395 	inc_dl_tasks(dl_se, dl_rq);
1396 }
1397 
1398 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1399 {
1400 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1401 
1402 	if (RB_EMPTY_NODE(&dl_se->rb_node))
1403 		return;
1404 
1405 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1406 	RB_CLEAR_NODE(&dl_se->rb_node);
1407 
1408 	dec_dl_tasks(dl_se, dl_rq);
1409 }
1410 
1411 static void
1412 enqueue_dl_entity(struct sched_dl_entity *dl_se,
1413 		  struct sched_dl_entity *pi_se, int flags)
1414 {
1415 	BUG_ON(on_dl_rq(dl_se));
1416 
1417 	/*
1418 	 * If this is a wakeup or a new instance, the scheduling
1419 	 * parameters of the task might need updating. Otherwise,
1420 	 * we want a replenishment of its runtime.
1421 	 */
1422 	if (flags & ENQUEUE_WAKEUP) {
1423 		task_contending(dl_se, flags);
1424 		update_dl_entity(dl_se, pi_se);
1425 	} else if (flags & ENQUEUE_REPLENISH) {
1426 		replenish_dl_entity(dl_se, pi_se);
1427 	} else if ((flags & ENQUEUE_RESTORE) &&
1428 		  dl_time_before(dl_se->deadline,
1429 				 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1430 		setup_new_dl_entity(dl_se);
1431 	}
1432 
1433 	__enqueue_dl_entity(dl_se);
1434 }
1435 
1436 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1437 {
1438 	__dequeue_dl_entity(dl_se);
1439 }
1440 
1441 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1442 {
1443 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
1444 	struct sched_dl_entity *pi_se = &p->dl;
1445 
1446 	/*
1447 	 * Use the scheduling parameters of the top pi-waiter task if:
1448 	 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1449 	 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1450 	 *   smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1451 	 *   boosted due to a SCHED_DEADLINE pi-waiter).
1452 	 * Otherwise we keep our runtime and deadline.
1453 	 */
1454 	if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
1455 		pi_se = &pi_task->dl;
1456 	} else if (!dl_prio(p->normal_prio)) {
1457 		/*
1458 		 * Special case in which we have a !SCHED_DEADLINE task
1459 		 * that is going to be deboosted, but exceeds its
1460 		 * runtime while doing so. No point in replenishing
1461 		 * it, as it's going to return back to its original
1462 		 * scheduling class after this.
1463 		 */
1464 		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1465 		return;
1466 	}
1467 
1468 	/*
1469 	 * Check if a constrained deadline task was activated
1470 	 * after the deadline but before the next period.
1471 	 * If that is the case, the task will be throttled and
1472 	 * the replenishment timer will be set to the next period.
1473 	 */
1474 	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1475 		dl_check_constrained_dl(&p->dl);
1476 
1477 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1478 		add_rq_bw(&p->dl, &rq->dl);
1479 		add_running_bw(&p->dl, &rq->dl);
1480 	}
1481 
1482 	/*
1483 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1484 	 * its budget it needs a replenishment and, since it now is on
1485 	 * its rq, the bandwidth timer callback (which clearly has not
1486 	 * run yet) will take care of this.
1487 	 * However, the active utilization does not depend on the fact
1488 	 * that the task is on the runqueue or not (but depends on the
1489 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1490 	 * In other words, even if a task is throttled its utilization must
1491 	 * be counted in the active utilization; hence, we need to call
1492 	 * add_running_bw().
1493 	 */
1494 	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1495 		if (flags & ENQUEUE_WAKEUP)
1496 			task_contending(&p->dl, flags);
1497 
1498 		return;
1499 	}
1500 
1501 	enqueue_dl_entity(&p->dl, pi_se, flags);
1502 
1503 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1504 		enqueue_pushable_dl_task(rq, p);
1505 }
1506 
1507 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1508 {
1509 	dequeue_dl_entity(&p->dl);
1510 	dequeue_pushable_dl_task(rq, p);
1511 }
1512 
1513 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1514 {
1515 	update_curr_dl(rq);
1516 	__dequeue_task_dl(rq, p, flags);
1517 
1518 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1519 		sub_running_bw(&p->dl, &rq->dl);
1520 		sub_rq_bw(&p->dl, &rq->dl);
1521 	}
1522 
1523 	/*
1524 	 * This check allows to start the inactive timer (or to immediately
1525 	 * decrease the active utilization, if needed) in two cases:
1526 	 * when the task blocks and when it is terminating
1527 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1528 	 * way, because from GRUB's point of view the same thing is happening
1529 	 * (the task moves from "active contending" to "active non contending"
1530 	 * or "inactive")
1531 	 */
1532 	if (flags & DEQUEUE_SLEEP)
1533 		task_non_contending(p);
1534 }
1535 
1536 /*
1537  * Yield task semantic for -deadline tasks is:
1538  *
1539  *   get off from the CPU until our next instance, with
1540  *   a new runtime. This is of little use now, since we
1541  *   don't have a bandwidth reclaiming mechanism. Anyway,
1542  *   bandwidth reclaiming is planned for the future, and
1543  *   yield_task_dl will indicate that some spare budget
1544  *   is available for other task instances to use it.
1545  */
1546 static void yield_task_dl(struct rq *rq)
1547 {
1548 	/*
1549 	 * We make the task go to sleep until its current deadline by
1550 	 * forcing its runtime to zero. This way, update_curr_dl() stops
1551 	 * it and the bandwidth timer will wake it up and will give it
1552 	 * new scheduling parameters (thanks to dl_yielded=1).
1553 	 */
1554 	rq->curr->dl.dl_yielded = 1;
1555 
1556 	update_rq_clock(rq);
1557 	update_curr_dl(rq);
1558 	/*
1559 	 * Tell update_rq_clock() that we've just updated,
1560 	 * so we don't do microscopic update in schedule()
1561 	 * and double the fastpath cost.
1562 	 */
1563 	rq_clock_skip_update(rq);
1564 }
1565 
1566 #ifdef CONFIG_SMP
1567 
1568 static int find_later_rq(struct task_struct *task);
1569 
1570 static int
1571 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1572 {
1573 	struct task_struct *curr;
1574 	struct rq *rq;
1575 
1576 	if (sd_flag != SD_BALANCE_WAKE)
1577 		goto out;
1578 
1579 	rq = cpu_rq(cpu);
1580 
1581 	rcu_read_lock();
1582 	curr = READ_ONCE(rq->curr); /* unlocked access */
1583 
1584 	/*
1585 	 * If we are dealing with a -deadline task, we must
1586 	 * decide where to wake it up.
1587 	 * If it has a later deadline and the current task
1588 	 * on this rq can't move (provided the waking task
1589 	 * can!) we prefer to send it somewhere else. On the
1590 	 * other hand, if it has a shorter deadline, we
1591 	 * try to make it stay here, it might be important.
1592 	 */
1593 	if (unlikely(dl_task(curr)) &&
1594 	    (curr->nr_cpus_allowed < 2 ||
1595 	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1596 	    (p->nr_cpus_allowed > 1)) {
1597 		int target = find_later_rq(p);
1598 
1599 		if (target != -1 &&
1600 				(dl_time_before(p->dl.deadline,
1601 					cpu_rq(target)->dl.earliest_dl.curr) ||
1602 				(cpu_rq(target)->dl.dl_nr_running == 0)))
1603 			cpu = target;
1604 	}
1605 	rcu_read_unlock();
1606 
1607 out:
1608 	return cpu;
1609 }
1610 
1611 static void migrate_task_rq_dl(struct task_struct *p)
1612 {
1613 	struct rq *rq;
1614 
1615 	if (p->state != TASK_WAKING)
1616 		return;
1617 
1618 	rq = task_rq(p);
1619 	/*
1620 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1621 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1622 	 * rq->lock is not... So, lock it
1623 	 */
1624 	raw_spin_lock(&rq->lock);
1625 	if (p->dl.dl_non_contending) {
1626 		sub_running_bw(&p->dl, &rq->dl);
1627 		p->dl.dl_non_contending = 0;
1628 		/*
1629 		 * If the timer handler is currently running and the
1630 		 * timer cannot be cancelled, inactive_task_timer()
1631 		 * will see that dl_not_contending is not set, and
1632 		 * will not touch the rq's active utilization,
1633 		 * so we are still safe.
1634 		 */
1635 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1636 			put_task_struct(p);
1637 	}
1638 	sub_rq_bw(&p->dl, &rq->dl);
1639 	raw_spin_unlock(&rq->lock);
1640 }
1641 
1642 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1643 {
1644 	/*
1645 	 * Current can't be migrated, useless to reschedule,
1646 	 * let's hope p can move out.
1647 	 */
1648 	if (rq->curr->nr_cpus_allowed == 1 ||
1649 	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1650 		return;
1651 
1652 	/*
1653 	 * p is migratable, so let's not schedule it and
1654 	 * see if it is pushed or pulled somewhere else.
1655 	 */
1656 	if (p->nr_cpus_allowed != 1 &&
1657 	    cpudl_find(&rq->rd->cpudl, p, NULL))
1658 		return;
1659 
1660 	resched_curr(rq);
1661 }
1662 
1663 #endif /* CONFIG_SMP */
1664 
1665 /*
1666  * Only called when both the current and waking task are -deadline
1667  * tasks.
1668  */
1669 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1670 				  int flags)
1671 {
1672 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1673 		resched_curr(rq);
1674 		return;
1675 	}
1676 
1677 #ifdef CONFIG_SMP
1678 	/*
1679 	 * In the unlikely case current and p have the same deadline
1680 	 * let us try to decide what's the best thing to do...
1681 	 */
1682 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1683 	    !test_tsk_need_resched(rq->curr))
1684 		check_preempt_equal_dl(rq, p);
1685 #endif /* CONFIG_SMP */
1686 }
1687 
1688 #ifdef CONFIG_SCHED_HRTICK
1689 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1690 {
1691 	hrtick_start(rq, p->dl.runtime);
1692 }
1693 #else /* !CONFIG_SCHED_HRTICK */
1694 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1695 {
1696 }
1697 #endif
1698 
1699 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1700 						   struct dl_rq *dl_rq)
1701 {
1702 	struct rb_node *left = rb_first_cached(&dl_rq->root);
1703 
1704 	if (!left)
1705 		return NULL;
1706 
1707 	return rb_entry(left, struct sched_dl_entity, rb_node);
1708 }
1709 
1710 static struct task_struct *
1711 pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1712 {
1713 	struct sched_dl_entity *dl_se;
1714 	struct task_struct *p;
1715 	struct dl_rq *dl_rq;
1716 
1717 	dl_rq = &rq->dl;
1718 
1719 	if (need_pull_dl_task(rq, prev)) {
1720 		/*
1721 		 * This is OK, because current is on_cpu, which avoids it being
1722 		 * picked for load-balance and preemption/IRQs are still
1723 		 * disabled avoiding further scheduler activity on it and we're
1724 		 * being very careful to re-start the picking loop.
1725 		 */
1726 		rq_unpin_lock(rq, rf);
1727 		pull_dl_task(rq);
1728 		rq_repin_lock(rq, rf);
1729 		/*
1730 		 * pull_dl_task() can drop (and re-acquire) rq->lock; this
1731 		 * means a stop task can slip in, in which case we need to
1732 		 * re-start task selection.
1733 		 */
1734 		if (rq->stop && task_on_rq_queued(rq->stop))
1735 			return RETRY_TASK;
1736 	}
1737 
1738 	/*
1739 	 * When prev is DL, we may throttle it in put_prev_task().
1740 	 * So, we update time before we check for dl_nr_running.
1741 	 */
1742 	if (prev->sched_class == &dl_sched_class)
1743 		update_curr_dl(rq);
1744 
1745 	if (unlikely(!dl_rq->dl_nr_running))
1746 		return NULL;
1747 
1748 	put_prev_task(rq, prev);
1749 
1750 	dl_se = pick_next_dl_entity(rq, dl_rq);
1751 	BUG_ON(!dl_se);
1752 
1753 	p = dl_task_of(dl_se);
1754 	p->se.exec_start = rq_clock_task(rq);
1755 
1756 	/* Running task will never be pushed. */
1757        dequeue_pushable_dl_task(rq, p);
1758 
1759 	if (hrtick_enabled(rq))
1760 		start_hrtick_dl(rq, p);
1761 
1762 	deadline_queue_push_tasks(rq);
1763 
1764 	return p;
1765 }
1766 
1767 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1768 {
1769 	update_curr_dl(rq);
1770 
1771 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1772 		enqueue_pushable_dl_task(rq, p);
1773 }
1774 
1775 /*
1776  * scheduler tick hitting a task of our scheduling class.
1777  *
1778  * NOTE: This function can be called remotely by the tick offload that
1779  * goes along full dynticks. Therefore no local assumption can be made
1780  * and everything must be accessed through the @rq and @curr passed in
1781  * parameters.
1782  */
1783 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1784 {
1785 	update_curr_dl(rq);
1786 
1787 	/*
1788 	 * Even when we have runtime, update_curr_dl() might have resulted in us
1789 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
1790 	 * be set and schedule() will start a new hrtick for the next task.
1791 	 */
1792 	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1793 	    is_leftmost(p, &rq->dl))
1794 		start_hrtick_dl(rq, p);
1795 }
1796 
1797 static void task_fork_dl(struct task_struct *p)
1798 {
1799 	/*
1800 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1801 	 * sched_fork()
1802 	 */
1803 }
1804 
1805 static void set_curr_task_dl(struct rq *rq)
1806 {
1807 	struct task_struct *p = rq->curr;
1808 
1809 	p->se.exec_start = rq_clock_task(rq);
1810 
1811 	/* You can't push away the running task */
1812 	dequeue_pushable_dl_task(rq, p);
1813 }
1814 
1815 #ifdef CONFIG_SMP
1816 
1817 /* Only try algorithms three times */
1818 #define DL_MAX_TRIES 3
1819 
1820 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1821 {
1822 	if (!task_running(rq, p) &&
1823 	    cpumask_test_cpu(cpu, &p->cpus_allowed))
1824 		return 1;
1825 	return 0;
1826 }
1827 
1828 /*
1829  * Return the earliest pushable rq's task, which is suitable to be executed
1830  * on the CPU, NULL otherwise:
1831  */
1832 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1833 {
1834 	struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1835 	struct task_struct *p = NULL;
1836 
1837 	if (!has_pushable_dl_tasks(rq))
1838 		return NULL;
1839 
1840 next_node:
1841 	if (next_node) {
1842 		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1843 
1844 		if (pick_dl_task(rq, p, cpu))
1845 			return p;
1846 
1847 		next_node = rb_next(next_node);
1848 		goto next_node;
1849 	}
1850 
1851 	return NULL;
1852 }
1853 
1854 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1855 
1856 static int find_later_rq(struct task_struct *task)
1857 {
1858 	struct sched_domain *sd;
1859 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1860 	int this_cpu = smp_processor_id();
1861 	int cpu = task_cpu(task);
1862 
1863 	/* Make sure the mask is initialized first */
1864 	if (unlikely(!later_mask))
1865 		return -1;
1866 
1867 	if (task->nr_cpus_allowed == 1)
1868 		return -1;
1869 
1870 	/*
1871 	 * We have to consider system topology and task affinity
1872 	 * first, then we can look for a suitable CPU.
1873 	 */
1874 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1875 		return -1;
1876 
1877 	/*
1878 	 * If we are here, some targets have been found, including
1879 	 * the most suitable which is, among the runqueues where the
1880 	 * current tasks have later deadlines than the task's one, the
1881 	 * rq with the latest possible one.
1882 	 *
1883 	 * Now we check how well this matches with task's
1884 	 * affinity and system topology.
1885 	 *
1886 	 * The last CPU where the task run is our first
1887 	 * guess, since it is most likely cache-hot there.
1888 	 */
1889 	if (cpumask_test_cpu(cpu, later_mask))
1890 		return cpu;
1891 	/*
1892 	 * Check if this_cpu is to be skipped (i.e., it is
1893 	 * not in the mask) or not.
1894 	 */
1895 	if (!cpumask_test_cpu(this_cpu, later_mask))
1896 		this_cpu = -1;
1897 
1898 	rcu_read_lock();
1899 	for_each_domain(cpu, sd) {
1900 		if (sd->flags & SD_WAKE_AFFINE) {
1901 			int best_cpu;
1902 
1903 			/*
1904 			 * If possible, preempting this_cpu is
1905 			 * cheaper than migrating.
1906 			 */
1907 			if (this_cpu != -1 &&
1908 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1909 				rcu_read_unlock();
1910 				return this_cpu;
1911 			}
1912 
1913 			best_cpu = cpumask_first_and(later_mask,
1914 							sched_domain_span(sd));
1915 			/*
1916 			 * Last chance: if a CPU being in both later_mask
1917 			 * and current sd span is valid, that becomes our
1918 			 * choice. Of course, the latest possible CPU is
1919 			 * already under consideration through later_mask.
1920 			 */
1921 			if (best_cpu < nr_cpu_ids) {
1922 				rcu_read_unlock();
1923 				return best_cpu;
1924 			}
1925 		}
1926 	}
1927 	rcu_read_unlock();
1928 
1929 	/*
1930 	 * At this point, all our guesses failed, we just return
1931 	 * 'something', and let the caller sort the things out.
1932 	 */
1933 	if (this_cpu != -1)
1934 		return this_cpu;
1935 
1936 	cpu = cpumask_any(later_mask);
1937 	if (cpu < nr_cpu_ids)
1938 		return cpu;
1939 
1940 	return -1;
1941 }
1942 
1943 /* Locks the rq it finds */
1944 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1945 {
1946 	struct rq *later_rq = NULL;
1947 	int tries;
1948 	int cpu;
1949 
1950 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1951 		cpu = find_later_rq(task);
1952 
1953 		if ((cpu == -1) || (cpu == rq->cpu))
1954 			break;
1955 
1956 		later_rq = cpu_rq(cpu);
1957 
1958 		if (later_rq->dl.dl_nr_running &&
1959 		    !dl_time_before(task->dl.deadline,
1960 					later_rq->dl.earliest_dl.curr)) {
1961 			/*
1962 			 * Target rq has tasks of equal or earlier deadline,
1963 			 * retrying does not release any lock and is unlikely
1964 			 * to yield a different result.
1965 			 */
1966 			later_rq = NULL;
1967 			break;
1968 		}
1969 
1970 		/* Retry if something changed. */
1971 		if (double_lock_balance(rq, later_rq)) {
1972 			if (unlikely(task_rq(task) != rq ||
1973 				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_allowed) ||
1974 				     task_running(rq, task) ||
1975 				     !dl_task(task) ||
1976 				     !task_on_rq_queued(task))) {
1977 				double_unlock_balance(rq, later_rq);
1978 				later_rq = NULL;
1979 				break;
1980 			}
1981 		}
1982 
1983 		/*
1984 		 * If the rq we found has no -deadline task, or
1985 		 * its earliest one has a later deadline than our
1986 		 * task, the rq is a good one.
1987 		 */
1988 		if (!later_rq->dl.dl_nr_running ||
1989 		    dl_time_before(task->dl.deadline,
1990 				   later_rq->dl.earliest_dl.curr))
1991 			break;
1992 
1993 		/* Otherwise we try again. */
1994 		double_unlock_balance(rq, later_rq);
1995 		later_rq = NULL;
1996 	}
1997 
1998 	return later_rq;
1999 }
2000 
2001 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2002 {
2003 	struct task_struct *p;
2004 
2005 	if (!has_pushable_dl_tasks(rq))
2006 		return NULL;
2007 
2008 	p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2009 		     struct task_struct, pushable_dl_tasks);
2010 
2011 	BUG_ON(rq->cpu != task_cpu(p));
2012 	BUG_ON(task_current(rq, p));
2013 	BUG_ON(p->nr_cpus_allowed <= 1);
2014 
2015 	BUG_ON(!task_on_rq_queued(p));
2016 	BUG_ON(!dl_task(p));
2017 
2018 	return p;
2019 }
2020 
2021 /*
2022  * See if the non running -deadline tasks on this rq
2023  * can be sent to some other CPU where they can preempt
2024  * and start executing.
2025  */
2026 static int push_dl_task(struct rq *rq)
2027 {
2028 	struct task_struct *next_task;
2029 	struct rq *later_rq;
2030 	int ret = 0;
2031 
2032 	if (!rq->dl.overloaded)
2033 		return 0;
2034 
2035 	next_task = pick_next_pushable_dl_task(rq);
2036 	if (!next_task)
2037 		return 0;
2038 
2039 retry:
2040 	if (unlikely(next_task == rq->curr)) {
2041 		WARN_ON(1);
2042 		return 0;
2043 	}
2044 
2045 	/*
2046 	 * If next_task preempts rq->curr, and rq->curr
2047 	 * can move away, it makes sense to just reschedule
2048 	 * without going further in pushing next_task.
2049 	 */
2050 	if (dl_task(rq->curr) &&
2051 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2052 	    rq->curr->nr_cpus_allowed > 1) {
2053 		resched_curr(rq);
2054 		return 0;
2055 	}
2056 
2057 	/* We might release rq lock */
2058 	get_task_struct(next_task);
2059 
2060 	/* Will lock the rq it'll find */
2061 	later_rq = find_lock_later_rq(next_task, rq);
2062 	if (!later_rq) {
2063 		struct task_struct *task;
2064 
2065 		/*
2066 		 * We must check all this again, since
2067 		 * find_lock_later_rq releases rq->lock and it is
2068 		 * then possible that next_task has migrated.
2069 		 */
2070 		task = pick_next_pushable_dl_task(rq);
2071 		if (task == next_task) {
2072 			/*
2073 			 * The task is still there. We don't try
2074 			 * again, some other CPU will pull it when ready.
2075 			 */
2076 			goto out;
2077 		}
2078 
2079 		if (!task)
2080 			/* No more tasks */
2081 			goto out;
2082 
2083 		put_task_struct(next_task);
2084 		next_task = task;
2085 		goto retry;
2086 	}
2087 
2088 	deactivate_task(rq, next_task, 0);
2089 	sub_running_bw(&next_task->dl, &rq->dl);
2090 	sub_rq_bw(&next_task->dl, &rq->dl);
2091 	set_task_cpu(next_task, later_rq->cpu);
2092 	add_rq_bw(&next_task->dl, &later_rq->dl);
2093 	add_running_bw(&next_task->dl, &later_rq->dl);
2094 	activate_task(later_rq, next_task, 0);
2095 	ret = 1;
2096 
2097 	resched_curr(later_rq);
2098 
2099 	double_unlock_balance(rq, later_rq);
2100 
2101 out:
2102 	put_task_struct(next_task);
2103 
2104 	return ret;
2105 }
2106 
2107 static void push_dl_tasks(struct rq *rq)
2108 {
2109 	/* push_dl_task() will return true if it moved a -deadline task */
2110 	while (push_dl_task(rq))
2111 		;
2112 }
2113 
2114 static void pull_dl_task(struct rq *this_rq)
2115 {
2116 	int this_cpu = this_rq->cpu, cpu;
2117 	struct task_struct *p;
2118 	bool resched = false;
2119 	struct rq *src_rq;
2120 	u64 dmin = LONG_MAX;
2121 
2122 	if (likely(!dl_overloaded(this_rq)))
2123 		return;
2124 
2125 	/*
2126 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2127 	 * see overloaded we must also see the dlo_mask bit.
2128 	 */
2129 	smp_rmb();
2130 
2131 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2132 		if (this_cpu == cpu)
2133 			continue;
2134 
2135 		src_rq = cpu_rq(cpu);
2136 
2137 		/*
2138 		 * It looks racy, abd it is! However, as in sched_rt.c,
2139 		 * we are fine with this.
2140 		 */
2141 		if (this_rq->dl.dl_nr_running &&
2142 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2143 				   src_rq->dl.earliest_dl.next))
2144 			continue;
2145 
2146 		/* Might drop this_rq->lock */
2147 		double_lock_balance(this_rq, src_rq);
2148 
2149 		/*
2150 		 * If there are no more pullable tasks on the
2151 		 * rq, we're done with it.
2152 		 */
2153 		if (src_rq->dl.dl_nr_running <= 1)
2154 			goto skip;
2155 
2156 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2157 
2158 		/*
2159 		 * We found a task to be pulled if:
2160 		 *  - it preempts our current (if there's one),
2161 		 *  - it will preempt the last one we pulled (if any).
2162 		 */
2163 		if (p && dl_time_before(p->dl.deadline, dmin) &&
2164 		    (!this_rq->dl.dl_nr_running ||
2165 		     dl_time_before(p->dl.deadline,
2166 				    this_rq->dl.earliest_dl.curr))) {
2167 			WARN_ON(p == src_rq->curr);
2168 			WARN_ON(!task_on_rq_queued(p));
2169 
2170 			/*
2171 			 * Then we pull iff p has actually an earlier
2172 			 * deadline than the current task of its runqueue.
2173 			 */
2174 			if (dl_time_before(p->dl.deadline,
2175 					   src_rq->curr->dl.deadline))
2176 				goto skip;
2177 
2178 			resched = true;
2179 
2180 			deactivate_task(src_rq, p, 0);
2181 			sub_running_bw(&p->dl, &src_rq->dl);
2182 			sub_rq_bw(&p->dl, &src_rq->dl);
2183 			set_task_cpu(p, this_cpu);
2184 			add_rq_bw(&p->dl, &this_rq->dl);
2185 			add_running_bw(&p->dl, &this_rq->dl);
2186 			activate_task(this_rq, p, 0);
2187 			dmin = p->dl.deadline;
2188 
2189 			/* Is there any other task even earlier? */
2190 		}
2191 skip:
2192 		double_unlock_balance(this_rq, src_rq);
2193 	}
2194 
2195 	if (resched)
2196 		resched_curr(this_rq);
2197 }
2198 
2199 /*
2200  * Since the task is not running and a reschedule is not going to happen
2201  * anytime soon on its runqueue, we try pushing it away now.
2202  */
2203 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2204 {
2205 	if (!task_running(rq, p) &&
2206 	    !test_tsk_need_resched(rq->curr) &&
2207 	    p->nr_cpus_allowed > 1 &&
2208 	    dl_task(rq->curr) &&
2209 	    (rq->curr->nr_cpus_allowed < 2 ||
2210 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2211 		push_dl_tasks(rq);
2212 	}
2213 }
2214 
2215 static void set_cpus_allowed_dl(struct task_struct *p,
2216 				const struct cpumask *new_mask)
2217 {
2218 	struct root_domain *src_rd;
2219 	struct rq *rq;
2220 
2221 	BUG_ON(!dl_task(p));
2222 
2223 	rq = task_rq(p);
2224 	src_rd = rq->rd;
2225 	/*
2226 	 * Migrating a SCHED_DEADLINE task between exclusive
2227 	 * cpusets (different root_domains) entails a bandwidth
2228 	 * update. We already made space for us in the destination
2229 	 * domain (see cpuset_can_attach()).
2230 	 */
2231 	if (!cpumask_intersects(src_rd->span, new_mask)) {
2232 		struct dl_bw *src_dl_b;
2233 
2234 		src_dl_b = dl_bw_of(cpu_of(rq));
2235 		/*
2236 		 * We now free resources of the root_domain we are migrating
2237 		 * off. In the worst case, sched_setattr() may temporary fail
2238 		 * until we complete the update.
2239 		 */
2240 		raw_spin_lock(&src_dl_b->lock);
2241 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2242 		raw_spin_unlock(&src_dl_b->lock);
2243 	}
2244 
2245 	set_cpus_allowed_common(p, new_mask);
2246 }
2247 
2248 /* Assumes rq->lock is held */
2249 static void rq_online_dl(struct rq *rq)
2250 {
2251 	if (rq->dl.overloaded)
2252 		dl_set_overload(rq);
2253 
2254 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2255 	if (rq->dl.dl_nr_running > 0)
2256 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2257 }
2258 
2259 /* Assumes rq->lock is held */
2260 static void rq_offline_dl(struct rq *rq)
2261 {
2262 	if (rq->dl.overloaded)
2263 		dl_clear_overload(rq);
2264 
2265 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2266 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2267 }
2268 
2269 void __init init_sched_dl_class(void)
2270 {
2271 	unsigned int i;
2272 
2273 	for_each_possible_cpu(i)
2274 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2275 					GFP_KERNEL, cpu_to_node(i));
2276 }
2277 
2278 #endif /* CONFIG_SMP */
2279 
2280 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2281 {
2282 	/*
2283 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2284 	 * time is in the future). If the task switches back to dl before
2285 	 * the "inactive timer" fires, it can continue to consume its current
2286 	 * runtime using its current deadline. If it stays outside of
2287 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2288 	 * will reset the task parameters.
2289 	 */
2290 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2291 		task_non_contending(p);
2292 
2293 	if (!task_on_rq_queued(p))
2294 		sub_rq_bw(&p->dl, &rq->dl);
2295 
2296 	/*
2297 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2298 	 * at the 0-lag time, because the task could have been migrated
2299 	 * while SCHED_OTHER in the meanwhile.
2300 	 */
2301 	if (p->dl.dl_non_contending)
2302 		p->dl.dl_non_contending = 0;
2303 
2304 	/*
2305 	 * Since this might be the only -deadline task on the rq,
2306 	 * this is the right place to try to pull some other one
2307 	 * from an overloaded CPU, if any.
2308 	 */
2309 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2310 		return;
2311 
2312 	deadline_queue_pull_task(rq);
2313 }
2314 
2315 /*
2316  * When switching to -deadline, we may overload the rq, then
2317  * we try to push someone off, if possible.
2318  */
2319 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2320 {
2321 	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2322 		put_task_struct(p);
2323 
2324 	/* If p is not queued we will update its parameters at next wakeup. */
2325 	if (!task_on_rq_queued(p)) {
2326 		add_rq_bw(&p->dl, &rq->dl);
2327 
2328 		return;
2329 	}
2330 
2331 	if (rq->curr != p) {
2332 #ifdef CONFIG_SMP
2333 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2334 			deadline_queue_push_tasks(rq);
2335 #endif
2336 		if (dl_task(rq->curr))
2337 			check_preempt_curr_dl(rq, p, 0);
2338 		else
2339 			resched_curr(rq);
2340 	}
2341 }
2342 
2343 /*
2344  * If the scheduling parameters of a -deadline task changed,
2345  * a push or pull operation might be needed.
2346  */
2347 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2348 			    int oldprio)
2349 {
2350 	if (task_on_rq_queued(p) || rq->curr == p) {
2351 #ifdef CONFIG_SMP
2352 		/*
2353 		 * This might be too much, but unfortunately
2354 		 * we don't have the old deadline value, and
2355 		 * we can't argue if the task is increasing
2356 		 * or lowering its prio, so...
2357 		 */
2358 		if (!rq->dl.overloaded)
2359 			deadline_queue_pull_task(rq);
2360 
2361 		/*
2362 		 * If we now have a earlier deadline task than p,
2363 		 * then reschedule, provided p is still on this
2364 		 * runqueue.
2365 		 */
2366 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2367 			resched_curr(rq);
2368 #else
2369 		/*
2370 		 * Again, we don't know if p has a earlier
2371 		 * or later deadline, so let's blindly set a
2372 		 * (maybe not needed) rescheduling point.
2373 		 */
2374 		resched_curr(rq);
2375 #endif /* CONFIG_SMP */
2376 	}
2377 }
2378 
2379 const struct sched_class dl_sched_class = {
2380 	.next			= &rt_sched_class,
2381 	.enqueue_task		= enqueue_task_dl,
2382 	.dequeue_task		= dequeue_task_dl,
2383 	.yield_task		= yield_task_dl,
2384 
2385 	.check_preempt_curr	= check_preempt_curr_dl,
2386 
2387 	.pick_next_task		= pick_next_task_dl,
2388 	.put_prev_task		= put_prev_task_dl,
2389 
2390 #ifdef CONFIG_SMP
2391 	.select_task_rq		= select_task_rq_dl,
2392 	.migrate_task_rq	= migrate_task_rq_dl,
2393 	.set_cpus_allowed       = set_cpus_allowed_dl,
2394 	.rq_online              = rq_online_dl,
2395 	.rq_offline             = rq_offline_dl,
2396 	.task_woken		= task_woken_dl,
2397 #endif
2398 
2399 	.set_curr_task		= set_curr_task_dl,
2400 	.task_tick		= task_tick_dl,
2401 	.task_fork              = task_fork_dl,
2402 
2403 	.prio_changed           = prio_changed_dl,
2404 	.switched_from		= switched_from_dl,
2405 	.switched_to		= switched_to_dl,
2406 
2407 	.update_curr		= update_curr_dl,
2408 };
2409 
2410 int sched_dl_global_validate(void)
2411 {
2412 	u64 runtime = global_rt_runtime();
2413 	u64 period = global_rt_period();
2414 	u64 new_bw = to_ratio(period, runtime);
2415 	struct dl_bw *dl_b;
2416 	int cpu, ret = 0;
2417 	unsigned long flags;
2418 
2419 	/*
2420 	 * Here we want to check the bandwidth not being set to some
2421 	 * value smaller than the currently allocated bandwidth in
2422 	 * any of the root_domains.
2423 	 *
2424 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2425 	 * cycling on root_domains... Discussion on different/better
2426 	 * solutions is welcome!
2427 	 */
2428 	for_each_possible_cpu(cpu) {
2429 		rcu_read_lock_sched();
2430 		dl_b = dl_bw_of(cpu);
2431 
2432 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2433 		if (new_bw < dl_b->total_bw)
2434 			ret = -EBUSY;
2435 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2436 
2437 		rcu_read_unlock_sched();
2438 
2439 		if (ret)
2440 			break;
2441 	}
2442 
2443 	return ret;
2444 }
2445 
2446 void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2447 {
2448 	if (global_rt_runtime() == RUNTIME_INF) {
2449 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2450 		dl_rq->extra_bw = 1 << BW_SHIFT;
2451 	} else {
2452 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2453 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2454 		dl_rq->extra_bw = to_ratio(global_rt_period(),
2455 						    global_rt_runtime());
2456 	}
2457 }
2458 
2459 void sched_dl_do_global(void)
2460 {
2461 	u64 new_bw = -1;
2462 	struct dl_bw *dl_b;
2463 	int cpu;
2464 	unsigned long flags;
2465 
2466 	def_dl_bandwidth.dl_period = global_rt_period();
2467 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
2468 
2469 	if (global_rt_runtime() != RUNTIME_INF)
2470 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2471 
2472 	/*
2473 	 * FIXME: As above...
2474 	 */
2475 	for_each_possible_cpu(cpu) {
2476 		rcu_read_lock_sched();
2477 		dl_b = dl_bw_of(cpu);
2478 
2479 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2480 		dl_b->bw = new_bw;
2481 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2482 
2483 		rcu_read_unlock_sched();
2484 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2485 	}
2486 }
2487 
2488 /*
2489  * We must be sure that accepting a new task (or allowing changing the
2490  * parameters of an existing one) is consistent with the bandwidth
2491  * constraints. If yes, this function also accordingly updates the currently
2492  * allocated bandwidth to reflect the new situation.
2493  *
2494  * This function is called while holding p's rq->lock.
2495  */
2496 int sched_dl_overflow(struct task_struct *p, int policy,
2497 		      const struct sched_attr *attr)
2498 {
2499 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2500 	u64 period = attr->sched_period ?: attr->sched_deadline;
2501 	u64 runtime = attr->sched_runtime;
2502 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2503 	int cpus, err = -1;
2504 
2505 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2506 		return 0;
2507 
2508 	/* !deadline task may carry old deadline bandwidth */
2509 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2510 		return 0;
2511 
2512 	/*
2513 	 * Either if a task, enters, leave, or stays -deadline but changes
2514 	 * its parameters, we may need to update accordingly the total
2515 	 * allocated bandwidth of the container.
2516 	 */
2517 	raw_spin_lock(&dl_b->lock);
2518 	cpus = dl_bw_cpus(task_cpu(p));
2519 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2520 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2521 		if (hrtimer_active(&p->dl.inactive_timer))
2522 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2523 		__dl_add(dl_b, new_bw, cpus);
2524 		err = 0;
2525 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2526 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2527 		/*
2528 		 * XXX this is slightly incorrect: when the task
2529 		 * utilization decreases, we should delay the total
2530 		 * utilization change until the task's 0-lag point.
2531 		 * But this would require to set the task's "inactive
2532 		 * timer" when the task is not inactive.
2533 		 */
2534 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2535 		__dl_add(dl_b, new_bw, cpus);
2536 		dl_change_utilization(p, new_bw);
2537 		err = 0;
2538 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2539 		/*
2540 		 * Do not decrease the total deadline utilization here,
2541 		 * switched_from_dl() will take care to do it at the correct
2542 		 * (0-lag) time.
2543 		 */
2544 		err = 0;
2545 	}
2546 	raw_spin_unlock(&dl_b->lock);
2547 
2548 	return err;
2549 }
2550 
2551 /*
2552  * This function initializes the sched_dl_entity of a newly becoming
2553  * SCHED_DEADLINE task.
2554  *
2555  * Only the static values are considered here, the actual runtime and the
2556  * absolute deadline will be properly calculated when the task is enqueued
2557  * for the first time with its new policy.
2558  */
2559 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2560 {
2561 	struct sched_dl_entity *dl_se = &p->dl;
2562 
2563 	dl_se->dl_runtime = attr->sched_runtime;
2564 	dl_se->dl_deadline = attr->sched_deadline;
2565 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2566 	dl_se->flags = attr->sched_flags;
2567 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2568 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2569 }
2570 
2571 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2572 {
2573 	struct sched_dl_entity *dl_se = &p->dl;
2574 
2575 	attr->sched_priority = p->rt_priority;
2576 	attr->sched_runtime = dl_se->dl_runtime;
2577 	attr->sched_deadline = dl_se->dl_deadline;
2578 	attr->sched_period = dl_se->dl_period;
2579 	attr->sched_flags = dl_se->flags;
2580 }
2581 
2582 /*
2583  * This function validates the new parameters of a -deadline task.
2584  * We ask for the deadline not being zero, and greater or equal
2585  * than the runtime, as well as the period of being zero or
2586  * greater than deadline. Furthermore, we have to be sure that
2587  * user parameters are above the internal resolution of 1us (we
2588  * check sched_runtime only since it is always the smaller one) and
2589  * below 2^63 ns (we have to check both sched_deadline and
2590  * sched_period, as the latter can be zero).
2591  */
2592 bool __checkparam_dl(const struct sched_attr *attr)
2593 {
2594 	/* special dl tasks don't actually use any parameter */
2595 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2596 		return true;
2597 
2598 	/* deadline != 0 */
2599 	if (attr->sched_deadline == 0)
2600 		return false;
2601 
2602 	/*
2603 	 * Since we truncate DL_SCALE bits, make sure we're at least
2604 	 * that big.
2605 	 */
2606 	if (attr->sched_runtime < (1ULL << DL_SCALE))
2607 		return false;
2608 
2609 	/*
2610 	 * Since we use the MSB for wrap-around and sign issues, make
2611 	 * sure it's not set (mind that period can be equal to zero).
2612 	 */
2613 	if (attr->sched_deadline & (1ULL << 63) ||
2614 	    attr->sched_period & (1ULL << 63))
2615 		return false;
2616 
2617 	/* runtime <= deadline <= period (if period != 0) */
2618 	if ((attr->sched_period != 0 &&
2619 	     attr->sched_period < attr->sched_deadline) ||
2620 	    attr->sched_deadline < attr->sched_runtime)
2621 		return false;
2622 
2623 	return true;
2624 }
2625 
2626 /*
2627  * This function clears the sched_dl_entity static params.
2628  */
2629 void __dl_clear_params(struct task_struct *p)
2630 {
2631 	struct sched_dl_entity *dl_se = &p->dl;
2632 
2633 	dl_se->dl_runtime		= 0;
2634 	dl_se->dl_deadline		= 0;
2635 	dl_se->dl_period		= 0;
2636 	dl_se->flags			= 0;
2637 	dl_se->dl_bw			= 0;
2638 	dl_se->dl_density		= 0;
2639 
2640 	dl_se->dl_throttled		= 0;
2641 	dl_se->dl_yielded		= 0;
2642 	dl_se->dl_non_contending	= 0;
2643 	dl_se->dl_overrun		= 0;
2644 }
2645 
2646 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2647 {
2648 	struct sched_dl_entity *dl_se = &p->dl;
2649 
2650 	if (dl_se->dl_runtime != attr->sched_runtime ||
2651 	    dl_se->dl_deadline != attr->sched_deadline ||
2652 	    dl_se->dl_period != attr->sched_period ||
2653 	    dl_se->flags != attr->sched_flags)
2654 		return true;
2655 
2656 	return false;
2657 }
2658 
2659 #ifdef CONFIG_SMP
2660 int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2661 {
2662 	unsigned int dest_cpu;
2663 	struct dl_bw *dl_b;
2664 	bool overflow;
2665 	int cpus, ret;
2666 	unsigned long flags;
2667 
2668 	dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2669 
2670 	rcu_read_lock_sched();
2671 	dl_b = dl_bw_of(dest_cpu);
2672 	raw_spin_lock_irqsave(&dl_b->lock, flags);
2673 	cpus = dl_bw_cpus(dest_cpu);
2674 	overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
2675 	if (overflow) {
2676 		ret = -EBUSY;
2677 	} else {
2678 		/*
2679 		 * We reserve space for this task in the destination
2680 		 * root_domain, as we can't fail after this point.
2681 		 * We will free resources in the source root_domain
2682 		 * later on (see set_cpus_allowed_dl()).
2683 		 */
2684 		__dl_add(dl_b, p->dl.dl_bw, cpus);
2685 		ret = 0;
2686 	}
2687 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2688 	rcu_read_unlock_sched();
2689 
2690 	return ret;
2691 }
2692 
2693 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2694 				 const struct cpumask *trial)
2695 {
2696 	int ret = 1, trial_cpus;
2697 	struct dl_bw *cur_dl_b;
2698 	unsigned long flags;
2699 
2700 	rcu_read_lock_sched();
2701 	cur_dl_b = dl_bw_of(cpumask_any(cur));
2702 	trial_cpus = cpumask_weight(trial);
2703 
2704 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2705 	if (cur_dl_b->bw != -1 &&
2706 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2707 		ret = 0;
2708 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2709 	rcu_read_unlock_sched();
2710 
2711 	return ret;
2712 }
2713 
2714 bool dl_cpu_busy(unsigned int cpu)
2715 {
2716 	unsigned long flags;
2717 	struct dl_bw *dl_b;
2718 	bool overflow;
2719 	int cpus;
2720 
2721 	rcu_read_lock_sched();
2722 	dl_b = dl_bw_of(cpu);
2723 	raw_spin_lock_irqsave(&dl_b->lock, flags);
2724 	cpus = dl_bw_cpus(cpu);
2725 	overflow = __dl_overflow(dl_b, cpus, 0, 0);
2726 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2727 	rcu_read_unlock_sched();
2728 
2729 	return overflow;
2730 }
2731 #endif
2732 
2733 #ifdef CONFIG_SCHED_DEBUG
2734 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2735 
2736 void print_dl_stats(struct seq_file *m, int cpu)
2737 {
2738 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2739 }
2740 #endif /* CONFIG_SCHED_DEBUG */
2741